Neural encoding of behaviourally relevant visual-motion information in the fly

Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha A-K (2002)
Trends in Neurosciences 25(2): 96-102.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Information processing in visual systems is constrained by the spatial and temporal characteristics of the sensory input and by the biophysical properties of the neuronal circuits. Hence, to understand how visual systems encode behaviourally relevant information, we need to know about both the computational capabilities of the nervous system and the natural conditions under which animals normally operate. By combining behavioural, neurophysiological and computational approaches, it is now possible in the fly to assess adaptations that process visual-motion information under the constraints of its natural input. It is concluded that neuronal operating ranges and coding strategies appear to be closely matched to the inputs the animal encounters under behaviourally relevant conditions.
Stichworte
Electrophysiology; Retinotopic; Tangential cells; Optic flow; Compound eye
Erscheinungsjahr
2002
Zeitschriftentitel
Trends in Neurosciences
Band
25
Ausgabe
2
Seite(n)
96-102
ISSN
0166-2236
Page URI
https://pub.uni-bielefeld.de/record/1773532

Zitieren

Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha A-K. Neural encoding of behaviourally relevant visual-motion information in the fly. Trends in Neurosciences. 2002;25(2):96-102.
Egelhaaf, M., Kern, R., Krapp, H. G., Kretzberg, J., Kurtz, R., & Warzecha, A. - K. (2002). Neural encoding of behaviourally relevant visual-motion information in the fly. Trends in Neurosciences, 25(2), 96-102. https://doi.org/10.1016/S0166-2236(02)02063-5
Egelhaaf, Martin, Kern, Roland, Krapp, Holger G., Kretzberg, Jutta, Kurtz, Rafael, and Warzecha, Anne-Kathrin. 2002. “Neural encoding of behaviourally relevant visual-motion information in the fly”. Trends in Neurosciences 25 (2): 96-102.
Egelhaaf, M., Kern, R., Krapp, H. G., Kretzberg, J., Kurtz, R., and Warzecha, A. - K. (2002). Neural encoding of behaviourally relevant visual-motion information in the fly. Trends in Neurosciences 25, 96-102.
Egelhaaf, M., et al., 2002. Neural encoding of behaviourally relevant visual-motion information in the fly. Trends in Neurosciences, 25(2), p 96-102.
M. Egelhaaf, et al., “Neural encoding of behaviourally relevant visual-motion information in the fly”, Trends in Neurosciences, vol. 25, 2002, pp. 96-102.
Egelhaaf, M., Kern, R., Krapp, H.G., Kretzberg, J., Kurtz, R., Warzecha, A.-K.: Neural encoding of behaviourally relevant visual-motion information in the fly. Trends in Neurosciences. 25, 96-102 (2002).
Egelhaaf, Martin, Kern, Roland, Krapp, Holger G., Kretzberg, Jutta, Kurtz, Rafael, and Warzecha, Anne-Kathrin. “Neural encoding of behaviourally relevant visual-motion information in the fly”. Trends in Neurosciences 25.2 (2002): 96-102.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:08Z
MD5 Prüfsumme
346275dd185edf5f6275547c0a0878ea


