Efficient production of the dicarboxylic acid glutarate by Corynebacterium glutamicum via a novel synthetic pathway

Perez F, Jorge J, Dreyszas A, Risse JM, Wendisch VF (2018)
Frontiers in Microbiology 9: 2589.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.15 MB
Abstract / Bemerkung
The dicarboxylic acid glutarate is an important building-block gaining interest in the chemical and pharmaceutical industry. Here, a synthetic pathway for fermentative production of glutarate by the actinobacterium Corynebacterium glutamicum has been developed. The pathway does not require molecular oxygen and operates via lysine decarboyxylase followed by two transamination and two NAD-dependent oxidation reactions. Using a genome-streamlined L-lysine producing strain as basis, metabolic engineering was performed to enable conversion of L-lysine to glutarate in a five-step synthetic pathway comprising lysine decarboxylase, putrescine transaminase and γ-aminobutyraldehyde dehydrogenase from Escherichia coli and GABA/5AVA amino transferase and succinate/glutarate semialdehyde dehydrogenase either from C. glutamicum or from three Pseudomonas species. Loss of carbon via formation of the by-products cadaverine and N-acetylcadaverine was avoided by deletion of the respective acetylase and export genes. As the two transamination reactions in the synthetic glutarate biosynthesis pathway yield L-glutamate, biosynthesis of L-glutamate by glutamate dehydrogenase was expected to be obsolete and, indeed, deletion of its gene gdh increased glutarate titers by 10%. Glutarate production by the final strain was tested in bioreactors (n = 2) in order to investigate stability and reliability of the process. The most efficient glutarate production from glucose was achieved by fed-batch fermentation (n = 1) with a volumetric productivity of 0.32 g L-1 h-1, an overall yield of 0.17 g g-1 and a titer of 25 g L-1.
Erscheinungsjahr
2018
Zeitschriftentitel
Frontiers in Microbiology
Band
9
Art.-Nr.
2589
ISSN
1664-302x
eISSN
1664-302X
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2931468

Zitieren

Perez F, Jorge J, Dreyszas A, Risse JM, Wendisch VF. Efficient production of the dicarboxylic acid glutarate by Corynebacterium glutamicum via a novel synthetic pathway. Frontiers in Microbiology. 2018;9: 2589.
Perez, F., Jorge, J., Dreyszas, A., Risse, J. M., & Wendisch, V. F. (2018). Efficient production of the dicarboxylic acid glutarate by Corynebacterium glutamicum via a novel synthetic pathway. Frontiers in Microbiology, 9, 2589. doi:10.3389/fmicb.2018.02589
Perez, Fernando, Jorge, João, Dreyszas, Annika, Risse, Joe Max, and Wendisch, Volker F. 2018. “Efficient production of the dicarboxylic acid glutarate by Corynebacterium glutamicum via a novel synthetic pathway”. Frontiers in Microbiology 9: 2589.
Perez, F., Jorge, J., Dreyszas, A., Risse, J. M., and Wendisch, V. F. (2018). Efficient production of the dicarboxylic acid glutarate by Corynebacterium glutamicum via a novel synthetic pathway. Frontiers in Microbiology 9:2589.
Perez, F., et al., 2018. Efficient production of the dicarboxylic acid glutarate by Corynebacterium glutamicum via a novel synthetic pathway. Frontiers in Microbiology, 9: 2589.
F. Perez, et al., “Efficient production of the dicarboxylic acid glutarate by Corynebacterium glutamicum via a novel synthetic pathway”, Frontiers in Microbiology, vol. 9, 2018, : 2589.
Perez, F., Jorge, J., Dreyszas, A., Risse, J.M., Wendisch, V.F.: Efficient production of the dicarboxylic acid glutarate by Corynebacterium glutamicum via a novel synthetic pathway. Frontiers in Microbiology. 9, : 2589 (2018).
Perez, Fernando, Jorge, João, Dreyszas, Annika, Risse, Joe Max, and Wendisch, Volker F. “Efficient production of the dicarboxylic acid glutarate by Corynebacterium glutamicum via a novel synthetic pathway”. Frontiers in Microbiology 9 (2018): 2589.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:19:02Z
MD5 Prüfsumme
19875b92e28e2d9166af50845de3611f


