In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons

Dürr V, Egelhaaf M (1999)
Journal of neurophysiology 82(6): 3327-3338.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
In this comparative in vivo study of dendritic calcium accumulation, we describe the time course and spatial integration properties of two classes of visual interneurons in the lobula plate of the blowfly. Calcium accumulation was measured during visual motion stimulation, ensuring synaptic activation of the neurons within their natural spatial and temporal operating range. The compared cell classes, centrifugal horizontal (CH) and horizontal system (HS) cells, are known to receive retinotopic input of similar direction selectivity, but to differ in morphology, biophysics, presence of dendrodendritic synapses, and computational task. 1) The time course of motion-induced calcium accumulation was highly invariant with respect to stimulus parameters such as pattern contrast and size. In HS cells, the rise of [Ca2+](i) can be described by a single exponential with a time constant of 5-6 s. The initial rise of [Ca2+](i) in CH cells was much faster (tau approximate to 1 s). The decay time constant in both cell classes was estimated to be at least 3.5 times longer than the corresponding rise time constant. 2) The voltage-[Ca2+](i) relationship was best described by an expansive nonlinearity in HS cells and an approximately linear relationship in CH cells. 3) Both cell classes displayed a size-dependent saturation nonlinearity of the calcium accumulation. Although in CH cells calcium saturation was indistinguishable from saturation of the membrane potential, saturation of the two response parameters differed in HS cells. 4) There was spatial overlap of the calcium signal in response to nonoverlapping visual stimuli. Both the area and the amplitude of the overlap profile was larger in CH cells than in HS cells. Thus calcium accumulation in CH cells is spatially blurred to a greater extent than in HS cells. 5) The described differences between the two cell classes may reflect the following computational tasks of these neurons: CH cells relay retinotopic information within the lobula plate via dendritic synapses with pronounced spatial low-pass filtering. HS cells are output neurons of the lobula plate, in which the slow, local calcium accumulation may be suitable for local modulatory functions.
Stichworte
presynaptic; membrane; stimulation; membrane potential; neuron; direction; direction selectivity; Signal; Synapse; Time constant; STIMULI; stimulus; response; size; interneuron; Morphology; TIME; biophysics; temporal; CELL; SYNAPSES; interneurons; VISUAL-STIMULI; Filtering; TASKS; TASK; CELLS; neurons; Information; system; fura-2; input; Intracellular calcium; HS-Cells; Lobula plate; lobula; CH-Cells; Calliphora; fly; Visual Interneuron; dendrodendritic; dendritic integration; retinotopic; Dendrite; ACTIVATION; calcium
Erscheinungsjahr
1999
Zeitschriftentitel
Journal of neurophysiology
Band
82
Ausgabe
6
Seite(n)
3327-3338
ISSN
0022-3077
Page URI
https://pub.uni-bielefeld.de/record/1784858

Zitieren

Dürr V, Egelhaaf M. In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons. Journal of neurophysiology. 1999;82(6):3327-3338.
Dürr, V., & Egelhaaf, M. (1999). In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons. Journal of neurophysiology, 82(6), 3327-3338. https://doi.org/10.1152/jn.1999.82.6.3327
Dürr, Volker, and Egelhaaf, Martin. 1999. “In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons”. Journal of neurophysiology 82 (6): 3327-3338.
Dürr, V., and Egelhaaf, M. (1999). In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons. Journal of neurophysiology 82, 3327-3338.
Dürr, V., & Egelhaaf, M., 1999. In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons. Journal of neurophysiology, 82(6), p 3327-3338.
V. Dürr and M. Egelhaaf, “In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons”, Journal of neurophysiology, vol. 82, 1999, pp. 3327-3338.
Dürr, V., Egelhaaf, M.: In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons. Journal of neurophysiology. 82, 3327-3338 (1999).
Dürr, Volker, and Egelhaaf, Martin. “In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons”. Journal of neurophysiology 82.6 (1999): 3327-3338.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:57Z
MD5 Prüfsumme
33e0ebda91e907f953d0cce6fd06bcf7


19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Dendritic end inhibition in large-field visual neurons of the fly.
Elyada YM, Haag J, Borst A., J Neurosci 33(8), 2013
PMID: 23426692
Texture dependence of motion sensing and free flight behavior in blowflies.
Lindemann JP, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 23335890
Localized direction selective responses in the dendrites of visual interneurons of the fly.
Spalthoff C, Egelhaaf M, Tinnefeld P, Kurtz R., BMC Biol 8(), 2010
PMID: 20384983
Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior.
Seelig JD, Chiappe ME, Lott GK, Dutta A, Osborne JE, Reiser MB, Jayaraman V., Nat Methods 7(7), 2010
PMID: 20526346
Walking modulates speed sensitivity in Drosophila motion vision.
Chiappe ME, Seelig JD, Reiser MB, Jayaraman V., Curr Biol 20(16), 2010
PMID: 20655222
Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons.
Kurtz R, Beckers U, Hundsdörfer B, Egelhaaf M., Eur J Neurosci 30(4), 2009
PMID: 19674090
Application of multiline two-photon microscopy to functional in vivo imaging.
Kurtz R, Fricke M, Kalb J, Tinnefeld P, Sauer M., J Neurosci Methods 151(2), 2006
PMID: 16442636
In vivo two-photon laser-scanning microscopy of Ca2+ dynamics in visual motion-sensitive neurons.
Kalb J, Nielsen T, Fricke M, Egelhaaf M, Kurtz R., Biochem Biophys Res Commun 316(2), 2004
PMID: 15020223
Neural image processing by dendritic networks.
Cuntz H, Haag J, Borst A., Proc Natl Acad Sci U S A 100(19), 2003
PMID: 12947039

