Computational exploration of cis-regulatory modules in rhythmic expression data using the “Exploration of Distinctive CREs and CRMs” (EDCC) and “CRM Network Generator” (CNG) programs

Bekiaris PS, Tekath T, Staiger D, Danisman S (2018)
PLOS ONE 13(1): e0190421.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 5.17 MB
Autor*in
Bekiaris, Pavlos Stephanos; Tekath, Tobias; Staiger, DorotheeUniBi; Danisman, SelahattinUniBi
Abstract / Bemerkung
Understanding the effect of cis-regulatory elements (CRE) and clusters of CREs, which are called cis-regulatory modules (CRM), in eukaryotic gene expression is a challenge of computational biology. We developed two programs that allow simple, fast and reliable analysis of candidate CREs and CRMs that may affect specific gene expression and that determine positional features between individual CREs within a CRM. The first program, “Exploration of Distinctive CREs and CRMs” (EDCC), correlates candidate CREs and CRMs with specific gene expression patterns. For pairs of CREs, EDCC also determines positional preferences of the single CREs in relation to each other and to the transcriptional start site. The second program, “CRM Network Generator” (CNG), prioritizes these positional preferences using a neural network and thus allows unbiased rating of the positional preferences that were determined by EDCC. We tested these programs with data from a microarray study of circadian gene expression in Arabidopsis thaliana. Analyzing more than 1.5 million pairwise CRE combinations, we found 22 candidate combinations, of which several contained known clock promoter elements together with elements that had not been identified as relevant to circadian gene expression before. CNG analysis further identified positional preferences of these CRE pairs, hinting at positional information that may be relevant for circadian gene expression. Future wet lab experiments will have to determine which of these combinations confer daytime specific circadian gene expression.
Erscheinungsjahr
2018
Zeitschriftentitel
PLOS ONE
Band
13
Ausgabe
1
Art.-Nr.
e0190421
ISSN
1932-6203
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2916845

Zitieren

Bekiaris PS, Tekath T, Staiger D, Danisman S. Computational exploration of cis-regulatory modules in rhythmic expression data using the “Exploration of Distinctive CREs and CRMs” (EDCC) and “CRM Network Generator” (CNG) programs. PLOS ONE. 2018;13(1): e0190421.
Bekiaris, P. S., Tekath, T., Staiger, D., & Danisman, S. (2018). Computational exploration of cis-regulatory modules in rhythmic expression data using the “Exploration of Distinctive CREs and CRMs” (EDCC) and “CRM Network Generator” (CNG) programs. PLOS ONE, 13(1), e0190421. doi:10.1371/journal.pone.0190421
Bekiaris, Pavlos Stephanos, Tekath, Tobias, Staiger, Dorothee, and Danisman, Selahattin. 2018. “Computational exploration of cis-regulatory modules in rhythmic expression data using the “Exploration of Distinctive CREs and CRMs” (EDCC) and “CRM Network Generator” (CNG) programs”. PLOS ONE 13 (1): e0190421.
Bekiaris, P. S., Tekath, T., Staiger, D., and Danisman, S. (2018). Computational exploration of cis-regulatory modules in rhythmic expression data using the “Exploration of Distinctive CREs and CRMs” (EDCC) and “CRM Network Generator” (CNG) programs. PLOS ONE 13:e0190421.
Bekiaris, P.S., et al., 2018. Computational exploration of cis-regulatory modules in rhythmic expression data using the “Exploration of Distinctive CREs and CRMs” (EDCC) and “CRM Network Generator” (CNG) programs. PLOS ONE, 13(1): e0190421.
P.S. Bekiaris, et al., “Computational exploration of cis-regulatory modules in rhythmic expression data using the “Exploration of Distinctive CREs and CRMs” (EDCC) and “CRM Network Generator” (CNG) programs”, PLOS ONE, vol. 13, 2018, : e0190421.
Bekiaris, P.S., Tekath, T., Staiger, D., Danisman, S.: Computational exploration of cis-regulatory modules in rhythmic expression data using the “Exploration of Distinctive CREs and CRMs” (EDCC) and “CRM Network Generator” (CNG) programs. PLOS ONE. 13, : e0190421 (2018).
Bekiaris, Pavlos Stephanos, Tekath, Tobias, Staiger, Dorothee, and Danisman, Selahattin. “Computational exploration of cis-regulatory modules in rhythmic expression data using the “Exploration of Distinctive CREs and CRMs” (EDCC) and “CRM Network Generator” (CNG) programs”. PLOS ONE 13.1 (2018): e0190421.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:56Z
MD5 Prüfsumme
d0b01f86735713f8e59b703bc0929f00


96 References

Daten bereitgestellt von Europe PubMed Central.

