A fast stimulus procedure to determine local receptive field properties of motion-sensitive visual interneurons

Krapp HG, Hengstenberg R (1997)
Vision research 37(2): 225-234.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Krapp, Holger G.; Hengstenberg, Roland
Abstract / Bemerkung
We present a method to determine, within a few seconds, the local preferred direction (LPD) and local motion sensitivity (LMS) in small patches of the receptive fields of wide-field motion-sensitive neurons. This allows us to map, even during intracellular recordings, the distribution of LPD and LMS over the huge receptive fields of neurons sensing self-motions of the animal. Comparisons of the response field of a given neuron with the optic flow fields caused by different movements in space, allows us to specify the particular motion of the animal sensed by that neuron.
Stichworte
Optic flow; Visual interneurons; Visual system; Visual Stimulation; Directional selectivity; Motion detection; Calliphora erythrocephala
Erscheinungsjahr
1997
Zeitschriftentitel
Vision research
Band
37
Ausgabe
2
Seite(n)
225-234
ISSN
0042-6989
Page URI
https://pub.uni-bielefeld.de/record/1773507

Zitieren

Krapp HG, Hengstenberg R. A fast stimulus procedure to determine local receptive field properties of motion-sensitive visual interneurons. Vision research. 1997;37(2):225-234.
Krapp, H. G., & Hengstenberg, R. (1997). A fast stimulus procedure to determine local receptive field properties of motion-sensitive visual interneurons. Vision research, 37(2), 225-234. https://doi.org/10.1016/S0042-6989(96)00114-9
Krapp, Holger G., and Hengstenberg, Roland. 1997. “A fast stimulus procedure to determine local receptive field properties of motion-sensitive visual interneurons”. Vision research 37 (2): 225-234.
Krapp, H. G., and Hengstenberg, R. (1997). A fast stimulus procedure to determine local receptive field properties of motion-sensitive visual interneurons. Vision research 37, 225-234.
Krapp, H.G., & Hengstenberg, R., 1997. A fast stimulus procedure to determine local receptive field properties of motion-sensitive visual interneurons. Vision research, 37(2), p 225-234.
H.G. Krapp and R. Hengstenberg, “A fast stimulus procedure to determine local receptive field properties of motion-sensitive visual interneurons”, Vision research, vol. 37, 1997, pp. 225-234.
Krapp, H.G., Hengstenberg, R.: A fast stimulus procedure to determine local receptive field properties of motion-sensitive visual interneurons. Vision research. 37, 225-234 (1997).
Krapp, Holger G., and Hengstenberg, Roland. “A fast stimulus procedure to determine local receptive field properties of motion-sensitive visual interneurons”. Vision research 37.2 (1997): 225-234.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:08Z
MD5 Prüfsumme
bc14e6a8dddc3ceef0f9f9a556059688


21 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Encoding of yaw in the presence of distractor motion: studies in a fly motion sensitive neuron.
Roy S, Sinha SR, de Ruyter van Steveninck R., J Neurosci 35(16), 2015
PMID: 25904799
Subcellular mapping of dendritic activity in optic flow processing neurons.
Hopp E, Borst A, Haag J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200(5), 2014
PMID: 24647929
Identifying functional connections of the inner photoreceptors in Drosophila using Tango-Trace.
Jagadish S, Barnea G, Clandinin TR, Axel R., Neuron 83(3), 2014
PMID: 25043419
Binocular interactions underlying the classic optomotor responses of flying flies.
Duistermars BJ, Care RA, Frye MA., Front Behav Neurosci 6(), 2012
PMID: 22375108
State-dependent performance of optic-flow processing interneurons.
Longden KD, Krapp HG., J Neurophysiol 102(6), 2009
PMID: 19812292
Local and global motion preferences in descending neurons of the fly.
Wertz A, Haag J, Borst A., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(12), 2009
PMID: 19830435
A modular display system for insect behavioral neuroscience.
Reiser MB, Dickinson MH., J Neurosci Methods 167(2), 2008
PMID: 17854905
Sexual dimorphism in the hoverfly motion vision pathway.
Nordström K, Barnett PD, Moyer de Miguel IM, Brinkworth RS, O'Carroll DC., Curr Biol 18(9), 2008
PMID: 18450449
Visuomotor transformation in the fly gaze stabilization system.
Huston SJ, Krapp HG., PLoS Biol 6(7), 2008
PMID: 18651791
Insect detection of small targets moving in visual clutter.
Nordström K, Barnett PD, O'Carroll DC., PLoS Biol 4(3), 2006
PMID: 16448249
Global versus local adaptation in fly motion-sensitive neurons.
Neri P, Laughlin SB., Proc Biol Sci 272(1578), 2005
PMID: 16191636
Multiplication and stimulus invariance in a looming-sensitive neuron.
Gabbiani F, Krapp HG, Hatsopoulos N, Mo CH, Koch C, Laurent G., J Physiol Paris 98(1-3), 2004
PMID: 15477020
Robustness of the tuning of fly visual interneurons to rotatory optic flow.
Karmeier K, Krapp HG, Egelhaaf M., J Neurophysiol 90(3), 2003
PMID: 12736239
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J Neurophysiol 85(2), 2001
PMID: 11160507
Neural coding of naturalistic motion stimuli.
Lewen GD, Bialek W, de Ruyter van Steveninck RR., Network 12(3), 2001
PMID: 11563532
Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly.
Krapp HG, Hengstenberg B, Hengstenberg R., J Neurophysiol 79(4), 1998
PMID: 9535957

