Smart Homopolymer Microgels: Influence of the Monomer Structure on the Particle Properties

Wedel B, Hertle Y, Wrede O, Bookhold J, Hellweg T (2016)
Polymers 8(4): 162.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 3.93 MB
Abstract / Bemerkung
In this work, we compare the properties of smart homopolymer microgels based on N-n-propylacrylamide (NNPAM), N-isopropylacrylamide (NIPAM) and N-isopropylmethacrylamide (NIPMAM) synthesized under identical conditions. The particles are studied with respect to size, morphology, and swelling behavior using scanning electron and scanning force microscopy. In addition, light scattering techniques and fluorescent probes are employed to follow the swelling/de-swelling of the particles. Significant differences are found and discussed. Poly(N-n-propylacrylamide) (PNNPAM) microgels stand out due to their very sharp volume phase transition, whereas Poly(N-isopropylmethacrylamide) (PNIPMAM) particles are found to exhibit a more homogeneous network structure compared to the other two systems.
Erscheinungsjahr
2016
Zeitschriftentitel
Polymers
Band
8
Ausgabe
4
Art.-Nr.
162
ISSN
2073-4360
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2903598

Zitieren

Wedel B, Hertle Y, Wrede O, Bookhold J, Hellweg T. Smart Homopolymer Microgels: Influence of the Monomer Structure on the Particle Properties. Polymers. 2016;8(4): 162.
Wedel, B., Hertle, Y., Wrede, O., Bookhold, J., & Hellweg, T. (2016). Smart Homopolymer Microgels: Influence of the Monomer Structure on the Particle Properties. Polymers, 8(4), 162. doi:10.3390/polym8040162
Wedel, Bastian, Hertle, Yvonne, Wrede, Oliver, Bookhold, Johannes, and Hellweg, Thomas. 2016. “Smart Homopolymer Microgels: Influence of the Monomer Structure on the Particle Properties”. Polymers 8 (4): 162.
Wedel, B., Hertle, Y., Wrede, O., Bookhold, J., and Hellweg, T. (2016). Smart Homopolymer Microgels: Influence of the Monomer Structure on the Particle Properties. Polymers 8:162.
Wedel, B., et al., 2016. Smart Homopolymer Microgels: Influence of the Monomer Structure on the Particle Properties. Polymers, 8(4): 162.
B. Wedel, et al., “Smart Homopolymer Microgels: Influence of the Monomer Structure on the Particle Properties”, Polymers, vol. 8, 2016, : 162.
Wedel, B., Hertle, Y., Wrede, O., Bookhold, J., Hellweg, T.: Smart Homopolymer Microgels: Influence of the Monomer Structure on the Particle Properties. Polymers. 8, : 162 (2016).
Wedel, Bastian, Hertle, Yvonne, Wrede, Oliver, Bookhold, Johannes, and Hellweg, Thomas. “Smart Homopolymer Microgels: Influence of the Monomer Structure on the Particle Properties”. Polymers 8.4 (2016): 162.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:46:56Z
MD5 Prüfsumme
34bfe548ec29338892689690982b5f7b


3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Covalently Crosslinked Nanogels: An NMR Study of the Effect of Monomer Reactivity on Composition and Structure.
Liu P, Pearce CM, Anastasiadi RM, Resmini M, Castilla AM., Polymers (Basel) 11(2), 2019
PMID: 30960337

65 References

Daten bereitgestellt von Europe PubMed Central.

