Improved Adhesion Strength of Metal Textile Composites by Surface Texturing Using TIG Arc or CW Laser Process

Article Preview

Abstract:

Within the framework of the bilateral CORNET projects MeTexCom and MeTexCom2, new approaches were developed and tested to improve the adhesion strength of metal textile composites, with a focus on the targeted roughening of aluminum surfaces and the development of new acoustically insulating nonwovens. The metal textile composites were produced by melting thermoplastic components of the textile composites without a separately applied adhesive.For improved adhesion strength between metal and textile, roughness was generated on the metal surface by means of a novel arc treatment by an anodic polarized TIG process or a cw (continuous wave) fiber laser process. On the one hand, the goal was to produce uniformly rough, untercut surface structures in micro-and nanodimension by means of a highly dynamic arcing process. On the other hand, a similar approach was pursued with the cw laser method by using a single-mode as well as a multi-mode laser.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

341-348

Citation:

Online since:

July 2017

Export:

Price:

* - Corresponding Author

[1] H. Planck, T. Stegmaier, M. Liewald, S. Wagner, O. Hahn, D. Teutenberg, Entwicklung eines Stahlblech-Mehrschichtverbundes mit textiler Einlage für Anwendungen in den Bereichen Transportsysteme und Consumerartikel, EFB Research Report Nr. 302.

DOI: 10.37544/1436-4980-2008-10-866

Google Scholar

[2] M. Liewald, S. Wagner, C. Bolay, H. Planck, G. Gresser, T. Stegmeier, A. Vohrer, Innovative Blechverbundwerkstoffe mit textiler Einlage für den Karosseriebau, EFB Research Report Nr. 379.

Google Scholar

[3] M. Gültner, S. Markstein, I. Hamanová, M. Tichý, I. Keprta, V. Hlaváček, M. Mészáros, Development of metal textile composites with improved adhesion behavior, Technical Textiles, 5 (2015) E 265 -267.

Google Scholar

[4] P.S.C. Ho, P.O. Hahn, H. Lefakis and G.W. Rubloff, U.S. Patent 4, 720, 401 A (1988) Enhanced adhesion between metals and polymers.

Google Scholar

[5] Written by AZoM, Adhesion Between Polymers and Other Substances - A Review of Bonding Mechanisms, Systems and Testing (2003), http: /www. azom. com/article. aspx?ArticleID=(2089).

Google Scholar

[6] H.R. Brown, Polymer adhesion. Materials Forum (2000) 49-58.

Google Scholar

[7] A. Roesner, S. Scheik, A. Olowinsky, A. Gillner, U. Reisgen, M. Schleser, Laser Assisted Joining of Plastic Metal Hybrids, Physics Procedia, 12 (2011) 370–377.

DOI: 10.1016/j.phpro.2011.03.146

Google Scholar

[8] U. Endemann; S. Glaser; M. Völker, Kunststoff und Metall im festen Verbund. in Kunststoffe. Carl Hanser Verlag, München. 92 (2002) 110-113.

Google Scholar

[9] G.W. Ehrenstein: Handbuch Kunststoff-Verbindungstechnik, Carl Hanser Verlag, München (2004).

Google Scholar

[10] E.M. Liston, L. Martinu, M.R. Wertheimer, Plasma surface modification of polymers for improved adhesion: a critical review, Journal of Adhesion Science and Technology 7 (1993) 1091-1127.

DOI: 10.1163/156856193x00600

Google Scholar

[11] A. Kinloch, Adhesion and Adhesives, Science and Technology, Springer Science & Business Media, (1987) ISBN 978-94-015-7764-9.

Google Scholar

[12] J.A. Von Fraunhofer, Adhesion and Cohesion, International Journal of Dentistry (2012) 2012: 951324. doi: 10. 1155/2012/951324.

Google Scholar

[13] K. Großmann, S. Bräunling, C. Cherif, E. Staiger, V. Ulbricht, T. Linse, 3D-Bauteile aus Blech und Textil durch umformende Verbundherstellung, EFB Research Report Nr. 383.

Google Scholar

[14] H. Erth, J. Schreiber, G. Schmidt, OptiKnit – Maschenvliesstoff mit neuen Möglichkeiten, Melliand TB 6 (2006) 333–335.

Google Scholar