Skip to main content
Log in

Nitrate determines growth and protease inhibitor content of the cyanobacterium Microcystis aeruginosa

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The eutrophication of lakes and ponds through anthropogenic nutrient input has resulted in higher frequencies of cyanobacterial blooms worldwide. The increased availability of nitrate (NO3) plays an important role for the development of such blooms and also affects the content of secondary metabolites in cyanobacteria. Cyanobacterial protease inhibitors (PIs) are widespread, nitrogen (N)-rich metabolites that can be considered potential defense molecules, as they have detrimental effects on herbivorous zooplankton, the major consumer of cyanobacteria. In batch culture experiments, we investigated the effect of varying NO3 concentrations on the growth, stoichiometry, and PI content of the cyanobacterium Microcystis aeruginosa NIVA Cya 43, which synthesizes the two PIs nostopeptin 920 (BN920) and cyanopeptolin 954 (CP954). The dynamics of particulate organic nitrogen (PON) and the concentration of the two PIs indicate that BN920 and CP954 serve as temporary N storage compounds and are suggested to be degraded under N limitation. When related to the cyanobacterial biomass, the inhibitor content varied by more than 80% with NO3 concentration and time. The PI content increased with growth rate and N content of the cyanobacterium, which indicates that increased N availability supports higher cyanobacterial biomass with a higher content of defensive PIs. Therefore, increased NO3 concentrations foster cyanobacterial blooms directly by providing more nutrients and indirectly by increasing the negative interference of cyanobacteria with their consumers due to an increased content of PIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal MK, Bagchi D, Bagchi SN (2001) Acute inhibition of protease and suppression of growth in zooplankter, Moina macrocopa, by Microcystis blooms collected in Central India. Hydrobiologia 464:37–44

    Article  Google Scholar 

  • Agrawal MK, Zitt A, Bagchi D, Weckesser J, Bagchi SN, Von Elert E (2005) Characterization of proteases in guts of Daphnia magna and their inhibition by Microcystis aeruginosa PCC 7806. Environ Toxicol 20:314–322

    Article  CAS  PubMed  Google Scholar 

  • Amé MV, Wunderlin DA (2005) Effects of iron, ammonium and temperature on microcystin content by a natural concentrated Microcystis aeruginosa population. Water Air Soil Pollut 168:235–248

    Article  CAS  Google Scholar 

  • Berg H, Ziegler K, Piotukh K, Baier K, Lockau W, Volkmer-Engert R (2000) Biosynthesis of the cyanobacterial reserve polymer multi-L-arginyl-poly-L-aspartic acid (cyanophycin). Eur J Biochem 267:5561–5570

    Article  CAS  PubMed  Google Scholar 

  • Bryant JP, Chapin FS, Klein DR (1983) Carbon nutrient balance of boreal in relation to vertebrate herbivory. Oikos 40:357–368

    Article  CAS  Google Scholar 

  • Chen W, Zhang Q, Dai S (2009) Effects of nitrate on intracellular nitrite and growth of Microcystis aeruginosa. J Appl Phycol 21:701–706

    Article  CAS  Google Scholar 

  • Chislock MF, Sarnelle O, Jernigan LM, Wilson AE (2013) Do high concentrations of microcystin prevent Daphnia control of phytoplankton? Water Res 47:1961–1970

    Article  CAS  PubMed  Google Scholar 

  • Dittmann E, Wiegand C (2006) Cyanobacterial toxins - occurrence, biosynthesis and impact on human affairs. Mol Nutr Food Res 50:7–17

    Article  CAS  PubMed  Google Scholar 

  • Dolman AM, Rücker J, Pick FR, Fastner J, Rohrlack T, Mischke U, Wiedner C (2012) Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus. PLoS One 7:e38757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donald DB, Bogard MJ, Finlay K, Leavitt PR (2011) Comparative effects of urea, ammonium, and nitrate on phytoplankton abundance, community composition, and toxicity in hypereutrophic freshwaters. Limnol Oceanogr 56:2161–2175

    Article  CAS  Google Scholar 

  • Downing TG, Sember CS, Gehringer MM, Leukes W (2005) Medium N:P ratios and specific growth rate comodulate microcystin and protein content in Microcystis aeruginosa PCC7806 and M. aeruginosa UV027. Microb Ecol 49:468–473

    Article  CAS  PubMed  Google Scholar 

  • Erratt KJ, Creed IF, Trick CG (2018) Comparative effects of ammonium, nitrate and urea on growth and photosynthetic efficiency of three bloom-forming cyanobacteria. Freshw Biol 63:626–638

  • Gademann K, Portmann C (2008) Secondary metabolites from cyanobacteria: complex structures and powerful bioactivities. Curr Org Chem 12:326–341

