
M
ic

h
ae

l L
an

g
h

am
m

er

Automated Coevolution of 
Source Code and Software 
Architecture Models

Michael Langhammer

The Karlsruhe Series on 
Software Design 

and Quality  

23

A
u

to
m

at
ed

 C
o

ev
o

lu
ti

o
n

 o
f 

So
u

rc
e 

C
o

d
e 

an
d

 S
o

ft
w

ar
e 

A
rc

h
it

ec
tu

re
 M

o
d

el
s





Michael Langhammer

Automated Coevolution of Source Code  
and Software Architecture Models



The Karlsruhe Series on Software Design and Quality 
Volume 23

Chair Software Design and Quality
Faculty of Computer Science
Karlsruhe Institute of Technology

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner



Automated Coevolution of  
Source Code and Software  
Architecture Models

by 
Michael Langhammer



Print on Demand 2019 – Gedruckt auf FSC-zertifiziertem Papier

ISSN 1867-0067
ISBN 978-3-7315-0783-3 
DOI: 10.5445/KSP/1000081447

This document – excluding the cover, pictures and graphs – is licensed  
under a Creative Commons Attribution-Share Alike 4.0 International License  
(CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

The cover page is licensed under a Creative Commons
Attribution-No Derivatives 4.0 International License (CC BY-ND 4.0):
https://creativecommons.org/licenses/by-nd/4.0/deed.en

Impressum

Karlsruher Institut für Technologie (KIT)  
KIT Scientific Publishing 
Straße am Forum 2 
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark  
of Karlsruhe Institute of Technology.  
Reprint using the book cover is not allowed. 

www.ksp.kit.edu

Dissertation, Karlsruher Institut für Technologie 
KIT-Fakultät für Informatik

Tag der mündlichen Prüfung: 10. Februar 2017
Erster Gutachter: Prof. Dr. Ralf H. Reussner
Zweiter Gutachter: Prof. Dr. Colin Atkinson (Universität Mannheim)







Abstract

To develop complex software systems, source code and other artefacts, such
as architectural models and behaviour descriptions, are used. Keeping these
software architecture-based models consistent with the systems’ source
code during software development and software evolution helps software
architects.

Having up-to-date architecture models eases the development and evolution
tasks since questions such as how and where to add new features in the
software systems can be answered more easily. Furthermore, it is possible to
predict the performance of a software system with architecture models that
include behavioural speci�cations, such as the Palladio approach.

Architecture drift and architecture erosion are, however, two well-known
problems that can arise during architecture-based software development
and software evolution. These problems arise when software architecture
models are not kept consistent with the source code, e.g. when code is
evolved without updating the architecture accordingly. Eventually, this leads
to out-dated and thus useless architecture models.

Most existing solutions to avoid these problems either focus on keeping
UML class diagrams and source code consistent during software evolution,
or embed architectural information into the source code to avoid the need
of consistency preservation.

In this thesis, we introduce a novel approach to keep high-level component-
based architecture models consistent with source code during software de-
velopment and software evolution. In particular, the approach can be used
to keep instances of the Palladio Component Model (PCM) consistent with
Java source code. To do so, the architectural elements are created, changed,
or deleted as soon as their corresponding source code elements have been

i



Abstract

changed and vice versa. We also present a change-driven consistency preser-
vation process that preserves consistency based on user-de�ned change-
driven consistency preservation rules between the architectural model and
source code. We introduce four di�erent sets of consistency preservation
rules between architectural models and source code, which are realised in
our prototypical implementation. Within the consistency preservation pro-
cess, we introduce a user disambiguation concept, which can be used if the
consistency preservation cannot be achieved automatically. In this case,
users need to clarify how consistency can be achieved. As the presented
approach is a change-driven approach, we need to retrieve each change
performed in the involved architectural editors and the source code editors.
To enable users to reuse existing editors, which with they are familiar, we
implemented monitors for the Eclipse Java source code editor and PCM
architectural model editors. The presented approach enables, furthermore,
users to keep source code consistent with behavioural architectural models
as well. Therefore, we have implemented an approach that incrementally
reverse-engineers the PCM Service E�ect Speci�cations based on changes
performed to source code methods. The Service E�ect Speci�cations are used
to describe the behaviour of components.

For reusing existing source code and existing architectural models within
the presented approach, we present di�erent integration strategies. For
architectural models, we present an approach that simulates the creation of
architectural models. During the creation, we monitor the emerging changes
and use them as base for the creation of the corresponding source code. For
source code, we propose an approach that uses reverse engineering tools to
create an architectural model, which can be integrated to the consistency
preservation approach presented in this thesis. Arbitrary code, however, is
seldom build according to the de�ned consistency preservation rules. To deal
with this fact, we present an approach that is able to deal with integrated
source code for which the actual consistency preservation rules cannot be
used. The approach is able to keep even those elements consistent using spe-
ci�c consistency preservation rules for integrated source code elements.

We have evaluated the presented approach in di�erent case studies. We
showed that it is possible to integrate existing architectural models by sim-
ulating their creation. Within the performed case study, we were able to
integrate between 98 % and 100 % of the supported elements for the di�erent
consistency preservation rules. Next, we evaluated the integration of existing

ii



Abstract

source code and showed that it is possible to keep changes to source code
consistent with the architecture and vice versa. Therefore, we integrated
four open source projects into the presented coevolution approach. We
showed that changes performed to source code are kept consistent with the
architectural model, by integrating an old version from the Version Con-
trol System (VCS) and replayed changes to a newer version using a change
replay tool. During this evaluation, we also showed that the presented ap-
proach is able to keep changes performed to method bodies consistent with
the behavioural model. We also conducted a performance evaluation to
measure the overhead of the presented change-driven approach during the
software evolution. We showed that the presented approach is in most cases
able to keep the architectural model consistent with changes performed
to the source code within one to �ve seconds. Finally, we evaluated that
the coevolved architectural models can be used for performance prediction.
Therefore, we �rst parameterised the models with resource demands. After
the parameterisation step, we execute the performance prediction using the
performance prediction capabilities of the PCM. To analyse the accuracy of
the performance prediction, we compared the predicted value with actual
measured values. In our case study, we observed a prediction error for the
response time of approximately 10 %, so that the coevolved models can be
used to estimate the performance of the real software system.

iii





Zusammenfassung

Zur Entwicklung komplexer Softwaresysteme, werden neben dem Quelltext
zusätzliche Artefakte, wie beispielsweise Architekturmodelle, verwendet.
Wenn die verwendeten Architekturmodelle während der Entwicklung und
Evolution eines Softwaresystems konsistent mit dem Quelltext sind, kön-
nen Softwarearchitekten und Softwareentwickler bei der Entwicklung der
Systeme besser unterstützt werden.

Architekturmodelle, die auf dem aktuellem Stand sind, vereinfachen Ent-
wicklungs-und Evolutionssaufgaben, da einfacher beantwortet werden kann
wie und wo neue Funktionen implementiert werden sollen. Außerdem ist es
möglich, modellbasierte Analysen mit Hilfe der Softwarearchitekturmodelle
vorzunehmen. Beispielsweise können mit dem Palladio Komponentenmodell
(PCM) Performanzvorhersagen durchgeführt werden, wenn ein Architektur-
modell des Softwaresystems vorhanden ist und dieses Verhaltensspezi�ka-
tionen beinhaltet.

Wenn Architekturmodelle bei der Softwareentwicklung und Softwareevo-
lution verwendet werden, können die beiden bekannten Probleme Archi-
tekturdrift und Architekturverletzung auftreten. Diese Probleme treten für
gewöhnlich auf, wenn bei voranschreitender Entwicklung des Quelltextes
die Architektur nicht konsistent zu diesem gehalten wird. Dies führt zu
veralteten und schlussendlich nutzlosen Architekturmodellen.

Viele existierende Ansätze, zur Vermeidung dieser Probleme, zielen darauf
ab, Quelltext und UML-Klassendiagramme konsistent zu halten, oder sie
zielen darauf ab, Architekturinformationen in den Quelltext einzubetten. In
letzterem Fall wird die Notwendigkeit, die Architektur konsistent mit dem
Quelltext zu halten, umgangen, da die Architektur integraler Bestandteil des
Quelltextes ist.

v



Zusammenfassung

In der vorliegenden Dissertation beschreiben wir einen neuen Ansatz, um
komponentenbasierte Architekturmodelle, welche sich auf einer hohen Ab-
straktionsebene be�nden, konsistent mit dem Quelltext zu halten. Wir be-
schreiben, wie Instanzen des PCMs konsistent mit Java-Quelltext gehalten
werden können. Um Konsistenz zu erreichen, werden Architekturelemente
erzeugt, gelöscht oder geändert, sobald ihre entsprechende Quelltextelemente
geändert wurden, und umgekehrt. Für die Umsetzung der Konsistenzerhal-
tung stellen wir einen änderungsgetriebenen Ansatz vor. Dieser verwendet
benutzerde�nierte, änderungsgetriebene Abbildungsregeln, um die Konsis-
tenz zwischen den beteiligten Modellen sicherzustellen. In dieser Dissertation
stellen wir vier konkrete Mengen von Abbildungsregeln zwischen Archi-
tekturmodellen und Quelltext vor. Diese haben wir in einer prototypischen
Implementierung des Ansatzes umgesetzt. Wir stellen außerdem einen Me-
chanismus vor, der mit den Benutzern des Konsistenzerhaltungsansatzes
interagiert, wenn die Konsistenz nicht automatisch erhalten werden kann,
sondern die Benutzer zuerst ihre Intention, die sie mit einer bestimmten Än-
derung verfolgen, dem Ansatz mitteilen müssen. In diesem Fall müssen die
Benutzer das genaue Vorgehen für die Konsistenzerhaltung spezi�zieren. Da
der vorgestellte Ansatz änderungsgetrieben funktioniert, ist es notwendig,
dass wir alle Änderungen in den beteiligten Architektur- und Quelltexte-
ditoren aufzeichnen können. Um es Benutzern zu erlauben, vorhandene
Editoren, mit denen sie sich auskennen, wiederverwenden zu können, haben
wir Beobachter für diese Editoren implementiert. Diese Beobachter zeichnen
alle Änderungen an einem Modell auf und informieren unseren Ansatz über
jede durchgeführte Änderung. Der in dieser Dissertation vorgestellte Ansatz
erlaubt es auch, verhaltensbeschreibende Architekturmodelle konsistent mit
dem Quelltext zu halten. Um dies zu erreichen, haben wir einen Ansatz
implementiert, der es ermöglicht, Service E�ect Speci�cations des PCMs in-
krementell aus Methoden zu erstellen, nachdem diese geändert wurden. Die
Service E�ect Speci�cations werden innerhalb des PCMs genutzt, um das
Verhalten einer Komponente zu spezi�zieren.

Um bereits bestehende Architekturmodelle und bestehenden Quelltext in-
nerhalb unseres Ansatzes verwenden zu können, stellen wir je eine Inte-
grationsstrategie für die Architektur und den Quelltext vor. Um bestehende
Architekturmodelle zu integrieren, simulieren wir deren Erstellung. Wäh-
rend dieses Erstellvorgangs zeichnen wir die Änderungen auf, die nötig
sind, um das Architekturmodell zu erstellen. Diese Änderungen werden als

vi



Zusammenfassung

Eingabe für den Konsistenzerhaltungsprozess verwendet, um daraus den ent-
sprechenden Quelltext zu erzeugen. Um vorhandenen Quelltext einzubinden,
stellen wir einen Ansatz vor, der auf Architekturrekonstruktionsverfahren
basiert, d.h., zuerst wird die Architektur eines bestehenden Softwaresys-
tems rekonstruiert. Die erstellte Architektur wird anschließend zusammen
mit dem bestehenden Quelltext in unseren Coevolutionsansatz integriert.
Oftmals ist bestehender Quelltext jedoch nicht so aufgebaut, wie es die Abbil-
dungsregeln vorschreiben. Innerhalb der Integrationsstrategie für Quelltext
stellen wir deshalb einen Ansatz vor, der in der Lage ist, solche Quelltexte
dennoch zu integrieren. Dieser Ansatz ermöglicht es, nicht nur diese Art
von Quelltext zu integrieren, sondern diesen auch mit speziell de�nierten
Abbildungsregeln automatisch konsistent zu halten.

Wir haben unseren Ansatz in verschiedenen Fallstudien evaluiert. Dabei
haben wir zunächst gezeigt, dass es möglich ist vorhandene Architekturmo-
delle zu integrieren, indem ihr Aufbau simuliert wird. In der durchgeführten
Fallstudie ist es mit unserem Ansatz und den vorgestellten Abbildungsregeln
möglich, zwischen 98 % und 100 % der unterstützten Elemente zu integrieren.
Als nächstes haben wir gezeigt, dass unser Ansatz in der Lage ist, existie-
renden Quelltext zu integrieren und Änderungen am integrierten Quelltext
konsistent mit der Architektur zu halten. Für diese Fallstudie haben wir
zunächst den Quelltext von vier quello�enen Projekten in den Ansatz inte-
griert. Als nächstes haben wir gezeigt, dass es möglich ist, Änderungen am
Quelltext konsistent mit der Architektur zu halten. Dazu haben wir eine alte
Version des Quelltextes integriert und Änderungen die zwischen einer alten
und neueren Version durchgeführt wurden, aus einem Versionskontrollsys-
tem extrahiert und erneut auf den Quelltext angewendet. Im Rahmen dieser
Evaluation haben wir auch gezeigt, dass es möglich ist Änderungen, die
innerhalb von Methoden durchgeführt werden, mit einem Verhaltensmodell
konsistent zu halten. Wir haben außerdem eine Evaluation der Leistungs-
fähigkeit unseres Ansatzes durchgeführt und gezeigt, dass unser Ansatz in
den meisten Fällen in der Lage ist, die Architektur in einer Zeit zwischen
einer und fünf Sekunden konsistent zu halten, nachdem eine Änderung am
Quelltext durchgeführt wurde. Als letztes haben wir gezeigt, dass es möglich
ist, coevolvierte Modelle für die Performanzvorhersage zu verwenden. Dazu
haben wir zuerst die Modelle in einem Parametrisierungsschritt mit den
nötigen Ressourcenverbräuchen angereichert. Als nächstes konnten wir die
Performanzvorhersage durchführen. In unserer Fallstudie zeigte sich, dass

vii



Zusammenfassung

der Vorhersagefehler für die Antwortzeit eines Systems bei ca. 10 % liegt,
und damit die coevolvierten Modelle für die Abschätzung der Performanz
eines realen Systems verwendet werden können.

viii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

List of Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Goals and Questions . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Approach and Contributions of this Thesis . . . . . . . . . . . . 5

1.3.1. Contributions . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4. Existing Approaches . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.1. Approaches that keep architectural models and source

code consistent during software development and
software evolution . . . . . . . . . . . . . . . . . . . . . 13

1.4.2. Architecture reverse engineering approaches . . . . . . 14
1.4.3. View-based software development approaches . . . . . . 15

1.5. Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 15

2. Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1. Model-Driven Software Development . . . . . . . . . . . . . . . 17

2.1.1. Meta Object Facility . . . . . . . . . . . . . . . . . . . . . 18
2.1.2. Eclipse Modeling Framework and Ecore . . . . . . . . . 19

2.2. View-based Software Development . . . . . . . . . . . . . . . . 21
2.2.1. Orthographic Software Modelling . . . . . . . . . . . . . 22

ix



Contents

2.2.2. Vitruvius . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3. Palladio Component Model . . . . . . . . . . . . . . . . . . . . 25

2.3.1. PCM Repository with SEFFs . . . . . . . . . . . . . . . . . 27
2.3.2. PCM System . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4. Source Code Model eXtractor . . . . . . . . . . . . . . . . . . . 31
2.4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2. SoMoX SEFF Reconstruction . . . . . . . . . . . . . . . . 33

2.5. Used Tools and Standards . . . . . . . . . . . . . . . . . . . . . 36
2.5.1. Java Model Parser and Printer . . . . . . . . . . . . . . . 36
2.5.2. Eclipse Plugin Development . . . . . . . . . . . . . . . . 36
2.5.3. Dependency Injection Frameworks for Java . . . . . . . 39
2.5.4. Enterprise Java Beans . . . . . . . . . . . . . . . . . . . . 40
2.5.5. Replaying Changes from a Version Control System . . . 41

2.6. Evaluation foundations . . . . . . . . . . . . . . . . . . . . . . . 43
2.6.1. Goal Question Metric . . . . . . . . . . . . . . . . . . . . 43
2.6.2. Validation Levels of Böhme and Reussner . . . . . . . . . 43

3. A Change-driven Consistency Process for Models . . . . . . . . . . . 47
3.1. Scienti�c Challenges . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3. Change Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4. Correspondence Metamodel . . . . . . . . . . . . . . . . . . . . 51
3.5. Change Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1. Monitoring Changes in Architectural Models . . . . . . 55
3.5.2. Monitoring Source Code Changes . . . . . . . . . . . . . 56

3.6. De�ning Consistency Preservation Rules . . . . . . . . . . . . . 62
3.6.1. De�ning Consistency Preservation Rules

using a GPL . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6.2. De�ning Consistency Preservation Rules using

the Mapping Invariant Response (MIR)
Languages . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7. Consistency Preservation Process . . . . . . . . . . . . . . . . . 68
3.7.1. Change Triggering and Initializing Change

Consistency Preservation Process . . . . . . . . . . . . . 68
3.7.2. Command Creation . . . . . . . . . . . . . . . . . . . . . 70
3.7.3. Command Executing . . . . . . . . . . . . . . . . . . . . 70

x



Contents

4. A Method for keeping Architecture Consistent with Source Code . . . 71
4.1. Scienti�c Challenges . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2. Coevolution of Architectural Models and Code . . . . . . . . . 75

4.2.1. The Virtual Single Underlying Model (VSUM) of
our Coevolution Approach and the De�nition of
Consistency Preservation Rules . . . . . . . . . . . . . . 77

4.2.2. Monitored Source Code Editor . . . . . . . . . . . . . . . 79
4.2.3. Monitored Architectural Editor . . . . . . . . . . . . . . 81
4.2.4. UML Class Diagram Editor for Java Code . . . . . . . . 81
4.2.5. Classi�cation of our Coevolution Approach into the

View-based Engineering Approach Vitruvius . . . . . . 83
4.3. Consistency Preservation Rules between Component-based

Architecture and Source Code . . . . . . . . . . . . . . . . . . . 87
4.3.1. Dimensions of Consistency Preservation Rules . . . . . . 88
4.3.2. Package Mapping Consistency Preservation

Rules as Example . . . . . . . . . . . . . . . . . . . . . . 90
4.3.3. Outline on How to Verify and Validate our

Consistency Preservation Rules . . . . . . . . . . . . . 101
4.4. Consistency Automation Levels and User Change

Disambiguation . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.4.1. Levels of Automation . . . . . . . . . . . . . . . . . . . 105
4.4.2. Point in Time and Kind of User Change

Disambiguation . . . . . . . . . . . . . . . . . . . . . . 108
4.4.3. Interactive Interactions using Dialogs . . . . . . . . . . 109
4.4.4. Task list to enable late resolving of inconsistency . . . 111

4.5. Coevolution of Source Code Behaviour and Architectural
Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.5.1. Mapping from SEFF to Source Code . . . . . . . . . . . 113
4.5.2. Incremental SEFF Creation to Create up-to Date

Behavioural Models . . . . . . . . . . . . . . . . . . . 114
4.5.3. Coevolution of Behavioural Architectural Models

and Source Code . . . . . . . . . . . . . . . . . . . . . 136
4.6. Consistency Preservation Rules between Architectural

Models and Code . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.6.1. Source Code Technology Speci�c Consistecncy

Preservation Rules . . . . . . . . . . . . . . . . . . . . 138
4.6.2. Mappings between Architectural Models,

Source Code, and Additional Artefacts . . . . . . . . . 151

xi



Contents

4.6.3. Mapping between Architectural Models, Source
Code, and Eclipse Plugin Development Artefacts . . . 151

4.7. User Roles in our Coevolution Approach . . . . . . . . . . . . 159
4.7.1. Architectural Consistency Methodologists . . . . . . . 160
4.7.2. Software Architects . . . . . . . . . . . . . . . . . . . . 161
4.7.3. Software Developers . . . . . . . . . . . . . . . . . . . 162

5. Include Existing Artefacts . . . . . . . . . . . . . . . . . . . . . . . 165
5.1. Scienti�c Challenges . . . . . . . . . . . . . . . . . . . . . . . 166
5.2. Include Existing Artefacts in Vitruvius . . . . . . . . . . . . 167

5.2.1. Reconstructive Integration Strategy . . . . . . . . . . . 168
5.2.2. Linking Integration Strategy . . . . . . . . . . . . . . . 171
5.2.3. The Role of the Integrators . . . . . . . . . . . . . . . . 173

5.3. Include existing Architecture Models using Reconstructive
Integration Strategy . . . . . . . . . . . . . . . . . . . . . . . 174

5.4. Include existing Source Code using a Linking Integration
Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.4.1. Extracting Architecture Models from exiting

Source Code . . . . . . . . . . . . . . . . . . . . . . . . 181
5.4.2. The Four Code Integration Levels . . . . . . . . . . . . 195
5.4.3. Integration Level 1: Include

Architecture-Code-Mapping Compliant Source Code . 200
5.4.4. Integration Level 2: Include Non-Compliant

Source Code . . . . . . . . . . . . . . . . . . . . . . . . 202
5.4.5. Integration Level 3: The De�nition and Execution

of Special Bidirectional Consistency Preservation
Rules for Non-Compliant Source Code . . . . . . . . . 205

5.4.6. Tasks for the Integrators during the Code Integration . 206

6. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.1. Evaluation Overview . . . . . . . . . . . . . . . . . . . . . . . 210

6.1.1. Overview of the Performed Evaluation . . . . . . . . . 210
6.1.2. Validation Levels of the performed Evaluations . . . . 211
6.1.3. Evaluation Results . . . . . . . . . . . . . . . . . . . . 211

6.2. Goal Question Metric (GQM) Plan for the Evaluation . . . . . 213
6.2.1. Include existing Artefacts . . . . . . . . . . . . . . . . 213
6.2.2. Coevolution of Architectural Models and

Source Code . . . . . . . . . . . . . . . . . . . . . . . . 215

xii



Contents

6.2.3. Model-based Analyses using coevolved
Architecture Models . . . . . . . . . . . . . . . . . . . 216

6.3. Evaluation of reverse engineering approaches . . . . . . . . . 216
6.3.1. Evaluation of Extract . . . . . . . . . . . . . . . . . . . 217
6.3.2. Evaluation of EJBmoX . . . . . . . . . . . . . . . . . . 218
6.3.3. Comparison of a Reverse Engineered Model with

a Manually created Model . . . . . . . . . . . . . . . . 222
6.4. Evaluation of the Consistency Preservation Rules and the

PCM Reconstructive Integration Strategy (RIS) . . . . . . . . 226
6.4.1. Existing PCM Models . . . . . . . . . . . . . . . . . . . 227
6.4.2. Execution of the Case Study . . . . . . . . . . . . . . . 229
6.4.3. Results of the Integration Case Study . . . . . . . . . . 229

6.5. Integrating Existing Source Code and Replaying Changes . . 235
6.5.1. Used Open Source Projects . . . . . . . . . . . . . . . . 235
6.5.2. Reverse Engineering of the Case Study Systems . . . . 239
6.5.3. Integrating the Case Study Systems . . . . . . . . . . . 240
6.5.4. Replaying Changes Extracted from a VCS . . . . . . . 242

6.6. Performance Evaluation of our Coevolution Approach . . . . 251
6.6.1. Performance Evaluation for the Java Monitor . . . . . 252
6.6.2. Performance during Change Replay . . . . . . . . . . . 257
6.6.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 260

6.7. Model-based Performance Prediction using Coevolved
Architecture Models . . . . . . . . . . . . . . . . . . . . . . . 262
6.7.1. Evolution Scenario for mRUBiS . . . . . . . . . . . . . 263
6.7.2. Coevolution during the Implementation of the

Evolution Scenario . . . . . . . . . . . . . . . . . . . . 263
6.7.3. Enriching the Architectural Model with

Resource Demands . . . . . . . . . . . . . . . . . . . . 266
6.7.4. Experiment Results . . . . . . . . . . . . . . . . . . . . 273

6.8. Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . 277

7. RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
7.1. Approaches that keep Architectural Models and Source

Code Consistent . . . . . . . . . . . . . . . . . . . . . . . . . 279
7.1.1. Coevolution Approaches for Source Code and

High-Level Architectural Models . . . . . . . . . . . . 280
7.1.2. Approaches Supporting Change-driven Extraction

or Coevolution of Behavioural Models . . . . . . . . . 282

xiii



Contents

7.1.3. Approaches supporting Round-trip Engineering
between UML Class Diagrams and Source Code . . . . 284

7.1.4. Approaches Embedding Architectural Information
in to Source Code . . . . . . . . . . . . . . . . . . . . . 287

7.2. Architecture Reverse Engineering Approaches . . . . . . . . . 289
7.3. View-based Software Development Approaches . . . . . . . . 292

8. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . 295
8.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
8.2. Limitations and Outlook on Future Work . . . . . . . . . . . . 299

A. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
A.1. Change Catalog for the Source Code Monitor . . . . . . . . . 306
A.2. Results of the Integration Case Study per Project . . . . . . . 308
A.3. Results of the Change Replay Case Study per Project . . . . . 316

A.3.1. Results for the core project of Apache Any23 . . . . . 316
A.3.2. Results for the core project of Apache Gora . . . . . . 317
A.3.3. Results for Apache Velocity . . . . . . . . . . . . . . . 318
A.3.4. Results for Apache Xerces . . . . . . . . . . . . . . . . 318

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xiv

1



List of Figures

2.1. Classes of the Ecore metametamodel . . . . . . . . . . . . . . . . . 20
2.2. Feature model for all possible changes in Ecore models . . . . . . 21
2.3. Hub-and-Spoke approach vs. Peer-to-Peer approach . . . . . . . . 23
2.4. Overview of Vitruvius VSUM and views . . . . . . . . . . . . . . 25
2.5. Overview of the PCM models . . . . . . . . . . . . . . . . . . . . . 27
2.6. Metaclasses of the PCM Repository . . . . . . . . . . . . . . . . . . 30
2.7. Metaclasses of the PCM System . . . . . . . . . . . . . . . . . . . . 31
2.8. Hierarchical structure of a GQM plan . . . . . . . . . . . . . . . . 44

3.1. Non-abstract classes of the change metamodel . . . . . . . . . . . 52
3.2. The correspondence metamodel . . . . . . . . . . . . . . . . . . . 53

4.1. Steps our Coevolution approach executes to keep
architectural models consistent with the source code . . . . . . . 78

4.2. The process how our Coevolution approach keeps
source code changes consistent with the
architectural model . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3. Example for the UML Class Diagram Editor . . . . . . . . . . . . . 84
4.4. The Vitruvius vision for the Component-based Software

Engineering (CBSE) domain . . . . . . . . . . . . . . . . . . . . . 86
4.5. The Repository of the MediaStore example that contains the

components MediaStore and WebGUI . . . . . . . . . . . . . . . . 99
4.6. The System of the MediaStore example . . . . . . . . . . . . . . . 99
4.7. The UML class diagram of the MediaStore example . . . . . . . 100
4.8. The mapping between a BasicComponent and its source

code elements using the package mapping consistency
preservation rules . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.9. Di�erent levels of automation for consistency preservation . . . 106
4.10. Comparison of a reconstructed SEFF before and after a

source code change . . . . . . . . . . . . . . . . . . . . . . . . . 119

xv



List of Figures

4.11. RequiredRole �nder for package mapping . . . . . . . . . . . . . 128
4.12. Result of incremental SEFF creation from the download method . 133
4.13. Result of incremental SEFF creation from the doDownload method 135
4.14. The mapping between a BasicComponent and its source code

elements using the EJB consistency preservation rules . . . . . . 143
4.15. The VSUM for the mapping between source code,

architectural models, and Eclipse plugin artefacts . . . . . . . . 154

5.1. Class diagram for metamodel A and metamodel B . . . . . . . . 168
5.2. Overview of architecture reconstruction approach Extract . . . 183
5.3. Clusters extracted with ARCADE . . . . . . . . . . . . . . . . . 184
5.4. Integrate code using a Linking Integration Strategy (LIS) . . . . 202
5.5. Change processing in Integration Level 2 . . . . . . . . . . . . . 204
5.6. Change processing in Integration Level 3 . . . . . . . . . . . . . 207

6.1. The manually created PCM Repository model of
the MediaStore . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

6.2. The reverse-engineered PCM Repository model of the
MediaStore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

6.3. Activity diagram of the evaluation helper tool . . . . . . . . . . 231
6.4. Result of the change replay case study for

Integration Level 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 245
6.5. Result of the change replay case study for

Integration Level 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 249
6.6. Average time consumed by the Java monitor . . . . . . . . . . . 255
6.7. Performance evaluation for Any23 . . . . . . . . . . . . . . . . . 259
6.8. Performance Evaluation for Xerces . . . . . . . . . . . . . . . . 259
6.9. Performance evaluation for Any23 including the

incremental SEFF reconstruction . . . . . . . . . . . . . . . . . . 260
6.10. Activity diagram of the registerItem service . . . . . . . . . . . 265
6.11. Deployment diagram for the evaluation setup (Server) . . . . . . 271
6.12. Deployment diagram for the evaluation setup

(Local Machine) . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
6.13. Cumulative response time distribution of measurements

compared to simulation for the extracted model . . . . . . . . . 274
6.14. Cumulative response time distribution of measurements

compared to simulation for the coevolved model . . . . . . . . . 275

xvi



List of Figures

7.1. Classi�cation of software architecture erosion . . . . . . . . . . 281
7.2. Process-oriented taxonomy for reverse

Engineering approaches . . . . . . . . . . . . . . . . . . . . . . . 290

xvii





List of Tables

4.1. Example mapping between PCM repository metamodel
elements and source code language elements . . . . . . . . . . . . 91

4.2. Example mapping between PCM system metamodel
elements and source code language elements . . . . . . . . . . . . 94

4.3. Mapping between PCM Repository metamodel elements
and Enterprise Java Bean (EJB) language elements . . . . . . . . 142

5.1. Invariants between PCM and Java that need to be resolved . . . 175

6.1. A classi�cation of the performed evaluation into the
validation levels of Böhme and Reussner . . . . . . . . . . . . . 212

6.2. Overview of the analysed open source systems
using Extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

6.3. Ratio between compilation units and components
and interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

6.4. Result for the analysing software systems using EJBmoX . . . . 222
6.5. Overview of the elements in existing PCM case

study systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
6.6. Integrated and con�icting overall elements of all used case

study projects per consistency preservation rule . . . . . . . . . 232
6.7. Ratio between integrated elements and total elements

respectively supported elements per consistency
preservation rule . . . . . . . . . . . . . . . . . . . . . . . . . . 234

6.8. overview of the used open source systems in the
evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

6.9. Detailed information about the integrated versions of the
evaluation projects and the result of the reverse
engineering process . . . . . . . . . . . . . . . . . . . . . . . . . 240

6.10. Detailed information created integration artefacts and the
changes between the versions . . . . . . . . . . . . . . . . . . . 241

xix



List of Tables

6.11. Overview of compilation units used for the performance
evaluation of the Java code monitor . . . . . . . . . . . . . . . . 253

6.12. Results of the performance evaluation for the Java
code monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

6.13. Time for AST change monitoring vs. Java Model Parser and
Printer (JaMoPP) based change generation . . . . . . . . . . . . 256

6.14. Comparison of the mean response time in the measured run
and the simulated run . . . . . . . . . . . . . . . . . . . . . . . 276

6.15. Comparison of the mean CPU utilization time in the
measured run and the simulated run . . . . . . . . . . . . . . . 276

7.1. Classi�caiton of our Coevolution approach into realisation
strategies for multi-view approaches . . . . . . . . . . . . . . . 293

A.1. Primitive changes in the change catalogue . . . . . . . . . . . . 306
A.2. Composite changes in the change catalogue . . . . . . . . . . . 307
A.3. Type hierarchy speci�c changes in the change catalogue . . . . 307
A.4. Integrated and con�icting elements for the

MediaStore project . . . . . . . . . . . . . . . . . . . . . . . . . 309
A.5. Integrated and con�icting elements for the

CoCoME project . . . . . . . . . . . . . . . . . . . . . . . . . . 310
A.6. Integrated and con�icting elements for the

Open Reference Case project . . . . . . . . . . . . . . . . . . . . 311
A.7. Integrated and con�icting elements for the

Desktop Search project . . . . . . . . . . . . . . . . . . . . . . . 312
A.8. Integrated and con�icting elements for the

DPS project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
A.9. Integrated and con�icting elements for the

Industrial Control System project . . . . . . . . . . . . . . . . . 314
A.10. Integrated and con�icting elements for the BRS project . . . . . 315
A.11. Change replay evaluation results for the core project of

Apache Any23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
A.12. Change replay evaluation results for the core project of

Apache Gora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
A.13. Change replay evaluation results for Apache Velocity . . . . . . 318
A.14. Change replay evaluation results for core Apache Xerces . . . . 319

xx



List of Listings

1. An example for an Eclipse Manifest �le . . . . . . . . . . . . . . . . 37
2. An example for an Eclipse plugin XML �le . . . . . . . . . . . . . . 37
3. An example for an Eclipse feature XML �le . . . . . . . . . . . . . . 38
4. An example for dependency injection using the @Inject annotation 39
5. An example of a Google Guice module . . . . . . . . . . . . . . . . 40

6. Excerpt of the dispatch functionality in Xtend used for the
dispatching of incoming changes to distinguish the type of change. 65

7. Executed Xtend transformation after an OperationSignature has
been renamed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8. Executed reaction after an OperationSignature has been renamed . . 67

9. Example for an Association annotation . . . . . . . . . . . . . . . . 82
10. Mapping from the example PCM System to source code using the

package mapping consistency preservation rules . . . . . . . . . . 102
11. An implementation of the download method . . . . . . . . . . . . 117
12. The doDownload method after a developer added a

component-external method call . . . . . . . . . . . . . . . . . . . 118
13. The download method after the �rst change . . . . . . . . . . . . . 132
14. The download method after the call to the doDownload method

has been inserted . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
15. The doDownload method after the �rst change . . . . . . . . . . . 134
16. The doDownload method after the second change . . . . . . . . . . 135
17. The doDownload method after the third change . . . . . . . . . . . 136
18. System-realisation class of the MediaStore example . . . . . . . . 149

19. Simple example for EJB code . . . . . . . . . . . . . . . . . . . . . 193

xxi





1. Introduction

This introduction �rst motivates the advantages of an approach for coevolv-
ing source code and architectural models and highlights the advantages of
having up-to-date architectural models (Section 1.1). In Section 1.2, we de-
scribe the goals and questions of this thesis. Afterwards, we shortly describe
the approach and the contributions of this thesis (Section 1.3). Finally, the
introduction chapter gives an overview of the structure of the remainder of
this thesis (Section 1.5).

1.1. Motivation

For the development and evolution of a software system, software architects
and software developers usually use multiple artefacts. An important artefact
is, of course, the source code of the software system itself. Another important
artefact that is often used, is the architectural representation of the source
code [KOS06], which usually allows users to get an high-level view on the
source code.

Such architectural models can be useful in the planning phase of software
development and software evolution. Software architects can, for instance,
specify which components in the architectural models need to be adapted or
created in order to realise a requirement in the software system. Moreover,
architectural models can be used to analyse Non-Functional Properties (NFP)
of a software system. The Palladio Component Model (PCM) [Reu+16], for
instance, can be used for model-based performance predictions. The pre-
diction is possible even before the implementation of the software system
has been started. To do so, software architects need to specify the expected
behaviour of software components. Architectural models can also be used

1



1. Introduction

for forward engineering, i.e. the architectural models can be used in or-
der to create source code. This source code can either be executed directly
without any changes or it can be source code stubs, which need to be com-
pleted by software developers in order to obtain an executable software
system. Architectural models can also be used for the documentation of the
software system.

If architectural models are used in the processes of software development
and software evolution, the well-known problems of architecture drift and
architecture erosion can occur. Perry and Wolf [PW92] described both
problems initially. They de�ned architecture erosion as violation of the
architecture, while they de�ned architecture drift as insensitivity about
the architecture. These problems occur if changes to source code are not
kept consistent with the architectural model or if changes in the architec-
tural model are implemented incorrectly in the source code. Having these
problems leads to architecture models that are out-dated and thus become
useless. Such outdated architectural models are neither a good source for
planning and conducting software evolution nor can they be used for precise
analysis of NFP.

Hence, having up-to-date architectural model is a necessary perquisite to
pro�t from the bene�ts architectural models provide. Creating up-to-date
architectural models can be done using reverse engineering approaches.
Therefore, the research area of reverse engineering provides tools that are
able to reverse-engineer architectural models. Most reverse engineering
approaches use the source code as input [DP09]. Changes performed to an
already existing model, however, are often lost if the architecture model is
regenerated from source code. Approaches combining forward and reverse
engineering enable the round-trip engineering between source code and
architectural model. These approaches can be used to keep architectural
models and source code consistent during the development and evolution of
a software system. Most existing approaches focus, however, on preserving
consistency between object-oriented source code and UML class diagrams.

In this thesis, we present an approach that is able to keep component-based
architectural models consistent with the source code. The used architectural
models can be used during the actual evolution of a software system by
supporting users to keep changes performed to source code consistent with

2



1.2. Goals and Questions

the architecture and vice versa. Moreover, the architectural models can be
used for analysis of NFP in a subsequent step.

The initial need of keeping the architecture models and source code consis-
tent arises because both models can be seen as views on the same software
system and thus contain redundant information. Even though architectural
models are an abstraction from the underlying source code, the information
contained in the architecture model, such as components and interfaces, often
have a representation in the source code. The complexity of de�ning the over-
lap between architectural model elements and source code elements depends
on the used architecture model. It is easy, for instance, to de�ne the overlap
and the mapping between UML class diagrams and object-oriented source
code, as most elements from UML class diagrams have a direct representation
in object-oriented source code. It is, however, not a trivial task to de�ne the
mapping between component-based software system and object-oriented
source code, because the mapping between source code and components can
vary depending on the used project and the underlying source code tech-
nology. The mapping can even be speci�c for a certain set of architectural
elements. The approach that we present in this thesis is able to support
user-de�ned consistency preservation rules between architectural models
and source code.

1.2. Goals and Questions

As we shortly mentioned above, we introduce a coevolution approach for
source code and architectural models, which can be used to avoid architecture
erosion and ease the detection of architecture drift. Hence, we formulate the
main goal of this thesis as follows:

Develop a coevolution approach that is able to keep changes performed to

source code consistent with architectural models and vice versa.

To achieve the main goal, we need to achieve the following subgoals:

1. De�ne a consistency preservation process for architectural models and

source code.

3



1. Introduction

2. De�ne exemplary consistency preservation rules between architectural

models and source code, which can be extended and reused.

3. Show that the coevolved architectural models can be used for

performance prediction in a subsequent step.

After we have achieved the above-mentioned subgoals, the coevolution
approach can be used to develop new software systems. Potential users of
the coevolution approach usually have existing source code and existing
architectural models already. In order to allow users to reuse already existing
artefacts, the approach needs to be able to integrate existing architecture
models and existing source code. Hence, we formulate the fourth subgoal as
follows:

4. Integrate existing source and existing architectural model into the

coevolution approach.

From the four de�ned goals, we can derive the following high-level research
questions:

1. Which steps are necessary to achieve change-driven consistency for

architectural models and source code?

To enable the coevolution of source code and architectural models in
a change-driven way, we need to de�ne a change-driven consistency
preservation process. The challenge arising from this question
should be solved in a generic way, in order to solve the challenge for
both the presented coevolution approach and the view-centric
engineering Vitruvius approach.

2. How can component-based architecture models be mapped to source

code?

An important challenge for the coevolution of component-based
architecture models and source code, is to de�ne bidirectional
change-driven consistency preservation rules. For the realisation of
the approach, we use the component-based software architecture
model PCM and Java as object-oriented source code language. As we
mentioned above, the mapping between source code and the
component-based architectural model depends on the used project
and the used source code technology.

4



1.3. Approach and Contributions of this Thesis

3. What steps are necessary to enable performance prediction for

coevolved models?

As we stated in the motivation, models can be used for the analysis
of a software system’s NFP. An important challenge when using the
PCM is to show that the coevolved models can be used for the
performance prediction.

4. How can the approach within this thesis be tailored in order to support

existing source code and existing architectural models?

As we want to use the coevolution approach for existing source code
and existing architecture models, we need to de�ne how existing
artefacts can be integrated into the coevolution approach. Therefore,
we need to de�ne a process how users can reuse existing source code
and existing architectural models.

1.3. Approach and Contributions of this Thesis

In this section, we give a brief overview of the approach and the contribution
of this thesis. Both are aligned to the goals presented in the section before.
Moreover, we show how we have evaluated the contributions of this thesis.

In this thesis, we present our Coevolution approach, which is a novel ap-
proach for coevolving architectural models and source code during the
development and evolution of a software system. In particular, the approach
can be used to keep instances of the PCM consistent with Java source code.
Therefore, PCM elements are created, changed, or deleted as soon as their
corresponding source code elements have been changed and vice versa. To
store the correspondences between architectural model elements and source
code elements, we use a correspondence model. Consistency is preserved
based on user-de�ned change-driven consistency preservation rules between
the architectural model and source code. Within this thesis, we present four
di�erent consistency preservation rules between architectural models and
source code, which are implemented in our prototypical implementation.
The presented consistency preservation rules are reusable and extendable.
We use the concept of user change disambiguation, which can be used if the
consistency preservation cannot be achieved automatically. In this case users
need to clarify how the consistency can be achieved. As our Coevolution

5



1. Introduction

approach is a change-driven approach, we need to retrieve each change
performed in the involved architectural editors and the source code editors.
To allow users to reuse existing editors, which they are familiar with, we
implemented monitors for the Eclipse Java source code editors and PCM
architectural model editors. We also present a UML class diagram editor
[KLK16], which can be used to edit the source code using a projective UML
class diagram view. Our Coevolution approach allows, furthermore, users to
keep source code consistent with behavioural architectural models as well.
Therefore, we propose an approach that incrementally reverse-engineers the
PCM Service E�ect Speci�cations based on changes performed to source code
methods. The Service E�ect Speci�cations are used within PCM to describe
the behaviour of components.

To be able to deal with existing source code and existing architectural mod-
els, we present di�erent integration strategies. For architectural models,
we present an approach that simulates the creation of architectural models.
During the creation, we monitor the emerging changes and use them as
base for the creation of the corresponding source code. For source code, we
propose an approach that uses reverse engineering tools to create an archi-
tectural model and a correspondence model, which we can use within our
Coevolution approach. Arbitrary code, however, is seldom build according to
the de�ned consistency preservation rules. To deal with this fact, we present
an approach that is able to deal with integrated source code for which the
actual consistency preservation rules cannot be used. The approach is able to
keep even those elements consistent using speci�c consistency preservation
rules for integrated source code elements.

1.3.1. Contributions

In the following, we present a brief overview of the contributions of this
thesis. The contributions are aligned with the research questions.

1.3.1.1. Consistency Preservation Process

In this thesis, we present a change-driven consistency preservation process.
To be able to use the change-driven process, we need to react to changes

6



1.3. Approach and Contributions of this Thesis

performed by users or tools. To retrieve all performed changes, we decided
to monitor the used editors. To realise the consistency preservation between
architectural models and source code, we contribute a source code monitor as
well as an architectural monitor. Both are able to monitor existing editors, i.e.
they allow the reuse of existing editors within the consistency preservation
process. The architectural monitor is implemented in a generic way and can
be used for arbitrary Eclipse Modeling Framework (EMF) models, i.e. it can
be used to monitor arbitrary EMF models.

We also contribute the process used to achieve consistency. This process
is triggered by the monitors. In particular, the monitors notify the process
about a speci�c change, which has been performed on a model element. After
the noti�cations, the consistency preservation process executes the follow-
ing steps to achieve consistency: First, we initialize the process by retrieving
the consistency preservation rules that need to be executed. Therefore, we
check which models are a�ected by the performed change. Secondly, exe-
cutable commands are created based on the changed element and the actual
performed change operation, using the active consistency preservation rules.
The commands that we use in our implementation are generic commands
of the EMF framework. In the third step, these commands are executed,
which leads to updated models. Even though we introduce and instantiate
the process speci�c for architectural models and source code in this thesis,
the presented process is generic for arbitrary models. In particular, it is
embedded within the Vitruvius framework and thus can be used to keep
arbitrary pairs of EMF models consistent.

The idea for the code monitor has been presented in the publication [LK14].
The initial idea of how to keep models consistent is part of the publication
[KBL13].

1.3.1.2. Coevolution Approach for So�ware Architecture Models and
Source Code

We de�ne our Coevolution approach and explain how users can use it to
keep architectural models and source code consistent. As we reuse some
concepts from the view-based engineering approach Vitruvius, we classify
our Coevolution approach with respect to Vitruvius. Moreover, we de�ne

7



1. Introduction

the Virtual Single Underlying Model (VSUM) of our Coevolution approach,
which contains the architectural models and the source code models.

For the consistency preservation rules, we present the following three dif-
ferent dimensions: i) a technology-speci�c dimension, ii) a project-speci�c
dimension, and iii) an element-speci�c dimension. This thesis contributes
the following four di�erent consistency preservation rules between archi-
tectural models and source code: First, we present the package mapping
consistency preservation rules can be used to keep instances of the architec-
tural model PCM consistent with Java source code that is based on Plain Old
Java Objects (POJOs). Next, we present two technology-speci�c consistency
preservation rules. The �rst one can be used to keep instances of the PCM
consistent with Java source code based on Enterprise Java Beans (EJBs). The
second technology-speci�c consistency preservation rules, can be used to
keep instances of the PCM consistent with Java source code that is created
using a dependency injection framework. We also present consistency preser-
vation rules between instances of the PCM and artefacts used for the Eclipse
plugin development. The de�ned consistency preservation rules specify
how architectural models need to be changed if a change in the source code
occurred and vice versa.

To allow users to detect architectural violation, this thesis contributes an
approach for the coevolution of behavioural models and source code during
software evolution. Therefore, we have developed a novel approach that
creates behavioural models from a source code method as soon as the method
has been changed and warns users if the change introduces an architectural
violation.

The coevolution of software architecture models and source code is part of
the following publications: [Lan13], [LK15], [Kra+15a] and the associated
tech report [Kra+15b]. Within these publications, we introduced how we can
keep architectural models consistent with source code. We also introduced
the package mapping consistency preservation rules.

1.3.1.3. Including Existing Architectural Models and Existing Source Code

As it is important to deal with existing architectural models and existing
source code, we contribute an approach that is able to integrate these existing

8



1.3. Approach and Contributions of this Thesis

artefacts. Therefore, we present the two integration strategies Reconstructive
Integration Strategy (RIS) and Linking Integration Strategy (LIS).

A Reconstructive Integration Strategy simulates the creation of a model.
During the simulated creation, we monitor the performed changes using
the implemented change monitors. These changes can be used as input
for the consistency preservation process, which then creates respectively
updates the corresponding model elements. The concept of a RIS is generic
for models and can thus be used within the Vitruvius framework as well.
We implemented RIS generic for arbitrary models and applied it to the PCM
in order to include existing architecture models.

A Linking Integration Strategy, in general, �rst uses an existing Model-to-
Model (M2M) transformation or Model-to-Text (M2T) generation from the
existing model to the model that needs to be integrated in order to create the
corresponding instance. The M2M transformation respectively M2T genera-
tion is required to create a kind of trace model, which contains the mapping
between the model elements from the existing to the created model. As a LIS
requires a generation step from the existing model to the model that needs to
be integrated, the �rst step towards implementing a LIS for existing source
code, is to use reverse engineering tools to create an architectural model
from existing source code. To do so, we present the two reverse engineering
approaches Extract and EJBmoX . Extract is able to reverse-engineer Java
source code implemented with POJOs using di�erent extraction algorithms
of the underlying reverse engineering tool Architecture Recovery, Change,
and Decay Evaluator (ARCADE). Extract is able to reverse-engineer Java
source code based on EJB source code. Both approaches are necessary for the
integration of an existing source code base. The second step to implement
a LIS is to use the output models of the reverse engineering approach to
create a correspondence model, which can be used within our Coevolution
approach. For the integration of existing source code, we de�ned four di�er-
ent integration levels. If the existing consistency preservation rules can be
used for the coevolution of the integrated source code elements and their
corresponding architectural model elements, the elements are considered
as elements integrated with Integration Level 1. If the existing consistency
preservation rules cannot be used, the elements are considered as elements
integrated with Integration Level 2 by default. If elements, considered as
elements integrated with Integration Level 2, are changed, users are noti�ed
that the consistency needs to be preserved manually. If integration speci�c

9



1. Introduction

consistency preservation rules are de�ned for speci�c changes performed
on elements in Integration Level 2, the elements are considered as integrated
with Integration Level 3. By using speci�c consistency preservation rules for
integrated elements, we are able to support automatic consistency preser-
vation for integrated elements. Elements considered as integrated using
Integration Level 4, are elements for which element-speci�c consistency
preservation rules need to be de�ned in order to support automatic consis-
tency preservation. Within our prototypical implementation, we support
the �rst three integration levels.

The idea and implementation how we can include existing artefacts into
our Coevolution approach has been published in [Leo+15]. The reverse
engineering approach Extract has been published in [Lan+16].

1.3.2. Evaluation

This section provides a quick overview of the conducted evaluation. A de-
tailed description of the evaluation can be found in Chapter 6. We conducted
evaluation aligned to the goals presented in Section 1.2. In particular, we
conducted the following evaluations:

1. Evaluation of the reverse engineering approaches

We evaluated the developed reverse engineering approaches Extract
and EJBmoX . We showed that both are able to reverse-engineer a
component-based software system from the underlying source code.
For Extract, we reverse-engineered 14 di�erent open-source systems
with a size of up to 644.000 Source Lines of Code (SLoC). For
EJBmoX , we reverse-engineered two relatively small open source
case study systems with a size of approximately 5000 SLoC. For
EJBmoX , we furthermore compared a manually created architecture
model of a software system with the reverse-engineered model.

2. Evaluation of the consistency preservation rules and the integration of

existing architectural models

We evaluated the developed consistency preservation rules by
integrating seven existing architectural models for the developed
consistency preservation rules. We showed that it is possible to
create the corresponding source code for a given architectural model.

10



1.3. Approach and Contributions of this Thesis

We are able to integrate 98% up to 100% of the supported elements
per consistency preservation rule set. Regarding all architectural
elements, the number di�ers between 30% for the Eclipse plugin
consistency preservation rules, and 100% for package mapping
consistency preservation rules.

3. Evaluation of the existing source code and consistency preservation of

changes

We successfully integrated four open source projects into our
Coevolution approach with a size of up to 112.000 SLoC. For the four
projects, we showed that our Coevolution approach is able to keep
changes performed to the source code consistent with the
architecture. As changes, we use changes extracted from a Version
Control System (VCS) and applied them to source code. We
evaluated Integration Level 2 and Integration Level 3 with this
evaluation. We showed that the presented approach is able to react to
more than 70% of the overall recorded change respectively to more
than 90% of the changes if we take out the changes, to which we
currently not reacting to on purpose. For the case study, over 99% of
changes a�ected integrated code, i.e. they need to be kept consistent
manually (Integration Level 2) or by executing consistency
preservation rules speci�c for the integrated code (Integration Level
3). Hence, using Integration Level 3 and the de�ned speci�c
reactions, our Coevolution approach is able to process more than 90%
of the changes it reacted to using a speci�c consistency preservation
rules. We were also able to show that changes performed on method
bodies can be kept consistent with behavioural architecture model
and that changes performed on the architectural model can be kept
consistent with the source code.

4. Performance evaluation of the consistency preservation

We conducted a performance evaluation of our Coevolution approach
by measuring the time it consumes to keep changes performed on
source code consistent with the corresponding architectural
elements. Even though we observed one exception, we were able to
show that it usually takes between one and �ve seconds to update
the architecture model. We were also able to show that the time
needed to process a change is dominated by the time the used Java

11



1. Introduction

parser needs to parse the changed compilation unit. Even though we
observed some exceptions, the duration of the parsing step usually
increases with the size of the compilation unit. We conclude that the
time is acceptable but by optimizing or replacing the used Java
parser, we could reduce the time needed to process a change.

5. Model-based performance prediction

We conducted a model-based performance prediction with a
coevolved model, to show that coevolved models can be used for NFP
analysis. Therefore, we used mRUBiS1 as case study system. We �rst
used EJBmoX to reverse-engineer an architectural model. Secondly,
we performed an evolution scenario for mRUBiS. During the
evolution, we kept the architectural model and the source code
consistent using our Coevolution approach. To use the extracted
model and the coevolved model for performance prediction, however,
users need to enrich the model in an upfront step. This step involves
setting up the software system and instrumenting the software
system in order to measure its performance. Afterwards, we use a
load driver to create a speci�c workload for a provided service.
During the execution of the load driver, we gather measuring data for
the performance behaviour of the software system. This data can be
used to parametrise the architectural models of the software system.
After enriching the models, we perform the performance simulation
and compare the predicted value with the actual measured values.
The prediction error for the response time is approximately 10%,
which is a usable result to estimate the performance of the real
software system.

1.4. Existing Approaches

There are multiple existing approaches developed in academia and industry
related to at least one of the contributions presented in this thesis. None
of the existing approaches, however, combines the coevolution of source

1 https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/case-

studies/mrubis/

12

https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/case-studies/mrubis/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/case-studies/mrubis/


1.4. Existing Approaches

code and high-level architectural models and its behavioural models in a
change-driven way.

We grouped existing approaches in the following three main groups:

1.4.1. Approaches that keep architectural models and source
code consistent during so�ware development and
so�ware evolution

Approaches supporting the consistency preservation between architectural
models and source code can be subdivided in four groups:

Coevolution approaches for source code and high-level architectural
models

IBM Rational Rhapsody2 is a popular tool that aims to keep architectural
models consistent with source code. It is able to keep UML package diagrams
(including classes) consistent with the source code. KobrA [Atk+01] keeps
UML diagrams consistent during the development of a software system using
a Single Underlying Model (SUM). None of the approaches, however, allows
to keep component-based architectural models and source code consistent.

Approaches supporting change-driven extraction or coevolution of
behavioural models

Existing approaches to extract behavioural models, such as ArchLint [Maf+13]
and Just-in-Time Tool for Architectural Consistency (JITTAC) [Buc+13] can
be used to detect architectural violations in the source code based on ex-
tracted behavioural models. Approaches such as mbeddr [Voe+13] and From
UML to Java and back again (Fujaba)[Nic+00] enable the coevolution be-
tween source code and UML behavioural models, such as activity diagrams
and statecharts. They, however, do not focus on the coevolution between
source code and behavioural models based on a high-level architectural
model.

2 http://www-03.ibm.com/software/products/en/ratirhapfami

13

http://www-03.ibm.com/software/products/en/ratirhapfami


1. Introduction

Approaches supporting round-trip engineering between UML class
diagrams and source code

Many existing approaches, such as UML Lab3 and Borland Together[Bor05],
focus on the consistency preservation respectively round-trip engineering
between source code and UML class diagrams. These approaches, however,
do not use high-level architecture models as we do within our Coevolution
approach.

Approaches embedding architectural information into source code

Another popular �eld of research is to embed architectural constructs, such
as components, interfaces, and roles, into source code. This is usually done
by either extending the source code language with architectural constructs
[Voe+13][ACN02] or by using existing language features to describe architec-
tural constructs [MM03] [Kon+13]. These approaches, however, do not have
an explicit architectural model as the architectural information is embedded
into the source code directly.

1.4.2. Architecture reverse engineering approaches

Reverse engineering approaches usually aim to create a high-level archi-
tectural model from source code. A popular survey on reverse engineering
approaches has been carried out by Ducasse and Pollet [DP09]. They state
that some architecture reverse engineering approaches are developed in
order to use the reverse-engineered architectural model for coevolution be-
tween source code and architecture[TH99][HMY06][Wuy01]. The existing
approaches, however, do not present di�erent integration levels for the ex-
isting source code and most of them also do not focus on change-driven
consistency preservation.

3 http://www.uml-lab.com/

14

http://www.uml-lab.com/


1.5. Structure of the Thesis

1.4.3. View-based so�ware development approaches

Related view-based software development approaches, such as Orthographic
Software Modelling (OSM) [ASB10], using a single underlying model in
order to describe all artefacts used for the software development. Mens et al.
[Men+06] introduce an approach for keeping high-level architectural views
consistent with the source code. The existing approaches, however, do not
address the consistency preservation between source code and component-
based architectural model including behavioural models.

1.5. Structure of the Thesis

The remainder of this thesis is structured as follows.

In Chapter 2, we introduce the necessary foundations for the thesis. In
particular, we present foundations of Model-Driven Software Development
(MDSD) and view-based software development. Furthermore, we present
used approaches, tools, and standards. We especially introduce Vitruvius,
Palladio, and Source Code Model eXtractor (SoMoX).

In Chapter 3, we �rst explain the terminology used in this thesis. Afterwards,
we describe the change metamodel and the correspondence metamodel.
Moreover, we explain how existing editors can be monitored. Finally, we
explain the consistency preservation process used in Vitruvius and in our
Coevolution approach.

In Chapter 4, we present the approach of this thesis. To do so, we introduce
how coevolution for source code and architectural models can be realised
using our Coevolution approach. We also introduce three dimensions for the
consistency preservation rules and four di�erent consistency preservation
rules between architectural models and source code. Furthermore, we present
consistency automation levels and the user disambiguation our Coevolution
approach uses to involve users in the consistency preservation process. We
introduce how our Coevolution approach can be used to keep behavioural
models consistent with source code during the evolution of a software system.
In the last part of this chapter, we present di�erent roles of users have if our
Coevolution approach is used.

15



1. Introduction

In Chapter 5, we introduce how we can integrate existing architectural mod-
els and existing source code into our Coevolution approach. We �rst present
two generic integration strategies for models. We secondly, instantiate the
approaches to show how to i) integrate architectural models using the �rst
approach, and ii) integrate existing source code using the second approach.
We also introduce di�erent integration levels for the source code.

In Chapter 6, we present the evaluation of our Coevolution approach. We
present di�erent case studies to evaluate the contributions of this thesis. We
present an evaluation of the reverse engineering approaches, the consistency
preservation rules, the integration levels, and the coevolution of source code
and architecture. We also show how the coevolved models can be used for
performance prediction.

In Chapter 7, we present related work to the approach, we presented in this
thesis. Therefore it explains related research approaches as well as existing
industrial tools enabling the coevolution of source code and architectural
models.

Finally, Chapter 8 concludes the thesis by summarizing the thesis. Based on
the open questions, we give an outlook on future work.

16



2. Foundations

In this section, we present the necessary foundations for this thesis. We �rst
present foundations for Model-Driven Development (MDD) (see Section 2.1).
Next, we present the foundations for view-based software development (see
Section 2.2.2). In Section 2.3, we give an overview of the Palladio Component
Model (PCM). Section 2.4 introduces the foundations of Source Code Model
eXtractor (SoMoX). In Section 2.5, we present the tools and standards, we
used in this thesis. As last part of this chapter, we present the evaluation
concepts (see Section 2.6), we used in this thesis to evaluate the contributions
of the thesis.

2.1. Model-Driven So�ware Development

Model-Driven Software Development puts models in the center of the soft-
ware development process. Hence, within Model-Driven Software Devel-
opment (MDSD) models are not used for documentation only, but play a
central role [VS06]. They are treated as �rst class elements in the develop-
ment process, i.e. they are as important as the source code of a software
system. An important purpose of the models in MDSD is that they can be
used as input for code generators in order to create source code from the
model. This code can be either executed directly or re�ned by developers in
order to retrieve a running software system.

Within MDSD, one important concept is the creation and use of Domain
Speci�c Languages (DSLs). DSLs are generated in order to allow the mod-
elling of a domain speci�c concern. For instance, the PCM is a DSL for
the creation of architectural models. To create and use a DSL, users can
create, for instance, a domain speci�c metamodel and further tooling, such
as graphical editors.

17



2. Foundations

In MDSD, multiple models are often used to create a software system. These
models can be tailored speci�c for the users who use them. Therefore, the
models can have di�erent levels of abstraction. The used models are conform
to a de�ned metamodel, which itself is a model.

A well-known example for MDSD is the Uni�ed Modeling Language [Obj15],
which can be used to create models of a software systems. Therefore, UML
allows the creation of di�erent diagrams, such as class diagrams, to support
software architects and software developers during the development and
evolution of a software system.

Models used within MDSD usually have the properties de�ned by Stachowiak
[Sta73]. Stachowiak de�nes the following three properties for models: 1:

• representation, which means that models need to represent their
originals,

• reduction, which means that a model needs to be reduced to the
attributes of the originals that contain the necessary information for
the creator or user of the model,

• pragmatism, which means that models need to be created for a
certain purpose.

2.1.1. Meta Object Facility

The Meta Object Facility (MOF) standard has been de�ned by the OMG
[Obj16]. MOF provides, amongst others, a metadata management framework
to enable the development of model driven systems. It introduces, further-
more, a four-layered architecture. The four metalevels are the metalevels
M3 to M0 and de�ned as follows:

• M3 is the metametamodel layer,
• M2 is the metamodel layer,
• M1 is the model layer, and
• M0 re�ects the reality.

1 Stachowiak originally presented the properties in German as follows: Abbildungsregeln
(representation), Verkürzungsmerkmal (reduction), Pragmatisches Merkmal (pragmatism).
To translate them into English, we use translation provided by Burger [Bur14]

18



2.1. Model-Driven Software Development

The elements from a lower level need to be conform to elements of the higher
level. MOF metamodels are described in an UML class diagram like syntax.
The MOF metametamodel is self-describing, i.e. the metametamodel can be
described using a MOF metamodel. To exemplify the four levels, we consider
a software system modeled with the UML class diagram. In this case the
MOF is metametamodel, UML is the metamodel, the UML class diagram is
the model, and the implemented software system is the realisation of the
model.

Essential MOF (EMOF) [Obj16] is a subset of the MOF standard. It is a simple
framework allowing to map MOF models to implementations, for instance,
the XML Metadata Interchange (XMI) format. Ecore, which is used in the
Eclipse Modeling Framework (EMF) framework, is an implementation of
EMOF. The metamodels and models, we use in the remainder of this thesis
are Ecore-based.