Temperature-sensitive aqueous microgels.
Pelton R., Adv Colloid Interface Sci 85(1), 2000
PMID: 10696447
Gel architectures and their complexity.
Richtering W, Saunders BR., Soft Matter 10(21), 2014
PMID: 24705716
Polymer nanogels and microgels
Pich A., Richtering W.., 2012
Responsive core-shell microgels: Synthesis, characterization, and possible applications
Hellweg T.., 2013
The multi-domain nanoparticle structure of a universal core-multi-shell nanocarrier
Rabe C., Fleige E., Vogtt K., Szekely N., Lindner P., Burchard W., Haag R., Ballauff M.., 2014
Thermoresponsive copolymer microgels
Hertle Y., Hellweg T.., 2013
Highly pH and temperature responsive microgels functionalized with vinylacetic acid
Hoare T., Pelton R.., 2004
Soft nanotechnology with soft nanoparticles.
Nayak S, Lyon LA., Angew. Chem. Int. Ed. Engl. 44(47), 2005
PMID: 16283684
Responsive microgels at surfaces and interfaces
Wellert S., Richter M., Hellweg T., von R., Hertle Y.., 2014
Thermosensitive core-shell particles as carrier systems for metallic nanoparticles.
Lu Y, Mei Y, Ballauff M, Drechsler M., J Phys Chem B 110(9), 2006
PMID: 16509678
”Smart” nanoparticles: Preparation, characterization and applications
Ballauff M., Lu Y.., 2007
Thermosensitive core-shell microgels: From colloidal model systems to nanoreactors
Lu Y., Ballauff M.., 2011
Temperature-sensitive hybrid microgels with magnetic properties.
Pich A, Bhattacharya S, Lu Y, Boyko V, Adler HJ., Langmuir 20(24), 2004
PMID: 15544405
Facile synthesis of gold/polymer nanocomposite particles using polymeric amine-based particles as dual reductants and templates
Tan N.P.B., Lee C.H., Chen L., Ho K.M., Lu Y., Ballauff M., Li P.., 2015
Internal dynamics in colloidal PNIPAM microgel particles immobilised in a mesoscopic crystal
Hellweg T., Kratz K., Pouget S., Eimer W.., 2002
Influence of polymerization conditions on the structure of temperature-sensitive poly(N-isopropylacrylamide) microgels
Meyer S., Richtering W.., 2005
Preparation of poly(N-isopropylmethacrylamide) latexes kinetic studies and characterization
Duracher D., Elaïssari A., Pichot C.., 1999
Linearly thermoresponsive core-shell microgels: Towards a new class of nanoactuators
Zeiser M., Freudensprung I., Hellweg T.., 2012
Non NIPAM based smart microgels: Systematic variation of the volume phase transition temperature by copolymerization
Wedel B., Zeiser M., Hellweg T.., 2012
Hydrogen-bond-assisted syndiotactic-specific radical polymerizations of N-alkylacrylamides: The effect of the N-substituents on the stereospecificities and unusual large hysteresis in the phase-transition behavior of aqueous solution of syndiotactic poly(N-n-propylacrylamide)
Hirano T., Nakamura K., Kamikubo T., Ishii S., Tani K., Mori T., Sato T.., 2008
The Evolution of Silicon Wafer Cleaning Technology
Kern W.., 1990

Rasband W.., 0
A constrained regularization method for inverting data represented by linear algebraic or integral equations
Provencher S.W.., 1982
Contin: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations
Provencher S.W.., 1982
Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants
Koppel D.E.., 1972
Modification to the cumulant analysis of polydispersity in quasielastic light scattering data.
Hassan PA, Kulshreshtha SK., J Colloid Interface Sci 300(2), 2006
PMID: 16790246
Thermal offset viscosities of liquid HO, DO, and TO
Cho C.H., Urquidi J., Singh S., Robinson G.W.., 1999