34 References

Daten bereitgestellt von Europe PubMed Central.

Cortical processing of visual motion
Albright, 1993

Batschelet, 1981
Fly visual interneurons responsive to image expansion
Borst, Zoologische Jahbücher Physiologie 95(), 1991
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Behavioural analysis of spatial vision in insects
Buchner, 1984
Visual control of the partition of flight force between lift and thrust in free-flying Drosophila
David, Nature 313(), 1985
On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed on the neuronal network and the role of the optomotor system
Egelhaaf, Biological Cybernetics 52(), 1985
On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-detection cells, a new class of visual interneurons
Egelhaaf, Biological Cybernetics 52(), 1985
On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. III. Possible input circuitries and behavioural significance of the FD-cells
Egelhaaf, Biological Cybernetics 52(), 1985

Gibson, 1950
Dendritic integration of motion information in visual interneurons of the blowfly.
Haag J, Egelhaaf M, Borst A., Neurosci. Lett. 140(2), 1992
PMID: 1501773
Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala
Hausen, Zeitschrift für Naturforschung 31(), 1976
Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals
Hausen, Biological Cybernetics 45(), 1982
The lobula-complex of the fly: structure, function and significance in visual behaviour
Hausen, 1984
Decoding of retinal image flow in insects
Hausen, 1993
Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora
Hengstenberg, Journal of Comparative Physiology A 149(), 1982
The number and structure of giant vertical cells (VS) in the lobula plate of the blowfly Calliphora erythrocephala
Hengstenberg, Journal of Comparative Physiology A 149(), 1982
Visual sensation of self-motions in the blowfly Calliphora
Hengstenberg, 1997
Facts on optic flow.
Koenderink JJ, van Doorn AJ., Biol Cybern 56(4), 1987
PMID: 3607100
Filter neurons for specific optic flow patterns in the fly's visual system
Krapp, 1995
Estimation of self-motion by optic flow processing in single visual interneurons
Krapp, Nature (), 1996
Computer-generated optical patterns for the analysis of the visual system of insects
Lemmnitz, Zoologische Jahbücher Physiologie 96(), 1992
Evaluation of optical motion information by movement detectors.
Reichardt W., J. Comp. Physiol. A 161(4), 1987
PMID: 3681769
Continuous mapping of direction selectivity in the cat's visual cortex.
Schoppmann A, Hoffmann KP., Neurosci. Lett. 2(4), 1976
PMID: 19604837
Spatial processing of visual information in the movement-detecting pathway of the fly
Srinivasan, Journal of Comparative Physiology 140(), 1980
'Vector white noise': a technique for mapping the motion receptive fields of direction-selective visual neurons.
Srinivasan MV, Jin ZF, Stange G, Ibbotson MR., Biol Cybern 68(3), 1993
PMID: 8452887
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 9068822
PubMed | Europe PMC

Suchen in

Google Scholar