69 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Role of the light source position in freely falling hoverflies' stabilization performances.
Goulard R, Verbe A, Vercher JL, Viollet S., Biol Lett 14(5), 2018
PMID: 29794004
Parameters of motion vision in low light in the hawkmoth Manduca sexta.
Parthasarathy K, Willis MA., J Exp Biol 221(pt 20), 2018
PMID: 29997159
Evolution of Biological Image Stabilization.
Hardcastle BJ, Krapp HG., Curr Biol 26(20), 2016
PMID: 27780044
Motion-detecting circuits in flies: coming into view.
Silies M, Gohl DM, Clandinin TR., Annu Rev Neurosci 37(), 2014
PMID: 25032498
To keep on track during flight, fruitflies discount the skyward view.
Mazo C, Theobald JC., Biol Lett 10(2), 2014
PMID: 24554476
Subcellular mapping of dendritic activity in optic flow processing neurons.
Hopp E, Borst A, Haag J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200(5), 2014
PMID: 24647929
Modular use of peripheral input channels tunes motion-detecting circuitry.
Silies M, Gohl DM, Fisher YE, Freifeld L, Clark DA, Clandinin TR., Neuron 79(1), 2013
PMID: 23849199
Binocular interactions underlying the classic optomotor responses of flying flies.
Duistermars BJ, Care RA, Frye MA., Front Behav Neurosci 6(), 2012
PMID: 22375108
A fast and flexible panoramic virtual reality system for behavioural and electrophysiological experiments.
Takalo J, Piironen A, Honkanen A, Lempeä M, Aikio M, Tuukkanen T, Vähäsöyrinki M., Sci Rep 2(), 2012
PMID: 22442752
Neuronal representation of visual motion and orientation in the fly medulla.
Spalthoff C, Gerdes R, Kurtz R., Front Neural Circuits 6(), 2012
PMID: 23087615
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Optic flow estimation on trajectories generated by bio-inspired closed-loop flight.
Shoemaker PA, Hyslop AM, Humbert JS., Biol Cybern 104(4-5), 2011
PMID: 21626306
Spatiotemporal receptive field properties of a looming-sensitive neuron in solitarious and gregarious phases of the desert locust.
Rogers SM, Harston GW, Kilburn-Toppin F, Matheson T, Burrows M, Gabbiani F, Krapp HG., J Neurophysiol 103(2), 2010
PMID: 19955292
Drosophila fly straight by fixating objects in the face of expanding optic flow.
Reiser MB, Dickinson MH., J Exp Biol 213(pt 10), 2010
PMID: 20435828
Frequency response of lift control in Drosophila.
Graetzel CF, Nelson BJ, Fry SN., J R Soc Interface 7(52), 2010
PMID: 20462877
Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior.
Seelig JD, Chiappe ME, Lott GK, Dutta A, Osborne JE, Reiser MB, Jayaraman V., Nat Methods 7(7), 2010
PMID: 20526346
The many facets of adaptation in fly visual motion processing.
Kurtz R., Commun Integr Biol 2(1), 2009
PMID: 19704857
Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons.
Kurtz R, Beckers U, Hundsdörfer B, Egelhaaf M., Eur J Neurosci 30(4), 2009
PMID: 19674090
State-dependent performance of optic-flow processing interneurons.
Longden KD, Krapp HG., J Neurophysiol 102(6), 2009
PMID: 19812292
Fly vision: neural mechanisms of motion computation.
Egelhaaf M., Curr Biol 18(8), 2008
PMID: 18430633
Visuomotor transformation in the fly gaze stabilization system.
Huston SJ, Krapp HG., PLoS Biol 6(7), 2008
PMID: 18651791
Motion processing streams in Drosophila are behaviorally specialized.
Katsov AY, Clandinin TR., Neuron 59(2), 2008
PMID: 18667159
Calcium imaging in the living brain: prospects for molecular medicine.
Rochefort NL, Jia H, Konnerth A., Trends Mol Med 14(9), 2008
PMID: 18701348
Visual search for a motion singleton among coherently moving distractors.
Ansorge U, Scharlau I, Labudda K., Psychol Res 70(2), 2006
PMID: 15609032
Application of multiline two-photon microscopy to functional in vivo imaging.
Kurtz R, Fricke M, Kalb J, Tinnefeld P, Sauer M., J Neurosci Methods 151(2), 2006
PMID: 16442636
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J Neurophysiol 96(3), 2006
PMID: 16687623
Local visual homing by matched-filter descent in image distances.
Möller R, Vardy A., Biol Cybern 95(5), 2006
PMID: 17021827
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol 3(6), 2005
PMID: 15884977
Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths.
Boeddeker N, Lindemann JP, Egelhaaf M, Zeil J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(12), 2005
PMID: 16133502
Global versus local adaptation in fly motion-sensitive neurons.
Neri P, Laughlin SB., Proc Biol Sci 272(1578), 2005
PMID: 16191636
In vivo two-photon laser-scanning microscopy of Ca2+ dynamics in visual motion-sensitive neurons.
Kalb J, Nielsen T, Fricke M, Egelhaaf M, Kurtz R., Biochem Biophys Res Commun 316(2), 2004
PMID: 15020223
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res 43(7), 2003
PMID: 12639604
Orientation tuning of motion-sensitive neurons shaped by vertical-horizontal network interactions.
Haag J, Borst A., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(5), 2003
PMID: 12720032
Robustness of the tuning of fly visual interneurons to rotatory optic flow.
Karmeier K, Krapp HG, Egelhaaf M., J Neurophysiol 90(3), 2003
PMID: 12736239
Salience modulates 20-30 Hz brain activity in Drosophila.
van Swinderen B, Greenspan RJ., Nat Neurosci 6(6), 2003
PMID: 12717438
Local computation of angular velocity in rotational visual motion.
Barraza JF, Grzywacz NM., J Opt Soc Am A Opt Image Sci Vis 20(7), 2003
PMID: 12868642
Mitochondria are redistributed in Drosophila photoreceptors lacking milton, a kinesin-associated protein.
Górska-Andrzejak J, Stowers RS, Borycz J, Kostyleva R, Schwarz TL, Meinertzhagen IA., J Comp Neurol 463(4), 2003
PMID: 12836173
Ca2+ imaging in the mammalian brain in vivo.
Helmchen F, Waters J., Eur J Pharmacol 447(2-3), 2002
PMID: 12151004
Vision in flying insects.
Egelhaaf M, Kern R., Curr Opin Neurobiol 12(6), 2002
PMID: 12490262
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 11814562
PubMed | Europe PMC

Suchen in

Google Scholar