High-throughput sequencing and graph-based cluster analysis facilitate microsatellite development from a highly complex genome

Shah A, Schielzeth H, Albersmeier A, Kalinowski J, Hoffman J (2016)
Ecology and Evolution 16(6): 5718-5727.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 459.42 KB
Abstract / Bemerkung
Despite recent advances in high-throughput sequencing, difficulties are often encountered when developing microsatellites for species with large and complex genomes. This probably reflects the close association in many species of microsatellites with cryptic repetitive elements. We therefore developed a novel approach for isolating polymorphic microsatellites from the club-legged grasshopper (Gomphocerus sibiricus), an emerging quantitative genetic and behavioral model system. Whole genome shotgun Illumina MiSeq sequencing was used to generate over three million 300 bp paired-end reads, of which 67.75% were grouped into 40,548 clusters within RepeatExplorer. Annotations of the top 468 clusters, which represent 60.5% of the reads, revealed homology to satellite DNA and a variety of transposable elements. Evaluating 96 primer pairs in eight wild-caught individuals, we found that primers mined from singleton reads were six times more likely to amplify a single polymorphic microsatellite locus than primers mined from clusters. Our study provides experimental evidence in support of the notion that microsatellites associated with repetitive elements are less likely to successfully amplify. It also reveals how advances in high-throughput sequencing and graph-based repetitive DNA analysis can be leveraged to isolate polymorphic microsatellites from complex genomes.
Stichworte
Acrididae; genetic marker development; Gomphocerus sibiricus; high-throughput sequencing; microsatellite; Orthoptera; transposable elements
Erscheinungsjahr
2016
Zeitschriftentitel
Ecology and Evolution
Band
16
Ausgabe
6
Seite(n)
5718-5727
ISSN
2045-7758
Page URI
https://pub.uni-bielefeld.de/record/2904989

Zitieren

Shah A, Schielzeth H, Albersmeier A, Kalinowski J, Hoffman J. High-throughput sequencing and graph-based cluster analysis facilitate microsatellite development from a highly complex genome. Ecology and Evolution. 2016;16(6):5718-5727.
Shah, A., Schielzeth, H., Albersmeier, A., Kalinowski, J., & Hoffman, J. (2016). High-throughput sequencing and graph-based cluster analysis facilitate microsatellite development from a highly complex genome. Ecology and Evolution, 16(6), 5718-5727. doi:10.1002/ece3.2305
Shah, Abhijeet, Schielzeth, Holger, Albersmeier, Andreas, Kalinowski, Jörn, and Hoffman, Joseph. 2016. “High-throughput sequencing and graph-based cluster analysis facilitate microsatellite development from a highly complex genome”. Ecology and Evolution 16 (6): 5718-5727.
Shah, A., Schielzeth, H., Albersmeier, A., Kalinowski, J., and Hoffman, J. (2016). High-throughput sequencing and graph-based cluster analysis facilitate microsatellite development from a highly complex genome. Ecology and Evolution 16, 5718-5727.
Shah, A., et al., 2016. High-throughput sequencing and graph-based cluster analysis facilitate microsatellite development from a highly complex genome. Ecology and Evolution, 16(6), p 5718-5727.
A. Shah, et al., “High-throughput sequencing and graph-based cluster analysis facilitate microsatellite development from a highly complex genome”, Ecology and Evolution, vol. 16, 2016, pp. 5718-5727.
Shah, A., Schielzeth, H., Albersmeier, A., Kalinowski, J., Hoffman, J.: High-throughput sequencing and graph-based cluster analysis facilitate microsatellite development from a highly complex genome. Ecology and Evolution. 16, 5718-5727 (2016).
Shah, Abhijeet, Schielzeth, Holger, Albersmeier, Andreas, Kalinowski, Jörn, and Hoffman, Joseph. “High-throughput sequencing and graph-based cluster analysis facilitate microsatellite development from a highly complex genome”. Ecology and Evolution 16.6 (2016): 5718-5727.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:39Z
MD5 Prüfsumme
37dcb49e77825e66d8bc6badc3abe9b0


1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Drosophila parasitoid wasps bears a distinct DNA transposon profile.
da Silva AF, Dezordi FZ, Loreto ELS, Wallau GL., Mob DNA 9(), 2018
PMID: 30002736

47 References

Daten bereitgestellt von Europe PubMed Central.

Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing.
Abdelkrim J, Robertson B, Stanton JA, Gemmell N., BioTechniques 46(3), 2009
PMID: 19317661
FastQC A Quality Control tool for High Throughput Sequence Data in
AUTHOR UNKNOWN, 0
Alu repeats: a source for the genesis of primate microsatellites.
Arcot SS, Wang Z, Weber JL, Deininger PL, Batzer MA., Genomics 29(1), 1995
PMID: 8530063
High incidence of cryptic repeated elements in microsatellite flanking regions of Galatheid genomes and its practical implications for molecular marker development
AUTHOR UNKNOWN, 2010
Characterization and comparison of microsatellite markers derived from genomic and expressed libraries for the desert locust
AUTHOR UNKNOWN, 2013
Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake.
Castoe TA, Poole AW, de Koning AP, Jones KL, Tomback DF, Oyler-McCance SJ, Fike JA, Lance SL, Streicher JW, Smith EN, Pollock DD., PLoS ONE 7(2), 2012
PMID: 22348032
Long microsatellites and unusually high levels of genetic diversity in the Orthoptera.
Chapuis MP, Streiff R, Sword GA., Insect Mol. Biol. 21(2), 2011
PMID: 22211932
Recent duplication of the common carp (Cyprinus carpio L.) genome as revealed by analyses of microsatellite loci.
David L, Blum S, Feldman MW, Lavi U, Hillel J., Mol. Biol. Evol. 20(9), 2003
PMID: 12832638
Microsatellites: simple sequences with complex evolution.
Ellegren H., Nat. Rev. Genet. 5(6), 2004
PMID: 15153996
Plant transposable elements: where genetics meets genomics.
Feschotte C, Jiang N, Wessler SR., Nat. Rev. Genet. 3(5), 2002
PMID: 11988759
Heterozygosity-fitness correlations in zebra finches: microsatellite markers can be better than their reputation.
Forstmeier W, Schielzeth H, Mueller JC, Ellegren H, Kempenaers B., Mol. Ecol. 21(13), 2012
PMID: 22554318
Genome size and microsatellites: the effect of nuclear size on amplification potential
AUTHOR UNKNOWN, 2002
Highly polymorphic microsatellites in the North American snakeweed grasshopper, Hesperotettix viridis
AUTHOR UNKNOWN, 2009
Animal Genome Size Database
AUTHOR UNKNOWN, 2015
Characterisation of Teladorsagia circumcincta microsatellites and their development as population genetic markers.
Grillo V, Jackson F, Gilleard JS., Mol. Biochem. Parasitol. 148(2), 2006
PMID: 16687182
De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis.
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A., Nat Protoc 8(8), 2013
PMID: 23845962
A novel approach for mining polymorphic microsatellite markers in silico.
Hoffman JI, Nichols HJ., PLoS ONE 6(8), 2011
PMID: 21853104
Methods of parentage analysis in natural populations.
Jones AG, Ardren WR., Mol. Ecol. 12(10), 2003
PMID: 12969458
Development of microsatellite markers for the wetland grasshopper Stethophyma grossum
AUTHOR UNKNOWN, 2012
Unstable B‐chromosomes in Gomphocerus sibiricus (Orthoptera)
AUTHOR UNKNOWN, 1986
Microsatellite spreading in the human genome: evolutionary mechanisms and structural implications.
Nadir E, Margalit H, Gallily T, Ben-Sasson SA., Proc. Natl. Acad. Sci. U.S.A. 93(13), 1996
PMID: 8692839
The distribution of B chromosomes across species.
Palestis BG, Trivers R, Burt A, Jones RN., Cytogenet. Genome Res. 106(2-4), 2004
PMID: 15292585
Identification and characterization of microsatellites in Norway spruce (Picea abies K.).
Pfeiffer A, Olivieri AM, Morgante M., Genome 40(4), 1997
PMID: 9276931
Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae.
Piednoel M, Aberer AJ, Schneeweiss GM, Macas J, Novak P, Gundlach H, Temsch EM, Renner SS., Mol. Biol. Evol. 29(11), 2012
PMID: 22723303
Sequence analysis of a family of highly repeated DNA units in Stauroderus scalaris (Orthoptera)
AUTHOR UNKNOWN, 1992
Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley.
Ramsay L, Macaulay M, Cardle L, Morgante M, degli Ivanissevich S, Maestri E, Powell W, Waugh R., Plant J. 17(4), 1999
PMID: 10205898
Genepop (Version 1.2) ‐ population genetics software for exact tests of ecumenicism
AUTHOR UNKNOWN, 1995
Combining next-generation sequencing and online databases for microsatellite development in non-model organisms.
Rico C, Normandeau E, Dion-Cote AM, Rico MI, Cote G, Bernatchez L., Sci Rep 3(), 2013
PMID: 24296905
Next generation sequencing and FISH reveal uneven and nonrandom microsatellite distribution in two grasshopper genomes.
Ruiz-Ruano FJ, Cuadrado A, Montiel EE, Camacho JP, Lopez-Leon MD., Chromosoma 124(2), 2014
PMID: 25387401

AUTHOR UNKNOWN, 1989
Microsatellite discovery by deep sequencing of enriched genomic libraries.
Santana Q, Coetzee M, Steenkamp E, Mlonyeni O, Hammond G, Wingfield M, Wingfield B., BioTechniques 46(3), 2009
PMID: 19317665
The evolution of molecular markers--just a matter of fashion?
Schlotterer C., Nat. Rev. Genet. 5(1), 2004
PMID: 14666112
An economic method for the fluorescent labeling of PCR fragments.
Schuelke M., Nat. Biotechnol. 18(2), 2000
PMID: 10657137
300 million years of diversification: elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling
AUTHOR UNKNOWN, 0
Primer3--new capabilities and interfaces.
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG., Nucleic Acids Res. 40(15), 2012
PMID: 22730293
Long repeats in a huge genome: microsatellite loci in the grasshopper Chorthippus biguttulus.
Ustinova J, Achmann R, Cremer S, Mayer F., J. Mol. Evol. 62(2), 2006
PMID: 16474983
The locust genome provides insight into swarm formation and long‐distance flight
AUTHOR UNKNOWN, 2014
Mobile elements and the genesis of microsatellites in dipterans.
Wilder J, Hollocher H., Mol. Biol. Evol. 18(3), 2001
PMID: 11230539
Strategies for microsatellite isolation: a review.
Zane L, Bargelloni L, Patarnello T., Mol. Ecol. 11(1), 2002
PMID: 11903900
Lepidopteran microsatellite DNA: redundant but promising.
Zhang DX., Trends Ecol. Evol. (Amst.) 19(10), 2004
PMID: 16701315
PEAR: a fast and accurate Illumina Paired-End reAd mergeR.
Zhang J, Kobert K, Flouri T, Stamatakis A., Bioinformatics 30(5), 2013
PMID: 24142950
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27547349
PubMed | Europe PMC

Suchen in

Google Scholar