Skip to main content
Log in

Predicting arc pressure in GTAW for a variety of process parameters using a coupled sheath and LTE arc model

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

To date, several numerical models predicting the properties of TIG-arcs are available. Recently, effort has been put into testing the reliability of these models for varying process parameters by means of comparing plasma temperatures and arc voltages against measured data. However, from an engineering point of view, the goal of these models is to predict the properties of weld beads. Therefore, the heat input into and the pressure applied onto the workpiece have to be predicted. This paper deals with the comparison of measured arc pressure data and the results of an approach which couples a simplified cathode sheath model with an LTE arc model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lowke, J. J.; Tanaka, M.: LTE-diffusion approximation’ for arc calculations. In: Journal of Physics D: Applied Physics, Vol. 39 (2006), pp 3634–3643

  2. Sansonnens, L.; Haidar, J.; Lowke, J. J.: Predictions of properties of free burning arcs including effects of ambipolar diffusion. In: Journal of Physics D: Applied Physics, Vol. 33 (2000), pp 148–157

  3. Benilov, M. S.; Benilova, L. G.; Li, H. P.; Wu, G. Q.: Sheath and arc-column voltages in high-pressure arc discharges. In: Journal of Physics D: Applied Physics, Vol. 45, No. 35 (2012). - stacks.iop.org/JPhysD/45/355201

  4. Lisnyak, M.; Cunha, M. D.; Bauchire, J.-M.; Benilov, M. S.: Numerical modelling of high-pressure arc discharges: matching the LTE arc core with the electrodes. In: Journal of Physics D: Applied Physics, Vol. 50 (2017). https://doi.org/10.1088/1361-6463/aa76d3

  5. Lohse, M.; Siewert, E.; Hertel, M. et al.: Modelling of the cathode sheath region in TIG welding. In Welding in the World, Vol. 59 (2015), Issue 5, pp 705–711. https://doi.org/10.1007/s40194-015-0246-z

  6. Shirvan, A. J.; Choquet, I.: A review of cathode-arc coupling modelling in GTAW. In: Welding in the World, Vol. 60 (2016), Issue 4, pp 821–835. https://doi.org/10.1007/s40194-016-0319-7

  7. Benilov MS, Marotta A (1995) A model of the cathode region of atmospheric pressure arcs. In: J Physics D: Appl Physics 28(9):1869–1882. https://doi.org/10.1088/0022-3727/28/9/015

    Article  Google Scholar 

  8. Cayla, F.: Modélisation de l’interaction entre un arc électrique et une cathode. Thesis. Universite Toulouse III–Paul Sabatier, 2008

  9. Benilov MS, Cunha MD, Naidis GV (2005) Modelling interaction of multispecies plasmas with thermionic cathodes. Plasma Sources Sci. Technol 14. https://doi.org/10.1088/0963-0252/14/3/014

  10. Baeva M (2017) Non-equilibrium modeling of tungsten-inert gas arcs. Plasma Chem Plasma Process 37(2):341–370. https://doi.org/10.1007/s11090-017-9785-y

    Article  Google Scholar 

  11. Murphy AB (1997) Transport coefficients of helium and argon-helium plasmas. In: IEEE Transactions Plasma Sci 25-5:809–814

    Google Scholar 

  12. Hsu KC, Pfender E (1983) Analysis of the cathode region of a free-burning high intensity argon arc. J Appl Hysics 54(7):3818–3824. https://doi.org/10.1063/1.332606

    Article  Google Scholar 

  13. Benilov MS (1995) The ion flux from a thermal plasma to a surface. J Physics D: Appl Physics 28:286–294

    Article  Google Scholar 

  14. Devoto RS (1973) Transport coefficients of ionized argon. Phys Fluids 16:616–623. https://doi.org/10.1063/1.1694396

    Article  Google Scholar 

  15. Tawara, H.; Kato, T.: Total and partial ionization cross sections of toms and ions by electron impact. In: Atomic Data and Nuclear Data Tables, Vol. 36 (1987), pp. 167–353

  16. Bachmann, B. L.: Development of innovative thermal plasma and particle diagnostics. Thesis. Universität der Bundeswehr München, 2013

  17. Shirvan AJ, Choquet I, Nilsson H (2016) Effect of cathode model on arc attachment for short high-intensity arc on a refractory cathode. J Phys D Appl Phys 49(48):485201. https://doi.org/10.1088/0022-3727/49/48/485201

    Article  Google Scholar 

  18. Haidar J, Farmer AJD (1993) A method for the measurement of free cathode surface temperature for a high-current free-burning arc. Rev Sci Instrum 64(2):542–547. https://doi.org/10.1063/1.1144230

    Article  Google Scholar 

  19. Mitrofanov NK, Shkol’nik SM (2007) Two forms of attachment of an atmospheric-pressure direct-current arc in argon to a thermionic cathode. In. Tech Phys 52(6):711–720. https://doi.org/10.1134/S1063784207060060

    Article  Google Scholar 

  20. Sadek, A. A.; Ushio, M.; Matsuda, F.: Gas-tungsten-arc cathode and related phenomena. In: Trans JWRI Vol. 16(1) (1987), pp. 195–210. – http://hdl.handle.net/11094/12168

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lohse.

Additional information

Recommended for publication by Study Group 212 - The Physics of Welding

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lohse, M., Trautmann, M., Siewert, E. et al. Predicting arc pressure in GTAW for a variety of process parameters using a coupled sheath and LTE arc model. Weld World 62, 629–635 (2018). https://doi.org/10.1007/s40194-018-0559-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-018-0559-9

Keywords

Navigation