2.1.2. Eclipse Modeling Framework and Ecore

The Eclipse Modeling Framework2 [Ste+08] is a framework that allows model-
driven development within the Eclipse Integrated Development Environment
(IDE). Therefore, it o�ers the following notable features:

• creating metamodels,
• source code generation from metamodels,
• generation and creation of editors that allow creating and editing of

instances of metamodels.

A variety of tools using th EMF framework have been created in order to
ease the development of software systems. Model transformation languages,
for instance, can be used to transform instances of models into instances
of other models. Notable examples of Model-to-Model (M2M) languages
are Query View Transformation Operational (QVTO) [Obj09] and Atlas
Transformation language (ATL) [JK06] can be used. While QVTO can be
used for unidirectional transformations, ATL can be used for bidirectional
transformations as well. Tools, such as Xtext [EV06] and EMFtext [Hei+09a],
allow the creation of textual DSLs. Both provide the automatic creation of
textual editors based on the de�ned DSL.
2 https://www.eclipse.org/modeling/emf/

19

https://www.eclipse.org/modeling/emf/


2. Foundations

EModelElement ENamedElement

name:String
ETypedElement

lowerBound:int
upperBound:int
ordered:bool

EClassi�er eType

0..1

EEnumLiteral

EEnum

eLiterals 0..*

EDataType EClass
abstract:bool

eSuperTypes0..*

EStructuralFeature

abstract:bool

eStructuralFeatures 0..*
EReference

containment:bool

/eReferenceType 1

EAttribute
id:bool

/eAttributeType 1

Figure 2.1.:Classes of the Ecore metametamodel. The �gure has been published
already in Kramer [Kra17].

Within the Eclipse Modeling Framework, Ecore is the metametamodel that
can be used to create metamodels. As mentioned above, Ecore itself is an
implementation of the EMOF standard. Figure 2.1 shows the classes of the
Ecore metametamodel. Metamodels created with Ecore need to conform to
this metametamodel. To create a metamodel using Ecore, the main task of
users is to model classes with attributes and references amongst each other.
The metamodels can be de�ned using a class diagram, which has very similar
syntax as class diagrams within UML class diagrams.

In the work carried out within this thesis, we present a change-driven ap-
proach for model consistency. One step to implement such a change-driven
approach is to retrieve all changes from Ecore-based models. The �rst step
towards retrieving the changes is to identify possible changes. Therefore,
Kramer [Kra17] has identi�ed possible changes in Ecore-based models. Fig-
ure 2.2 depicts the feature model Kramer [Kra17] created for possible changes
in Ecore-based models. In particular, the feature model shows the di�erent

20



2.2. View-based Software Development

Change

Atomic

Operation

Content

Additive Subtractive

Order

Permute

Target

Root Feature

Type

Attribute Reference

Cardinality

Single Multi

Existential

Create Delete

Compound

Unset Move Replace

constraints:

1. Permute ⇒ Multi

2. (Multi ∧ Content) ⇒ (Additive ⊕ Subtractive)

3. Single ⇒ (Additive ∧ Subtractive)

4. Existential ⇒ (Root ⊕ Reference)

5. Create ⇒ (Additive ⊕ Root)

6. Delete ⇒ (Subtractive ⊕ Root)

7. Root ⇒ (Additive ⊕ Subtractive)

Figure 2.2.: Feature model for all possible changes in Ecore models [Kra17]

operations that can be performed by users. From the feature model, we were
able to create a change metamodel, which we integrated into the Vitru-
vius framework. The actual used classes of the change metamodel and the
concepts used in the Vitruvius framework are explained in Chapter 3.

2.2. View-based So�ware Development

View-based software development has the paradigm that multiple views
are used to develop and implement a software system. Hence, views play
a central role in the development process. The views itself are instances
of view types, which are the metamodel of the views. The used views can
be tailored, for instance, to the user using them. The UML [Obj15], for
instance, uses di�erent viewpoints for the di�erent user roles involved in
the development of a software system. For instance, software architects use
a special view onto the software architecture while software deployers use a
special view for the deployment.

21



2. Foundations

The ISO 42010 [ISO11] standard de�nes architectural view types and archi-
tectural views. As Burger [Bur14] pointed out, the de�nition used in the
ISO does not precisely de�ne viewpoints. As Burger [Bur14] mentioned,
Goldschmidt et al. [GBU10; GBB12] provide the following more precise
de�nition for view types:

De�nition 1. A view type de�nes the set of metaclasses whose instances a

view can display. It comprises a de�nition of a concrete syntax plus a map-

ping to the abstract metamodel syntax. The actual view is an instance of a

view type showing an actual set of objects and their relations using a certain

representation. A viewpoint de�nes a concern.

Within the ISO 42010 [ISO11] standard synthetic and projective view-based
are di�erentiated. In synthetic approaches users can construct views using
model correspondence approaches. In projective approaches an underlying
repository is used to create all views. The views are generated dynamically
using a creation mechanism view.

One major challenge in view-based software engineering is to keep the used
views consistent in order to avoid inconsistency. In synthetic approaches
the views need to be kept consistent among once another and the corre-
spondences need to be maintained during the development. In projective
approaches a major challenge is to de�ne the underlying repository and the
generation mechanism for the views. In Figure 2.3, peer-to-peer approaches,
which can be used by synthetic approaches, are compared to hub-and-spoke
approaches, which can be used by projective approaches. The necessary
number of transformations to keep views consistent increases in a linear
matter in projectional approaches, while it increases in a quadratic matter in
peer-to-peer approaches.

2.2.1. Orthographic So�ware Modelling

The Orthographic Software Modelling (OSM) approach, introduced by Atkin-
son et al. [ASB10], is a view-based engineering approach. The main concept
of OSM is the use of a Single Underlying Model (SUM), which is used to store
all information about the system under development in one single model.
The SUM needs to be redundancy-free, i.e. no duplicated information is
allowed within the SUM. Using such a SUM avoids the need of consistency

22



2.2. View-based Software Development

SUM

view1
view2

view3

view4

view5
view6

view7

view1
view2

view3

view4

view5
view6

view7

Figure 2.3.:Hub-and-Spoke approach vs. Peer-to-Peer approach [Bur14]

preservation between the models involved in the development. It is, however,
hard to de�ne such a redundancy free metamodel. Furthermore, using such
a SUM hinders the reuse of existing tools if they are not tailored speci�c
for the SUM. Accessing the SUM is possible via views solely. The views are
instances of view types and can be generated dynamically from the SUM
using transformations. As soon as the views have been edited by users,
the information is stored in the SUM. Hence, keeping the views consistent
between one another is not necessary, because they are kept consistent using
the SUM.

2.2.2. VITRUVIUS

The Vitruvius approach is a view-based engineering approach, which
Burger [Bur14] and we [KBL13] introduced. Vitruvius can be used to
keep instances of di�erent metamodels consistent during the development
of a system. Therefore, it uses a Virtual Single Underlying Model (VSUM),
which contains all information that is necessary to describe the system. The
access to the models contained in the VSUM is solely possible via views. The
idea of storing all information in one underlying model is inspired by the
SUM used in OSM. However, within the VSUM of Vitruvius existing meta-
models can be reused. Hence, existing tools working with instances of the
metamodels can also be reused using Vitruvius. The overlap between the
model instances of the used metamodels is kept consistent using consistency

23



2. Foundations

preservation rules between the models. Hence, Vitruvius can be considered
as a hybrid approach combining projective and synthetic elements. Within
the VSUM, a synthetic approach is used that keeps the overlap between the
models consistent. From an external view the VSUM, however, can be seen
as projective because the views itself need to be kept consistent with the
VSUM only.

The used views for manipulating the models are instances of view types.
The views-types are either projectional view types or combining view types
[Bur14]. Projectional view types are view types, which show information
from one metamodel only. Hence, they can be used to show and manipulate
instances of one metamodel within the VSUM. Using projectional view
types also allows us to integrate and reuse already existing view types for a
metamodel within Vitruvius. Combining view types are able to combine
information from more than one metamodel and present them to users. They
can be created using ModelJoin (see [Bur+14] and [Bur13]). ModelJoin allows
the creation of a metamodel for a view type using a DSL that can be used
to query information from di�erent metamodels and combine them in one
metamodel. The syntax of the ModelJoin query language is inspired by
the well-known Structured Query Language (SQL), which can be used to
query information from databases. Burger and Schneider [BS16] showed
how it is possible to create combining view types for Vitruvius that can be
edited. Using this approach, changes conducted to the combining view types
are kept consistent with the models in the VSUM. Combining view types
can even be �exible view types, which are created during the development
process on demand. An overview of Vitruvius is shown in Figure 2.4.

Within this thesis, we use the Vitruvius framework as base for our imple-
mentation. In Chapter 3, we present the contributions of this thesis to the
Vitruvius framework. In the initial Vitruvius vision, Burger [Bur14] and
we [KBL13] envisioned the application of Vitruvius to the Component-
based Software Engineering (CBSE) domain. The approach presented in
this thesis can be seen as �rst step towards the realisation of this vision.
The di�erences of the approach presented in this thesis and the Vitruvius
vision is presented in Section 4.2. Therefore, we �rst present the vision how
Vitruvius can be applied to the CBSE domain and secondly, classify the
approach developed within this thesis into the Vitruvius vision.

24



2.3. Palladio Component Model

Legend

VT
view type

CPR
consistency preservation rules

consistency preservation process
concerns/refers to
SUM

MM1

MM2

MM3

view1b

VT1

instance of

view1a
instance of

view2b VT2
instance of

view2a

instance of

view3

VT3

instance of

CPR

CPR

Figure 2.4.:Overview of the Vitruvius VSUM and the views that allow The overlap
need to be de�ned within the consistency preservation rules (arrows with CPR),
which are de�ned either in a GPL or in DSLs tailored to specify the overlap between
model instances. The views can be used to manipulate instances within the VSUM.
The �gure has been published already in [Bur13]. We, however, changed it slightly
in order to match the terms used in this thesis.

2.3. Palladio Component Model

The PCM (see Becker et al. [BKR09], Reussner et al. [Reu+16]) can be used
to create a component-based software architecture model. Hence, it can be
seen as an Architecture Description Language (ADL).

Based on the created architecture models the PCM allows users to perform
model based analyses. These analyses include, for instance, performance
prediction and reliability analysis [Bro+12]. To allow this analysis, Palladio

25



2. Foundations

proposes the use of �ve di�erent models, which created by di�erent users
(see Becker [Bec08]). Figure 2.5 shows the models and the transformations
respectively interpretations provided by the Palladio bench. The Palladio
bench is the implementation of the Palladio approach. In Reussner et al.
[Reu+16] a component for Palladio is de�ned as follows:

De�nition 2. Software Component A software component is a contractually
speci�ed building block for software, which can be composed, deployed, and

adapted without understanding its internals.

Hence, within Palladio a similar component de�nition is used as the one
introduced by Szyperski et al. [SGM02], who de�ne a component as a unit
of composition block with speci�ed interfaces, which can be deployed inde-
pendently.

Component developers are responsible for creating the software architecture
in terms of components, interfaces, signatures, data types, provided roles,
and required roles. Roles in the Repository describe the relation between com-
ponents and interfaces. Component developers are, furthermore, responsible
for creating the behaviour of components by specifying one Service E�ect

Speci�cations (SEFF ) for each provided signature of a component. Software
architects are responsible for assembling the software system in the System

model. The assembling is done based on the components in the Reposi-

tory. Software architects need to connect the instantiated components using
connectors and specify provided roles and required roles of the software sys-
tem. System deployers are responsible for creating the ResourceEnvironment

model and the Allocation model. Within the ResourceEnvironment model,
they need to specify the servers, their CPUs, HDDs, and network connection
between them. In the Allocation model, they need to specify which assembly
from the System is deployed on which resource. Domain experts are respon-
sible for modelling the behaviour of users in the UsageModel. Therefore, they
specify the interaction of users with the system, for instance, they specify
which provided services of a System are called in which order. They also
specify the characteristic of the relevant input parameters, and the arrival
rate of new users at the system. The QoS analyst uses the Palladio bench
and analyses the properties of the software system.

26



2.3. Palladio Component Model

System
Model

Instance

Palladio
Component

Model

Component
Specifications

Resource 
Environment

Model

Usage Model

Part of
Transformation SimQPN(-MV)

Code
Skeletons

#inc lude  
<nothing>
unsigned 
main()
{

Allocation 
Model

Q
ue

ui
ng

 N
et

w
or

k
Q

PN
LQ

N
Ja

va

ProtoCom
Prototype

Simulation

Numerical 
Analysis

Execution

Implementation

Partial Models

Analysis Tools

Reliability 
Analysis

Numerical 
Analysis Probability 

of failure D
TM

C

Cost Analysis
Initial cost 

and 
operating 

cost

N
PV

Pe
rfo

rm
an

ce

SimuCom

SimuLizar

Simulation

Simulation

EventSim
Simulation

LQNS

Figure 2.5.:Overview of the partial PCM models [Mer+16]. The Palladio bench
provides the transformations respectively interpretations for the di�erent analysis
models and tools.

In this thesis, we focus mainly on the PCM Repository including the SEFFs
and the PCM System. Based on Becker [Bec08] and Reussner et al. [Reu+11],
we explain the structure of both below.

2.3.1. PCM Repository with SEFFs

As we mentioned above, component developers are supposed to implement
the architecture of a software system using the Repository model. Figure 2.6
shows the metaclasses and example instances of them. In the following,
we explain the elements from the PCM Repository that are relevant for
this thesis. The Repository itself is the root object of the Repository, which

27



2. Foundations

contains all other elements. A BasicComponent is a single component, which
is implemented by developers. It is not intended to be split up in more
components. Using object-oriented languages a BasicComponent is usually
implemented using classes. A BasicComponent contains the SEFF, which are
describing the behaviour of the provided signatures. A CompositeComponent

is a component, which is composed of other components. Therefore, it
connects the internal components using connectors. It does not de�ne
own behavioural elements in terms of SEFFs. The internal structure of
a CompositeComponent is similar to the structure of a System, which we
explain in the following section.

OperationInterfaces are �rst level entities in the PCM, i.e. they are not bound
to a component. Instead they can be provided or required by components.
OperationInterfaces have OperationSignatures, which are de�ning the service
that need to be implemented by a component that provides the OperationIn-
terfaces. Hence, a component using implementations of the interface can be
assured that the services are ful�lled as expected. OperationSignatures con-
tain Parameters and ReturnTypes. Even though Parameters can be speci�ed
as in, out, or inOut parameters in the PCM, we only use in Parameters in this
theis. The PCM introduces data types, which are used for the Parameters

and the ReturnTypes of a OperationSignature. Within the PCM the following
three di�erent kinds of data types can be used:

• PrimitiveDataTypes, which are prede�ned primitive types, such as
integer, double, and string

• CollectionDataTypes, which represent a collection of another data
type. The inner type of the collection is stored in the reference
InnerType.

• CompositeDataTypes, which represent a combination of other data
types. The data types, which are composed by the
CompositeDataType, are stored in a list of InnerDeclaration.

CompositeDataType and CollectionDataType are user-de�ned types.

To connect components and interfaces the PCM introduces so called Roles.
This roles are separated in to required and provided roles. The roles are
contained in a BasicComponent. A OperationRequiredRole indicates that the
BasicComponent requires the speci�ed OperationInterface, while a Opera-

tionProvidedRole indicates that the BasicComponent provides the speci�ed

28



2.3. Palladio Component Model

OperationInterface. Relevant for this thesis are the OperationProvidedRole

and the OperationRequiredRole, which are able to connect BasicComponents

with OperationInterfaces. As we only use OperationProvidedRole and the
OperationRequiredRole in this thesis, we refer to them as PrvovidedRoles re-
spectively RequiredRole to ease the reading of the thesis. Even though we also
use OperationInterfaces only in this thesis, we refer to them as OperationIn-
terfaces. This makes it easier to distinguish between architectural interfaces
and code interfaces. Code interfaces are simply addressed as interfaces or
Java interfaces.

Service E�ect Speci�cations (SEFFs), which are introduced by Koziolek [Koz08],
are used to describe the behaviour of a software system. They specify, similar
to a UML activity diagram, the control �ow performed by a BasicComponent

in order to ful�ll one of its provides services. The PCM metamodel foresees
the usage of di�erent SEFF classes. Up until now, however, only the class
Resource Demanding SEFF (RDSEFF) is speci�ed as subclass of SEFF. In the
remainder of the thesis, we refer to RDSEFFs as SEFFs in order to increase
the readability. The main elements of SEFFs, we are using in this thesis,
are explained in the following. The main elements of a SEFF are the Ex-

ternalCallActions. They indicate the call of a component-external service
within the SEFF. A LoopAction indicates that the control �ow within the
LoopAction is executed multiple times. A BranchAction speci�es branches
within the control �ow. From the speci�ed branches only one is executed
based on either a probability or a input parameter. InternalActions abstract
from internal behaviour of a component. An InternalAction, for instance, can
abstract away from a complex internal algorithm. The component developers
specify the resource demanding behaviour of the SEFF actions. Therefore,
they indicate, for instance, the loop count of a LoopAction, the probability
for a BranchAction, and the CPU and HDD demand of an InternalAction.
ResourceDemandingInternalBehaviour de�ne behaviour, which can only be
used within a speci�c component. The behaviour, which can be described
within a ResourceDemandingInternalBehaviour, is the same as in a SEFF. Re-
sourceDemandingInternalBehaviours can be compared to private methods
in classes of object-oriented languages. InternalCallActions can be used to
call ResourceDemandingInternalBehaviours from within a SEFF or another
ResourceDemandingInternalBehaviour.

29



2. Foundations

<<Repository>>

<<CompositeComponent>>
E

<<Basic
Component>>

F

<<Composite
Component>>

G

<<Basic
Component>>

H

<<Delegation
Connector>>

<<Assembly
Connector>>

<<ProvidedRole>>

<<RequiredRole>>

<<Delegation
Connector>>

<<OperationInterface>>
MyInterface

void method1(Object par)

Object method2()

<<PrimitiveDataType>>
type = “INT“

<<CollectionDataType>>
name = “INT-ARRAY“

innerType = “INT“

<<CompositeDataType>>
name = “MyComposite“

innerDeclaration = [“INT“]

<<Provided
Interface>>

<<Required
Interface>>

<<Basic
Component>>

A

<<OperationInterface>>
YourInterface

INT method3()

void method4()

<<ServiceEffectSpecification>>

<<ExternalCallAction>>
method1

<<InternalAction>>
doSomething

<<BasicComponent>>
I

<<OperationProvidedRole>> <<OperationRequiredRole>>

Figure 2.6.:Metaclasses in the PCM Repository[Reu+11], which are used within this
thesis. The upper part depicts BasicComponents and OperationInterfaces and the
relations between them. The middle part shows the internal structure of a Compos-

iteComponent. The lower part shows a simple SEFF contained in a BasicComponent.

2.3.2. PCM System

The second important model for this thesis is the System. Figure 2.7 gives an
overview of the elements within a System. Within a System components from
on or more Repositories are composed to one System. The important elements

30



2.4. Source Code Model eXtractor

<<System>>

A

<<SystemProvidedRole>> <<SystemRequiredRole>>

B

C

<<AssemblyContext>>

A
D

<<SystemDelegationConnector>>

<<SystemAssemblyConnector>> <<SystemDelegationConnector>>

<<AssemblyContext>>

<<AssemblyContext>>
<<AssemblyContext>>

<<AssemblyContext>>

Figure 2.7.:Metaclasses in the PCM System

of a System are explained in the following. An AssemblyContext assembles
a component from a Repository, i.e. it creates an instance of a component
in a System. The SystemProvidedRoles indicates the provided interfaces of a
System, while the SystemRequiredRoles indicates the required interfaces of a
System. Technically, a SystemProvidedRoles is a ProvidedRole, while a System-

RequiredRoles is a RequiredRole. The provided and required interfaces of the
AssemblyContexts are connected using DelegationConnectors. To connect
SystemProvidedRoles with AssemblyContexts ProvidedDelegationConnectors

are used. To connect AssemblyContexts with SystemRequiredRoles Required-

DelegationConnectors are used. The internal structure of a SubSystem and a
CompositeComponents is the same as the internal structure of System.

2.4. Source Code Model eXtractor

SoMoX, which has been introduced by Krogmann [Kro12], is a reverse
engineering approach, which is able to reverse-engineer Java code into PCM
instances. In particular, SoMoX is able to create a PCM Repository from
source code and a PCM System derived from the Repository. It also creates
a default ResourceEnviroment model and a default Allocation. The created

31



2. Foundations

Repository contains components, interfaces, roles, and SEFFs. Krogmann
[Kro12] points out that SoMoX performs best if the analysed project follows
a component-based architecture. Together with Beagle [KKR10], SoMoX is
able to reverse-engineer a component-based architecture, which can be used
for performance prediction.

In this section, we present only the necessary details about SoMoX, which
readers need to know in order to understand the parts of the thesis, where
we refer to SoMoX. Therefore, we �rst give an overview of the SoMoX
approach. Next, we explain the SoMoX SEFF reconstruction in detail. The
detailed explanation is necessary, because within this thesis, we explain an
incremental version of the SEFF reconstruction.

2.4.1. Overview

To reverse-engineer the statical architecture of a software system, SoMoX
uses the following four steps:

1. parsing the source code into a model representation,

2. reverse engineering components and interface using metrics,

3. extracting data types and signature using metrics, and

4. reverse engineering of the SEFFs.

For the �rst step, SoMoX currently uses either Model Discovery (MoDisco)
[Bru+10] or Java Model Parser and Printer (JaMoPP) [Hei+09a]. Both tools
allow us to parse the source code into an EMF model representation. Within
this thesis, we use JaMoPP for the parsing. Based on this model, the other
steps within the SoMoX reverse engineering phase are executed.

As second step, SoMoX reverse-engineers the statical architecture of the
source code. Therefore, it uses di�erent metrics. Details about the used
basic metrics can be found in Krogmann [Kro12]. The weighting of the
di�erent metrics need to be de�ned by users of SoMoX. If the users are
familiar with the software system, the they are usually able to de�ne the
metrics. The metrics need to be weighted between 0 (low impact factor)
and 100 (high impact factor), to determine the impact factor of the metric
during the anlayses. An example for the metric is the package metric, which

32



2.4. Source Code Model eXtractor

speci�es the impact of the package hierarchy on the architecture. If it has
a high impact factor classes within the same package are more likely to
be in the same component. Another example, for a metric, is the interface
violation metric, which investigates whether classes communicate to each
other via interfaces or directly. The value of the interface violation metric
speci�es, whether classes with direct communication between each other
are more likely to be part of the same component or not. After applying
the metrics to the source code SoMoX tries to iteratively combine classes
to components and BasicComponents to CompositeComponents. After the
reverse engineering of components and interfaces SoMoX reverse-engineers
the necessary OperationSignatures and DataTypes for the interfaces.

The last step towards the reconstruction of a software architecture is to
reverse-engineer the statical behaviour, in terms of SEFFs, of the source code
by analysing the source code methods. As we extend the SEFF reconstruction
in this thesis, we explain the SoMoXSEFF reconstruction in detail within the
next section.

2.4.2. SoMoX SEFF Reconstruction

The main goal of the SoMoX SEFF reconstruction is to reverse-engineer the
behaviour of the source code into SEFFs. To do so, the SEFF reconstruction
approach analyses the source code methods, which have been identi�ed
by SoMoX as provided methods of a detected BasicComponent. The SEFF

reconstruction also abstracts from the source code, i,e., non-architectural-
relevant control �ow elements are not represented in the resulting SEFF.

Prerequisites for the analyses are that it needs the parsed source code model
of the software system, the reverse-engineered statical architecture, and an
instance of the Source Code Decorator Model. The source code model is
available, because it is created during the �rst step of the SoMoX reverse
engineering process. The statical architecture model is the result of the
second SoMoX reverse engineering process. The Source Code Decorator
Model (SCDM) contains the information, which source code element is
reverse-engineered into which architectural element. It is created during the
reverse engineering of the statical architecture models, i.e. it is created in
the steps two and three of the above-mentioned reverse engineering steps.
It contains the information which classes are composed to one component.

33



2. Foundations

For OperationInterfaces, it contains the information which class respectively
code interface are the corresponding elements. For each OperationSignature

it contains the corresponding Java method, i.e. the Java method that lead to
the creation of the OperationSignature. For complex DataTypes it contains
the class that corresponds to the DataType. The SCDM is created during
the second step of the SoMoX reconstruction process. Hence, for each
reconstructed architectural element an entry in the SCDM is either created
or the existing entry is updated.

The actual SEFF reconstruction step for a given method is separated in two
phases: In the �rst phase all method calls within a method are visited and
classi�ed as either

• component-external method calls (respectively external method calls),
which are calls to classes or interfaces that are contained in another
component,

• library calls, which are calls to third party library used by the
software, for instance, calls to classes in java.lang are considered as
library calls, or

• component-internal method calls (respectively internal method calls),
which are calls to methods within the same component. Theses calls
are visited recursively by the SEFF reconstruction in order to get a
classi�cation of all method calls called directly or indirectly by the
parent method.

To classify the method calls the SEFF reconstruction �rst retrieves the classi-
�er of the called method. Next, it checks whether the SCDM has an entry for
the classi�er of the called method. If this is not the case, the call is considered
as a library call. If the SCDM has a corresponding entry it checks whether
the classi�er of the method performing the call (the source method) is con-
tained within the same component as the called method (target method).
If this is the case the call is an internal call. If the classi�er of the source
method is contained within a di�erent component as the classi�er of the
target method, the investigated method call is a component-external call.
The parent statements, such as branches and loops, of component-external
method call statements and the component-internal method call statements
are marked, i.e. it is possible to decide for parent statements whether they
contain an architectural relevant method call.

34



2.4. Source Code Model eXtractor

After recursively classifying all method calls, the SEFF reconstruction per-
forms its second step, which is the creation of the actual SEFF. The main
supported elements from the SEFF metamodel, are i) ExternalCallActions,
which are created for component-external method calls, ii) BranchActions,
which are created for if and switch statements, iii) LoopActions, which
are created for loops in the source code, and iv) InternalActions, which are
created for source code sections, which are not relevant for external be-
haviour of the component. To create the SEFF, a control �ow analyses is
conducted and all statements are visited again. The SEFF is created based on
the component-external method calls, i.e. loop statements, if statements, and
switch statements are made explicit in the architectural model only if they
contain an external method call. If they do not contain a component-external

method call, they are combined within an InternalAction. By combining
the calls, which are not relevant for the component-external behaviour, the
SEFF reaches a higher abstraction level from the source code. The SEFF

reconstruction is also able to abstract from component-internal method calls
by inlining them in the SEFF by default. If a component-internal method
contains a component-external method call and is called at least twice from
within its component, however, the SEFF reconstruction is able to make
the call explicit in both SEFFs. This avoids the reconstruction of the same
source code methods for multiple SEFFs. Instead the SEFF reconstruction
creates a ResourceDemandingInternalBehaviour for the component-internal
method. In the SEFF itself an InternalCallActions calling the created Re-

sourceDemandingInternalBehaviour is created. After executing all steps, the
SEFF for a provided service has been created. As Krogmann [Kro12] points
out the SEFF reconstruction does not use any heuristics but follows a strict
order to create a SEFF. An example for the reconstruction of a SEFF from
a given method is given in Section 4.5. Within this thesis, we propose an
approach to incremental reconstruct a SEFF as soon as a method body of a
source code method corresponding to a SEFF or a ResourceDemandingInter-

nalBehaviour has been changed by developers.

35



2. Foundations

2.5. Used Tools and Standards

In this section, we explain tools and standards we used within the thesis.

2.5.1. Java Model Parser and Printer

JaMoPP [Hei+09b] [Hei+10] provides a parser and printer for the Java lan-
guage. The parser parses Java into an EMF model representation, while the
printer prints Java code from the JaMoPP EMF model. The EMF metamodel
of JaMoPP is a metamodel of the Java language. In particular, it is a meta-
model of Java 1.5. Hence JaMoPP supports source code created with syntax
features, such as generics, which were introduced in version 1.5 and older
versions. Source code, which uses syntax features of newer Java versions,
however, can neither be parsed nor printed using JaMoPP. JaMoPP allows us
to use treat Java source code as any other EMF model and use model driven
technologies, such as model transformations, for Java source code. JaMoPP
is created with EMFtext [Hei+09a]. EMFtext is an approach, which allows
the creation of textual syntax for a given metamodel. It automatically creates
text editors for the speci�ed metamodels.

2.5.2. Eclipse Plugin Development

Eclipse plugin development using the Eclipse Rich Client Platform (RCP)
[Vog13], is a foundation for this thesis in two di�erent ways. First, the imple-
mented approach as well as the Vitruvius framework, are implemented as
Eclipse plugins, i.e. they can be used within the Eclipse IDE. Secondly, we use
artefacts of Eclipse plugins for the consistency preservation between Eclipse
plugins and the PCM Repository (see Section 4.6.3). In this section, we mainly
focus on the artefacts and their EMF model representation, which are used
for the consistency preservation rules. As we explain the artefacts, we partly
also explain how they can be used for the Eclipse plugin development.

36



2.5. Used Tools and Standards

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Example BundleName

Bundle-SymbolicName: my.organisation.example.bundle

Bundle-Version: 1.0.0

Export-Package: example.package

Require-Bundle: org.eclipse.emf.ecore,

com.google.guava,

org.apache.log4j

Listing 1:An example for an Eclipse Manifest �le

<?xml version="1.0" encoding="UTF-8"?>

<plugin>

<extension-point id="example.id" name="ExampleExtensionPoint" schema="schema/

examle.id.exsd"/>

<extension

point="example.id.provides">

<provides

provider="example.id.provides.ProviderClass">

</provides>

</extension>

</plugin>

Listing 2:An example for an Eclipse plugin XML �le

2.5.2.1. Overview of Eclipse Plugin Development Artefacts

One Eclipse plugin is represented as one Eclipse project in the IDE. The main
artefacts for the plugin development are the Manifest.mf �le, the plugin.xml

�le, and the feature.xml �le.

The manifest �le refers to plugin project as a bundle. It contains necessary
information about the plugin respectively the bundle. It contains, for instance,
the name, the exported packages, the imported bundles, and the imported
packages. Listing 1 shows an example of a manifest �le.

The relevant information in a plugin.xml �le for this thesis, are the informa-
tion about the extension point a plugin provides and the extension points a
plugin implements. An example of a plugin.xml is given in Listing 2.

37



2. Foundations

<?xml version="1.0" encoding="UTF-8"?>

<feature

id="example.feature"

label="Example Feature"

version="1.0.0"

provider-name="My Organisation">

<plugin id="example.plugin1"/>

<plugin id="example.plugin2"/>

<includes id="example.my.other.feature"/>

</feature>

Listing 3:An example for an Eclipse feature XML �le

To combine di�erent Eclipse plugins, Eclipse allows users to combine existing
plugins to features. One feature is de�ned in one project. The main artefact
within a feature is a feature.xml, which contains the information about the
included plugins. As features can contain each other, the feature.xml can
also include other features. Listing 3 shows an example of an Eclipse feature
XML �le.

2.5.2.2. Model Representation of Eclipse Plugin Development Artefacts

As we use Eclipse plugins in one of the consistency preservation rules and
the EMF for the realisation, we need to be able to access the artefacts using
techniques of MDSD. Hence, we need to have EMF metamodels of the
Manifest �le, the Plugin.xml, and the Feature.xml. Metamodels for the
Manifest �le and for XML �les are part of the EMFtext concrete syntax zoo3.
From EMFtext, we get a parser and a printer for the textual syntax as well as
textual editors for them. Hence, we can use them to treat the content of the
�les as models, which means that the models contain the same information
as the �les.

The EMFtext XML model is generic for all XML �les, while the EMFtext
Manifest syntax and metamodel are already tailored speci�c for Eclipse
manifest �les. Hence, we need to implement helper classes to ease the use

3 http://emftext.org/index.php/EMFText_Concrete_Syntax_Zoo

38

http://emftext.org/index.php/EMFText_Concrete_Syntax_Zoo


2.5. Used Tools and Standards

public final class WebGUIImpl implements IWebGUI {

private final IMediaStore iMediaStore;

@Inject

public WebGUIImpl(IMediaStore iMediaStore){

this.iMediaStore = iMediaStore;

}

}

Listing 4:An example for dependency injection using the @Inject annotation

of the EMFtext XML implementation with Eclipse plugins XML and Eclipse
feature XML �les.

2.5.3. Dependency Injection Frameworks for Java

In this section, we present dependency injection frameworks for Java. Sim-
ilar to EJBs and the Eclipse plugin mechanism, we present consistency
preservation rules between architectural model and a dependency injec-
tion framework within this thesis (see Section 4.6.1.2). Dependency injection
frameworks for Java are standardized in JSR3304. They are based on the
dependency injection pattern proposed by Fowler5. The dependency injec-
tion pattern itself allows to inject a dependency of a class either via the
constructor, via a setter, or via interface injection. The dependency injec-
tion pattern allows an inversion of control, because the dependencies are
injected into classes and the classes do not need to care about the creation
of the actual instances. We focus on constructor injection using dependency
injection frameworks for Java. Using constructor injection means that de-
pendencies from classes to interfaces are injected via the constructor. An
example of the constructor injection can be seen in Listing 4. Within this
listing, an instance of IMediaStore is injected to the instance of IWebGUI

using constructor injection. To compose the classes, users need to specify
which class is actually used for which interface. This can be done speci�c for
the used dependency injection framework. Within this thesis, we use Google

4 https://jcp.org/en/jsr/detail?id=330
5 http://martinfowler.com/articles/injection.html

39

https://jcp.org/en/jsr/detail?id=330
http://martinfowler.com/articles/injection.html


2. Foundations

public class MediaStoreModule extends AbstractModule {

@Override

protected void configure() {

bind(IMediaStore.class).to(MediaStoreImpl.class);

}

}

Listing 5:An example of a Google Guice module

Guice6 [Van08] as dependency injection framework. We use it to show that
it is possible to keep architectural models and source code, which is based
on Google Guice, consistent during the development and evolution of a
software system. Google Guice o�ers the possibility to compose the classes
within the source code. An example is shown in Listing 5. It shows the class
MediaStoreModule, which extends the Google Guice class AbstractModule.
Within Google Guice each module class needs to con�gure respectively
compose the classes in its configure method. Therefore, a Google Guice
module class either needs to extend class AbstractModule or implement the
interface Module. Within the example listing, the class MediaStoreModule

extends the class AbstractModule and uses its configure method to bind the
IMediaStore interface to the MeidaStoreImpl class.

2.5.4. Enterprise Java Beans

In this section, we explain the necessary foundations for Enterprise Java
Bean (EJB) based on the EJB standard [Sak09]. In this thesis, we only use
EJB version 3.1 and above. EJB introduces component-based classes and
interfaces into Java. To mark a class as EJB component-class Java annotations
are used within EJB version 3.1. Component-classes are either annotated with
@Stateless, @Stateful, or @MessageDriven. A component-class annotated
with @Stateless is not allowed to hold a state, while a component-class
annotated with @Stateful is allowed to store information and reuse them
during another call. A component-class annotated with @MessageDriven is

6 https://github.com/google/guice

40

https://github.com/google/guice


2.5. Used Tools and Standards

used for message driven communication. Usually the Java Message Service
(JMS)7 is used for the message driven communication.

Similar to EJB classes, EJB relevant interfaces, which are called EJB busi-
ness interfaces, are also marked with annotations. For interfaces it can be
distinguished between local and remote interfaces. Remote interfaces are
annotated with @Remote. Remote interfaces support the access through re-
mote servers. Local interfaces are annotated with @Local and support local
access only.

An EJB component-class realizes an EJB business interface, if it implements
the interface through a standard Java implements relation. If a class only
implements one interface, it is automatically exposed as EJB business in-
terfaces, even if the interface is not annotated with @Remote or @Local. To
use an implementation of an EJB business interface within a component, a
�eld with the type of the interface needs to be created and annotated with
either @EJB or @Inject. The EJB runtime environment than uses dependency
injection to inject an instance of the component-class implementing the
interface. Another possibility to use an implementation of an EJB business
interface, is to create a �eld with the type of an EJB business interface and
lookup the EJB implementation of the business interface within the code
manually. In this case the �eld does not need to be annotated with @EJB.

Within EJB 3.1, it is also possible for an EJB component-class not to imple-
ment any EJB interfaces but to be exposed as EJB component anyhow. This
can be useful if a class should be used local only, but be managed through
EJB.

For the deployment of EJB components a deployment descriptor can be used,
which usually is an XML �le.

2.5.5. Replaying Changes from a Version Control System

During the evaluation of the approach, we need to replay changes from a
Version Control System (VCS) in order to evaluate the main contributions of
this thesis. Therefore, all changes from an old version in the VCS to a newer
version in the VCS are replayed within the IDE to simulate the development

7 https://java.net/projects/jms-spec/pages/Home/

41

https://java.net/projects/jms-spec/pages/Home/


2. Foundations

process. The changes need to be replayed on a �ne-grained level for each �le,
which have been a�ected between two versions of a software system. Such
�ne-grained changes are, for instance, changing the signature of a method,
adding or removing an import, or changing a statement. The di�erences
between two versions within a VCS, however, typically span a set of such
�ne-grained changes. For the realisation of these requirements, Petersen
[Pet16] implemented a tool, which is able to replay changes from a VCS.

The change replay tool performs the following three steps to enable the
replay of �ne-grained changes between two versions of a VCS:

1. extracting VCS changes from a VCS,

2. apply Abstract Syntax Tree (AST) di�erencing calculation, and

3. replay the extracted changes in the IDE.

The �rst step is to extract all changes between two versions, as they are stored
in the VCS. After this extraction, we have coarse-grained changes based on
the commits. Such changes, however, usually span many of �ne-grained
changes, and can not be used for the change replaying directly.

To get �ne-grained changes, the change replay tools compares the coarse-
grained changes based on the AST representation of both. This is the second
step of the change replay tool. Petersen [Pet16] compared di�erent AST
based di�ng tools and decided to reuse GumTree [Fal+14] within the change
replay tool. GumTree is by default only able to compare changes based on
AST. The results are highlighted and presented to users in an editor. Hence,
users are able to easily see di�erences between two versions. Petersen,
however, extended GumTree so that it is also possible to store the necessary
additional information for the change replay.

As last step, the extracted �ne-grained changes are applied subsequently in
the IDE. Therefore, the change replay tool resets the entire content of a �le
based on the Eclipse Java Development Tools (JDT) AST.

The change replay tool is currently not able to preserve the layout infor-
mation during the change replay. This, however, turned out not to be an
issue for our evaluation, because we are only interested in the non-layout
information, i.e. we are interested in actual code changes.

42



2.6. Evaluation foundations

2.6. Evaluation foundations

This section presents the foundations, which we used to structure the evalu-
ation of our contributions. We �rst explain the Goal Question Metric (GQM)
concept introduced by Basili et al. [BCR94]. As second foundation for the
evaluation, we present the three validation levels introduced by Böhme and
Reussner [BR05].

2.6.1. Goal Question Metric

The concept of having a GQM plan for the evaluation has been introduced by
Basili et al. [BCR94]. To apply the GQM approach for evaluation in software
engineering, �rst it is necessary to de�ne evaluation goals. According to
Basili et al. [BCR94], goals are de�ned on a conceptual level and should be
de�ned for an object of measurement. Measurement objects are categorized
in i) products, which are artefacts produced during the life cycle of a system,
e.g. the design of a product and its implementation, ii) processes, which are
activities associated with time, e.g. designing and testing, and iii) resources,
which are items used in the process, for instance, hardware or software.
Next, questions need to be de�ned that can be used to de�ne whether the
goals have been reached. These questions are de�ned on the operational
level and should characterize the object of measurement. Finally, metrics,
which can be used to answer the questions, need to be de�ned. To answer
the question using the de�ned metrics, the metrics should be quanti�able,
i.e. metrics are de�ned on the quantitative level. They are either objective, if
they depend on the measured object only, or subjective if they depend on
the measured object and the viewpoint from where the measurements are
taken [BCR94]. Figure 2.8 gives an overview about the hierarchical structure
of a GQM plan.

2.6.2. Validation Levels of Böhme and Reussner

Böhme and Reussner [BR05] introduced three di�erent levels for the eval-
uation of prediction models. As Klatt [Kla14] points out the levels can be
applied for the validation of software analysis approaches in general.

43



2. Foundations

Goal 1 Goal 2

Metric Metric Metric Metric Metric Metric

Question Question Question Question Question

Figure 2.8.:Hierarchical structure of a GQM plan [BCR94]

Hence, we can apply the levels to structure the evaluation of our Coevolution
approach as well. Böhme and Reussner [BR05] did not explicit introduce
a Level 0 validation level. Even though they state that a Level 0 validation
would be the level for implementation validity, i.e, a functional implemen-
tation is necessary to evaluate an approach. As Klatt [Kla14] points out,
the validation Level 0 is validated implicitly by performing validations for
the other validation levels if a prototype is required for all other validation
levels.

The �rst level (Level I ) is called metric validation by Böhme and Reussner
[BR05]. For performance prediction approaches, this level can be used
to show that the predicted performance of a software system equals the
measured performance. Klatt [Kla14] calls this level the result validation and
points out that this level can be used to compare the result of an approach
with the reality.

The second level (Level II ) is a called applicability validation. For approaches
that use performance prediction this means that it needs to be validated
whether the input data of an approach can be acquired reliable and whether
the results can be interpreted meaningfully. As for the SPLevo approach,
which has been introduced by Klatt [Kla14], this means for our Coevolution
approach, that we need to show that our Coevolution approach can be
applied to real world project. To perform a Level II validation, Böhme and
Reussner [BR05] recommend to perform a case study.

The third level (Level III ) is called bene�t validation. A bene�t validation
evaluates the bene�t of an approach compared to competing approaches
using an empirical validation. A possible example of a Level III validation

44



2.6. Evaluation foundations

using our Coevolution approach would be to develop a software system with
our Coevolution approach and a competing approach, such as IBM Rational
Rhapsody Developer. As Böhme and Reussner [BR05] state, setting up such
a validation study requires high e�ort, because di�erent developer teams
need to develop the same software system using di�erent approaches. Since
the proposed study involves developers, a possible threat to validity is that
the results can depend on the performance of the developers. Hence, the
study needs to be repeated in order to rule out this threat to validity. This
fact requires additional e�ort to perform a Level III validation. Within the
scope of this thesis no Level III validation has been performed.

45





3. A Change-driven Consistency
Process for Models

To achieve architecture and code consistency, our Coevolution approach
uses the change-driven framework of Vitruvius. The Vitruvius framework
itself is based on the Vitruvius vision, which Burger [Bur14] and we [KBL13]
have introduced. The Vitruvius framework is implemented using Eclipse
plugins, i.e, it can be used within the Eclipse IDE. Within this chapter, we
present the contributions of this thesis to the change-driven framework
Vitruvius. We will present our Coevolution approach in Chapter 4. In
particular, this chapter presents the following contributions to the Vitruvius
framework:

• change monitoring for the existing source code editor and Eclipse
Modeling Framework (EMF) editors,

• the de�nition of consistency preservation rules using a General
Purpose Language (GPL), and

• the process how change-driven consistency can be achieved.

The Vitruvius framework can be used to keep arbitrary models consistent
during the evolution of the models. Even though the focus of this thesis is
to keep architectural models and source code consistent, the contributions
in this section can be generalized for other models as well. Especially, the
monitoring for EMF models and the consistency preservation process are
generalizable for arbitrary models. The focus of this section and the thesis
and the current Vitruvius framework is to support the consistency preser-
vation between two metamodels. Easing the consistency preservation for
more than two metamodels and solving arising conceptual challenges, such
as propagating the changes caused by another change propagation, is part
of future work.

47



3. A Change-driven Consistency Process for Models

The remainder of this section is structured as follows. First, we introduce
the scienti�c challenges for this chapter in Section 3.1. In Section 3.2, we
present the terminology, which we use throughout this thesis. Next, we
present the change metamodel and the correspondence metamodel from
the Vitruvius framework. In Section 3.5, we present how we can monitor
existing source code editors and existing architectural editors. Next, we
explain how consistency preservation rules can be created using either a
GPL or a Domain Speci�c Language (DSL) (see Section 3.6). We explain
the used consistency preservation process of the Vitruvius framework in
Section 3.7.

3.1. Scientific Challenges

In this chapter, we address the following scienti�c challenges:

• What steps are necessary to monitor the existing editors, such as the

architectural editor and the code editor, which we use in our

Coevolution approach?

For the change-driven approach Vitruvius, we need to monitor the
views that are used within the Vitruvius approach. For our
Coevolution approach between source code and architectural models,
this means that we need to monitor the existing architectural views
and the existing code view. Both monitors need to create an output
model that can be used by the Vitruvius framework.

• Which steps are necessary within a change-driven approach to achieve

consistency between di�erent models?

Since Vitruvius is a change-driven approach, it needs to be noti�ed
as soon as users or tools change a model. After this change,
Vitruvius needs to keep the corresponding models respectively the
corresponding model elements consistent with this change.
Therefore, we need to de�ne a process specifying the consistency
preservation process after a change.

48



3.2. Terminology

3.2. Terminology

In this section, we introduce the central terminology, which is used through-
out this thesis.

We �rst explain the concept of change-driven in the model-driven environ-
ment. The consistency preservation process we describe in this section and
that we use in the remainder of the thesis to keep architectural models and
source code consistent, is a change-driven process. Hence, we de�ne the
term change-driven as follows:

De�nition 3 (Change-driven consistency). Change-driven consistencymeans

that changes play a central role in the consistency preservation process. The

consistency preservation process itself is triggered based on changes performed

to models, which are involved in the process [Kra17]. A change contains the

information about the performed change type and the changed element.

Bergmann et al. [Ber+12] and Ráth et al. [RVV09] investigated change-driven
model transformations and de�ned them as transformations using changes
as input, i.e. consume changes, or produce changes as output. They point
out that an important fact for change-driven model transformations is to
incrementally update models instead of regenerating them every time. The
changes that we use, are generated by speci�c monitors, which monitors
editors, i.e. we monitor existing editors to noti�y about changes performed
by users. These changes are used as input for our consistency preservation
process. The output of our consistency preservation process, however, are
not changes but models, which have been updated incrementally based on
the changes. The consistency preservation process is change-driven but not
edit-based, because the changes do not necessarily need to result from editing
operations. The process itself could also be used in an environment where
the changes are created by an approach that computes the di�erence between
two versions of a model. Approaches, such as EMFCompare [BP08] or the
model di�erencing approach proposed by Burger and Toshovski [BT14],
can be used to compare models and create the necessary changes for the
change-driven process.

Next, we de�ne the term correspondence:

49



3. A Change-driven Consistency Process for Models

De�nition 4 (Correspondence). A correspondence speci�es as a set of ele-

ments that correspond to each other. The corresponding sets of elements de-

scribe the overlap of di�erent models.

To identify corresponding elements, we use the Vitruvius correspondence

model, which we explain in Section 3.3. The correspondence between el-
ements are created and updated during consistency preservation opera-
tions.1

Next, we de�ne the term of a consistency preservation operation. Therefore,
we use a similar de�nition as Kramer [Kra17] uses for consistency preserva-

tion.

De�nition 5 (Consistency preservation operation). A consistency preser-

vation operation de�nes the actual operation, which is executed to preserve

consistency between models.

As we are in a change-driven environment, this consistency preservation
operations are executed based on changes performed to the models. Based
on the consistency preservation operation, we can de�ne consistency preser-

vation rules.

De�nition 6 (Consistency preservation rules). Consistency preservation

rules are rules de�ning how a pair of metamodels can be kept consistent. They

consist of a set of consistency preservation operations.

In general, the consistency preservation rules can be implemented in a
GPL or a transformation language, such as Query View Transformation
Operational (QVTO)[Obj09], or in speci�c DSLs tailored to change-driven
consistency preservation process. Within this thesis, we de�ne consistency
preservation rules between architectural models and source code. They
can be de�ned in either in the GPL Xtend or in the a DSL tailored to our
consistency preservation process.

1 Even though the elements corresponding to each other are usually instances of di�erent
metamodels, it is possible that the corresponding elements are instances of the same meta-
model.

50



3.3. Change Metamodel

Within this section, we describe the change metamodel from Vitruvius. The
change metamodel is based on the feature diagram for possible changes in
EMF models, which has been introduced by [Kra17] and which we explained
shortly in Figure 2.1.2. From this, Kramer [Kra17] has derived a change
metamodel. The complete metamodel is available within the Vitruvius
framework2.

The supported non-abstract classes, i.e. the classes, which can actually be
instantiated, are shown in Figure 3.1. The change metamodel and especially
its non-abstract classes are central artefacts within our change consistency
preservation process. The monitors for the di�erent models create instances
of the change metamodel respectively instances of the non-abstract classes.
The change consistency process itself reacts to these changes and creates
commands based on the changes in order to achieve consistency between
di�erent model instances. The changes are separated into atomic changes
and compound changes. Compound changes representing changes com-
posed of other changes, while atomic changes representing a single change.
New compound changes can be added by composing existing atomic or
compound changes. For the monitoring of Java code, for instance, we added
the change MethodBodyChange, which is a compound change describing the
change of a method body. In Figure 3.1 the changes ExplicitUnsetEFeature,
MoveEObject, and ReplaceInEList are examples of compound changes.

3.4. Correspondence Metamodel

In this section, we present the Vitruvius correspondence metamodel. The
Vitruvius correspondence metamodel is used to describe the corresponding
elements for two metamodels. In Vitruvius, we use one instance of the
Vitruvius correspondence metamodel for each pair of metamodels within
the Virtual Single Underlying Model (VSUM). Consider Figure 2.4, which we
presented in the foundations (see Section 2.2.2): The Vitruvius correspon-
dences model instances between the elements are part of the consistency
preservation (CP). For the approach of keeping source code consistent with an
2 http://vitruv.tools

51

3.4. Correspondence Metamodel

http://vitruv.tools


3. A Change-driven Consistency Process for Models

InsertEAttributeValue
a�ectedEObject:A
a�ectedEFeature:F
newValue:T
index:int

RemoveEAttributeValue
a�ectedEObject:A
a�ectedEFeature:F
oldValue:T
index:int

replaceeattributevalue
a�ectedEObject:A
a�ectedEFeature:F
oldValue:T
newValue:T
fromNonDefault:bool
toNonDefault:boolInsertEReference

a�ectedEObject:A
a�ectedEFeature:F
newValue:T
index:int
isCreate:bool
isContainment():bool

RemoveEReference
a�ectedEObject:A
a�ectedEFeature:F
oldValue:T
index:int
isDelete:bool
isContainment():bool

ReplaceEReference
a�ectedEObject:A
a�ectedEFeature:F
oldValue:T
newValue:T
fromNonDefault:bool
toNonDefault:bool
isCreate:bool
isDelete:bool
isContainment():bool

InsertRootEObject
newValue:T
isCreate:bool
uri:String

RemoveRootEObject
oldValue:T
isDelete:bool
uri:String

ExplicitUnsetEFeature
subtractiveChanges:

EChange[]
getAtomicChanges():

EChange[]

MoveEObject
subtractWhatChange:S
subtractWhereChange:T
addWhatChange:A
addWhereChange:B
getAtomicChanges():

EChange[]

ReplaceInEList
removeChange:R
insertChange:I
getAtomicChanges():

EChange[]

Figure 3.1.:Non-abstract, i.e, �nal classes of the change metamodel for Vitruvius
([Kra17]). Kramer [Kra17] presents a feature diagram for changes in EMOF and Ecore
based metamodels and derived the change metamodel for Vitruvius from it. In the
�gure, we omitted the permute changes, because they are not supported yet. We
have also simpli�ed the name of the classes and omitted the type parameters.

architecture model, we use one Vitruvius correspondence model containing
the information how the source code elements correspond to architectural
elements.

The Vitruvius correspondence metamodel itself is generic and can be used
for arbitrary metamodels. The metamodel, which is depicted in Figure 3.2,
consists of only two classes: The Correspondences class is the root element

52



3.4. Correspondence Metamodel

Correspondences
Correspondence

aIDs:TUID[0. . . *]
bIDs:TUID[0. . . *]0. . . *

Figure 3.2.: The correspondence metamodel we used in the consistency preserva-
tion process. All actual Correspondence instances are contained in the root class
Correspondences.

of the metamodel contains a list of Correspondence. The Correspondence

contains two lists of identi�er references. One list contains identi�ers to
reference models in one metamodel, while the other list contains identi�ers
to reference models in another metamodel. Hence, one Correspondence

represents the actual correspondence between a set of objects from one
metamodel to a set of objects from another metamodel. One reference in the
reference list can be used to identify one element in one model instance. To
reliable identify an element the reference in the Correspondence needs to
be unique, i.e. only one concrete element needs to be identi�ed for a given
ID. Therefore, we currently use our Temporarily Unique Identi�er (TUID)
mechanism, which basically is a string that uniquely identi�es an element.
Therefore, it contains the path to the �le containing the element and an
identi�er, which is able to identify an element within this �le. The ID is only
temporarily as it can change for a speci�c element as soon as, for instance,
the �le name changes or the element is moved to another �le. We need to
be able to calculate a TUID for each element, which potentially can be used
in a Correspondence list. A TUID of an element can also be used to retrieve
the actual element.

Consider the following examples on how to calculate a TUID for metaclasses
of the Palladio Component Model (PCM) metamodel and for metaclasses of
Java Model Parser and Printer (JaMoPP) metamodel. To identify an element
in the PCM, we can use the path to the �le and Universally Unique Identi�er
(UUID) of the element. This approach only works for metamodel classes
containing an id �eld, i.e. it only works for metaclasses extending directly or
indirectly from Identifier. For metaclasses not extending Identifier, such
as the metaclass Parameter, however, need to be identi�able as well. For
instances of these metaclasses, we use the enityName attribute of the instance

53



3. A Change-driven Consistency Process for Models

and the TUID of the parent element. Hence, the TUID is build hierarchically.
All classes directly or indirectly extending class NamedElement contain the
enityName attribute. Using this mechanism, we are able to calculate a TUID
and resolve objects for a given TUID for all metaclasses in the PCM.

For the elements in JaMoPP, it is more complex to calculate a TUID, because
the JaMoPP metaclasses do not contain an id element. It is also not possible
to extend the JaMoPP metamodel with an Identifier class, because JaMoPP
stores the elements as Java source code. Within the Java language itself no
id is foreseen for the elements. Hence, we need to identify the elements
using their Java Fully Quali�ed Name (FQN). To identify a method, for
instance, we use the name of the method, the return type of the method, the
parameter types of the method, the class name of the class containing the
method and the name of the package and its parent packages recursively,
i.e. as the PCM TUIDs the JaMoPP TUIDs are build hierarchically as well.
Using this mechanism allows us to uniquely identify a method, because
Java methods in one class need to be unique in terms of their parameter
types. Even though the TUID calculation mechanism for the PCM can be
generalized for metamodels having a similar Identifier class as the PCM,
the TUID mechanism, in general, is speci�c for each metamodel.

One part of future work is to check, whether the TUID mechanism can be
replaced or eased by the standard Ecore mechanism for identifying objects
in an instance of a metamodel.

3.5. Change Monitoring

As we mentioned above, we use a change-driven approach to keep models
consistent. To do so, we react to changes performed in involved editors, i.e.
we use a change-driven approach that uses edit-based changes to ensure
consistency. To realise such an approach, we need to get noti�cations about
each change users performed in one of the editors involved in the consistency
preservation process. As one goal of the presented work is to allow users to
use familiar editors, we need to develop mechanisms to get noti�ed about
changes in each editor. It is furthermore unfeasible to create new editors
for every model involved in the consistency preservation process. These

54



3.5. Change Monitoring

statements are true for the work presented in this thesis and the Vitruvius
approach as well.

For the work presented in this thesis, we need to get noti�ed about changes
in source code and in the architectural model. Therefore, we developed an
approach to monitor existing architectural model editors as well as monitor-
ing in an existing Java source code editor. Both approaches are explained
in the following sections. Hence, the following sections address the �rst
scienti�c challenge de�ned for this chapter.

3.5.1. Monitoring Changes in Architectural Models

In order to keep changes that users apply to architectural models consistent
with the source code, we need to monitor the changes in architectural models.
The architectural models used within the presented work are either edited
or manipulated by users using the standard EMF Ecore editors or graphical
editors. The graphical editors are currently either created with Graphical
Modelling Framework (GMF) or Eclipse Sirius. Allowing the reuse of all
existing editors is one goal of our consistency preservation process. This
is especially important for the graphical editors, as they allow convenient
editing and manipulating of architectural elements.

All graphical editors as well as the standard EMF Ecore editors manipulate
the underlying EMF models. To avoid the e�ort of monitoring each existing
editor separately, we have decided to monitor changes on the underlying EMF
models. As the architectural models that we use are standard EMF models,
the monitor presented in this section can be generalized for arbitrary EMF
models, i.e. the presented monitor can be used for arbitrary EMF models.

For the realisation of the monitoring, we use the built-in EMF mechanism of
listening to changes in models. The built-in mechanism noti�es registered
listeners about each change in an EMF model. To ensure that we get noti-
�ed about all changes performed to any EMF model, we start listening to
changes as soon as users opening an editor that is capable of manipulating
the architectural models. The information about the performed changes that
we retrieve from the EMF change noti�cation mechanism, are represented
as a set of ChangeDescriptions. The EMF ChangeDescriptions contain the
information about the changes that has been occurred in EMF-based models.

55



3. A Change-driven Consistency Process for Models

This model, however, can not used directly, because we need the changes in
speci�c form for our consistency preservation mechanism. Therefore, we
transform the EMF ChangeDescription to instances of the above-presented
change metamodel. After we have created instances of our change metamo-
del, we submit the changes to our consistency preservation mechanism. The
change consistency mechanism uses the information within the change to
preserve consistency between model elements. The implementation of the
EMF monitor is available as part of the Vitruvius framework.

Using the approach of monitoring the underlying EMF model has the ad-
vantage that changes are monitored regardless of the used editor. If it is
important, however, to keep information consistent, which are solely avail-
able in the graphical editors, such as the layout information, the graphical
editors have to be monitored separately. This is the case, for instance, if
the position of two elements from di�erent metamodels need to be kept
consistent in the graphical editors. To this date however, the requirement of
keeping layout information consistent among instances of di�erent meta-
models, did neither occur in the work presented in this thesis nor in any
other case study of Vitruvius.

3.5.2. Monitoring Source Code Changes

This section explains, how we monitor changes performed to Java source
code during the software development and evolution. To perform source
code changes software developers usually use the source code editor of an
IDE. Further possibilities to edit the source code, such as reafactorings or
quick �xes, however, exist as well and need to be considered for the change
monitoring. In this section, we explain the monitoring for the source code
editor and additional artefacts, as well as our implementation of the change
monitoring.

Messinger [Mes14] developed the Java code monitor within his master’s
thesis. We presented the Java code monitor in [Kra+15a] and the associ-
ated technical report [Kra+15b]. This section is based on the mentioned
publications.

56



3.5. Change Monitoring

3.5.2.1. Monitoring the Source Code Editor

For the source code editor itself, it would be possible to reuse the EMF editor
implemented for the monitoring of architectural elements. To reuse this
monitor, however, would require users to use model-based editors for Java
code, such as the standard EMF editor or the JaMoPP editor for Java, to
manipulate the source code. One goal of our work, however, is to allow users
to use familiar tools. This is especially important for existing source code
editors provided by modern IDEs, because this editors provide powerful
editing support, and they are widely used and accepted. To allow the reuse
of this editors, we need to monitor the source code editor of the used IDE. As
we use the Eclipse IDE, the description of the source code monitoring process
is closely aligned to the behaviour of the Eclipse IDE. The concepts, however,
can be applied to other IDEs, with similar behaviour as the Eclipse IDE as
well. To monitor the changes, the IDE needs to provide a mechanism, which
is able to notify interested listeners about a change performed by developers.
After the actual noti�cation from the IDE, we need to classify the changes.
This is necessary, as the change reporting of the IDE is based on basic
operations, such as adding and removing characters in the editor. For the
classi�cation Messinger [Mes14], created a change catalogue for changes on
object-oriented source code. Messinger [Mes14] evaluated, whether existing
change metamodels can be used within the Java code monitor. Therefore, he
focused on the existing change catalogues, proposed by Herrmannsdoerfer
et al. [HVW11], Fowler et al. [Fow+99], and Dig and Johnson [DJ06]. The
change catalogue of Herrmannsdoerfer et al. [HVW11], is mainly designed
for coevolution of models and metamodels, i.e. adapting model instances to
changes of the metamodel. The change catalogue of Fowler et al. [Fow+99],
and Dig and Johnson [DJ06] list changes on object-oriented source code.
Fowler et al. [Fow+99] presents refactorings to object-oriented source code
and present necessary changes in object-oriented source code representing
such a refactoring. As refactorings usually preserve the semantic of source
code, the changes in the change catalog presented by Fowler et al. [Fow+99]
are only a subset of all possible source code changes. Dig and Johnson [DJ06]
discuss API evolution in object-oriented source code and list changes, which
can be performed to object-oriented source code. None of the existing change
catalogues, however, �ts our needs. Hence, Messinger [Mes14] created a

57



3. A Change-driven Consistency Process for Models

special change catalogue for the change monitor. The change catalogue
classi�es changes into the following three categories and sub-categories.

• Primitive changes, which are primitive changes performed by
developers. They are subdivided in three categories:

– create and delete changes of root elements, such as classes or
packages.

– structural changes, such as adding or removing methods, �elds,
parameters etc., and

– modi�cation changes, such as renaming method, changing
modi�ers.

• Composite changes, which are composed changes leading to
semantically changes. They are subdivided in two categories:

– 1st order composite changes, which consist of composed
primitive changes, such as moving classes or moving interfaces,
and

– 2nd order composite changes, which consist of composed
composite changes, such as extracting methods or inlining
methods.

• Type hierarchy speci�c changes, which are speci�c for changes
a�ecting the type hierarchy in object-oriented languages. They are
subdivided in three categories:

– type changes, for instance, specializing or generalize the return
type of a method,

– move changes, for instance, pull-up or push-down a method,
and

– composite move changes, for instance, extracting a super-class
or inlining a super-class

The complete change catalogue can be seen in the Appendix (see Sec-
tion A.1).