Patterns of regulatory activity across diverse human cell types predict tissue identity, transcription factor binding, and long-range interactions.
Sheffield NC, Thurman RE, Song L, Safi A, Stamatoyannopoulos JA, Lenhard B, Crawford GE, Furey TS., Genome Res. 23(5), 2013
PMID: 23482648
Genome-wide characterization of transcriptional start sites in humans by integrative transcriptome analysis.
Yamashita R, Sathira NP, Kanai A, Tanimoto K, Arauchi T, Tanaka Y, Hashimoto S, Sugano S, Nakai K, Suzuki Y., Genome Res. 21(5), 2011
PMID: 21372179
The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae.
Teixeira MC, Monteiro PT, Guerreiro JF, Goncalves JP, Mira NP, dos Santos SC, Cabrito TR, Palma M, Costa C, Francisco AP, Madeira SC, Oliveira AL, Freitas AT, Sa-Correia I., Nucleic Acids Res. 42(Database issue), 2013
PMID: 24170807
AGRIS and AtRegNet. a platform to link cis-regulatory elements and transcription factors into regulatory networks.
Palaniswamy SK, James S, Sun H, Lamb RS, Davuluri RV, Grotewold E., Plant Physiol. 140(3), 2006
PMID: 16524982
Unraveling transcriptional control in Arabidopsis using cis-regulatory elements and coexpression networks.
Vandepoele K, Quimbaya M, Casneuf T, De Veylder L, Van de Peer Y., Plant Physiol. 150(2), 2009
PMID: 19357200
cis-Regulatory control circuits in development.
Howard ML, Davidson EH., Dev. Biol. 271(1), 2004
PMID: 15196954
Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers.
Gotea V, Visel A, Westlund JM, Nobrega MA, Pennacchio LA, Ovcharenko I., Genome Res. 20(5), 2010
PMID: 20363979
Identifying regulatory networks by combinatorial analysis of promoter elements.
Pilpel Y, Sudarsanam P, Church GM., Nat. Genet. 29(2), 2001
PMID: 11547334
A cis-regulatory module in the transcription factor DUO1 promoter
B, Plant Physiol (), 2016
Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana.
Zou C, Sun K, Mackaluso JD, Seddon AE, Jin R, Thomashow MF, Shiu SH., Proc. Natl. Acad. Sci. U.S.A. 108(36), 2011
PMID: 21849619
Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules.
Michael TP, Mockler TC, Breton G, McEntee C, Byer A, Trout JD, Hazen SP, Shen R, Priest HD, Sullivan CM, Givan SA, Yanovsky M, Hong F, Kay SA, Chory J., PLoS Genet. 4(2), 2008
PMID: 18248097
Rhythmic Processes in Plants
B, Annu Rev Plant Physiol 19(), 1968
Circadian control of carbohydrate availability for growth in Arabidopsis plants at night.
Graf A, Schlereth A, Stitt M, Smith AM., Proc. Natl. Acad. Sci. U.S.A. 107(20), 2010
PMID: 20439704
The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana.
Streitner C, Danisman S, Wehrle F, Schoning JC, Alfano JR, Staiger D., Plant J. 56(2), 2008
PMID: 18573194
Crosstalk between the circadian clock and innate immunity in Arabidopsis.
Zhang C, Xie Q, Anderson RG, Ng G, Seitz NC, Peterson T, McClung CR, McDowell JM, Kong D, Kwak JM, Lu H., PLoS Pathog. 9(6), 2013
PMID: 23754942
Orchestrated transcription of key pathways in Arabidopsis by the circadian clock.
Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA., Science 290(5499), 2000
PMID: 11118138
PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock.
Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua NH, Sakakibara H., Plant Cell 22(3), 2010
PMID: 20233950
A morning-specific phytohormone gene expression program underlying rhythmic plant growth.
Michael TP, Breton G, Hazen SP, Priest H, Mockler TC, Kay SA, Chory J., PLoS Biol. 6(9), 2008
PMID: 18798691
