The information content of panoramic images: I. Rotational errors and the similarity of views in rectangular experimental arenas

Stürzl W, Cheung A, Cheng K, Zeil J (2008)
Journal of Experimental Psychology. Animal Behavior Processes 34(1): 1-14.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 2.66 MB
Autor*in
Stürzl, WolfgangUniBi; Cheung, Allen; Cheng, Ken; Zeil, Jochen
Abstract / Bemerkung
Animals relocating a target corner in a rectangular space often make rotational errors searching not only at the target corner but also at the diagonally opposite corner. The authors tested whether view-based navigation can explain rotational errors by recording panoramic snapshots at regularly spaced locations in a rectangular box. The authors calculated the global image difference between the image at each location and the image recorded at a target location in 1 of the corners, thus creating a 2-dimensional map of image differences. The authors found the most pronounced minima of image differences at the target corner and the diagonally opposite corner--conditions favoring rotational errors. The authors confirmed these results in virtual reality simulations and showed that the relative salience of different visual cues determines whether image differences are dominated by geometry or by features. The geometry of space is thus implicitly contained in panoramic images and does not require explicit computation by a dedicated module. A testable prediction is that animals making rotational errors in rectangular spaces are guided by remembered views. Copyright (c) 2008 APA, all rights reserved.
Erscheinungsjahr
2008
Zeitschriftentitel
Journal of Experimental Psychology. Animal Behavior Processes
Band
34
Ausgabe
1
Seite(n)
1-14
ISSN
0097-7403
eISSN
1939-2184
Page URI
https://pub.uni-bielefeld.de/record/1948958

Zitieren

Stürzl W, Cheung A, Cheng K, Zeil J. The information content of panoramic images: I. Rotational errors and the similarity of views in rectangular experimental arenas. Journal of Experimental Psychology. Animal Behavior Processes. 2008;34(1):1-14.
Stürzl, W., Cheung, A., Cheng, K., & Zeil, J. (2008). The information content of panoramic images: I. Rotational errors and the similarity of views in rectangular experimental arenas. Journal of Experimental Psychology. Animal Behavior Processes, 34(1), 1-14. https://doi.org/10.1037/0097-7403.34.1.1
Stürzl, Wolfgang, Cheung, Allen, Cheng, Ken, and Zeil, Jochen. 2008. “The information content of panoramic images: I. Rotational errors and the similarity of views in rectangular experimental arenas”. Journal of Experimental Psychology. Animal Behavior Processes 34 (1): 1-14.
Stürzl, W., Cheung, A., Cheng, K., and Zeil, J. (2008). The information content of panoramic images: I. Rotational errors and the similarity of views in rectangular experimental arenas. Journal of Experimental Psychology. Animal Behavior Processes 34, 1-14.
Stürzl, W., et al., 2008. The information content of panoramic images: I. Rotational errors and the similarity of views in rectangular experimental arenas. Journal of Experimental Psychology. Animal Behavior Processes, 34(1), p 1-14.
W. Stürzl, et al., “The information content of panoramic images: I. Rotational errors and the similarity of views in rectangular experimental arenas”, Journal of Experimental Psychology. Animal Behavior Processes, vol. 34, 2008, pp. 1-14.
Stürzl, W., Cheung, A., Cheng, K., Zeil, J.: The information content of panoramic images: I. Rotational errors and the similarity of views in rectangular experimental arenas. Journal of Experimental Psychology. Animal Behavior Processes. 34, 1-14 (2008).
Stürzl, Wolfgang, Cheung, Allen, Cheng, Ken, and Zeil, Jochen. “The information content of panoramic images: I. Rotational errors and the similarity of views in rectangular experimental arenas”. Journal of Experimental Psychology. Animal Behavior Processes 34.1 (2008): 1-14.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:13Z
MD5 Prüfsumme
b20175a045c28229785cc74b68f67e1b