One technical limitation of Eclipse Java Development Tools (JDT) Abstract
Syntax Tree (AST) change noti�cation is that no exact changes are reported

58



3.5. Change Monitoring

for statement changes within method bodies. The Eclipse IDE only reports
the information about a �ne-grained change. Seifermann [Sei14] provides
an extension for the Java source code monitor. The extension allows us to
classify, amongst others, such �ne-grained changes in order to �gure out
whether the change a�ected a method body. Even though we do not get
noti�ed about the actual statement, which has been changed, the information
about the changed method turned out to be su�cient for our use cases.

3.5.2.2. Monitoring additional Code Manipulation Editors

As mentioned above, it is not su�cient to only monitor changes performed
in the source code editor, as developers usually have other possibilities to
manipulate and edit the source code. For instance, modern IDEs usually
have a built in refactoring support. For many changes, such as renaming,
developers often use refactorings in order to speed up the development
process and avoid manual renaming. Even though these changes a�ect the
source code and could be monitored implicitly using the monitor for the
code editor, we decided to monitor this kind of changes by observing the
IDE. Even though we can try to �gure out whether a speci�c list of changes
represents a refactoring or not, we argue that it is simpler to monitor the
IDE, because we can be sure that we observed the correct change. To give
an example for a refactoring, we consider the refactoring pull-up, which
pushes a method from a subclass to one of its super classes. If the changes
necessary to perform a pull-up refactoring are only monitored via the source
code, we would get the noti�cation that a method has been removed from
one class and a method has been inserted into another class. To monitor this
refactoring through the source code monitor solely, we would need to match
the removed method in one class with the added method in another class.

Another possibility for developers to edit source code is to use quick �xes
o�ered by the IDE. A quick �x can, for instance, used to correct a statement,
which is syntactically incorrect. Similar to the refactorings, these changes
can be monitored using the monitor for the IDE itself. It can be bene�cial,
however, to know if developers used a quick �x to perform a change.

During the monitoring of refactorings and quick �xes, we need to ensure
that the monitor for the source code editor does not report the changes as
well, i.e. the source code editor itself needs to be deactivated during the

59



3. A Change-driven Consistency Process for Models

execution of refactorings and quick �xes or we need to develop a mechanism
to detect and remove duplicated changes.

Besides the advantage of getting changes performed through refactorings or
quick �xes directly, the monitoring of these additional mechanisms helps us
to clarify the intent of the developers automatically. Knowing the intent of
developers upfront can be bene�cial during consistency preservation process
itself. If a method has been renamed by developers, for instance, they might
be asked by the consistency preservation process whether the corresponding
architectural model elements should be renamed accordingly or whether the
change in the source code should be rolled back in order to avoid renaming
of architectural elements. If a method has been renamed using a quick �x
to avoid a compiler error, for instance, it is clear that developers needed to
perform the change in order to �x that error. In such a case the example
intent clari�cation described above, can be avoided.

3.5.2.3. Implementation of the Change Monitoring in Source Code

Messinger [Mes14] implemented the change monitoring as Eclipse plugin for
the Eclipse IDE. Hence, as the other artefacts we implemented in this thesis,
the monitor can be used within Eclipse IDE. To monitor the source code editor
of the Eclipse IDE, we use the Eclipse JDT, which provides the possibility
to notify listeners during the reconciling of changes. Hence, listeners are
noti�ed as soon as the Eclipse JDT AST parser incrementally parses the
performed change. The monitor also monitors performed refactoring within
the Eclipse IDE. For instance, it is able to monitor rename refactorings
performed using the refactoring capabilities of Eclipse. The implementation
is in principle also able to monitor quick �xes performed by developers.
It turned out, however, that for the kind of changes we are interested in,
we do not need to monitor quick �xes, because the Java code monitor is
su�cient to get all changes. The consistency preservation rules, we present
in this thesis, do not have bene�ts from an intent clari�cation through quick
�xes. In future work, however, the quick �x monitoring functionality can be
used if the monitoring of quick �xes turns out to be helpful. One current
technical limitation for the monitoring of refactorings and quick �xes is that
the Eclipse IDE does notify listeners only about performed refactorings and
quick �xes for a certain class of refactorings and quick �xes. Hence, we are

60



3.5. Change Monitoring

not able to get noti�ed about all performed refactorings and quick �xes at
the moment.

3.5.2.4. Transforming the Monitored Changes into Instance of the
Change Metamodel

After we have monitored the source code changes as described above and
classi�ed them according to the change catalogue, we need to transform
them into a representation of the above-mentioned change metamodel. This
task is considered as the second main task of the source code monitor. The
changes that we get from the IDE and the classi�cation is done based on the
AST representation of the used IDE. In case of Eclipse, this is performed using
the Eclipse JDT AST. Even though the Eclipse JDT AST itself is a model,
it cannot be used within the change metamodel and by our consistency
preservation mechanism directly, as it is not an Ecore based model. For the
change metamodel and the consistency preservation process itself, however,
we need to have an EMF model representation of the performed change.
To bridge the gap between the models and the change representation, we
transform the observed changes into an Ecore based model representation.
We decided to use JaMoPP to parse Java source code into an Ecore based
model representation. We use JaMoPP instead of other existing approaches,
such as Model Discovery (MoDisco) [Bru+10], because JaMoPP also allows
printing the parsed model into as Java source code. The latter is necessary,
as the main goal of the work presented in this thesis, is to create and use
bidirectional consistency preservation rules between architectural model
and source code. After parsing the changed compilation unit using JaMoPP,
we match the changed elements with the elements within the JaMoPP el-
ements. As next step, we are able to create the change instances of the
above-described change metamodel. As last step of the monitoring, the Java
code monitor triggers our consistency preservation process with the change.
This consistency preservation process itself is explained in the next section.
By using this approach, we do not need to parse the whole source code of
the project but we need to parse the actual changed compilation unit using
JaMoPP.

More technical details how we create the instances of the change metamodel
can be found in the master’s thesis of Messinger [Mes14]. In future work,

61



3. A Change-driven Consistency Process for Models

however, propose the use of the Eclipse JDT AST instead of JaMoPP if it is
extended in a way that it makes it possible to use the Eclipse Java AST model
as an Ecore based model.

3.6. Defining Consistency Preservation Rules

To keep changes in models consistent using Vitruvius and our Coevolution
approach, consistency preservation rules between pairs of metamodels need
to be de�ned. The consistency preservation rules need to de�ne consistency
preservation operations for each change. Therefore, they specify which
elements of one metamodel in the metamodel pair needs to be changed after
a speci�c change in the other metamodel of the metamodel pair has been
performed.

If more than two metamodels need to be kept consistent, consistency preser-
vation rules for each pair of metamodels are necessary. In this thesis, however,
we mainly focus on the consistency between one pair of metamodels. Arising
challenges during the consistency preservation of more than one metamodel
pair is part of our future work.

The consistency preservation rules, can be de�ned either in a GPL or in a
Domain Speci�c Language. For the Vitruvius framework, [Kra17] provides
a language family to specify the consistency preservation rules in speci�c
DSLs.

In the following, we outline our implementation to keep a pair of metamodels
consistent using a GPL. We also give a small overview of the Mapping
Invariant Response (MIR) languages, which are a family of DSLs and tailored
to keep arbitrary models consistent using the Vitruvius framework. In this
section, we focus on the realisation of how to keep pairs of metamodels
consistent. The actual used consistency preservation rules for architectural
models and source code and the di�erent kinds of consistency preservation
rules we identi�ed, are explained in Section 4.3.

62



3.6. De�ning Consistency Preservation Rules

3.6.1. Defining Consistency Preservation Rules
using a GPL

By using a GPL to de�ne the consistency preservation rules, the occurred
change needs to be analysed in order to preserve consistency between model
instances. As we described above, the Vitruvius framework is noti�ed about
changes as soon as a change has been performed. The information in the
change can be used by the GPL implementation to preserve consistency. As
the change information is an instance of the change metamodel, it contains
the information about the performed change and the changed element. The
GPL implementation can use the information to decide, which corresponding
elements need to be updated accordingly.

During the execution of consistency preservation operations the instances of
the Correspondence between elements need to be created and updated. An
update, for instance, is necessary if an TUID a�ecting attribute of an a�ected
element has been changed. For JaMoPP, for instance, the name attribute of a
method a�ects the TUID of the method as well as the TUID for the methods
parameters. Hence, if a method name has been changed the TUID needs to
be updated for the method and its parameters.

Within our initial implementation, we used the GPL Xtend3 to implement
consistency preservation rules. The implemented mechanism can be seen as
internal DSL embedded into Xtend. To execute the correct updating method,
we �rst need to call the correct consistency preservation operation based
on the instance of the change and the changed element. Therefore, we �rst
use the dispatch functionality o�ered by Xtend to determine the type of the
change by dispatching the incoming change over all possible non-abstract
changes. To determine the a�ected object and call the correct consistency
preservation operations, we use a map that stores the consistency preser-
vation operations for all possible elements between two metamodels. All
transformations need to implement the generic class EObjectMappingTrans-
formation. This allows us to store them in a map and execute the correct
transformation based on the class of the actual changed element. Listing 6
shows an excerpt of the dispatching for the change types and the use of the
map to call the actual implemented transformation.

3 http://www.eclipse.org/xtend

63

http://www.eclipse.org/xtend


3. A Change-driven Consistency Process for Models

The method executeTransformationForChange can be called from outside
the class with the occurred change. It �rst dispatches the change in order to
determine the performed change. As second step, it updates the TUID of the
a�ected object if necessary. The �rst dispatch method is called if the change
is unknown to the TransformationExecuter. It logs an error and returns
null, i.e. the corresponding models are not updated. The other two example
dispatch methods, we show in the listing, are called if a new root object has
been inserted respectively if a root object has been removed. In these cases
the create method respectively delete method for the object are called.
Within this transformation the corresponding model can be updated ac-
cordingly. After this, we call the transformation createdAsRoot respectively
deleteRootEObject to indicate that the performed change a�ected a root
object, which allows the transformation to react accordingly, for instance,
by deleting all corresponding child objects of the deleted root object. The
map mappingTransformations needs to be initialized during the creation of
the TransformationExecuter.

Listing 7 shows the transformation that is executed after an OperationSigna-

ture in the PCM model has been renamed and needs to be kept consistent
with the source code. Therefore, we �rst need to retrieve the corresponding
interface method. As second step, we calculate the old TUID. As next step,
we can update the name and then update the TUID of the method. Hence, to
keep the source code consistent, we update the name of the corresponding
source code interface method. As last step, we also update the name of the
methods implementing the code interface.

Using the described approach allows us to keep consistency for all non-
compound changes. For compound changes, such as method body changes or
replace in list changes, we need to either �atten the contained non-compound
changes and react to the atomic changes contained in the compound changes
or we need to implement a special treatment for these changes.

3.6.2. Defining Consistency Preservation Rules using the MIR
Languages

Instead of using a GPL to de�ne the consistency preservation rules, they
can also be de�ned by using a DSL or a family of DSLs. One instance of

64



3.6. De�ning Consistency Preservation Rules

def public TransformationResult executeTransformationForChange(EChange change) {

//dispatch the incoming change

val TransformationResult transformationResult = executeTransformation(change)

updateTUIDOfAffectedEObjectInEChange(change)

return transformationResult

}

def private dispatch TransformationResult executeTransformation(EChange change) {

//log an error if the concrete change is unknown

logger.error("No executeTransformation method found for change " + change)

return null

}

def private dispatch executeTransformation(InsertRootEObject<?> insertRoot) {

val clazz = insertRoot.newValue.class

// for insert root changes: call the create transformation for the created

object

val EObject[] created = mappingTransformations.get(clazz).createEObject(

insertRoot.newValue)

// call the created as root object for the created object

mappingTransformations.get(clazz).createRootEObject(insertRoot.newValue,

createdObjects)

}

def private dispatch executeTransformation(RemoveRootEObject<?> removeRoot) {

// for remove root changes: call the remove transformation for the removed

object

val clazz = removeRoot.oldValue.class

val EObject[] removed = mappingTransformations.get(clazz).removeEObject(

removeRoot.oldValue)

// call the delete root method for the removed object

mappingTransformations.get(clazz).deleteRootEObject(removeRoot.oldValue,

removedEObjects)

}

Listing 6: Excerpt of the dispatch functionality in Xtend used for the dispatching of
incoming changes to distinguish the type of change.

a possible DSL are the MIR languages, which are tailored especially for
the Vitruvius framework. Kramer [Kra17], presents the MIR languages
and introduces a formal background. Klare [Kla16] introduces the reaction

65



3. A Change-driven Consistency Process for Models

override updateSingleValuedEAttribute(EObject affectedEObject, EAttribute

affectedAttribute, Object oldValue, Object newValue) {

val transformationResult = new TransformationResult

// retrieve the single interface method corresponding to the

OperationSignature

val interfaceMethod = correspondenceModel.getCorrespondingEObjectsByType(

affectedEObject, InterfaceMethod).claimOne

val oldTUID = correspondenceModel.calculateTUIDFromEObject(interfaceMethod)

interfaceMethod.name = newValue.toString

//update the changed TUID of the method manually

correspondenceModel.updateTUID(oldTUID, interfaceMethod)

updateImplementingMethods(affectedEObject, newValue)

return transformationResult

}

Listing 7: Executed Xtend transformation after an OperationSignature has been
renamed

language, Werle [Wer16] introduces the mapping language, and [FKL16] the
invariant language. All languages are created using Xtext4.

The reaction language allows the de�nition of solution-oriented imperative
reactions to achieve consistency. Similar to the de�ned solution in the GPL it
is possible to react to speci�c changes performed to speci�c model elements.
Hence, by using the reaction language, all non-composite changes can be
handled. The invariant language is a problem-oriented language, which
allows consistency checking using parameterised invariants. The mapping
language o�ers the possibility to declarative de�ne bidirectional consistency
preservation operations. A common example, where the mapping language
can be used is the name attribute of di�erent metaclasses, which should kept
consistent.

The MIR languages hide the complexity of updating the used ID manually, i.e.
in the current implementation they update the TUID of changed elements
automatically. One current disadvantage of the MIR languages is the lack of
handling composite changes within the languages. For instance, changes on
method body changes cannot be handled directly. The language framework,

4 http://www.eclipse.org/Xtext/

66

http://www.eclipse.org/Xtext/


3.6. De�ning Consistency Preservation Rules

reaction RenameOperationSignature {

after value replaced for pcm::OperationSignature[entityName]

call renameMethodForOperationSignature(change.affectedEObject)

}

routine renameMethodForOperationSignature(pcm::OperationSignature

operationSignature) {

match {

val interfaceMethod = retrieve java::InterfaceMethod corresponding to

operationSignature

}

action {

update interfaceMethod {

interfaceMethod.name = operationSignature.entityName;

}

call {

updateImplementingMethods(change.affectedEObject, change.newValue)

}

}

}

Listing 8: Executed reaction after an OperationSignature has been renamed

however, supports the identi�cation of such changes and provides speci�c
handling routine adhering to a common interface. The reaction to this kind
of changes need to be de�ned within an GPL, such as Java or Xtend. An
example for this kind of changes is a change performed to method bodies in
the Java source code.

Listing 8 shows an example transformation that is executed after an Oper-

ationSignature in the PCM model has been renamed and needs to be kept
consistent with the source code. The reaction is the same as in the GPL imple-
mentation: the corresponding Java interface method and the implementing
class methods are also renamed. As we can see the executed reaction is
executed after the name of an OperationSignature has been replaced. The
retrieving of objects from the correspondence model is executed within the
match block. The update of the interface method is done in the update block.
Within the call block arbitrary Xtend code can be executed. In our case, we
execute the same method as in the GPL implementation in order to keep the
implementing class methods consistent with the architectural change.

67



3. A Change-driven Consistency Process for Models

3.7. Consistency Preservation Process

Within this section, we describe consistency preservation process used in the
Vitruvius framework and therefore in our Coevolution approach as well.
Hence, we address the second scienti�c challenge de�ned for this chapter.
The consistency preservation process consists of three main steps:

• the trigger of the change consistency preservation process and the
initializing of the process,

• the creation of executable commands, which uses the information
from the change in combination with prede�ned consistency
preservation rules to de�ne the necessary action to keep models
consistent, and

• the execution of this commands and the saving of the changed
models.

A visualisation of the three steps is shown in Algorithm 1. For the com-
mands, we use the transactional command framework of EMF. Within our
consistency preservation process the creating of commands and the exe-
cuting of commands is separated. Using this approach, allows us to create
a generic mechanism for executing the changes and saving the changed
models. Hence, developers of the consistency preservation rules do not need
to take care of the actual creation and executing of commands. Furthermore,
the used approach should eases the evolution and maintenance of the used
framework. For instance, a part of future work is to allow the rollback of user
changes and the resulting changes executed by the consistency preservation
process. This rollback functionality can be realised generic for Vitruvius
considering the separated command execution part only. The three steps,
which are currently used, are explained in the next sections.

3.7.1. Change Triggering and Initializing Change Consistency
Preservation Process

The �rst steps within the change consistency preservation process are the
change triggering and the initializing of the consistency preservation pro-
cess.

68



3.7. Consistency Preservation Process

Algorithm 1 An overview of the Change Consistency Preservation Process,
which can be used to keep models consistent.
Require: Chanдes ← Set<Change>,

source2Metamodel ← Map<FileEnding, Metamodel>)
consistencyRulesMap
← Map<Metamodel, Set<consistencyOperation>
commandExecuter ← CommandExecuter
. Initializing the consistency preservation process

1: validateChanдes(chanдes)
2: metamodel ← source2Metamodel .дet(chanдe .source . f ileEndinд)
3: consistencyRuleSet ← consistencyRulesMap.дet(metamodel)
4: for all chanдe ∈ Chanдes do
5: for all consistencyRules ∈ consistencyRuleSet do
. Creating the commands using the active consistency preservation rules

6: commands ← consistencyRules .createCommands
. Execute the commands using a generic command executer

7: commandExecuter .execute(commands)

The triggering process itself equals the last step of the monitors, we already
described in this chapter, because the monitors trigger notify the consistency
preservation process after a change respectively a set of has been performed
and the consistency needs to be preserved. Form the perspective of the
change consistency preservation process, however, this is the �rst step. In
Algorithm 1 an existing set of changes is a requirement for the consistency
preservation process.

For the set of retrieved changes, we �rst check whether the changes are
valid. We currently only check whether the changed elements have the same
metamodel. Hence, it is currently not possible to change elements from
di�erent metamodels simultaneously. This limitation can be overcome in
future work. The limitation is not a�ecting the work presented in this thesis,
as we currently only use changes performed to one metamodel. For the
work presented in this thesis, however, it has no a�ect, because we only
change elements adhering to the same metamodel at a time. As next step
in initializing phase, we �rst collect the necessary information to execute
the consistency preservation process. We �rst collect the information which
consistency preservation rules need to be executed, i.e. we need to identify
the To do so, we �rst retrieve the metamodel of the changed element. The

69



3. A Change-driven Consistency Process for Models

Vitruvius framework allows us to retrieve a set of target metamodels, for
which consistency preservation rules are de�ned, from a given source meta-
model. Hence, we have the information about the consistency preservation
rules between the metamodels.

After we retrieved this information, we can start the consistency preservation
process by executing the consistency preservation rules individually for each
change (see line 4 in Algorithm 1).

3.7.2. Command Creation

The command creation, step is executed for each change individually. Within
the command creation process, we retrieve the commands needed to be ex-
ecuted in order to preserve the consistency between the changed models
and a�ected models. As we mentioned in Section 3.6 above, the consis-
tency preservation rules itself can be de�ned either using a GPL or the MIR
languages. As we separate the command creation process from the actual
consistency preservation de�nition, users de�ning the consistency preserva-
tion rules do need to deal with the actual creation of commands. The output
of this step is a set of commands, which can be executed in the next step.

3.7.3. Command Executing

Within the command-executing step, the actual consistency preservation
step is performed. As the command creation step, this step is executed for
each step individually (see line 7 of Algorithm 1). Within this step, we iterate
over all created commands and execute them. During the execution of the
commands the de�ned consistency preservation rules are executed and the
a�ected models are actually changed. The saving of models involved in the
current consistency preservation process is the last part of the command-
executing step.

70



4. A Method for keeping
Architecture Consistent with
Source Code

In this chapter, we introduce our Coevolution approach and present how it
can be used to keep component-based architectural models consistent with
source code during software evolution.

As we have mentioned in Chapter 1, the well-known problems architecture
drift and architecture erosion [PW92] can occur if the architectural model
and the source code are evolved independently from one another, e.g. if the
source code is evolved without updating the architecture model accordingly.
Up-to-date models, however, can ease software evolution because, for in-
stance, software architects can decide more easily how to integrate a new
requirement into the software system. Depending on the used architectural
model language, model-based analyses, such as predicting the performance,
are possible. If architecture models are not kept up-to-date, they become
out-dated and eventually useless. If the architectural models and source
code can be kept consistent automatically or semi-automatically, the manual
e�ort is omitted or reduced.

To achieve the goal of having up-to-date architectural models and reduce the
e�ort of keeping them consistent with source code manually, we introduce
our Coevolution approach. Since our Coevolution approach uses bidirec-
tional consistency preservation, it is furthermore possible to keep the source
code consistent with changes to the architecture model. The creation of a
new component in the architectural model, for instance, leads to the creation
of a new package and a new class in the source code model.

To avoid architecture drift, our Coevolution approach uses change-driven
consistency preservation, which means that we keep the models consistent

71



4. A Method for keeping Architecture Consistent with Source Code

as soon as one of the models has been changed by users. Our Coevolution
approach is able to keep static architecture models in terms of components,
interfaces, and signatures as well as behavioural models consistent with the
source code. Code elements that are kept consistent with static architecture
model elements only are considered as static code elements within this thesis.
Static code elements are usually packages, class declarations, interfaces dec-
larations, interface methods, method declarations, and �elds in classes. Code
elements that are kept consistent with behavioural models are considered
as behavioural code elements. These code elements are usually statements
within method bodies of a class method.

To keep the changes performed on behavioural source code elements consis-
tent with the behavioural models, we analyse the behaviour of the changed
method in the source code and incrementally recreate the corresponding
architectural behaviour models. Since our Coevolution approach works in a
change-driven way and keeps the behaviour of source code also consistent
with behavioural architecture models, it is able to detect method calls that
introduce architecture erosion. These method calls are method calls that
introduce, for instance, a call from a class in component A to a non-public
service from component B. Such calls are possible from within the source
code, but not allowed, as they would introduce architecture erosion. Using
our Coevolution approach, users are supported by avoiding this kind of
architecture erosion during the software evolution.

To map architectural models to code and code to architectural models, our
Coevolution approach requires the availability of bidirectional consistency
preservation rules between the architecture model and source code. Since
the mappings between architectural models and source code are not the
identical for all projects and used technologies, we provide a mechanism to
create and re�ne existing consistency preservation rules and embed them
into our consistency preservation process.

Within this section, we explain our Coevolution approach applied to Palladio
Component Model (PCM) as architectural model and Java as source code.
The concepts, we propose can, however, be applied to other component-
based architecture models, such as UML component-diagrams, and other
object oriented languages as well.

We introduced the basic idea of our Coevolution approach in [Lan13]. We
presented the �rst realisation for source code and architectural elements in

72



4.1. Scienti�c Challenges

[Kra+15a; Kra+15b]. We (Kramer, Burger and Langhammer [KBL13]) as well
as Burger [Bur14] performed preliminary work and presented Vitruvius,
which is an approach to keep the overlap between models consistent (see
Section 2.2.2). From a Vitruvius perspective our Coevolution approach can
be seen as an application of Vitruvius to the Component-based Software
Engineering (CBSE) domain.

The remainder of this Chapter is structured as follows: In Section 4.1, we
explain the scienti�c challenges for this chapter. In Section 4.2, we give
an overview of our Coevolution approach and explain the main concepts.
After the explanation our Coevolution approach, we we classify our Coevo-
lution approach into the Vitruvius vision (see Section 4.2.5). As next step,
we introduce bidirectional consistency preservation rules between source
code and architecture and give an example for the consistency preservation
rules. In Section 4.4, we present the di�erent kinds of automation levels
and user change disambiguation within our Coevolution approach. Sec-
tion 4.5 introduces, how consistency between behavioural models and their
implementing source code can be achieved. In Section 4.6, we introduce
technology-speci�c bidirectional consistency preservation rules between
source code and architecture as well as mappings to code related artefacts.
Section 4.7 introduces di�erent roles if, our Coevolution approach is used in
the software development process.

4.1. Scientific Challenges

In this chapter, we address the following scienti�c challenges:

How can the architectural models and the source code of a so�ware system
keptconsistentduring theevolutionofaso�waresystem? To enable change-
driven coevolution of source code and architectural models in a change-
driven way, our Coevolution approach needs to ful�ll the following require-
ments: First, we need to de�ne bidirectional consistency preservation rules
between architectural models and source code. Secondly, we need to �nd a
way to reuse existing editors within in our change-driven approach, because
we want users to be able to use existing editors.

73



4. A Method for keeping Architecture Consistent with Source Code

How can the abstraction gap between architectural models and source code
beclosedusing consistencypreservation rules? Architectural models often
abstract from implementation details. One architectural component, for
instance, can be realised by several classes in the source code. To bridge the
abstraction gap between architectural models and source code, we need to
de�ne consistency preservation rules, which can be used to keep architectural
models and source code consistent. The consistency preservation rules need
to be de�ne a mapping between source code elements and architectural
model elements. The consistency preservation rules heavily depend on the
project environment and the used code frameworks and techniques. For
instance, the consistency preservation rules need to take into account if the
project is developed using Enterprise Java Beans (EJBs), because EJB already
de�nes components and interfaces on source code level.

Which steps arenecessary to also enable coevolutionof source codeandabe-
haviourmodel? Architectural models often contain high-level information
about the behaviour of the software system. These models cannot be trans-
lated into source code directly because they do not contain the necessary
implementation details. They can, however, be reverse-engineered from
source code. To include behaviour models into our Coevolution approach,
we have to solve two challenges: The �rst challenge is that the behavioural
models of the architectural models needs to be updated incrementally when
developers change code. The second challenge is that it is necessary to �gure
out which code needs to be adapted, if architects change the behavioural
model.

What are the di�erent roles in a so�ware development processwhen our Co-
evolutionapproach isused? A challenge is to de�ne how the di�erent users
that have di�erent roles, such as developer and architects, are involved in
the software development processed when using our Coevolution approach.
Since the consistency preservation rules between architectural models and
code can be technology-speci�c or even project-speci�c a role needs to be
de�ned that is responsible for creating the consistency preservation rules
between architecture and code.

74



4.2. Coevolution of Architectural Models and Code

4.2. Coevolution of Architectural Models and Code

Within this section, we introduce the concepts of our Coevolution approach
and outline how it can be used to keep architectural models and source code
consistent. Furthermore, we explain models and the editors for architectural
models and source code that we use in our Coevolution approach. Even
though we explain our Coevolution approach on the example of the PCM
as architectural modelling language respectively Architecture Description
Language (ADL) and Java as object-oriented language, the concepts can be
applied to other architectural modelling languages, such as UML component
diagrams, and to other programming languages, such as C# or C++, as well.
As mentioned above, we presented the idea for our Coevolution approach in
[Lan13] and instantiated it for [Kra+15a].

To preserve consistency between di�erent models our Coevolution approach
uses the two main concepts: model-driven engineering, and change-driven
engineering. Furthermore, our Coevolution approach reuses concepts from
Vitruvius, which we presented in [KBL13] and which was re�ned by Burger
[Bur14]. In this section, we only explain these concepts from the Vitruvius
approach that we reuse and how we reuse them, while we classify our
Coevolution approach into the Vitruvius vision in the next section.

The �rst concept we use is the concept of model-driven engineering, which
means that the development process is model centric, and models are the
main artefacts within our Coevolution approach. In fact, we consider all
involved artefacts as models. Hence, the architecture and especially the
source code are also considered as models within our Coevolution approach.
Even though from a technical perspective, Java source code is not an Eclipse
Modeling Framework (EMF) model, approaches such as Java Model Parser
and Printer (JaMoPP) [Hei+10], allow us to parse models in such a way
that they can be treated as EMF models. Treating the source code as a
model allows us to apply model-driven techniques, e.g. model to model
transformations, to the source code and use the source code together with
model-based artefacts.

Change-driven means, that our Coevolution approach reacts on changes that
users perform in either the architectural model or the source code. Hence,
the consistency preservation steps that are necessary are executed after
changes in either of the involved models. This also means that the editors

75



4. A Method for keeping Architecture Consistent with Source Code

that we use in our Coevolution approach need to report changes users per-
form. As we mentioned in Chapter 3, it is necessary to de�ne bidirectional
consistency preservation rules in order to react to these changes. To keep ar-
chitectural models and source code consistent, we need to de�ne consistency
preservation rules between the architectural metamodel and the source code
metamodel. In particular, we need to de�ne bidirectional consistency preser-
vation rules between the PCM metamodel and the Java metamodel. This
bidirectional consistency preservation rules can be de�ned and implemented
either in the general purpose language XTend, which we explained in 3 or
in the Mapping Invariant Response (MIR) languages introduced by Kramer
[Kra14; Kra15; Kra17], Klare [Kla16], Werle [Wer16], and Fiss [FKL16]. Re-
gardless of whether the internal language or the MIR is used to implement
the bidirectional consistency preservation rules, the consistency preserva-
tion rules need to specify speci�c change preservation operations for each
change respectively for a speci�c set of changes performed by users.

We use the following concepts, which were originally introduced for the
Vitruvius approach: the Virtual Single Underlying Model (VSUM) (see Sec-
tion 2.2.2), the correspondence metamodel (see 3.4), the change metamodel
(see 3.3), and the user change disambiguation. We use the VSUM to store the
model instances of the architectural models, the source code represented as
models, and the correspondence model. We are using instances of the corre-
spondence metamodel to keep track of the corresponding elements. Since
we use the same correspondence metamodel as the Vitruvius approach
we refer to our correspondence metamodel as Vitruvius correspondence
metamodel and to instances of the model as Vitruvius correspondence
models. The change metamodel allows us to de�ne changes from di�erent
editors in the common model instance, which can be used as input parameter
for the consistency preservation process. This has the advantage that we
can use the same consistency preservation mechanism for changes that are
performed in di�erent editors respectively views. We furthermore use the
concept of user change disambiguation, which is used if changes users per-
form cannot be kept consistent automatically without additional information.
In this case, our Coevolution approach needs to ask the users in order to
clarify their intent, which can take place either before or from within the
consistency preservation operations. We proposed a mechanism how user
change disambiguation can be realised for changes in code in [LK14] by
asking the users to clarify the intent of a change. More details about the

76



4.2. Coevolution of Architectural Models and Code

di�erent kinds of user change disambiguation are explained in Section 4.4.
Like the Vitruvius approach, we currently make the assumption that only
one model is changed at a given time. As a part of future work, it should be
investigated how concurrent editing on di�erent models by multiple users
can be enabled.

Figure 4.1 gives an overview of our Coevolution approach. In particular, it
explains the di�erent steps that are necessary to keep the models consistent.
As the step zero (0), users edit either the PCM Repository, the PCM System,
or the Java source code, which automatically changes the underlying mod-
els (either the architectural model or the source code). This step is neither
changed by nor in�uenced by our Coevolution approach. The �rst step, in
which our Coevolution approach is involved, is step (1). In step (1), the mon-
itors observe changes on the models and trigger the Vitruvius framework
in step (2). Within the trigger step, the monitors also pass the performed
changes to the Vitruvius framework. Based on these changes, the Vitru-
vius framework executes the consistency preservation transformations (3).
These transformations can use the information from the changes as well
as the information stored in the correspondence model (4) to update the
models (5). If a change is performed to behavioural code, the change is kept
consistent using a similar mechanism as depicted in Figure 4.1. However,
in step (5), we execute a incremental SEFF reconstruction step instead of a
transformation. We will explain more details about the incremental SEFF
reconstruction in Section 4.5. To simplify Figure 4.1, the concept of user
change disambiguation is not shown. A user interacting step, for instance, is
possible from within the consistency preservation operations (step (5)).

4.2.1. The VSUM of our Coevolution Approach and the
Definition of Consistency Preservation Rules

As mentioned above, the metamodel level of our VSUM our Coevolution
approach consists of the architectural metamodel, the source code meta-
model, and the correspondence metamodel. In particular, we use the PCM
as a metamodel for the architecture, JaMoPP as metamodel of Java, and
the Vitruvius correspondence metamodel. The consistency preservation
rules are also part of the VSUM and need to be de�ned upfront, i.e. during
the design time of the VSUM. On the instance level, our VSUM contains

77



4. A Method for keeping Architecture Consistent with Source Code

PCM Architecture
monitor

Vitruvius
Framework

Code
monitor

Java

consistency
preservation

updates (5)

updates (5)

Correspondence
Model

public class WebGUIImpl implements WebGUI {

@Override

public File httpDownload(Request request){

logger.info("Handle request " + request ");

}

}

Java editor

change (0)

C1

C2 C3

UML class diagram editor

change (0)

PCM system editor

WebGUI

SEFF < httpDownload >

PCM repository editor change (0)change (0)

monitors (1)

monitors (1)

triggers (2)

triggers (2)

executes (3)uses (4)

updates (5)

developers

edit (0) edit (0)

architects
edit (0) edit (0)

MediaStoreWebGUI

Figure 4.1.: The steps our Coevolution approach executes to keep architectural models
consistent with the source code. Step zero (0) is performed by users of the architectural
model editors or the source code editor. This step is not in�uenced or changed by our
Coevolution approach. In reaction to step zero, however, our Coevolution approach
performs the steps (1) through (5) in order to keep architectural models and the
source code consistent.

78



4.2. Coevolution of Architectural Models and Code

instances of these metamodels, which are JaMoPP instances for the Java
source code, PCM instances for the PCM metamodel, and instances of the
Vitruvius correspondence metamodel. Figure 4.1 shows that the consistency
preservation rules can access both models within the VSUM as well as the
Vitruvius correspondence model instances to keep the models consistent
after a change.

4.2.2. Monitored Source Code Editor

As editor for the JaMoPP metamodel, we use the standard Eclipse Java
code editor. Even though JaMoPP o�ers a textual editor for the Java model
as well, we have decided to use the standard Eclipse Java editor for the
following reasons: First, the standard Eclipse code editor is more powerful
than the JaMoPP editor. For instance, it o�ers state of the art code completion
and powerful refactoring operations. Secondly, users of our Coevolution
approach can stick with the editor they are used to and can still use the tools
the IDE o�ers (e.g. refactoring, quick �xes etc.).

Since our goal is to use the standard Eclipse Java editor, we need to obtain
all changes that a developer performed within editor. As we explained
in 3.5.2, we created an approach to monitor the code editor in order to
retrieve changes and convert them into compatible changes, i.e. changes
are converted to changes in the Vitruvius change metamodel. For changes
performed to classes, interfaces, methods, �elds, or annotations, we get exact
information about the change, e.g. we get the information that the class
WebGUIImpl has been renamed to NewWebGUIImpl. For changes in method
bodies, however, we get the information that the method body of a method
has been changed, e.g. we get the information that the method body of the
method donwnload in the class WebGUIImpl has been changed. Even though
we implemented the monitor for the Eclipse Java editor, the concept can be
adapted to other IDEs under the condition that the IDE o�ers a method to
add a listener to the code editor that reports changes based on the Abstract
Syntax Tree (AST) changes and enabling plug-ins during runtime of the
IDE.

Figure 4.2 shows how our Coevolution approach keeps models consistent
from the perspective of the code editor with our plugged in extension. The
�rst task is that the change (1) a developer performed to the source code is

79



4. A Method for keeping Architecture Consistent with Source Code

public class ATMImpl implements IATM {

private IAccountManager iAccountManager

public void withdraw(int cents, Account src){

iAccountManager.withdraw(cents, src));

//...

}}

source codedeveloper

consistency preservation

classify change

run incremental SEFF creator

method body changed (3”)

iAccountManager.withdraw

VariableUsage

generate SEFF for method (4’)

updated SEFF

changes (1)

component model

notify (2)

unambiguous (3)

ambiguous (3’)intent(4)

update (5)

ATM

Figure 4.2.: The process how our Coevolution approach keeps source code changes
consistent with the architectural model (see [LK14])

detected (2). After that the change is classi�ed (3) either as unambiguous (3),
ambiguous (3’), or as method body change (3”). If it is an unambiguous change
the consistency preservatican can be triggered directly and the architecture
can updated (5). If the change is classi�ed as an ambiguous change, this means
that our Coevolution approach is not able to keep the change consistent
without additional information from the developer. Hence, they need to
clarify their intent (4), in order to allow consistency preservation to keep
the change consistent with the architecture (5). If the change is classi�ed
as method body change, we can run our change-driven incremental SEFF
creation that keeps the behavioural model corresponding to the method body
consistent (4’). Detailed information how the change-driven incremental
SEFF creation works can be found in Section 4.5.

80



4.2. Coevolution of Architectural Models and Code

4.2.3. Monitored Architectural Editor

As architectural editors, we use the standard PCM editors. Since our Coevo-
lution approach focuses on the PCM repository, the PCM system and the
behavioural model SEFF, we use these three editors onto the PCM metamodel
as editors, which we already explained in 2.3. To include this editors within
our Coevolution approach, we need them to report the atomic changes. To
do so, we can use the generic EMF model monitor, which we implemented
for the Vitruvius approach and explained in 3.5.1. The generic EMF model
monitor is able to monitor changes on the PCM models and reports the per-
formed changes as instances of the Vitruvius change model. The process
of the consistency preservation from the editors point of view is similar to
the process, we explained for the code monitor (see Figure 4.2). The main
di�erence is that an architectural model is changed instead of the source
code and the source code is update instead of the architectural model.

4.2.4. UML Class Diagram Editor for Java Code

In [KLK16], we presented Projective UML class diagram editor for Java.
Hence, this section is based on the mentioned publication. Even though
many editors exist that keep source code and UML class diagrams consistent,
we decided to create a model-based UML class diagram editor as a projective
view on the source code. In Chapter 7, we introduce aproaches for keeping
source code consistent with UML class diagrams, which are related to our
Coevolution approach as well as to Projective UML class diagram editor
for Java (ProjUMLed4J). Most related tools, such as UML Lab1, use an ex-
plicit UML model and use an explicit consistency preservation consistency
mechanism to keep source code and UML models consistent. A popular tool,
which also only uses the source code as source for information is Together
from Borland [Bor05]. The so called LiveSource mechanism allows to keep
source code consistent with the UML class diagram during the evolution of a
software system. Information, such as the multiplicity of annotations, which
is part of the UML diagram editor only, is stored in source code comments.
The layout information is stored in a separate folder within the project.

1 http://www.uml-lab.com/

81

http://www.uml-lab.com/


4. A Method for keeping Architecture Consistent with Source Code

public MyClass {

@Association(targetLowerMultiplicity=0,targetUpperMultiplicity=-1)

private MyString[] myStringList; }

Listing 9: Example for an Association annotation

ProjUMLed4J dynamically generates a UML class diagram view from the
underlying Java source code when opened. It is created with Eclipse Sirius
[VMP14]. As underlying model, we use JaMoPP [Hei+10]. It allows users to
use an UML class diagram view of the source code and furthermore, it allows
them to create, update, and delete operations for classes, interfaces, methods,
�elds, parameters and return types. Associations based between classes are
shown in the editor and can be speci�ed using the editor. An association
between two classes is created if one class has a �eld with the type of the
other class and if both classes are shown in the view. If the latter is not
the case, the �eld in the source code is displayed as �eld in the UML class
diagram editor. The associations between the classes are added to the source
code using annotations added to the �eld. We decided to use annotations
instead of, for instance, comments, because annotations are checked by the
Java compiler. The association annotations specify the multiplicity of the
association and whether the association is an aggregation association or a
composition association. The annotations can be added manually during the
evolution of the software system. To omit the manual e�ort, they are also
automatically created by ProjUMLed4J in a preprocessing step during the
creation of the UML class diagram editor view. The automatic creation of
annotations is able to detect the multiplicity of the annotations as follows:
We assume an in�nite upper bound if the type of the �eld is a collection type,
for instance, ArrayList, or if the �eld is an array. If this is not the case, we
assume an upper bound of 1. If the upper bound is 1, i.e. the �eld is neither
an array nor is the type of the �eld a collection type, we are also able to
�gure out the lower bound. This can be done by checking whether the �eld
is �nal or not. If the �eld is �nal, we assume a lower bound of 1, otherwise
we assume a lower bound of 0. Automatically detect precise multiplicities,
such as limited ranges, is both hard to assure in source code and hard to
extract from source code. Listing 9 shows an example of an Association

annotation.

82



4.2. Coevolution of Architectural Models and Code

During the generation of the UML diagram, ProjUMLed4J generates @Asso-
ciation for the attribute myStringList if MyString is in the same package
as MyClass. The multiplicity values are represented by annotation attributes
and are set to 1 by default. As myStringList references an arbitrary number
of MyString objects, however, we are able to set the target multiplicity to -1.
This value represents 0..* in the UML class diagram editor, i.e. an arbitrary
objects of MyStrings can be contained in the �eld myStringList number.

To use the editor within our Coevolution approach, it is necessary to monitor
the performed changes. As the editor changes the underlying source code
automatically, we can use Java source code monitor to monitor the changes.
Hence, we currently do not monitor the editor itself, but the underlying
model. If information solely available in the class diagram editor shall be
kept consistent with another mode, we need to add explicit monitoring for
ProjUMLed4J. Currently, the only information not available in the source
code is the layout information. The layout information is stored by Eclipse
Sirius in a separate �le.

Currently, the UML class diagram editor is tailored in order to support
the package mapping consistency rules, i.e. it is able to present the classes
contained in a package. Hence, when using the package mapping consistency
preservation rules, the class diagram editor can be used to show the classes
within one component. The UML class diagram editor, however, can be
extended easily in order to support an arbitrary set of classes.

Figure 4.3 shows an example of our running example and its corresponding
UML class diagram. The lower left part shows an evolution scenario: A new
interface method (1) is added through in the source code. After this new
method has been added the a�ected element in the UML class diagram editor
is updated automatically (2).

4.2.5. Classification of our Coevolution Approach into the
View-based Engineering Approach VITRUVIUS

As we explained in 2.2.2 the Vitruvius approach is a change-driven view-
based engineering approach, which can be used to keep model instances of
di�erent metamodels consistent during the development process. To this
end, Vitruvius uses a VSUM to store all involved models. The access to

83



4. A Method for keeping Architecture Consistent with Source Code

interface IWebGUI{

int webUpload(File file);

File webDownload(String fileName);}

public class WebGUI implements IWebGUI{

private IMediaStore iMediaStore;

@Override

public File webDownload(String fileName){

System.out.println("Begin download");

// ...

}

@Override

public int webUpload(File file){

System.out.println("Begin upload");

// ...

}}

interface IMediaStore{

public int upload(File file);}

public class MediaStore implements IMediaStore{

private int uploadCounter = 0;

@Override

public int upload(File file){

System.out.println("Begin MediaStore upload");

uploadCounter++;

}}

IWebGUI

webUpload(file:File):int
webDownload(fileName:String):File

IMediaStore

upload(file:File):int

WebGUI

MediaStore

uploadCounter:int

iMediaStore1

interface IMediaStore{

int upload(File file);

File download(String fileName);

}

IMediaStore

upload(file:File):int
download(fileName:String):File

add download
method(1)

update a�ected
UML artifact

automatically(2)

Figure 4.3.: The UML Class Diagram Editor applied to our running example [KLK16].
The left upper part shows the source code of the MediaStore. The right upper part
shows the corresponding UML class diagram.

the models within the VSUM is solely possible via views, which monitors
all changes. In this section, we classify our Coevolution approach into the
Vitruvius approach and point out the contributions of this thesis to the
application of Vitruvius to the CBSE domain.

In the initial idea of Vitruvius, Burger [Bur14] and we [KBL13] introduced
the Vitruvius vision. Within this vision, we focus on the consistency
preservation of arbitrary models and use as example the CBSE domain, which
can be seen in Figure 4.4. As initial models to explain the vision, we used PCM,
UML, Java source code and the Sensor Model, which stores the simulation
results, from the PCM. As views, we use the existing standard views for the

84



4.2. Coevolution of Architectural Models and Code

models included as view types, and �exible view types and �exible views
(see Section 2.2.2) to combine information from more than one underlying
models and the correspondence model if necessary. For the de�nition of the
consistency preservation rules, we proposed the use of the MIR languages
and a correspondence model. The correspondence model allows us to store
the information about corresponding model elements. In order to ease
the understandability of Figure 4.4, the correspondence model is not made
explicit, but comprised in the arrows between the models. To conclude the
vision: We [KBL13] as well as Burger [Bur14] focused on the introduction of
the Vitruvius idea and its general application to heterogeneous metamodels.
Burger [Bur14], furthermore, focuses on the creation of �exible views. In both
publications, however, the main focus are neither the concrete consistency
preservation rules nor the coevolution of behaviour models and code. Hence,
the novel contributions for the application of Vitruvius to the CBSE domain
within this chapter are the de�nition of:

• reusable and extendable consistency preservation rules from PCM to
Java source code,

• a projective UML class diagram editor/view for source code,

• a Coevolution approach behavioural source code elements and a
behaviour model, and

• the speci�cation of di�erent user change disambiguation levels.

Furthermore, we extend the existing Vitruvius development roles by de�n-
ing roles for software architects, component developers and architectural
consistency methodologists.

In the following, we list the concepts that our Coevolution approach and the
Vitruvius approach have in common. This concepts are the

• change-driven change propagation, which means that changes users
perform are monitored, converted into a Vitruvius change model
representation, and propagated immediately,

• use of a VSUM to store all involved models, and

• use of a correspondence model in order to keep track of
corresponding model elements.

85



4. A Method for keeping Architecture Consistent with Source Code

PCM

UML

Java

Sensor
Model

VSUM

CPR

CPR

CPR

CPR

C1

C2 C3

UML class diagram view

VT2

VT3

C1

C2

implements

implements

component-class
implementation view

public class WebGUIImpl implements WebGUI {

@Override

public File httpDownload(Request request){

logger.info("Handle request " + request);

}

}

Java Source view

VT1

@Implements(component=WebGUI)

@Provides(interface=WebGUI)

public class WebGUIImpl implements WebGUI {

@Override

@Implements(interface=WebGUI)

public File httpDownload(Request request){

logger.info("Handle request " + request);

}

}

Annotated Java Source view

VT6

component diagram view

VT4

Pr
ob

ab
ili

ty

Time

simulation results

VT5

comp1
comp1comp2

Figure 4.4.: The Vitruvius vision applied to the CBSE domain, as we [KBL13] and
Burger [Bur14] proposed. As models we use the PCM, UML, the PCM Sensor Frame-
work model, and a model of Java source code. The consistency preservation rules
between the model instances are depicted as the arrows annotated with CPR. The
view types are either combining view types (if they contain information from more
than one metamodel) or projectional view types (if they contain information from
one metamodel only).

86



4.3. Consistency Preservation Rules between Component-based Architecture and Source Code

Hence, our Coevolution approach can be seen as the �rst step towards the
realisation of the Vitruvius vision for the CBSE domain. As metamodels,
we use the Java metamodel provided by JaMoPP and PCM. As view types,
we use the existing Java source code editors as views to the source code
view type, the view type and existing views for the PCM, and a UML class
diagram view on to the source code. Parts of future work are to include
�exible view types within our Coevolution approach in order to allow users
to use views such as the component-class implementation view as well as
the annotated source code view, and include more metamodels, such as the
UML metamodel and the Sensor metamodel into the VSUM.

4.3. Consistency Preservation Rules between
Component-based Architecture and Source
Code

In order to keep architectural models and source code consistent during
software development and software evolution, we need to de�ne bidirec-
tional consistency preservation rules between architecture and code. These
consistency preservation rules have to de�ne how architectural elements
are represented in code and vice versa. Hence, we address the second scien-
ti�c challenge that we de�ned for this Chapter (see Section 4.1). To do so,
the mappings specify the consistency preservation operation that has to be
executed if users of our Coevolution approach add, change, or delete either
code elements or architectural elements. A typical example for a consistency
preservation operation is that an architectural element should be renamed
automatically after its corresponding source code element has been renamed
by developers. However, not all information in the source code relevant for
the architectural model. Helper methods, for instance, which are used within
a component to help the component to ful�ll its provided services are not
architectural relevant.

Hence, the consistency preservation rules describe the overlap between
the source code and the architectural model. We de�ne the overlap as
information that is contained in both models, the architectural model and
the source code model. Identifying the overlap and de�ning according

87



4. A Method for keeping Architecture Consistent with Source Code

consistency preservation rules to keep architectural models and source code
consistent is the main task of the architectural consistency methodologists
(see 4.7.1).

4.3.1. Dimensions of Consistency Preservation Rules

We identi�ed the following three dimensions for the consistency preservation
rules: i) a technology-speci�c dimension, ii) a project-speci�c dimension, and
iii) an element-speci�c dimension. Technology-speci�c in this case means
that the mapping between architecture and code depends on the used existing
technology and how it describes architectural artefacts, such as components
and interfaces, in source code. De�ning technology-speci�c consistency
preservation rules allows us a) to reuse the consistency preservation rules
for projects that use the same technology, and b) to use our Coevolution
approach together with already existing tools and frameworks. An example
for an existing technology is EJB, which has a concept of component-like
classes build in the framework already. If EJB is used in the current project to
realise the architectural model in source code the consistency preservation
rules should be created with respect to EJB concepts and should use the
built-in concepts of the EJB framework. Another example of technology-
speci�c mapping is the mapping between the architectural model and Plain
Old Java Objects (POJOs). The standard Java source code does not have a
built-in language feature to represent components or other architectural
elements. Hence, architectural consistency methodologists needs to de�ne
how architectural elements and code elements correspond to one another
based on the existing elements in the source code, such as classes, interfaces
and packages.

The project-speci�c dimension means that even if the underlying technology
is the same for di�erent projects, the consistency preservation rules can vary
depending on the project their are used in. For instance, in one project every
source code interface should be represented as architectural interface, while
in another project only those interfaces, which are contained in a speci�c
package/folder, are considered as architectural relevant interfaces. Project-
speci�c consistency preservation rules can be reused within all projects that
have the same mapping between code and architecture as well as the same
technology.

88



4.3. Consistency Preservation Rules between Component-based Architecture and Source Code

As last dimension, we have identi�ed the element-speci�c dimension, which
allows us to de�ne consistency preservation rules for speci�c elements.
The element-speci�c dimension itself is divided into two dimensions: a) an
element-speci�c dimension for speci�c set of elements, and b) an element-
speci�c dimension for a speci�c element.

The �rst element-speci�c consistency preservation rules are element-speci�c
consistency preservation rules that are valid for a set of elements. They can be
de�ned for elements that do not follow the general consistency preservation
rules, which are de�ned for the current project and technology. Hence,
the element-speci�c consistency preservation rules overrides the existing
consistency preservation rules for a speci�c set of elements. During the
evolution of a software system our Coevolution approach checks whether
such an element-speci�c mapping rule exists for the element that has been
changed before the application of the consistency preservation rules. If
this is the case only the element-speci�c consistency preservation rules
are executed. Within our Coevolution approach, we use element-speci�c
consistency preservation rules for the integration of existing source code,
which are not compliant to the current consistency preservation rules (see
Section 5.4.4).

The second dimension are element-speci�c rules for a speci�c element. The
di�erence to the �rst kind of element-speci�c consistency preservation
rules is that these rules are valid only for a speci�c element, not for a set
of elements. The consistency preservation rules speci�c for one element
override the set of element-speci�c consistency preservation rules, i.e. if
an element has consistency preservation rules speci�c for that element
these consistency preservation rules are executed. Within our Coevolution
approach, we currently do not use this kind of element-speci�c consistency
preservation rules. We outline, however, how they can be used for integrated
elements.

Within this thesis, we present project and technology-speci�c consistency
preservation rules between PCM and source code using the technology EJB
and consistency preservation rules between PCM and POJOs. Furthermore,
we present a project and technology-speci�c mapping between the PCM
and a dependency injection framework, where the dependency injection
framework is used to compose components. We also present technology-
speci�c consistency preservation rules between the PCM and artefacts from

89



4. A Method for keeping Architecture Consistent with Source Code

the Eclipse Plugin Development, which are Open Services Gateway initiative
(OSGi) based, to show that it is possible to support technology-speci�c
consistency preservation rules, where the components and interfaces are
partly de�ned in other artefacts than the source code itself. All consistency
preservation rules, we present in this thesis, can be reused in other projects
or can be used as base rules for project-speci�c extensions.

4.3.2. Package Mapping Consistency Preservation
Rules as Example

This section presents an example for bidirectional consistency preservation
rules between architectural models and source code. We use these con-
sistency preservation rules in the remainder of this section to explain our
Coevolution approach.

As architectural model for the consistency preservation rules, we use a PCM
Rrepository and a PCM System. As source code, we use Java source code
build with POJOs. POJO, in this case, means that no speci�c mechanism,
such as EJB, is used to de�ne components or interfaces. An overview for the
mapping of a PCM repository can be found in Table 4.1, while an overview of
the mapping to the PCM system can be found in Table 4.2. As the consistency
preservation rules are based on the package hierarchy in Java, we call them
package mapping consistency preservation rules.

4.3.2.1. Mapping the Repository Elements to Source Code

Using the package mapping consistency preservation rules, we map a Reposi-
tory to three packages in the source code. This means if a new Repository has
been created we create one package that corresponds to the repository. This
package will contain all components. Furthermore, the package contains
one contracts package for the interfaces and one datatype package for all
data types. If users start with the source code and create a package �rst, we
create the Repository as well as the both necessary packages inside the new
package. Hence, we assume that the newly created package corresponds to
the Repository.

90



4.3. Consistency Preservation Rules between Component-based Architecture and Source Code

PCMmetamodel
element

Source code language element

Repository Three packages: main, contracts, data types

BasicComponent Package within the main package and a public compo-
nent realisation class within the package

OperationInterface Interface in the contracts package

Signature&Parameters Methods&parameters

CompositeDatatype Class with getter and setter for inner types

CollectionDatatypes Class that inherits from a Java collection type (e.g. Ar-
rayList)

RequiredRole Field typed with required interface in the component-
class and constructor parameter for the �eld in the
component-class

ProvidedRole Main class of providing component implements the pro-
vided interface

SEFF Method in the component realisation class that overrides
the corresponding interface method

Table 4.1.: Example mapping between PCM repository metamodel elements and
source code language elements

Each OperationInterface is mapped to one Java interface within the contracts
package with the same name. Signatures and Parameters are mapped accord-
ingly to the matching Java interface. In the case of interfaces the opposite
mapping is straight forward: if a Java interface has been created in the con-
tracts package a new OperationInterface is created automatically. The same
is true for Java methods and their parameters. Java interfaces that are not
created in the contracts package, are not considered as architectural relevant
interfaces by default. Users of our Coevolution approach and the consistency
preservation rules, however, can specify those Java interfaces as architecture
relevant if they want to override the consistency preservation rules.

For eachCompositeDatatype created in the architectural model, we create one
class in the datatypes package. For the innertypes of a CompositeDatatype,
we create a �eld for the innertype and one getter and one setter for the �eld.

91



4. A Method for keeping Architecture Consistent with Source Code

For each CollectionDatatype, we also create a class in the datatypes packages.
This class inherits from a Java Collection type (e.g. ArrayList). Users of
our Coevolution approach need to specify which Java Collection type shall
be used for the speci�c DataType. To do so, the consistency preservation
operation, which is executed after a CollectionDatatype has been created,
asks users after they added a CollectionDatatype in the architectural model
which Java Collection type should be used. The reason why users need
to disambiguate this change is that the PCM abstracts from the concrete
used collection type and only speci�es that a collection of elements shall
be used. The type parameter for the created collection class equals the
corresponding Java class for the innertype of the CollectionDataType. If no
innertype has been added upon the creation of the CollectionDataType, we
use Object as type parameter. As soon as users add the innertype to the
CollectionDataType, we replace Object with the Java class that corresponds
to the DataType of the innertype. To map DataTypes from source code to the
architecture two possibilities exist: The �rst one is straight forward: If a
class in the datatypes package has been created, we automatically create a
corresponding PCM DataType. To determine whether a CompositeDatatype

or a CollectionDataType should be used, we again, ask the users of our Coevo-
lution approach. The second possibility to create an architectural DataType
based on a change in the source code is more complex: We create a PCM
CompositeDatatype, for classes that are used as parameter or return type
in architecture relevant methods. Even though this does not match our
mapping exactly, we create the data type in order to enable the coevolution.
This, however, could cause the e�ect that a class can correspond to a compo-
nent as well as to a data type. This approach is also realised within Source
Code Model eXtractor (SoMoX), where a component class can be used as
data type as well. Using our approach, we could avoid allowing the use of
a component class as parameter or return type by forbidding the use of a
component-realisation class or any class that is not in the datatype package
as return type or parameter. If a developer would try to do so, a warning
or error could be displayed and the action could be undone automatically.
Implementing this approach allows us to detect this kind of architectural
violation.

Each BasicComponent is mapped to a package inside the Repository package
that has the same name as the BasicComponent and one component-realising
class inside the component package that has the same name as the BasicCom-

92



4.3. Consistency Preservation Rules between Component-based Architecture and Source Code

ponent with the su�x Impl. This class serves as Facade or Proxy class for the
component. Furthermore, this class is marked as �nal to forbid inheritance
from this class. If we map from code to the architecture we create by default
a BasicComponent automatically if the above-mentioned mapping becomes
true. This means, if a developer creates a package within the repository pack-
age and a class within this package that has the same name as the package,
we create a BasicComponent in the architectural model. Since this mapping
is hard to match for developers we soften this mapping. For instance, a new
BasicComponent can be created in the following cases:

• no class has been created within the package yet, and

• the class name does not match the package name.

To allow such a softening of the mapping, we use user change disambiguation
(see Section 4.4), which allows us to let developers and architects decide
whether they want to create a BasicComponent and which class should be
the component-realising class for the BasicComponent.

A RequiredRole is mapped to a �eld in the realisation class of the BasicCom-

ponent and a constructor parameter within this class as well as an assignment
statement in the constructor that assigns the value of the constructor param-
eter to the �eld. This means that we use the dependency injection pattern2

with injection through the constructor. Hence, a component realisation class
cannot be instantiated without an instance of each of its required interfaces.
The mapping from the source code to the architectural model can be softened
as follows: as soon as a �eld is added to the component-realisation class that
has the type of an architectural relevant interface, a RequiredRole and the
constructor parameter as well as the assignment in the constructor can be
created.

A ProvidedRole means that an architectural component provides an architec-
tural interface. To map this to the source code, we let the component-realising
class implement the Java interface that corresponds to the provided interface.
The mapping from code to architecture is straight forward: if developers
add an implements relation between the component-realisation class and an
interface that corresponds to an architectural interface, we create a provided
role in the architecture model.

2 http://martinfowler.com/articles/injection.html

93

http://martinfowler.com/articles/injection.html


4. A Method for keeping Architecture Consistent with Source Code

PCMmetamodel element Source code language element

System package and public class within the package

CompositeComponent &

Subsystem

Package within the main Repository pack-
age and public class within the package

AssemblyContext �eld in the class and instantiation of the
mapping class

RequiredRole Member typed with required interface and
constructor parameter for member

ProvidedRole class of the System implements the provided
interface

ProvidedDelegationConnector delegation call to the corresponding �eld
within the overwritten method of the pro-
vided interface

RequiredDelegationConnector constructor parameter, typed with the inter-
face of the required delegation connector
that is given to the constructor of the requir-
ing components-realisation class

AssemblyConnector assignment of the constructor parameter
from the �eld that corresponds to the requir-
ing AssemblyContext with the correspond-
ing �eld that corresponds to the providing
AassemblyContext

Table 4.2.: Example mapping between PCM system metamodel elements and source
code language elements

A SEFF is mapped to a class method, which overrides a Java interface method
that corresponds to the SEFF ’sOperationSignature. The mapping from source
code to architecture is straight forward: As soon as a method in the source
code is created that overrides an interface method, which corresponds to
an OperationSignature, a new SEFF is created in the BasicComponent, which
corresponds to the method’s class.

94



4.3. Consistency Preservation Rules between Component-based Architecture and Source Code

4.3.2.2. Mapping between Composed Entities from PCM and Source Code

To enable the use of PCM composed entities in our consistency preservation
rules, we need to de�ne bidirectional consistency preservation rules for
them as well. The super class of composed entity in the PCM is the class
ComposedProvidingRequiringEntity. Concrete CPREs are the PCM Systems,
CompositeComponents and SubSystems. The di�erence between them is that
the System is a �rst class entity in the PCM, while the CompositeComponents

and the SubSystems are contained in the Repository. Hence, the di�erence
in the mapping is as follows: CompositeComponents and SubSystems map to
a own package within the Repository’s package. A System, however, maps
to its own package that is not inside the Repository package. Similar to the
mapping of a BasicComponent the package that is created for the CPRE has
the same name as the CPRE and the realisation class within the package
also has the same name with an appended Impl. To map these elements
from source code to architecture we use the following approach: If a new
package or class is created, which is not covered by the correspondences yet,
we request users to disambiguate the change in order to �gure out whether
the created package respectively the created class should be mapped to a
CompositeComponent a Subsystem or a BasicComponent. If users create a
new package on the same hierarchical level as the package that corresponds
to the Repository, we also request users to disambiguate the change in order
to �gure out whether a System should be created.

Even though the �rst mapping rule is di�erent depending on the kind of
the ComposedProvidingRequiringEntity (CPRE) the remainder of the bidirec-
tional consistency preservation rules for CPREs is identical for the package
mapping consistency preservation rules. Hence, for all CPREs an Assembly-

Context is mapped to a �eld in the CPRE-realisation class. The �eld has the
type of the component’s realisation class from the encapsulated component
of the AssemblyContext and the name of the AssemblyContext. Furthermore,
we create an instance of the component’s realisation class in the constructor
and connect the AssemblyConnectors as well as the DelegationConnectors ac-
cordingly. To map an AssemblyContext from source code to the architecture,
we use, again, a soften mapping rule: A new AssemblyContext is created
each time developers create a �eld in the class that corresponds to a CPRE.

