The influence of a modified lipopolysaccharide O-antigen on the biosynthesis of xanthan in Xanthomonas campestris pv. campestris B100

Steffens T, Vorhölter F-J, Giampa M, Hublik G, Pühler A, Niehaus K (2016)
BMC Microbiology 16(1): 93.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.18 MB
Abstract / Bemerkung
Background The exopolysaccharide xanthan is a natural product which is extensively used in industry. It is a thickening agent in many fields, from oil recovery to the food sector. Xanthan is produced by the Gram negative bacterium Xanthomonas campestris pv. campestris (Xcc). We analyzed the lipopolysaccharide (LPS) of three mutant strains of the Xcc wild type B100 to distinguish if the xanthan production can be increased when LPS biosynthesis is affected. Results The Xcc B100 O-antigen (OA) is composed of a linear main chain of rhamnose residues with N-acetylfucosamine (FucNAc) side branches at every second rhamnose. It is the major LPS constituent. The O-antigen was missing completely in the mutant strain H21012 (deficient in wxcB), since neither rhamnose nor FucNAc could be detected as part of the LPS by MALDI-TOF-MS, and only a slight amount of rhamnose and no FucNAc was found by GC analysis. The LPS of two other mutants was analyzed, Xcc H28110 (deficient in wxcK) and H20110 (wxcN). In both of them no FucNAc could be detected in the LPS fraction, while the rhamnose moieties were more abundant than in wild type LPS. The measurements were carried out by GC and confirmed by MALDI-TOF-MS analyses that indicated an altered OA in which the branches are missing, while the rhamnan main chain seemed longer than in the wild type. Quantification of xanthan confirmed our hypothesis that a missing OA can lead to an increased production of the extracellular polysaccharide. About 6.3 g xanthan per g biomass were produced by the Xcc mutant H21012 (wxcB), as compared to the wild type production of approximately 5 g xanthan per g biomass. In the two mutant strains with modified OA however, Xcc H28110 (wxcK) and Xcc H20110 (wxcN), the xanthan production of 5.5 g and 5.3 g, respectively, was not significantly increased. Conclusions Mutations affecting LPS biosynthesis can be beneficial for the production of the extracellular polysaccharide xanthan. However, only complete inhibition of the OA resulted in increased xanthan production. The inhibition of the FucNAc side branches did not lead to increased production, but provoked a novel LPS phenotype. The data suggests an elongation of the linear rhamnan main chain of the LPS OA in both the Xcc H28110 (wxcK) and Xcc H20110 (wxcN) mutant strains.
Stichworte
Xanthomonas campestris Xanthan Exopolysaccharide LPS O-antigen Phytopathogen
Erscheinungsjahr
2016
Zeitschriftentitel
BMC Microbiology
Band
16
Ausgabe
1
Art.-Nr.
93
ISSN
1471-2180
Page URI
https://pub.uni-bielefeld.de/record/2903660

Zitieren

Steffens T, Vorhölter F-J, Giampa M, Hublik G, Pühler A, Niehaus K. The influence of a modified lipopolysaccharide O-antigen on the biosynthesis of xanthan in Xanthomonas campestris pv. campestris B100. BMC Microbiology. 2016;16(1): 93.
Steffens, T., Vorhölter, F. - J., Giampa, M., Hublik, G., Pühler, A., & Niehaus, K. (2016). The influence of a modified lipopolysaccharide O-antigen on the biosynthesis of xanthan in Xanthomonas campestris pv. campestris B100. BMC Microbiology, 16(1), 93. doi:10.1186/s12866-016-0710-y
Steffens, Tim, Vorhölter, Frank-Jörg, Giampa, Marco, Hublik, Gerd, Pühler, Alfred, and Niehaus, Karsten. 2016. “The influence of a modified lipopolysaccharide O-antigen on the biosynthesis of xanthan in Xanthomonas campestris pv. campestris B100”. BMC Microbiology 16 (1): 93.
Steffens, T., Vorhölter, F. - J., Giampa, M., Hublik, G., Pühler, A., and Niehaus, K. (2016). The influence of a modified lipopolysaccharide O-antigen on the biosynthesis of xanthan in Xanthomonas campestris pv. campestris B100. BMC Microbiology 16:93.
Steffens, T., et al., 2016. The influence of a modified lipopolysaccharide O-antigen on the biosynthesis of xanthan in Xanthomonas campestris pv. campestris B100. BMC Microbiology, 16(1): 93.
T. Steffens, et al., “The influence of a modified lipopolysaccharide O-antigen on the biosynthesis of xanthan in Xanthomonas campestris pv. campestris B100”, BMC Microbiology, vol. 16, 2016, : 93.
Steffens, T., Vorhölter, F.-J., Giampa, M., Hublik, G., Pühler, A., Niehaus, K.: The influence of a modified lipopolysaccharide O-antigen on the biosynthesis of xanthan in Xanthomonas campestris pv. campestris B100. BMC Microbiology. 16, : 93 (2016).
Steffens, Tim, Vorhölter, Frank-Jörg, Giampa, Marco, Hublik, Gerd, Pühler, Alfred, and Niehaus, Karsten. “The influence of a modified lipopolysaccharide O-antigen on the biosynthesis of xanthan in Xanthomonas campestris pv. campestris B100”. BMC Microbiology 16.1 (2016): 93.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:38Z
MD5 Prüfsumme
86f06f56153c0f2ffa7700ec24b11a77


