Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains

Naerdal I, Pfeifenschneider J, Brautaset T, Wendisch VF (2015)
Microbial Biotechnology 8(2): 342-350.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Naerdal, Ingemar; Pfeifenschneider, JohannesUniBi; Brautaset, Trygve; Wendisch, Volker F.UniBi
Abstract / Bemerkung
Summary Methanol is regarded as an attractive substrate for biotechnological production of value-added bulk products, such as amino acids and polyamines. In the present study, the methylotrophic and thermophilic bacterium Bacillus methanolicus was engineered into a microbial cell factory for the production of the platform chemical 1,5-diaminopentane (cadaverine) from methanol. This was achieved by the heterologous expression of the Escherichia coli genes cadA and ldcC encoding two different lysine decarboxylase enzymes, and by increasing the overall L-lysine production levels in this host. Both CadA and LdcC were functional in B. methanolicus cultivated at 50°C and expression of cadA resulted in cadaverine production levels up to 500 mg l−1 during shake flask conditions. A volume-corrected concentration of 11.3 g l−1 of cadaverine was obtained by high-cell density fed-batch methanol fermentation. Our results demonstrated that efficient conversion of L-lysine into cadaverine presumably has severe effects on feedback regulation of the L-lysine biosynthetic pathway in B. methanolicus. By also investigating the cadaverine tolerance level, B. methanolicus proved to be an exciting alternative host and comparable to the well-known bacterial hosts E. coli and Corynebacterium glutamicum. This study represents the first demonstration of microbial production of cadaverine from methanol.
Erscheinungsjahr
2015
Zeitschriftentitel
Microbial Biotechnology
Band
8
Ausgabe
2
Seite(n)
342-350
ISSN
1751-7915
Page URI
https://pub.uni-bielefeld.de/record/2706607

Zitieren

Naerdal I, Pfeifenschneider J, Brautaset T, Wendisch VF. Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. Microbial Biotechnology. 2015;8(2):342-350.
Naerdal, I., Pfeifenschneider, J., Brautaset, T., & Wendisch, V. F. (2015). Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. Microbial Biotechnology, 8(2), 342-350. doi:10.1111/1751-7915.12257
Naerdal, Ingemar, Pfeifenschneider, Johannes, Brautaset, Trygve, and Wendisch, Volker F. 2015. “Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains”. Microbial Biotechnology 8 (2): 342-350.
Naerdal, I., Pfeifenschneider, J., Brautaset, T., and Wendisch, V. F. (2015). Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. Microbial Biotechnology 8, 342-350.
Naerdal, I., et al., 2015. Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. Microbial Biotechnology, 8(2), p 342-350.
I. Naerdal, et al., “Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains”, Microbial Biotechnology, vol. 8, 2015, pp. 342-350.
Naerdal, I., Pfeifenschneider, J., Brautaset, T., Wendisch, V.F.: Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. Microbial Biotechnology. 8, 342-350 (2015).
Naerdal, Ingemar, Pfeifenschneider, Johannes, Brautaset, Trygve, and Wendisch, Volker F. “Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains”. Microbial Biotechnology 8.2 (2015): 342-350.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:28Z
MD5 Prüfsumme
bed001efbc1247b70484c12989924e70


16 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives.
Wendisch VF, Mindt M, Pérez-García F., Appl Microbiol Biotechnol 102(8), 2018
PMID: 29520601
Genetic Tools and Techniques for Recombinant Expression in Thermophilic Bacillaceae.
Drejer EB, Hakvåg S, Irla M, Brautaset T., Microorganisms 6(2), 2018
PMID: 29748477
Improving formaldehyde consumption drives methanol assimilation in engineered E. coli.
Woolston BM, King JR, Reiter M, Van Hove B, Stephanopoulos G., Nat Commun 9(1), 2018
PMID: 29921903
Enhancing catalytic stability and cadaverine tolerance by whole-cell immobilization and the addition of cell protectant during cadaverine production.
Wei G, Ma W, Zhang A, Cao X, Shen J, Li Y, Chen K, Ouyang P., Appl Microbiol Biotechnol 102(18), 2018
PMID: 29998412
Current advance in bioconversion of methanol to chemicals.
Zhang W, Song M, Yang Q, Dai Z, Zhang S, Xin F, Dong W, Ma J, Jiang M., Biotechnol Biofuels 11(), 2018
PMID: 30258494
Industrial biomanufacturing: The future of chemical production.
Clomburg JM, Crumbley AM, Gonzalez R., Science 355(6320), 2017
PMID: 28059717
l-lysine production by Bacillus methanolicus: Genome-based mutational analysis and l-lysine secretion engineering.
Nærdal I, Netzer R, Irla M, Krog A, Heggeset TMB, Wendisch VF, Brautaset T., J Biotechnol 244(), 2017
PMID: 28163092
6-Phosphofructokinase and ribulose-5-phosphate 3-epimerase in methylotrophic Bacillus methanolicus ribulose monophosphate cycle.
Le SB, Heggeset TMB, Haugen T, Nærdal I, Brautaset T., Appl Microbiol Biotechnol 101(10), 2017
PMID: 28213736
Quantitative metabolomics of the thermophilic methylotroph Bacillus methanolicus.
Carnicer M, Vieira G, Brautaset T, Portais JC, Heux S., Microb Cell Fact 15(), 2016
PMID: 27251037
Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
Pérez-García F, Peters-Wendisch P, Wendisch VF., Appl Microbiol Biotechnol 100(18), 2016
PMID: 27345060
Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.
Leßmeier L, Pfeifenschneider J, Carnicer M, Heux S, Portais JC, Wendisch VF., Appl Microbiol Biotechnol 99(23), 2015
PMID: 26276544

44 References

Daten bereitgestellt von Europe PubMed Central.