95



4. A Method for keeping Architecture Consistent with Source Code

ProvidedRoles and RequiredRoles of CPREs are mapped the same way as they
are mapped for BasicComponents.

A ProvidedDelegationConnector is a connector that connects one public ac-
cessible interface from the CPRE to the inner AssemblyContexts. To map this
to source code we create a delegate call within the overwritten corresponding
method of the CPRE’s realisation class. The code created by the consistency
preservation rules, delegates the call to the �eld that corresponds to the
encapsulated component of the AssemblyContext.

A RequiredDelegationConnector is mapped to a constructor parameter. This
parameter is typed with the Java interface type that corresponds to the re-
quired interface within the RequiredDelegationConnector. The mapping from
code to architecture is straight forward in this case: If a constructor parame-
ter, which corresponds to an architectural interface or to an architectural
component, is added by developers, we create a new RequiredDelegation-

Connector. If the constructor parameter maps to a component-realisation
class, we create RequiredDelegationConnectors for all RequiredRoles of the
component.

An AssemblyConnector is a connection between two AssemblyContexts and
connects the required interfaces with the provided interfaces. This means
that we assign the constructor parameter of the �eld that corresponds to the
requiring AssemblyContext with the �eld that corresponds to the providing
AssemblyContext.

4.3.2.3. Discussion and Limitations of Architecture to POJOs Consistency
Preservation Rules

The presented bidirectional consistency preservation rules are only one ex-
ample, how instances of the architectural model PCM can be mapped to Java
source code and vice versa. When using the presented consistency preserva-
tion rules it is not possible to map all valid PCM instances to source code.
Hence, the consistency preservation rules introduce some constraints to the
PCM instances. For instance, within the PCM it is possible for one BasicCom-

ponents to provide the same OperationSignature twice. This is not possible
using the package mapping consistency preservation rules, we explained in
the section above. In general, two approaches are possible to overcome the

96



4.3. Consistency Preservation Rules between Component-based Architecture and Source Code

limitation of introducing new constraints. The �rst solution is to check the
constraints that are introduced by the consistency preservation rules and
resolve occurring con�icts before executing the consistency preservation
operation. If a constraint violation is detected, an error can be generated
and reported to the users. Hence, users need to resolve this manually, for
instance, by removing one con�icting element. The resolution of some con-
�icts, however, can be done automatically as well. The second solution is
to change the consistency preservation operations in order to remove the
introduced constraints. Therefore, the consistency preservation operations
can be extended, for instance, to use the same mapping from architectural
model to source code as proposed by Becker [Bec08]. He proposes the use
of explicit classes for ProvidedRoles, i.e. the roles are made explicit. This
approach is implemented, for instance, for SimuCom and ProtoCom. The
approach has the advantage that it is possible to map all valid PCM instances
to source code. It, however, has the disadvantage that more source code
needs to be generated. The additional generated code introduces some indi-
rections to source code, which makes the source code harder to understand
for developers. This is not an issue for SimuCom and ProtoCom, as they are
used to generate code that a) is used for performance prediction, or b) is used
to generate code stubs. This becomes an issue, however, when the source
code should be used by developers to create actual software systems.

In the current shape of the consistency preservation rules, we use one pack-
age for the Repository, which contains all packages for all Components di-
rectly. If a project uses many Components, many sub-packages are created
within the Repository package. Having many of sub-packages in the Reposi-

tory package, could decrease the understandability of the source code. To
overcome this issue, it is possible to create more container packages for the
elements within the Repository package as follows: The Repository package
could contain own sub-packages for BasicComponents and CompositeCom-

ponents.

Using the consistency preservation rules, it is not possible to deploy the cre-
ated components and systems on di�erent machines. To overcome this issue,
one possibility is to use Remote Procedure Calls (RPC)3 for calls from one
component to another component. This means that all interfaces are realised

3 https://docs.oracle.com/javase/8/docs/platform/rmi/spec/rmiTOC.html

97

https://docs.oracle.com/javase/8/docs/platform/rmi/spec/rmiTOC.html


4. A Method for keeping Architecture Consistent with Source Code

as RPC interfaces. Thus, it would be possible to deploy the components on
di�erent machines.

Furthermore, using the package mapping consistency preservation rules, it is
complicated to create CPREs from the source code, because developers need
to comply to explained consistency preservation rules for CPRE within the
source code. Hence, we recommended to create CPRE via the architectural
model instead of creating them from within the source code directly.

4.3.2.4. Example using the Package Mapping Consistency Preservation
Rules

In this section, we introduce a small example project that consists of an
architectural model and source code, which are created using the above-
mentioned package mapping consistency preservation rules. We introduced
the simple example in our previous work [Lan13]. The example is a simpli�ed
version of the MediaStore example introduced by Koziolek et al. [KBH07] and
recently described by Strittmatter and Kechaou [SK16], which enables users
to download audio �les from a server and upload audio �les to a server.

In our simpli�ed version, the Repository of the MediaStore consists of the
two components MediaStore and WebGUI and the two interfaces IMedia-

Store and IWebGUI (see Figure 4.5). The component MediaStore provides
the interface IMediaStore, while the WebGUI component provides IWebGUI

and required IMediaStore. The WebGUI interface contains the two meth-
ods httpUpload and httpDownload. The IMediaStore interface contains the
two methods upload and download. Hence, the WebGUI component has the
SEFFs httpUpload and httpDownload, while the MediaStore component has
the SEFFs upload and download.

Figure 4.6 shows the System of our simple example: each component is instan-
tiated once within an AssemblyContext. Furthermore, the System provides
the IWebGUI interface and delegates calls to the AssemblyContext WebGUI.
Hence, users can communicate with the WebGUI component to access the
media �les that are stored within the MediaStore component.

Figure 4.7 shows the UML class diagram of the MediaStore example, which
contains the classes as well as the packages our Coevolution approach cre-
ates using the package mapping consistency preservation rules. Figure 4.7

98



4.3. Consistency Preservation Rules between Component-based Architecture and Source Code

I IWebGUI
File httpDownload(Request request)

void httpUpload(File �le)

I IMediaStore
File[] download(string[] ids)

void upload(File �le)

WebGUI
SEFF < httpUpload >
SEFF < httpDownload >

MediaStore
SEFF < download >
SEFF < upload >

«Requires»«Provides» «Provides»

Figure 4.5.: The Repository of the MediaStore example that contains the components
MediaStore and WebGUI

MediaStoreWebGUI

Figure 4.6.: The System of the MediaStore example. The System provides the interface
IWebGUI through a ProvidedDelegationRole.

focuses on the packages created for components. Hence, we omit the default-
packages for the OperationInterfaces, the DataTypes, and for the Repository

itself.

To show how a BasicComponent with one provided OperationInterface and
one required OperationInterface is realised in source code, consider Figure 4.8.
The OperationInterface named IWebGUI and its OperationSignatures corre-
spond to the IWebGUI interface and its methods. The OperationInterface

named IMediaStore is mapped accordingly. The component-realising class is
named WebGUIImpl and is contained in the package webgui. According to the
package mapping consistency preservation rules it implements the IWebGUI

99



4. A Method for keeping Architecture Consistent with Source Code

�interface�
IWebGUI

+httpDownload(request:Request):File
+httpUpload(�le:File):void

WebGUIImpl

+WebGUIImpl(iStore:IMediaStore)

�interface�
IMediaStore

+download(ids:String[]):File[]
+upload(�le:File):void

MediaStoreImpl

1

mediastore

webgui

Figure 4.7.: The UML class diagram of the MediaStore example. To ease the diagram,
we omitted the contracts, the repository, and the datatypes package.

interface and implements the methods httpUpload and httpDownload. Fur-
thermore, it needs an instance of the IMediaStore as constructor parameter
that is assigned to the �eld mediaStoreImpl.

Listing 10 shows how the System of our simple example is mapped to source
code. According to the consistency preservation rules it has one private
�eld for each of the System’s AssemblyContexts, which are instantiated
and connected in the System’s constructor. Since the System provides the
IWebGUI interface and delegates calls to the AssemblyContext that contains
the WebGUI component, the System’s realising class implements the IWebGUI
interface, overrides the methods from the IWebGUI interface, and delegates
the calls to these methods to its �eld of the WebGUIImpl class.

100



4.3. Consistency Preservation Rules between Component-based Architecture and Source Code

public interface IWebGUI {

File httpDownload(Request request);

void httpUpload(File file);

}

public final class WebGUIImpl implements IWebGUI {

public File httpDownload(Request request){

//...

}

public void httpUpload(File file){

//...

}

private final IMediaStore iMediaStore;

public WebGUIImpl(IMediaStore iMediaStore) {

this.iMediaStore = iMediaStore;

}

}

public interface IMediaStore{

File[] download(String[] ids);

void upload(File file);

}

I IWebGUI
File httpDownload(Request request)

void httpUpload(File �le)

WebGUI
SEFF < httpDownload >
SEFF < httpUpload >

I IMediaStore
File[] download(string[] ids)

void upload(File �le)

«Required»

«Provides»

Figure 4.8.: The mapping between a BasicComponent and its provided and required
OperationInterfaces to the corresponding source code elements using the package
mapping consistency preservation rules

4.3.3. Outline on How to Verify and Validate our Consistency
Preservation Rules

Even though we do not present a formal veri�cation of the used consistency
preservation rules in this thesis, we outline how the consistency preservation
rules can be veri�ed. Our consistency preservation rules could be veri�ed
using mechanisms, which can applied to the General Purpose Language (GPL)
Java. Besides of the evaluation, we will show in Chapter 6, the consistency
preservation rules can be validated using N-Version Programming (NVP).
We explain these two techniques in the following.

We do not focus on the veri�cation techniques for model transformations,
because the consistency preservation rules are written in languages, which

101



4. A Method for keeping Architecture Consistent with Source Code

package mediastoresystem;

public class MediaStoreSystemImpl implements IWebGUI{

private final MediaStoreImpl mediaStoreImpl;

private final WebGUIImpl webGUIImpl;

public MediaStoreSystemImpl(){

mediaStoreImpl = new MediaStoreImpl();

webGUIImpl = new WebGUIImpl(mediaStoreImpl);

}

@Override

public void httpUpload(File file){

webGUIImpl.httpUpload(file);

}

@Override

public File[] httpDownload(String[] ids){

return webGUIImpl.httpDownload(ids);

}

}

Listing 10:Mapping from the example PCM System to source code using the package
mapping consistency preservation rules

translate to Java code and directly manipulate the models. Calegari and Szasz
[CS13] provide a state-of-the-art overview of model veri�cation techniques.
They point out that many tools, used for the veri�cation of model transforma-
tion are based on relational and graph-based transformations, because both
can be translated into formal domains. Furthermore, they state that trans-
formation languages, which are closely related to standard programming
languages, introduce similar veri�cation problems as standard program-
ming languages (see Calegari and Szasz [CS13]). As a result, traditional
code veri�cation approaches can be applied to verify such transformation
languages.

102



4.3. Consistency Preservation Rules between Component-based Architecture and Source Code

4.3.3.1. Using Standard Javamechanisms for the Verification

As we explained in Section 3.6, we use Xtend and Domain Speci�c Languages
(DSLs) for the creation of the consistency preservation rules. As both of
this languages are translated into Java source code, we can use standard
mechanisms for Java to verify the correctness of the consistency preservation
rules. Using the behavioural speci�cation Java Modelling Language (JML)
(see Leavens et al. [LBR99]), for instance, allows users to specify contracts
for each method. The contracts can be used to verify the code against
the contracts. This can be done, for instance, by using the veri�cation
framework KeY introduced by Beckert et al. [Bec+07]. It combines automatic
and interactive proving.

To use such an approach for the veri�cation of our consistency preservation
rules, we would need to specify contracts for each consistency preservation
method. For the consistency preservation rules implemented in the GPL
Xtend, this can be done by adding the contracts to each Xtend method
and by instructing the Xtend code generator to add this JML contracts to
the generated Java method. For the MIR transformations this can be done
either by adding the JML speci�cation to the generated Java source code
or by adding the JML speci�cations to the part of the source code, which is
translated to Java methods. To ease this approach for the MIR languages, they
could be extended in order to support users by adding the JML speci�cations.
Therefore, a new language feature can be implemented, which allows users
to add JML speci�cations within the MIR languages directly.

4.3.3.2. Using NVP for the Validation

One possibility to validate the correctness of the consistency preservation
rules is to use NVP (see Chen and Avizienis [CA78]). NVP, in general,
proposes the idea of implementing multiple versions of a software system
using di�erent teams and di�erent languages. For the implementation, the
teams get the same speci�cation for the software system. The goal is to
get fault-tolerant software systems by having redundant implementations
performed by di�erent teams in order to rule out programming errors. NVP
is used, for instance, for aircraft control systems. During the runtime of the
software systems, a voter collects the output of the di�erent implementations.

103



4. A Method for keeping Architecture Consistent with Source Code

If the output of the systems is not identical the voter assumes that the majority
of systems computes the correct output and uses this output. Knight and
Leveson [KL86] performed an experiment using 27 implementations of the
same speci�cation to investigate, whether the programs fail for di�erent
tests. They found out, however, that many implementations fail for the same
tests. Hence, it turned out that di�erent programming teams perform similar
mistakes and that NVP should be used with care.

To validate the correctness of our consistency preservation rules using NVP,
we would require di�erent developers to implement the same consistency
preservation rules. This could be done, for instance, with students in a
practical course. For the package mapping consistency preservation rules,
we already have two implementations for consistency preservation rules
from PCM to Java. We performed the initial implementation using the
GPL Xtend (see Section 3.6.1), while the other implementation has been
performed by Klare [Kla16] in the reactions language. Both implementations
can be used for change-driven consistency preservation for the direction
from PCM to Java code. They both pass the tests we implemented for the
package mapping consistency preservation rules from PCM to Java (see Klare
[Kla16]). We do not consider our solution as NVP because Klare did know
the Xtend implementation and was even able to partly reuse parts of the
Xtend implementation. The implementations show, however, that we get the
same result using the GPL and the reactions language for the implemented
test cases.

4.4. Consistency Automation Levels and User
Change Disambiguation within our
Coevolution Approach

As we mentioned in the sections above, our Coevolution approach communi-
cates with the users, if the consistency between architecture and code cannot
be preserved fully automatically. The communication is usually triggered by
the consistency preservation operations to either notify the user, e.g. about
the creation of a new element in the architecture as reaction of a source code
change, or to ask the users intention. To give an example for the user change

104



4.4. Consistency Automation Levels and User Change Disambiguation

disambiguation mechanism, consider our running example in Section 4.3.2.
We introduced the mapping for CollectionDatatypes to source code, where
we map each CollectionDatatype to its own class that inherits from a Java
Collection class. On architectural level, however, only generic Collection-
Datatypes are known. Hence, it is unclear which Java collection should be
used as base class for the new Java class. One possibility is to determine the
Java collection class, e.g. ArrayList, in the consistency preservation rules
operation already. This has the disadvantage, that for all collections the
same base class is used by default even though the class is not suitable for all
speci�c requirements. To overcome this disadvantage, we proposed to ask
the users in order to disambiguate a performed change and let them decide
which Java collection class should be used after a new CollectionDatatype

has been added. Hence, the approach in this case is semi-automatic, because
we request users to disambiguate the change.

In this small example we illustrated that a fully automatic consistency preser-
vation not intended for every change using our Coevolution approach. To
ensure semi-automatic consistency within our Coevolution approach, we
identi�ed two kinds of possible user change disambiguation. The �rst one
is an interactive user change disambiguation using dialogs, and the second
one is a postponed user change disambiguation using a task list.

In this section, we �rst explain and classify the di�erent levels of automation
for consistency preservation, we used in our Coevolution approach. After-
wards, we explain the possible time and kind of user change disambiguation.
In the last step of this section, we explain the di�erent kinds of user change
disambiguation our Coevolution approach uses to clarify the intent of a user
change if necessary.

4.4.1. Levels of Automation used in our Coevolution Approach

The problem of not being able to keep changes in models consistent automat-
ically with the other models in the VSUM is not speci�c to our Coevolution
approach, but also applies to the Vitruvius approach in general. For Vit-
ruvius in general Werle [Wer16] and Kramer [Kra17] identify six levels of
automation for the consistency preservation, which are depicted in Figure 4.9.
We adapted the terminology slightly in order to match the terms used in this
thesis. Using our Coevolution approach only the following three automation

105



4. A Method for keeping Architecture Consistent with Source Code

no automated consistency

general warnings

change impact analysis

suggestions of consistency
preservation steps

semi-automated consistency
with user change disambiguation

fully automated
consistency preservation

more automation less
user change

disambiguation

Figure 4.9.:Di�erent levels of automation in Vitruvius for consistency preservation
based on [Wer16] and [Kra17]. For our Coevolution approach only the top three
levels are relevant.

approaches are relevant: fully automated consistency preservation, semi-
automated consistency preservation with user change disambiguation, and
automated suggestions for consistency preservation steps.

Fully automated consistency preservation means that after either a source
code element or an architectural element has been changed the corresponding
model elements are changed and kept consistent automatically. Using our
package mapping consistency preservation rules the most changes fall into
this category. Especially for the mappings from the statical architectural
elements, e.g. components and interfaces to source code almost all changes
can be kept consistent automatically.

106



4.4. Consistency Automation Levels and User Change Disambiguation

Semi-automated consistency preservation means, that additional informa-
tion is necessary to preserve the consistency after users performed a change
to a model. Based on this additional information from users, the changes
on the corresponding model elements can be executed automatically by our
Coevolution approach. Hence, the additional information is usually required
by the consistency preservation operation itself to get additional informa-
tion from users in order to keep the models consistent. Using the package
mapping consistency preservation rules, this approach is used mainly for
the source code to architecture mapping. For instance, the approach is used
if a new package is added. In this case, users need to clarify whether the
new package should be mapped to a new component or a new system or if
they want to decide later, whether the new package should be mapped at all.
The approach is also used if users add a class into a package without a corre-
sponding component or system yet. For the package mapping consistency
preservation rules from architectural model to source code, the users only
need to disambiguate a change if they created a new CollectionDatatypes.

Automated suggestions for consistency preservation means that the cor-
responding elements cannot be created automatically. In this case only
suggestions can be provided automatically. These suggestions specify which
elements need to be changed respectively adapted by the users to achieve
consistency between the models. Using our Coevolution approach and the
package mapping consistency preservation rules changes to the internal
behaviour of a SEFF fall in this category. These changes fall in this category,
because, it is in general not possible to determine automatically the code
for the actions within a SEFF. For instance, an InternalAction in a SEFF could
span multiple methods and call arbitrary third party libraries. Hence, if an
action is added to a SEFF, we cannot change the code accordingly, but we
can point to the method that needs to be adapted by developers. Further
details to the mapping between the behaviour in terms of SEFFs and code
are explained in Section 4.5.

If our Coevolution approach is used it depends on the implemented consis-
tency preservation rules, whether models can be kept consistent automati-
cally or whether users are request to disambiguate a change. Especially, the
�rst two levels are depending on the used consistency preservation rules,
because the implemented consistency preservation operations can decide
hard coded which actions should be executed, instead of asking the user to
disambiguate the change. Avoiding the kind of user change disambiguation,

107



4. A Method for keeping Architecture Consistent with Source Code

where the users need to provide additional information, has the advantage
that users are not interrupted often during the development. It has, how-
ever, the disadvantage that the options for the end users are limited. These
limitations can be acceptable for certain domains or projects where such
decisions are clear and can be made during the design time of the VSUM.
To give an example for a user change disambiguation that could be avoided,
consider the example for CollectionDatatypes. In this case, we currently re-
quest users to disambiguate the change in order to get the information which
Java collection type should be used for the corresponding class. In order to
avoid users to disadvantage a change, we could change the mapping, for
instance, in a way that the Java collection ArrayList is used for all Collec-
tionDatatypes. To avoid user change disambiguation for changes in source
code, we could specify, for instance, that for each new package in the source
code, a new BasicComponent is created automatically. Hence, in both cases a
user change disambiguation could be avoided, but the options for end users
of our Coevolution approach would be limited.

4.4.2. Point in Time and Kind of User Change Disambiguation

In the section above, we introduced the automation levels used in our Coevo-
lution approach. Three other challenges for the user change disambiguation
in our Coevolution approach are to determine i) the point in time when
a user change disambiguation should be executed, ii) the amount of infor-
mation that is necessary, and iii) the kind of user change disambiguation,
which determines how users are requested to disambiguate the change.
These challenges are not independent from each other in our Coevolution
approach, because the time and the amount of information necessary for
a user change disambiguation usually determines also the kind of the user
change disambiguation.

For our Coevolution approach, we identi�ed two points in time when a user
change disambiguation can take place: They either can take place directly
after a user performed a change, or they can take place in a future point in
time. Hence, the �rst one is an interactive user change disambiguation, for
which we propose the use of dialogs. The second ones are future interactions
that do not interrupt the users during the development, but the users need
to take care of the consistency preservation in a later step. The requested

108



4.4. Consistency Automation Levels and User Change Disambiguation

information from a speci�c user change disambiguation can vary between
a single information that needs to be provided by users, up to the request
of changing many elements in the source code or architecture after one
corresponding element has been changed.

As we mentioned above the kind of user change disambiguation depends on
the point in time as well as on the requested information. For our Coevolution
approach, we currently use dialogs and task lists as kinds of user change
disambiguation. Dialogs are suitable if only one or few information from the
same user that performed the change, which caused the immediate execution
of the current consistency preservation operation. Task lists are suitable
if at least one of the following conditions is true: i) many information are
necessary to ensure consistency, ii) the user that performed the change is
not responsible or able to ensure consistency, or iii) the user that performed
the change should not be interrupted.

Similar to the automation level challenge the above-mentioned challenges
for user change disambiguation are also challenges for the whole Vitruvius
approach. Kramer [Kra17] also identi�es that it is necessary to determine the
time (when) and the kind (how) of user change disambiguation. For the time
challenge he proposes three possibles points the time: before the transforma-
tion, during the transformation (when needed), and after the transformation.
For the kind of user change disambiguation he proposes interactive as well
as postponed user change disambiguation. While the interactive kind is suit-
able for immediate user change disambiguation, the postponed user change
disambiguation is suitable if di�erent users respectively di�erent user roles
are involved in the consistency preservation process. While our point in
time and kind of user change disambiguation are speci�c for our Coevo-
lution approach, the challenges and solutions Kramer proposed are more
general and tackle bidirectional transformation challenges using di�erent
automation levels in general.

4.4.3. Interactive Interactions using Dialogs

As mentioned above, this interactive dialogs are used by our Coevolution
approach if information are needed from the same user that performed
the change in an interactive way to �nish the execution of the current
consistency preservation operation. On the automation levels, we presented

109



4. A Method for keeping Architecture Consistent with Source Code

above, the user dialogs can be classi�ed on the second level (semi-automated
consistency preservation).

For the dialogs itself, we propose two dimensions. The �rst dimension deter-
mines whether a modal or a non-modal respectively modless dialog should
be used. Modal dialogs are used by our Coevolution approach if immediate
user reaction is necessary to execute the current consistency preservation
operation. Since modal dialogs are blocking dialogs, the advantage of modal
dialogs for our Coevolution approach is that no other changes can occur
until the dialog is answered and closed. The disadvantage of modal dialogs,
however, is that they need immediate response from the users and block
them until they disambiguated the change. Modless dialogs on the other
hand are non-blocking dialogs. For our Coevolution approach this means
that users can continue to work on the models even if the dialog is not an-
swered and closed yet. Hence, modless dialogs should be used when possible
in general. Within our Coevolution approach modless dialogs are used if
an interactive interaction with the users is necessary, but the answer to the
dialog is not necessary immediately. The challenge of modless dialogs for
our Coevolution approach are that changes in one of the models can occur
even if the dialog remains unanswered. Hence, they can be used for those
information that are not critical for other model elements.

The second dimension is the kind of dialog that is used to display the user
change disambiguation to the users. The kind of the used dialog depends on
the information that is requested by the current consistency preservation
operation. We currently use the following three dialog kinds: If the transfor-
mation can provide a choice between di�erent options, we use a radio button
dialog. It the transformation needs to have an information that needs to be
user-de�ned, we use a free text input box. As last kind, we use yes/no dialogs
if the consistency preservation operation needs the information, whether for
a performed change a corresponding element should be created or changed
as well.

In the following, we give some examples for dialogs using our Coevolution
approach and the package mapping consistency preservation rules. Let us
�rst consider the example of PCM CollectionDatatypes again. If a Collec-

tionDatatype has been created in the PCM it is unclear for the consistency
preservation operation which Java collection class should be used. Hence,
additional information from the user is required. Since only one information

110



4.4. Consistency Automation Levels and User Change Disambiguation

is required and the possible selection can be de�ned upfront, we use a modal
dialog box that uses radio buttons where users can choose from di�erent
Java collections types.

If a new package has been added, we use a modless dialog box with radio
buttons to get the information from the user whether a new architectural
element should be created as corresponding element for the new package.
This new corresponding element can either be a BasicComponent, a Compos-

iteComponent, or a System. Another option is to not create a corresponding
architectural element respectively decide later whether a new architectural
element should be created. If a new class has been added in a package that
already has a corresponding component or a corresponding system, but no
realisation class for the component or system yet, we use a yes/no dialog to
ask the user whether the new class should be the realisation class for the
corresponding architectural element or not.

4.4.4. Task list to enable late resolving of inconsistency

Another way to interact with the users, which we use within our Coevolution
approach, is a task list, which contains future tasks for software developers
and software architects. Using our Coevolution approach, the following
additional domain speci�c information are stored in the task list to ease
the task of the users: i) information which element has been changed re-
spectively which element has been added or removed, and ii) a pointer to
the corresponding element(s) that should be changed to keep the models
consistent. The task list can be used for semi-automated consistency preser-
vation as well as for the suggestion of consistency preservation steps. One
advantage of the task list is that it can be used for consistency preservation
tasks that require users to add many information to either one of the models,
e.g. implementing a whole method or class. Another advantage is that it can
be used if the current user is not the right user to keep the current change
consistent with the other models.

Using the package mapping consistency preservation rules within our Co-
evolution approach, we use the task list for changes within a PCM SEFF as
follows: After an action has been added to a SEFF, we add a task to the task list
that points to the method, which corresponds to the SEFF. The created task
contains the information which element in the architecture has been changed

111



4. A Method for keeping Architecture Consistent with Source Code

and provides information about the change that should be performed in the
source code method. This is easy for control �ow elements, such as Exter-
nalCallActions, Loops, and Branches. For InternalActions, however, we only
can point to the corresponding method and can add information between
which control �ow elements the new change has been introduced.

4.5. Coevolution of Source Code Behaviour and
Architectural Elements

In this section, we present an approach that keeps behaviour models con-
sistent with the source code during the software development and software
evolution. Hence, this section addresses the third research challenge, which
we de�ned in Section 4.1 for this chapter. Having an up-to-date behaviour
model enables users of our Coevolution approach to get an abstract view
about the behaviour of the software system. Furthermore, the behavioural
model can be used to perform model-based analyses. Since we use the PCM
as architecture model, we use the SEFF as behavioural model that should be
kept consistent with the source code. Even though we focus on the SEFF,
the concepts we propose can be applied to other behavioural models, such
as the UML activity diagram, as well. Since we use the PCM and propose
a possibility to keep the PCM SEFFs consistent with the source code, the
models we use can be used in a later step to predict the performance of a
software system using the performance prediction capabilities of the PCM
(see 2.3).

In the sections above, we explained how we can keep the static architecture
in terms of packages, classes, interfaces, �elds and parts of constructors
of a software system consistent with the source code. Hence, we consider
that code as static source code. Code that needs to be kept consistent with
behavioural models is the code within method bodies. Hence, we consider
that code as behavioural source code.

To keep a behavioural model and behavioural source code consistent, we
could use bidirectional consistency preservation rules between source code
and models. This would be a similar approach to the consistency preser-
vation between static architecture and static source code. It turned out,

112



4.5. Coevolution of Source Code Behaviour and Architectural Elements

however, that this approach can only be used as unidirectional mapping
from behavioural architecture models to source code. To keep code changes
consistent with the architecture, we extended the SEFF reverse engineering
approach from SoMoX [Kro12]. This approach is able to reconstruct a SEFF

incrementally after users changed the source code using the code editor.
The SEFF reconstruction depends on the used consistency preservation rules
between architectural model and source code, i.e. the SEFF reconstruction
needs to be de�ned speci�cally for the used consistency preservation rules.

In the remainder of this section, we �rst explain how changes on architec-
tural behaviour models can be kept consistent with the source code (see
Section 4.5.1). In the second part of the section (see Section 4.5.2), we explain
how we can keep the behavioural architecture models consistent after the
source code has been changed and explain how this approach can be used to
detect architecture violation (see Section 4.5.2.4). To ease the understandabil-
ity of this approach, we give an example for the incremental-change-driven
reconstruction in Section 4.5.2.6. In Section 4.5.3, we explain how this two
approaches can be combined to support coevolution.

4.5.1. Mapping from SEFF to Source Code

Keeping changes in a SEFF consistent with source code is challenging, be-
cause the SEFF is an abstraction from the source code and does not spec-
ify how the underlying source code is implemented. An InternalAction,
for instance, can abstract a complicated algorithm that spans over several
component-internal classes and is used by the component to ful�ll its pro-
vided service. Hence, generating meaningful code if a SEFF element is
added or changed is in general not possible for all SEFF elements. As men-
tioned above, however, we can de�ne consistency preservation rules from
behavioural models to source code. To this end, however, we are not generat-
ing code if a user changes the SEFF because the SEFF is an abstraction from
the source code. We are, however, able to generate tasks for developers who
are responsible for implementing the software system. This tasks are gener-
ated in the task list for developers and point to the method that corresponds
to the SEFF in which the Action has been changed. After implementing the
tasks developers need to mark them as done and remove them from the task

113



4. A Method for keeping Architecture Consistent with Source Code

list. The approach of using a task list to restore the consistency later, is simi-
lar to the approach described by Balzer [Bal91]. He describes an approach
for resolving inconsistency. In his approach, tolerated inconsistencies are
marked and its values leading to them are stored. The inconsistencies need
to be resolved in a later step.

Even though we currently only generate tasks in the task list, it is possible to
generate code stubs in the code for certain domains or SEFF elements. It is
possible to create code for the control �ow elements within the SEFF, such as
Loops and Branches as well as for ExternalCallActions. This can be done using
the information from the Vitruvius correspondence model. For instance,
it is possible to generate stubs for a switch-case statement within the code
after a Branch action has been added in a SEFF. Doing so can be useful in
certain domains, such as the embedded systems domain. However, since
the goal of our Coevolution approach is not to enable visual programming
and we do not focus on the embedded systems domain, we have not further
investigated the possibilities on how to generate stubs for the control �ow
elements within a SEFF.

4.5.2. Incremental SEFF Creation to Create up-to Date
Behavioural Models

As mentioned above, to incrementally create the SEFF from the source code,
we extend the SEFF reverse engineering approach from SoMoX [Kro12].
We explained the SoMoX SEFF reconstruction approach as proposed by
Krogmann [Kro12] in detail in 2.4. For this section, it is relevant to know that
the SEFF reconstruction performs a control �ow analyses for each method
that corresponds to a SEFF in order to create the actions within a SEFF

from source code. To do so, the SEFF reconstruction approach uses a two-
state process. Within the �rst step of the process all method calls within a
method are classi�ed. Herby, the calls are divided in component-internal
calls, component-external calls, and library calls. Component-external calls
are calls to a method of another component or to an interface method that
corresponds to an OperationSignature. A library call is a call to a third party
library or a language API a or a data type. Internal calls are those calls that
are neither of the above, i.e they are calls to a method that is in a class within
the same component. In the second step of the process, the actual control

114



4.5. Coevolution of Source Code Behaviour and Architectural Elements

�ow analyses is executed in order to build the SEFF. Based on the component-
external calls the SEFF reconstruction approach creates the corresponding
SEFF elements for loops, switch and if statements. The SEFF reconstruction
process of SoMoX, however, only works if the whole source code of the
software system has been parsed upfront. Furthermore, a Source Code
Decorator Model (SCDM), which can be used to classify the method calls
within a method, needs to be available. The �rst point is not an issue for the
SoMoX SEFF analysis, because the whole source code of the software system
under investigation is parsed before the SoMoX reconstruction process starts.
The second point is also not an issue for the SoMoX SEFF analysis, because
SoMoX creates a SCDM within the reconstruction steps that are executed
before the actual SEFF reconstruction.

4.5.2.1. Goal and Challenges for the Change-Driven Incremental SEFF
Creation

The main goal of the incremental SEFF reconstruction is to built a SEFF for
only the part of the source code that has been changed. Hence, only the
a�ected SEFF (s) should be recreated during an incremental SEFF reconstruc-
tion. This reconstruction needs to be done without the need of parsing the
complete source code of a project. For instance, a possible unit that can
be reconstructed incrementally is a SEFF for the method after the method
body has been changed by a developer. As SoMoX creates the SCDM during
the �rst phase of the reconstruction of a software system, we do not have a
SCDM within our Coevolution approach. Hence, another goal is to enable
the SEFF reconstruction without having a SCDM available. The SoMoX SEFF

reconstruction uses the SCDM for the following tasks:

1. check which component belongs to which class, i.e. the SCDM is
used to classify the method calls, and

2. �nd the called interface and the called port for a found
component-external call.

From these tasks the SCDM is used for, we can identify the �rst three chal-
lenges that appear if we want to use the SoMoX SEFF reconstruction ap-
proach within our Coevolution approach: i) we need to circumvent the fact
that we need to have the parsed source code of the whole project, ii) the

115



4. A Method for keeping Architecture Consistent with Source Code

classi�cation of method calls need to work either without the SCDM or with
an incrementally updated SCDM, and iii) the called interface and the ports
also need to be identi�ed either without the SCDM or with an incrementally
updated SCDM. These challenges are not independent from each other, be-
cause the second and third steps not only need an up-to-date SCDM, but
they also need the parsed source code of the whole project. Hence, if an
approach solves the second and third challenge without parsing the source
code of the whole project it would automatically solve the �rst challenge as
well.

Another challenge, challenge iv), comes with the incremental reconstruction
of component-internal methods after their code has been changed. Us-
ing the SoMoX SEFF reconstruction as introduced by Krogmann [Kro12]
component-internal methods are either inlined in the SEFF or made explicit
in ResourceDemandingInternalBehaviours. They are made explicit if the fol-
lowing two conditions are true: i) the method is called more than once within
a component, and ii) the method contains at least one component-external
method call. In the following, we refer to SEFF and ResourceDemandingIn-

ternalBehaviours as ResourceDemandingBehaviour if the statement we make
is true for both of them. From the standard reconstruction of component-
internal methods, we can derive the following two sub-challenges for the
change-driven reconstruction of ResourceDemandingBehaviour : iv).1: adding
or removing a method call, which destination is a component-internal
method, to a method that corresponds to a ResourceDemandingBehaviour,
and iv).2: changing a component-internal method in a way that a�ects the
component external-behaviour of the component. Since in the standard
SoMoX SEFF reconstruction approach component-internal methods are in-
lined within their parent ResourceDemandingBehaviour if their called only
once respectively made explicit if they are called at least twice, we need to
make this behaviour incremental. This sub-challenge, however, only occurs if
a component-internal method contains at least one component-external call.
Otherwise it would be inlined to an InternalAction in the a�ected ResourceDe-
mandingBehaviour. The second sub-challenge, iv).2, occurs, for instance, if
a component-internal method does not contain a component-external call
yet, but the latest change has introduced a new component-external call.
The exempli�ed change of introducing the �rst component-external call
to a method, also a�ects ResourceDemandingBehaviours that correspond to
other methods, because the component-internal method would have been ab-

116



4.5. Coevolution of Source Code Behaviour and Architectural Elements

public final class WebGUIImpl implements IWebGUI {

private final IMediaStore iMediaStore;

public File httpDownload(Request request){

if(RequestHelper.isValid(request)){

File file = this.doDownload(request);

return file;

}else{

logger.warn("Request " + request + "is not valid");

return null;}

}

private File doDownload(Request request){

String[] id = RequestHelper.getId(request);

if(id == null || id.length == 0)

return null;

}

}

Listing 11:An implementation of the download method

stracted to an InternalAction using the SoMoX SEFF reconstruction in those
SEFFs. One consequence that follows from both of the two sub-challenges is
that changes on one method in the code can potentially a�ect more than one
ResourceDemandingBehaviour of one component. Like the other challenges,
the fourth challenge does not occur in the standard SoMoX SEFF reconstruc-
tion, because the code is not analysed incrementally within SoMoX, i.e. the
code under investigation does not change during the reconstruction.

Example for the Challenges Consider Listing 11 that represents an imple-
mention of the download method of the WebGUIImpl class, which we intro-
duced in Section 4.3.2.4: Let us assume, that SoMoX reconstructed the same
static architecture as depicted in the running example (see Figure 4.5). Hence,
the SCDM would contain the information that the components WebGUI con-
tains the class WebGUIImpl and the component MediaStore contains the class
MediaStoreImpl. Furthermore, the SCDM contains the information, that the
OperationInterface IWebGUI as well as its signatures corresponds to the IWe-

bGUI Java interface and its methods, and that the OperationInterface IMedia-

Store as well as its signatures corresponds to the IMediaStore Java interface

117



4. A Method for keeping Architecture Consistent with Source Code

private File doDownload(Request request){

String[] id = RequestHelper.getId(request);

if(id == null || id.length == 0)

return null;

return this.iMediaStore.download(id)[0];

}

}

Listing 12: The doDownload method after a developer added a component-external
method call

and its methods. As mentioned above, the SoMoX SEFF reconstruction mech-
anism uses the SCDM to identify whether a component-external method is
used. Using the provided SCDM, the SoMoX SEFF reconstruction considers
the method calls doDownload as component-internal call. We assume that the
method calls isValid, getId and log are calls to third party libraries. Hence,
these calls are considered as library calls. Since no component-external meth-
ods are used in the method httpDownload and in the methods that are called
directly or indirectly the created SEFF contains only one InternalAction.

Evolution scenario Let us assume the evolution scenario in Listing 12, in
which developers change the doDownload method and add a component-
external method call as follows: The new call to the download method of
the IMediaStore interface is a component-external call. As the SoMoX SEFF

reconstruction does not work incrementally, all above-mentioned challenges
occur after after such a change: i) if no information is available in which part
of the source code the change occurred and if the model of all source code
�les from the project is necessary, the source code of the whole project needs
to be parsed, ii) since our Coevolution approach does not have a SCDM
available, we do not know whether a given method call is a component-
external method call or a component-internal method call. iii) if the call is a
component-external method call our Coevolution approach does not know
how to represent the method call on the architecture model, because it is
unclear which architectural interfaces and which architectural ports are used
to realise the call, and iv) to update the SEFF accordingly the SEFF needs to
be analysed for both: the method doDownload and all methods that call the
doDownload method as well as the methods that call these methods. In our

118



4.5. Coevolution of Source Code Behaviour and Architectural Elements

«InternalAction»
IA 1

1 <CPU>

SEFF without
component-external

method call

«BranchAction»
? Branch

Branch 1

Probability: 0.5

«InternalAction»
IA 2

1 <CPU>

«ExternalCallAction»

iMediaStore.download

VariableUsage

Branch 2

Probability: 0.5

«InternalAction»
IA 3

1 <CPU>

SEFF after a component-external method call has been added

Figure 4.10.:Comparison between the SEFF before a new method call has been added
(left side) and the reconstructed SEFF after the new method call has been added (right
side).

example, this means that we need to analyze the httpDownload method as
well. Within the httpDownload the if-else statement needs to be made explicit
into a BranchAction, because the if branch contains an external method call.
Figure 4.10 shows the resulting SEFF before the change (left side) and after
the change (right side). The �gure illustrates that multiple SEFF changes can
be necessary after one component-external method call has been added to a
method.

119



4. A Method for keeping Architecture Consistent with Source Code

4.5.2.2. Change-driven Incremental SEFF Reconstruction based on the
SoMoX SEFF Reconstruction

In this section, we propose an approach that solves the above-mentioned
challenges and is able to reconstruct a SEFF incrementally in an change-
driven way. The approach neither needs a SCDM nor the parsed source code
of the whole project. Hence, the �rst challenge is implicitly solved by solving
the second and third challenge.

To solve the second challenge, we propose the following approach: Even
though no SCDM is available, we can use the current consistency preserva-
tion rules as well as the information from the Vitruvius correspondence
model to classify each method call. Since, the classi�cation of method calls
depends on the current consistency preservation rules our classi�cation
mechanism is speci�c for the used mapping. The speci�c part, however, only
applies to the external calls and library calls since internal calls can be found
generic, because component-internal calls are those calls which are neither a
component-external call nor a library call. This means that we need to have
a mapping-speci�c external call �nder as well as a mapping-speci�c library
call �nder.

To solve the third challenge, we need to �nd an approach that is able to
�nd the matching OperationSignature and the matching ProvidedRole for
a component external method call. As for the second challenge, this can
be done using the information from the current consistency preservation
rules and the Vitruvius correspondence model. Hence, this information is
mapping-speci�c as well, because the information how a ProvideRole and a
source code method is mapped to a OperationSignature can vary between
di�erent consistency preservation rules.

Hence, we can state that to use an incremental version of the SoMoX SEFF

creation approach within our Coevolution approach, one needs to imple-
ment the following functions speci�c for the used consistency preservation
rules:

• a method call classi�cation that classi�es component-external calls
and library calls, and

• a matcher that �nds the corresponding OperationSignature and
RequiredRole for a component-external call.

120



4.5. Coevolution of Source Code Behaviour and Architectural Elements

To solve the fourth challenge, we propose two di�erent approaches: The �rst
one, recreates the SEFF the same way as proposed by Krogmann [Kro12].
The second one, slightly changes the existing SEFF reconstruction approach:
it makes all method calls that are considered as component-internal calls
explicit within the SEFF. Both are presented in the following.

Change-driven SEFF Reconstruction by Inlining Component-internal Calls
The �rst approach to solve the fourth challenge including its sub-challenges,
creates the same output as the SoMoX SEFF reconstruction process. Hence,
methods that are considered as component-internal methods are treated the
same way as in SoMoX. This means they are inlined within the SEFF by
default. As mentioned above, Krogmann [Kro12] proposed an optimization
of this approach by creating ResourceDemandingInternalBehaviours for all
methods that are i) considered as component-internal method calls, and ii)
called at least twice within the component. In the SEFF an InternalCallAction

is created for the method calls to those component-internal methods. For
the internal-method itself a ResourceDemandingInternalBehaviour is created.
This approach has the advantage that it omits the redundancy of having
the same source code method represented in more than one SEFFs. If this
approach would not be used, a method that is called multiple times would
be analysed multiple times and would be represented in multiple SEFFs.

To reconstruct SEFFs in an incremental, change-driven way and solve the
fourth challenge using the approach presented by Krogmann, our Coevolu-
tion approach needs to be able to change not only the ResourceDemanding-

Behaviours elements corresponding to the changed method, but it also needs
to be able to reconstruct the actions within ResourceDemandingBehaviours

for a�ected methods. Hence, the approach needs to able to change more than
one ResourceDemandingBehaviours for one change. We �rst need to decide
whether we need to change more than the SEFF elements that correspond to
the current method. For sub-challenge iv).1 this is the case if either of the
following cases is true: i) if a call is added that calls a component-internal
method so that this component-internal method is called twice, or ii) if a
call has been removed that calls a component-internal method so that the
component-internal method is called only once. For sub-challenge iv).2 this
is the case if either of the following cases is true: iii) the �rst component-
external method call has been added to a component-internal method, or

121



4. A Method for keeping Architecture Consistent with Source Code

iv) the last component-external call has been removed from a component-
internal method. If either of these four cases is true, we secondly need to
calculate the a�ected ResourceDemandingBehaviours. Since the Vitruvius
correspondence model contains the correspondence information from a
method to its SEFF respectively ResourceDemandingInternalBehaviour, we
can �gure out the a�ected ResourceDemandingBehaviours directly by using
the Vitruvius correspondence model. Since we know all actions that are
a�ected by the change, we also have the information which parts of the
corresponding ResourceDemandingBehaviours are a�ected.

As last step, we need to update all a�ected ResourceDemandingBehaviours as
shown in Algorithm 2 and described in the following: If the �rst case (i) is true,
our approach creates a ResourceDemandingInternalBehaviour for the method
that has been called and creates an InternalCallAction within the ResourceDe-
mandingBehaviour that corresponds to the method that has been changed.
Furthermore, it replaces the actions, which correspond to the called method
with an InternalCallAction to the newly created ResourceDemandingInter-

nalBehaviour in their current ResourceDemandingInternalBehaviour. Hence,
actions that correspond to the method are made explicit in an ResourceDe-

mandingInternalBehaviour and this ResourceDemandingInternalBehaviour is
called in the existing ResourceDemandingBehaviour, where the actions were
inlined. If the second case (ii) is true, our approach rolls back the steps done
for case i). This means, that the corresponding ResourceDemandingInternal-

Behaviour for the method is removed and the actions of it are inlined in the
ResourceDemandingBehaviour, that calls the ResourceDemandingInternalBe-

haviour using an InternalCallAction.

If the third case (iii) is true, we need to create an ExternalCallAction in the
ResourceDemandingBehaviour, which corresponds to the changed method.
Furthermore, we need to recreate the ResourceDemandingBehaviour of the
method that calls the component-internal method and the methods calling
this method until we reach a method that directly corresponds to a SEFF or a
ResourceDemandingInternalBehaviour. The reason for that is that the call to
the component-internal method can be executed, for instance, within a for-
loop or an if statement, which has been abstracted to an InternalAction until
the new component-external method call has been introduced. However,
with the new component-external call action in the component-internal
method, this control-�ow elements become relevant for the behavioural
model as well and need to be made explicit in the ResourceDemandingBe-

122



4.5. Coevolution of Source Code Behaviour and Architectural Elements

Algorithm 2 Change-driven SEFF reconstruction that inlines component-
internal calls
Require: changedMethod← source code method,

vcm← Vitruvius correspondence model
1: behaviour← reconstructBehaviourForMethod(changedMethod)
2: internalMethodChanged← ¬vcm.hasSe�For(changedMethod)
3: if 2nd overall call to any internal method introduced then
4: internalMethod← getInternalMethodCalledTwice(changedMethod)
5: rdib ← createResourceDemandingInternalBehaviour-

ForMethod(internalMethod)
6: a�ectedRBs
← vcm.getCorrespondingResourceBehaviours(internalMethod)

7: for all a�ectedRB ∈ a�ectedRBs do
8: internalCallAction← newInternalCallActionCalling(rdib)
9: a�ectedRB.replace(rdib.actions, internalCallAction)

10: else if removed second to last call from any internal method then
11: internalMethod← getInternalMethodCalledOnlyOnce(changedMethod)
12: rdibForMethod← vcm.getCorrespondingBehaviour(internalMethod)
13: internalCallAction← �ndInternalCallActionThatCalls(rdibForMethod)
14: callingBehaviour← internalCallAction.parentBehaviour
15: callingBehaviour.replace(internalCallAction, rdibForMethod.actions)
16: delete(rdibForMethod)
17: else if internalMethodChanged ∧ (�rst external call added ∨ last external call

removed) then
18: a�ectedMethods← newEmptySet
19: invokingMethod← �ndInvokingMethod(changedMethod)
20: corresponding← vcm.correspondingBehaviour(calleeMethod)
21: while corresponding = ∅ do
22: a�ectedMethods.add(invokingMethod)
23: invokingMethod← �ndInvokingMethod(changedMethod)
24: corresponding← vcm.correspondingBehaviour(invokingMethod)
25: for all a�ectedMethod ∈ a�ectedMethods do
26: reconstructSEFFforMethod(a�ectedMethod)

haviour. If the fourth case (iv) is true, we need to abstract the method call into
an InternalAction. As in the third case, we need to recreate the ResourceDe-

mandingBehaviour for the current method as well as the ResourceDemand-

ingBehaviour that calls the internal method. Again, this has to be done
until a method is reached that either corresponds to a SEFF or a ResourceDe-

123



4. A Method for keeping Architecture Consistent with Source Code

mandingInternalBehaviour directly. To �gure out, whether a method directly
corresponds to either of both or not, we can again use the Vitruvius corre-
spondence model. For methods with a direct correspondence the matching
ResourceDemandingBehaviour is stored, while for other methods only their
actions are stored in the correspondence model.

This approach has the advantage that the abstraction level remains the
same as in the original SoMoX SEFF reconstruction. However, it has the
disadvantage that multiple ResourceDemandingInternalBehaviours need to
be updated for speci�c changes, e.g. if the �rst component-external call has
been added to a component-internal method.

Change-driven SEFF Reconstruction bymaking all Component-internal Calls
explicit The second approach to solve challenge iv) and its sub-challenges
is to change the existing SEFF reconstruction approach. Instead of inlining
component-internal method calls within the current ResourceDemanding-

Behaviour, we propose to make every component-internal method explicit
within its own ResourceDemandingInternalBehaviour. Hence, we create a
ResourceDemandingInternalBehaviour for each component-internal method
if it is called the �rst time from a method that corresponds either to a SEFF

or another ResourceDemandingInternalBehaviour. In the ResourceDemand-

ingBehaviour that corresponds to the actual changed method, we create
an InternalCallAction, which calls the ResourceDemandingInternalBehaviour.
During the creation of the InternalCallAction, we do not know whether
the called ResourceDemandingInternalBehaviour will contain a component-
external method call in the future. Hence, the surrounding control �ow
elements of the component-internal method calls are need to made explicit
as well, even if the called method does not contain a component-external
method call yet. If, for instance, a component-internal method is called
within a for-loop, we need to make this for loop explicit in the corresponding
ResourceDemandingBehaviour as well. Sub-challenge iv).1 is solved since
no inlining is done using this approach. Instead every component-internal
method is made explicit in a ResourceDemandingInternalBehaviour, regard-
less whether it is called only once or whether it contains a component-
external method call. Sub-challenge iv).2 is omitted, as ResourceDemand-

ingBehaviours behaviours are made explicit as soon as they are called the
�rst time, i.e. during the development time it cannot occur that more than

124



4.5. Coevolution of Source Code Behaviour and Architectural Elements

one ResourceDemandingBehaviour is a�ected by one change. Hence, the
challenge that multiple ResourceDemandingBehaviours are a�ected by one
change is omitted, since only the ResourceDemandingBehaviour is a�ected
that corresponds directly to the changed method.

This approach has the advantage that it usually does not need to deal with
the reconstruction of multiple ResourceDemandingBehaviours after a single
change in one method has been performed by a developer. The reconstruc-
tion of multiple ResourceDemandingBehaviours after a change needs to be
executed only if a change has been performed that introduces the �rst method
call to a method that has not been reconstructed to a ResourceDemanding-

Behaviour yet. In this case, the newly called method is reconstructed �rst
and a ResourceDemandingInternalBehaviour for it is created. Furthermore,
for component-internal methods and their corresponding actions in the
behavioural model neither the inlining strategy into the parent ResourceDe-
mandingBehaviour nor the strategy of making them explicit into an own
ResourceDemandingInternalBehaviour has been done dynamically.

The approach, however, has the disadvantage that abstraction is lost, because
every component-internal method that is used is made explicit regardless
whether it contains a relevant component-external behaviour or whether it
is called at least twice within the component. Hence, the created behavioural
model potentially contains unnecessary information, which can make it hard
for users of the architectural view to get a quick overview to the insights of a
component’s behaviour. To overcome this disadvantage, we propose a view
that hides unnecessary ResourceDemandingInternalBehaviours dynamically
by inlining them as follows: In the �rst step, all ResourceDemandingInternal-

Behaviours that are either only called once within all ResourceDemanding-

InternalBehaviour or only contain InternalActions can be inlined into the
ResourceDemandingBehaviour where they are called. In the next step, con-
trol �ow elements, such as loops and branches, that internally consists only
of InternalActions can be composed to one InternalAction. In the last step,
consecutive InternalActions can be merged to one InternalAction. This view
can be created dynamically from the underlying model and can be shown
to users of the behavioural model. This view has the disadvantage, that if
users perform a change on the architectural behaviour model we cannot
�gure out the correct position in the source code where to add the new
element respectively to which method a task in the task list should be added.
However, we can add the task for the developers to the parent SEFF.

125



4. A Method for keeping Architecture Consistent with Source Code

4.5.2.3. Mapping-Specific Call Classification and RequiredRole Finder for
the Package Mapping Consistency Preservation Rules

In this section, we present a mapping-speci�c call classi�cation and a mapping-
speci�c matcher that �nds the matching RequiredRole for a component-
external call for the package mapping consistency preservation rules we
introduced in Section 4.3.2. This, consistency preservation rules map each
component to its own package and a class within this package that is the
component realisation class.

Call Classification for the Package Mapping Consistency Preservation Rules
Within the package mapping consistency preservation rules, we can de�ne
component-external calls with each one of the following de�nitions:

1. calls, where the called method corresponds to an OperationSignature,

2. calls, where the called method corresponds to either an
OperationSignature or a SEFF, or

3. calls, where the destination of the call is an interface method that
corresponds to an OperationSignature or if the destination of the call
is a class whose package or parent package corresponds to another
component as the class of the current method.

The �rst approach has the advantage, that it follows exactly the mapping
we de�ned in Section 4.3.2. Hence, the check whether a call is a component-
external call can be done directly using the Vitruvius correspondence
model, because the only check that is necessary is whether the destination
method corresponds directly to an OperationSignature. The disadvantage
of this approach, however, is that calls, whose destination is outside of the
package but does not ful�ll the mapping directly are not covered. Hence, this
approach assumes that developers are aware of the consistency preservation
rules and only introduce component-external calls by calling the required
interfaces directly. Similar to the �rst approach the second approach assumes
that the users are aware of the consistency preservation rules. It adds the
possibility to call methods, which are not interface methods but correspond
directly to a SEFF of another component.

126



4.5. Coevolution of Source Code Behaviour and Architectural Elements

This disadvantage can be overcome when the third approach is used. For
the third approach, we de�ne a component-external call as a call that calls
a method that is contained within a package that corresponds to a another
component as the package of the calling method. This approach, has the
advantage that we can �gure out if a call has been introduced that is not cov-
ered by the current architectural mapping yet. For instance, we can �gure out
if a developer adds a component-external call that is a call to a class method
of another component, that does not correspond to a OperationSignature or
a SEFF and can react accordingly. We will discuss possible reactions to this
architecture violations in Section 4.5.2.4. To �gure out whether a call is a
component-external call, we need to implement a mechanism that returns
the corresponding architectural component for a given method. To do so, we
use the following approach: First we check, whether the class of the current
method is the component realisation class for the current component. If this
is not the case and the class does not have any correspondences, we check
whether the package of the class corresponds to a component. Again, if this
is not the case, we recursively check the parent packages until we �nd a
correspondence to a component. After getting the component of the current
method and the component of the called method, we can check whether the
call is a component-external call by checking whether the components of
the methods are identical or not.

Using the example package mapping consistency preservation rules, a library
call is a call to a third party library or a call to the method within the Java
language API or a call to method, whose class corresponds to a PCM data
type, but not to a component. Hence, to �gure out, whether a call is library
call or not, we can check whether the class of the called method corresponds
to a component. If this is the case the call is not a library call. As mentioned
above, calls that are neither component-external calls nor library calls are
component-internal calls. Hence, only calls to the methods that are contained
in the same component are considered as component-internal calls.

RequiredRoleFinder for thePackageMappingConsistencyPreservationRules
Based on the above-speci�ed external call �nder, we also need to de�ne a
mapping-speci�c RequiredRole �nder. In the following, we explain one pos-
sibility to do so. The used approach is depicted in Figure 4.11. We propose is
an architecture-centric approach, i.e. we use architectural models and the

127



4. A Method for keeping Architecture Consistent with Source Code

act RequiredRole �nder

Find corresponding
OperationSignature

Find corresponding
SEFF

Get called OperationSignature
from SEFF

Get OperationInterface
from OperationSignature

Architecture
violation detected

Get RequiredRole
for OperationInterface

not found

found

not found

found

source codemethod

VITRUVIUS
correspondence model

RequiredRoleBasicComponent

Figure 4.11.:Activity diagram that shows, how the RequiredRole �nder for the package
mapping consistency preservation rules is realised. The input for RequiredRole �nder
are the changed source code method, the Vitruvius correspondence model, and the
current PCM BasicComponent. The output is the corresponding RequiredRole, which
is used by the method call. We left out the object �ow inside the activity diagram to
simplify the diagram and improve its clarity.

existing correspondence model elements, in order to �nd the RequiredRole.
The source code elements are only used as helper elements in order to �nd
the corresponding architectural elements.

128



4.5. Coevolution of Source Code Behaviour and Architectural Elements

The �rst step, is to �gure out which OperationSignature corresponds to the
called method respectively which architectural OperationInterface has been
used for the call. To do so, the approach checks whether the called method
directly corresponds to an OperationSignature. If this is not the case, the
approach checks whether the called method corresponds to a SEFF. If this is
the case, we can get the OperationSignature that is called from the SEFF. If a
called method neither corresponds to an OperationSignature nor to a SEFF,
we consider the change as an architecture violation. How we can react to this
kind of architecture violation is explained in the next section. If we detected
an architecture violation, we end the lookup for a RequiredRole. If we found
an OperationSignature, we can get its OperationInterface, i.e. we can retrieve
the OperationInterface that has been used for the call. As next step, we need
to �gure out which concrete RequiredRole of the component has been used to
perform the call. This can be done by iterating over all RequiredRoles of the
source component and use the �rst RequiredRole that requires the interface.
We can use this RequiredRole as the RequiredRole, which is used for the
component-external call. This approach, however, has two disadvantages:
To make sure that the used ProvidedRole can be determined automatically, it
adds the limitation that each component is allowed to require each interface
only once. To overcome this disadvantage, we could slightly change the
iteration over all RequiredRoles of a component. Instead of taking the �rst
matching RequiredRole, we can continue the iteration and collect all matching
RequiredRoles. If more than one RequiredRole matches, we can ask the users
to disambiguate which RequiredRole is actually used for the call. The concept
of user change disambiguation and their di�erent levels are described in
Section 4.4. The second disadvantage is that this approach does not check,
whether the performed method call actually uses the �eld that corresponds
to the RequiredRole to execute the external call. A simpli�ed approach that
checks whether the �eld is used for the call can be implemented within the
component-realisation class, because we can check whether the call uses the
�eld directly.

4.5.2.4. Detecting Architecture Violation using the Change-driven
Incremental SEFF Reconstruction

As outlined above, our change-driven incremental SEFF reconstruction, is
able to react and hinder architecture violations that can occur from wrong

129



4. A Method for keeping Architecture Consistent with Source Code

component-external method calls. If a developers adds a method call to a
di�erent method our SEFF reconstruction approach classi�es this method
call. If it is a component-external method call our Coevolution approach
�nds the corresponding OperaitonSignature and the used RequiredRole on
architectural level.

The �rst possible violation is that a corresponding OperationSignature is
found for the called method, but no RequiredRole can be found. The violation
in this case is that the current component does not require the called method
respectively its interface yet. A simple solution is to just add a RequiredRole

from the OperationInterface to the component performing the method call.
However, this would probably violate the current consistency preservation
rules since be a speci�c mapping could exist that speci�es how RequiredRoles

are mapped to the source code. Consider our package mapping consistency
preservation rules: using these rules a RequiredRole is represented by a
�eld in the component-realisation class. For these consistency preservation
rules the violation can be solved by creating a new �eld in the component-
realisation class and ensure that the performed call uses this �eld to execute
the method call.

The second possible violation is that no OperationSignature can be found
for the called method. Hence, the called method is not part of the o�ered
services of the called component. This means, that the method, which
has been called, should probably not be used from external components.
To preserve consistency and avoid the architecture violation in this case,
the following strategies are possible: One possibility is that we roll back
the change of the developers and inform them that the method they just
called should not be called from outside of the destination component itself.
Another possibility is to add the called method to the provided interface
of the called component automatically and inform users that their change
let to the creation of a new OperationSignature. Another option is to ask
the users whether the OperationSignature should be added for the new call
or whether the change in the source code should be rolled back. Hence,
a corresponding OperationSignature can be found after doing this and our
approach can execute the same steps that are executed that are executed
for the �rst architecture violation. Within the second step the users need
to disambiguate the change,i.e. software developers and software architects
need to clarify whether the method call should be allowed.

130



4.5. Coevolution of Source Code Behaviour and Architectural Elements

In our prototypical implementation, we inform the users which kind of
architecture violation has been detected. We currently do not support an
automatic solving of the architecture violations.

4.5.2.5. Implementation of the Change-driven Incremental SEFF
Reconstruction

We implemented the change-driven incremental SEFF reconstruction for the
package mapping consistency preservation rules within our Coevolution
approach. For the implementation, we implemented respectively reused the
following mechanisms: To react on changes that have been performed to
a method body within the source code, we reused the implementation of
Seifermann [Sei14] and Messinger [Mes14]. As next step, we re�ned the call
classi�cation strategy interface, which is used by the SEFF reconstruction of
SoMoX, to detect component-external calls, library calls and internal calls.
In particular, we extended the existing basic classi�cation strategy in a way
that it is possible to add mapping-speci�c classi�cation strategies easily.

For the behavioural reconstruction itself, we implemented the approach that
makes all component-internal method calls explicit. This has the advantage
that we do not need to parse more than one source code �le for each method
body change. Furthermore, we only need to reconstruct the ResourceDe-

mandingBehaviour for the changed method. The reason for this decision is
that we want to avoid the need of parsing more than one source code �les
after each change. Hence, the output models we generate are di�erent from
the output models SoMoX generates. As mentioned above, this disadvantage
can be overcome by creating a new view onto the reconstructed SEFF.

4.5.2.6. Example of Change-driven Incremental SEFF Reconstruction using
the Package Mapping Consistency Preservation Rules

In this section, we present an example of the change-driven incremental
SEFF reconstruction using the package mapping consistency preservation
rules. For the SEFF reconstruction, we use the approach of making the calls
to component-internal methods explicit within the SEFFs respectively the
ResourceDemandingInternalBehaviours.