Regulatory element detection using correlation with expression.
Bussemaker HJ, Li H, Siggia ED., Nat. Genet. 27(2), 2001
PMID: 11175784
Searching for statistically significant regulatory modules.
Bailey TL, Noble WS., Bioinformatics 19 Suppl 2(), 2003
PMID: 14534166
MEME SUITE: tools for motif discovery and searching.
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS., Nucleic Acids Res. 37(Web Server issue), 2009
PMID: 19458158
“In silico expression analysis”, a novel PathoPlant web tool to identify abiotic and biotic stress conditions associated with specific cis -regulatory sequences
JC, Database (), 2014
Motif detection in Arabidopsis: correlation with gene expression data.
Janaki C, Joshi RR., In Silico Biol. (Gedrukt) 4(2), 2004
PMID: 15107020
A probabilistic method to detect regulatory modules.
Sinha S, van Nimwegen E, Siggia ED., Bioinformatics 19 Suppl 1(), 2003
PMID: 12855472
Identification of functional clusters of transcription factor binding motifs in genome sequences: the MSCAN algorithm.
Johansson O, Alkema W, Wasserman WW, Lagergren J., Bioinformatics 19 Suppl 1(), 2003
PMID: 12855453
Quantifying similarity between motifs.
Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS., Genome Biol. 8(2), 2007
PMID: 17324271
Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression.
Blanchette M, Bataille AR, Chen X, Poitras C, Laganiere J, Lefebvre C, Deblois G, Giguere V, Ferretti V, Bergeron D, Coulombe B, Robert F., Genome Res. 16(5), 2006
PMID: 16606704
Confidence interval for a coefficient of quartile variation
DG, Comput Stat Data Anal 50(), 2006
Light-Regulated Transcription
W, Annu Rev Plant Physiol Plant Mol Biol 46(), 1995
A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock.
Pruneda-Paz JL, Breton G, Para A, Kay SA., Science 323(5920), 2009
PMID: 19286557
A genome-scale resource for the functional characterization of Arabidopsis transcription factors.
Pruneda-Paz JL, Breton G, Nagel DH, Kang SE, Bonaldi K, Doherty CJ, Ravelo S, Galli M, Ecker JR, Kay SA., Cell Rep 8(2), 2014
PMID: 25043187
LWD-TCP complex activates the morning gene CCA1 in Arabidopsis.
Wu JF, Tsai HL, Joanito I, Wu YC, Chang CW, Li YH, Wang Y, Hong JC, Chu JW, Hsu CP, Wu SH., Nat Commun 7(), 2016
PMID: 27734958
Circadian clock-dependent gating in ABA signalling networks.
Seung D, Risopatron JP, Jones BJ, Marc J., Protoplasma 249(3), 2011
PMID: 21773710
agriGO: a GO analysis toolkit for the agricultural community.
Du Z, Zhou X, Ling Y, Zhang Z, Su Z., Nucleic Acids Res. 38(Web Server issue), 2010
PMID: 20435677
A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes.
Sablowski RW, Moyano E, Culianez-Macia FA, Schuch W, Martin C, Bevan M., EMBO J. 13(1), 1994
PMID: 8306956
Both positive and negative regulatory elements mediate expression of a photoregulated CAB gene from Nicotiana plumbaginifolia.
Castresana C, Garcia-Luque I, Alonso E, Malik VS, Cashmore AR., EMBO J. 7(7), 1988
PMID: 2901343
Wound-inducible nuclear protein binds DNA fragments that regulate a proteinase inhibitor II gene from potato.
Palm CJ, Costa MA, An G, Ryan CA., Proc. Natl. Acad. Sci. U.S.A. 87(2), 1990
PMID: 2405385
Composite structure of auxin response elements.
Ulmasov T, Liu ZB, Hagen G, Guilfoyle TJ., Plant Cell 7(10), 1995
PMID: 7580254
The maize regulatory locus Opaque-2 encodes a DNA-binding protein which activates the transcription of the b-32 gene.
Lohmer S, Maddaloni M, Motto M, Di Fonzo N, Hartings H, Salamini F, Thompson RD., EMBO J. 10(3), 1991