44 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Crossing boundaries: Global reorientation following transfer from the inside to the outside of an arena.
Buckley MG, Holden LJ, Spicer SG, Smith AD, Haselgrove M., J Exp Psychol Anim Learn Cogn 45(3), 2019
PMID: 31070431
Taking an insect-inspired approach to bird navigation.
Pritchard DJ, Healy SD., Learn Behav 46(1), 2018
PMID: 29484541
Extra-Visual Systems in the Spatial Reorientation of Cavefish.
Sovrano VA, Potrich D, Foà A, Bertolucci C., Sci Rep 8(1), 2018
PMID: 30523284
Environmental Geometry Aligns the Hippocampal Map during Spatial Reorientation.
Keinath AT, Julian JB, Epstein RA, Muzzio IA., Curr Biol 27(3), 2017
PMID: 28089516
Does Spatial Navigation Have a Blind-Spot? Visiocentrism Is Not Enough to Explain the Navigational Behavior Comprehensively.
Hohol M, Baran B, Krzyżowski M, Francikowski J., Front Behav Neurosci 11(), 2017
PMID: 28867995
Blocking spatial navigation across environments that have a different shape.
Buckley MG, Smith AD, Haselgrove M., J Exp Psychol Anim Learn Cogn 42(1), 2016
PMID: 26569017
Ant Homing Ability Is Not Diminished When Traveling Backwards.
Ardin PB, Mangan M, Webb B., Front Behav Neurosci 10(), 2016
PMID: 27147991
Evidence for concrete but not abstract representation of length during spatial learning in rats.
Dumont JR, Jones PM, Pearce JM, Kosaki Y., J Exp Psychol Anim Learn Cogn 41(1), 2015
PMID: 25706549
Core knowledge and the emergence of symbols: The case of maps.
Huang Y, Spelke ES., J Cogn Dev 16(1), 2015
PMID: 25642150
Three-dimensional models of natural environments and the mapping of navigational information.
Stürzl W, Grixa I, Mair E, Narendra A, Zeil J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 201(6), 2015
PMID: 25863682
Shape shifting: Local landmarks interfere with navigation by, and recognition of, global shape.
Buckley MG, Smith AD, Haselgrove M., J Exp Psychol Learn Mem Cogn 40(2), 2014
PMID: 24245537
The role of local, distal, and global information in latent spatial learning.
Gilroy KE, Pearce JM., J Exp Psychol Anim Learn Cogn 40(2), 2014
PMID: 24893219
Overtraining and the use of feature and geometric cues for reorientation.
Sturz BR, Gaskin KA, Bodily KD., Psychol Res 77(2), 2013
PMID: 22212980
Asymmetry in the discrimination of length during spatial learning.
Kosaki Y, Jones PM, Pearce JM., J Exp Psychol Anim Behav Process 39(4), 2013
PMID: 23668184
Modelling human visual navigation using multi-view scene reconstruction.
Pickup LC, Fitzgibbon AW, Glennerster A., Biol Cybern 107(4), 2013
PMID: 23778937
From natural geometry to spatial cognition.
Tommasi L, Chiandetti C, Pecchia T, Sovrano VA, Vallortigara G., Neurosci Biobehav Rev 36(2), 2012
PMID: 22206900
Latent spatial learning in an environment with a distinctive shape.
Horne MR, Gilroy KE, Cuell SF, Pearce JM., J Exp Psychol Anim Behav Process 38(2), 2012
PMID: 22369200
Spatial reorientation by geometry in bumblebees.
Sovrano VA, Rigosi E, Vallortigara G., PLoS One 7(5), 2012
PMID: 22624033
Core systems of geometry in animal minds.
Spelke ES, Lee SA., Philos Trans R Soc Lond B Biol Sci 367(1603), 2012
PMID: 22927577
Influence of distal and proximal cues in encoding geometric information.
Vargas JP, Quintero E, López JC., Anim Cogn 14(3), 2011
PMID: 21184122
Spatial behavior: the impact of global and local geometry.
Ben-Yehoshua D, Yaski O, Eilam D., Anim Cogn 14(3), 2011
PMID: 21184123
Neither by global nor local cues alone: evidence for a unified orientation process.
Bodily KD, Eastman CK, Sturz BR., Anim Cogn 14(5), 2011
PMID: 21509592
The behavioral relevance of landmark texture for honeybee homing.
Dittmar L, Egelhaaf M, Stürzl W, Boeddeker N., Front Behav Neurosci 5(), 2011
PMID: 21541258
Landmarks or panoramas: what do navigating ants attend to for guidance?
Wystrach A, Beugnon G, Cheng K., Front Zool 8(), 2011
PMID: 21871114
Geometric cues influence head direction cells only weakly in nondisoriented rats.
Knight R, Hayman R, Lin Ginzberg L, Jeffery K., J Neurosci 31(44), 2011
PMID: 22049411
A modular geometric mechanism for reorientation in children.
Lee SA, Spelke ES., Cogn Psychol 61(2), 2010
PMID: 20570252
Two systems of spatial representation underlying navigation.
Lee SA, Spelke ES., Exp Brain Res 206(2), 2010
PMID: 20614214
Ants learn geometry and features.
Wystrach A, Beugnon G., Curr Biol 19(1), 2009
PMID: 19119010
A viewpoint-independent process for spatial reorientation.
Nardini M, Thomas RL, Knowland VC, Braddick OJ, Atkinson J., Cognition 112(2), 2009
PMID: 19501349
Modelling place memory in crickets.
Mangan M, Webb B., Biol Cybern 101(4), 2009
PMID: 19862550
Whither geometry? Troubles of the geometric module.
Cheng K., Trends Cogn Sci 12(9), 2008
PMID: 18684662
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18248111
PubMed | Europe PMC

Suchen in

Google Scholar