131



4. A Method for keeping Architecture Consistent with Source Code

public File httpDownload(Request request){

if(RequestHelper.isValid(request)){

}else{

logger.warn("Request " + request + "is not valid");

return null;}

}

Listing 13: The download method after the �rst change

As example code, we use the code introduced in Section 4.5.2.6. For the
explanation of the change-driven incremental SEFF reconstruction, we focus
on the following steps: At �rst, we consider changes in the httpDownload

method. Here we focus on the change that introduces the component-internal
method call to doDownload method. As second step, we consider the same
change, we used in Section 4.5.2.6. Hence, a new component-external call is
added to the doDownload method.

Let us assume that neither the method httpDownload nor the method doDown-

load contain any code. As �rst implementation steps let us assume that a
developer adds the if-else block and the logging statement to the httpDown-

load method. The resulting httpDownload method is depicted in Listing 13:
After our Coevolution approach detects the changes it creates respectively
updates the corresponding SEFF. Therefore, it classi�es the newly introduced
method calls using the Vitruvius correspondence model and the mapping-
speci�c classi�cation for the package mapping consistency preservation
rules. Using this classi�cation mechanism gives us the information that the
calls isValid and log are considered as library calls, because the classes, of
the method are neither corresponding to a di�erent component directly nor
they are contained in another component. Hence, our incremental SEFF re-
construction approach creates one InternalAction for the method calls within
the corresponding SEFF. The left side of Figure 4.12 shows the corresponding
SEFF after the �rst steps.

As next implementation step, we consider the addition of the call to the
doDownload method within the httpDownload method. After this change the
resulting httpDownload method contains the code in Listing 14: Again, after
this change is detected the SEFF for the httpDownload method is analysed by
our incremental SEFF reconstruction. Using the Vitruvius correspondence

132



4.5. Coevolution of Source Code Behaviour and Architectural Elements

«InternalAction»
IA 1

1 <CPU>

SEFF after method-
internal state-

ments and library
calls are added

«BranchAction»
? Branch

Branch 1

Probability: 0.5

«InternalCallAction»

doDownload

VariableUsage

Branch 2

Probability: 0.5

«InternalAction»
IA 3

1 <CPU>

SEFF after the component-internal method call has been added

Figure 4.12.: The resulting SEFF of the incremental SEFF creation from the download

method. On the left side the result after the �rst two changes is depicted. These
changes introduce library calls or method internal statements only. The right side
shows the result after the third change. This change introduces the component-
internal method call to the doDownload.

public File httpDownload(Request request){

if(RequestHelper.isValid(request)){

File file = this.doDownload(request);

return file;

}else{

logger.warn("Request " + request + "is not valid");

return null;}

}

Listing 14: The download method after the call to the doDownload method has been
inserted

model gives us the information that doDownload is considered as component-
internal method call because the class of the target method doDownload is
neither a component-external call nor a library call.

133



4. A Method for keeping Architecture Consistent with Source Code

private File doDownload(Request request){

String[] id = RequestHelper.getId(request);

}

Listing 15: The doDownload method after the �rst change

Since this is the �rst call to doDownload method, we create a corresponding
ResourceDemandingInternalBehaviour for the doDownload method. The re-
constructed ResourceDemandingInternalBehaviour for the doDownloadmethod
is empty because the method does not contain any statements yet. Since
component-internal method calls are made explicit the corresponding SEFF

contains an InternalCallAction, that calls the newly created ResourceDe-

mandingInternalBehaviour. Since the method call is contained in an if-else
branch, the SEFF reconstruction also makes this if-else branch explicit within
a BranchAction in the corresponding SEFF. The resulting corresponding SEFF

is depicted in Figure 4.12.

As next step, we consider the changes in the currently empty method doDown-

load. As �rst change in the method we assume that a developer adds the
getId call to the method, which results in the following method: After our
Coevolution approach has detected the change in the method it recreates
the new behaviour for the ResourceDemandingInternalBehaviour. Therefore,
it �rst uses the Vitruvius correspondence model to classify the method
call, which is classi�ed as library call since the class of the called method
is neither contained in any component nor corresponds to an architectural
interface. This means, that we can create a corresponding InternalAction for
the method call. Hence, the resulting ResourceDemandingInternalBehaviour

contains only an InternalAction (see left side of Figure 4.13).

As next change we assume, that the check whether the length of the ar-
ray id is null or not, which changes the method to: Again, our Coevolu-
tion approach detects this change and updated corresponding ResourceDe-

mandingInternalBehaviour. Since the change does neither introduce a new
component-external method call nor a component-internal method call, our
Coevolution approach merges the resulting InternalAction with the created
InternalAction for the �rst change. Hence, the resulting ResourceDemanding-

InternalBehaviour is not changed and still looks as depicted on the left side
of Figure 4.13.

134



4.5. Coevolution of Source Code Behaviour and Architectural Elements

private File doDownload(Request request){

String[] id = RequestHelper.getId(request);

if(id == null || id.length == 0)

return null;

}

Listing 16: The doDownload method after the second change

<<InternalAction>>
IA 1

1 <CPU>

ResourceDemandingBehaviour

after the �rst two changes

<<InternalAction>>
IA 1

1 <CPU>

<<ExternalCallAction>>

iMediaStore.download

VariableUsage

ResourceDemandingInternalBehaviour

after the third change

Figure 4.13.: The resulting ResourceDemandingInternalBehaviour of the incremental
SEFF creation from the doDownload method. On the left side the result after the �rst
two changes is depicted. On the right side the result after the third change, which
inserts the call to the download method of the IMediaStore interface, is depicted.

As next change we assume, that the return statement that executes the call
to the download method of the �eld iMediaStore is added by a developer.
This change gives us the following method: After our Coevolution approach
has detected this change, it runs the SEFF reconstruction for the doDownload

method again and classi�es, amongst the other method calls, the newly intro-
duced method call. Therefore, it uses the Vitruvius correspondence model,
which contains the information that the download method corresponds to the
OperationSignature download in the OperationInterface IMediaStore. Hence,
our Coevolution approach identi�es the call to the download method as
component-external method call and creates an ExternalCallAction in the

135



4. A Method for keeping Architecture Consistent with Source Code

private File doDownload(Request request){

String[] id = RequestHelper.getId(request);

if(id == null || id.length == 0)

return null;

return this.iMediaStore.download(id)[0];

}

Listing 17: The doDownload method after the third change

ResourceDemandingInternalBehaviour that corresponds to the doDownload

method. The resulting ResourceDemandingInternalBehaviour, which is de-
picted at the right side of Figure 4.13, now contains one InternalAction and
one ExternalCallAction.

The di�erence between the resulting incrementally created SEFF and its
called ResourceDemandingInternalBehaviour and the introduced SEFF in the
example of the Figure 4.10 is that the change-driven incremental SEFF recon-
struction creates a ResourceDemandingInternalBehaviour for the doDownload

method and an InternalCallAction for the method call to the doDownload

method instead of inlinig it in the SEFF.

4.5.3. Coevolution of Behavioural Architectural Models and
Source Code

In the sections above, we described independently from each other how we
can i) keep behaviour models consistent with the code by describing the
mapping from the behaviour model to the source code, and ii) reconstruct
behaviour models from code using a change-driven incremental SEFF re-
construction approach. To integrate the two approaches into a coevolution
process, we propose two di�erent approaches. The �rst one works as follows:
After a change occurred in the architectural behaviour model, our Coevolu-
tion approach creates a task in the task list for developers and point to the
method that needs to be changed. If developers changing this method in a
later step, our Coevolution approach recreates the architectural behaviour
of the method. Since, we recreate the corresponding ResourceDemandingBe-

haviour, we override changes that have been performed in the architecture
and that are not implemented in the corresponding code yet. This has the

136



4.6. Consistency Preservation Rules between Architectural Models and Code

advantage that the behavioural model represents the implemented code as
soon as the source code has been changed. However, it has the disadvan-
tages that developers can include component-external method calls without
getting informed that these calls are not intended by the architecture. This
approach is an code-centric approach, because the incremental SEFF creation
overrides architectural changes to the SEFF with the actual reconstructed
SEFF elements.

The second approach, we propose, is an improved approach that over-
comes the disadvantage of the �rst approach for component-external method
calls within a ResourceDemandingBehaviour. The reason that we focus on
component-external method calls is that usually the implementation of
component-internal behaviour falls into the scope of the component-devel-
oper. To check whether the component-external behaviour of a ResourceDe-

mandingBehaviour has been changed we propose the following approach: In-
stead of recreating the corresponding ResourceDemandingBehaviour, a com-
parison between the existing ResourceDemandingBehaviour and the newly
created ResourceDemandingBehaviour can be performed. If the result of the
comparison is that the existing ResourceDemandingBehaviour is di�erent
than the recreated one regarding the component-external behaviour, we �rst
check whether a task in the task lists for this method exists that requires to
add or remove a component-external method call. If this is true and if the
change meets that requirement, we can remove the task from the task list
automatically and use the new ResourceDemandingBehaviour in the archi-
tectural model. If this is not the case, our Coevolution approach can warn
developers and architects that an inconsistency has been found and they
need to decide whether the code should be changed or the behavioural model
should be replaced with the new ResourceDemandingBehaviour.

4.6. Consistency Preservation Rules between
Architectural Models and Code

To use our Coevolution approach, bidirectional consistency preservation
rules between the architectural elements and source code elements are nec-
essary to enable coevolution of source code and architectural models. As
example consistency preservation rules, we already introduced the package

137



4. A Method for keeping Architecture Consistent with Source Code

mapping consistency preservation rules in Section 4.3.2. In this section, we
introduce source code technology-speci�c bidirectional consistency preser-
vation rules between architectural models and source code. As example
of source code speci�c technologies, we use EJB as well as a dependency
injection framework. We, furthermore, introduce consistency preservation
rules between two di�erent architectural models and source code. In par-
ticular, we introduce bidirectional consistency preservation rules between
architectural models and Eclipse plugin artefacts in terms of the manifest
�les and Eclipse plugin.xml �les, which are related to OSGi bundles.

All consistency preservation rules, we introduced, are reusable and extend-
able. The latter means that they can be extended for other project-speci�c
or technology-speci�c bidirectional consistency preservation rules. The de-
�ned consistency preservation rules address the second scienti�c challenges
of this chapter, as they can be used to close the abstraction gap between
architectural models and source code.

4.6.1. Source Code Technology Specific Consistecncy
Preservation Rules

To develop a software system, speci�c technologies or frameworks are of-
ten used to simplify the development of the software system. For Java
projects, EJB and dependency injection frameworks are two examples of
such technologies. As we explained in Section 2.5, both of the technologies
are standardized and widely used. Within this section, we introduce consis-
tency preservation rules between the architectural model PCM and source
code using EJBs respectively a dependency injection framework. For both
sets of the consistency preservation rules, we are able to partly reuse the
package mapping consistency preservation rules.

4.6.1.1. Mapping between PCM as Architectural Model and EJB-based
Source Code

For the EJB consistency preservation rules, we can partly reuse the package
mapping consistency preservation rules, especially for the mapping from
architecture to source code. For the mapping from source code to architecture,

138



4.6. Consistency Preservation Rules between Architectural Models and Code

we can reuse them as well, but due to the use of EJB, we introduce an
extension for the consistency preservation rules as follows. As EJB already
de�nes components on code level, we can distinguish easily, which class
should be used as a component-realising class, i.e. it is possible to have
more EJB component-realising classes within one package. In the standard
package-consistency preservation rules, however, it is only possible to have
one component-realising class per package. Furthermore, we focus on the
Repository, because we can derive the PCM System. To do so, we assume
that each component within a Repository is instantiated exactly once.

Becker [Bec08] already presented a mapping between the PCM and EJB-
based Java code. As we discussed for the package mapping consistency
preservation rules (see Section 4.3.2) the mappings proposed by Becker make
the RequireRoles explicit. Hence, it is possible to map all valid PCM models to
Java source code. Furthermore, the mapping proposed by Becker introduces
a component framework into Java source code. The understandability of the
code, however, may be lowered as the mapping introduces additional classes
into the source code. The additional generated classes are not an issue if
the code is only generated in order to perform performance predictions or
to generate code stubs. However, it becomes an issue if developers should
be allowed to change existing architectural elements respectively create
new architecture elements through the code. This is the reason, why we
implemented a di�erent mapping between PCM and EJB-based Java code.
The mappings, however, are similar because both mappings using EJB-based
Java code. For instance, a component is mapped to a class annotated with an
EJB annotation.

Bidirectional Consistency Preservation Rules for Static Architecture and
Source Code An overview of the bidirectional consistency preservation
rules between the PCM Repository and EJB based source code is given in
Table 4.3. From the package mapping consistency preservation rules, we
reuse the mappings for Repository, OperationSignatures & Parameters, Pro-
videdRoles, SEFFs, and the DataTypes.

Hence, from an architectural perspective the interesting bidirectional con-
sistency preservation rules are the rules for BasicComponents, OperationIn-
terfaces, and RequiredRoles. For BasicComponents, which are added to the
Repository, we create a new package and an EJB component class within this

139



4. A Method for keeping Architecture Consistent with Source Code

package. The created component class is marked as a EJB component class
by adding the Stateless annotation. For OperationInterfaces that are added
to the Repository, we create a new code interface in the contracts package
and mark it as EJB interface by adding the Remote annotation. Changes to
the features of BasicComponents and OperationInterfaces in the architecture
or source code, can be kept consistent as in the package mapping consistency
preservation rules, i.e. by updating the values of the corresponding changed
features (e.g. the name feature) or by executing the matching consistency
preservation operation for the changed reference (e.g. adding a new Provide-

Role). If users only use the source code editor to evolve the software system,
we create the architectural components and architectural interfaces as soon
as the code structure matches the described mapping.

To ease the creation of architectural elements using the source code only,
however, we propose softened consistency preservation rules for the transfor-
mation from code to architecture for BasicComponents and OperationInter-

faces. This means that every class with one of the EJB component annotations
(@Stateless, @Stateful, or @MessageDriven) is considered as a BasicCom-

ponent. Hence, as soon as one of the annotations is added to respectively
removed from a class a new BasicComponent will be created respectively
the existing BasicComponent will be deleted. This has the consequence, that
one package can contain more than one BasicComponent, because users can
create a class in the source code and add one of the component annota-
tions to mark it as an EJB component. This leads to the challenge that it
is unclear, which is the main component of this package and it is unclear
for new classes that are added to a package, which contains more than one
component classes, to which component they belong. It can be necessary
to know to which component a class belongs for a) the execution of the
incremental SEFF creation, and b) possible new views such as the component-
class-implementation view from the Vitruvius vision (see Figure 4.4). To
circumvent this, we propose the following possible solution: we decide that
the main EJB component class of the package is the class that corresponds to
the package itself, i.e. to the BasicComponent that ful�lls the non-softened
consistency preservation rules. If no BasicComponent corresponds to the
package directly, we as ask the users to clarify which BasicComponent is
the main EJB class of this package. A similar approach can be used for the
new classes: they belong to the same BasicComponent as the main EJB
class of the package. If no main EJB class exists, we can ask users to clar-

140



4.6. Consistency Preservation Rules between Architectural Models and Code

ify to which BasicComponent the new class should belong. The fact that
architectural relevant interfaces and architectural relevant components can
be created at any time respectively that any class or interface can become
architectural relevant has the disadvantage that all locations in the code,
where the newly architectural relevant element is referenced, needs to be
investigated. The reason is that after such a change other elements can be
architectural relevant as well. For instance, if an interface is marked with
the @Remote annotation it becomes architectural relevant immediately. All
classes implementing this interface and corresponding to a BasicComponent

need to make the implementation relation explicit in the architecture, i.e.
a new OperationProvideRole needs to be created. In our prototypical imple-
mentation, however, we did not implement this behaviour, i.e. we assume
that all architectural relevant elements are made explicit upon their creation
respectively before they are used elsewhere.

A further softening is done for interfaces. As soon as either the @Local or
@Remote annotation is added to a code interface, we consider it as an architec-
tural relevant interface and create a corresponding OperationInterface. This
is done even if the interface is not contained within the contracts package.

A possibility to realise the proposed mappings without softening of the
mapping is the following: Instead of creating a BasicComponent for each
class as soon as one component annotations has been added respectively
creating an interface as soon as either the Remote or Local annotation is
added the mapping could be forced. To do so, the EJB classes could be moved
automatically to a new package and the EJB interfaces could be moved
automatically to the contracts package.

For RequiredRoles in the architecture model, we create a private �eld in the
class which corresponds to the requiring BasicComponent. The �eld has the
type of the interface that corresponds to required OperationInterface and
the name of the RequiredRole. For the mapping form code to architecture
the mapping is straight forward: as soon as the @EJB or @Inject annotation
has been added to a �eld that has a type which corresponds to an interface,
we create a RequiredRole. A softening of this mapping is to consider a �eld
that has a type corresponding to an OperationInterface as RequiredRole and
make it explicit in the architecture. This approach allows developers to
use of other EJB mechanisms to ful�ll the required interfaces of a class. In
EJB-based source code it is, for instance, possible to use the lookup method

141



4. A Method for keeping Architecture Consistent with Source Code

PCM element EJB language element

Repository three packages: main, contracts, data types

Basic Component Package in main package and public class that is
an EJB component class annotated with @State-

less

Interface Interface with the EJB Annotation @Remote in
the contracts package

Signature&Parameters Methods&parameters

CompositeDatatype Class with getter and setter for inner types

CollectionDatatypes Class that inherits from a Java collection type
(e.g. ArrayList)

ProvidedRole the EJB component class of the providing com-
ponent implements the EJB interface

RequiredRole a private �eld within the EJB component class
with a) the type of the corresponding code in-
terface, and b) the annotation @EJB

SEFF Method in the EJB component class that imple-
ments the corresponding interface

Table 4.3.:Mapping between PCM Repository metamodel elements and EJB language
elements. We are able to reuse the mapping for the Repository, CompositeDatatypes,
CollectionDatatypes, ProvidedRoles, SEFFs. and Signatures&Parameters from the pack-
age mapping consistency preservation rules.

from the context class of the EJB container to decide which EJB class is used
as implementation class for a �eld. This can be done during the runtime of
a system, i.e. in this case, it is not possible to determine statically, which
actual component-class is used for the �eld.

Figure 4.14 shows the realisation of a BasicComponent and its provided and
required OperationInterfaces in source code (see Figure 4.8). The mapping is
similar as the mapping shown for the package mapping consistency preser-
vation rules. For EJB, however, we add the EJB relevant annotations.

142



4.6. Consistency Preservation Rules between Architectural Models and Code

@Remote

public interface IWebGUI{

File httpDownload(Request request);

void httpUpload(File file);

}

@Stateless

public final class WebGUIImpl implements IWebGUI {

public File httpDownload(Request request){

//...

}

public void httpUpload(File file){

//...

}

@EJB

private final IMediaStore iMediaStore;

}

@Remote

public interface IMediaStore{

File[] download(String[] ids);

void upload(File file);

}

I IWebGUI
File httpDownload(Request request)

void httpUpload(File �le)

WebGUI
SEFF < httpDownload >
SEFF < httpUpload >

I IMediaStore
File[] download(string[] ids)

void upload(File �le)

«Required»

«Provides»

Figure 4.14.: The mapping between a BasicComponent and its provided and required
OperationInterfaces to the corresponding source code elements using the EJB mapping
consistency preservation rules.

Behavioural Coevolution As we explained in Section 4.5, we need to de�ne
a mapping-speci�c call classi�cation and a mapping-speci�c required role
�nder to enable the incremental creation of the behaviour models in terms of
the PCM SEFF. Since component-external method calls in EJB components
can only be performed via the �elds that are annotated with @EJB respectively
@Inject and the destination needs to be a source code interface, we propose
the following approach to de�ne an EJB speci�c external call �nder: All
method calls that are executed using a �eld that is annotated with either
@EJB or @Inject or a �eld, with the type of an EJB remote interface, are
component-external method calls. Hence, it is easy to �nd component-
external method calls if the �eld is used directly to execute the method call.
Using this approach, the de�nition of a mapping-speci�c required role �nder
is also rather easy, because we have a corresponding RequiredRole for the
used �eld.

143



4. A Method for keeping Architecture Consistent with Source Code

If no �eld is used directly for the component-external method call, our
Coevolution approach needs to decide whether this component-external
method call is an architectural violation or not. The component-external
call is no architectural violation if the component-external method call is
executed directly or indirectly using a �eld of the EJB component-class. This
is the case, for instance, if the �eld is passed as a parameter to another method
and the parameter is than used to execute the component-external method
call. Due to the halting problem it is not possible to decide, whether the call is
executed using a �eld indirectly, using static code analysis only. Hence, using
our incremental SEFF reconstruction approach, we could implement an over-
approximation approach that considers only those calls as non-architectural
violation for which the approach can decide for sure that these calls are
executed using an EJB relevant �eld directly or indirectly.

Another approach is to detect constructor calls to EJB component-classes
and consider these as architectural violation, i.e. constructor calls to classes
contained in di�erent EJB component would be forbidden using this ap-
proach. Hence, calls to other components cannot be performed using an
instance that has been created using a constructor call. For the component-
external method call detection this means, that we can be sure that the
external-method calls, which are not executed using an EJB relevant �eld
directly using an instance that is not created using a constructor call of
another component. Hence, these calls than can be considered as regular
component-external method calls. A limitation of this approach is that it
does not guarantee that the detected calls are executed using the �eld indi-
rectly because other approaches, such as re�ection, could have been used to
create an instance of an EJB class.

One limitation of the proposed approaches, is that if an EJB class requires
the same EJB interface more than once, i.e. the class has more than one �eld
with the same interface type, we cannot decide in all cases, which �eld has
been used to execute the call (if the �eld is not used directly for the call).
For the incremental SEFF reconstruction this means, that we cannot decide
which RequiredRole should be used for the ExternalCallAction in the SEFF.
In this case, we need to ask the users of our Coevolution approach to clarify,
which RequiredRole shall be used.

For our prototypical implementation of the EJB incremental SEFF recon-
struction, we implemented the second approach, because it introduces little

144



4.6. Consistency Preservation Rules between Architectural Models and Code

overhead during the incremental SEFF reconstruction. During the analyses
of a method, we only need to check whether a call is a constructor call to
another EJB component. If a call to a constructor of a class within a di�erent
component is detected, we inform users about the introduced architectural
violation.

To keep changes on behavioural architectural elements consistent with the
source code, we reuse the approach from the package mapping consistency
preservation rules. Hence, for changes performed to PCM SEFFs, we cre-
ate tasks for the developers, who are responsible for implementing the
behavioural models.

AssumptionsandLimitations The proposed bidirectional consistency preser-
vation rules to EJB code come with a number of assumptions and limita-
tions.

Using the non-softened consistency preservation rules, the �rst assumption
is that only the annotations @EJB and @Inject are used to inject dependencies
into EJB components. Hence, using the non-softened consistency preserva-
tion rules, we are able not able to �nd the use of external interfaces that use
lookups in the context class of the EJB container.

We also assume that only source code is used to describe the EJB dependen-
cies. This means we are not considering XML descriptors yet.

A limitation for the EJB code is that we only support the de�nition of EJB
business interfaces and EJB components. Annotations, such as @Entity,
@Table, or @PersistenceContext, which are foreseen by EJB and provide
support for the communication with a database, are not supported by the
presented consistency preservation rules.

A further limitation is that the consistency preservation rules currently not
support event-based communication. Event-based communication, however,
is supported by EJB. PCM o�ers an extension that supports event-based
communication as well (see [Rat13]). Hence, in future work, the consis-
tency preservation rules can be extended using the PCM event and the EJB
event mechanism in order to support event-based communication within
the consistency preservation rules.

145



4. A Method for keeping Architecture Consistent with Source Code

A limitation on the architectural level is that we do not support Compos-

iteComponents, which are components that contain other components. In
future work this limitation could be overcome by, for instance, combining
EJB classes respectively components that are in the same package to a Com-

positeComponent. Another limitation on architectural level is, that we not
support the PCM System explicit. Instead, we assume that each component
in the Repository is instantiated once. Hence, we can can generate the Sys-

tem implicitly. This adds the following limitation to the Repository: each
OperationInterface is only allowed to be provided once in the Repository to
be able to decide which component-class shall be used for the dependency
injection for the �elds annotated with @EJB

An assumption for the incremental SEFF reconstruction and its architecture
violation capability is that it works only correct if users do not use other
features of the language, to create an instance of a class that is contained
within another component. If, for instance, users use re�ection in order to
create an instance of a class, our current approach would not detect this kind
of architectural violation. It would also create a wrong SEFF, if re�ection is
used to invoke component-external method call.

4.6.1.2. Mapping between Architectural Models and Source Code using a
Dependency Injection Framework

In this section, we present source code technology-speci�c consistency
preservation rules between the PCM and source code that is built using a
dependency injection framework. This section is based on the bachelor’s
thesis of Monev [Mon15], where the proposed consistency preservation rules
were implemented.

As dependency injection framework, we use Google Guice. The main reason
for that decision is, that Google Guice allows us to assemble the dependency
injection classes within the Java code itself instead of composing them
within other artefacts, such as XML �les. Hence, the presented consistency
preservation rules are partly speci�c for Google Guice. Since dependency
injection frameworks, however, are standardized in JSR330, parts of the
proposed consistency preservation rules can be reused for all dependency
injection frameworks that conform to the standard. The parts that are

146



4.6. Consistency Preservation Rules between Architectural Models and Code

reusable as well as the di�erence between Google Juice and the JSR330
standard are explained below.

Bidirectional Consistency Preservation Rules between Static Architecture
and Static Code For most elements, we are able to reuse the consistency
preservation rules, we de�ned for the package mapping consistency preser-
vation rules (see Section 4.3.2). To map a PCM Repository to code, we only
need to change the consistency preservation operation for BasicComponents.
For the source code to PCM mapping, we need to extend the consistency
preservation rules for classes and for constructors. For the mapping of a Bas-
icComponent, we extend the existing consistency preservation operation and
create an @Inject annotation to the constructor of the component-realising
class. Hence, we use constructor injection to inject the dependencies of a
component-realising class. The reason for constructor injection instead of,
for instance, injecting the dependencies via setters, is that we decided to
compose the component-realising classes at the initialisation of the system.
For the mapping from source code to architecture, we adapt the class mapping
in a way that it automatically creates a constructor with the @Inject annota-
tion as soon as the users decide that the class should be a component-realising
class. We furthermore adapted the consistency preservation operation for
constructor, in order to ensure that only one constructor with an @Inject

annotation exists. This is a requirement from the dependency injection
framework we use. Hence, the bidirectional consistency preservation rules
between the PCM Repository and its corresponding source code only need
slight changes to support a dependency injection framework.

To compose the component-realising classes respectively to assemble the
classes, we can partly reuse the mapping between a PCM System and the
composition class. Hence, as in the package mapping consistency preser-
vation rules, a PCM System maps to one package and one System-realising
class. The System-realising class for the mapping to the Google Guice de-
pendency injection framework, can be implemented in two ways: It either
needs to extend the class AbstractModule or it needs to implement the inter-
face Module. The class AbstractModule, as well as the interface Module, are
provided by the Google Guice framework and allow the binding respectively
assembling of classes that are used within a software system and have con-
structors or setters marked with @Inject. Hence, they allow us to assemble

147



4. A Method for keeping Architecture Consistent with Source Code

the component-realising classes. If the System-realising class extends the
class AbstractModule, it needs to override the method configure. If the Sys-
tem-realising class implements the interface Module, it needs to implement
the method configure. In the latter case the configure method gets an in-
stance of the Binder class as parameter, while in the �rst case the instance of
the Binder class is part of the superclass AbstractModule. In both cases, the
configure method is automatically called by the Google Guice framework
and needs to do the actual binding of classes. For our mapping between
the PCM System and source code this means that within this method both
artefacts are mapped: the AssemblyContexts and the Connectors.

The AssemblyContexts are mapped to the binding of an interface to a class,
i.e. an interface is bound to a component-realising class. The consistency
preservation operation, creates an AssemblyContext for the component that
corresponds to the component-realising class. The Connectors between Pro-

videdRoles and RequiredRoles in the System are mapped implicitly by con-
necting the provided interfaces of the AssemblyContexts to the matching
required interfaces within the System. Hence, each interface can only be
provided once and required once within one System. Implementing the pre-
sented consistency preservation rules between a PCM System and the code
statements is not straight forward, as we are currently not able to use source
code statements within a method body as corresponding elements. Hence,
Monev [Mon15] implemented the consistency preservation as follows: The
actual corresponding elements between the architectural elements Assem-

blyContexts and Connectors, is the configure method itself. If the configure

method has been changed, we compare the old method with the new method
in order to �gure out which change has been performed. If elements in
the PCM System are changed, we analyse the configure method in order to
�gure out how it needs to be updated in order to preserve the consistency.

OperationInterfaces that are provided by the System are mapped as follows:
the System-realising class implements the Java interfaces that corresponds to
the OperationInterface. Furthermore, the System-realising class gets a �eld
with the type of the interface and a constructor with the @Inject annotation.
Hence, the actual used implementation is injected. The connection of the
provided roles of a System-realising class with the component-realising class
is also done in the con�gure method of the System-realising class. To use the
System, from e.g. a main method, the System class can be instantiated using
the standard Guice mechanism.

148



4.6. Consistency Preservation Rules between Architectural Models and Code

public class MediaStoreSystemImpl implements IWebGUI, Module {

private IWebGUI iWebGUI;

public MediaStoreSystemImpl() {}

@Inject

public MediaStoreSystemImpl(final IWebGUI iWebGUI) {

this.iWebGUI = iWebGUI;

}

@Override

public void configure(final Binder binder) {

binder.bind(IWebGUI.class).to(WebGUIImpl.class);

binder.bind(IMediaStore.class).to(MediaStoreImpl.class);

}

@Override

public File httpDownload(final Request request) {

return this.iWebGUI.httpDownload(request);

}

@Override

public void httpUplopad(final File file) {

this.iWebGUI.httpUplopad(file);

}

}

Listing 18: System-realisation class of the MediaStore example

Listing 18 shows the System-realisation class for the MediaStore example,
we use throughout this thesis. In the listing, we implement the class Module
directly instead of extending the class AbstractModule.

Coevolution of Behavioural Models with Source Code For the coevolution
of the behavioural model, we can use a similar approach as for the EJB rules.
Since we know which �elds are injected using the dependency injection, we
can identify external calls, which are executed via this �elds, rather easily. If
these �elds are not directly used, we can use the same approach as for EJB
consistency preservation rules. Hence, we forbid constructor calls to classes

149



4. A Method for keeping Architecture Consistent with Source Code

that have a corresponding BasicComponent and consider component-external
calls as architecture relevant component-external calls. We further assume,
that this calls are executed using a injected �eld directly or indirectly. This
allows us create an ExternalCallAction, using the RequiredRole corresponding
to the �eld, in the incrementally created SEFF.

To keep changes on behavioural architectural elements consistent, we use the
same approach as for the EJB and package mapping consistency preservation
rules: tasks for the developers, who are responsible for implementing the
behavioural models are created as soon as a behavioural model element has
been changed.

Compatibility with the JSR 330 standard As we explained in Section 2.5.3
the JSR 330 standard is a standard for dependency injection frameworks.

Since the above-mentioned consistency preservation rules focus on Google
Guice, they are as compatible to the JSR 330 standard as Google Guice is.
According to the Google Guice online documentation 4 the Guice implemen-
tation is one of the references implementations of the JSR 330 standard and
most annotations are interchangeable. Important for the above-mentioned
consistency preservation rules is that the @Inject annotation is interchange-
able. Hence, the consistency preservation rules for the Repository part are
compatible to the JSR 330 standard.

The consistency preservation rules for the PCM System, however, are speci�c
for Google Guice. Hence, to support other dependency injection frameworks
that are compatible with the JSR 330 standard, the consistency preserva-
tion rules for the PCM System need to be rede�ned speci�c for the used
dependency injection framework.

Assumptions andLimitations For the above explained mapping between ar-
chitectural models and code that is realised using Google Juice as dependency
injection framework, we introduce the following assumptions respectively
limitations for the PCM System:

1. each BasicComponent can only be instantiated once per System, i.e. it
can only be represented in one AssemblyContext, and

4 https://github.com/google/guice/wiki/Guice40

150

https://github.com/google/guice/wiki/Guice40


4.6. Consistency Preservation Rules between Architectural Models and Code

2. each interface can only be provided once per System.

The reason for these limitations are that the Google Guice features, we use
for the mapping, allows us to bind only one code interface to one code class.
Hence, it is not possible to get more than one instantiation of the same
component per system.

Furthermore, we are not supporting RequiredDelegaionRoles. Hence, the
System that is created is not allowed to require functions from an additional
3rd party library via required interfaces.

4.6.2. Mappings between Architectural Models, Source Code,
and Additional Artefacts

The consistency preservation rules we presented above, are consistency
preservation rules between source code models and architectural models
only. During the development of a software system, however, additional
artefacts are often used to realise and describe the architecture of a software
system. Within the Vitruvius vision (see Figure 4.4), we propose the use of
the PCM metamodel, a source code metamodel, the UML metamodel, and the
PCM Sensor framework metamodel to describe the software system. These
metamodels are contained in the VSUM. Using more than two metamodels
within the VSUM, has the advantage that software systems using model
instances of more than two metamodels can be used during the software
development and software evolution. Even though supporting more than two
metamodels is not the main focus of this thesis and comes with conceptual
challenges and technical challenges, we give an example how to keep more
than two models consistent within this section.

4.6.3. Mapping between Architectural Models, Source Code,
and Eclipse Plugin Development Artefacts

Within this section, we propose a mapping between architectural models,
source code, and Eclipse plugin development artefacts. We focus especially
on the mapping between architectural model and the Eclipse plugin artefacts.
As we explained in Section 2.5.2 Eclipse plugins are organized as Eclipse

151



4. A Method for keeping Architecture Consistent with Source Code

projects. For this section, it is relevant to know that in addition to plain
Java projects Eclipse Plugin projects have i) a Manifest �le, which contains
the required bundles respectively required projects, and ii) a plugin.xml �le,
which contains the provided and implemented extension points of the plugin.
Furthermore, so called feature plugins allow to combine plugin projects and
other feature projects within one feature project. To do so, users need to
specify the Plugins and Features that should be combined within the Eclipse
Feature XML �le.

We outlined the foundations of this section as proposal for a case study
for multi-view modelling approaches in [KL14]. We proposed a mapping
between UML composite diagrams, Eclipse plugin development artefacts, and
source code. Within this section, however, we use the PCM instead of UML
as architectural model. Heiss [Hei15] provides a prototypical implementation
of the proposed consistency preservation rules between the PCM and the
Eclipse plugin development artefacts in terms of the Manifest �le and the
Plugin XML �le. The metamodels used for the manifest �les and for the
XML �les, are explained in the foundations (see Section 2.5.2.2). We are able
to use the Manifest metamodel and its parser and printer from the EMFtext
syntax zoo5 for the manifest �les. For the XML �les, we are able to use the
generic XML metamodel and its parser and printer from the EMFtext syntax
zoo. To ease the use of the generic XML metamodel, however, we created a
set of helper methods, which are speci�c for the used XML �les in an Eclipse
plugin.

4.6.3.1. The VSUM for architectural models, source code, and Eclipse
plugin development artefacts

As we use additional artefacts within these consistency preservation rules,
we need to extend the VSUM, which we have presented in Figure 4.1. Ad-
ditionally to Java models and the PCM as architectural models, the VSUM
contains the artefacts, which are necessary for the development of Eclipse
plugins. This artefacts are models of the Manifest �le, models of the Eclipse
plugin XML �le, and models of the Eclipse Feature XML �le. Even though
they are de�ning an Eclipse plugin together, we treat these models as sepa-
rate models, because there is no existing mechanism to treat Eclipse plugin

5 http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo

152

http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo


4.6. Consistency Preservation Rules between Architectural Models and Code

projects and their artefacts as one model. Hence, we use the Manifest �le, the
Plugin XML �le, and the feature XML �le separately in the VSUM. The used
VSUM as well as the views, we proposed in [KL14], are shown in Figure 4.15.
As in the above de�ned consistency preservation rules the overlap can be
described using the MIR languages or Xtend. The used models, monitors,
and consistency preservation rules are explained in the following sections.

4.6.3.2. Usedmodels and editors for the VSUM

As we mentioned above, we use di�erent models for the Manifest �le, the
Plugin XML, and the feature XML as there is no existing single model for
Eclipse Plugin projects. For the Manifest �le, we can use the EMFtext gram-
mar for Manifest �les 6. For the Plugin XML and for the feature XML �le, we
can use the EMFtext grammar for XML �les7. Both grammars are available
in the EMFtext syntax zoo and provide a parser and a printer as well as an
editor for the �le types. While the grammar and the metamodel for Manifest
�les is tailored speci�c for Manifest �les and can be used easily, the grammar
and the metamodel for XML �les is general for XML �les and not speci�c for
the XML �les used within Eclipse plugins. During the development of the
consistency preservation rules, we need to ensure that we only create XML
�les that are compatible with the Eclipse plugin XML standard respectively
the Eclipse feature XML standard.

To this end, we use the standard monitor for EMF �les as monitor for the
Manifest �le as well as for the XML �le. This means that we are only able
to monitor changes performed using the editors for the EMF �les. While
this has no e�ect regarding to the consistency preservation rules, it has
the disadvantage that the Eclipse GUI for Manifest �les, Plugin XMLs, and
Feature XMLs can currently not be used. In future work, however, a monitor
can be implemented that monitors changes in the Eclipse GUI.

6 http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo_Manifest
7 http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo_XML

153

http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo_Manifest
http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo_XML


4. A Method for keeping Architecture Consistent with Source Code

PCM

Manifest

Java

Plugin

Feature

VSUM

CPR

CPR

CPR

CPR

public class WebGUIImpl implements WebGUI {

@Override

public File httpDownload(Request request){

logger.info("Handle request " + request ");

}

}

Java Source editor

VT1

Component Diagram editor
VT4

WebGUI

SEFF < httpDownload >

PCM Repository editor

<plugin>

<extension point="vitruv.framework.change">

<provides

provider="vitru.change.ChangePreparingImpl">

</provides>

</extension>

</plugin>

Plugin XML editor

VT3

<feature id="vitruvius.casestudies.emf.feature"

provider-name="SDQ">

<requires>

<import feature="vitruvius.framework.feature" />

</requires>

</feature>

Feature XML editor

VT5

Bundle-Name: Vitruvius Contracts

Bundle-Version: 1.0.0

Bundle-Vendor: SDQ

Export-Package: vitruvius.framework.contracts

Require-Bundle: org.eclipse.emf.ecore

vitruvius.framework.util

Manifest editor

VT2

comp1comp2

Figure 4.15.: The VSUM for the mapping between source code, architectural models,
and Eclipse plugin artefacts. We use the �ve artefacts JaMoPP, PCM, Eclipse Plugin
XML, the Eclipse Plugin Manifest �le, and the Eclipse Feature XML �le. As views,
we [KL14] proposed the use of the standard views to each of the models as well as
component-realisation view and an overall navigation view. The additional views
for code and PCM, we proposed in the Vitruvius vision are intended to be used as
well. To improve the clarity of this �gure, we left the additional views out.

154



4.6. Consistency Preservation Rules between Architectural Models and Code

4.6.3.3. Consistency Preservation Rules between PCM, Java Source Code,
Manifest Files, and Eclipse Plugin XML Files

In this section, we explain the concrete consistency preservation rules. As
base for our the explanation we use the PCM. The consistency preserva-
tion rules, however, are bidirectional for all involved models unless stated
otherwise.

Mapping Repository to Eclipse plugins For the mapping between a PCM
Repository and Java source code, we can partly reuse the mappings we
introduced for package mapping respectively the mapping to the dependency
injection framework.

To be able to use our Coevolution approach for the development of Eclipse
plugins, the �rst step is to either create a new Eclipse plugin project or create
a PCM Repository in an existing non-Eclipse plugin project.

If a Repository is created in an non-Eclipse plugin project, we create a cor-
responding Eclipse plugin project for the Repository. This corresponding
Repository is considered as the main project. As corresponding elements for
the Repository, we use the BundleSymbolicName element in the Manifest �le
and the root Object of the Plugin XML. Within this Eclipse two correspond-
ing packages are created: one interface and one datatype package. Both
packages have the same function as the contracts and datatypes packages
in the above-mentioned consistency preservation rules: they contain the
corresponding Java interfaces for the OperationInterfaces respectively the
corresponding classes for the PCM DataTypes. Hence, the mapping is similar
to the main package in the package mappings. If users create an Eclipse
plugin project �rst instead of a Repository, we create a PCM repository as
well as the interface and datatype packages, and assume that the �rst plugin
is the main Eclipse plugin project.

In the following, we describe the mapping between OperationInterfaces and
Eclipse plugin artefacts. For each OperationInterfaces, an extension point
with the same name as the OperationInterface in the Plugin XML of the main
Eclipse project is created. For the mapping between architecture and code,
we can use the same mapping as for the other consistency preservation rules,

155



4. A Method for keeping Architecture Consistent with Source Code

i.e. a new code interface is created in the contracts package of the main
Eclipse plugin by our Coevolution approach.

PCM DataTypes are mapped as in the other consistency preservation rules.
They are mapped to a class in the datatypes package within the main plugin
project for the repository.

Each BasicComponent maps to a plugin project. Hence, if a BasicCompo-

nent is created in the Repository, we create a new Eclipse plugin project
with the name of the BasicComponent. Similar to the Repository mapping
the corresponding elements are the root object of the Plugin XML and the
BundleSymbolicName in the Manifest �le. If the name of the BasicComponent

is changed, we also change the name of the corresponding project as well
as the name of the corresponding BundleSymbolicName in the Manifest �le.
We furthermore, create a dependency to the main plugin for the newly cre-
ated plugin project. Hence, the data types and interfaces are available in all
plugins. Within the component-realising plugin poject a new component-
realising class, which has the same function as the component-realisation
class in the package mapping consistency preservation rules, is created.
Hence, the mapping of the class is also similar as it is in the package map-
ping consistency preservation rules. If users create a new Eclipse plugin
project, our Coevolution approach automatically creates a corresponding
BasicComponent as well as the component-realisation class.

A ProvidedRole maps to a new extension in the Eclipse plugin that corre-
sponds to the providing BasicComponent. This extension indicates that the
Eclipse plugin provides the extension point of the Java interface. It, fur-
thermore, speci�es the class that implements the interface. In our case this
class is the component-realisation class. To map a ProvidedRole to the code,
we again use the same mapping as in the other consistency preservation
rules: the component-realisation class implements the Java interface that
corresponds to the provided OperationInterface.

For mapping of RequiredRoles to Eclipse plugin artefacts and Java code, we
propose di�erent strategies. Users of our Coevolution approach need to
clarify which of these strategies should be used before they starting the
implementation.

The �rst strategy is the following: For each RequiredRole, a new dependency
from the corresponding requiring Eclipse plugin to an Eclipse plugin, which

156



4.6. Consistency Preservation Rules between Architectural Models and Code

provides the required interface, is added. If more than one component
provides the interface, the user needs to decide which Eclipse plugin should
be used. To map a RequiredRoles to code, we can reuse either the mapping
from the package mapping consistency preservation rules: In the component-
realising class a new �eld with the type of the required interface is created.
In the constructor this �eld is assigned with a new instances of the providing
component-realising class. Using this strategy new instances of the required
class can be created anywhere in the requiring plugin. This strategy has the
disadvantage that the requiring component directly knows the providing
components. Hence, the mappings mixes the PCM Repository mappings and
the PCM System mappings, because the connection between the components
is already distinguished during the creation of the Repository.

The second strategy is the following: To overcome the issue that the com-
ponents know each other directly, we do not map a RequiredRole to a de-
pendency between the components. Instead, we only create a mapping to
the code as follows: We also create a �eld of the required interface in the
component-implementing class. The assignment with an instance is also
done in the constructor. To create this instance, we use the Eclipse mech-
anism to determine at runtime which plugin provides the extension point.
Hence, the actual used required interfaces implementation is created during
the runtime of the Eclipse plugin.

Mapping PCM CPRE to Eclipse plugins The mapping of the PCM CPREs, e.g.
a PCM System, is done using feature plugins, i.e. one feature plugin is created
for each CPRE. A feature plugins allows the composition of standard Eclipse
plugins and other feature plugins. Within a feature plugin a user can combine
standard Eclipse plugins to a feature. For each AssemblyContext in the CPRE,
we create a new plugin dependency in the feature plugin of the corresponding
Feature Plugin project.

Using the �rst strategy of mapping RequiredRoles to code, we can derive
the connectors automatically from the dependencies in the Manifest �les.
Using the second strategy of mapping required roles to code, the connectors
in a CPRE can also be created automatically, because we can connect the
required roles with their matching provided roles. The reason for that is
that in the constructor of a component-realisation class the interfaces are
assigned via the extension point ID and that each extension point is unique

157



4. A Method for keeping Architecture Consistent with Source Code

using the current consistency preservation rules. Hence, the second strategy
of mapping RequiredRoles has the limitation that (without additional e�ort),
each interface can only be provided by one component in the CPRE.

4.6.3.4. Coevolution of Behavioural Models With Source Code

For the coevolution of behavioural models and source code, we need to de�ne
a mapping-speci�c component-external method call �nder The component-
external method call �nder can be de�ned rather easily as follows: We
consider all calls to interface methods, which have a corresponding Opera-

tionSignature as component-external method calls. As in the other mappings
as well, we also consider all calls to a method within another component
as a component-external method call. Hence, all calls to a method within
another Eclipse plugin project that has a corresponding BasicComponent, is
considered as component-external method call.

The �nding of the used RequiredRole for the external call can be done similar
to the package mapping consistency preservation rules, i.e. if an Opera-

tionInterface is required only once by one component, we use the matching
RequiredRole. If an interface is required at least twice, we can ask the users
which RequiredRole shall be used.

4.6.3.5. Prototypical implementation

As mentioned above, we implemented the mapping between the PCM and
the Eclipse plugin development artefacts in terms of the Manifest �le and
the Plugin XML �le (see [Hei15]). We are able to show that the PCM Reposi-

tory can be kept consistent with the models of Eclipse plugin development
artefacts. Furthermore, we can show that the Vitruvius framework, is in
principle able to deal with more than two metamodels within the VSUM.

The implementation currently does neither support the feature XML in
feature plugins nor the source code itself. Hence, within the prototypical
implementation the Java model and the System are not kept consistent using
our Coevolution approach. Furthermore, we have not implemented special
monitors for the Manifest �le and for the Eclipse Plugin XML �les, yet. Our
standard Vitruvius monitor for EMF �les, however, can be used to monitor

158



4.7. User Roles in our Coevolution Approach

changes that are performed to the model elements with the standard EMF
editors. This has the disadvantage that we currently are not able to monitor
changes that were performed using other editors respectively the special
Eclipse GUI for plugin projects.

4.6.3.6. Assumptions and Limitations

Similar to the other presented consistency preservation rules, the name
of BasicComponents as well as the name of OperationInterfaces need to be
unique within all used PCM Repositories. This is the reason, because we
create Eclipse Plugins respectively Java code interfaces with the same name
as the architectural elements. Even though this limitation could be avoided
by creating special names for duplicated names, we decided to not allow
the use of duplicate names in the PCM. As we see in the evaluation of the
consistency preservation rules in Section 6.4 it turned out that this limitation
is not relevant for existing PCM projects as they are not using duplicated
names for BasicComponents or OperationInterfaces.

The following limitations are introduced due to the presented mapping
between PCM and Eclipse Plugin artefacts:

• each BasicComponent can occur only once per System,

• using the second proposed strategy to map RequiredRoles from the
PCM to Eclipse plugin artefacts, each OperationInterface is only
allowed to provided by one AssemblyContext in the PCM System.

4.7. User Roles in our Coevolution Approach

In this section, we present di�erent roles users can have if they use our Co-
evolution approach, i.e. the section addresses the fourth scienti�c challenge
of this chapter (see Section 4.1).

For our Coevolution approach, we de�ned the following three roles: The
�rst role is the role of architectural consistency methodologists, who are
responsible for de�ning the architecture code consistency preservation rules
and the used techniques. This role is based on the methodologist role, which

159



4. A Method for keeping Architecture Consistent with Source Code

has been introduced for the OSM [ASB10] approach, and which we reuse
in the Vitruvius [Bur14; KBL13] approach. The second role is the role of
software architects, who are responsible for the architecture of the software
system. The third role are the software developers, who are responsible for
implementing the de�ned software system. The role of software architects
as well as software developers is based on the same role in the PCM [BKR09].
The role of the architectural consistency methodologists is the only role, we
de�ne, that is active during the design time of our Coevolution approach. The
other roles we de�ne, using the de�ned VSUM to create the actual software
systems. Software architects and software developers are using our Coevolu-
tion approach during the implementation time of the software system. While
the role of the architectural consistency methodologists is independent of the
used component model, the roles of the software architects and the software
developers are tailored speci�c for using our Coevolution approach with the
PCM. However, the roles of software developers and software architects are
similar for other ADLs as well. We explain these three roles in the following
sections.

4.7.1. Architectural Consistency Methodologists

The �rst role we present, is the role of the architectural consistency method-
ologists. The architectural consistency methodologists have similar tasks as
the methodologist in the OSM approach and the Vitruvius approach, where
they are domain experts and decide which metamodels, view types, and
views are used. Within our Coevolution approach, architectural consistency
methodologists are domain experts for the architecture and code domain
as well as for the used techniques, e.g. EJB. In particular, architectural
consistency methodologists are responsible for the following tasks:

• deciding which architectural metamodels and source code
metamodel should be used,

• de�ning the consistency preservation rules between architecture and
source code, and

• implementing the consistency preservation rules using either our
internal DSL (see Section 3.6.1) or the MIR [Kra17] languages.

160



4.7. User Roles in our Coevolution Approach

Hence, the architectural consistency methodologists are responsible for
creating the VSUM. Di�erently from the OSM approach and the Vitruvius
approach, they do not need to decide which view types and views are used,
because we currently use only existing view types and editors. However, if
we include ModelJoin [Bur+14] in the future the architectural consistency
methodologists are also responsible for creating the views.

4.7.2. So�ware Architects

One task of software architects within our Coevolution approach is to create
the architecture of the software system. Using a component-based soft-
ware architecture, as we proposed in this thesis, this means that they are
responsible for creating new components in the repository or reusing exist-
ing components from other repositories and assemble them in the system.
Using the PCM, they, furthermore, can specify the abstract behaviour of
the services of a software component. Hence, the architect role within our
Coevolution approach is a generalization of the roles of the component de-
velopers and software architects in the PCM [BKR09]. In the PCM approach,
component developers specify the components and their behaviour, while
software architects specify how the components are assembled. Even though
we generalize both roles to the role of software architects within our Co-
evolution approach, they can still be separated if the PCM is used as ADL
within our Coevolution approach.

The reason for the generalization is that within our Coevolution approach
software architects have additional tasks. If architects change the archi-
tecture they can be requested to disambiguate the change as proposed in
Section 4.4, if the change is not unique mappable to source code. Hence,
interacting with our Coevolution approach and reacting to the user change
disambiguation noti�cations is an important task of software architects
within our Coevolution approach. Architects, however, also need to dis-
ambiguate changes performed in source code if they a�ect architectural
elements and not mappable in an unique way. This is the case, for instance,
if developers perform a change that need to be disambiguated to be keep it
consistent with the architecture, but developers are not able to deal with the
noti�cation themselves. In this case, the architects need to �gure out the
intent of developers and either change the architecture accordingly or revert

161



4. A Method for keeping Architecture Consistent with Source Code

the change of developers in order to keep the models consistent. To interact
in the right way with our Coevolution approach and to �gure out how to
react to the user change disambiguation noti�cation the architects need to
be aware of the consistency preservation rules.

4.7.3. So�ware Developers

The software developers in our Coevolution approach are responsible for
implementing the software system. Using our Coevolution approach each
architectural relevant change software developers perform, is kept consistent
with the architectural models. Hence, if developers change the source code,
the change can a�ect both: statical architectural elements and behavioural
elements. The change of statical architectural elements, such as interfaces
and components is probably not indented by developers if they only want to
implement the component-internal behaviour. To support that we distinguish
between component developers, who are allowed to change code that leads
to a changes in the static architectural models and component-internal
developers, who are only allowed to changed code that is not relevant for the
static architecture. Both developer roles, we de�ne, are allowed to perform
changes that a�ect the behavioural elements of the architecture.

4.7.3.1. Component-internal Developers

As �rst role for software developers, we propose the role of component-

internal developers. Component-internal developers are responsible for im-
plementing the services of one or more components. To avoid changes
of static architectural models during the implementation of components,
component-developers are not allowed to change code elements that have
corresponding static architectural elements. Component-internal developers
are, furthermore, not allowed to add or delete packages, classes or interfaces
that a�ect the architecture. They are, however, allowed to add new classes
and technical interfaces within existing components. The advantage of the
role is that developers cannot change the static architecture of the software
system by accident, e.g. renaming an API method that is intended to be called
from users. Another advantage is that component-internal developers not
need to disambiguate their changes, because changes they perform cannot

162



4.7. User Roles in our Coevolution Approach

a�ect static architectural elements. Hence, they can focus on implementing
the internal behaviour of a component. If component-internal developers
want to introduce, for instance, new components, they need to assume the
role of component developers, which is explained in the next section. An-
other possibility for component-internal developers to change the static
architectural elements, is to create change requests for software architects or
component-developers, for instance, by using a ticketing system. Software
architects and component developers review the change requests and can
implement them.

To �gure out which changes can lead to changes of the static architecture,
we can use the Vitruvius correspondence model. We consider changes to
source code elements that have a corresponding static architectural element,
e.g. a BasicComponent, as change of the static architecture. Having this
information, however, does not help to prevent that component-internal
developers change those code elements. One simple solution to prevent
changes on those code elements is to role back the changes of component-
internal developers if they change these elements. This approach, however,
has two main disadvantages. The �rst one is that rolling back changes,
can be confusing for component-internal developers, if they are not aware
why the changes have been rolled back. The second one is that we do
not know whether the current software developer is a component-internal
developer or not. To overcome this disadvantages at least for code within
class �les or interface �les and to support component-internals developers
by identifying code that is relevant for the statical architecture before they
actually change it, we propose a adapted code editor for component-internal
developers. Within this editor, we grey out and disable the editability for
the code elements that should not changed by developers. This editor can
be generated dynamically based on the current Vitruvius correspondence
model, when a component-internal developer opens a Java �le using the
editor for component-internal developers. Hence, we consider developers
that use this editor as component-internal developers. Developers who use
the standard editor are considered as component-developers.

Telpl [Tel13] showed that it is possible to grey out and prevent changes on
code by implementing a plugin for the standard Eclipse Java code editor
[Tel13]. Other than greying out and prevent changes for speci�c code ele-
ments the editor shows the same behaviour as the standard Eclipse Java code
editor. In future work, we plan to integrate this approach in our Coevolution

163



4. A Method for keeping Architecture Consistent with Source Code

approach so that the Vitruvius correspondence model is used to �gure
out which code areas respectively code elements should be greyed out and
not be editable. We currently have no tool support to prevent developers
to add or delete packages, class �les, or interface �les that are relevant for
the static architecture. It could be implemented, however, by using the �rst
approach: we role back the changes and inform the component-internal
developers that they are not allowed to perform this change. In this case, we
furthermore need a method to decide whether a user is a component-internal
developer or not. To do so a special Eclipse perspective, which is tailored for
component-internal developers can be used.

As an example, consider the package mapping consistency preservation
rules, we de�ned in Section 4.3.2. Using these consistency preservation
rules component-internal developers are, for instance, not allowed to change
interfaces in the contracts package, because the code interfaces have cor-
responding OperationInterfaces, while the code method have correspond-
ing OperationSignatures. They are neither allowed to change a component-
realisation class nor to create packages in the package that corresponds to
the Repository. Furthermore, they are not allowed to change the method
declaration of methods that correspond to a SEFF.

4.7.3.2. Component Developers

As second role for software developers, we propose the role of component
developers. Component developers have similar tasks as component-internal
developers. Hence, they are implementing the architecture, which has been
outlined by the software architects. In contrast to component-internal de-
velopers, component-developers can change code that a�ects statical archi-
tectural elements as well. For instance, they are allowed to add packages,
class �les, and interface �les that are relevant for the static architecture.
Hence, changes a component-developer performs cannot only a�ect statical
architectural elements, but also lead to interactions with user change disam-
biguation framework, if additional information is needed to keep the change
consistent with the architecture. Component developers can disambiguate
they changes either directly, or after consulting the architects, or by leaving
a task for the architects in the task list. We assume that developers, who use
the standard code editor are component developers.

164



5. Include Existing Artefacts

Within the previous chapter, we explained how our Coevolution approach
can be used to keep architectural models and source code consistent during
the software development and software evolution. The approach as it is
presented in the chapters before can only be used if it is used from the
beginning of the development process. Existing artefacts cannot be used or
integrated within our Coevolution approach as it is presented up until now.
This limitation is also true for the Vitruvius approach as it is presented
in previous work [Bur14; KBL13; Kra+15a]. To answer the question How

can existing models be used within Vitruvius and within our Coevolution

approach?, we propose two di�erent strategies to include existing artefacts.
We presented the strategies and parts of their application to our Coevolution
approach in [Leo+15].

This section is divided into two main parts. In the �rst part, we present the
two strategies to integrate existing artefacts in Vitruvius. To realise the
integration, we present the concept of a reconstructive strategy and a linking
strategy. We, furthermore, introduce the role of the integrators who are
responsible for implementing a reconstructive strategy or a linking strategy
in order to integrate existing artefacts.

In the second part of this section, we explain the application of the strategies
to the case of architectural models and source code. Within this part, we
�rstly explain how we can include an existing architecture model using a re-
constructive strategy, and secondly how we can include existing source code
using a linking strategy. For the application to our Coevolution approach,
the �rst part of the linking strategy is to reconstruct an architecture model
from source code. Therefore, existing reverse engineering approaches, such
as the Source Code Model eXtractor (SoMoX) (see Section 2.4), can be used.
As we developed the reverse engineering approaches EJBmoX and Extract
[Lan+16] within the scope of this thesis, we explain them in Section 5.4.1.

165



5. Include Existing Artefacts

We presented the integration of source code that is complaint to the used
bidirectional consistency preservation rules in [Leo+15]. Petersen [Pet16]
extended this approach in his master’s thesis to allow the integration of
arbitrary source code.

5.1. Scientific Challenges

The following scienti�c challenges on how to include existing models into
Vitruvius and our Coevolution approach are addressed in this chapter:

• Which integration strategies are necessary to enable the use of existing

models within Vitruvius?

As mentioned above, Vitruvius is not able to deal with existing
artefacts. Dealing with existing models, however, is important in
order to apply Vitruvius to existing and historically grown projects.

• How can the proposed integration strategies instantiated for the

integration of existing architectural models and existing source code

into our Coevolution approach?

As the Vitruvius approach our Coevolution approach needs to be
able to work with existing projects in order to enable the use of our
Coevolution approach with existing software projects. For our
Coevolution approach this means that the integration of existing
source code and existing architecture models is necessary. To do so,
we need to instantiate the Vitruvius integration strategies for our
Coevolution approach.

• Which extensions are necessary to include arbitrary component-based

code into our Coevolution approach?

A further question arises, when we deal with existing source code
bases that are not compliant to the current used consistency
preservation rules. The challenge is to include such non-compliant
source code into our Coevolution approach so that our Coevolution
approach can be used for the evolution of the software system.

166



5.2. Include Existing Artefacts in Vitruvius

5.2. Include Existing Artefacts in VITRUVIUS

The bene�t of enabling the use of existing artefacts within Vitruvius is that
it can be used within already existing projects. As a motivation why dealing
with existing artifacts is necessary, consider our Coevolution approach for
architectural models and source code. If we do not provide a mechanism
to enable the use of already existing source code, it would be necessary to
redevelop the whole project from scratch using our Coevolution approach.
Especially for large projects it is unrealistic to assume that the e�ort will be
done by development teams. To avoid the e�ort, we introduce a mechanism
that automatically respectively semi-automatically enables the integration of
existing artefacts into our Coevolution approach. Within other case studies
of Vitruvius, for instance, the automotive software engineering domain, it
is also necessary to deal with existing artefacts for the same reason.

To include existing artefacts in Vitruvius we propose two di�erent strategies.
The �rst one is the so called Reconstructive Integration Strategy (RIS), which
simulates the recreation of an existing model. The second one is a Linking
Integration Strategy (LIS), which connects existing models using the output
of model generating tools or model creating tools, e.g. model to model
transformations to link the models. We furthermore, introduce the role
of the integrators, who are responsible for performing the integration of
existing models or source code.

The RIS and the LIS are both based on the idea that one model instance of
the models in the Virtual Single Underlying Model (VSUM) has been created
already, while the other models are not created yet. For the remainder of
this section, we consider the existing model as source model and the models
that should be created as target models. The description of the integration
strategies, which are provided in the following, address the �rst scienti�c
challenge, we de�ned for this chapter (see Section 5.1).

Consider the small example depicted in Figure 5.1, which we use to explain
the strategies in the following. In the top half of the �gure, we have a
metamodel A that has the classes RootA, NestedA and Required. The RootA

class represents the root object for metamodel A. The RootA class has two
containment lists. One to the Required class and another one to the NestedA

class. The classNestedA has the String attribute name. The class Required has
the String attribute description. Furthermore, each instance of a NestedA class

167



5. Include Existing Artefacts

RootA

NestedA
name:String

Required
description:String

nestedA 0..* required 0..*

required 1..1

RootB NestedB
name:Stringdescription:String

nestedB
0..*

Figure 5.1.:Class diagram for metamodel A (top) and metamodel B (bottom)

needs exactly one instance of the Required class. In the bottom half, have
metamodel B that has the root class RootB. This class has a containment list to
the class NestedB, which has the attributes name and description. In addition,
metamodel B has the invariant that the name Attribute in class NestedB must
be unique and is not allowed to contain spaces. We also assume that we
already have de�ned the following bidirectional consistency preservation
rules using Vitruvius:

• RootA maps to RootB, and

• NestedA and Required map to NestedB. Also the name attributes of
NestedA and NestedB are mapping to each other. Furthermore, the
description attribute of the class Required maps to the description

attribute from NestedB.

5.2.1. Reconstructive Integration Strategy

The idea behind the RIS is to create the other models automatically by
simulating the initial creation of the already existing model. During the
simulated creation, we create the changes that are the necessary input for the
consistency preservation process, which we explained in Chapter 3. These
changes serve as input for the Vitruvius framework and are processed
like standard changes that are performed by users. Hence, the consistency

168



5.2. Include Existing Artefacts in Vitruvius

preservation rules are executed and the corresponding model elements in all
other models are created.

