Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells

Hofemeier AD, Hachmeister H, Pilger C, Schürmann M, Greiner J, Nolte L, Sudhoff H, Kaltschmidt C, Huser T, Kaltschmidt B (2016)
Scientific Reports 6(1): 26716.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.69 MB
Abstract / Bemerkung
Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO43− symmetric stretch vibrations at 959 cm−1 assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue–implant-interfaces or disease diagnosis.
Erscheinungsjahr
2016
Zeitschriftentitel
Scientific Reports
Band
6
Ausgabe
1
Art.-Nr.
26716
ISSN
2045-2322
Page URI
https://pub.uni-bielefeld.de/record/2904153

Zitieren

Hofemeier AD, Hachmeister H, Pilger C, et al. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells. Scientific Reports. 2016;6(1): 26716.
Hofemeier, A. D., Hachmeister, H., Pilger, C., Schürmann, M., Greiner, J., Nolte, L., Sudhoff, H., et al. (2016). Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells. Scientific Reports, 6(1), 26716. https://doi.org/10.1038/srep26716
Hofemeier, Arne D., Hachmeister, Henning, Pilger, Christian, Schürmann, Matthias, Greiner, Johannes, Nolte, Lena, Sudhoff, Holger, Kaltschmidt, Christian, Huser, Thomas, and Kaltschmidt, Barbara. 2016. “Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells”. Scientific Reports 6 (1): 26716.
Hofemeier, A. D., Hachmeister, H., Pilger, C., Schürmann, M., Greiner, J., Nolte, L., Sudhoff, H., Kaltschmidt, C., Huser, T., and Kaltschmidt, B. (2016). Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells. Scientific Reports 6:26716.
Hofemeier, A.D., et al., 2016. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells. Scientific Reports, 6(1): 26716.
A.D. Hofemeier, et al., “Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells”, Scientific Reports, vol. 6, 2016, : 26716.
Hofemeier, A.D., Hachmeister, H., Pilger, C., Schürmann, M., Greiner, J., Nolte, L., Sudhoff, H., Kaltschmidt, C., Huser, T., Kaltschmidt, B.: Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells. Scientific Reports. 6, : 26716 (2016).
Hofemeier, Arne D., Hachmeister, Henning, Pilger, Christian, Schürmann, Matthias, Greiner, Johannes, Nolte, Lena, Sudhoff, Holger, Kaltschmidt, Christian, Huser, Thomas, and Kaltschmidt, Barbara. “Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells”. Scientific Reports 6.1 (2016): 26716.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:40:32Z
MD5 Prüfsumme
5b984e37cd093039e414223c9c3f62b9


5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Live-imaging of Bioengineered Cartilage Tissue using Multimodal Non-linear Molecular Imaging.
Moura CC, Bourdakos KN, Tare RS, Oreffo ROC, Mahajan S., Sci Rep 9(1), 2019
PMID: 30944358
Fast epi-detected broadband multiplex CARS and SHG imaging of mouse skull cells.
Capitaine E, Moussa NO, Louot C, Bardet SM, Kano H, Duponchel L, Lévêque P, Couderc V, Leproux P., Biomed Opt Express 9(1), 2018
PMID: 29359100
Identification of a Novel High Yielding Source of Multipotent Adult Human Neural Crest-Derived Stem Cells.
Schürmann M, Brotzmann V, Bütow M, Greiner J, Höving A, Kaltschmidt C, Kaltschmidt B, Sudhoff H., Stem Cell Rev Rep 14(2), 2018
PMID: 29243108
Label-free quantitative chemical imaging and classification analysis of adipogenesis using mouse embryonic stem cells.
Masia F, Glen A, Stephens P, Langbein W, Borri P., J Biophotonics 11(7), 2018
PMID: 29573183

30 References

Daten bereitgestellt von Europe PubMed Central.