Engineering microbial chemical factories to produce renewable "biomonomers".
Adkins J, Pugh S, McKenna R, Nielsen DR., Front Microbiol 3(), 2012
PMID: 22969753
Role of the Bacillus methanolicus citrate synthase II gene, citY, in regulating the secretion of glutamate in L-lysine-secreting mutants.
Brautaset T, Williams MD, Dillingham RD, Kaufmann C, Bennaars A, Crabbe E, Flickinger MC., Appl. Environ. Microbiol. 69(7), 2003
PMID: 12839772
Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus.
Brautaset T, Jakobsen M OM, Flickinger MC, Valla S, Ellingsen TE., J. Bacteriol. 186(5), 2004
PMID: 14973041
Bacillus methanolicus: a candidate for industrial production of amino acids from methanol at 50 degrees C.
Brautaset T, Jakobsen OM, Josefsen KD, Flickinger MC, Ellingsen TE., Appl. Microbiol. Biotechnol. 74(1), 2007
PMID: 17216461
Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50 degrees C.
Brautaset T, Jakobsen OM, Degnes KF, Netzer R, Naerdal I, Krog A, Dillingham R, Flickinger MC, Ellingsen TE., Appl. Microbiol. Biotechnol. 87(3), 2010
PMID: 20372887
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl. Microbiol. Biotechnol. 92(5), 2011
PMID: 21796382
Metabolic flux analysis of Corynebacterium glutamicum
de AA., 2000
Production of L-Lysine and some other amino acids by mutants of B. methanolicus
Hanson RS, Dillingham R, Olson P, Lee GH, Cue D, Schendel FJ., 1996
Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol.
Heggeset TM, Krog A, Balzer S, Wentzel A, Ellingsen TE, Brautaset T., Appl. Environ. Microbiol. 78(15), 2012
PMID: 22610424
Complete genome sequence of Bacillus methanolicus MGA3, a thermotolerant amino acid producing methylotroph.
Irla M, Neshat A, Winkler A, Albersmeier A, Heggeset TM, Brautaset T, Kalinowski J, Wendisch VF, Ruckert C., J. Biotechnol. 188(), 2014
PMID: 25152427
Transcriptome analysis of thermophilic methylotrophic Bacillus methanolicus MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape
Wendisch VF., 2014
Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus.
Jakobsen OM, Brautaset T, Degnes KF, Heggeset TM, Balzer S, Flickinger MC, Valla S, Ellingsen TE., Appl. Environ. Microbiol. 75(3), 2008
PMID: 19060158
Bio-based production of the platform chemical 1,5-diaminopentane.
Kind S, Wittmann C., Appl. Microbiol. Biotechnol. 91(5), 2011
PMID: 21761208
The two forms of Lysine decarboxylase; kinetics and effect of expression in relation to acid tolerance response in E. coli
Indulekha K., 2010
CadC-mediated activation of the cadBA promoter in Escherichia coli.
Kuper C, Jung K., J. Mol. Microbiol. Biotechnol. 10(1), 2005
PMID: 16491024
Expression of the second lysine decarboxylase gene of Escherichia coli.
Lemonnier M, Lane D., Microbiology (Reading, Engl.) 144 ( Pt 3)(), 1998
PMID: 9534244
Improving the secretion of cadaverine in Corynebacterium glutamicum by cadaverine-lysine antiporter.
Li M, Li D, Huang Y, Liu M, Wang H, Tang Q, Lu F., J. Ind. Microbiol. Biotechnol. 41(4), 2014
PMID: 24510022
Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Kramer R, Wendisch VF, Seibold GM., Appl. Microbiol. Biotechnol. 98(12), 2014
PMID: 24668244
Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum.
Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF., Bioresour. Technol. 145(), 2013
PMID: 23562176
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2012
PMID: 23164409
Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation.
Mimitsuka T, Sawai H, Hatsu M, Yamada K., Biosci. Biotechnol. Biochem. 71(9), 2007
PMID: 17895539
Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity productions from methanol
Brautaset T., 2014
Analysis and manipulation of aspartate pathway genes for L-lysine overproduction from methanol by Bacillus methanolicus.
Nærdal I, Netzer R, Ellingsen TE, Brautaset T., Appl. Environ. Microbiol. 77(17), 2011
PMID: 21724876
Beyond oil and gas: the methanol economy.
Olah GA., Angew. Chem. Int. Ed. Engl. 44(18), 2005
PMID: 15800867

Russell D., 2001
L-lysine production at 50 degrees C by mutants of a newly isolated and characterized methylotrophic Bacillus sp.
Schendel FJ, Bremmon CE, Flickinger MC, Guettler M, Hanson RS., Appl. Environ. Microbiol. 56(4), 1990
PMID: 2111119
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733
Biotechnological production of polyamines by bacteria: recent achievements and future perspectives.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 91(1), 2011
PMID: 21552989
Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria.
Schrader J, Schilling M, Holtmann D, Sell D, Filho MV, Marx A, Vorholt JA., Trends Biotechnol. 27(2), 2008
PMID: 19111927
Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.
Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Kramer R, Wendisch VF, Seibold GM, Marin K., Appl. Microbiol. Biotechnol. 97(4), 2012
PMID: 22854894
The L-lysine story: from metabolic pathways to industrial production
Becker J., 2007
The Escherichia coli ldcC gene encodes another lysine decarboxylase, probably a constitutive enzyme.
Yamamoto Y, Miwa Y, Miyoshi K, Furuyama J, Ohmori H., Genes Genet. Syst. 72(3), 1997
PMID: 9339543
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25644214
PubMed | Europe PMC

Suchen in

Google Scholar