59 References

Daten bereitgestellt von Europe PubMed Central.

Elementary and global aspects of calcium signalling.
Berridge MJ., J. Physiol. (Lond.) 499 ( Pt 2)(), 1997
PMID: 9080360
Calcium transport and buffering in neurons.
Blaustein MP., Trends Neurosci. 11(10), 1988
PMID: 2469161
In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation.
Borst A, Egelhaaf M., Proc. Natl. Acad. Sci. U.S.A. 89(9), 1992
PMID: 1570340
Dendritic processing of synaptic information by sensory interneurons.
Borst A, Egelhaaf M., Trends Neurosci. 17(6), 1994
PMID: 7521087
Imaging calcium dynamics in dendritic spines.
Denk W, Yuste R, Svoboda K, Tank DW., Curr. Opin. Neurobiol. 6(3), 1996
PMID: 8794079

Dürr, Proc. Göttingen Neurobiol. Conf. 25(), 1997

Dürr, Proc. Göttingen Neurobiol. Conf. 26(), 1998

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons.
Gabso M, Neher E, Spira ME., Neuron 18(3), 1997
PMID: 9115740
Synapse distribution on VCH, an inhibitory, motion-sensitive interneuron in the fly visual system.
Gauck V, Egelhaaf M, Borst A., J. Comp. Neurol. 381(4), 1997
PMID: 9136805

AUTHOR UNKNOWN, 0
Calcium signaling in neurons: molecular mechanisms and cellular consequences.
Ghosh A, Greenberg ME., Science 268(5208), 1995
PMID: 7716515

AUTHOR UNKNOWN, 0

Hardie, Prog. Sensory Physiol. 5(), 1982
Calcium signalling: setting store by calcium channels.
Hardie RC., Curr. Biol. 6(11), 1996
PMID: 8939592

Hausen, Z. Naturforsch. 31(), 1976

Hausen, Verh. Dt. Zool. Ges. 1981(), 1981

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Calcium transients in cerebellar Purkinje neurons evoked by intracellular stimulation.
Lev-Ram V, Miyakawa H, Lasser-Ross N, Ross WN., J. Neurophysiol. 68(4), 1992
PMID: 1432076
Insect optic lobe neurons identifiable with monoclonal antibodies to GABA.
Meyer EP, Matute C, Streit P, Nassel DR., Histochemistry 84(3), 1986
PMID: 3710830

Oertner, Soc. Neurosci. Abstr. 23(), 1997

Pivovarova, Soc. Neurosci. Abstr. 23(), 1997
Activity-dependent calcium sequestration in dendrites of hippocampal neurons in brain slices.
Pozzo-Miller LD, Pivovarova NB, Leapman RD, Buchanan RA, Reese TS, Andrews SB., J. Neurosci. 17(22), 1997
PMID: 9348342
Dendritic calcium dynamics.
Regehr WG, Tank DW., Curr. Opin. Neurobiol. 4(3), 1994
PMID: 7919932

Single, Soc. Neurosci. Abstr. 23(), 1997
Dendritic integration and its role in computing image velocity.
Single S, Borst A., Science 281(5384), 1998
PMID: 9743497
Dendritic computation of direction selectivity and gain control in visual interneurons.
Single S, Haag J, Borst A., J. Neurosci. 17(16), 1997
PMID: 9236213

AUTHOR UNKNOWN, 0
Oculomotor control in calliphorid flies: GABAergic organization in heterolateral inhibitory pathways.
Strausfeld NJ, Kong A, Milde JJ, Gilbert C, Ramaiah L., J. Comp. Neurol. 361(2), 1995
PMID: 8543664
In vivo dendritic calcium dynamics in neocortical pyramidal neurons.
Svoboda K, Denk W, Kleinfeld D, Tank DW., Nature 385(6612), 1997
PMID: 8990119
Calculation of calcium dynamics from single wavelength fura-2 fluorescence recordings.
Vranesic I, Knopfel T., Pflugers Arch. 418(1-2), 1991
PMID: 2041721
Mobile and immobile calcium buffers in bovine adrenal chromaffin cells.
Zhou Z, Neher E., J. Physiol. (Lond.) 469(), 1993
PMID: 8271200
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 10601464
PubMed | Europe PMC

Suchen in

Google Scholar