Extremely robust photocurrent generation of titanium dioxide photoanodes bio-sensitized with recombinant microalgal light-harvesting proteins.

Lämmermann N, Schmid-Michels F, Weissmann A, Wobbe L, Hütten A, Kruse O (2019)
Scientific reports 9(1): 2109.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 2.86 MB
Abstract / Bemerkung
Bio-dyes for light harvesting in dye-sensitized solar cells (DSSC) have the advantage of being environmentally-friendly, non-toxic alternatives, which can be produced in a sustainable fashion. Free photosynthetic pigments are unstable in the presence of light and oxygen, a situation which can hardly be avoided during the operation of DSSCs, especially in large-scale applications. We therefore investigated the recombinant light-harvesting protein LHCBM6, which naturally occurs in the photosynthetic apparatus of the green microalga Chlamydomonas reinhardtii as a bio-dye in DSSCs. Photocurrent densities of up to 0.87 and 0.94 mA·cm-2 were determined for the DSSCs and solar energy to electricity conversion efficiencies (η) reached about 0.3% (100 mW·cm-2; AM 1.5 G filter applied). Importantly, we observed an unprecedented stability of LHCII-based DSSCs within long DSSC operation times of at least 7 days in continuous light and show that operation times are restricted by electrolyte decomposition rather than reduced dye performance, as could be demonstrated by DSSC reactivation following re-supplementation with fresh electrolyte. To the best of our knowledge, this is the first study analysing bio-dye sensitized DSSCs over such long periods, which revealed that during illumination an activation of the DSSCs occurs.
Erscheinungsjahr
2019
Zeitschriftentitel
Scientific reports
Band
9
Ausgabe
1
Art.-Nr.
2109
ISSN
2045-2322
eISSN
2045-2322
Page URI
https://pub.uni-bielefeld.de/record/2934057

Zitieren

Lämmermann N, Schmid-Michels F, Weissmann A, Wobbe L, Hütten A, Kruse O. Extremely robust photocurrent generation of titanium dioxide photoanodes bio-sensitized with recombinant microalgal light-harvesting proteins. Scientific reports. 2019;9(1): 2109.
Lämmermann, N., Schmid-Michels, F., Weissmann, A., Wobbe, L., Hütten, A., & Kruse, O. (2019). Extremely robust photocurrent generation of titanium dioxide photoanodes bio-sensitized with recombinant microalgal light-harvesting proteins. Scientific reports, 9(1), 2109. doi:10.1038/s41598-019-39344-6
Lämmermann, Nina, Schmid-Michels, Fabian, Weissmann, Aike, Wobbe, Lutz, Hütten, Andreas, and Kruse, Olaf. 2019. “Extremely robust photocurrent generation of titanium dioxide photoanodes bio-sensitized with recombinant microalgal light-harvesting proteins.”. Scientific reports 9 (1): 2109.
Lämmermann, N., Schmid-Michels, F., Weissmann, A., Wobbe, L., Hütten, A., and Kruse, O. (2019). Extremely robust photocurrent generation of titanium dioxide photoanodes bio-sensitized with recombinant microalgal light-harvesting proteins. Scientific reports 9:2109.
Lämmermann, N., et al., 2019. Extremely robust photocurrent generation of titanium dioxide photoanodes bio-sensitized with recombinant microalgal light-harvesting proteins. Scientific reports, 9(1): 2109.
N. Lämmermann, et al., “Extremely robust photocurrent generation of titanium dioxide photoanodes bio-sensitized with recombinant microalgal light-harvesting proteins.”, Scientific reports, vol. 9, 2019, : 2109.
Lämmermann, N., Schmid-Michels, F., Weissmann, A., Wobbe, L., Hütten, A., Kruse, O.: Extremely robust photocurrent generation of titanium dioxide photoanodes bio-sensitized with recombinant microalgal light-harvesting proteins. Scientific reports. 9, : 2109 (2019).
Lämmermann, Nina, Schmid-Michels, Fabian, Weissmann, Aike, Wobbe, Lutz, Hütten, Andreas, and Kruse, Olaf. “Extremely robust photocurrent generation of titanium dioxide photoanodes bio-sensitized with recombinant microalgal light-harvesting proteins.”. Scientific reports 9.1 (2019): 2109.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:19:06Z
MD5 Prüfsumme
bb0f34f96734e43352f2d38e9db2ccea


24 References

Daten bereitgestellt von Europe PubMed Central.