    Article  CAS  Google Scholar 

  • Gademann K, Portmann C, Blom JF, Zeder M, Jüttner F (2010) Multiple toxin production in the cyanobacterium Microcystis: isolation of the toxic protease inhibitor cyanopeptolin 1020. J Nat Prod 73:980–984

    Article  CAS  PubMed  Google Scholar 

  • Glibert PM, Burford MA (2017) Globally changing nutrient loads and harmful algal blooms: recent advances, new paradigms, and continuing challenges. Oceanography 30:58–69

    Article  Google Scholar 

  • Glibert PM, Maranger R, Sobota DJ, Bouwman L (2014) The Haber Bosch–harmful algal bloom (HB–HAB) link. Environ Res Lett 9:105001. https://doi.org/10.1088/1748-9326/9/10/105001

    Article  CAS  Google Scholar 

  • Glibert PM, Wilkerson FP, Dugdale RC, Raven JA, Dupont CL, Leavitt PR, Parker AE, Burkholder JM, Kana TM (2016) Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnol Oceanogr 61:165–197

    Article  CAS  Google Scholar 

  • Goldman JC, McCarthy JJ, Peavey DG (1979) Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279:210–215

    Article  CAS  Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine onvertebrates. In: Smith WL (ed) Culture of marine invertebrate animals. Plenum Press, New York, pp 29–60

    Chapter  Google Scholar 

  • Harke MJ, Gobler CJ (2013) Global transcriptional responses of the toxic cyanobacterium, Microcystis aeruginosa, to nitrogen stress, phosphorus stress, and growth on organic matter. PLoS One 8:e69834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA, Paerl HW (2016a) A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54:4–20

    Article  PubMed  Google Scholar 

  • Harke MJ, Davis TW, Watson SB, Gobler CJ (2016b) Nutrient-controlled niche differentiation of western Lake Erie cyanobacterial populations revealed via metatranscriptomic surveys. Environ Sci Technol 50:604–615

    Article  CAS  PubMed  Google Scholar 

  • Harke MJ, Jankowiak JG, Morrell BK, Gobler CJ (2017) Transcriptomic responses in the bloom-forming cyanobacterium Microcystis induced during exposure to zooplankton. Appl Env Microbiol 83. https://doi.org/10.1128/AEM.02832-16

  • Harris T, Smith VH, Graham J, Van de Waal DB, Tedesco L, Clercin N (2016) Combined effects of nitrogen to phosphorus and nitrate to ammonia ratios on cyanobacterial metabolite concentrations in eutrophic Midwestern USA reservoirs. Inland Waters 6:199–210

    Article  CAS  Google Scholar 

  • Harris TD, Wilhelm FM, Graham JL, Loftin KA (2014) Experimental manipulation of TN:TP ratios suppress cyanobacterial biovolume and microcystin concentration in large-scale in situ mesocosms. Lake Reservoir Manage 30:72–83

    Article  CAS  Google Scholar 

  • Hesse K, Dittmann E, Börner T (2001) Consequences of impaired microcystin production for light-dependent growth and pigmentation of Microcystis aeruginosa PCC 7806. FEMS Microbiol Ecol 37:39–43

    Article  CAS  Google Scholar 

  • Horst GP, Sarnelle O, White JD, Hamilton SK, Kaul RB, Bressie JD (2014) Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa. Water Res 54:188–198

    Article  CAS  PubMed  Google Scholar 

  • Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM (2018) Cyanobacterial blooms. Nat Rev Microbiol 16:471–483

    Article  CAS  PubMed  Google Scholar 

  • Jähnichen S, Long BM, Petzoldt T (2011) Microcystin production by Microcystis aeruginosa: direct regulation by multiple environmental factors. Harmful Algae 12:95–104

    Article  CAS  Google Scholar 

  • Kim H, Jo BY, Kim HS (2017) Effect of different concentrations and ratios of ammonium, nitrate, and phosphate on growth of the blue-green alga (cyanobacterium) Microcystis aeruginosa isolated from the Nakdong River, Korea. Algae 32:275–284

    Article  CAS  Google Scholar 

  • Lampert W, Sommer U (2010) Limnoecology: the ecology of lakes and streams, 2nd edn. Univ. Press, Oxford

  • Li J, Zhang J, Huang W, Kong F, Li Y, Xi M, Zheng Z (2016) Comparative bioavailability of ammonium, nitrate, nitrite and urea to typically harmful cyanobacterium Microcystis aeruginosa. Mar Pollut Bull 110:93–98

    Article  CAS  PubMed  Google Scholar 

  • Long BM (2001) The influence of growth conditions on the intracellular microcystin quota of Microcystis aeruginosa. Ph.D. thesis, La Trobe University

  • Loos M (2018) Envimass. Zenodo

  • Lürling M (2003) Effects of microcystin-free and microcystin-containing strains of the cyanobacterium Microcystis aeruginosa on growth of the grazer Daphnia magna. Environ Toxicol 18:202–210