Raman spectroscopy for physiological investigations of tissues and cells.
Huser T, Chan J., Adv. Drug Deliv. Rev. 89(), 2015
PMID: 26144996
Methods and applications of Raman microspectroscopy to single-cell analysis.
Schie IW, Huser T., Appl Spectrosc 67(8), 2013
PMID: 23876720
Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering
AUTHOR UNKNOWN, 1999
Chemically sensitive bioimaging with coherent Raman scattering
AUTHOR UNKNOWN, 2015
Second harmonic imaging and scoring of collagen in fibrotic tissues.
Strupler M, Pena AM, Hernest M, Tharaux PL, Martin JL, Beaurepaire E, Schanne-Klein MC., Opt Express 15(7), 2007
PMID: 19532649
In situ spectral monitoring of mRNA translation in embryonic stem cells during differentiation in vitro.
Notingher I, Bisson I, Bishop AE, Randle WL, Polak JM, Hench LL., Anal. Chem. 76(11), 2004
PMID: 15167800
In situ non-invasive spectral discrimination between bone cell phenotypes used in tissue engineering.
Notingher I, Jell G, Lohbauer U, Salih V, Hench LL., J. Cell. Biochem. 92(6), 2004
PMID: 15258901
Growth, differentiation, and biochemical signatures of rhesus monkey mesenchymal stem cells.
Kim BS, Lee CC, Christensen JE, Huser TR, Chan JW, Tarantal AF., Stem Cells Dev. 17(1), 2008
PMID: 18211228
Time-lapse Raman imaging of osteoblast differentiation.
Hashimoto A, Yamaguchi Y, Chiu LD, Morimoto C, Fujita K, Takedachi M, Kawata S, Murakami S, Tamiya E., Sci Rep 5(), 2015
PMID: 26211729
In situ analysis of living embryonic stem cells by coherent anti-stokes Raman microscopy.
Konorov SO, Glover CH, Piret JM, Bryan J, Schulze HG, Blades MW, Turner RF., Anal. Chem. 79(18), 2007
PMID: 17691751
Raman spectroscopy and CARS microscopy of stem cells and their derivatives.
Downes A, Mouras R, Bagnaninchi P, Elfick A., J Raman Spectrosc 42(10), 2011
PMID: 22319014
In situ Raman spectroscopic monitoring of hydroxyapatite as human mesenchymal stem cells differentiate into osteoblasts
AUTHOR UNKNOWN, 2009
Raman spectroscopic monitoring of the osteogenic differentiation of human mesenchymal stem cells.
McManus LL, Burke GA, McCafferty MM, O'Hare P, Modreanu M, Boyd AR, Meenan BJ., Analyst 136(12), 2011
PMID: 21541414
Isolation of novel multipotent neural crest-derived stem cells from adult human inferior turbinate.
Hauser S, Widera D, Qunneis F, Muller J, Zander C, Greiner J, Strauss C, Luningschror P, Heimann P, Schwarze H, Ebmeyer J, Sudhoff H, Arauzo-Bravo MJ, Greber B, Zaehres H, Scholer H, Kaltschmidt C, Kaltschmidt B., Stem Cells Dev. 21(5), 2012
PMID: 22128806
Efficient animal-serum free 3D cultivation method for adult human neural crest-derived stem cell therapeutics.
Greiner JF, Hauser S, Widera D, Muller J, Qunneis F, Zander C, Martin I, Mallah J, Schuetzmann D, Prante C, Schwarze H, Prohaska W, Beyer A, Rott K, Hutten A, Golzhauser A, Sudhoff H, Kaltschmidt C, Kaltschmidt B., Eur Cell Mater 22(), 2011
PMID: 22179938
Culture bag systems for clinical applications of adult human neural crest-derived stem cells.
Greiner JF, Grunwald LM, Muller J, Sudhoff H, Widera D, Kaltschmidt C, Kaltschmidt B., Stem Cell Res Ther 5(2), 2014
PMID: 24629140
Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in parkinsonian rats.
Muller J, Ossig C, Greiner JF, Hauser S, Fauser M, Widera D, Kaltschmidt C, Storch A, Kaltschmidt B., Stem Cells Transl Med 4(1), 2014
PMID: 25479965
Interaction of adult human neural crest-derived stem cells with a nanoporous titanium surface is sufficient to induce their osteogenic differentiation.
Schurmann M, Wolff A, Widera D, Hauser S, Heimann P, Hutten A, Kaltschmidt C, Kaltschmidt B., Stem Cell Res 13(1), 2014
PMID: 24858494
Coherent anti-Stokes Raman scattering for label-free biomedical imaging
AUTHOR UNKNOWN, 2013
In vitro modeling of the bone/implant interface.
Davies JE., Anat. Rec. 245(2), 1996
PMID: 8769677
NS21: re-defined and modified supplement B27 for neuronal cultures.
Chen Y, Stevens B, Chang J, Milbrandt J, Barres BA, Hell JW., J. Neurosci. Methods 171(2), 2008
PMID: 18471889
Automated method for subtraction of fluorescence from biological Raman spectra.
Lieber CA, Mahadevan-Jansen A., Appl Spectrosc 57(11), 2003
PMID: 14658149
ScanImage: flexible software for operating laser scanning microscopes.
Pologruto TA, Sabatini BL, Svoboda K., Biomed Eng Online 2(), 2003
PMID: 12801419
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27225821
PubMed | Europe PMC

Suchen in

Google Scholar