4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Comparative transcription profiling of two fermentation cultures of Xanthomonas campestris pv. campestris B100 sampled in the growth and in the stationary phase.
Alkhateeb RS, Vorhölter FJ, Steffens T, Rückert C, Ortseifen V, Hublik G, Niehaus K, Pühler A., Appl Microbiol Biotechnol 102(15), 2018
PMID: 29858955
Metabolic survey of Botryococcus braunii: Impact of the physiological state on product formation.
Blifernez-Klassen O, Chaudhari S, Klassen V, Wördenweber R, Steffens T, Cholewa D, Niehaus K, Kalinowski J, Kruse O., PLoS One 13(6), 2018
PMID: 29879215
Refined annotation of the complete genome of the phytopathogenic and xanthan producing Xanthomonas campestris pv. campestris strain B100 based on RNA sequence data.
Alkhateeb RS, Rückert C, Rupp O, Pucker B, Hublik G, Wibberg D, Niehaus K, Pühler A, Vorhölter FJ., J Biotechnol 253(), 2017
PMID: 28506932

38 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Xanthan gum biosynthesis and application: a biochemical/genetic perspective.
Becker A, Katzen F, Puhler A, Ielpi L., Appl. Microbiol. Biotechnol. 50(2), 1998
PMID: 9763683

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Xanthan
Hublik G., 2012

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Structural elucidation of the O-chain of the lipopolysaccharide from Xanthomonas campestris strain 8004.
Molinaro A, Silipo A, Lanzetta R, Newman MA, Dow JM, Parrilli M., Carbohydr. Res. 338(3), 2003
PMID: 12543561
Insights into the genome of the xanthan-producing phytopathogen Xanthomonas arboricola pv. pruni 109 by comparative genomic hybridization.
Mayer L, Vendruscolo CT, Silva WP, Vorholter FJ, Becker A, Puhler A., J. Biotechnol. 155(1), 2011
PMID: 21539867
Bacterial lipopolysaccharides and innate immunity.
Alexander C, Rietschel ET., J. Endotoxin Res. 7(3), 2001
PMID: 11581570
Lipopolysaccharide endotoxins.
Raetz CR, Whitfield C., Annu. Rev. Biochem. 71(), 2001
PMID: 12045108
Isolation and characterisation of the lipopolysaccharide from Xanthomonas hortorum pv. vitians.
Molinaro A, Lanzetta R, Evidente A, Parrilli M, Holst O., FEMS Microbiol. Lett. 181(1), 1999
PMID: 10564788
Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper.
Jones JB, Lacy GH, Bouzar H, Stall RE, Schaad NW., Syst. Appl. Microbiol. 27(6), 2004
PMID: 15612634
Biofilm formation and dispersal in Xanthomonas campestris.
Crossman L, Dow JM., Microbes Infect. 6(6), 2004
PMID: 15158198
Controlled synthesis of the DSF cell-cell signal is required for biofilm formation and virulence in Xanthomonas campestris.
Torres PS, Malamud F, Rigano LA, Russo DM, Marano MR, Castagnaro AP, Zorreguieta A, Bouarab K, Dow JM, Vojnov AA., Environ. Microbiol. 9(8), 2007
PMID: 17635553
Bacterial lipopolysaccharide-extraction with phenol water and further application of procedure
Westphal O., 1965
Structure of WbdD: a bifunctional kinase and methyltransferase that regulates the chain length of the O antigen in Escherichia coli O9a.
Hagelueken G, Huang H, Clarke BR, Lebl T, Whitfield C, Naismith JH., Mol. Microbiol. 86(3), 2012
PMID: 22970759

AUTHOR UNKNOWN, 0
Lipopolysaccharide O antigen size distribution is determined by a chain extension complex of variable stoichiometry in Escherichia coli O9a.
King JD, Berry S, Clarke BR, Morris RJ, Whitfield C., Proc. Natl. Acad. Sci. U.S.A. 111(17), 2014
PMID: 24733938
Recent advances in microbial biopolymer production and purification.
Kreyenschulte D, Krull R, Margaritis A., Crit. Rev. Biotechnol. 34(1), 2012
PMID: 23190337

AUTHOR UNKNOWN, 0
The influence of metabolic network structures and energy requirements on xanthan gum yields.
Letisse F, Chevallereau P, Simon JL, Lindley N., J. Biotechnol. 99(3), 2002
PMID: 12385717
Genes that influence swarming motility and biofilm formation in Variovorax paradoxus EPS.
Pehl MJ, Jamieson WD, Kong K, Forbester JL, Fredendall RJ, Gregory GA, McFarland JE, Healy JM, Orwin PM., PLoS ONE 7(2), 2012
PMID: 22363744
Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation.
Laverty G, Gorman SP, Gilmore BF., Pathogens 3(3), 2014
PMID: 25438014
R factor transfer in Rhizobium leguminosarum.
Beringer JE., J. Gen. Microbiol. 84(1), 1974
PMID: 4612098
Influence of nitrogen sources and agitation in xanthan gum production by X anthomonas campestris
Palaniraj A, Jayaraman V, Hariram SB., 2011
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27215401
PubMed | Europe PMC

Suchen in

Google Scholar