Mimicking honeybee eyes with a 280 degrees field of view catadioptric imaging system

Stürzl W, Böddeker N, Dittmar L, Egelhaaf M (2010)
Bioinspiration & Biomimetics 5(3): 36002.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Erscheinungsjahr
2010
Zeitschriftentitel
Bioinspiration & Biomimetics
Band
5
Ausgabe
3
Art.-Nr.
36002
ISSN
1748-3182
eISSN
1748-3190
Page URI
https://pub.uni-bielefeld.de/record/1930189

Zitieren

Stürzl W, Böddeker N, Dittmar L, Egelhaaf M. Mimicking honeybee eyes with a 280 degrees field of view catadioptric imaging system. Bioinspiration & Biomimetics. 2010;5(3): 36002.
Stürzl, W., Böddeker, N., Dittmar, L., & Egelhaaf, M. (2010). Mimicking honeybee eyes with a 280 degrees field of view catadioptric imaging system. Bioinspiration & Biomimetics, 5(3), 36002. https://doi.org/10.1088/1748-3182/5/3/036002
Stürzl, Wolfgang, Böddeker, Norbert, Dittmar, Laura, and Egelhaaf, Martin. 2010. “Mimicking honeybee eyes with a 280 degrees field of view catadioptric imaging system”. Bioinspiration & Biomimetics 5 (3): 36002.
Stürzl, W., Böddeker, N., Dittmar, L., and Egelhaaf, M. (2010). Mimicking honeybee eyes with a 280 degrees field of view catadioptric imaging system. Bioinspiration & Biomimetics 5:36002.
Stürzl, W., et al., 2010. Mimicking honeybee eyes with a 280 degrees field of view catadioptric imaging system. Bioinspiration & Biomimetics, 5(3): 36002.
W. Stürzl, et al., “Mimicking honeybee eyes with a 280 degrees field of view catadioptric imaging system”, Bioinspiration & Biomimetics, vol. 5, 2010, : 36002.
Stürzl, W., Böddeker, N., Dittmar, L., Egelhaaf, M.: Mimicking honeybee eyes with a 280 degrees field of view catadioptric imaging system. Bioinspiration & Biomimetics. 5, : 36002 (2010).
Stürzl, Wolfgang, Böddeker, Norbert, Dittmar, Laura, and Egelhaaf, Martin. “Mimicking honeybee eyes with a 280 degrees field of view catadioptric imaging system”. Bioinspiration & Biomimetics 5.3 (2010): 36002.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:12Z
MD5 Prüfsumme
ea28ae3fe828f27ed52fd29930dc7b11


11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A neural network model for familiarity and context learning during honeybee foraging flights.
Müller J, Nawrot M, Menzel R, Landgraf T., Biol Cybern 112(1-2), 2018
PMID: 28917001
Guidance of Navigating Honeybees by Learned Elongated Ground Structures.
Menzel R, Tison L, Fischer-Nakai J, Cheeseman J, Balbuena MS, Chen X, Landgraf T, Petrasch J, Polster J, Greggers U., Front Behav Neurosci 12(), 2018
PMID: 30697152
Animal coloration research: why it matters.
Caro T, Stoddard MC, Stuart-Fox D., Philos Trans R Soc Lond B Biol Sci 372(1724), 2017
PMID: 28533451
Three-dimensional models of natural environments and the mapping of navigational information.
Stürzl W, Grixa I, Mair E, Narendra A, Zeil J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 201(6), 2015
PMID: 25863682
Saccadic body turns in walking Drosophila.
Geurten BR, Jähde P, Corthals K, Göpfert MC., Front Behav Neurosci 8(), 2014
PMID: 25386124
Hardware architecture and cutting-edge assembly process of a tiny curved compound eye.
Viollet S, Godiot S, Leitel R, Buss W, Breugnon P, Menouni M, Juston R, Expert F, Colonnier F, L'Eplattenier G, Brückner A, Kraze F, Mallot H, Franceschini N, Pericet-Camara R, Ruffier F, Floreano D., Sensors (Basel) 14(11), 2014
PMID: 25407908
Biomimetic compound eye with a high numerical aperture and anti-reflective nanostructures on curved surfaces.
Wang T, Yu W, Li C, Zhang H, Xu Z, Lu Z, Sun Q., Opt Lett 37(12), 2012
PMID: 22739920
A mathematical model for flight guidance in honeybee swarms.
Fetecau RC, Guo A., Bull Math Biol 74(11), 2012
PMID: 22890574