Before creating the changes, however, we �rst resolve (potential) con�icts
between the source model and the target models. During this phase, we
apply the invariants of the a�ected objects from the target models to the
source model. The goal of this phase is to create models from which we are
able to create valid changes and therefore valid target models. We distinguish
between two di�erent types of con�icts. The �rst type of con�ict deals with
so called syntactic con�icts, which would cause an invalid target model
if we apply the transformations from the source model to get the target
model. As an example for a syntactic con�ict consider our small example
depicted in Figure 5.1: If we want to integrate an instance of metamodel A,
we need to consider the consistency preservation rules between metamodel
A and metamodel B as well as the invariants of metamodel B. The invariants
of metamodel B need to be applied to the attributes of metamodel A that
could possibly violate the invariants during the execution of the consistency
preservation rules. In our example, we need to consider the invariants
for the name attribute of the class NestedB from metamodel B and apply
them to the name attribute of class NestedA from metamodel A. This means
that we have to check all instances of the class NestedA and need to make
sure that their names do not contain any spaces. For instance, the name

attribute with the value My Name violates the constraint that no spaces are
allowed in the name attribute of the class NestedB. An obvious solution is to
remove the spaces in the name. Furthermore, we need to make sure that the
name attribute in the class NestedA is unique over all instances of the class
NestedA. A simple solution here is to iterate over all instances and identify
the duplicate names and append a unique number at the end of the name

string. For instance, if we have two name attributes with the name MyName

we would rename the �rst to MyName1 and the second one to MyName2.
The second type of possible con�icts are semantic con�icts. This con�icts
occur if the source model instance cannot be mapped to the target model
instance using the consistency preservation rules. Hence, these con�icts
depend on the used consistency preservation rules. To give an example, we
change the transformation from the name Attribute from the class NestedA
to the name attribute of class NestedB in a way that only the �rst three letters
from name are considered. This could lead to a violation of the invariant
within metamodel B that the values of the attribute name must be unique.

169



5. Include Existing Artefacts

To resolve the con�ict, one needs to ensure that the �rst three letters are
unique in the attribute name for all instances of the class NestedA.

Even though the invariant resolving can be done during the transformation
itself we decided to do it before the integration transformation. The reason
for this decision is twofold. Firstly, we can resolve con�icts before the
consistency preservation rules are executed. This allows us, for instance,
to resolve con�icts that cannot be resolved easily within the consistency
preservation rules itself. Secondly, it is possible to solve con�icts that need
the users to disambiguate the change before the actual execution of the
consistency preservation rules.

After the invariant resolving phase, we perform the traversal phase to simu-
late the creation of the source model. This means that we need to visit every
element in the model and create the creation-change for the model element
as well as for its attributes. The algorithm we use relies on the fact that
every model element needs to be contained in exactly one other element.
This is at least true for all models in any Eclipse Modeling Framework (EMF)
based model To traverse a model we �rst visit all elements that do not have
any incoming references. Hence, the �rst element we visit is the root object
of the model, which we consider as level 0 element. After that we visit all
direct children of the root object that are contained in the root object and
that do neither require other model elements to exist nor have required
references to other model elements that are not created yet. We call these
elements level 1 elements. We repeat the above-mentioned step for all level 1
elements and create the level 2 elements. We repeat this step until we visited
all elements within model A. During each visit we create the create-changes
for the visited model elements. After the application of the algorithm we
have all changes that lead to the creation of the initial model.

To give an example consider metamodel A we mentioned above (see Figure
5.1). To traverse the metamodel we �rst would visit the Root class, which
is the level 0 element. Both subclasses are contained within the Root class.
The Nested class, however, needs to have an instance of the Required class
to exists. Hence, the Required class is the level 1 element, which instances
can be visited after visiting the level 0 element(s). After the creation of all
Required classes, we can create all instances of the Nested class, because all
elements that are needed for any Nested class element are already created.
In our small example, the Nested class is a level 2 element.

170



5.2. Include Existing Artefacts in Vitruvius

This approach does not guarantee that we create the source model in the same
order as users would have created it. However, the output of the simulated
model creation is the same as the input source model. The above introduced
approach comes with assumptions for the source model as well as for the
consistency preservation rules that are executed during the creation of the
elements within the source model. The assumption for the source model is
that the creation order of the model elements does not haven an e�ect on
the model itself. The assumption for the consistency preservation rules is
that the creation order of the model elements must not have any e�ect to the
consistency preservation rules. Another assumption for the transformations
is that they need to be able to transform all features from a class during
the creation of the class already. The reason for that assumption is that it
is possible that not all changes made on a model are reported. Consider
our example metamodel A from Figure 5.1: The consistency preservation
transformation needs to be able to transform the name attribute of the class
Nested as well as the description attribute from the class Required during the
creation of each class. This is necessary, because the change for the attributes
are not reported by the integration strategy. It is, however, possible to change
the RIS, in order to support the creation of the changes for attributes as
well.

5.2.2. Linking Integration Strategy

A LIS creates the correspondences between a source model and target models.
Hence, in contrast to the RIS it does not simulate the creation of the source
model. A LIS requires that the target models can be created or generated
from the source model using an external tool, e.g. a Model-to-Model (M2M)
transformation. It also requires that during this transformation a trace
model has been created that provides the information how an element from
the source model maps to the elements from the target model. Using the
information from the source model, the created target models, and the trace
model, a LIS creates the Vitruvius correspondence model. The Vitruvius
framework can use the created Vitruvius correspondence model as normal

correspondence model during the execution of the consistency preservation
rules between the source model and the target models. This approach,
however, has the assumption that the used model generation tools create the
same target model as it would be created using the consistency preservation

171



5. Include Existing Artefacts

rules. If this is not the case, we need to create special correspondences that
mark correspondence which have been created by a LIS. The elements within
the correspondences marked as created by a LIS, cannot be kept consistent
using the standard consistency preservation rules. Instead we need a special
treatment for those elements if they are changed. A simple solution is to
warn users that this change cannot be kept consistent automatically and
require users to ensure the consistency manually. More advanced solutions,
such as keeping at least parts of the elements consistent automatically, e.g.
the name, can be implemented as well. Also, special consistency preservation
rules can be created for the elements that are integrated in the approach
with a LIS.

Again, consider our example for this section (see Figure 5.1). Let us assume
that we already have an instance of metamodel B. Furthermore, we have
de�ned an uni-directional model to model transformation from metamodel
B to metamodel A, that creates the following elements from metamodel A:

• one RootA instance for every RootB instance;

• One NestedA instance and one Required instance for every NestedB

instance. The Required instance, however, is only created if no other
Required instance with the same description attribute exists already.

The M2M transformation also creates a trace model, which contains the
information which model element in the instance of metamodel A was
created from which element in the instance of metamodel B. The three models
(the input model, the output model and the trace model) are the basis for our
LIS. The LIS uses these models as input for a M2M transformation, which
output is a correspondence model between the model instance A and the
model instance B. The transformation creates a Vitruvius correspondence
model element between the elements from metamodel B and its created model
elements from metamodel A. To �gure out which element from model A was
created from which element in model B the transformation uses the provided
trace information. This approach only works if the bidirectional consistency
preservation rules match the uni-directional transformation or generation
mapping, i.e. the bidirectional consistency preservation rules would have
created the same output element as the uni-directional transformation if
Vitruvius would have been used from the beginning of the development
process. In this case the bidirectional transformations can be used directly
and Vitruvius as it is can be used for the development and evolution of the

172



5.2. Include Existing Artefacts in Vitruvius

models. If this is not the case a special type of Vitruvius correspondence
model instances need to be created and considered during the execution
of the bidirectional transformations. The latter case is explained in a more
complex example for a LIS, which we present in the next section, where we
apply a LIS to source code and architectural models.

To conclude, a LIS heavily depends on the source model, the creation or
generation tools for the target models as well as the trace information this
tools are creating. This means that a LIS often requires technology-speci�c
or even model-speci�c solutions.

5.2.3. The Role of the Integrators

For the integration of existing artefacts, we de�ne the role of integrators,
who are responsible to perform the integration. If a speci�c model shall be
integrated into a speci�c VSUM, the �rst step they have to do is to decide
whether a RIS or a LIS should be used for integrating a speci�c model into a
speci�c VSUM.

For a RIS they have the following two responsibilities: The �rst responsibility
is to solve the invariants of the models if they cannot be solved automatically.
Secondly, they are responsible for creating the traversal strategy for the
metamodels of the models that should be integrated.

Since a LIS does not follow such a straight forward process like the RIS they
have more responsibilities depending on the used LIS. Hence, responsibilities
within a LIS are depending on the models that should be integrated and need
to be de�ned speci�c for the used approach. In general, however, they
have the following responsibilities: If no model transformation or model
generation from the source model to the target model exists yet, integrators
are responsible for creating such a transformation or generation. They also
need to ensure that a trace model between the source model and the target
model exists. They can use this trace model together with the source model
and the target model to create a M2M transformation from these three input
models to the Vitruvius correspondence model.

173



5. Include Existing Artefacts

5.3. Include existing Architecture Models using
Reconstructive Integration Strategy

This section introduces how we use a RIS to include an existing architecture
model into our Coevolution approach, i.e. it addresses the �rst part of the
second scienti�c challenge for this chapter.

Using Java Model Parser and Printer (JaMoPP) respectively Java as target
model and the consistency preservation rules introduced in Chapter 4, con-
�icts between Palladio Component Model (PCM) and Java can occur. Ta-
ble 5.1 shows the possible con�icts that can occur between PCM and Java
and whether these con�icts are syntactic or semantic con�icts and how we
resolve them before we traverse the model. For the semantic con�icts, which
are mapping-speci�c, we assume that the package mapping consistency
preservation rules, which we introduced in Section 4.3.2, are used. The
semantic con�icts, we identi�ed are, for instance, caused by the fact that one
OperationSignature is provided multiple times by the same BasicComponent.
To overcome this con�ict, we could adapt the consistency preservation rules
in a way that the ProvidedRoles are made explicit in the source code. Such
an approach of mapping a PCM architectural model to source code has been
introduced by Becker [Bec08] and is implemented, e.g. for ProtoCom. As we
see in Section 6.4 these semantic con�icts, however, do not occur in any of
the PCM instances we used as case studies.

As next step, we have to traverse the PCM elements. Therefore, two traversal
algorithms are described in the following. The �rst one, (see Algorithm 3)
shows one possible algorithm how one PCM Repository can be traversed,
while the second one (see Algorithm 4) shows one possibility to traverse
a PCM System respectively a ComposedProvidingRequiringEntity. The goal
of the traversal strategy is to visit each element within the given PCM
elements and create the according changes for each element in order to
simulate a newly creation of the model. Hence, the �rst element we visit is
the Repository element itself. Afterwards, we visit all DataTypes within the
repository. The order in which we visit the data types is as follows: Since the
PrimitiveDataTypes do not have any dependencies to other model elements,
we visit them �rst. Using the consistency preservation rules we presented in
this thesis, however, the creation of PrimitiveDataTypes does a�ect the source
code, because we use counterparts in the Java language to represent the

174



5.3. Include existing Architecture Models using Reconstructive Integration Strategy

Invariant
name

Description Kind Possible Resolution
strategy

Keywords Names for elements in PCM,
e.g. components, are not al-
lowed to have the name of a
keyword in Java, e.g. class.

syntactic Prepend a valid letter to
the begin of the identi-
�er name.

First letter The �rst letter of an identi-
�er in Java (e.g. for a class)
needs to be a letter.

syntactic Prepend a valid letter to
the begin of the identi-
�er name.

Forbidden
charac-
ters

Identi�ers in Java are not
allowed to contain special
characters such as “-”, “_”,
“&” etc.

syntactic Replace the characters
with “_"

Names
equals

Components or Interface
from the PCM with the
same name, would be
mapped to the same source
code elements.

semantic Append an increment-
ing number i to the con-
�icting name.

Signature
equals

Two OperationSignatures in
either one interfaces or two
interfaces that are imple-
mented by the same compo-
nent are equal. This means
they have the same name,
the same Parameter types
and the same return type.

semantic Append an increment-
ing number i to the
name of the con�icting
OperationSignatures.

Double
provided
Interface

A component provides the
same interface twice in or-
der to provide two di�er-
ent implementations for the
same service, e.g. one fast
and one energy saving im-
plementation.

semantic Either restructure
transformations so that
they use the Broker
pattern[Bec08] or
restructure the PCM
model instance.

Table 5.1.: Invariants between PCM and Java that need to be resolved before the
integration step. We identi�ed the invariants already for [Leo+15].

175



5. Include Existing Artefacts

PrimitiveDataTypes from the PCM. After visiting the PrimitiveDataTypes, we
visit all CompositeDataTypes and CollectionDataTypes to create the skeleton
for the complex data types. As of now we have visited all data types and
they can be used within OperationSignatures and as inner types in other
data types. Since each CollectionDataTypes, however, needs to have an inner
type to be a valid CollectionDataType the model is not valid by now. Hence,
one assumption we make here is that the transformations are able to deal
with the fact that the model is not in a valid state at every point in time. To
complete the creation of the DataType we visit all CompositeDataTypes and
CollectionDataTypes again and create the changes for the InnerDataTypes

within the CompositeDataTypes respectively the InnerElements within the
CollectionDataTypes. After the last step we have a valid model that contains
all data types as well as their inner elements.

Afterwards, we can visit the remaining �rst level entities in the Repository.
These are all OperationInterfaces, CompositeComponents, and BasicCompo-

nents in the repository and create the create-change for them. For each
OperationInterface we also visit all OperationSignatures. During the visit of
each OperationSignature we implicit visit the reference to the return type.
Furthermore, we explicitly visit all Parameters of each OperationSignature.
After that step, we have created a Repository that consists of the DataTypes

and the OperationInterfaces. As next elements we visit the BasicComponents

and the CompositeComponents. For the latter, we create the skeletons, but
not the inner components. During the visit of the components we visit the
OperationProvidedRoles and OperationRequiredRoles to establish the connec-
tion between components and interfaces. If the current component is a
BasicComponent, we also visit the SEFFs of the BasicComponents.

As last step, for the repository we visit all CompositeComponents again to
build their inner structure. After performing this step, we are �nished
with the creation of the Repository and can traverse the System. Since the
CompositeComponents and the System are both from type ComposedProvid-

ingRequiringEntity we traverse the inner structure of both in the same way.
First, we visit the AssemblyContext and its encapsulated component. Since,
we already visited all components, we can be sure that the encapsulated
components for all AssemblyContexts exist. As next step, we visit the Opera-
tionProvidedRoles and OperationRequiredRoles of the ComposedProvidingRe-

quiringEntity. After that we visit all ProvidedDelegationConnector and Re-

quiredDelegationConnector, which are the delegation connectors to connect

176



5.4. Include existing Source Code using a Linking Integration Strategy

the provided respectively required interfaces with the AssemblyContexts. As
last step we visit the AssemblyConnectors of a ComposedProvidingRequirin-

gEntity.

The proposed Algorithm has the limitation that only one Repository can
be traversed. If more than one Repository is used the limitation can be
overcome by creating a virtual Repository that contains all elements from
both Repositories. This virtual Repository can than be traversed as mentioned
in the Algorithm above.

The proposed algorithm is only one possible example how an existing PCM
Repository and an existing PCM System can be traversed. The important fact
for any other possible traversal algorithm, is that during the creation of an
element, all elements necessary to create the element have to be created
already. The reason for that is that we create the create-change for the
currently visited element during the visit of each element.

5.4. Include existing Source Code using a Linking
Integration Strategy

To include an existing source code base into our Coevolution approach, we
use a LIS. For this LIS, we present four di�erent integration levels. These
levels de�ne the requirements on the source code that shall be integrated.
The levels reach from the requirement that the source code already needs to
be compliant to the consistency preservation rules that are used (Integration
Level 1) over the integration of arbitrary source code (Integration Level 2
and Integration Level 3) to the generation of element-speci�c bidirectional
consistency preservation rules (Integration Level 4). Furthermore, the four
levels de�ne to which degree the integrated source code can be kept con-
sistent automatically with the architecture after the integration. In this
dimension the degree reaches from no automatic consistency, over some
de�ned changes can be kept consistent to all changes can be kept consistent
automatically using the de�ned consistency preservation rules. Within this
thesis, we focus on the �rst three levels, while the fourth level is left to future
work. The de�nition of Integration Level 1 addresses the second part of the
second scienti�c challenge of this chapter. The de�nition of Integration Level

177



5. Include Existing Artefacts

Algorithm 3 Traversal strategy for a PCM Repository

Require: PCM ← (Set<Repository>, System)
1: function traversePCM(Repository,System)
2: createRepository(repository)
3: for all primitiveDatatype ∈ repository do
4: createPrimitiveDatatype(primitiveDatatype)
5: for all compositeDatatype ∈ repository do
6: createCompositeDatatype(compositeDatatype)
7: for all collectionDatatype ∈ repository do
8: createCollectionDatatype(collectionDatatype)
9: for all compositeDatatype ∈ repository do

10: for all innerType ∈ compositeDatatype do
11: addInnerType(compositeDatatype, innerType )
12: for all collectionDatatype ∈ repository do
13: setInnerType(collectionDatatype, collectionDatatype .innerType)
14: for all operationInterface ∈ repository do
15: createInterface(operationInterface)
16: for all operationSiдnature ∈ operationInterface do
17: createSignatureAndReturnType(operationSiдnature)
18: for all parameter ∈ operationSiдnature do
19: addParameter(parameter )
20: for all compositeComponent ∈ repository do
21: createCompositeComponent(basicComponent )
22: for all opProvidedRole ∈ compositeComponent do
23: createOperationProvidedRole(opProvidedRole)
24: for all opRequiredRole ∈ compositeComponent do
25: createOperationReqiredRole(opProvidedRole)
26: for all basicComponent ∈ repository do
27: for all opProvidedRole ∈ compositeComponent do
28: createOperationProvidedRole(opProvidedRole)
29: for all opRequiredRole ∈ compositeComponent do
30: createOperationReqiredRole(opProvidedRole)
31: createBasicComponent(basicComponent )
32: for all se� ∈ basicComponent do
33: createSeff(basicComponent , se�)
34: for all compositeComponent ∈ repository do
35: traverseComposedEntity(compositeComponent )
36: traverseComposedEntity(system) . Finally, traverse the PCM system

178



5.4. Include existing Source Code using a Linking Integration Strategy

Algorithm 4 Traversal strategy for a PCM ComposedProvidingRequiringEn-

tity, e.g. a PCM System

1: function traverseComposedEntity(
composedEntity:ComposedEntity) . a composedEntity is either a System or a
CompositeComponent or a Subsystem

2: for all assemblyContext ∈ composedEntity do
3: createAssemblyContext(assemblyContext)
4: for all opProvidedRole ∈ composedEntity do
5: createOperationProvidedRole(opProvidedRole)
6: for all opRequiredRole ∈ composedEntity do
7: createOperationReqiredRole(opProvidedRole)
8: for all providedDeleдationConnector ∈ composedEntity do
9: createProvidedDelegationConnec-

tor(providedDeleдationConnector )
10: for all requiredDeleдationConnector ∈ composedEntity do
11: createReqiredDelegationConnec-

tor(requiredDeleдationConnector )
12: for all assemblyConnector ∈ composedEntity do
13: createAssemblyConnector(assemblyConnector )

2, Integration Level 3, and Integration Level 4 addresses the third scienti�c
challenge of this chapter (see Section 5.1).

Since we use a LIS to integrate existing source code, we need to have model
transformation or generation from the source in to the target models. There-
fore, we use reverse engineering approaches that are able to generate an
architectural model from source code. This step needs to be done for all
de�ned integration levels. Within the work presented in this, we used the
reverse engineering approaches i) SoMoX, ii) Extract, and iii) EJBmoX . We
brie�y explained SoMoX [Kro12] in the foundations chapter already (see
Section 2.4). Since the reverse engineering approaches Extract and EJBmoX

are contributions of this thesis, they are explained in the following subsec-
tions. While Extract is able to reverse-engineer a PCM model from arbitrary
Java source code using di�erent extraction algorithms, EJBmoX is able to
reverse-engineer a PCM model from Java source code that is created with
Enterprise Java Bean. We use the result of this extraction mechanisms to cre-
ate a M2M transformation from the result of the extraction, which is a PCM

179



5. Include Existing Artefacts

as well as a link model, to the correspondence model. For the integration of
existing source code we distinguish between the use cases i) integrate code
that matches the consistency preservation rules, and ii) integrate code that
does not match the used consistency preservation rules. Even though the
integration process for the two cases is similar, the evolution of the software
system using our Coevolution approach is di�erent for the cases. For the
�rst case, the de�ned consistency preservation rules can be used out of the
box and the our Coevolution approach does not to distinguish, whether a
correspondence has been created by the integration M2M transformation or
by the consistency preservation rules itself. The reason for that is that the
correspondences are the same regardless which transformation created them.
The consistency preservation rules, however, cannot be applied for if code
should be integrated that does not match the consistency preservation rules.
Hence, an extension for the proposed consistency preservation mechanism,
which we have introduced in the Chapter 3 and Chapter 4 is necessary.

In the remainder of this section, we �rst explain the used reverse engineering
approaches. Afterwards, we four di�erent integration levels, which can be
used to integrate source code. After that, we explain how we realised the �rst
three integration levels within our Coevolution approach. Finally, we explain
the additional tasks of integrators within the di�erent code integration
levels.

Besides the fact that we can (partly) reuse existing reverse engineering
approaches to integrate existing code a RIS would be impractical for the in-
tegration of source code into our Coevolution approach due to the following
reasons:

1. Source code that shall be integrated, does often not match the
current use consistency preservation rules. If we would simulate a
creation of the model using a RIS for source code, we would force an
architectural model that would have been created by the consistency
preservation rules. Enforcing the architecture of the consistency
preservation rules to a source code base that does not conform the
consistency preservation rules would work, but would may result in
a misleading architectural representation.

2. To simulate the creation of a JaMoPP model, the traversal algorithm
needs to visit every element of the source code model including the

180



5.4. Include existing Source Code using a Linking Integration Strategy

statements. Implementing a traversal strategy for that is possible but
impractical.

3. The consistency preservation rules (at least the once we
implemented for this thesis) from source code to architecture require
users more often to disambiguate the change than the
transformations from the architectural model to the source code
model. Hence, users would be asked very often how to deal with the
new elements that are created. Answering these questions can be
challenging, especially if the users are not familiar with the
consistency preservation rules or the implemented architecture.

5.4.1. Extracting Architecture Models from exiting
Source Code

Extracting an architecture model from existing source code is the �rst step
towards the integration of existing source code into our Coevolution ap-
proach. Since we use the PCM as architecture model, we need to extract a
rich architecture model from source code in terms of Components, Opera-
tionInterfaces, OperationSignatures, ProvidedRoles, and RequiredRoles. Since
we also want to integrate the behaviour of the source code we also need to
extract the behaviour in terms of SEFFs. To integrate the source code into our
Coevolution approach in the next step we also need to have the information
which class belongs to which architectural artifact.

We identi�ed three approaches that allow us to reverse-engineer source
code to a PCM instance that ful�lls these requirements: The �rst one is to
use SoMoX [Kro12], which extracts an architecture based on metrics. The
second one is Extract (see Langhammer et al. [Lan+16]), which extracts an
architecture using an extraction mechanism and transforms the results to
PCM. The third one is EJBmoX , which reverse-engineers source code that is
created using Enterprise Java Bean (EJB)s.

We already explained SoMoX in Section 2.4. Since Extract and EJBmoX are
contributions of this thesis, we explain them in the following two sections.

181



5. Include Existing Artefacts

5.4.1.1. Extract

This section is based on Langhammer et al. [Lan+16], where we introduced
Extract. Extract is able to create a PCM architecture model from source code,
which is based on Plain Old Java Objects (POJOs), i.e. which does not use
any speci�c source code technology, such as EJBs. It is, furthermore, able to
create PCM UsageModels from test code. The latter is, however, not part of
this thesis and therefore not explained here, i.e. we focus on the creation of
a PCM Repository.

To create a PCM Repository using Extract, the work �ow depicted in Fig-
ure 5.2 is executed. In the following, we �rst explain the reused tools. Next,
we explain the four steps executed by Extract in order to retrieve a PCM
Repository and a System.

Tools reused within the Extract tool chain As we can see in Figure 5.2, Ex-
tract uses Architecture Recovery, Change, and Decay Evaluator (ARCADE)
[GIM13] to reverse-engineer the architecture of source code. ARCADE is an
architecture reverse engineering tool that currently comprises ten di�erent
extraction algorithms. It can apply these di�erent algorithms to create di�er-
ent views to the implemented architecture of a software system. Within this
thesis, we used the Algorithm for Comprehension-Driven Clustering (ACDC),
and Architecture Recovery using Concerns (ARC) as reverse engineering
algorithms. As we mentioned in [Lan+16], ACDC uses the module dependen-
cies within a system to recover its primarily structure. ARC uses information
retrieval methods to recovers an semantic architectural view of the software
system. Garcia et al. [GIM13] showed that the two algorithms outperformed
the other available algorithms for ARCADE in terms of accuracy and scala-
bility. As output from ARCADE, we get the output clustering of the source
code, and the dependencies between classes. Consider the following example:
After applying ARCADE to the running MediaStore example of this thesis,
we get the two clusters shown in Figure 5.3. The clusters not only contain
the actual architectural relevant classes but also used classes from third party
libraries and from the Java language API. These classes, however, are ignored
by Extract in the subsequent steps.

182



5.4. Include existing Source Code using a Linking Integration Strategy

So
u

rc
e 

C
o

d
e

A
R

C
A

D
E

Ja
va

 C
al

l G
ra

p
h

C
la

ss
 

D
e

p
en

de
n

ci
es

M
et

ho
d

 
D

e
p

en
de

n
ci

es

Si
gn

at
ur

e 
Ex

tr
ac

to
r

Si
gn

at
ur

e 
D

e
p

en
de

n
ci

es

So
u

rc
e 

C
o

d
e

M
o

d
el

C
lu

st
er

s
C

o
m

p
on

en
t 

&
 

In
te

rf
ac

e 
G

en
er

at
o

r

Si
gn

at
ur

e 
M

at
ch

er
So

u
rc

e 
C

o
d

e 
D

e
co

ra
to

r

P
C

M
 

C
o

m
p

on
en

ts
 &

 
in

te
rf

ac
es

St
ru

ct
u

ra
l P

C
M

C
o

m
p

le
te

 P
C

M
 

R
ep

o
si

to
ry

Ja
M

o
PP

SE
FF

 G
en

er
at

o
r 

   
   

 

1

2

3
4

Fi
gu
re
5.
2.
:O

ve
rv

ie
w

of
ar

ch
ite

ct
ur

e
re

co
ns

tr
uc

tio
n

ap
pr

oa
ch

E
x
t
r
a
c
t
.W

e
ne

ed
to

ex
ec

ut
e

st
ep

s1
th

ro
ug

h
4

to
ge

ta
PC

M
in

st
an

ce
fro

m
so

ur
ce

co
de

.T
he

gr
ey

bo
xe

s,
ar

ea
pp

ro
ac

he
s,

w
ec

ou
ld

re
us

e,
w

hi
le

th
eb

la
ck

bo
xe

sa
re

co
nt

rib
ut

io
ns

of
E
x
t
r
a
c
t

(st
ep

1
th

ro
ug

h
3)

.W
ew

er
ea

bl
e

to
re

us
e

So
M

oX
’s
S
E
F
F

ge
ne

ra
to

rf
or

E
x
t
r
a
c
t
,b

ut
w

e
ne

ed
to

ad
ap

ti
ti

n
or

de
rt

o
w

or
k

in
th

e
en

vi
ro

nm
en

to
fE

x
t
r
a
c
t
.

183



5. Include Existing Artefacts

Object

String

MediaStore

IMediaStore

Integer WebGUI

IWebGUI

MediaStore cluster
WebGUI cluster

Figure 5.3.:Clusters of the MediaStore example extracted with ARCADE. We assume
that two clusters are reverse-engineered by ARCADE. One cluster contains the
MediaStore classes, while the other cluster contains the WebGUI classes.

From Java Call Graph1, we get the method dependencies, i.e. we get the
information which method calls with other methods. From JaMoPP [Hei+10],
we get an EMF model representation of the source code.

Creating the PCM Repository and the PCM System In the following, we ex-
plain the four steps, which are used by Extract, to create a Repository:

1. create a PCM Repository that contains interfaces and components
with their ProvidedRoles, and RequiredRoles,

2. extract the methods signatures of architectural relevant methods
from source code,

3. assign signatures and data types to provided interfaces, and

4. create SEFFs for the provided methods of each component.

For the creation of a PCM Repository, we �rst transform each cluster in
the ARCADE cluster output �le into one BasicComponent. As ARCADE
does not reverse-engineer interfaces, we create one OperationInterface for
each cluster. This interface is provided by the BasicComponent through a
ProvidedRole. As next step, we need to create the RequiredRoles. Therefore,
we can use ARCADE’s dependency output �le. Using this �le gives us
the information which cluster depends on which other clusters, i.e, we

1 https://github.com/gousiosg/java-callgraph

184

https://github.com/gousiosg/java- callgraph


5.4. Include existing Source Code using a Linking Integration Strategy

can �nd out the required BasicComponents for a given BasicComponent. As
components are not allowed to depend on each other in the PCM, we create
a RequiredRole between the BasicComponent and the provided interface of
its required BasicComponents.

In step two and three, we need to create the OperationSignatures in the pro-
vided interfaces of each component. Within the OperationSignatures, we also
need to create the parameters and the return types. Even though we are able
to retrieve the class dependencies from ARCADE, we are not able to retrieve
the method dependencies from ARCADE. To get the method dependencies
between classes, we use the output of Java call-graph as input for signature
matcher. The signature matcher is using the method dependencies from
the Java call-graph and the class dependencies from ARCADE as input and
creates signature dependencies. Therefore, the signature matcher traverses
the call-graph and analyzes, for each method whether the method calls
a method from a di�erent BasicComponent respectively a di�erent cluster.
If this is the case, we create an OperationSignature for the called method
in the provided OperationInterface of the called BasicComponent, because
the method is called from outside its own BasicComponent and is therefore
considered architectural relevant. After creating an OperationSignature, we
need to create the parameters and return types. Therefore, we can reuse
the data type reconstruction approach from SoMoX. Within this approach
primitive data types in source code, e.g. int or long, are mapped to their
corresponding PCM PrimitiveDataTypes. More complex data types in the
source code, for instance classes, which are used as return type, are mapped
to either CompositeDataTypes or CollectionDataTypes. The latter is used if a
data type either implements the Collection interface of the Java language
or if the type is an array type.

As a fourth and last step, we create a SEFF for each provided method of each
component. Therefore, we can reuse the SoMoX SEFF generator. In order
to be able to use SoMoX SEFF, we need to create a Source Code Decorator
Model (SCDM) in the steps before. The SCDM contains the information
how source code elements are mapped to architectural elements. Hence,
we initially create an empty SCDM and update it during the creation of
the components, interfaces, signatures, and data types. After this step, we
are able to execute the SoMoX SEFF generation with this SCDM. As we
mentioned in Section 2.4, the SoMoX SEFF generation conducts a control
�ow analyses on the source code. Therefore, it �rst classi�es method calls

185



5. Include Existing Artefacts

performed within the method into either component-external method calls
or component-internal method calls or library calls. Based on classi�ed
method calls it conducts the actual control �ow analyses. During the control
�ow analyses the control �ow elements, such as loops, if-else, and switch

statements are made explicit in the SEFF if they contain a component-external
method call.

After executing these steps, we have a complete PCM Repository, which
consists of BasicComponents, OperationInterfaces with OperationSignatures

and their ReturnTypes as well as Parameters. We, furthermore, retrieve the
RequiredRoles and ProvidedRoles of each component. In the last step, we
create SEFFs, which represent the behaviour of the source code. These SEFFs
can, however, not be used for predicting the performance directly, because
they do not contain performance information, such as resource demand
of internal actions, for the elements within the SEFF. This information can
be added by using approaches like Beagle Krogmann et al. [KKR10]. After
applying Extract to our running example and the clusters, we detected ac-
cording to Figure 5.3, we get a similar Repository as depicted in Figure 4.5.
One di�erence is the naming of the components and clusters, as they name
depends on the used reconstruction algorithm. Another di�erence is that
the OperationSignatures within an OperationInterface are only created if the
methods corresponding to the OperationSignatures are called from a class
that is contained within another component respectively cluster.

As in SoMoX, we create an implicit PCM System by instantiating each of the
components once in the PCM System and by connecting the RequiredRoles

of the components with the matching ProvidedRoles.

Hence, after executing Extract, we have an up-to-date architectural rep-
resentation of a given source code base and a SCDM, which contains the
information which source code elements are mapped to which architectural
elements. As we mentioned above, these artefacts are used by the following
integration approach to integrate existing source code into our Coevolution
approach.

186



5.4. Include existing Source Code using a Linking Integration Strategy

5.4.1.2. EJBmodel eXtractor

EJBmoX , which stands for EJB model eXtractor, allows us to extract an archi-
tectural model from code created with EJB. As foundations for EJBs, we use
the EJB version 3.1, which is de�ned in the JSR 318 [Sak09]. We explained
the necessary foundations for EJB in Section 2.5.4. To realise the reverse en-
gineering of EJB-based software systems, we reused the code base of SoMoX.
We, however, replaced the SoMoX component and interface detection mech-
anism with an EJB component and interface �nding mechanism. Within
EJBmoX , we were able to reuse the following steps from SoMoX:

1. the creation mechanism for Systems, ResourceEnviroment, and
Allocation,

2. the extraction of data types from the source code, and

3. the extraction of behaviour in terms of a SEFF from the source code.

The �rst step can be reused to create a PCM System, a ResourceEnviroment,
and an Allocation model from a given PCM Repository. To create a System

it creates an AssemblyContext for each component in the Repository and
connects the provided and required roles. Composing the components is,
however, only possible as long as each interface is only provided by one
component. If more components provide the same interface the system
architects need to specify the composition of the system. This limitation can
be overcome in future work by also taking the deployment information of an
EJB system into account during the reverse engineering. The �rst step also
creates a default ResourceEnviroment, by creating one server. The Allocation

model is created by deploying all created components on the one server in
the ResourceEnviroment.

Creating a Repository from EJB-based source code To create a PCM Repos-

itory from EJB source code EJBmoX performs the following steps.

1. reverse engineering of BasicComponents, OperationInterfaces, and
ProvidedRoles,

2. reverse engineering of OperationSignatures and DataTypes,

3. creation of RequiredRoles,

187



5. Include Existing Artefacts

4. creation of SEFFs for the provided services of each BasicComponent.

Within the �rst step the EJB source code is analysed and a PCM Repository in-
cluding BasicComponents, OperationInterfaces, and ProvidedRoles is created.
The algorithm used by EJBmoX to do so, is depicted in Algorithm 5 and
explained in the following. The �rst sub-step within the �rst step is the
reconstruction of components. Therefore, we investigate all classes subse-
quently and check for each class whether it is an EJB component-class. If this
is the case, we create a BasicComponent for the currently investigated class.
Classes annotated with either @Stateless, @Stateful or @MessageDriven
are EJB component-classes.

In the second sub-step, we create OperationInterfaces for all EJB business
interfaces implemented by the currently investigated EJB class. The identi�-
cation of EJB business interfaces is done as speci�ed in the EJB speci�cation
[Sak09]: If an EJB component-class implements only one interface, the in-
terface is an EJB relevant interface. If an EJB component-class implements
more than one interface, only those interfaces are relevant that are annotated
with either @Remote or @Local. These identi�cation rules, however, do not
apply to all interfaces. For instance, the interfaces java.lang.Serializable,
java.io.Externalizable, and all interfaces in the package javax.ejb, are
never considered as EJB business interfaces. Hence, if a class implements
one of the irrelevant interfaces, EJBmoX also needs to ignore the interfaces
during the reconstruction phase. For all other interfaces, EJBmoX needs to
follow the above-mentioned speci�cation, in order to create OperationIn-

terfaces for all EJB business interfaces. If interfaces extend each other in
the source code, for instance if class ClassA implements InterfaceA, which
extends interface InterfaceB and InterfaceA is annotated with @Remote, we
also consider InterfaceB as an architectural relevant interface. Hence, we
create an OperationInterface for InterfaceB and use InterfaceA as parent
interface. An OperationInterface for a Java interface, however, is only created
if no OperationInterface has been created already for the Java interface.

After we created the OperationInterfaces for a component, we need to cre-
ate the ProvidedRoles between the components and interfaces in the PCM.
We create a ProvidedRole between a reconstructed BasicComponent and a
reconstructed OperationInterface, if the EJB component-class, which corre-
sponds to the BasicComponent, implements the EJB business interface, which
corresponds to the OperationInterface.

188



5.4. Include existing Source Code using a Linking Integration Strategy

Algorithm 5 Algorithm used by EJBmoX to create BasicComponents, Oper-
ationInterfaces, and ProvidedRoles

Require: sourceCodeModel←JaMoPP model,
1: repository← createEmptyRepository
2: classes← sourceCodeModel.classes
3: ejbClasses← newEmptySet
4: for all class ∈ classes do
5: annotations← class.annotations
6: if (“Stateful” ∨ “Stateless” ∨ “MessageDrive”) ∈ annotations then
7: . EJB component class found
8: ejbClasses.add(class)
9: basicComponent← createBasicComponentWithName(class.name)

10: repository.components.add(basicComponent)
11: implementedInterfaces = class.interfaces
12: implementedInterfaces.remove(“Serializable”)
13: implementedInterfaces.remove(“Externalizable”)
14: implementedInterfaces.remove(“javax.ejb.*”)
15: ejbInterfaces = newEmptySet
16: if implementedInterfaces.size = 1 then
17: ejbInterfaces.add(implementedInterfaces.�rst)
18: else if implementedInterfaces.size > 1 then
19: for all interface ∈ implementedInterfaces do
20: if (“Remote” ∨ “Local” ∈ interface.annotations then
21: ejbInterfaces.add(interface)
22: for all ejbInterface ∈ ejbInterfaces do
23: opInterface←

repository.interfaces.getInterfaceWithName(ejbInterface.name)
24: if opInterface = ∅ then . create interface if not existing
25: opInterface ← createOperationInterfaceWith-

Name(ejbInterface.name)
26: repository.interfaces.add(opInterface)
27: providedRole← createProvidedRole . create providedRole
28: providedRole.component← basicComponent
29: providedRole.interface← opInterface

189



5. Include Existing Artefacts

As second step, we need to create PCM OperationSignatures with parame-
ters and return types as well as PCM DataTypes for the types of parameters
and return types. For each method in the EJB business interface we create
one OperationSignature in the corresponding PCM OperationInterface. For
the creation of PCM data types, we are able to reuse the data type recon-
struction approach from SoMoX. This approach creates PCM data types
for each Java object used as parameter or return type and adds it to the
OperationSignature.

After the creation of the OperationSignature, we need to create the Require-

dRoles between components and interfaces. A required relation between a
BasicComponent and an OperationInterface in the PCM means that the com-
ponent needs the functionality of the interface to ful�ll its own contracts. In
EJB dependencies from an EJB component class to an Java interface can be
injected into the component class �elds by annotating the �elds with either
@EJB or @Inject. The runtime environment of EJB respectively the used EJB
container, ensures that the correct EJB component class that implements
the interface is injected. This mechanism is similar to the PCM de�nition of
a required role. Hence, to create the RequiredRoles, we need to investigate
every �eld of every EJB component-class and check, whether the �eld is
annotated with @EJB or @Inject and if the type of the �eld is an Java interface
for which we created an OperationInterface. If this is the case, we can create
a RequiredRole between the BasicComponent, which corresponds to the EJB
component-class, and the OperationInterface, which corresponds to the type
of �eld.

As the last step to complete the PCM repository, we need to create SEFFs
for the components. This is done by creating one SEFF for each provided
OperationSignature of a BasicComponent. Therefore, we can also partly reuse
the SoMoX implementation. To run the SoMoX SEFF reconstruction, we
need to have an up-to-date SCDM, which contains the information how
architectural elements are mapped to the source code. In the case of EJBmoX ,
we create the SCDM with the following information:

• a component-to-class relation between each EJB component-class
and its corresponding BasicComponent,

• an interface-to-interface relation between for each EJB business
interface and its corresponding OperationInterface,

190



5.4. Include existing Source Code using a Linking Integration Strategy

• a signature-to-method relation between each interface method in EJB
business interface and its corresponding OperationSignature, and

• a data-type-to-class relation between each EJB data type class, which
are usually represented by POJOs, and the PCM data types.

These information are added to the SCDM during the above-mentioned re-
construction steps, i.e. during the creation of BasicComponents, for instance,
we also create the component- to-class entries in the SCDM.

Having the SCDM allows us to run the SEFF reconstruction approach from
SoMoX, which executes a control �ow analysis. The starting points for the
control �ow analyses are all class methods that implements an architectural
relevant interface method, i.e. each method that implements an interface
method from an EJB interface we found in the �rst step. As we mentioned
in Section 2.4, the �rst step of the control �ow analysis is to recursively
visit all method calls within a method and classify them as either internal
calls, external calls or library calls. We adapted the classifying mechanism
of SoMoX in order to support EJBmoX . The classifying mechanism used in
SoMoX classi�es all calls to another component as component external calls,
all calls to a used third party library or another used API, such as java.lang.,
as library call, and all calls to component-internal methods as internal call.
We can reuse the SoMoX classi�cation for library calls and internal calls. The
classi�cation of external calls, however, needs to be implemented for EJB
components as follows: EJBmoX needs to check whether a method call is a
call to a method of a required interface. If this is true we found an external
call. As in the SoMoX implementation, EJBmoX identi�es all calls to a used
API or third party library as library call. Furthermore, calls to data types are
considered as library calls. This means that EJBmoX assumes that within
data types no external calls are performed. As in the SoMoX implementa-
tion, internal calls are calling a method within the same component. After
the classi�cation is done we execute the SEFF generating mechanism from
SoMoX, which uses the classi�ed method calls to reverse-engineer the SEFF

of a given method. To use the reverse-engineered SEFF for the coevolution
within our Coevolution approach, EJBmoX is able to generate ResourceDe-

mandingInternalBehaviour and InternalCallAction for component-internal
method calls instead of inlining them directly into the SEFF.

191



5. Include Existing Artefacts

Extensions for EJBmoX We developed two extensions for EJBmoX , which
allows EJBmoX to also reverse-engineer software systems that do not com-
pletely follow the above-mentioned mapping. The �rst extension, reverse-
engineers �elds within an EJB component-class that have the type of an
EJB interface to RequiredRoles in the architecture. Hence, RequiredRoles are
created even if the �elds are not annotated with @EJB or @Inject. Using this
extension those �elds are treated the same way as �elds annotated with @EJB

or @Inject. Hence, they are reverse-engineered to RequiredRoles within the
BasicComponent, which corresponds to the class containing the �eld. This
extension allows us to reverse-engineer software system, where developers
composed EJB components manually, e.g. through the lookup method of the
Context class used by the EJB container. Using the �rst extension, however,
has the disadvantage that EJBmoX is not able to reverse-engineer the correct
PCM System in a fully-automated fashion.

The second extension creates an OperationInterface in the reconstructed
PCM Repository for classes, which are annotated with an EJB component-
annotation, but not providing an EJB interface. To do so, we create one
OperationSignature for each public method in the class.

Example reconstruction using EJBmoX Listing 19 shows an EJB implemen-
tation of the running MediaStore example. The simpli�ed version of the
MediaStore consists of two EJB component-classes and two remote EJB busi-
ness interfaces. The EJB class WebGUIImpl implements the interface IWebGUI

and requires an instance of the interface IMediaStore (Listing 19).

For this simple example, EJBmoX creates two BasicComponents: one for the
class WebGUIImpl and one for the class MediaStoreImpl, because both are
annotated with @Stateless. EJBmoX , furthermore, creates two OperationIn-

terface for the two Java interfaces IWebGUI and IMediaStore, because both
interfaces are annotated with @Remote. In the second step, EJBmoX creates
one OperationProvidedRole between the BasicComponent WebGUIImpl and
the OperationInterface WebGUI and one between the BasicComponent Me-

diaStoreImpl and the OperationInterface MediaStore. The ProvidedRoles are
created, because the classes corresponding to the BasicComponents imple-
menting the EJB interfaces correspond to the OperationInterfaces.

192



5.4. Include existing Source Code using a Linking Integration Strategy

@Remote

public interface IWebGUI{

File httpDownload(Request request);

void httpUpload(File file);

}

@Remote

public interface IMediaStore{

File[] download(String[] ids);

void upload(File file);

}

@Stateless

public final class WebGUIImpl implements IWebGUI {

@EJB

private final IMediaStore iMediaStore

@Override

public File httpDownload(Request request){

Integer id = request.getFirstId();

String idStr = id.toString();

String[] ids = new String[]{idStr};

File[] file = this.iMediaStore.download(ids);

logger.info("File " + file + " retrieved.");

return file[0];

}

@Override

public void httpUpload(File file){

//...

}

}

@Stateless

public final class MediaStoreImpl implements IMediaStore{

@Override

public File[] download(String[] ids){

//...

}

@Override

public void upload(File file){

//...

}

}

Listing 19: Simple example for EJB code

193



5. Include Existing Artefacts

During the interface reconstruction, we also create the signatures in terms of
OperationSignatures for the methods within the Java interface. Hence, EJB-
moX creates the OperationSignatures download and upload in IMediaStore

and httpDownload as well as httpUpload in IWebGUI. During the creation of
the OperationSignatures, EJBmoX also creates the PCM CompositeDatatypes

Request and File for the types used as parameters in the OperationSignatures.
Furthermore, EJBmoX creates a CollectionDatatype named FileList for the
array of �les File[].

In the next step, EJBmoX creates an OperationRequiredRole between the Ba-
sicComponent WebGUIImpl and the OperationInterface IMediaStore, because
the IMediaStore �eld in the class IWebGUI has the @EJB Annotation. During
the above-mentioned steps, EJBmoX creates a SCDM, which contains the
links between the architectural elements and their matching source code ele-
ments. As last step to complete the PCM repository we reconstruct the SEFFs
for the class methods. As example, we consider the method httpDownload

in the WebGUIImpl. As mentioned above, we can reuse the SEFF creation
mechanism from SoMoX. Therefore, the following steps are executed: First,
all method calls within the method httpDownload are visited and classi�ed as
either component-external call, component-internal call or library call. The re-
sult of this visiting is that only the call download is a component-external call.
All other calls are library calls. Now we can execute the control �ow analysis
for the method. The �rst element in the resulting SEFF is an InternalAction

for all calls before the component-external call. For the download call, the
SEFF reconstruction creates an ExternalCallAction. For the last library call
in the method, the SEFF reconstruction creates another InternalAction.

As we are now �nished creating the PCM Repository, we can create the PCM
System for the simple example. Therefore, we create one AssemblyContext

for each BasicComponents in the Repository, i.e. we create one for the Bas-

icComponent MediaStoreImpl and one for the BasicComponent WebGUIImpl.
The AssemblyContexts are connected using an AssemblyConnector between
the provided interfaces and required interface. The simple example, is an
EJB implementation of the running example for this thesis. Hence, EJB-
moX reverse-engineers the PCM repository depicted in Figure 4.5 from the
EJB example source code. EJBmoX , furthermore, extracts the PCM System
depicted in Figure 4.6.

194



5.4. Include existing Source Code using a Linking Integration Strategy

Assumptions and Limitations We make similar assumptions for the struc-
ture of the EJB code as we make for the bidirectional consistency preservation
rules between PCM and EJB code (see Section 4.6.1.1). One assumption, we
currently have, is that only source code artefacts are used to describe the EJB
components, EJB interfaces, and EJB dependencies. This means other ap-
proaches, for instance XML descriptors, to describe EJB component-classes,
EJB interfaces, and dependencies between EJBs are not considered yet. In
future work, however EJBmoX can be extended in order to take such XML
descriptors into count during the reverse engineering of a software system.
Furthermore, we assume that EJB relevant business interfaces are contained
in the source code. This means, we are currently not dealing with business
interfaces contained in external libraries or JAR �les. We also assume that
data types do not have any component relevant behaviour. Hence, we require
that data types do not contain external calls. If the mentioned assumptions
do not hold for source code, which should be analysed, EJBmoX creates a
wrong architecture and/or wrong SEFFs.

A limitation on the architectural level is that we do not support Compos-

iteComponents, which are components that contains other components. In
future work this limitation could be overcome by, for instance, combining
EJB component-classes contained in the same package or in the same project
to a CompositeComponent.

5.4.2. The Four Code Integration Levels

In the following, we explain the concepts for the four code integration levels,
we de�ned for the integration of existing source code. In the next section
the integration of source code for our Coevolution approach is explained
based on this levels.

5.4.2.1. Integration Level 1

The �rst level of integration can be used if the following requirements are
ful�lled:

195



5. Include Existing Artefacts

• The source code base that shall be integrated needs to be compliant
to the consistency preservation rules that are used for the
consistency preservation.

• The reverse-engineered architecture, which has been created by the
used reverse engineering tool, needs to be equal to the architecture
that would have been created if our Coevolution approach has been
used from the beginning of the development, i.e. it the
reverse-engineered architecture needs to be compliant to the used
consistency preservation rules as well.

The level has two advantages: The �rst one is that the integrated code can
be treated like the code that would have been created if our Coevolution
approach has been used from the beginning of the development process.
Hence, changes performed to any architectural element or source code ele-
ment can be kept consistent using the current used bidirectional consistency
preservation rules. The second advantage of Integration Level 1 is that the
process of the integration and the development process after the integra-
tion are simple, because no special treatment for the integrated parts of the
source is needed. Hence, neither software architects nor software developers
need to deal with the fact that some of the elements have been integrated.
However, Integration Level 1 has the disadvantage that existing source code
usually not ful�lls the bidirectional consistency preservation rules, because
source code can be build up in an arbitrary way. Even if the code follows
a certain consistency preservation rule, it is not guaranteed that no archi-
tecture violation occurs within the code or that certain parts of the code do
not follow the intended consistency preservation rules. If the latter is the
case, an approach such as Archimetrix [DPB13] can be used to align the code
base to an intended architecture. Integrating Archimetrix, however, is left to
future work. Hence, Integration Level 1 is suited for existing source code
that already ful�ll the used consistency preservation rules.

In contrary to Integration Level 1 the other integration levels can be used
for an arbitrary code base. Hence, there are no special requirements to the
source code and the reverse-engineered architecture model.

196



5.4. Include existing Source Code using a Linking Integration Strategy

5.4.2.2. Integration Level 2

The second integration level is the �rst level that supports source code that
is not compliant to the used bidirectional consistency preservation rules. To
realise this a special treatment is necessary for the integrated source code
elements and their corresponding reverse-engineered architectural elements.
During the integration these elements are marked as integrated elements.
The special treatment and the marking is only necessary if the elements
are not compliant to the used bidirectional consistency preservation rules.
Hence, during the integration a matcher is executed that checks which
source code elements and their corresponding architectural elements do
not ful�ll the used consistency preservation rules. If during the evolution
of a software system one of these elements has been changed by users,
the elements cannot be kept consistent automatically. Instead users get
a noti�cation though the user change disambiguation framework of our
Coevolution approach that contains the information that the performed
change cannot be kept consistent automatically. Furthermore, it contains
the information, which element corresponds to the changed element and
should be changed manually to preserve consistency.

Hence, the advantage of this approach is that arbitrary code can be inte-
grated, while the disadvantage is that the integrated elements cannot be kept
consistent automatically. Instead the users are noti�ed that the integrated
elements need to be kept consistent manually.

New elements that are added to the architecture, are kept consistent using
the de�ned consistency preservation rules. For new elements that are added
to the source code, we need to decide whether they are part of an integrated
component or not. If they are part of an integrated component, they are
treated as integrated elements. Otherwise they are treated as new elements
and can be kept consistent using the de�ned bidirectional consistency preser-
vation rules. This level has the advantage that an arbitrary code base can
be integrated. It has, however, the disadvantage that included code that
does not ful�ll the consistency preservation rules cannot be kept consistent
automatically. Integration Level 2 is suited if a) the existing source code
of a project does not ful�ll the used consistency preservation rules, and b)
the existing source code is not changed frequently. Hence, it is suited for
projects that like to include their code base into our Coevolution approach

197



5. Include Existing Artefacts

and use our Coevolution approach and the provided bidirectional consis-
tency preservation rules for the implementation of new components and
features.

5.4.2.3. Integration Level 3

The third level is similar to the second level, but it overcomes the disadvan-
tage that no elements can be kept consistent automatically. Therefore, it
allows to keep de�ned changes consistent automatically during the software
evolution. As in Integration Level 2, the integrated architectural elements
and source code elements are marked as integrated during the integration.
Furthermore, the integrators needs to identify changes that can be kept
consistent. For these changes the integrators needs to de�ne integration-
speci�c consistency preservation rules that are executed if an element, which
is marked as integrated, has been changed. The more integration-speci�c
consistency preservation operations can be de�ned by the integrators the
more e�ort is omitted for keeping the models consistent manually.

To �gure out, whether a change that occurs during the evolution of the
software system can be kept consistent automatically, we check after each
change a) if an integrated element has been changed, and if yes, b) whether
an action has been de�ned by the integrators for the integrated element. If
both conditions are true, the consistency between the elements can be pre-
served automatically. If only the �rst condition (a) is true, we fall back to the
approach that is used in Integration Level 2, i.e. the users get the noti�cation
that the change needs to be kept consistent manually. If neither of conditions
are true, either a new element has been introduced or the changes does not
a�ect integrated elements. In this case, we can use the standard consistency
preservation rules to preserve consistency. The advantage of Integration
Level 3 is that integrated elements, which do not follow the standard con-
sistency preservation rules, can be kept consistent automatically with their
corresponding elements during the software evolution. The disadvantage
is that the integration process needs more e�ort, because the integrators
needs to de�ne which changes to integrated elements can be kept consistent
automatically and need to implement the consistency preservation rules
for these changes. Integration Level 3 is suited for projects, where the inte-

198



5.4. Include existing Source Code using a Linking Integration Strategy

grated elements are changed during the evolution of the software system,
and de�ned changes should be kept consistent automatically.

5.4.2.4. Integration Level 4

For the forth integration level, we propose the creation of element-speci�c
consistency preservation rules during the integration process. This element-
speci�c consistency preservation rules can be used for consistency preser-
vation during the evolution of the software system. In this thesis, we focus
on the �rst three integration levels. Hence, we consider the fourth level
is as future work. However, we can give some initial ideas about the re-
alisation of Integration Level 4. As a �rst step, the integration needs to
be extended in a way that element-speci�c mappings are created for each
architectural element, which has been created during the reverse engineer-
ing procees, and its corresponding source code element. Since currently,
mapping-speci�c rules are neither supported by our Coevolution approach
nor supported by the Vitruvius framework, the next step is to enable the
support of element-speci�c consistency preservation rules. Therefore, the
reaction language developed by Klare [Kla16] and Kramer [Kra17] or our in-
ternal DSL to create consistency preservation rules, can be extended. During
the software evolution, a similar process as in Integration Level 3 can be used
to check whether a change a�ects an element for which an element-speci�c
consistency preservation operation exist. If an element-speci�c consistency
preservation operation exists for the changed element, this consistency
preservation operation needs to be executed in order to preserve the con-
sistency. If this is not the case, the standard consistency preservation rules
can be used. The advantage of Integration Level 4 compared to Integration
Level 3 is that all elements can be kept consistent automatically based on
the element-speci�c consistency preservation rules. The approach is suited
if the source code that should be integrated is changed frequently and if the
source code does not ful�ll any consistency preservation rules.

199



5. Include Existing Artefacts

5.4.3. Integration Level 1: Include Architecture-Code-Mapping
Compliant Source Code

This section explains, how the integration of existing source code using
Integration Level 1 for source code is realised within our Coevolution ap-
proach. Integration Level 1 means, that the code we integrate needs to be
compliant with the current used bidirectional consistency preservation rules
between architecture and code. This can be, for example, code that uses EJB
and matches our EJB consistency preservation rules or it could be code that
either is compliant or was re�ned to be compliant to the package mapping
consistency preservation rules we explained in Section 4.3.

5.4.3.1. Overview of the integration process

Figure 5.4 gives an overview how the integration process works. For all code
integration levels the �rst step is to reverse-engineer the source code base
that shall be integrated. Therefore, we can use one of the above-mentioned
reverse engineering approaches to get an architecture model of a given
source code. The result of the reverse engineering process are two artefacts:
i) an architectural model, which represents an architectural view onto the
source code base, and ii) the linking information between the source code
and the architectural model. If we use one of the above-mentioned reverse
engineering approaches, we get a SCDM that contains the linking informa-
tion. These two artefacts and the source code can be used as input models
for the LIS. The reason why we need these three models as input models
for the LIS is explained below. The main part of the presented LIS, is to
create an instance of the Vitruvius correspondence model that contains the
correspondences between the architectural element and its corresponding
source code element(s). This Vitruvius correspondence model can be used
for the evolution of the software system using our Coevolution approach.

5.4.3.2. Using a LIS to Create a VITRUVIUS Correspondence Model

A �rst idea is to create the Vitruvius correspondence model instance from
the available information in the SCDM. It turned out, however, that the

200



5.4. Include existing Source Code using a Linking Integration Strategy

information in the SCDM is not su�cient to create a Vitruvius correspon-
dence model. To give an example, where the information in the SCDM is not
su�cient, consider the parameters of a method in the source code model. For
our Coevolution approach, we need to have the correspondence from each
method parameter from the source code model to a corresponding parame-
ter of an OperationSignature in the architecture model. This information is
not represented directly in the SCDM. To get the missing information, one
approach is to extend the SCDM with the necessary information as well as
the reverse engineering approaches in a way that they are able to create the
necessary information. Another approach is to use the information from
the SCDM together and combine them with information from the source
code model and the architectural model to get the necessary information. In
order to avoid the e�ort of extending the reverse engineering approaches,
we decided for the latter approach, which is also depicted in Figure 5.4. To
give an example how this approach works consider, again, the parameters
of a method. Even though the correspondence between the parameters of
a method and its corresponding Parameters of an OperationSignature are
not made explicit in the SCDM, we can create the correspondence by using
the information from the correspondence between the methods and Oper-

ationSignatures to create the correspondence between the parameters of a
method and the Parameters of an OperationSignature. Hence, for Integration
Level 1, the linking integration strategy performs a simple M2M transfor-
mation from the SCDM, the architecture model and the source code model
to the Vitruvius correspondence model. This M2M transformation creates
one entry in the Vitruvius correspondence model for each linking infor-
mation in the SCDM. If the information from the SCDM is not su�cient,
the transformation uses additional information from the Java model and the
architectural model.

It might be necessary to adapt this M2M transformation according to the
used bidirectional consistency preservation rules. For the package mapping
consistency preservation rules, for instance, we need to perform the fol-
lowing two modi�cations for the consistency preservation rules: Firstly, it
is necessary to ensure that only for one class per package an entry in the
Vitruvius correspondence model is created, and secondly it is necessary to
create a correspondence for each package of its corresponding component.

Using this approach to integrate the source code creates the same corre-
spondence model that would have been created if our Coevolution approach

201



5. Include Existing Artefacts

Choose Project

Linking 
Information

Linking Strategy

Correspondence
Model

export to change-driven
approach

Architectural
Model

Code

Reverse 
Engineering

Figure 5.4.:Diagram that shows the steps executed by the proposed LIS to include
source code that is compliant with the used architecture to code consistency preser-
vation rules. We published the diagram already in [Leo+15].

has been used from the beginning of the development process. Hence, the
integrated source code can be kept consistent using the already existing bidi-
rectional consistency preservation rules. This means, furthermore, that after
the integration our Coevolution approach can be used as if it has been used
from the beginning of the development process. Within the next section,
we explain how it is possible to include arbitrary component-based source
code.

5.4.4. Integration Level 2: Include Non-Compliant
Source Code

Including source code that is non-compliant with the used bidirectional
transformations is possible in Integration Level 2. In this section, we describe
how we realise Integration Level 2 for our Coevolution approach, by changing
respectively extending the above-mentioned integration of source code. The
Integration Level 2 has the requirements that i) integrated elements are
marked as integrated elements, and ii) after each change during the software

202



5.4. Include existing Source Code using a Linking Integration Strategy

evolution a check is performed whether an integrated element has been
changed. To realise these requirements, we performed the following three
extensions compared to the integration of mapping compliant code:

1. extending the Vitruvius correspondence metamodel,

2. extending the integration transformation, and

3. extending the coevolution process in order to check whether a
change has been performed on an integrated model element or not.

For the �rst necessary extension, we introduce the new class Integra-

tionCorrespondence to the correspondence metamodel, which has the stan-
dard Correspondence as base class. Hence, it can be treated as a standard
correspondence model element, but it marks its instances as integrated el-
ements. The second change, we made to the above-mentioned integration
process occurs during the integration itself. Instead of creating a standard
Vitruvius correspondence model containing instances of Correspondences,
we create IntegrationCorrespondences, for elements that are integrated by
default. Instead of creating IntegrationCorrespondences only, it is, how-
ever, also possible to create standard Correspondences for elements that
ful�ll the used consistency preservation rules. To do so, we integrated a
check, which is executed before the creation of an IntegrationCorrespon-

dence. This check needs to be implemented mapping-speci�c and needs to
decide whether a given architecture model element and a given source code
element ful�ll the bidirectional consistency preservation rules. To do so, this
check can access the Vitruvius correspondence model, the SCDM as well
as all architectural model elements and source code elements. If the result of
the check is that the given elements ful�ll the consistency preservation rules
a standard Correspondences can be created for that elements. Hence, the
elements can be kept consistent during the evolution of a software system
using the standard consistency preservation rules.