PMID: 2001677
Cell cycle regulation of the tobacco ribonucleotide reductase small subunit gene is mediated by E2F-like elements.
Chaboute ME, Clement B, Sekine M, Philipps G, Chaubet-Gigot N., Plant Cell 12(10), 2000
PMID: 11041892
An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene.
Giuliano G, Pichersky E, Malik VS, Timko MP, Scolnik PA, Cashmore AR., Proc. Natl. Acad. Sci. U.S.A. 85(19), 1988
PMID: 2902624
MYB transcription factors in plants.
Martin C, Paz-Ares J., Trends Genet. 13(2), 1997
PMID: 9055608
Transcriptional activation of APETALA1 by LEAFY.
Wagner D, Sablowski RW, Meyerowitz EM., Science 285(5427), 1999
PMID: 10417387
Light regulated modulation of Z-box containing promoters by photoreceptors and downstream regulatory components, COP1 and HY5
V, Arabidopsis. Plant J 31(), 2002
Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1.
Washida H, Wu CY, Suzuki A, Yamanouchi U, Akihama T, Harada K, Takaiwa F., Plant Mol. Biol. 40(1), 1999
PMID: 10394940
Frequent pattern mining: current status and future directions
J, Data Min Knowl Discov 15(), 2007
PLACE: a database of plant cis-acting regulatory DNA elements.
Higo K, Ugawa Y, Iwamoto M, Higo H., Nucleic Acids Res. 26(1), 1998
PMID: 9399873
The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis.
Mockler TC, Michael TP, Priest HD, Shen R, Sullivan CM, Givan SA, McEntee C, Kay SA, Chory J., Cold Spring Harb. Symp. Quant. Biol. 72(), 2007
PMID: 18419293
Salt-Related MYB1 Coordinates Abscisic Acid Biosynthesis and Signaling during Salt Stress in Arabidopsis.
Wang T, Tohge T, Ivakov A, Mueller-Roeber B, Fernie AR, Mutwil M, Schippers JH, Persson S., Plant Physiol. 169(2), 2015
PMID: 26243618
A Role for Arabidopsis miR399f in Salt, Drought, and ABA Signaling
D, Moleucles Cells 39(), 2015
MYB96 shapes the circadian gating of ABA signaling in Arabidopsis.
Lee HG, Mas P, Seo PJ., Sci Rep 6(), 2016
PMID: 26725725
Multiple phytohormones influence distinct parameters of the plant circadian clock.
Hanano S, Domagalska MA, Nagy F, Davis SJ., Genes Cells 11(12), 2006
PMID: 17121545
TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana.
Giraud E, Ng S, Carrie C, Duncan O, Low J, Lee CP, Van Aken O, Millar AH, Murcha M, Whelan J., Plant Cell 22(12), 2010
PMID: 21183706
Arabidopsis ABI5 subfamily members have distinct DNA-binding and transcriptional activities.
Kim SY, Ma J, Perret P, Li Z, Thomas TL., Plant Physiol. 130(2), 2002
PMID: 12376636
Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor.
Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA., Proc. Natl. Acad. Sci. U.S.A. 109(8), 2012
PMID: 22315425
Systematic identification of conserved motif modules in the human genome.
Cai X, Hou L, Su N, Hu H, Deng M, Li X., BMC Genomics 11(), 2010
PMID: 20946653
The 'ABC' of MADS domain protein behaviour and interactions.
Immink RG, Kaufmann K, Angenent GC., Semin. Cell Dev. Biol. 21(1), 2009
PMID: 19883778
The Dynamic Universality of Sigmoidal Neural Networks
J, Inf Comput 128(), 1996
Evolutionary artificial neural networks: a review
S, Artif Intell Rev 39(), 2013
Multidimensional Scaling Using Majorization: SMACOF in R
J, J Stat Softw 31(), 2009
The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools.
Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22140109
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29298348
PubMed | Europe PMC

Suchen in

Google Scholar