30 References

Daten bereitgestellt von Europe PubMed Central.


benosman, panoramic vision (), 2001

stürzl, omnivis 10th workshop on omnidirectional vision camera networks and non-classical cameras (), 2010

land, animal eyes (), 2002

scaramuzza, iros 2006 int conf on intelligent robots and systems (), 2006

faugeras, three-dimensional computer vision-a geometric viewpoint (), 1993
View-based navigation in Hymenoptera: multiple strategies of landmark guidance in the approach to a feeder
Collett, Journal of Comparative Physiology A Sensory Neural and Behavioral Physiology 181(1), 1997
Inorganic carbon uptake for photosynthesis by the symbiotic coral-dinoflagellate association II. Mechanisms for bicarbonate uptake
Al-Moghrabi, Journal of Experimental Marine Biology and Ecology 199(2), 1996
Biologically inspired artificial compound eyes.
Jeong KH, Kim J, Lee LP., Science 312(5773), 2006
PMID: 16645090
Rugged, obstruction-free, mirror-lens combination for panoramic imaging.
Sturzl W, Soccol D, Zeil J, Boeddeker N, Srinivasan MV., Appl Opt 47(32), 2008
PMID: 19002232
Microoptical Artificial Compound Eyes
Brückner, 2009
Robust models for optic flow coding in natural scenes inspired by insect biology.
Brinkworth RS, O'Carroll DC., PLoS Comput. Biol. 5(11), 2009
PMID: 19893631
Reflective surfaces as computational sensors
Hicks, Image and Vision Computing 19(11), 2001

Baker, International Journal of Computer Vision 35(2), 1999
Honeybee navigation: nature and calibration of the "odometer".
Srinivasan MV, Zhang S, Altwein M, Tautz J., Science 287(5454), 2000
PMID: 10657298
Visual acuity in insects.
Land MF., Annu. Rev. Entomol. 42(), 1997
PMID: 15012311
Discrimination of coloured patterns by honeybees through chromatic and achromatic cues.
Hempel de Ibarra N, Giurfa M, Vorobyev M., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(7), 2002
PMID: 12209339
Ocellar occlusion effect on the flight behavior of homing honeybees
KASTBERGER, Journal of Insect Physiology 39(7), 1993
The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency
Chittka, Journal of Comparative Physiology A 170(5), 1992
Angular sensitivity of the retinula cells of dark-adapted worker bee
Laughlin, Zeitschrift für Vergleichende Physiologie 74(3), 1971
Landmark learning in bees
Cartwright, Journal of Comparative Physiology □ A 151(4), 1983
Specialized photoreceptors at the dorsal rim of the honeybee's compound eye: Polarizational and angular sensitivity
Labhart, Journal of Comparative Physiology □ A 141(1), 1980
Visual field size, binocular domain and the ommatidial array of the compound eyes in worker honey bees
Seidl, Journal of Comparative Physiology □ A 143(1), 1981
Fine structure of the dorsal ocellus of the worker honeybee.
Th Y, Kuwabara M., J. Morphol. 143(3), 1974
PMID: 4837744
On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway.
Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M., J. Neurosci. 25(27), 2005
PMID: 16000634
Wide-angle catadioptric lens with a rectilinear projection scheme.
Kweon GI, Hwang-Bo S, Kim GH, Yang SC, Lee YH., Appl Opt 45(34), 2006
PMID: 17119563

Nagahara, 2007
The ocelli control the flight course in honeybees.
Kastberger G., Physiol. Entomol. 15(3), 1990
PMID: IND90053139
Reflective surfaces for panoramic imaging.
Chahl JS, Srinivasan MV., Appl Opt 36(31), 1997
PMID: 18264368
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 20689158
PubMed | Europe PMC

Suchen in

Google Scholar