A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum

Petri K, Walter F, Persicke M, Rückert C, Kalinowski J (2013)
BMC Genomics 14(1): 713.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
BACKGROUND: Arginine biosynthesis in Corynebacterium glutamicum consists of eight enzymatic steps, starting with acetylation of glutamate, catalysed by N-acetylglutamate synthase (NAGS). There are different kinds of known NAGSs, for example, "classical" ArgA, bifunctional ArgJ, ArgO, and S-NAGS. However, since C. glutamicum possesses a monofunctional ArgJ, which catalyses only the fifth step of the arginine biosynthesis pathway, glutamate must be acetylated by an as of yet unknown NAGS gene. RESULTS: Arginine biosynthesis was investigated by metabolome profiling using defined gene deletion mutants that were expected to accumulate corresponding intracellular metabolites. HPLC-ESI-qTOF analyses gave detailed insights into arginine metabolism by detecting six out of seven intermediates of arginine biosynthesis. Accumulation of N-acetylglutamate in all mutants was a further confirmation of the unknown NAGS activity. To elucidate the identity of this gene, a genomic library of C. glutamicum was created and used to complement an Escherichia coli DeltaargA mutant. The plasmid identified, which allowed functional complementation, contained part of gene cg3035, which contains an acetyltransferase domain in its amino acid sequence. Deletion of cg3035 in the C. glutamicum genome led to a partial auxotrophy for arginine. Heterologous overexpression of the entire cg3035 gene verified its ability to complement the E. coli DeltaargA mutant in vivo and homologous overexpression led to a significantly higher intracellular N-acetylglutamate pool. Enzyme assays confirmed the N-acetylglutamate synthase activity of Cg3035 in vitro. However, the amino acid sequence of Cg3035 revealed no similarities to members of known NAGS gene families. CONCLUSIONS: The N-acetylglutamate synthase Cg3035 is able to catalyse the first step of arginine biosynthesis in C. glutamicum. It represents a novel class of NAGS genes apparently present only in bacteria of the suborder Corynebacterineae, comprising amongst others the genera Corynebacterium, Mycobacterium, and Nocardia. Therefore, the name C-NAGS (Corynebacterineae-type NAGS) is proposed for this new family.
Erscheinungsjahr
2013
Zeitschriftentitel
BMC Genomics
Band
14
Ausgabe
1
Art.-Nr.
713
ISSN
1471-2164
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2631977

Zitieren

Petri K, Walter F, Persicke M, Rückert C, Kalinowski J. A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum. BMC Genomics. 2013;14(1): 713.
Petri, K., Walter, F., Persicke, M., Rückert, C., & Kalinowski, J. (2013). A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum. BMC Genomics, 14(1), 713. doi:10.1186/1471-2164-14-713
Petri, Kathrin, Walter, Frederik, Persicke, Marcus, Rückert, Christian, and Kalinowski, Jörn. 2013. “A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum”. BMC Genomics 14 (1): 713.
Petri, K., Walter, F., Persicke, M., Rückert, C., and Kalinowski, J. (2013). A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum. BMC Genomics 14:713.
Petri, K., et al., 2013. A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum. BMC Genomics, 14(1): 713.
K. Petri, et al., “A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum”, BMC Genomics, vol. 14, 2013, : 713.
Petri, K., Walter, F., Persicke, M., Rückert, C., Kalinowski, J.: A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum. BMC Genomics. 14, : 713 (2013).
Petri, Kathrin, Walter, Frederik, Persicke, Marcus, Rückert, Christian, and Kalinowski, Jörn. “A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum”. BMC Genomics 14.1 (2013): 713.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:19Z
MD5 Prüfsumme
79d6c3a0660287e74c07b0fb94dd3edc


11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Metabolic engineering for efficient supply of acetyl-CoA from different carbon sources in Escherichia coli.
Zhang S, Yang W, Chen H, Liu B, Lin B, Tao Y., Microb Cell Fact 18(1), 2019
PMID: 31387584
The RamA regulon: complex regulatory interactions in relation to central metabolism in Corynebacterium glutamicum.
Shah A, Blombach B, Gauttam R, Eikmanns BJ., Appl Microbiol Biotechnol 102(14), 2018
PMID: 29804137
Expression of recombinant protein using Corynebacterium Glutamicum: progress, challenges and applications.
Liu X, Yang Y, Zhang W, Sun Y, Peng F, Jeffrey L, Harvey L, McNeil B, Bai Z., Crit Rev Biotechnol 36(4), 2016
PMID: 25714007
Improvement of L-citrulline production in Corynebacterium glutamicum by ornithine acetyltransferase.
Hao N, Mu J, Hu N, Xu S, Yan M, Li Y, Guo K, Xu L., J Ind Microbiol Biotechnol 42(2), 2015
PMID: 25492493
The N-Acetylglutamate Synthase Family: Structures, Function and Mechanisms.
Shi D, Allewell NM, Tuchman M., Int J Mol Sci 16(6), 2015
PMID: 26068232

51 References

Daten bereitgestellt von Europe PubMed Central.

