Skip to main content
Log in

The Role of Metal Vapour in Gas Metal Arc Welding and Methods of Combined Experimental and Numerical Process Analysis

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Gas metal arc welding (GMAW) processes are characterized by a high number of simultaneously running physical processes. The process capability is mainly determined by the properties of a metal vapour influenced arc and the material transfer. In recent years, experimental as well as numerical methods are being used increasingly in order to understand the complex interactions between the arc and material transfer. In this paper, we discuss the influence of metal vapour on GMAW processes in spray as well as pulsed material transfer mode. With respect to the high complexity of the process, experimental and numerical methods are combined in a targeted manner in order to obtain a high level of expressive capability with moderate numerical and experimental effort. The results illustrate the high influence of the changing vaporization rate not only on the arc properties but on the arc attachment at the filler wire. It could be shown, that in many cases the metal vapour concentration in the arc region has a greater influence on the arc properties and the material transfer than different shielding gas components like oxygen, hydrogen or helium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Norish J (2006) Advanced welding processes. Woodhead Publishing. https://www.elsevier.com/books/advanced-welding-processes/norrish/978-1-84569-130-1

  2. Murphy AB (2010) The effects of metal vapour in arc welding. J Phys D Appl Phys 43:434001

    Article  Google Scholar 

  3. Murphy AB (2016) A perspective on arc welding research: the importance of the arc, unresolved questions and future directions. Plasma Chem Plasma Process 35(3):471–489

    Article  Google Scholar 

  4. Goecke SF (2004) Auswirkungen von Aktivgaszumischungen im vpm-Bereich zu Argon auf das MIG-Impulsschweissen von Aluminium. Dissertation TU Berlin

  5. Zielinska S, Musiol K, Dzierzega K, Pellerin S, Valensi F, de Izarra Ch, Briand F (2007) Investigations of GMAW plasma by optical emission spectroscopy. Plasma Sources Sci Technol 16:832

    Article  CAS  Google Scholar 

  6. Rouffet ME, Wendt M, Goett G, Kozakov R, Schöpp H, Weltmann KD, Uhrlandt D (2010) Spectroscopic investigation of the high-current phase of a pulsed GMAW process. J Phys D Appl Phys 43:434003

    Article  Google Scholar 

  7. Tsujimura Y and Tanaka M (2013) Plasma diagnostics in gas–metal arcs during welding. In: IIW conference Denver 2012, SG 212-meeting, IIW Doc. 212-1237-12

  8. Kozakov R, Gött G, Schöpp H, Uhrlandt D, Schnick M, Hässler M, Füssel U, Rose S (2013) Spatial structure of the arc in the pulsed GMAW process. J Phys D Appl Phys 46:224001

    Article  Google Scholar 

  9. Haidar J, Lowke JJ (1996) Predictions of metal droplet formation in arc welding. J Phys D Appl Phys 29(12):2951

    Article  CAS  Google Scholar 

  10. Fan HG, Kovacevic R (2004) A unified model of transport phenomena in gas–metal arc welding including electrode, arc plasma and molten pool. J Phys D Appl Phys 37:2531

    Article  CAS  Google Scholar 

  11. Xu G, Hu J, Tsai HL (2009) Three-dimensional modeling of arc plasma and metal transfer in gas metal arc welding. Int J Heat Mass Transf 52:1709–1724

    Article  CAS  Google Scholar 

  12. Schnick M, Füssel U, Hertel M, Spille-Kohoff A, Murphy AB (2010) Metal vapour causes a central minimum in arc temperature in gas–metal arc welding through increased radiative emission. J Phys D Appl Phys 43:022001

    Article  Google Scholar 

  13. Schnick M, Füssel U, Hertel M, Haessler M, Spille-Kohoff A, Murphy AB (2010) Modelling of gas–metal arc welding taking into account metal vapour. J Phys D Appl Phys 43:434008

    Article  Google Scholar 

  14. Pfender E (1980) Energy transport in thermal Plasmas. Pure Appl Chem 52:1773–1800

    Article  CAS  Google Scholar 

  15. Heberlein J, Mentel J, Pfender E (2010) The anode region of electric arcs: a survey. J Phys D Appl Phys 43(2):023001

    Article  Google Scholar 

  16. Krivtsun I, Demchenko V, Lesnoi A, Krikent I, Poritsky P, Mokrov O, Reisgen U, Zabirov A, Pavlyk V (2010) Modelling of electromagnetic processes in system’welding arc—evaporating anode’: I. Model of anode region. Sci Technol Weld Join 15:457–462

    Article  Google Scholar 

  17. Krivtsun I, Demchenko V, Lesnoi A, Krikent I, Poritsky P, Mokrov O, Reisgen U, Zabirov A, Pavlyk V (2010) Modelling of electromagnetic processes in system ‘welding arc—evaporating anode’: II. Model of arc column and anode metal Sci. Technol Weld Join 15:463–467

    Article  Google Scholar 

  18. Boselli M, Colombo V, Ghedini E, Gherardi M, Sanibondi P (2012) Two-dimensional time-dependent modelling of fume formation in a pulsed gas metal arc welding process. J Phys D Appl Phys 46:224006

    Article  Google Scholar 

  19. Hertel M, Spille-Kohoff A, Füssel U, Schnick M (2013) Numerical simulation of droplet detachment in pulsed gas–metal arc welding including the influence of metal vapour. J Phys D Appl Phys 46:224003

    Article  Google Scholar 

  20. Ogino Y, Hirata Y (2015) Numerical simulation of metal transfer in argon gas-shielded GMAW. Weld World 59(4):465–473

    Article  CAS  Google Scholar 

  21. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Article  Google Scholar 

  22. Ogino Y, Yoshinori Hirata, Murphy AB (2016) Numerical simulation of GMAW process using Ar and an Ar-CO2 gas mixture. Weld World 60(2):345–353

    Article  CAS  Google Scholar 

  23. Rose S (2013) Einfluss des Werkstoffübergangs auf das dynamische Prozessverhalten beim Metallschutz-gasschweißen. Dissertation TU Dresden

  24. Hertel M, Niese J, Rose S, Häßler M, Füssel U, Uhrlandt D (2015) Experimental und numerical investigations into the influence of the shielding gas composition on the GMA spray arc process. Weld Cut 14(5):234–441

    Google Scholar 

  25. Hertel M, Rose S, Füllel U (2016) Numerical simulation of arc and droplet transfer in pulsed GMAW of mild steel in argon. Weld World 60(5):1055–1061

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hertel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hertel, M., Trautmann, M., Jäckel, S. et al. The Role of Metal Vapour in Gas Metal Arc Welding and Methods of Combined Experimental and Numerical Process Analysis. Plasma Chem Plasma Process 37, 531–547 (2017). https://doi.org/10.1007/s11090-017-9790-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9790-1

Keywords

Navigation