Berne B.J., Pecora R.., 1976
Temperature-sensitive poly(N-isopropyl-acrylamide) microgel particles: a light scattering study.
Reufer M, Diaz-Leyva P, Lynch I, Scheffold F., Eur Phys J E Soft Matter 28(2), 2009
PMID: 19031089
Doubly temperature sensitive core-shell microgels
Berndt I., Richtering W.., 2003
Phase behavior of thermally responsive microgel colloids.
Wu J, Zhou B, Hu Z., Phys. Rev. Lett. 90(4), 2003
PMID: 12570468
Calorimetric investigation of the influence of cross-linker concentration on the volume phase transition of poly(N-isopropylacrylamide) colloidal microgels
Woodward N.C., Chowdhry B.Z., Snowden M.J., Leharne S.A., Griffiths P.C., Winnington A.L.., 2003
NMR investigations into heterogeneous structures of thermosensitive microgel particles
Guillermo A., Addad J.P.C., Bazile J.P., Duracher D., Elaïssari A., Pichot C.., 2000
Influence of cross-linker density on rheological properties of temperature-sensitive microgel suspensions
Senff H., Richtering W.., 2000
The kinetics of poly(N-isopropylacrylamide) microgel latex formation
Wu X., Pelton R.H., Hamielec A.E., Woods D.R., McPhee W.., 1994
Poly(N-isopropylacrylamide) microgels at the air-water interface
Zhang J., Pelton R.., 1999
Phase imaging and stiffness in tapping-mode atomic force microscopy
Magonov S., Elings V., Whangbo M.H.., 1997
The incidence of light upon a transparent sphere of dimensions comparable with the wavelength
Rayleigh L.., 1910
Structure of Multi-Temperature Sensitive Core-Shell Microgels
Berndt I.., 2005
Phase transition of N-substituted acrylamide gels
Inomata H., Goto S., Saito S.., 1990
Surface characterization and dissociation properties of carboxylic acid core-shell latex particle by potentiometric and conductometric titration
Kawaguchi S., Yekta A., Winnik M.A.., 1995
Thermal response of poly(N-n-propylacrylamide)
Ito D., Kubota K.., 1999
Responsive p(NIPAM-co-NtBAM) microgels: Flory-Rehner description of the swelling behavior
Hertle Y., Zeiser M., Hasenöhrl C., Busch P., Hellweg T.., 2010
Colloidal crystals made of poly(N-isopropylacrylamide) microgel particles
Hellweg T., Dewhurst C.D., Brückner E., Kratz K., Eimer W.., 2000
Volume transition and internal structures of small poly(N-isopropylacrylamide) microgels
Arleth L., Xia X., Hjelm R.P., Wu J., Hu Z.., 2005
Volume phase transition of spherical microgel particles
Wu C., Zhou S., Au-yeung S.C.F., Jiang S.., 1996
Coil-to-globule type transitions and swelling of poly(N-isopropylacrylamide) and poly(acrylamide) at latex interfaces in alcohol-water mixtures
Zhu P.W., Napper D.H.., 1996
Small-angle X-ray and neutron scattering studies of the volume phase transition in thermosensitive core-shell colloids
Seelenmeyer S., Deike I., Rosenfeldt S., Norhausen C., Dingenouts N., Ballauff M., Narayanan T., Lindner P.., 2001
Fourier transform IR spectroscopic study on phase transitions of copolymers of N-isopropylacrylamide and alkyl acrylates in water
Maeda Y., Tsubota M., Ikeda I.., 2003
Thermoresponsive poly-(N-isopropylmethacrylamide) microgels: Tailoring particle size by interfacial tension control
von K., Karg M., Hellweg T.., 2013
Solution properties of poly(N-isopropylacrylamide) in water
Kubota K., Fujishige S., Ando I.., 1990
“Domain” coil-globule transition in homopolymers
Tiktopulo E.I., Uversky V.N., Lushchik V.B., Klenin S.I., Bychkova V.E., Ptitsyn O.B.., 1995
Cloud point of poly(N-isopropylmethacrylamide) solutions in water: Is it really a point?
Netopilik M., Bohdanecky M., Chytry V., Ulbrich K.., 1997
Solution properties and thermal behavior of poly(N-n-propylacrylamide) in water
Ito D., Kubota K.., 1997
A simple asymmetric lineshape for fitting infrared absorption spectra
Stancik A.L., Brauns E.B.., 2008
Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems
Kalyanasundaram K., Thomas J.K.., 1977
Photophysical studies of poly(N-isopropylacrylamide) microgel structures
Pankasem S., Thomas J.K., Snowden M.J., Vincent B.., 1994
Fluorescence investigations of “smart” microgel systems
Flint N., Gardebrecht S., Swanson L.., 1998
A fluorescent thermometer based on a pyrene-labeled thermoresponsive polymer.
Pietsch C, Vollrath A, Hoogenboom R, Schubert US., Sensors (Basel) 10(9), 2010
PMID: 22163636
Influence of solvent perturbation on the radiative transition probability from the B state of pyrene
Hara K., Ware W.R.., 1980
Interactions of surfactants with hydrophobically-modified poly(N-isopropylacrylamides). 1. Fluorescence probe studies
Winnik F.M., Ringsdorf H., Venzmer J.., 1991
Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30979256
PubMed | Europe PMC

Suchen in

Google Scholar