N-acetylglutamate and its changing role through evolution.
Caldovic L, Tuchman M., Biochem. J. 372(Pt 2), 2003
PMID: 12633501
Microbial arginine biosynthesis: pathway, regulation and industrial production
AUTHOR UNKNOWN, 2007
Acetylation of Glutamic Acid by Extracts of Escherichia Coli.
Maas WK, Novelli GD, Lipmann F., Proc. Natl. Acad. Sci. U.S.A. 39(10), 1953
PMID: 16589365
Studies on repression of arginine biosynthesis in Escherichia coli.
MAAS WK., Cold Spring Harb. Symp. Quant. Biol. 26(), 1961
PMID: 14467697
N-Acetylglutamate synthase.
Powers-Lee SG., Meth. Enzymol. 113(), 1985
PMID: 3911000
Biosynthesis and metabolism of arginine in bacteria.
Cunin R, Glansdorff N, Pierard A, Stalon V., Microbiol. Rev. 50(3), 1986
PMID: 3534538
Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway.
Sakanyan V, Petrosyan P, Lecocq M, Boyen A, Legrain C, Demarez M, Hallet JN, Glansdorff N., Microbiology (Reading, Engl.) 142 ( Pt 1)(), 1996
PMID: 8581175
Characterization and kinetic mechanism of mono- and bifunctional ornithine acetyltransferases from thermophilic microorganisms.
Marc F, Weigel P, Legrain C, Almeras Y, Santrot M, Glansdorff N, Sakanyan V., Eur. J. Biochem. 267(16), 2000
PMID: 10931207
A re-examination of the pathway for ornithine biosynthesis in a thermophilic and two mesophilic Bacillus species
AUTHOR UNKNOWN, 1992
Functional characterization of a novel ArgA from Mycobacterium tuberculosis.
Errey JC, Blanchard JS., J. Bacteriol. 187(9), 2005
PMID: 15838030
Studies on L-ornithine fermentation. I. The biosynthetic pathway of L-ornithine in Micrococcus glutamicum
AUTHOR UNKNOWN, 1958
Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer.
Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M., Appl. Environ. Microbiol. 75(6), 2009
PMID: 19139237
Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry.
Barsch A, Patschkowski T, Niehaus K., Funct. Integr. Genomics 4(4), 2004
PMID: 15372312
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626

AUTHOR UNKNOWN, 0
CDD: specific functional annotation with the Conserved Domain Database.
Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH., Nucleic Acids Res. 37(Database issue), 2008
PMID: 18984618
Structure and organization of the rrnD operon of 'Brevibacterium lactofermentum': analysis of the 16S rRNA gene.
Amador E, Castro JM, Correia A, Martin JF., Microbiology (Reading, Engl.) 145 ( Pt 4)(), 1999
PMID: 10220171
Corynebacterium Taxonomy
AUTHOR UNKNOWN, 2005
Feedback inhibition of acetylglutamate synthetase by arginine in Escherichia coli.
VYAS S, MAAS WK., Arch. Biochem. Biophys. 100(), 1963
PMID: 13998082
In vitro assay and some properties of N-acetylglutamate synthetase from Escherichia coli.
Haas D, Leisinger T., Pathol Microbiol (Basel) 40(3), 1974
PMID: 4602003
Regulation of N-acetylglutamate synthesis in Salmonella typhimurium.
Abdelal AT, Nainan OV., J. Bacteriol. 137(2), 1979
PMID: 370091
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Structure and functions of the GNAT superfamily of acetyltransferases.
Vetting MW, S de Carvalho LP, Yu M, Hegde SS, Magnet S, Roderick SL, Blanchard JS., Arch. Biochem. Biophys. 433(1), 2005
PMID: 15581578
COBALT: constraint-based alignment tool for multiple protein sequences.
Papadopoulos JS, Agarwala R., Bioinformatics 23(9), 2007
PMID: 17332019

AUTHOR UNKNOWN, 2012
GeConT 2: gene context analysis for orthologous proteins, conserved domains and metabolic pathways.
Martinez-Guerrero CE, Ciria R, Abreu-Goodger C, Moreno-Hagelsieb G, Merino E., Nucleic Acids Res. 36(Web Server issue), 2008
PMID: 18511460

AUTHOR UNKNOWN, 2001
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension.
Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR., Gene 77(1), 1989
PMID: 2744488
Size exclusion chromatography: an improved method to harvest Corynebacterium glutamicum cells for the analysis of cytosolic metabolites.
Persicke M, Plassmeier J, Neuweger H, Ruckert C, Puhler A, Kalinowski J., J. Biotechnol. 154(2-3), 2010
PMID: 20817050
EMMA 2--a MAGE-compliant system for the collaborative analysis and integration of microarray data.
Dondrup M, Albaum SP, Griebel T, Henckel K, Junemann S, Kahlke T, Kleindt CK, Kuster H, Linke B, Mertens D, Mittard-Runte V, Neuweger H, Runte KJ, Tauch A, Tille F, Puhler A, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19200358
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24138314
PubMed | Europe PMC

Suchen in

Google Scholar