1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Targeting metabolic driving and intermediate influx in lysine catabolism for high-level glutarate production.
Li W, Ma L, Shen X, Wang J, Feng Q, Liu L, Zheng G, Yan Y, Sun X, Yuan Q., Nat Commun 10(1), 2019
PMID: 31350399

59 References

Daten bereitgestellt von Europe PubMed Central.

Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology.
Baumgart M, Unthan S, Ruckert C, Sivalingam J, Grunberger A, Kalinowski J, Bott M, Noack S, Frunzke J., Appl. Environ. Microbiol. 79(19), 2013
PMID: 23892752
From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production.
Becker J, Zelder O, Hafner S, Schroder H, Wittmann C., Metab. Eng. 13(2), 2011
PMID: 21241816
Corynebacterium glutamicum tailored for efficient isobutanol production.
Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ., Appl. Environ. Microbiol. 77(10), 2011
PMID: 21441331
Bio-based production of monomers and polymers by metabolically engineered microorganisms.
Chung H, Yang JE, Ha JY, Chae TU, Shin JH, Gustavsson M, Lee SY., Curr. Opin. Biotechnol. 36(), 2015
PMID: 26318077

Eggeling L., Bott M.., 2005
Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains.
Eikmanns BJ, Metzger M, Reinscheid D, Kircher M, Sahm H., Appl. Microbiol. Biotechnol. 34(5), 1991
PMID: 1369320
Catabolism of L-lysine by Pseudomonas aeruginosa.
Fothergill JC, Guest JR., J. Gen. Microbiol. 99(1), 1977
PMID: 405455
Enzymatic assembly of overlapping DNA fragments.
Gibson DG., Meth. Enzymol. 498(), 2011
PMID: 21601685
Synthesis and characterisation of bio-based polyester materials from vegetable oil and short to long chain dicarboxylic acids.
Gobin M., Loulergue P., Audic J., Lemiègre L.., 2015
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Gene expression analysis of Corynebacterium glutamicum subjected to long-term lactic acid adaptation.
Jakob K, Satorhelyi P, Lange C, Wendisch VF, Silakowski B, Scherer S, Neuhaus K., J. Bacteriol. 189(15), 2007
PMID: 17526706
Novel pathways and products from 2-keto acids.
Jambunathan P, Zhang K., Curr. Opin. Biotechnol. 29(), 2014
PMID: 24492019
A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources.
Jorge JMP, Perez-Garcia F, Wendisch VF., Bioresour. Technol. 245(Pt B), 2017
PMID: 28522202
From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum.
Kind S, Neubauer S, Becker J, Yamamoto M, Volkert M, Abendroth Gv, Zelder O, Wittmann C., Metab. Eng. 25(), 2014
PMID: 24831706
Production of amino acids - Genetic and metabolic engineering approaches.
Lee JH, Wendisch VF., Bioresour. Technol. 245(Pt B), 2017
PMID: 28552565
Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum.
Lubitz D, Jorge JM, Perez-Garcia F, Taniguchi H, Wendisch VF., Appl. Microbiol. Biotechnol. 100(19), 2016
PMID: 27350619
Odd-even effect in the elastic modulii of α,ω-alkanedicarboxylic acids.
Mishra MK, Varughese S, Ramamurty U, Desiraju GR., J. Am. Chem. Soc. 135(22), 2013
PMID: 23688149
Cometabolism of a nongrowth substrate: L-serine utilization by Corynebacterium glutamicum.
Netzer R, Peters-Wendisch P, Eggeling L, Sahm H., Appl. Environ. Microbiol. 70(12), 2004
PMID: 15574911
Glutamine synthetases of Corynebacterium glutamicum: transcriptional control and regulation of activity.
Nolden L, Farwick M, Kramer R, Burkovski A., FEMS Microbiol. Lett. 201(1), 2001