As last step, we need to extend our coevolution process. Therefore, we devel-
oped a mechanism that checks for each change that is performed on either
an architectural element or a source code element, whether the changed
element a�ects an integrated element respectively an integrated area or
not. An existing element that has been changed, is considered as integrated
element respectively as element contained in an integrated area if either of
the following two statements is true: i) the Vitruvius correspondence model

203



5. Include Existing Artefacts

act Integration Level 2 consistency preservation

Changemonitored

inform user with
corresponding elements

inform user standard
behaviour

change a�ects
integrated element

new root object
in integrated area

else

Figure 5.5.:Change processing in Integration Level 2. After we monitored a change,
we check whether the change has been performed to an element within an integrated
or not. In the �rst case, we need to inform users about the change (either with
the corresponding element or without the corresponding element). In the latter
case, we can use the standard consistency preservation rules can be used (standard
behaviour)[Pet16].

contains an IntegrationCorrespondence for that element, or ii) one parent
element of the changed element is an integrated element. If the element
is considered as integrated element, the standard consistency preservation
rules are not executed. Instead the users get a noti�cation via the user
change disambiguation that speci�es which element needs to be updated
manually to achieve consistence between the models. Figure 5.5 shows, how
a change is processed within our Coevolution approach using the extended
development process.

Newly added elements cannot kept consistent using the standard consistency
preservation rules if they are contained within an integrated element or an

204



5.4. Include existing Source Code using a Linking Integration Strategy

integrated area. Hence, we need to �gure out whether a newly added element
has been added into an integrated area and should be treated as integrated
element, or whether it should be treated as standard element. We decided that
newly added elements within a compilation unit should be treated by default
the same way as their compilation unit respectively the class or interface
within this compilation unit. Hence, it is simple to �gure out whether a new
element that has been added within a compilation unit should be treated
as integrated element or not by checking the parents of the newly added
elements until a class or interface is reached. A challenge arises, however,
for compilation units respectively classes, interfaces, and packages that are
newly added. For these elements, it is unclear whether they have been added
into an integrated area or not. However, it can be decided depending on the
consistency preservation rules, whether these elements are contained in an
integrated area or not. For the package mapping consistency preservation
rules, for instance, newly added packages, classes or interfaces are considered
as being part of an integrated area if they are added within a package or
sub-package that a) contains at least one integrated class or interface already,
or b) is contained in an integrated area itself.

5.4.5. Integration Level 3: The Definition and Execution
of Special Bidirectional Consistency Preservation
Rules for Non-Compliant Source Code

To realise Integration Level 3 for our Coevolution approach, we extend the
realisation for Integration Level 2 in the following way: A new task is added
for the integration phase: During this phase the integrators need to specify
speci�c consistency preservation rules for changes that a�ect integrated ele-
ments. These speci�c consistency preservation rules have the same structure
as the standard consistency preservation rules and can be either written in
the Mapping Invariant Response (MIR) languages [Kra17] or in our internal
DSL (see Section 3.6.1). The di�erence to the standard consistency preserva-
tion rules and the speci�c consistency preservation rules is the execution
time within the consistency preservation process. During the software evo-
lution phase, the speci�c consistency preservation rules are executed if the
following two conditions are true: i) the change occurred in an integrated
area, and ii) an integration speci�c consistency preservation operation that

205



5. Include Existing Artefacts

is de�ned in the speci�c consistency preservation rules matches the occurred
change (e.g. rename of an interface method). A typical change, which can be
kept consistent automatically for integrated elements, is if they are renamed
by users, e.g. the rename of an interface method can be kept consistent with
the name of the corresponding OperationInterface. Figure 5.6 shows, how a
change is processed within our Coevolution approach if Integration Level 3
is used. The processing is similar as the one, we presented for Integration
Level 2 (see Section 5.4.4). It only adds the possibility to keep the change
consistent using the integration speci�c consistency preservation rules.

5.4.6. Tasks for the Integrators during the Code Integration

In this section, we explain the task of the integrators that are speci�c for
the code integration. The general tasks of the integrators are explained in
Section 5.2.3. For the code integration in Integration Level 1 the integrators
have the additional task of re�ning the speci�ed M2M transformation from
the SCDM to the Vitruvius correspondence model if needed. This re�ne-
ment might be necessary in order to allow the automatic coevolution of the
reverse-engineered architectural model and the source code. To be able to
execute the re�nement, integrators need to be aware of the used standard
consistency preservation rules.

For Integration Level 2 the integrators have the additional task of implement-
ing the mapping-speci�c integration-area-�nder for newly added classes,
interfaces, and packages. The �nder is used to �gure out, whether newly
added elements are contained in an integration area or not. To realise this
task, integrators need to be aware of the standard consistency preservation
rules.

As mentioned above, within Integration Level 3, the integrators need to de�ne
the integration speci�c consistency preservation rules and implement them.
For the implementation of the consistency preservation rules integrators
can, e.g. use the Reaction language [Kla16] or our internal DSL. As in
Integration Level 2, they also need to de�ne a mapping-speci�c integration-
area-�nder. To do so, they also need to be aware of the used standard
consistency preservation rules. Hence, the integrators need to be aware of
the used standard consistency preservation rules in all realised integration
levels.

206



5.4. Include existing Source Code using a Linking Integration Strategy

act Integration Level 3 consistency preservation

Change in integrated
area monitored

Check integration-specific
consistency preservation rules

execute specific consistency
preservation operation

inform user with
corresponding elements

inform user

no speci�c
consistency preservation

operation found

speci�c
consistency preservation

operation found

change a�ects
integrated element

new root object
in integrated area

Figure 5.6.:Change processing in Integration Level 3. The �gure shows the necessary
steos if a change in an integrated area has been monitored. To simplify the �gure,
we did not include the standard Vitruvius case[Pet16].

207





6. Evaluation

In this section, we present the evaluation of our Coevolution approach. The
main goal of our Coevolution approach is to keep architectural models and
source code consistent during software evolution. Hence, the evaluation
is aligned to the goals and research questions, which we introduced in the
Section 1.2. We evaluated our Coevolution approach, the developed reverse
engineering tools, and the integration of existing projects on existing Palladio
Component Model (PCM) instances and open source case studies. We showed
that our Coevolution approach can be used to keep changes performed to
real world projects consistent by extracting changes from a Version Control
System (VCS) and replaying them. Furthermore, we evaluated that the
coevolved models can be used for model-based analyses by predicting the
performance of a software system using coevolved models.

The remainder of this section is structured as follows. In Section 6.1, we give
an overview of the performed evaluation and classify them according to the
validation levels presented by Böhme and Reussner [BR05]. Next, we present
the Goal Question Metric (GQM) plan for the evaluation (see Section 6.2).
Based on the GQM plan, we describe the performed evaluation. We �rst
evaluate the contributions of including existing artefacts (see Chapter 5) be-
fore we evaluate the contributions of the architectural code consistency (see
Chapter 4). The reason that we �rst evaluate the contributions of Chapter 5 is
that we need to have an up-to date architecture model for an existing source
code base before we can evaluate the contributions of Chapter 4, i.e. before
we can evaluate that our Coevolution approach is able to keep architectural
models and source code consistent during the software evolution.

209



6. Evaluation

6.1. Evaluation Overview

In this section, we present an overview of the performed evaluation and
classify them into the di�erent validation levels presented by Böhme and
Reussner [BR05]. We also give a brief overview of the evaluation results.

6.1.1. Overview of the Performed Evaluation

First, we evaluate the developed reverse engineering approaches Extract

and EJBmoX by analysing existing open source projects using the reverse
engineering approaches to show how architecture models can be reverse-
engineered from source code. To evaluate the contributions of the thesis, we
perform di�erent evaluation case studies. Next, we evaluate the consistency
preservation rules between component-based architecture models and source
code, which we presented in Chapter 4, as follows: We use a Reconstructive
Integration Strategy (RIS) as explained in Section 5.3 to simulate the creation
of existing PCM Repositories. During this reconstruction, the de�ned con-
sistency preservation rules are executed to create the corresponding source
code respectively Eclipse Plugin artefacts. Next, we evaluate the levels of
code integration to show how existing source code can be integrated into our
Coevolution approach. Therefore, we use the reverse-engineered software
systems from the �rst evaluation. Based on the integrated projects, we use
the ChangeReplayTool (see Section 2.5.5) to replay changes, which were per-
formed on the open source systems, we integrated before. During the replay
of the changes, our Coevolution approach keeps changes to architectural
relevant source code consistent respectively informs users that changes are
performed on an integrated element. Hence, we are able to evaluate that
our Coevolution approach is able to keep architectural models consistent
with source code changes. We, furthermore, used the replay of changes to
evaluate the

• functionality of the incrementalSEFF reconstruction,

• the scalability of our Coevolution approach, and

• the performance of our Coevolution approach.

210



6.1. Evaluation Overview

As last evaluation, we show that it is possible to perform model-based anal-
yses using PCM’s performance predicting capabilities. As case study sys-
tem, we use the open source system “modular Rice University Bidding Sys-
tem” (mRUBiS) and predict the performance of

• a model reversed engineered with EJBmoX , and

• a coevolved architectural model.

6.1.2. Validation Levels of the performed Evaluations

Table 6.1 classi�es the performed evaluations into the validation levels in-
troduced by Böhme and Reussner [BR05]. As we presented in Section 2.6.2
we interpret the levels as follows for our Coevolution approach: The �rst
level (Level I ) is the metric validation respectively result validation, which
can be used to compare the result of an approach with the reality. The sec-
ond level (Level II ) represents the applicability validation, which shows the
applicability of an approach to real world project. The third level (Level III )
is the bene�t validation, which shows the bene�t of one approach compared
to other approaches. As mentioned in 2.6.2 Böhme and Reussner [BR05] do
not de�ne an explicit Level 0, which would be considered as implementation
validity level.

We are not performing a Level III validation, as it would require too much
e�ort. Instead, we focus on Level I and Level II validations. All performed
evaluations are also Level 0 validations, because all evaluations require a
working prototypical implementation of our Coevolution approach.

6.1.3. Evaluation Results

In this section, we give a brief overview of the evaluation results.

We were able to integrate most existing PCM instances using the consistency
preservation rules presented in this thesis. We successfully evaluated the
developed reverse engineering tools Extract and EJBmoX on 14 respectively
2 open source projects. We integrated the mRUBiS case study system, and
evaluated Integration Level 1 successfully. We also integrated and replayed
changes to four open source projects and were able to identify changes

211



6. Evaluation

performed evaluation Level I Level II

RIS for existing PCM models using di�erent consis-
tency preservation rules

7

Evaluation of reverse engineering approach using
case study system and open source systems

7

Evaluation of Linking Integration Strategy (LIS)
based on a reversed engineered case study system

7

Evaluation of LIS based on reverse-engineered open
source systems

7

Evaluation of Integration Level 1 using a case study
system

7

Evaluation of Integration Level 2 and Integration
Level 3 by replaying changes on reverse engineered
and integrated open source systems

7

Incremental SEFF reconstruction on open source
systems during change replay

7

Performance evaluation of Java monitor 7

Performance measurement and scalability analysis
during change replay

7

Model-based performance prediction with coe-
volved architectural model

7

Table 6.1.:A classi�cation of the performed evaluation into the validation levels of
Böhme and Reussner [BR05]. An “7” means that the performed evaluation is an
evaluation of the validation level.

on integrated elements and keep them consistent with the architecture
respectively inform the users about the changes. During this evaluation,
we were also able to keep the SEFF consistent incrementally. Hence, we
were able to evaluate Integration Level 2 and Integration Level 3 using
open source systems. Even though the performance of our Coevolution
approach can be improved, the performance measurement showed that our
Coevolution approach can be used for typical sized classes. As performance

212



6.2. GQM Plan for the Evaluation

bottleneck, we identi�ed the parsing of source code into a Java Model Parser
and Printer (JaMoPP) representation.

Finally, we were able to predict the performance of a software system using
a coevolved architectural model. For this case study, we used mRUBiS as
software system.

6.2. GQM Plan for the Evaluation

The evaluation is aligned to the GQM approach presented by Basili et al.
[BCR94]. We shortly gave a brief overview of the GQM approach in Sec-
tion 2.6.1. To use the GQM concept for the evaluation, we �rst need to de�ne
the goals for the evaluation. Next, we need to de�ne questions, which allow
us to check whether the goals are reached. Finally, we need to de�ne metrics,
which can be used to answer the questions.

The goals, which we present for the evaluation, are closely aligned to the
goals and questions, which we proposed in Section 1.2. Note: to follow
the structure of the evaluation section, the goals are �rst de�ned for the
evaluation of Chapter 5 and secondly de�ned for Chapter 4.

6.2.1. Include existing Artefacts

G1 To enable the use of existing source code artefacts, we �rst need to
reverse-engineer the architecture of an existing source code base.
Hence, one goal of this thesis is to revere engineer the architecture of
a software system from an existing source code.

Q1.1 Are the presented reverse engineering approaches applicable
for real open source software systems of reasonable size and
produce valid architecture models, which abstract from the
source code?

M1.1.1 Source Lines of Code (SLoC) of the reverse-engineered
software systems.

M1.1.2 Number of violated OCL constraints in the reverse-
architectural models.

213

engineered



6. Evaluation

M1.1.3 Ratio between number of compilation units (classes and
interfaces) in source code vs. number of components and
interfaces in the architectural model.

Q1.2 How accurate are the architectural models, which are reverse-
engineered using EJBmoX w.r.t. the extraction strategies?

M1.2.1 Number of extracted BasicComponents compared to the
number of annotated Enterprise Java Bean (EJB) compo-
nent classes.

M1.2.2 Number of extracted OperationInterfaces compared to the
number of annotated EJB Java interfaces.

M1.2.3 Number of the RequiredRoles in each BasicComponent com-
pared to the number of �elds in the corresponding EJB

component class.

M1.2.4 Number of ProvidedRoles in each BasicComponent com-
pared to the number of implements relations in the corre-
sponding EJB component class.

Q1.3 What are the di�erences between a reverse-engineered archi-
tectural model, which was created using EJBmoX , compared
to a manual created architectural model of the same software
system?

M1.3.1 Di�erences, in terms of number of elements and level of ab-
straction, between a manually created architectural model
and a reverse-engineered model for the same software
system.

G2 To enable the use of existing artefacts, one goal of our Coevolution
approach is to enable the integration of existing architectural models
and existing source code bases.

Q2.1 How many PCM elements in existing case study systems can
be mapped to code using the di�erent consistency preservation
rules we presented in Chapter 4?

M2.1.1 Percentage of existing PCM elements that can be mapped
to code using the RIS, which we presented in Section 5.3.

214



6.2. GQM Plan for the Evaluation

Q2.2 How often are users informed about changes on integrated
elements when using Integration Level 2?

M2.2.1 Ratio of changes that led to user noti�cation vs. changes
that can be kept consistent using the standard consistency
preservation rules.

Q2.3 How many changes on integrated elements can be kept consis-
tent using Integration Level 3?

M2.3.1 Ratio between elements that can be kept consistent au-
tomatically vs. elements that only inform users about a
change.

6.2.2. Coevolution of Architectural Models and
Source Code

G3 The main goal of our Coevolution approach is to enable the coevolu-
tion of architectural models and source code during the evolution of
a software system.

Q3.1 Which changes to architectural relevant source code can be
kept consistent w.r.t. to the current consistency preservation
rules during the software evolution?

M3.1.1 Number of changes performed on source code that can
be kept consistent during the performed case studies vs.
number of changes that could not be kept consistent during
the performed case studies.

Q3.2 To which extend can our Coevolution approach deal with open
source systems of reasonable size, i.e. can our Coevolution
approach be applied for real world projects?

M3.2.1 The overhead our Coevolution approach creates for open
source projects of reasonable size compared to the over-
head our Coevolution approach creates for relatively small
projects.

215



6. Evaluation

Q3.3 How much time is consumed by our Coevolution approach to
keep architectural models and source code consistent after a
change has been performed?

M3.3.1 Average time our Coevolution approach needs to update an
architectural model after an architectural relevant change
in the source code occurred.

M3.3.2 The time our Coevolution approach needs to update a
behavioural model after a method body has been changed
in the source code.

6.2.3. Model-based Analyses using coevolved
Architecture Models

G4 One goal of our Coevolution approach is that the coevolved models
can be used for model-based analyses.

Q4.1 Which steps are necessary to use a coevolved model for perfor-
mance prediction?

M4.1.1 The number of steps that can be omitted if our Coevolu-
tion approach and the coevolved model are used for perfor-
mance prediction compared to steps that are necessary to
prepare the model for performance prediction manually.

Q4.2 How accurate are the performance predictions that are per-
formed with a coevolved model?

M4.2.1 Prediction error of the response time between the predicted
performance and the measured performance of the case
study system.

6.3. Evaluation of reverse engineering approaches

Within this section, we explain the evaluation of the developed reverse
engineering approaches Extract and EJBmoX . The evaluation of Extract is

216



6.3. Evaluation of reverse engineering approaches

done by analyzing 14 di�erent open source systems. To evaluate EJBmoX ,
we analysed two open source software systems.

6.3.1. Evaluation of Extract

The evaluation presented in this section is based on the evaluation we showed
in Langhammer et al. [Lan+16]. Extract itself is not only able to reconstruct
the architecture of a software system, but it is also able to reconstruct Us-
ageModels from test cases. In this thesis, however, the reconstruction of
UsageModels is not in the focus. Hence, we present the evaluation results of
Extract only with respect to the architectural model in terms of a PCM Repos-

itory. Details about the reconstruction of UsageModels and their evaluation
can be found in [Lan+16].

The evaluation of Extract is performed as a case study, where we investi-
gated di�erent open source projects. Executing Extract for a software system
gives us the architectural model as described in Section 5.4.1.1, i.e. we get
a PCM model in terms of BasicComponents, OperationInterfaces with Op-

erationSignatures, and RequiredRoles as well as ProvidedRoles. For provided
services of a component, we also retrieve the SEFFs. As additional artifact, we
get a Source Code Decorator Model (SCDM), which contains the information
how the source code elements are mapped to architectural elements. These
models can be used as input for the LIS, that is used to integrate existing
source code into our Coevolution approach.

The investigated open source projects, their versions and the created Bas-

icComponents for the used architecture recovery algorithms can be seen in
Table 6.2. As recovery algorithms we used Architecture Recovery using Con-
cerns (ARC) and Algorithm for Comprehension-Driven Clustering (ACDC).
We choose these two algorithms as they outperformed the other available
algorithms for Extract in terms of accuracy and scalability[GIM13]. The
investigated projects are all Apache projects written in Java. The projects
were used by Le et al. [Le+15] to validate reverse engineering algorithms
including ARC and ACDC. Even though the projects are all Apache projects,
the software systems have di�erent sizes and di�erent domains (cf. [Le+15]).
Hence, by using these projects, we can show that Extract can be applied to
various Java projects. We investigated 14 open source projects with sizes
from 46 KSLoC to 644 KSLoC and an overall size of more than 2.4 million

217



6. Evaluation

SLoC. The resulting models as well as the corresponding versions of the
software systems, and a description how to set up Extract are available on-
line 1. In this analysis, we showed the principle applicability of Extract to
open source software systems and showed its scalability. The extraction
itself needs approximately 5 minutes for the smaller systems, such as Log4j.
For the larger systems, however, the extraction needs up to �ve hours on
standard hardware (Mac OSX with 2.2 GHz Intel core i7, and 8GB RAM).
In future work the extraction performance can be improved by either op-
timising the JaMoPP parser or replacing JaMoPP with a faster Java parser,
such as the Model Discovery (MoDisco) [Bru+10] parser or the Eclipse Java
Development Tools (JDT) Abstract Syntax Tree (AST) parser.

From this evaluation, we can answer the question 1.1 as follows: As we can
see from the evaluation we performed for Extract, the developed reverse
engineering approach is applicable to real world projects. As we expected,
none of the reverse-engineered architectural models violated an OCL con-
straint of the PCM metamodel. This result is expected, because we tailored
Extract in order to create valid PCM instances. For instance, during the im-
plementation of Extract, we �gured out that the generic reverse-engineered
CollectionDataTypes violates a PCM constrains, because it does not contain
an inner element. To overcome this issue, we created and used the generic
CompositeDataType Object as default value for an inner element in a Col-

lectionDataType. The ratio between the compilation units and the created
interfaces and components can be found in Table 6.3. The abstraction ratio
for all investigated compilation units to all created components and interface
is 0.31 for ARC and 0.08 for ACDC. Hence, we create far less components
and interfaces than compilation units exist in the source code, i.e. the models
abstract from the source code by composing classes to components. Fur-
thermore, Extract abstracts from statements and component-internal calls
during the SEFF reconstruction.

6.3.2. Evaluation of EJBmoX

As mentioned above, we investigated two di�erent EJB software systems
to evaluate EJBmoX . These systems are the MediaStore[Koz+08; SK16], and

1 https://sdqweb.ipd.kit.edu/wiki/Extract

218

https://sdqweb.ipd.kit.edu/wiki/Extract


6.3. Evaluation of reverse engineering approaches

System Domain Version KSLoC ARC ACDC

ActiveMQ Message Broker 3.0 95 116 88

Cassandra Distributed DBMS 2.0.0 184 285 52

Chukwa Data Monitor 0.6.0 39 74 43

Hadoop Data Process 0.19.0 224 388 101

Ivy Dependency Man-
ager

2.3.0 68 128 40

JackRabbit Content Reposi-
tory

2.0.0 246 294 72

Jena Semantic Web 2.12.0 384 766 36

JSPWiki Wiki Engine 2.10 56 77 31

Log4j Logging 2.02 62 187 61

Lucene
Solr

Search Engines 4.6.1 644 115 41

Mina Network Frame-
work

2.0.0 46 93 44

PDFBox PDF Library 1.8.6 113 127 41

Struts2 Web Apps Frame-
work

2.3.16 153 75 26

Xerces XML Library 2.10.0 112 143 28

Total 2426 2876 696

Table 6.2.:Overview of the analysed open source systems using Extract, we per-
formed for [Lan+16]. ARC, and ACDC columns display the number of recovered
components for each system. Note: The lines of code do not include test code.

mRUBiS2. Both systems are designed as evaluation systems and span ap-
proximately 5.000 SLoC. Both projects are EJB based.

2 https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/case-

studies/mrubis/

219

https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/case-studies/mrubis/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/case-studies/mrubis/


6. Evaluation

Project #Comp.Units #Components + Interfaces Ratio

ARC ACDC ARC ACDC

ActiveMQ 1036 232 176 0.22 0.17

Cassandra 886 570 104 0.64 0.12

Chukwa 338 148 86 0.44 0.25

Hadoop 1647 776 202 0.47 0.12

Ivy 474 256 80 0.54 0.17

JackRabbit 1948 588 144 0.30 0.07

Jena 3822 1532 72 0.40 0.02

JSPWiki 351 154 62 0.44 0.18

Log4j 585 174 122 0.30 0.21

Lucene
Solr

2996 230 82 0.08 0.03

Mina 1852 186 88 0.10 0.05

PDFBox 852 254 82 0.30 0.10

Struts2 479 150 52 0.31 0.11

Xerces 762 286 56 0.38 0.07

Total 18028 5536 1408 0.31 0.08

Table 6.3.: Ratio between compilation units and components and interfaces in the
reverse-engineered models. Note: We counted the compilation units in production
code only, i.e. only the compilation units represented in the reverse-engineered
architecture are taken into account. Test code and example code are not counted.

The MediaStore system was introduced by Koziolek et al. [Koz+08] to eval-
uate the PCM approach. A more recent version of the MediaStore and an
up-to-date implementation as well as a PCM model are provided by Strittmat-
ter and Kechaou [SK16]. The MediaStore allows users to download audio �les,
upload audio �les, and purchase audio �les. Our running example, which
we introduced in Section 4.3.2.4, is a simpli�ed version of this MediaStore.

220



6.3. Evaluation of reverse engineering approaches

The mRUBiS system is provided by the System Analysis and Modelling Group
of the Hasso Platner Institut. It is a case study system created to simulate
an auction site prototype similar to eBay. To realise this functionality, users
can authenticate themselves, add items, bid for items, and �nally purchase
items if they win the auction.

The mRUBiS system can be analysed using the EJBmoX standard con�gu-
ration, i.e. mRUBiS only uses the @EJB annotation to indicate the required
interfaces within the component-classes. Furthermore, all component-classes
implement at least one EJB Remote interface or one EJB Local interface. Each
Java interface is only implemented by one component, i.e. EJBmoX is able to
derive the PCM System implicitly during the reconstruction of mRUBiS.

For the MediaStore system, however, we need to use the extension con�g-
uration of EJBmoX . Hence, �elds of an EJB component-class with the type
of an EJB Java interface, which are not annotated with @EJB or @Inject, are
considered as RequiredRoles in the architecture as well. We, furthermore,
create an implicit OperationInterface in the reconstructed PCM Repository

for classes, which are annotated with an EJB component-annotation, but not
providing an EJB interface. The results of the analysed projects can be seen
in Table 6.4. The resulting models are available online3.

The table also allows us to answer the question 1.2 from the GQM plan
as follows: EJBmoX is able to reverse-engineer all EJB component-classes
to BasicComponents and all architectural relevant Java interfaces to Opera-

tionInterfaces. It can also reverse-engineer ProvidedRoles, which are repre-
sented by an implements realisation between an EJB component class and an
architectural relevant Java interface EJBmoX is also able to reverse-engineer
RequiredRoles, which are represented by a private �eld, with the type of an
architectural relevant Java interface, in an EJB component class. It is also
able to create implicit interfaces for classes not providing an EJB interface,
but considered as EJB component-classes. Even though we only applied
Extract to larger projects, we can indicate that EJBmoX can be applied to
larger projects as well, because both approaches share the same infrastruc-
ture. The architecture models created with EJBmoX do not violate any OCL
constraint from the PCM metamodel. The reason is the same as for Extract:
We tailored EJBmoX speci�cally in order to not violate any OCL constraints
in the PCM metamodel. To calculate the ratio between compilation units
3 https://sdqweb.ipd.kit.edu/wiki/EJBmox

221

https://sdqweb.ipd.kit.edu/wiki/EJBmox


6. Evaluation

System MediaStore mRubis

KSLoC 2.9 4.8
BasicComponent 12 14
EJB component-classes 12 14
OperationInterface 16 14
EJB interfaces 16 14
RequiredRole 16 14
EJB �elds in component-classes with type of
EJB interface

16 14

ProvidedRole 12 27
implements-relations between a EJB compo-
nent-class and an architectural relevant EJB in-
terface

12 27

Table 6.4.: Result for the analysing software systems using EJBmoX . As we can see the
reverse-engineered number of BasicComponents, OperationInterfaces, RequiredRoles,
and ProvidedRoles matches the number of actual implemented counterparts in the
source code.

and created components and interfaces, we can use the information about
the reverse-engineered components and reverse-engineered interfaces from
Table 6.4. We, furthermore, need the information that mRUBiS consists of
69 compilation units, while the MediaStore consists of 59 compilation units.
Hence, we have a ratio of 0.41 for mRUBiS, while we have a ratio of 0.47 for
the MediaStore. Even though the ratio is higher as for Extract, we can state
that EJBmoX gives an high-level overview of the analysed software systems
and abstracts from the source code.

6.3.3. Comparison of a Revere Engineered Model with a
Manually created Model

As Strittmatter and Kechaou [SK16] created an up-to date PCM model from
the implementation of the MediaStore manually, we can use the Media-
Store system to compare the reversed engineered Repository with a manually
crafted one. By performing this comparison, we answer the research ques-
tion 1.3 from our GQM plan. The manually created Repository is depicted

222



6.3. Evaluation of reverse engineering approaches

UserDBAdapter

AudioWatermarking

Reencoding

MediaManagement

Facade

MediaAccess

Packaging

DB

FileStorage

TagWatermarking

Cache

UserManagement

DownloadLoadBalancer

ParallelWatermarking

I IUserDB

I IDownload

I IMediaAccess

I IPackaging

I IMediaManagement

I IFacade

I IDB

I IFileStorage

I IUserManagement

D FileContent

D AudioCollectionRequest

Figure 6.1.: The manually created PCM Repository model of the MediaStore

in Figure 6.1, while the reverse-engineered Repository is depicted in Fig-
ure 6.2.

As we can see from the �gures, the numbers of the components and inter-
faces are similar. The names of the components are slightly di�erent in
the automatically created Repository. The names di�er, because EJBmoX

creates the name of a component using the name of its corresponding EJB
component-class. The names for EJB component-classes are usually ending
with Impl in the implementation of the MediaStore. Hence, the names of the
BasicComponents also ending with Impl. To overcome this issue, it would be
possible to remove Impl from the end of a components name automatically
during the reverse engineering process. The following main di�erences
between the automatic reverse-engineered model and the manual created
one can be observed:

223



6. Evaluation

UserDBAdapterImpl

DbManager

AudioWatermarkingImpl

CacheImpl

PackagingImpl

FacadeImpl

DbManager

ReEncoderImpl

MediaManagementImpl

TagWatermarkingImpl

MediaAccessImpl

UserManagementImpl

I IUserDBAdapter

I DbManager

I IDownloadAudioWatermarking

I IDownload

I ICacheMaintenance

I IPackaging

I IFacade

I DbManager

I IDownloadReEncoder

I IMediaManagement

I IDownloadTagWatermarking

I IMediaAccess

I IDownloadMediaAccess

I IMediaAccessMaintenance

I IUserManagement

D UserRegData

D CurrentUser

D AudioFile

D AudioFileInfo

D BYTEList

D AudioFileInfoList

D AudioFileList

D List

D Object

Figure 6.2.: The reverse-engineered PCM Repository model of the MediaStore

224



6.3. Evaluation of reverse engineering approaches

• No matching component can for the three components FileStorage,
DownloadLoadBalancer, and ParallelWatermarking are present in
the reverse-engineered model. For the components
DownloadLoadBalancer and ParallelWatermarking this is the case,
because no implementation is currently available for these
components. Similar to the other two components, EJBmoX is not
able to reverse-engineer a component for the FileStorage

component in the manual model, because the FileStorage

component is not present in the code directly. It is used in the manual
model to represent communication with the HDD or external storage.

• Two BasicComponents and two OperationInterfaces called DBManager

are present in the reverse-engineered model. They are responsible
for the interaction with the database. In the manually created model,
however, only one BasicComponent, called DB, is present, which
handles the database interaction. The di�erence occurs, because two
EJB component-classes called DBManager exist in the code. The
DBManager classes in the code both interact with the database. One
class is responsible for the database access in order to retrieve and
store audio �les, while the other class is responsible for the database
access for user information. The manually created architecture
abstracts from these two classes and combines them in one
component.

• The used data types are di�erent, because EJBmoX creates one
architectural data type for each Java data type used in the
implementation. For instance, EJBmoX creates a PCM
CollectionDatatype, with the name BYTEList, which uses the
PrimitiveDataType BYTE as inner type, for the code data type byte[]

(a byte array). The manually created model can abstract from these
details and uses only FileContent and AudioCollectionRequest as
custom PCM DataTypes. The reverse-engineered model, however,
also contains data types for AudioFile and AudioFileInfo as well as
CollectionDataTypes for both of the types.

• The code interfaces, which are marker interfaces for the IDownload

interface, have an explicit representation in the reverse-engineered
architecture, while the manually created architecture can abstract
from the marker interfaces. These interfaces are necessary in the

225



6. Evaluation

code to mark classes that implement IDownload more speci�c. They,
however, do not add functionality.

• Some OperationSignatures, e.g. the OperationSignatures within
IDownload, are di�erent in terms of parameters. The reason is, again,
that the manually created architecture abstracts from parameters,
which are unnecessary for the performance prediction. The manually
created architecture model, furthermore, combines the requests in an
own PCM data type, which is not directly represented in the code.
Hence, this data type is not reverse-engineered by EJBmoX .

The main reason for the observed di�erences is that manual created archi-
tectural models can abstract from more implementation details, while the
reverse-engineered models cannot easily abstract from all this details. Hence,
the automatically created architecture model elements are more detailed as
the manually created one, because the automatic create architecture models
are closely aligned with the underlying source code. They also provide a
consistent abstraction level for the extracted source code. The advantage
of the manually created model is that users can get a higher-level overview
that omits unnecessary details. EJBmoX , however, is not able to abstract
from those details. Hence, we can observe the same result for reverse-
engineered architectural models as Krogmann [Kro12]: the automatically
reverse-engineered architectural models are precise and have a consistent
abstraction level. They, however, also contain non-performance relevant
information, from which manually created architecture models can abstract
away.

6.4. Evaluation of the Consistency Preservation
Rules and the PCM RIS

In this section, we present the evaluation of the RIS for the PCM (see Sec-
tion 5.3) as well as the evaluation of the consistency preservation rules we
proposed in Chapter 4. To do so, we use existing PCM models and include
them using the RIS for the PCM. During the integration, we simulate the
atomic creation of the existing PCM model. During the integration, our
Coevolution approach to reacts to these changes with the current active

226



6.4. Evaluation of the Consistency Preservation Rules and the PCM RIS

consistency preservation rules and creates the corresponding source code
elements for the existing PCM models.

To create the evaluation data, we use the prototypical implementation of our
Coevolution approach with the prototypical implementation for the consis-
tency preservation rules. For the evaluation of the consistency preservation
rules between PCM and artefacts of Eclipse plugins, we reuse the data Heiss
[Hei15] carried out in his bachelor’s thesis.

6.4.1. Existing PCMModels

This section gives an overview of the existing PCM models, we used for the
evaluation of the PCM RIS and the consistency preservation rules. We use
seven existing PCM case studies, which have been used in di�erent case
studies over the last years to evaluate the PCM itself and its extensions.
Hence, these models can be seen as representative PCM models. Table 6.5
lists the number of elements each of the case studies contains. We later
compare how many of these elements can be integrated using the proposed
consistency preservation rules.

MediaStore

The MediaStore case study was created by Koziolek et al. [KBH07] to show
the applicability of the Palladio approach. Since the initial presentation of the
MediaStore, the system has been used to show the applicability of extensions
developed for the PCM. An up-to-date model and EJB based implementation
has been introduced by Strittmatter and Kechaou [SK16]. As our running
example of this thesis, the system itself allows users to upload and download
media �les from a server.

CoCoME

The Common Component Modelling Example (CoCoME) by Herold et al.
[Her+08] is a case study system that has been developed to compare di�erent
modelling approaches for component-based software systems. It is an exam-
ple software system that describes processes and work�ows in supermarkets

227



6. Evaluation

and retail stores. It supports use cases, such as buying products and paying
them as well as, and administrative processes, such as ordering new products
and inventory management. Krogmann and Reussner [KR08] introduce
the �rst PCM version of the CoCoME system, which has been re�ned and
extended by Heinrich et al. [HRR16].

Open Reference Case

The Open Reference Case system is service-oriented variant of the CoCoME
system developed in the SLA@SOI project. As stated in [HRR16] an ad-
ditional web service layer has been introduced to the original CoCoME
architectural model.

Desktop Search

As the name indicates the PCM model of the Desktop Search models a
program that allows the search on a desktop system.

DPS

The Dynamic Positioning System (DPS) system, is a model of a Dynamic
Positioning System, which can be used to navigate and �nding the position of
a deepwater oil platform (see Duarte et al. [Dua+10], Gouvêa et al. [Gou+11],
and Gouvêa et al. [Gou+12]). Within [Gou+11] and [Gou+12] a PCM instance
of a DPS has been introduced.

Industrial Control System

The Industrial Control System (ICS) is an industrial case study for the PCM
and has been introduced by Koziolek et al. [KSB10] and re�ned by Brosch
et al. [Bro+12]. The system is an industrial size process control system from
ABB.

228



BRS

The Business Reporting System (BRS) has been introduced by Koziolek
[Koz11] to show the applicability of PerOpteryx and is, according to [Koz11],
loosely based on a real system introduced by Wu and Woodside [WW04].
According to Koziolek [Koz11], the BRS system allows users to retrieve
data, such as reports and statistical data, about business processes from a
database.

6.4.2. Execution of the Case Study

To automatically execute the above-described case study and allow the
repetition and ease the reproducibility of our results, we implemented a
small evaluation tool, which is available as part of the Vitruvius framework
and as part of the implementation of our Coevolution approach. This tool
executes a set of consistency preservation rules for a given set of PCM
models. At �rst it counts the elements in each of the PCM models. During
the execution of each consistency preservation rule for each PCM model it
furthermore logs the number of changes, which can be kept consistent using
the active consistency preservation rules. The process of the evaluation tool
is described in the activity diagram in Figure 6.3. As last step, we manually
aggregated the numbers and calculated the percentage of changes that can
be kept consistent for each consistency preservation rules in relation to
the overall model elements. We, furthermore, checked the output models
manually to ensure that the generated output is correct w.r.t. the consistency
preservation rules.

6.4.3. Results of the Integration Case Study

In this section, we describe the results and �ndings of the case study using
the RIS for PCM and existing models and answer evaluation question 2.1.
An overview of the elements that can be integrated is given in Table 6.6.
Within this table the results of all implemented consistency preservation
rules are shown. In Section A.2, the integrated elements for each used case
study project is shown.

229

6.4. Evaluation of the Consistency Preservation Rules and the PCM RIS



6. Evaluation

R
epository

System

Project

BasicComponents

CompositeComponents

OperationInterfaces

CompositeDataTypes

CollectionDataTypes

OperationSignatures

OperationProvideRoles

OperationRequiredRoles

SEFFs

AssemblyContexts

AssemblyConnectors

SystemRequiredRoles

RequiredDelegationConnectors

SystemProvideRoles

ProvidedDelegationConnectors

M
ediaStore

14
0

9
2

0
20

15
16

26
10

11
0

0
1

1
CoCoM

E
8

0
8

19
9

29
7

13
31

20
24

2
2

1
1

O
pen

Reference
Case

15
0

15
20

8
54

14
23

52
13

19
1

2
4

4
D

esktop
Search

3
0

3
0

1
3

3
2

3
3

2
0

0
1

1
D

PS
5

0
3

0
0

4
5

4
6

5
4

0
0

5
5

IndustrialControlSystem
14

0
10

0
0

10
14

28
14

11
18

0
0

6
6

BRS
14

2
10

2
1

28
15

14
44

9
11

0
0

2
2

Total
73

2
58

43
19

148
73

100
176

71
89

3
4

20
20

Totalw
.o.IndustrialControl

System
&

D
esktop

Search
&

D
PS

51
2

42
43

18
131

51
66

153
52

65
3

4
8

8

Table
6.5.:O

verview
ofthe

elem
entsin

existing
PCM

case
study

system
s

230



act CPR evaluation activity

«Loop»

for each PCM model ∈ PCM models

Count PCM
model elements

PCM
#PCM
model
elements

«Loop»

for each CPR ∈ CPR set

PCM CPR

Execute CPR rules
for PCMmodel

Code

PCMmodels

set of CPR

Figure 6.3.:Activity diagram of the evaluation helper tool. The tool applies a given
set of consistency preservation rules to a given set of PCM models.

231

6.4. Evaluation of the Consistency Preservation Rules and the PCM RIS



6. Evaluation

Pack.m
ap.

EJB
D
ep.Inject.

Eclipse
plugin

PC
M

elem
ent

#el.
#cf.

pct.
#el.

#cf.
pct.

#el.
#cf.

pct.
#el

#cf.
pct.

B
a
s
i
c
C
o
m
p
o
n
e
n
t
s

73
0

100
73

0
100

73
0

100
51

0
100

C
o
m
p
o
s
i
t
e
C
o
m
p
o
n
e
n
t
s

2
0

100
–

0
0

2
0

100
–

0
0

O
p
e
r
a
t
i
o
n
I
n
t
e
r
f
a
c
e
s

58
0

100
58

0
100

43
0

100
42

0
100

C
o
m
p
o
s
i
t
e
D
a
t
a
T
y
p
e
s

43
0

100
43

0
100

43
0

100
–

0
0

C
o
l
l
e
c
t
i
o
n
D
a
t
a
T
y
p
e
s

19
0

100
19

0
100

19
0

100
–

0
0

O
p
e
r
a
t
i
o
n
S
i
g
n
a
t
u
r
e
s

148
0

100
148

0
100

148
0

100
–

0
0

O
p
e
r
a
t
i
o
n
P
r
o
v
i
d
e
R
o
l
e
s

73
0

100
73

17
77

73
0

100
51

0
100

O
p
e
r
a
t
i
o
n
R
e
q
u
i
r
e
d
R
o
l
e
s

100
0

100
100

0
100

100
0

100
66

0
100

S
E
F
F
s

176
0

100
176

0
100

176
0

100
–

0
0

A
s
s
e
m
b
l
y
C
o
n
t
e
x
t
s

71
0

100
–

0
0

71
21

70
–

0
0

A
s
s
e
m
b
l
y
C
o
n
n
e
c
t
o
r
s

89
0

100
–

0
0

89
0

100
–

0
0

S
y
s
t
e
m
R
e
q
u
i
r
e
d
R
o
l
e
s

3
0

100
–

0
0

3
0

0
–

0
0

R
e
q
u
i
r
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

4
0

100
–

0
0

4
0

0
–

0
0

S
y
s
t
e
m
P
r
o
v
i
d
e
R
o
l
e
s

20
0

100
–

0
0

20
0

100
–

0
0

P
r
o
v
i
d
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

20
0

100
–

0
0

20
0

100
–

0
0

Table
6.6.:Integrated

and
con�icting

overallelem
entsperconsistency

preservation
rule

232



The #el. column of Table 6.6 shows the number of elements created by the
RIS for the PCM instances.The #cf. column of Table 6.6 shows the number
of con�icting elements, i.e. elements that can be integrated into our Co-
evolution approach, but lead to a validation error. The pct. column shows
the percentage included elements using the active consistency preservation
rules. Columns containing “–” indicate that the consistency preservation
rule is not able to transform these models.

Note: the overall number of elements for Eclipse plugins is lower, because
we did not perform the case study for all of the above-mentioned projects,
because we reused the results from the bachelor’s thesis of Heiss [Hei15].
Hence, for the integration of existing PCM elements to Eclipse plugins, we
only present results for the MediaStore, CoCoME, the Open References Case,
and the BRS system.

As the #el. column in Table 6.6 equals the number of elements contained in all
projects, which were used for the evaluation of the consistency preservation
rule, we can state that the RIS for PCM is able to simulate the creation of a
PCM instance. However, due to additional limitations, which are introduced
by the consistency preservation rules, some elements cannot be integrated.
As we mentioned above, the con�icting elements are such elements that con
not be mapped to source code respectively to Eclipse plugin artefacts. For
the package mapping consistency preservation rules and Eclipse plugins, all
elements of the case study projects could be integrated.

Using the EJB consistency preservation rules, we introduce the constraint
that each interface only is allowed to be provided once in the Repository,
because we implicitly derive the PCM System from the repository. Hence,
the provided interfaces need to be unique over all OperationProvidedRoles.
This constraint does not hold for 17 out of 73 OperationProvidedRoles. For the
dependency injection consistency preservation rules between architectural
models and code, we introduce the following two constraints: a) it is not
allowed to provide one interface more than once per System, and b) the
components in all AssemblyContexts need to be unique, i.e. one component
is only allowed to be present once per System. For both constraints the
con�icting elements are AssemblyContexts. Both constraints occur a in a
total of 21 times, which means that only 50 out of 71 AssemblyContexts can be
integrated using the Dependency Injection consistency preservation rules.

233

6.4. Evaluation of the Consistency Preservation Rules and the PCM RIS



6. Evaluation

Mapping #int.
elem.

#total
elem.

#int. elem.
#total elem.

#sup.
elem.

#int. elem.
#sup. elem

Pack. map. 899 899 1 899 1

EJB 673 899 0.75 690 0.98

Dep. Inject 871 899 0.97 892 0.98

Eclipse plugin 210 697 0.30 210 1

Total 2653 3394 0.78 2691 0.99

Table 6.7.: Ratio between integrated elements and total elements respectively sup-
ported elements per consistency preservation rule. The ratio represents metric 2.1.1
and allows us to answer the research question 2.1.
Legend: #int. elem. represents the number of integrated elements using the consis-
tency preservation rule over all case study projects, #total elem. is the sum of all
elements in all case study projects, #sup. elem. is the number of supported elements
in all case study projects for the consistency preservation rule

Con�icts, which can be resolved automatically, are not listed in this table.
Automatically resolvable con�icts are, for instance, white spaces in names
of PCM elements or duplicate names for PCM elements. The latter did
not occur within the investigated case study projects. The reason for that
might be that the understandability of models decreases and the e�ort for
the evolution of those models of increases. For instance, if two or more
OperationInterfaces have the same name and an architect wants to use the
interface within a ProvidedRole or an external-call the actual used interface
needs to be identi�ed by its unique identi�er, which is a random string, if the
name is equal. If users assign a unique name, it is easier to �nd the desired
interface.

Table 6.7 shows the sum of all elements our Coevolution approach was able
to integrate for the di�erent consistency preservation rules. In the table, we
distinguish between the ratio of integrated element to total elements and
the ratio between integrated elements to supported elements. Supported
elements are elements, which can conceptually be integrated using the men-
tioned consistency preservation rules. Not supported element are elements,
which cannot be integrated using the mentioned consistency preservation

234



6.5. Integrating Existing Source Code and Replaying Changes

rules, for instance, elements contained in a System are not supported by the
EJB consistency preservation rules.

After performing the RIS for PCM, we can answer the research question
2.1 with the metric 2.1.1 as follows:. Using the RIS for PCM, we are able
to integrate 99% of the elements, which are supported by the consistency
preservation rules, and 78% elements in total. Hence, we are able to map
most existing PCM models to source code respectively to Eclipse plugin
artefacts using the presented consistency preservation rules.

6.5. Integrating Existing Source Code and
Replaying Changes

In this section, we explain the evaluation of integrating existing open source
code projects into our Coevolution approach. We show that changes per-
formed to the integrated source code can be kept consistent with the archi-
tectural model. Therefore, we replay changes from a VCS. Hence, within
this section we answer the remaining research questions for research goal 2
(in particular 2.2, and 2.2), and research questions 3.1 for research goal 3.

6.5.1. Used Open Source Projects

In this section, we explain how we decided which open source projects
are used for the evaluation. Therefore, we �rst give an overview of the
requirements, we have for open source projects. As next step, we explain
the process how we actually chose the open source projects and give a
short description about the chosen projects. The requirements and the
process itself are similar to the requirements and the process Petersen [Pet16]
described in his master’s thesis.

6.5.1.1. Requirements to Open Source Projects

For the evaluation, we have the following two mandatory requirements for
open source projects:

235



6. Evaluation

1. As we evaluate our Coevolution approach using the package
mapping consistency preservation rules, the projects we use for the
evaluation need to use plain java objects to realise the architecture.

2. As we replay changes from a VCS the projects also need to have a
complete history within a VCS repository. Since the change replay
tool we use, currently only supports GIT, projects need to have either
a GIT repository or a repository, which we can transform to a GIT
repository. SVN projects, for instance, are also possible, as tools exist
that allow the transformation of an SVN repository to a GIT
repository.

Optional requirements the projects should ful�ll are:

• Projects should be standalone projects and have a low number of
external dependencies, because we do not consider external
dependencies in the architectural model.

• Projects should include package-info.java �les for each package,
because we use the package mapping consistency preservation rules
for our evaluation. Within these rules, we use the package-info.java
�le respectively the Package element in the �les as corresponding
element between source code and architectural model, yet. This
requirement is a technical requirement, because JaMoPP is not able
to deal with the hierarchical folder structure within a Java project,
but is able to deal with package-info.java �les. The requirement,
however, is not a strong requirement, because we can overcome the
technical issue by creating package-info.java �les in each package of
a given project.

One goal of our evaluation is to check, whether the consistency preserva-
tion process of our Coevolution approach kept the right model elements
consistent. As we perform this evaluation manually, the projects need to be
reasonable small in terms of SLoC4. Another goal is, however, to show that
our Coevolution approach is also able to deal with projects of reasonable
size. Therefore, we also need projects of bigger size. As there is no exact
distinction when a project is to be considered as small or big project, we
can only give a vague estimation of when we consider a project as a small
project or big project. During the selection process, which is explained in
4 SLoC representing the lines of code without empty lines and without comment lines.

236



6.5. Integrating Existing Source Code and Replaying Changes

the following, it turned out that for the projects we used, it is possible to
manually check the results for projects with less than 20 KSLoC (excluding
test code). Hence, such projects are considered small projects in the evalua-
tion. Projects with more SLoC are considered as bigger projects and used
for the scalability analyses. This estimation is only valid for the performed
evaluation and for the considered projects.

6.5.1.2. Selection Process and chosen Evaluation Projects

To choose potential evaluation projects, we focus on Apache projects, because
of the following reasons:

• Apache projects usually have a complete VCS history,

• all versions of Apache projects can be accessed easily, and

• Apache projects can be considered as state of the art open source
software systems, because they are wildly used and accepted.

To �nd potential Apache projects, we used the same approach as Petersen
[Pet16]. Petersen [Pet16] implemented a script 5 to count the lines of Java
source code for all Apache projects, which are available at the Apache
homepage 6. To count the lines of code in a project, we used the tool cloc,
which is available on Github 7. Please note: The SLoC we get for each project
are not the actual SLoC that we used in the actual evaluation, because
the evaluation has been performed for a speci�c version of the project and
without test code. Even though the script counts SLoC for the current version
and including the test code, we can use it to �lter all projects and �nd those
of adequate size for the actual evaluation.

As result from the script run, we have a data set that contains the name, the
SLoC, and the number of Java �les for 173 Apache projects. The SLoC in the
projects, we analysed, range from 174 SLoC in the Apache Lucy project to
2.6 million SLoC in the Apache Harmony project.

To �nd possible evaluation projects, we automatically �ltered out projects
with less than 10.000 SLoC and less than 100 Java �les. To �nd projects,

5 https://github.com/FrederikP/projectfinder
6 https://projects.apache.org/
7 https://github.com/AlDanial/cloc

237

https://github.com/FrederikP/projectfinder
https://projects.apache.org/
https://github.com/AlDanial/cloc


6. Evaluation

for which we are able to perform a manual check whether our Coevolution
approach changed the correct model elements, we also �ltered out projects
with more than 30 KSLoC and more than 500 Java �les. Again, please note
that the �ltering has been performed for the projects including the KSLoC for
the test code, while the actual evaluation has been performed for a speci�c
version of each project and without the test code, i.e. production code only.
This is the reason why we applied the �lter using 30 KSLoC instead of 20
KSLoC, which we considered as small projects in the section above. After
we applied the automatic �lter, we have 31 projects left. To apply both �lters,
we used the KSLoC including test code. For the actual evaluation, we use
non-test code only. As Petersen [Pet16] pointed out, from the remaining 31
projects only nine projects are standalone projects and Java only projects.
From these nine projects Petersen identi�ed Apache Any238 as best �t for
our requirements, because it has a native GIT repository and maintained
package-info.java �les for each Java package. Apache Any23 is separated
in di�erent projects, which can be investigated as standalone sub-projects
of Apache Any23. We decided to use the Apache Any23 core project for
our evaluation. Petersen also pointed out, that Apache Gora9 is a good �t
as it is not to big in size and has a GIT mirror on Github. Similar to Any23,
Apache Gora is separated in di�erent Eclipse projects. As for Any23, we
decided to use the core project of Apache Gora for our evaluation. Hence, as
small projects, we used Any2310 and the core project of Apache Gora in our
evaluation. We also use these two projects to evaluate the incremental SEFF
reconstruction during the change replay.

For the evaluation of projects with more than 20 KSLoC, we choose Apache
Velocity, and Apache Xerces. Apache Velocity11 has been chosen because
it is standalone Java project (see Petersen [Pet16]) and because it is only
slightly above the 20 KSLoC limit. We choose Apache Xerces12, because we
already were able to successfully extract the architecture using Extract.

Table 6.8 gives an overview of the four used evaluation projects.

8 https://any23.apache.org/
9 https://gora.apache.org
10 https://any23.apache.org
11 http://velocity.apache.org
12 http://xerces.apache.org/xerces2-j/

238

https://any23.apache.org/
https://gora.apache.org
https://any23.apache.org
http://velocity.apache.org
http://xerces.apache.org/xerces2-j/


6.5. Integrating Existing Source Code and Replaying Changes

Project Short description

Gora (gora-core) Apache Gora is an open source framework providing
an in memory data persistence for big data. Users
can, amongst others, persist data to a column store.
Furthermore, it allows users to analyze the stored data.

Any23 Apache Any23 (Anything to triples) is a library that
allows the extraction of structured data in RDF format.
It supports multiple formats, such as Resource De-
scription Framework (RDF)a and Comma-Separated
Values (CSV). It can be used, for instance, as a library
in own program code, from command line, or as web
service.

Velocity Apache Velocity is a template engine for Java. It allows
users to reference objects de�ned in Java via a simple
template language.

Xerces2 Apache Xerces is a XML library. Hence, it allows users
to parse XML �les and create XML �les.

Table 6.8.: overview of the used open source systems for the evaluation of the LIS
for source code and PCM and the change replay study.

6.5.2. Reverse Engineering of the Case Study Systems

We used Extract to reverse-engineer the architectural model from the source
code. Within Extract, we used ACDC as clustering algorithm for classes.

For Xerces, we can reuse the results from the evaluation of Extract itself,
while we need to run Extract for Gora, Any23, and Velocity speci�c for this
evaluation. Table 6.9 gives an overview of the integrated versions of the
evaluation projects and the result of the reverse engineering process. As
mentioned above, the KSLoC for the actually integrated versions are di�erent
from the KSLoC we counted for the project using the script from Petersen
[Pet16]. This di�erence results from the fact that we counted the KSLoC for
the actually integrated versions and without test, i.e. we counted the actual
production code only.

239



6. Evaluation

Project Integrated
version

KSLoC Java �les BC OpIf

Gora (gora-core) 0.6 5.7 76 16 16

Any23 (core) 0.90 12.6 190 16 16

Velocity 1.60 26 229 18 18

Xerces 02.10 112 705 20 20

Table 6.9.: overview of the integrated versions of the evaluation projects and the
result of the reverse engineering process. The KSLoC represents the KSLoC for the
version number, we used for our evaluation. As we only investigated production
code, we counted the KSLoC without test code. The BC column shows the number
of extracted BasicComponents for each system. The OpIf column shows the number
of extracted OperationInterface for each system.

6.5.3. Integrating the Case Study Systems

As next step, within the integration process, the actual integration needs to
be performed.

As a prior step to the actual integration, we need to ensure that each package
folder of all projects contains a package-info.java �le. As we explained
above, this step is necessary, because we use the package mapping con-
sistency preservation rules for the evaluation. These rules need to have
package-info.java �les in each package to determine the package of a
compilation unit respectively Java �le correctly. From the four integration
projects only Any23 has already included package-info.java �les in all
but one package. We added the package-info.java �le manually for this
package. For the remaining three projects, we added package-info.java

�les to all packages.

As next step, we perform the actual integration for the four projects by exe-
cuting the integration transformation, we described in Section 5.4.3.2. During
the integration, the transformation uses the source code, the SCDM, and the
existing architectural model to create an instance of the Vitruvius corre-
spondence model. This model can be used by our Coevolution approach to
preserve the consistency between architecture and code during the software

240



6.5. Integrating Existing Source Code and Replaying Changes

Project IC IC withSEFF Target version Changes

Gora (gora-core) 336 525 0.6.1 419

Any23 (core) 555 733 1.0 164

Velocity 1130 – 1.64 737

Xerces 3598 – 2.11 684

Abbreviations: IC = created IntegratedCorrespondences, IC with SEFF = created
IntegratedCorrespondences if SEFF elements are integrated as well

Table 6.10.:Detailed information created integration artefacts and the changes be-
tween the versions

evolution. During the execution, the transformation checks for each element
that shall be integrated, whether it ful�lls the consistency preservation rules
already. As we expected, none of the reverse-engineered components, inter-
faces, and data type elements can be kept consistent with its corresponding
source code elements using the package mapping consistency preservation
rules. As the elements corresponding to a class or an interface, already did
not adhere to the package mapping consistency preservation rules, none
of their child elements are able to adhere to the consistency preservation
rules. Hence, none of the integrated elements can be kept consistent using
the package mapping consistency preservation rules. Hence, during the exe-
cution of the transformation we created IntegrationCorrespondences only.
This allows us to evaluate Integration Level 2 and Integration Level 3 for
the evaluation projects. To evaluate Integration Level 3, however, we have
to de�ne speci�c consistency preservation rules for changes on integrated
elements. The de�ned actions are described in the next section.

The �rst two columns of Table 6.10 show the number of created Inte-

grationCorrespondences for each project. As we can see from these two
columns, the number of created IntegrationCorrespondences increases
with the size of the projects and the size of the projects and also increases if
the IntegrationCorrespondences are created between methods in code and
SEFFs in the architectural model.

241



6. Evaluation

6.5.4. Replaying Changes Extracted from a VCS

After the integration of an existing project, we can replay changes from a
VCS. To replay the changes, we use the change replay tool (see Section 2.5.5),
which was introduced by Petersen [Pet16]. To use the change replay tool,
we need to specify a reachable target version based on the source version, i.e.
within the history of the VCS a path valid path between the two versions must
exist. The third column of Table 6.10 shows the target versions, we choose,
for the replaying of changes. One requirement for the target versions is the
need of a direct path within the VCS from the source to the target version. For
the target versions, we choose the next minor or major version depending on
how much changes occurred between the versions. The fourth column of the
table shows the number of changes respectively edit operations the change
replay tool extracted between the integrated version and the target version.
We performed di�erent replaying scenarios during the evaluation. In the
�rst run, we evaluated Integration Level 1 for each of the projects. After this
run, we included the speci�c consistency preservation rules for integrated
elements we de�ned in the reactions language [Kla16; Kra17]. For each of the
evaluation projects, we counted whether the change could be kept consistent
using either the standard package mapping consistency preservation rules,
the speci�c consistency preservation rules, or whether the users need to
preserve the consistency manually. To evaluate the coevolution and the
UML editor, we performed a third run where we performed architectural
relevant changes via the UML class diagram editor respectively the PCM
architectural editor. The results of theses case studies are shown in the next
sections.

6.5.4.1. Technical Remarks

Due to technical reasons the number of occurrence of the di�erent changes
can vary between di�erent executions of the change replay tool. This is the
reason why we have di�erent numbers for changes replayed for Integration
Level 2 and Integration Level 3. This behaviour is caused by the interaction
between the change replay tool and the Java monitor. For each change, the
change replay tool resets the content of the whole compilation unit. Even
though the whole content is set, the Java monitor only reacts to the actually
changed elements as it reacts to Eclipse AST noti�cations. If the change

242



6.5. Integrating Existing Source Code and Replaying Changes

replay is executed more than once for the same project, the change kind
can vary for the same change as the noti�cations from the Eclipse AST can
report di�erent changes. For instance, if a method has been renamed, it is
possible that the Eclipse AST �rst reports the deletion of a method with the
old name and secondly reports the insertion of a new method with the new
name. However, even if the number of changes di�ers, the result after the
change replay remains the same.

We furthermore observed that the Java monitor reports more changes than
the consistency preservation reacts to. On the one hand this is caused,
because the Java monitor is able to detect more change types than it actually
reports to the consistency preservation process. This is the case for changes
that introduce a super class to or remove one from an existing class. On
the other hand this is caused by another issue in the interaction between
the Java monitor and the change replay tool. If a Java �le is moved by the
change replay tool, the Java monitor is currently not able to detect this kind
of change reliably Hence, our Coevolution approach does not react to this
change and updates the correspondence information. If further changes are
performed to this Java �le, the Java monitor reports these changes, but they
are neither considered as changes to an integrated element nor as changes
to a non-integrated element. Hence, we consider changes performed to this
�les as non-architectural relevant changes, which they are probably not. We
observed this case mainly in the case study for Xerces.

From this technical limitations, we can draw the following two conclusions
for future work:

• if consistency preservation rules need to react to additive changes
respectively removing changes for super classes, we need to extend
the Java monitor and enable reporting of these changes, and

• the interoperability between the change replay tool and Java monitor
can be improved respectively the Java monitor can be improved to
ensure monitoring of all changes.

Even though we currently have these technical issues, our Coevolution
approach is still able to react to most changes that were recorded by the Java
monitor.

243



6. Evaluation

6.5.4.2. Results for Integration Level 2

During the evaluation of Integration Level 2, users get noti�ed if they
changed an element that is contained in an integrated area. They need to
preserve the consistency between the changed element and its corresponding
elements manually.

The diagram in Figure 6.4 shows the aggregated changes replayed for all
evaluation projects. In Section A.3, we provide the information speci�c for
each project. The results, however, are the same for all projects and can
be discussed together. The diagram in Figure 6.4 also shows, whether the
changes handled by the integration extension or by the standard consistency
preservation rules.

As the results show, most changes a�ect integrated elements or integrated
areas. Only a fraction of the changes is performed within non-integrated
areas and therefore handled by the standard consistency preservation rules.
Even though our Coevolution approach points to the elements that need to
be kept consistent, users are required to keep most of the changes consistent
manually. Keeping changes consistent manually can be time consuming and
error prone. In the next section, we explain to which extend Integration
Level 3 is able to overcome this limitation.

After performing the change replay evaluation for Integration Level 2, we
can answer research question 2.2 as follows: Out of the 335 changes our
Coevolution approach reacted to, only 2 (0.6%) can be handled by the standard
consistency preservation rules. For the remaining 333 (99.4%) changes the
users get the noti�cation that they need to keep the architectural model
consistent manually.

We can also answer research question 3.1 as follows: For the case study
performed for Integration Level 2, our Coevolution approach is able to react
to 73.5 % of the overall recorded changes. Even though the Java monitor
records the add super class changes and remove super class changes, we
are not reacting to these changes. If we take out these changes from the
calculation, our Coevolution approach is able to react to 91.3% of the overall
changes. For the case study performed for Integration Level 3 the numbers
are almost identical and are not explained separately.

244



6.5. Integrating Existing Source Code and Replaying Changes

2 

1 

1 

2 

3 

4 

6 

6 

13 

10 

13 

13 

2 

21 

29 

31 

45 

66 

3 

3 

3 

14 

28 

61 

3 

6 

0 10 20 30 40 50 60 70 80 

create class 

remove annotation 

add interface 

create package 

remove super interface 

change class modi�er 

add annotation 

rename �eld 

change �eld modi�er 

change method parameter 

add �eld 

change �eld type 

change method modi�er 

rename method 

remove super class 

remove �eld 

remove method 

remove import 

add super class 

add import 

add method 

#occurrence 

C
ha

ng
e 

de
sc

ri
pt

io
n 

#changes handled by standard #changes handled by integration dialog #not handled changes 

Figure 6.4.: Result of the change replay case study for Integration Level 2

245



6. Evaluation

6.5.4.3. Results for Integration Level 3

As we can see from the evaluation of Integration Level 2 most of the changes
a�ect integrated elements, while only a fraction of the changes is performed
within not-integrated areas. The goal of this Integration Level 3 is to allow
a similar level of automatic consistency preservation for integrated code
areas, which our Coevolution approach reaches for standard code using the
active consistency preservation rules. To reach this goal, special consistency
preservation rules need to be de�ned for code contained in integrated areas
(see Section 5.4).