    Article  PubMed  Google Scholar 

  • MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264:187–192

    Article  CAS  PubMed  Google Scholar 

  • Monchamp M-E, Pick FR, Beisner BE, Maranger R (2014) Nitrogen forms influence microcystin concentration and composition via changes in cyanobacterial community structure. PLoS One 9:e85573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosolov VV, Valueva TA (2005) Proteinase inhibitors and their function in plants: a review. Appl Biochem Microbiol 41:227–246

    Article  CAS  Google Scholar 

  • Odani S, Koide T, Ono T, Ohnishi K (1983) Structural relationship between barley (Hordeum vulgare) trypsin inhibitor and castor-bean (Ricinus communis) storage protein. Biochem J 213:543–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orihel DM, Bird DF, Brylinsky M, Chen H, Donald DB, Huang DY, Giani A, Kinniburgh D, Kling H, Kotak BG, Leavitt PR, Nielsen CC, Reedyk S, Rooney RC, Watson SB, Zurawell RW, Vinebrooke RD, Smith REH (2012) High microcystin concentrations occur only at low nitrogen-to-phosphorus ratios in nutrient-rich Canadian lakes. Can J Fish Aquat Sci 69:1457–1462

    Article  CAS  Google Scholar 

  • Orr PT, Jones GJ (1998) Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol Oceanogr 43:1604–1614

    Article  CAS  Google Scholar 

  • Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65:995–1010

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW, Scott JT, McCarthy MJ, Newell SE, Gardner WS, Havens KE, Hoffman DK, Wilhelm SW, Wurtsbaugh WA (2016) It takes two to tango: when and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems. Environ Sci Technol 50:10805–10813

    Article  CAS  PubMed  Google Scholar 

  • Petzoldt T (2017) Growthrates: estimate growth rates from experimental data. R package. https://CRAN.R-project.org/package=growthrates

  • Pimentel JSM, Giani A (2014) Microcystin production and regulation under nutrient stress conditions in toxic Microcystis strains. Appl Environ Microbiol 80:5836–5843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puddick J, Prinsep MR, Wood SA, Cary CS, Hamilton DP (2016) Modulation of microcystin congener abundance following nitrogen depletion of a Microcystis batch culture. Aquat Ecol 50:235–246

    Article  CAS  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221

    CAS  Google Scholar 

  • Rhoades DF (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interaction with secondary plant metabolites. Academic Press, New York, pp 3–54

    Google Scholar 

  • Richter R, Hejazi M, Kraft R, Ziegler K, Lockau W (1999) Cyanophycinase, a peptidase degrading the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartic acid (cyanophycin). Molecular cloning of the gene of Synechocystis sp. PCC 6803, expression in Escherichia coli, and biochemical characterization of the purified enzyme. Eur J Biochem 263:163–169

    Article  CAS  PubMed  Google Scholar 

  • Rohrlack T, Christoffersen K, Kaebernick M, Neilan BA (2004) Cyanobacterial protease inhibitor microviridin J causes a lethal molting disruption in Daphnia pulicaria. Appl Environ Microbiol 70:5047–5050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • RStudio Team (2016) RStudio: integrated development environment for R. RStudio, Inc. htttp://www.rstudio.com/

  • Runnegar MTC, Kong S, Berndt N (1993) Protein phosphatase inhibition and in vivo hepatotoxicity of microcystins. Am J Phys 265:G224–G230

    Article  CAS  Google Scholar 

  • Saha SK, Uma L, Subramanian G (2003) Nitrogen stress induced changes in the marine cyanobacterium Oscillatoria willei BDU 130511. FEMS Microbiol Ecol 45:263–272

    Article  CAS  Google Scholar 

  • Saxton MA, Arnold RJ, Bourbonniere RA, McKay RML, Wilhelm SW (2012) Plasticity of total and intracellular phosphorus quotas in Microcystis aeruginosa cultures and Lake Erie algal assemblages. Front Microbiol 3:3. https://doi.org/10.3389/fmicb.2012.00003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindler DW (1974) Eutrophication and recovery in experimental lakes: implications for lake management. Science 184:897–899

    Article  CAS  PubMed  Google Scholar 

  • Schwarzenberger A, Zitt A, Kroth P, Mueller S, Von Elert E (2010) Gene expression and activity of digestive proteases in Daphnia: effects of cyanobacterial protease inhibitors. BMC Physiol 10:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwarzenberger A, Sadler T, Von Elert E (2013) Effect of nutrient limitation of cyanobacteria on protease inhibitor production and fitness of Daphnia magna. J Exp Biol 216:3649–3655