PMID: 11445173
Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution.
Oide S, Gunji W, Moteki Y, Yamamoto S, Suda M, Jojima T, Yukawa H, Inui M., Appl. Environ. Microbiol. 81(7), 2015
PMID: 25595768
Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals.
Park SJ, Kim EY, Noh W, Park HM, Oh YH, Lee SH, Song BK, Jegal J, Lee SY., Metab. Eng. 16(), 2012
PMID: 23246520
Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.
Perez-Garcia F, Max Risse J, Friehs K, Wendisch VF., Biotechnol J 12(7), 2017
PMID: 28169491
Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
Perez-Garcia F, Peters-Wendisch P, Wendisch VF., Appl. Microbiol. Biotechnol. 100(18), 2016
PMID: 27345060
Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis.
Polen T, Schluesener D, Poetsch A, Bott M, Wendisch VF., FEMS Microbiol. Lett. 273(1), 2007
PMID: 17559405
Miniaturized and automated adaptive laboratory evolution: Evolving Corynebacterium glutamicum towards an improved d-xylose utilization.
Radek A, Tenhaef N, Muller MF, Brusseler C, Wiechert W, Marienhagen J, Polen T, Noack S., Bioresour. Technol. 245(Pt B), 2017
PMID: 28552568
Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate.
Rohles CM, Gießelmann G, Kohlstedt M, Wittmann C, Becker J., Microb. Cell Fact. 15(1), 2016
PMID: 27618862
Umpolung reactivity in amide and peptide synthesis.
Shen B, Makley DM, Johnston JN., Nature 465(7301), 2010
PMID: 20577205
Antimicrobial action of epsilon-poly-L-lysine.
Shima S, Matsuoka H, Iwamoto T, Sakai H., J. Antibiot. 37(11), 1984
PMID: 6392269
Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
Shin JH, Park SH, Oh YH, Choi JW, Lee MH, Cho JS, Jeong KJ, Joo JC, Yu J, Park SJ, Lee SY., Microb. Cell Fact. 15(1), 2016
PMID: 27717386
A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria.
Simon R., Priefer U., Pühler A.., 1983
Ammonia assimilation in Corynebacterium glutamicum and a glutamate dehydrogenase-deficient mutant.
Tesch M., Eikmanns B., Graaf A., de H.., 1998
Chassis organism from Corynebacterium glutamicum--a top-down approach to identify and delete irrelevant gene clusters.
Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Bruhl N, Bartsch A, Bott M, Wiechert W, Marin K, Hans S, Kramer R, Seibold G, Frunzke J, Kalinowski J, Ruckert C, Wendisch VF, Noack S., Biotechnol J 10(2), 2014
PMID: 25139579
A non-cyanide route for glutaric acid synthesis from oxidation of cyclopentene in the ionic liquid media.
Vafaeezadeh M., Hashemi M.., 2016
Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum.
Veit A, Rittmann D, Georgi T, Youn JW, Eikmanns BJ, Wendisch VF., J. Biotechnol. 140(1-2), 2008
PMID: 19162097
Tolerance improvement of Corynebacterium glutamicum on lignocellulose derived inhibitors by adaptive evolution.
Wang X, Khushk I, Xiao Y, Gao Q, Bao J., Appl. Microbiol. Biotechnol. 102(1), 2017
PMID: 29151160
Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum.
Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF., J. Bacteriol. 190(19), 2008
PMID: 18658264
Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum.
Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF., J. Bacteriol. 191(17), 2009
PMID: 19581365
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30425699
PubMed | Europe PMC

Suchen in

Google Scholar