Multi-Level Light Capture Control in Plants and Green Algae.
Wobbe L, Bassi R, Kruse O., Trends Plant Sci. 21(1), 2015
PMID: 26545578
P680, the primary electron donor of photosystem II
Barber J, Archer MD., 2001
Natural strategies for photosynthetic light harvesting.
Croce R, van Amerongen H., Nat. Chem. Biol. 10(7), 2014
PMID: 24937067
Evolution and functional properties of photosystem II light harvesting complexes in eukaryotes.
Ballottari M, Girardon J, Dall'osto L, Bassi R., Biochim. Biophys. Acta 1817(1), 2011
PMID: 21704018
A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO films
O’Regan B, Grätzel M., 1991
Aqueous dye-sensitized solar cells.
Bella F, Gerbaldi C, Barolo C, Gratzel M., Chem Soc Rev 44(11), 2015
PMID: 25864577
Photocurrent activity of light-harvesting complex II isolated from spinach and its pigments in dye-sensitized TiO solar cell
Yu D, Zhu G, Liu S, Ge B, Huang F., 2013
Effect of the LHCII pigment-protein complex aggregation on photovoltaic properties of sensitized TiO2 solar cells.
Yang Y, Jankowiak R, Lin C, Pawlak K, Reus M, Holzwarth AR, Li J., Phys Chem Chem Phys 16(38), 2014
PMID: 25168759
Plasmonic enhancement of biosolar cells employing light harvesting complex II incorporated with core–shell metal@TiO nanoparticles
Yang Y, Gobeze HB, D’Souza F, Jankowiak R, Li J., 2016
The function of LHCBM4/6/8 antenna proteins in Chlamydomonas reinhardtii.
Girolomoni L, Ferrante P, Berteotti S, Giuliano G, Bassi R, Ballottari M., J. Exp. Bot. 68(3), 2017
PMID: 28007953
PredAlgo: a new subcellular localization prediction tool dedicated to green algae.
Tardif M, Atteia A, Specht M, Cogne G, Rolland N, Brugiere S, Hippler M, Ferro M, Bruley C, Peltier G, Vallon O, Cournac L., Mol. Biol. Evol. 29(12), 2012
PMID: 22826458
Light scattering enhancement from sub-micrometer cavities in the photoanode for dye-sensitized solar cells
Trang TT., 2012
Linkers for anchoring sensitizers to semiconductor nanoparticles
Galoppini E., 2004
Influence of electrolyte co-additives on the performance of dye-sensitized solar cells.
Stergiopoulos T, Rozi E, Karagianni CS, Falaras P., Nanoscale Res Lett 6(1), 2011
PMID: 21711833
Aerosol OT/Water system coupled with triiodide/iodide (I/I) redox electrolytes for highly efficient dye-sensitized solar cells
Kong E-H., 2013
Influences of water in bis-benzimidazole-derivative electrolyte additives to the degradation of the dye-sensitized solar cells
Lu H-L, Lee Y-H, Huang S-T, Su C, Yang TCK., 2011
Patterns of efficiency and degradation in dye sensitization solar cells measured with imaging techniques
Macht B., 2002

AUTHOR UNKNOWN, 0
Water-based electrolytes for dye-sensitized solar cells.
Law C, Pathirana SC, Li X, Anderson AY, Barnes PR, Listorti A, Ghaddar TH, O'Regan BC., Adv. Mater. Weinheim 22(40), 2010
PMID: 20803538

AUTHOR UNKNOWN, 0
Reconstitution and pigment-binding properties of recombinant CP29.
Giuffra E, Cugini D, Croce R, Bassi R., Eur. J. Biochem. 238(1), 1996
PMID: 8665927
Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy
Porra RJ, Thompson WA, Kriedemann PE., 1989
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30765846
PubMed | Europe PMC

Suchen in

Google Scholar