    Article  CAS  PubMed  Google Scholar 

  • Sevilla E, Martin-Luna B, Vela L, Bes TM, Peleato LM, Fillat MF (2010) Microcystin-LR synthesis as response to nitrogen: transcriptional analysis of the mcyD gene in Microcystis aeruginosa PCC7806. Ecotoxicology 19:1167–1173

    Article  CAS  PubMed  Google Scholar 

  • Sivonen K (1990) Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Appl Environ Microbiol 56:2658–2666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sivonen K (2009) Cyanobacterial toxins. In: Schaechter M (ed) Encyclopedia of microbiology, third edn. Elsevier, Oxford, pp 290–307

  • Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221:669–671

    Article  CAS  PubMed  Google Scholar 

  • Sommer U (1990) Phytoplankton nutrient competition - from laboratory to lake. In: Grace JB, Tilman D (eds) Perspectives on plant competition. Academic Press, San Diego, pp 193–213

    Google Scholar 

  • Steffensen DA (2008) Economic cost of cyanobacterial blooms. Adv Exp Med Biol 619:855–865

    Article  PubMed  Google Scholar 

  • Tonk L, Visser PM, Christiansen G, Dittmann E, Snelder EOFM, Wiedner C, Mur LR, Huisman J (2005) The microcystin composition of the cyanobacterium Planktothrix agardhii changes toward a more toxic variant with increasing light intensity. Appl Environ Microbiol 71:5177–5181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonk L, Welker M, Huisman J, Visser PM (2009) Production of cyanopeptolins, anabaenopeptins, and microcystins by the harmful cyanobacteria Anabaena 90 and Microcystis PCC7806. Harmful Algae 8:219–224

    Article  CAS  Google Scholar 

  • Tooming-Klunderud A (2007) On the evolution of nonribosomal peptide synthetase gene clusters in cyanobacteria. Dissertation, University of Oslo

  • Urrutia-Cordero P, Ekvall MK, Hansson L-A (2015) Responses of cyanobacteria to herbivorous zooplankton across predator regimes: who mows the bloom? Freshw Biol 60:960–972

    Article  Google Scholar 

  • Van de Waal DB, Verspagen JMH, Lürling M, van Donk E, Visser PM, Huisman J (2009) The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis. Ecol Lett 12:1326–1335

    Article  PubMed  Google Scholar 

  • Van de Waal DB, Smith VH, Declerck SAJ, Stam ECM, Elser JJ (2014) Stoichiometric regulation of phytoplankton toxins. Ecol Lett 17:736–742

    Article  PubMed  Google Scholar 

  • Von Elert E, Agrawal MK, Gebauer C, Jaensch H, Bauer U, Zitt A (2004) Protease activity in gut of Daphnia magna: evidence for trypsin and chymotrypsin enzymes. Comp Biochem Physiol B 137:287–296

    Article  CAS  Google Scholar 

  • Von Elert E, Oberer L, Merkel P, Huhn T, Blom JF (2005) Cyanopeptolin 954, a chlorine-containing chymotrypsin inhibitor of Microcystis aeruginosa NIVA Cya 43. J Nat Prod 68:1324–1327

    Article  CAS  Google Scholar 

  • Von Elert E, Zitt A, Schwarzenberger A (2012) Inducible tolerance to dietary protease inhibitors in Daphnia magna. J Exp Biol 215:2051–2059

    Article  CAS  Google Scholar 

  • Weckesser J, Martin C, Jakobi C (1996) Cyanopeptolins, depsipeptides from cyanobacteria. Syst Appl Microbiol 19:133–138

    Article  CAS  Google Scholar 

  • Wiedner C, Visser PM, Fastner J, Metcalf JS, Codd GA, Mur LR (2003) Effects of light on the microcystin content of Microcystis strain PCC7806. Appl Environ Microbiol 69:1475–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Paerl HW, Qin B, Zhu G, Gaoa G (2010) Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol Oceanogr 55:420–432

    Article  CAS  Google Scholar 

  • Yan H, Pan G, Zou H, Song L, Zhang M (2004) Effects of nitrogen forms on the production of cyanobacterial toxin microcystin-LR by an isolated Microcystis aeruginosa. J Environ Sci Health A 39:2993–3003

    Article  Google Scholar 

Download references

Acknowledgements

We thank Anna Herzog and Conny Thielen (Terrestrial Ecology, University of Cologne) for measuring POC and PON.

Funding

This study was supported by the German Science Foundation (DFG) with a grant to EvE (EL 179/10-1) within the DFG priority program 1704 DynaTrait.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Burberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burberg, C., Ilić, M., Petzoldt, T. et al. Nitrate determines growth and protease inhibitor content of the cyanobacterium Microcystis aeruginosa. J Appl Phycol 31, 1697–1707 (2019). https://doi.org/10.1007/s10811-018-1674-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1674-0

Keywords

Navigation