DefinedReactions forAutomaticConsistencyPreservationof integratedCode
Areas For the evaluation of Integration Level 3, we added the following
reaction de�nitions: As neither the package mapping consistency preser-
vation rules nor the consistency preservation rules for the integrated code
uses import statements to preserve consistency, we can implement empty
reactions for adding and removing import statements. For the renaming of
architectural relevant methods, we assume that the architectural elements
should automatically be renamed accordingly. Hence, we can implement
a speci�c consistency preservation rule for the renaming of methods. A
similar approach is used for removing architectural relevant methods. If
an architectural relevant method is removed, we remove the corresponding
architectural elements (OperationSignatures or SEFFs) and notify the users.
If a new public method is added, we cannot automatically decide, whether
this is an architectural relevant method or not. However, we implemented a
speci�c consistency preservation rule, which asks users in order to clarify
whether the new method is architecture relevant or not. If a change a�ects a
Parameter that is contained in an architectural relevant method, we automat-
ically keep the Parameter consistent using the same consistency preservation
rules as for the package mapping consistency preservation rules. During
the reverse engineering, �elds of classes are extracted to InnerDeclarations

if the class of the �eld is reverse-engineered to a CompositeDataType. To
keep changes to �elds consistent with their corresponding InnerDeclarations,
we de�ned a speci�c consistency preservation rule, which checks whether
a corresponding InnerDeclaration exists. If this is the case the consistency
preservation rule keeps the InnerDeclaration consistent with the changed
�eld. Therefore, the name of the InnerDeclaration is changed if the �eld has

246



6.5. Integrating Existing Source Code and Replaying Changes

been renamed and the type of the InnerDeclaration is changed if the type of
the �eld has been changed.

All de�ned consistency preservation can also be de�ned from the architec-
tural model to source code. Hence, if users change architectural elements
that have corresponding source code elements in the integrated code area,
the consistency preservation can be achieved using these rules.

Results for Static Architectural Elements and Static Code Elements We per-
formed the replay case study again, and used the above-mentioned con-
sistency preservation rules for integrated code elements. The diagram in
Figure 6.5 shows the result for consistency preservation between static code
elements and static architectural elements, i.e. without using incremental
SEFF reconstruction during the change replay. As one can see, most changes
that needed manual interactions in Integration Level 2 can be kept consis-
tent using the de�ned consistency preservation rules for integrated code
elements. For instance, no messages or question is displayed if an import

has been changed.

After performing the change replay evaluation for Integration Level 3, we
can answer research question 2.3 as follows: As for the evaluation of In-
tegration Level 2 only 2 (0.6%) changes can be handled by the standard
consistency preservation rules. The above de�ned integration reactions are
able to handle 303 (92.1%) changes. For the remaining 24 (7.3%) changes
the users need to keep the architectural model consistent manually. This
number can be reduced further in future work, by de�ning more speci�c
consistency preservation rules. We did not count the user noti�cations or
how often users are requested to disambiguate the change within the inte-
gration reactions, because this kind of user change disambiguation can be
avoided by implementing the speci�c consistency preservation as a fully
automatic rule.

During the change replay and the consistency preservation, we observed a
speciality in the Velocity project: It contains one component with parser func-
tionality for parsing a Velocity template. The classes implementing the parser
functionality are generated using the Java Compiler Compiler (JavaCC)13 and
its preprocessor JJTree. Both tools are part of the JavaCC and can be used as a

13 http://javacc.org

247

http://javacc.org


6. Evaluation

parser generator, which can be used by Java applications. The parser classes
in Velocity, e.g. Parser, ParserConstants, and Token, are generated into
the parser package. Within our Coevolution approach, the parser classes
are architectural relevant and some of them contain public methods with a
corresponding OperationSignature. Between version 1.60 and 1.64 the parser
has been changed and the parser classes have been regenerated, which led
to new methods in the Parser class. As the Parser class is architectural
relevant users evolving the software system get asked by our Coevolution
approach, whether they want to create corresponding OperationSignatures

within the interface provided by the Parser.ss component as soon as a
method in the class Parser has been added. To avoid these questions, we can
decide upfront that each method should be re�ected within the architecture.
To do so, we de�ned speci�c consistency preservation rules, which are used
if one of the parser classes has been changed. Hence, we use element-speci�c
consistency preservation rules for the parser classes.

The diagram in Figure 6.5 the changes handled using the speci�c rules are
not made explicit but represented within the last column. In the appendix
(see Section A.3), these changes are made explicit for the Velocity project.
Two other approaches to deal with the parser classes, which we not realised,
are:

• Exclude the parser classes from by either excluding them from the
coevolution or even exclude them from the reverse engineering,
because they are not meant to be changed by users anyway.

• Include the parser classes as infrastructure in the architecture, as
these classes can be seen as existing infrastructure, which can be
used by other components in the architecture.

Results with incremental SEFF reconstruction We evaluated the incremen-
tal SEFF reconstruction using Any23 and Gora. For Any23 50 changes
were classi�ed as changes on method bodies by the Java monitor, while
285 changes for Gora were classi�ed as changes on method bodies. For
the architectural relevant method changes, our Coevolution approach was
able to reconstruct the corresponding SEFF respectively the correspond-
ing ResourceDemandingInternalBehaviour. As we only investigated the core
projects of Any23 and Gora, not all methods, however, were considered as

248



6.5. Integrating Existing Source Code and Replaying Changes

2 

1 

2 

3 

7 

9 

2 

1 

3 

6 

12 

12 

12 

2 

28 

33 

45 

62 

69 

1 

12 

3 

3 

20 

28 

61 

7 

6 

0 10 20 30 40 50 60 70 80 

create class 

remove annotation 

add interface 

create package 

change class modi�er 

remove super interface 

add annotation 

rename �eld 

change method parameter 

change �eld modi�er 

change method modi�er 

add �eld 

change �eld type 

rename method 

remove �eld 

remove super class 

remove method 

remove import 

add super class 

add import 

add method 

#occurrence 

C
ha

ng
e 

de
sc

ri
pt

io
n 

#changes handled by standard #changes handled by integration dialog 

#changes handled by integration reaction #not handled changes 

Figure 6.5.: Result of the change replay case study for Integration Level 3

249



6. Evaluation

architectural relevant methods as they are called from outside of the core
projects only. If we would have included all projects of Any23 respectively
Gora, more methods in the core projects would have been considered as
architectural relevant by the reverse engineering approach, because the
methods are called from outside of the core project. Hence, these methods
would have been considered as architectural relevant methods also by our
Coevolution approach. From the performed evaluation, however, we can
state that our Coevolution approach is able to incrementally reconstruct the
behaviour of a method.

6.5.4.4. Using an Architectural Editor to perform Changes

Within this section, we show how we can use the architectural editor during
the change replay evaluation, to perform architectural relevant changes and
keep the changes consistent with the source code. To prepare this study, we
�rst need to perform the standard change replay using the change replay
tool. During the replay, we monitor architectural relevant changes. After
this initial step, we know which changes a�ect which architectural elements.
Now we are able to replay the changes again and perform the architectural
relevant changes in the architectural model. After performing the changes to
the architectural model, we check whether the source code has been updated
accordingly. If yes, we can continue the change replay in the source code
until another architectural relevant change will occur. To conduct this case
study, we need to extend the change replay tool for code in order to allow
skipping of changes.

We performed the case study only for renaming and deletion of Opera-
tionSignatures. This has technical reasons, as the change replay tool replaces
the whole content of the compilation unit for each change. The source code
monitor, however, is able to determine the actual performed change based
on the Eclipse AST. If we would, for instance, add a new method through the
architecture, we would be able to determine the correct class but we would
not be able to determine the correct position for the method. This would
lead to errors in later steps of the change replay, as the change replay tool
would remove this method with the next replay it performs.

We performed this evaluation for Any23 and Gora. In the �rst run we �gured
out which changes are architectural relevant. For Any23, one change re-

250



6.6. Performance Evaluation of our Coevolution Approach

named an architectural relevant method between version 0.9 and 1.0. None of
the delete method changes were relevant for the architecture. For Gora, one
change renamed an architectural relevant method and one change deleted
an architectural relevant method.

In the second run, we performed these changes on the architectural model,
while skipping the speci�c changes in the replay tool. As soon as we changed
the architectural elements our Coevolution approach renamed respectively
removed the code methods, i.e. we showed that it is possible to perform
architectural relevant changes on architectural models during the coevolu-
tion.

6.6. Performance Evaluation of our Coevolution
Approach

In this section, we present a performance evaluation of our Coevolution
approach. As the execution of the consistency preservation rules are occurs
in background jobs of the IDE they are not blocking users of our Coevolution
approach directly. Hence, achieving a high performance is not the main
focus of the work, we present in thesis. It is, however, necessary to achieve
a feasible performance for our Coevolution approach, because:

• users are involved in the process for consistency preservation, and

• to allow a usable coevolution approach between architecture and
code the consistency preservation rules should be executed within an
acceptable timeframe.

Hence, the goals of the performed performance evaluation are:

• getting an estimate how our Coevolution approach performs on
common hardware,

• showing that the performance for a single change the does not
depend on the overall size of the project,

• getting an evidence about the magnitude how long our Coevolution
approach needs for the consistency preservation, and

251



6. Evaluation

• pointing to possible performance issues during the coevolution.

The performance evaluation is divided in two parts. First, we evaluate the
performance of the Java code monitor. It is evaluated separately, because
JaMoPP, which is also used within the Java code monitor, turned out to be the
bottleneck for revere engineering. Secondly, we evaluate the performance of
our Coevolution approach during the change replay evaluation.

6.6.1. Performance Evaluation for the Java Monitor

As �rst part of the evaluation, we evaluate the performance of the Java code
monitor to �nd out, whether our Coevolution approach is in principle able
to deal with Java classes of reasonable size. This part of the evaluation has
been performed by Messinger for his master’s thesis [Mes14]. It is also part
of our paper [Kra+15a] and its associated technical report [Kra+15b]. The
time the Java monitor consumes is composed of two main parts. The �rst
part starts as soon as the Java monitor is noti�ed about a change in a Java
source �le by the Eclipse framework. The task of the �rst part is to classify
the changes. The second part is composed of following three sub parts:
parsing the JaMoPP instance of the changed compilation unit, creating a
Vitruvius change based on the monitored AST change and the JaMoPP
compilation unit, and. and submitting the created change to the consistency
preservation components within the Vitruvius framework. The two main
parts are measured separately and added up to get the overall time the Java
monitor needed.

6.6.1.1. Evaluation setup

For the evaluation we and Messinger used the Apache Hadoop14 HDFS
(Hadoop Distributed File System) as system under study. Hadoop HDFS
is a distributed �le system developed to enable high-throughput access to
large data sets stored on clusters15. Hadoop HDFS consists of more than
200 KSLoC and is embedded in the Hadoop framework. It includes manual

14 http://hadoop.apache.org/
15 http://wiki.apache.org/hadoop/HDFS

252

http://hadoop.apache.org/
http://wiki.apache.org/hadoop/HDFS


6.6. Performance Evaluation of our Coevolution Approach

Compilation unit LLoC modi�ed method

ByteArray 28 getBytes

INode 350 getParent

FSEditLog 1045 initJournals

DFSClient 2050 connectToDN

DataTransferProtos 15812 registerAllEvents

Table 6.11.:Overview of compilation units used for the Java code monitor perfor-
mance evaluation. Note: As we reuse the data from Messinger [Mes14], the LoC
are presented in LLoC, which represents the total number of statements within a
compilation unit. The di�erence between the two LoC measurements is not crucial
for the presented evaluation.

written compilation units various sizes as well as large generated compilation
units. Hence, it is a good �t for our performance evaluation.

To perform the evaluation, we executed three di�erent changes:

• Renaming of a method. Therefore, we toggled the name of a speci�c
method by appending “0” or “1” to the method name. The toggling
has been done depending on whether “0” or “1” is already present,
which depends on the current iteration.

• Changing the modi�er of a method. Therefore, we replace public

with private respectively private with public within each iteration.

• Adding and removing a �led. We added the �eld String

lorem=“lorem ipsum dolor sit amet”; if it is not present and
removed it if it is present already. Hence, we consecutively added or
added or removed the �eld in the iterations.

To measure the performance for compilation units (Java �les) of di�erent
size, we choose to measure the performance for �ve compilation units, which
are presented in Table 6.11. For the �rst four compilation units in the table,
we repeated each of the above-mentioned changed 100 times. Because of
the size and the required amount of time, we repeated each change 25 times
for DataTransferProtos. Hence, for the �rst four compilation units, we

253



6. Evaluation

repeated the renaming 100 times. The toggling from public to private and
from private to public as well as the adding and removing of a �led has been
repeated 50 times each.

As hardware we used a 4 core Intel Xeon CPU with 3.40 Ghz with 8 GB of
RAM and a 64-bit Windows 7 Professional installation as operating system.
As environment for the Java monitor, we used a 64-bit Eclipse 3.5 (Kepler)
instance with a workspace containing the Hadoop HDFS project. As Java
runtime environment, we used the Java Runtime Environment (JRE) 1.7
64-bit.

6.6.1.2. Results

The aggregated results of the performance measurement for the di�erent
changes for each compilation units as well as the standard deviation is
shown in Table 6.12. The Diagram 6.6 visualizes the results from the table.
The results from the table and the diagram indicate two �ndings: i) the
time needed to process a change increases with the size of the changed
compilation unit, and ii) the performed change itself has no performance
in�uence. Hence, regardless whether we added/remove a �led, renamed a
method, or changed the modi�er of a �led the time the Java monitor needs
compute a change remains the same given the same compilation unit. The
�rst change, however, consumed more time as the remainder of the changes
as JaMoPP needs to initialize itself. Hence, we consider the �rst change as
an outlier and remove it from the result.

Table 6.13 shows the relation between the time needed by the Java monitor
for the �rst part (classifying the AST changes) and the second main part
(creating Vitruvius changes using JaMoPP). As we can see from this table,
the second part consumes at least 90% of the overall time. For the larger
compilation units the JaMoPP parsing consumes 99% of the overall time.
Within the second part itself the bottleneck is the parsing of a compilation
unit using JaMoPP. We discuss the �ndings and draw conclusions for this
width=observations in Section 6.6.3.

254



6.6. Performance Evaluation of our Coevolution Approach

Compilation Unit LLOC
Rename
Method

Replace
Method
Modi�er

Add or
Remove
Field

t̄[ms] s t̄[ms] s t̄[ms] s

ByteArray 28 57 0.94 50 0.34 57 0.33

INode 350 292 0.22 278 0.32 324 0.33

FSEditLog 1045 832 0.09 856 0.16 865 0.10

DFSClient 2050 1776 0.17 1676 0.16 1954 0.16

DataTransferProtos 15 812 14 683 0.09 14 334 0.09 14 880 0.10

Table 6.12.: Results of the performance evaluation for the Java code monitor. The
table shows the measured total monitoring time for the Java code monitor for the
above-mentioned edit operations. For each operation, average total time consumption
in milliseconds t̄[ms] and the standard deviation/average s is given. The table has
been published already in [Mes14] and [Kra+15a; Kra+15b].

Figure 6.6.:Average time consumed by the Java monitor in ms. The axes are loga-
rithmic to base 10.

255



6. Evaluation

C
om

pilation
U
nit

LLO
C

R
enam

e
M
ethod

R
eplace

M
ethod

M
odi�

er
A
dd

or
R
em

ove
Field

A
ST

JaM
oPP

A
ST

JaM
oPP

A
ST

JaM
oPP

ByteA
rray

28
0.06

0.94
0.06

0.94
0.04

0.96

IN
ode

350
0.02

0.98
0.02

0.98
0.01

0.99

FSEditLog
1045

0.01
0.99

0.01
0.99

0.01
0.99

D
FSClient

2050
0.01

0.99
0.01

0.99
0.01

0.99

D
ataTransferProtos

15812
0.01

0.99
0.01

0.99
0.01

0.99

Table
6.13.:Relation

betw
een

the
tim

e
needed

forAST
change

classifying
and

JaM
oPP-based

creation
ofa

Vitruviuschange
to

the
totaltim

e
consum

ed
by

the
Java

m
onitor.The

table
contain

a
v
e
r
a
g
eA

ST
orJaM

oPP
tim

e
consum

ption
divided

by
the

t
o
t
a
l
a
v
e
r
a
g
etim

e
consum

ption.From
the

results,w
e

can
conclude

thatthe
Vitruviuschange

generation
based

on
JaM

oPP
consum

esm
orethan

90%
oftheoveralltim

e.Thetablehasbeen
created

by
M

essinger[M
es14]and

ispublished
in

hism
aster’s

thesisalready.

256



6.6. Performance Evaluation of our Coevolution Approach

6.6.2. Performance during Change Replay

In this section, we evaluate the performance of our Coevolution approach
during the change replay. Hence, we evaluate the time our Coevolution
approach consumes to keep changes in code consistent with the architecture.
Therefore, we combine the measurement implemented for the Java monitor
with a newly introduced time measurements for the consistency preservation.
As result, we get the time consumed by the Java monitor and the time
consumed by the consistency preservation mechanism. Adding up the results
gives us the information how long our Coevolution approach needs to process
one change.

As we showed in the section above, parsing the change compilation unit
using JaMoPP consumes more than 90% of the overall time. Hence, the
hypotheses for this performance evaluation is that the JaMoPP performance
still consumes the biggest amount of time.

6.6.2.1. Experiment Setup

We measured the performance of our Coevolution approach during the
change replay of the projects Any23 and Xerces. For both projects, we
measured the performance without the incremental SEFF reconstruction.
For Any 23 we also performed a measurement with the incremental SEFF
reconstruction. In all cases, we measured the performance with activated
consistency preservation rules for integrated elements. For both projects, we
investigated the �rst 51 atomic changes, to which our Coevolution approach
reacted, during the change replay. The performance of the �rst change is
considered as an outlier, because JaMoPP needs to initialize itself during
the parsing of the �rst change. We also ignore composite changes, because
composite changes combine more than one change and would falsify the
performance measurements, because we would compare composite changes
with atomic changes. In order to avoid user noti�cations and user clari�ca-
tion during the performance measurement, we use a modi�ed user change
disambiguation mechanism, which randomly answers questions immediately.
In order to rule out possible false measurements due to other tasks, such as
garbage collection, we repeated the experiment three times for each project.
Even though the number of repetitions is not very high it is su�cient for

257



6. Evaluation

the evaluation for the following reasons, because we only want to show the
magnitude of the consistency preservation duration.

As hardware, we used a standard laptop with a 2.2 GHz Intel i7 processor
and 8 GB RAM with Mac OSX 10.11 as operation system. As IDE, we used
64-bit Eclipse 4.5 (Mars) and the JRE 1.8 64 bit as Java environment.

6.6.2.2. Results

The results without the incremental SEFF reconstruction show two similari-
ties with the results for the standalone Java monitor performance measure-
ment:

• the parsing of compilation units using JaMoPP consumes most of the
time, and

• the time consumed to process a change does not depend on change
itself.

Knowing these two facts allows us, to present the results aggregated for the
changed compilation units independently from the actual performed change.
The diagram 6.7 shows the result for the change replay performance for
Any23, while the diagram in Figure 6.8 shows the result for the change replay
performance for Xerces. As we can see from those diagrams, the consistency
preservation usually consumes less than 20% of the time. We have, however,
observed one exception for Xerces, where the consistency preservation step
consumes almost 50% of the time. Another �nding is that we cannot con�rm
the �nding from the Java monitor performance evaluation, that larger �les
always require more time to be parsed by JaMoPP. Even though larger �les
tend to need more time to be parsed by JaMoPP some smaller �les also need
quite a long time to get parsed.

For Any23, we also measured the time need by our Coevolution approach
to reconstruct the SEFF incrementally during the change replay evaluation,
i.e. we measured the time to keep a change performed to a method body
consistent with the architectural model. We again, present the results ag-
gregated for the changed compilation units. The results are visualized in
diagram 6.9. The results indicate that our Coevolution approach needs more
time to process for method body changes as for non-method body changes.

258



6.6. Performance Evaluation of our Coevolution Approach

1406 

1673 

994 

1365 

1477 

359 

523 

285 

311 

282 

0 500 1000 1500 2000 2500 

137 

62 

57 

24 

24 

Time in ms 

K
SL

oC
 

Performance measurement for Any23 

Code monitor Consistency preservation 

Figure 6.7.: Performance evaluation for the �rst 50 changes for Any23 during the
change replay evaluation. The changes only a�ected �ve compilation units with sizes
from 24 SLoC up to 137 SLoC. Note: This diagram excludes changes a�ecting method
body changes, i.e. it excludes the performance measurement for the incremental SEFF
reconstruction.

3960 

1449 

3960 

11459 

1807 

4682 

757 

605 

52 

48 

52 

1025 

42 

150 

39 

562 

0 2000 4000 10000 12000 14000 

2501 

1428 

834 

572 

300 

199 

178 

128 

125 

Time in ms 

K
SL

oC
 

Performance measurement for Xerces 

Code monitor Consistency preservation 

Figure 6.8.: Performance evaluation for the �rst 50 changes for Xerces during the
change replay evaluation. As we can see the changes a�ected compilation units from
size from 125 SLoC up to 2501 SLoC.

259



6. Evaluation

2773 

3201 

1465 

660 

565 

2241 

150 

454 

496 

226 

0 1000 2000 3000 4000 5000 6000 

183 

144 

137 

69 

58 

57 

Time in ms 

K
SL

oC
 

Performance measurement for incremental SEFF reconstruction within Any23 

Code monitor Consistency preservation 

Figure 6.9.: Performance evaluation for the �rst 25 method body changes for Any23
during the change replay evaluation. This diagram only shows changes a�ecting
method body changes, i.e. it only shows the performance measurement for the
incremental SEFF reconstruction. We can see the actual consistency preservation
step requires more time for changes a�ecting method bodies as for changes a�ecting
static code only. Hence, the incremental SEFF reconstruction requires more time
than executing the “normal” consistency preservation rules.

However, the parsing of compilation units into a JaMoPP still consumes the
most time. The consistency preservation required between 4% and 82% of
the overall time. The time required varies as the necessary actions to create a
SEFF incrementally vary depending on the size and the method calls within
the method, which has been changed.

6.6.3. Discussion

In this section, we discuss the results of the performed performance evalua-
tions. Both evaluations show that the most time is consumed by the parsing
of compilation units into JaMoPP representation. The time needed to process
a change increases almost linearly with increasing compilation unit size.

We can argue, that the performance of our Coevolution approach is su�cient
for compilation units with reasonably small size. For the experiments, we
performed, our Coevolution approach is able to keep preserve consistency
between code and architecture for �le sizes with less than 300 SLoC within
a couple of seconds. As Messinger [Mes14] pointed out, Hatton [Hat97]
analysed software projects of di�erent programming languages. Hatton

260



6.6. Performance Evaluation of our Coevolution Approach

[Hat97] concludes that classes realising components should be in the range
between 200 and 400 LoC to minimize fault-density. As we seen in the
evaluation, however, many classes consist of more than the denoted size.
As we also seen in the evaluations for Xerces and especially Any23 the
JaMoPP parser requires more time for some �les even for �les with smaller
size. Hence, in future work one task is to increase the performance of the
parsing component of the Java monitor. Improving the performance would
also provide a bene�t for the incremental SEFF reconstruction, because the
incremental SEFF reconstruction needs to operate on the extracted JaMoPP
model and needs to resolve Java elements within other compilation units as
the changed one.

After performing the performance evaluation, we can answer research ques-
tion 3.3. The time, our Coevolution approach requires to process a performed
change on the source code, depends on the size of the changed compilation
unit. The time to process a change varies between under one second to
more than 10 seconds. If dynamic code is changed, i.e. a method body has
been changed, our Coevolution approach requires more time, because the
incremental SEFF creation needs to be performed. Detailed information
about the time consumed is shown in the diagrams 6.7 6.8, and 6.9.

Hence, we can the research question 3.2 as follows using 3.2.1: our Coevo-
lution approach requires approximately the same amount of time for open
source software of reasonably size (in our case 112 KSLoC for Xerces) as for
smaller open source systems case studies. Hence, the overhead it adds is
reasonable small and we can argue that our Coevolution approach is able to
deal with open source projects of reasonable size.

To increase performance in future work, one of the following solution can
be considered:

• optimizing the JaMoPP parser,

• parsing only the changed fractions of compilation units, or

• replacing the JaMoPP parser by a faster parser.

In 8.2, we show a �rst idea how the standard Eclipse JDT AST parser can
be used to replace JaMoPP. Therefore, we propose to convert the classes
within the Eclipse JDT AST into Eclipse Modeling Framework (EMF)-based
classes.

261



6. Evaluation

Although our Coevolution approach respectively the Java code monitor
requires more time to process larger code �les, it is possible to process this
large compilation units.

6.7. Model-based Performance Prediction using
Coevolved Architecture Models

In this section, we explain how a model extracted with EJBmoX and a model
coevolved based on the extracted model can be used to predict the perfor-
mance of a software system. As case study system, we use the mRUBiS
system, which we already explained in Section 6.3.2.

Even though developing approaches to enrich existing models with perfor-
mance information and developing simulators for the Palladio approach is
out of the scope of this thesis, we performed this evaluation to show an
end-to-end validation of our Coevolution approach. In particular, we show
how a) performance prediction for an extracted model can be realised, and b)
how we can use a coevolved model for performance prediction after a new
requirement has been implemented into an existing software system. After
showing a) and b), we can show that the accuracy of the performance pre-
diction using the coevolved model is as good as the performance prediction
for the reverse-engineered model

In the remainder of this section, we �rst explain the used evolution scenario
for mRUBiS and the necessary steps to implement the evolution scenario.
As second step, we explain how we performed the coevolution of the ar-
chitectural model and the source code during the implementation. After
these two steps, we have the models, which we can use for the performance
prediction. As next step, we explain how we enrich an existing architectural
model, which is based on EJB component-code, with performance informa-
tion. Therefore, we explain the experiment setup to get the performance
data from the software system we used. As last step, we show the results
of the performance prediction using the enriched models and compare the
predicted performance with the measured performance.

262



6.7. Model-based Performance Prediction using Coevolved Architecture Models

6.7.1. Evolution Scenario for mRUBiS

This section introduces the performed evolution for the mRUBiS system. We
introduce the following two requirements for the evolution:

1. allow users to upload one initial image of an item during the
registration of the item.

2. creating a thumbnail of the uploaded image, in order to present the
thumbnail in a later step, e.g. within an overview site of the item or
an overview site of similar items.

To implement these requirements, we need to extend the registerItem sig-
nature in the ItemRegistrationService interface in order to allow users
to upload an image. The component ItemRegistrationServiceBean needs
to be extended in order to realise the functionality. To create the thumb-
nail, we introduce a new ImageMgmtServiceBean, which provides the new
interface ImageMgmtService. Hence, the new component provides the mech-
anism to scale an image. The ItemRegistrationServiceBean requires the
new interface ImageMgmtService and uses it to create the thumbnail within
registerItem. In order to store the image as well as the thumbnail in the
database, we need to extend the database interface BusinessObjectsPersis-

tenceService and the realising component BusinessObjectsPersistence-
ServiceBean as well. Furthermore, we need to extend the classes Item and
EItem in order to support the image as well as the thumbnail. The Item class
represents the business object of an item, while the class EItem represents
the persistent entity of the Java Persistence API (JPA), which is stored in the
database. As a last step, we need to extend the database itself. Except for the
extension of the database itself, all steps can be performed using the editors
supported by our Coevolution approach.

6.7.2. Coevolution during the Implementation of the
Evolution Scenario

As next step of the performance evaluation process, we implemented the
described changes into the existing mRUBiS implementation and evolved
the existing PCM model using our Coevolution approach. Figure 6.10 shows
the activity diagram of registerItem before the evolution and after we

263



6. Evaluation

conducted the evolution scenario. As PCM model for the existing implemen-
tation, we can use the PCM model for mRUBiS, which we created during
the evaluation of EJBmoX (see Section 6.3.2). Before we can perform the
coevolution, however, we need to integrate the model into our Coevolution
approach. Therefore, we can use the integration mechanism described in
Section 5.4.6. As our goal is to use the coevolved model for a performance
prediction, we integrate the SEFFs and their corresponding methods as well
into our Coevolution approach. Hence, we keep the SEFFs consistent with
method body changes during the evolution of mRUBiS. The mRUBiS sys-
tem maps the EJB components and interfaces conform with the consistency
preservation rules, we de�ned for EJB (see Section 4.6.1.1). As a consequence,
we can use these consistency preservation rules, to keep changes consistent
between source code and the architectural model, i.e. for the integration
and coevolution of the mRUBiS system, we can use Integration Level 1. This
is a di�erence to the integrated systems in Section 6.5, where none of the
integrated elements already ful�lled the used consistency preservation rules.
Hence, by performing this evaluation, we also evaluate Integration Level 1,
which has not been evaluated yet.

After this integration step, we can coevolve the architectural model and
the source code. Therefore, we perform the changes described above and
used our Coevolution approach for the mRUBiS project. Hence, after per-
forming the changes, we have both the evolved source and the evolved
architectural model. Users using our Coevolution approach in this scenario
have the following advantages compared to users not using our Coevolution
approach:

• they do not need to update the architectural model manually,

• during the evolution architectural relevant changes can be performed
using the architectural model,

• they can reuse the existing System and Allocation diagram, as the
elements within the Repository remain the same, and

• changes performed to parts of the architectural model not a�ected
from the evolution scenario because the model is not fully
regenerated but updated incrementally based on the source code
changes.

264



6.7. Model-based Performance Prediction using Coevolved Architecture Models

act registerItem old act registerItem evolved

Validate
item data

Authenticate
user

Find category

Persist item

sucess

authenticated

found

failed

auth. failed

not found

Item

User

Category

Validate
item data

Authenticate
user

Find category

Create
thumbnail

Persist item

sucess

authenticated

found

failed

auth. failed

not found

Item

User

Category

Image

Figure 6.10.:Activity diagram of the registerItem service before the evolution sce-
nario (left) and after we performed the evolution scenario (right). We added the
creation of the thumbnail, which needs to be done during the registration of a new
item.

To allow the repetition and ease the reproducibility of this case study, we
performed the changes in source code and committed them into a GIT repos-
itory. Hence, we can use the change replay tool to coevolve the architectural
model with the source code changes.

265



6. Evaluation

6.7.3. Enriching the Architectural Model with
Resource Demands

Before we can use the Palladio approach for the actual performance pre-
diction, we need to enrich respectively parametrise the architectural model
with resource demands. This needs to be done for the model extracted with
EJBmoX as well as for the coevolved model.

For the model enriching, we reuse the approach of Merkle [Mer17], which
we explain in short in the following. We extended this approach in order to
allow the enriching of a coevolved model. In the following, we �rst introduce
the parametrisation process itself, which is used for the parametrisation of
the models solely. We secondly explain the measurement process, which uses
realistic workload in order to get realistic measurement data. The realistic
measurement results are later compared with simulated results for the same
realistic workload.

6.7.3.1. Model Parametrisation Process

To be able to parametrise an architectural model with performance infor-
mation, the �rst step is to execute the software system and measure the
execution time to get performance data from the software system. Therefore,
it is necessary to set up the software system on a server and enabling moni-
toring of the application. For the monitoring, we use InspectIT16, which is
able to instrument a running Java application and measure the performance
of each method. InspectIT, therefore, installs an agent in the software system
under test and sends the results to an InspectIT server running either on the
same server or on a di�erent server.

After the initial setup and instrumentation steps, the software system needs
to be executed using a load driver. The load driver executes one scenario
at a time, i.e. it calls one provided interface method of the software system
repeatedly. During the execution a warm-up phase is executed to avoid
side e�ects, such as just in time compiling, during the actual measuring,
which would falsify the measurement. At the end of this run, the collected
invocation traces are stored in the Central Management Repository (CMR)

16 http://www.inspectit.rocks

266

http://www.inspectit.rocks


6.7. Model-based Performance Prediction using Coevolved Architecture Models

of the InspectIT database. Each invocation trace contains all calls to an
EJB business interfaces in the context of the current system call. From the
invocation trace, we get the order of EJB calls as well as they execution
duration.

In our scenario, we register an item in the mRUBiS system by calling the
service registerItem. Therefore, we execute 2000 warm-up requests and
1000 requests to get the actual parameterisation information for the non-
evolved system. For the evolved system we execute 500 warm-up requests
and 1000 requests to get the actual parameterisation information. In the
evolved system less warm-up runs are required, because the generation of
the thumbnail and storing the information in the database dominate the
overall response time. We, furthermore, did not observe any side e�ects
caused which indicate that the system is still in the warm-up phase, during
the actual parameterisation phase. After the execution, we have stored 3000
respectively 1500 trances in the InspectIT database. As workload, we use a
closed workload with one user, i.e, we have 3000 respectively 1500 sequential
traces without contention of di�erent users accessing the software system
simultaneously. As think time for the one user, we choose 10 ms for both
case studies, i.e. after completing the measurement, we wait 10 ms until a
new request is created.

As next step, a the parameterisation extension, developed by Merkle [Mer17]
for EJBmoX , is executed. The parameterisation extension needs a running
InspectIT server, that contains the traces in its CMR database. The �rst step
of the parameterisation extension is to skip the the warm-up runs, i.e, for the
actual parameterisation only the remaining runs are used. As second step, the
parameterisation extension needs to match the reconstructed methods and
external calls within these methods with the methods monitored by InspectIT.
Therefore, the parameterisation extension scans an invocation sequence
sequentially and creates events for observed EJB component-external method
calls and component-internal method calls. A matcher component traverses
the SEFF actions and listens to these events and matches the events from the
scanner with the SEFF elements, e.g. an ExternalCallAction or the beginning
respectively the ending of an InternalAction. If the matcher retrieves the
expected event a match has been found and the SEFF can be annotated with
the necessary information, e.g. the resource demand of an InternalAction.
After the scanning and matching phase, we have the necessary performance
information for the SEFF elements. This information is added as a Stochastic

267



6. Evaluation

Expression (StoEx) in the SEFF actions, i.e. we use a probability distribution
to determine the execution time of a speci�c SEFF action. More details about
this approach can be found in Merkle [Mer17].

As an optional third step, SQL statements can be retrieved and annotated
as well. This is helpful for the Palladio extension introduced by Merkle and
Knoche [MK15], Merkle [Mer17]. For our evaluation, however, we did not
use this optional extension.

After this step, we have the automatically enriched performance model. The
performance model contain the resource demands in milliseconds, i.e. a
processor with a processing rate of 1 can be used to simulated the same CPU
speed used for the measurement. If a faster CPU should be simulated the
simulated processing rate of the CPU can be increased accordingly.

An optional step, after the automatic enrichment is a manual re�nement
of the resulting PCM model. In the example of registerItem, we needed
to adjust the model on one position: Within the service persistItem of
the component BusinessObjectsPersistenceServiceBean the data of the
thumbnail is stored on the hard drive. For this scenario the time the hard
drive needs dominates the time the CPU needs to process this scenario. The
automatic extraction, however, currently cannot di�erentiate between I/O
and CPU demands and attributes observed execution times completely to the
CPU. For the evolved mRUBiS system this scenario consumes most of the
overall time needed to process the whole registerItem request. Without
manual adaption, however, the simulation would assign the demand to the
CPU. This results in an increased contention for the CPU, i.e. the CPU is
not able to compute other requests during this time. We found out that this
leads to a prediction error. Hence, we changed the demand from the CPU to
the HDD for the operation persistItem, in order to re�ect re�ect the reality
better in the used PCM model.

6.7.3.2. Performance Measurement Process

The actual performance measurement of the software system is done in a
separate phase as the measurement for the parameterisation phase for the
following reasons:

268



6.7. Model-based Performance Prediction using Coevolved Architecture Models

• the performance measurement should be performed with a realistic
workload, and

• the instrumentation introduces overhead during the execution of the
parameterisation run, which should not be considered during the
measurement phase.

Note: Even though the instrumentation introduces overhead this overhead
is not measured by InspectIT itself but in the load driver, because the load
driver measures the response time of the called service. Hence, the response
time measured by the load driver during the parameterisation phase are
re�ecting the response time including the overhead. As we disable InspectIT
during the actual measurement run the response time measured by the load
driver during the measurement run re�ects the response time without the
overhead.

As for the measurement run, we also call the service registerItem using a
load driver. Again, we execute 2000 runs of warm-up and 1000 to measure
the performance for the non-evolved workload, while we execute 500 runs of
warm-up and 1000 performance measurements for the coevolved model. For
both cases, we use an open workload with exponentially distributed mean
interarrival times, i.e. new users arrive constantly at the system, executing
a request, and leaving the system. For the non-evolved model, we use a
mean interarrival time of 150 ms, while we use a mean interarrival time of
1000 ms for the coevolved model. The reason for the di�erence in the mean
interarrival is the duration the system needs to process the request. In the
evolved model, this time is signi�cantly higher, because the system needs
to calculate the thumbnail and store the new image in the database. As the
mean interarrival time is signi�cantly higher as the time needed to process
a request, the contention within our scenario is relatively low. Lowering
the interarrival time would increase the contention, but it would probably
also overload the system, which would lead to measurement and prediction
errors. We argue that this is acceptable for the evaluation performed in this
thesis, because we only want to show that it is possible to use our coevolved
models for performance prediction. Optimizing the performance prediction
in cases where the contention is high is not part of this thesis.

As result of this runs, we have the information about the actual measured
performance of the software system. In a later step, we compare this mea-

269



6. Evaluation

sured performance with the predicted performance. Technically this data is
stored in an R17 database.

6.7.3.3. Used Setup for Enriching Architectural Models and for Measuring
the Performance

We need to measure the software system to enrich the architecture models
and to measure the actual performance for a realistic work load. To do so, we
need to deploy the software system and the necessary additional components.
The deployment, we use, is depicted in Figure 6.11. As environment, we used
two di�erent virtual machines (VM1 and VM2). Both are running on the
same physical hardware environment, which is a SunFire x4440 equipeed
with 4 Six-Core AMD Opteron Processors à 2400 MHz, 128 GB RAM and
8*300GB HDD.

On the �rst virtual machine (VM1), we deployed the mRUBiS system, the
load driver, and the R server. The R server on VM1 is used by the load driver
to store the measured data. The stored measured data can be used for the
comparison between the performance prediction and the actual measured
data. As database for the mRUBiS system, we use a MySQL18 data set. The
database for the mRUBiS system is initialized with 2000 users, 100 items, and
20 categories for the items before each run. For each call of registerItem, a
new item is created within one of the existing categories and a new randomly
generated image from a size between 300x700 pixels and 400x800 pixels is
uploaded. The �rst virtual machine is equipped with 4GB RAM and one
AMD Opteron CPU core with 2.4 GHz. As operation system we used 64bit
Windows 2012 Server. We only assigned one CPU core to this server to avoid
incorrect measurements due to the use of multiple cores. In the case of more
than one CPU core, we currently cannot determine how the execution time
is distributed over the di�erent CPUs. We argue that the evaluation using
one CPU core only, is su�cient for the evaluation performed in this thesis,
because our goal is not to optimize the performance prediction for multicore
processors. Instead we want to show that the coevolved models can be used
to predict the performance of a software system.

17 https://www.r-project.org
18 https://www.mysql.com

270

https://www.r-project.org
https://www.mysql.com


6.7. Model-based Performance Prediction using Coevolved Architecture Models

�device�
Sun Fire

�device�
VM1

MySQL DB

�application�
Glass�sh

InspectIT Agent mRUBiS

�application�
R

RServe

�application�
Load Driver

Load Driver

�device�
VM2

�application�
InspectIT

InspectIT DB
InspectIT Server

Figure 6.11.:Deployment diagram for the evaluation setup (Server)

On the second virtual machine (VM2), we deployed an InspectIT server. After
the instrumentation of the mRUBiS system, the InspectIT agent uses this
server to store its results. The second virtual machine running the InspectIT
server is not critical for the performance, because it runs the InspectIT server

271



6. Evaluation

�device�
Local Machine

�application�
Parametrization

Parametrization Job

Figure 6.12.:Deployment diagram for the evaluation setup (Local Machine)

only and stores the information in a database. It turned out, however, that
this functionality needs to be on a second virtual machine as the performance
drain on the main machine would be to high otherwise. This virtual machine
is also equipped with an AMD Opteron CPU with 2.6 GHz and 4 GB RAM.
As operating system it uses a 64 bit Centos Linux.

The local machine in Figure 6.12 is a PC running the Parametrization Job
after the parameterisation run has been completed. It communicates with
the InspectIT application in order to retrieve the data, which is necessary
for the parameterisation, from the InspectIT DB.

6.7.3.4. Enriching a Coevolved Architectural Model with Performance
Information

The process described above requires source code, a consistent architecture
model, and a SCDM. The architecture model needs to contain interfaces,
components, and SEFFs. Within the SEFFs the behaviour needs to be speci�ed,
i.e. Branches, Loops, and InternalActions need to be present. It is, however, not
necessary for the SEFFs to contain performance information already. These
three artefacts are the output of the architecture reconstruction performed
with EJBmoX . The parameterisation extension of EJBmoX is embedded in
to the EJBmoX run and is able to enrich the extracted PCM.

Within the work presented in this thesis, our goal is to enrich a coevolved
model with performance information. Therefore, we implemented a small

272



6.7. Model-based Performance Prediction using Coevolved Architecture Models

tool, which realizes the enriching of an architectural model without the
need of running the architecture extraction step of EJBmoX upfront. The
tool creates the SCDM from the Vitruvius correspondence model using a
model to model transformation. Using the SCDM, the source code, and the
coevolved architecture model, we can execute the EJBmoX extension, which
enriches the architecture model with performance information. Hence, we
can retrieve an architectural model enriched with performance information
from a coevolved architecture model. The implemented tool is available as
Eclipse plugin and available within the Vitruvius framework. After enrich-
ing the model, we are able to answer research question 4.1 from the GQM
plan as follows: Using our Coevolution approach omits the e�ort to update
the statical architectural elements and the behavioural architectural elements
manually. The measuring of the software system and enriching the model
with performance information remains the same. Using the proposed setup,
however, most steps for the enriching process can be done automatically.

6.7.4. Experiment Results

After we enriched the models, we can execute the performance prediction
using one of the available simulators for the Palladio approach. For the
simulation, we use EventSim, which has been introduced by Merkle [Mer11]
and Merkle and Henss [MH11]. As allocation and resource environment
for the simulation, we use the environment generated by EJBmoX , i.e. we
used one server with one CPU and all assemblies are deployed on this server.
As the CPU has a processing rate of 1, we simulate the same CPU as the
CPU used for the measurements. For the results, we compare the measured
values with the predicted values of the simulation. To illustrate the model’s
generalization capability, we used di�erent workloads for the measurement
and the prediction as we used in the parameterisation run in the enriching
phase. We compare the mean response time, the empirical cumulative density
of the response time, and the mean CPU utilization between the simulated
results and the measured results.

The diagram in Figure 6.13 shows the empirical cumulative density of the
response time for the model extracted with EJBmoX , i.e. the non-evolved
model. The diagram in Figure 6.14 shows the empirical cumulative density

273



6. Evaluation

150.0

0.00

0.25

0.50

0.75

1.00

R
E

G
IS

T
E

R
_IT

E
M

0 10 20 30 40
Response Time (ms.)

E
m

pi
ric

al
 c

um
ul

at
iv

e 
de

ns
ity

Measured Simulated

Figure 6.13.:Cumulative response time distribution of measurements compared to
simulation results for the extracted model. The x-axis shows the response time in
milliseconds. In the simulated run as well as in the measured run nearly all requests
are processed within the �rst 25 ms. The mean interarrival time of new users is
150 ms.

for the coevolved model. As we can see the simulated curve and the mea-
sured curve have the same shape in both diagrams. As expected, the time
needed to process the request for registerItem, increases dramatically for
the coevolved model, because the thumbnail needs to be created and the
image needs to be stored in the database. In both diagrams the simulated
performance is slightly slower as the actual measured performance. The rea-
son for this behaviour of the simulation seems to be twofold: �rst, might be
the lack HDD monitoring during the parameterisation phase. Instead of split
the load to HDD and CPU as the load occurs the load is only assigned to the
CPU. This leads to the fact that contention scenarios are predicted slightly
wrong in the simulation, because some requests need to wait longer in the
simulation until they are processed than in the real time. We observed this
behaviour especially for the persistItem service using the evolved system.
As mentioned above, this service is used to store the data in the database and

274



6.7. Model-based Performance Prediction using Coevolved Architecture Models

1000.0

0.00

0.25

0.50

0.75

1.00

R
E

G
IS

T
E

R
_IT

E
M

0 200 400 600 800
Response Time (ms.)

E
m

pi
ric

al
 c

um
ul

at
iv

e 
de

ns
ity

Measured Simulated

Figure 6.14.:Cumulative response time distribution of measurements compared to
simulation results for the coevolved model. The x-axis shows the response time in
milliseconds. The evolved system requires more time to process requests, i.e. most
requests are processed within a range of 200 and 500 ms. The mean interarrival time
of new users is 1000 ms.

is HDD intensive, i.e. we changed the demand from the CPU to the HDD. As
part of future work, the monitoring could be improved in order to consider
HDD demand of the system under test as well.

Table 6.14 the mean response time per user is shown for both experiments. As
we can see, the accuracy of the performance prediction using the coevolved
model is not degenerate for the coevolved model.

Table 6.15 shows the mean measured utilization of the CPU compared with
the mean simulated utilization of the CPU. The error is for both experiments
greater than 50 %. This di�erence is partly caused by the additional load
introduced by the load driver and R server. Both processes have an impact
on the measured CPU utilization, but not on the simulated utilization. The
additional load, however, does not explain the large gap between the sim-
ulated and measured mean CPU utilization. System processes executed by

275



6. Evaluation

Experiment Meas.
time
(ms)

Sim.
time
(ms)

Error
abs.
(ms)

Error
rel.
(%)

extracted model 14.92 16.45 1.53 10.25

evolved-model 256.67 277.25 20.58 8.01

Table 6.14.:Comparison of the mean response time in the measured run and the
simulated run for both experiments. As we can see, the relative error for both cases
is approximately 10%, i.e, the prediction of the response time can be used to make
reliable statements about the behaviour of the software system.

Experiment Utili.
measured

Utili.
simulated

Error
abs.

Error
rel.

extracted model 0.14 0.05 −0.08 61.89

evolved model 0.27 0.12 −0.14 53.62

Table 6.15.:Comparison of the mean CPU utilization in the measured run and the
simulated run. All numbers are in percentage. As we can see, the error is greater
than 50 percent for both experiments, i.e. the prediction of the utilization cannot be
used to make reliable statements about the behaviour of the software system.

the used SQL database to store the uploaded images on the HDD might be
another explanation for the observed behaviour. To improve the prediction
of the CPU utilization, the measurement can be improved in order to only
consider the actual CPU utilization of the process under test. Furthermore,
the load driver and the R server can be moved to a separate VM.

After performing the experiments, we can answer research question 4.2 as
follows: The relative prediction error for the mean response time using the
evolved model is 8.01%. Brosig et al. [Bro+15] pointed out that, according
to Menascé et al. [MAD94] [MA00], in capacity planning, prediction errors
of the response time are acceptable up to a relative error of 30% percent.
Hence, the results we get for the response time can be used for the capacity
planning. The prediction error for the mean CPU utilization, however, is
greater than 50%, i.e. the results are currently not usable for a prediction of
the CPU utilization.

276



6.8. Threats to validity

6.8. Threats to validity

In this section, we present the threats to validity for the performed evalua-
tion.

For the evaluation of Extract and EJBmoX , we identi�ed the following threats
to validity: To evaluate Extract, we only used Apache projects. The projects,
however, are of di�erent size, from di�erent domains, and widely used.
Hence, we argue that the projects represent typical open source software
systems. We also did not compare an architectural model reverse-engineered
with Extract with a manual created one, yet. Hence, we are not able to make
statements about their accuracy. For the evaluation of EJBmoX , we used only
two relatively small open source software systems, which were designed as
case study systems. Hence, we cannot make a statement whether realistic
open source EJB systems or industrial sized EJB systems can be investigated
using EJBmoX as it is or whether further extensions for EJBmoX are needed
to cope with those projects.

For the evaluation of the consistency preservation rules using the PCM RIS,
we identi�ed the following threat to validity: We used only a limited amount
of existing PCM models. Some of them, such as CoCoME, however, are
widely used to evaluate the PCM itself. Hence, we can argue that the used
models are representative PCM model instances.

For the replay of changes from a VCS and the coevolution evaluation, we
identi�ed the following threats to validity: The changes are not performed
by developers in our scenario but by the change replay tool. Even though
the changes we replay, are performed to the actual source code, it is unclear,
whether developers would have performed the changes in the same order.
Hence, we cannot make a statement, whether developers and architects
would use our Coevolution approach as we did in this scenario. Another
threat to validity is that the change replay tool in combination with the
source code monitor showed slightly di�erent behaviour during repetitions
of the change replay for the same project. However, we can argue that this
behaviour only occurred in a minor cases of changes and that the result after
the change replay remains the same. A threat to validity for the coevolution
is that we only used four open source projects and replayed possible changes.
As for Extract, all of them are Apache projects. However, as in Extract, we
used projects of di�erent sizes and di�erent domains.

277



6. Evaluation

For the performance evaluation of our Coevolution approach, we identi�ed
the following threats to validity: The performance evaluation of the Java
monitor has been conducted with only a few test methods and only a subset
from the possible changes. We can argue, however, that the JaMoPP parser
required the biggest amount of time in each test, i.e. changing the actual
change would not lead to a much di�erent result. For the performance
evaluation of the coevolution approach, we also used only limited amount
of changes performed to a limited set of classes. We furthermore, only
executed three repetitions. We can, however, similar as above and state
that the JaMoPP parser required the biggest amount of time, i.e. the time is
dominated by the JaMoPP parser, which we cannot in�uence. Furthermore,
the goal was to give the order of magnitude of the time required to coevolve
a model.

For the performance prediction using a coevolved model, we identi�ed the
following threats to validity:

• the evaluation has been performed using one case study project only,

• within the project, we considered only one scenario,

• we only used one server for the prediction and for the measurement,
and

• the contention during the performance prediction was low.

We can argue, however, that we only wanted to show that the coevolved
models can be used in principle for the performance prediction.

278



7. RelatedWork

In this chapter, we present related work to the approach presented in this
thesis. We have presented an approach capable of coevolving architectural
models and source code (see Section 4.2) within this thesis. As architectural
model, we use the Palladio Component Model (PCM). As source code, we
use the Java language, which is an object-oriented programming language.
Our Coevolution approach is also able to coevolve UML class diagrams using
the de�ned UML class diagram editor, which we presented in Section 4.2.4.
It is also capable of coevolving source code and its behavioural models. Our
Coevolution approach is, furthermore, able to integrate existing architectural
models and existing source code. The approach we use, is based on the
Vitruvius, framework, which is a view-based engineering framework using
Model-Driven Software Development (MDSD) techniques.

The related work is structured according to the contributions of our Coevo-
lution approach. Therefore, we �rst present approaches, which are able to
coevolve architectural models and source code. Next, we explain architecture
reverse engineering approaches that have the goal to reverse-engineer an
architectural model from source code, which is afterwards used for the co-
evolution with the source code. Finally, we focus on view-based approaches
that use MDSD techniques in order to keep models consistent.

7.1. Approaches that keep Architectural Models
and Source Code Consistent

The �rst major area of related work are approaches that keep architectural
models and source code consistent during software development and soft-
ware evolution. We �rst explain approaches capable of coevolving source
code and high-level architectural models. Next, we explain approaches that

279



7. Related Work

are able to keep behavioural models consistent with source code. Next, we
present approaches that keep UML class diagrams and source code consistent
during software evolution. Finally, we present approaches that integrate
high-level architectural information into source code.

7.1.1. Coevolution Approaches for Source Code and
High-Level Architectural Models

One goal of approaches coevolving source code and high-level architectural
models, is to avoid architecture drift and architecture erosion. Silva and
Balasubramaniam [SB12] have presented a survey on approaches that can
be used to control software architecture erosion. The classi�cation of ap-
proaches is depicted in Figure 7.1. Our Coevolution approach can be seen as
an approach that prevents software architecture erosion using architecture

to implementation linkage. Most approaches that fall into this category, such
as ArchJava [ACN02], embed architectural information into the source code.
We explain the relation between those approaches and our Coevolution ap-
proach in Section 7.1.4. Our Coevolution approach, however, does not embed
the architectural models directly but uses a correspondence model to trace
between architectural models and its corresponding source code elements.
ArchWare [Oqu+04], which also falls into this category, presents an explicit
Architecture Description Language (ADL) and a textual syntax to create the
architecture and its implementation. Hence, the created models are detailed
enough to generate the complete source code of a system. To create these
detailed models, users �rst need to model high-level architectural models
and re�ne them in next steps. As the high-level architectural models are
part of the executable software system, they are kept consistent with their
re�ned models automatically. Within our Coevolution approach, however,
we use a stricter separation between the source code and the architectural
model. We do not consider the architectural model as part of the running
application.

KobrA [Atk+01] (Komponentenbasierte Anwendungsentwicklung) is a com-
ponent-based application development environment that allows to create
the architecture of a software system. Therefore, it supports di�erent UML
diagrams, for instance, the UML composite diagram, UML class diagrams,
and UML behaviour models such as the activity diagram. The di�erent

280



7.1. Approaches that keep Architectural Models and Source Code Consistent

L. de Silva, D. Balasubramaniam / The Journal of Systems and Software 85 (2012) 132–151 135

Approaches

Strategies

Controlling Software Architecture Erosion

Minimise

Process-oriented
architecture conformance

Architecture evolution
management

Architecture design
enforcement

Prevent

Architecture to
implementation l inkage

Self-adaptation

Repair

architecture design
documentation

Architecture analysis

Architecture compliance
monitoring

Dependency analysis

Architecture recovery

Architecture discovery

Architecture reconciliation

Code generation

Architecture patterns

Architecture f rameworks

Fig. 1. Classification framework of existing methods for controlling architecture erosion.

♦ Self-adaptation technologies enable systems to reconfigure
themselves to align with their architectures after a change has
been made to either the implementation or the runtime state.

• Repair
♦ Architecture recovery involves extracting the implemented

architecture from source code and other artefacts.
♦ Architecture discovery techniques are useful for eliciting the

intended architecture from emergent system properties and
other means in the absence of architectural documentation.

♦ Architecture reconciliation methods help reduce the gap
between the implementation and the intended architecture of
a software system.

As these repair strategies are effective when they are applied
together, we discuss them under a common theme called “archi-
tecture restoration” in Section 9.

The next six sections present the survey results for each of the above
strategies. We conclude each section by discussing the adoption,
efficacy and cost–benefit analysis of its class of strategies.

4. Process-oriented architecture conformance

Architecture conformance, which is vital for minimising archi-
tecture erosion, is generally achieved through process-centric
activities during software development. Literature identifies a
number of reasons for architecture erosion that relate directly to
human and organisational factors. Parnas (1992) highlights inade-

quate design documentation, misunderstood design principles and
poor developer training as key triggers of erosion. Similarly, Eick
et al. (2001) argue that vague requirements specifications, poor
architectural designs and programmer variability, among other fac-
tors, lead to architecture erosion.

The ability to ensure architecture conformance during devel-
opment and maintenance is built into most formal software
development processes such as the Rationale Unified Process
(Kruchten, 2003; IBM, 2011) and the Open Unified Process (part
of the Eclipse Process Framework) (The Eclipse Foundation, 2011

).
These processes incorporate architecture reviews to ensure that the
architecture meets user requirements, design reviews to confirm
that designs adhere to architecture guidelines and code reviews to
check that architectural principles are not violated in program code.
Similarly, change requests are reviewed and approved by architects
to ensure maintenance updates are agreeable with the intended
architecture.

To address the issue of programmer variability, software pro-
cesses often include some form of skill-gap analysis to identify the
training needs of new members inducted to a project team. Junior
team members are also paired with senior developers as a scalable
mentoring and review mechanism in large teams. Some of these
process activities are usually supplemented by process automation
tools in order to increase productivity and reduce human-induced
errors.

Software engineering processes incorporate the following
strategies to enhance the effectiveness of controlling architecture
erosion:

• Architecture design documentation,
• Architecture analysis,
• Architecture compliance monitoring, and

• Dependency analysis

We discuss the survey results under the above categories in
Sections 4.1–4.4.

Figure 7.1.: The classi�cation of software architecture erosion presented by Silva and
Balasubramaniam [SB12].

diagrams are di�erent views on a Single Underlying Model (SUM). Hence,
KobrA is an implementation of the view-based engineering approach Or-
thographic Software Modelling (OSM) [ASB10]. In recent work KobrA has
been applied to the open source project Common Component Modelling
Example (CoCoME) [Dac16]. Dacic [Dac16] provides an up-to-date KobrA
model for CoCoME as well as a prototypical implementation. Using KobrA
has the advantages that the used models are kept consistent as they use the
same SUM. Dacic [Dac16], however, did not propose a coevolution for the
implemented source code and the KobrA models as we do in our Coevolution
approach.

IBM Rational Rhapsody1 supports model-driven software developments
in multiple ways. It allows the creation of UML models such as package

1 http://www-03.ibm.com/software/products/en/ratirhapfami

281

http://www-03.ibm.com/software/products/en/ratirhapfami


7. Related Work

diagrams, class diagrams and di�erent behaviour models such as activity
diagrams and sequence diagrams. From these models, source code can be
generated. IBM Rational Rhapsody also has reverse engineering features in
order to include existing code. Users need to trigger the reverse engineering
step manually. During the reverse engineering, however, not all architectural
models are created automatically. IBM Rational Rhapsody also supports
bidirectional consistency preservation between architectural models and
code. This is supported for the UML package diagrams and UML class
diagrams. Using the bidirectional consistency preservation of IBM Rational
Rhapsody updates the diagrams as soon as the source code has been changed
and vice versa. A di�erence to our Coevolution approach is that IBM Rational
Rhapsody does support language elements, such as packages and classes,
only, i.e. no high-level architecture description in terms of components is
used.

7.1.2. Approaches Supporting Change-driven Extraction or
Coevolution of Behavioural Models

The extraction respectively coevolution of behavioural models is usually
either done to achieve one or more of the following goals: i) allow users to
get a high-level overview of the behaviour of the source code in order to ease
the understanding of the code and to enable the detection of architecture
violation, ii) allow users to edit up-to-date behavioural models in order to
update the source code. From the tools and approaches explained in the
following, Architexa, ArchLint, and JITTAC achieve the �rst goal, while
mbeddr and Fujaba achieve the second goal.

ArchLint2 [Maf+13] can be used to detect architectural violations. Therefore,
ArchLint uses static code analysis and the history of the source code. As
input it needs the source code history data as well as a high-level architecture
representation. Based on the input data ArchLint uses heuristics in order to
detect possible architecture violations. ArchLint is able to detect the so called
absence violation[Maf+13], which is de�ned as a dependency that exists
in the architecture but is not present in the source code. It is, furthermore,
able to detect divergence violation, which is a dependency that exists in the
source code, but that is not allowed according to the architectural model. A
2 http://aserg.labsoft.dcc.ufmg.br/archlint

282

http://aserg.labsoft.dcc.ufmg.br/archlint


di�erence to our Coevolution approach is that the architecture violation is
not detected during the actual development time but in a separate analysis
step.

The Just-in-Time Tool for Architectural Consistency (JITTAC)3 presented by
Buckley et al. [Buc+13], can be used to detect architectural violation respec-
tively architecture erosion during the development time of a software system.
To do so, architects �rst need to create a software architecture in terms of
componetns from existing code. Therefore, they need to map source code
elements in terms of packages, interfaces, and classes to components. During
this process dependencies between the components are created dynamically.
Furthermore, architects are allowed to de�ne new dependencies between
components. If developers add dependencies in the code that are not present
in the architecture yet, the architectural model gets updated accordingly and
a warning is shown to architects. Architects then need to decide whether
the new dependency is considered as architecture violation or whether they
accept the new dependency in the architectural model. A notable feature of
JITTAC is that it warns developers if they are about to violate respectively
already violated the architecture. This feature is included within the Eclipse
IDE. Di�erent as our Coevolution approach, however, JITTAC does not allow
coevolution of source code and architecture and it uses a di�erent component
de�nition as we do.

Architexa4 allows the creation of UML sequence diagrams dynamically from
source code. The diagrams are dynamically created and read only views.
Architexa focuses on the creation of UML sequence diagrams for classes. In
our Coevolution approach, we focus, however, on the incremental creation
of activity like diagrams (the SEFFs) for components. The components in our
Coevolution approach, can comprise a set of classes.

Voelter et al. [Voe+13] introduce mbeddr, which is a language based on C,
that allows the creation of source code using either an editor that integrates
a source code editor with editors for UML behaviour models, such as activity
diagrams. It is based on the JetBrains MPS (Meta Programming System)
[PSV13], which is a integrated environment for language engineering. Users
of mbeddr can view and edit parts of the source code directly as models or as
source code. As the code as well as the model are projective views that show

3 http://actool.sourceforge.net
4 http://www.architexa.com

283

7.1. Approaches that keep Architectural Models and Source Code Consistent

http://actool.sourceforge.net
http://www.architexa.com


7. Related Work

the same single underlying model the consistency is preserved automatically.
In Section 7.1.4, we explain how mbeddr can be used to coevolve architectural
elements, such as components, with the source code, by embedding them
into the source code and de�ning speci�c keywords for the architectural
elements.

From UML to Java and back again (Fujaba) allows round-trip engineering
between behavioural models and source code. Nickel et al. [NNZ00] describe
how Fujaba can be used for the coevolution between source code and UML
activity diagrams as well as source code and UML statecharts. The coevo-
lution of both is based on method bodies within classes. Hence, users can
change, for instance, activity diagrams to update the code and vise versa.
Fujaba focuses on the coevolution of method bodies within classes. Within
our Coevolution approach, we focus on the reconstruction of component-
behaviour, i.e. the reconstruction approach we propose is not based on a
single method body but can span multiple method bodies.

7.1.3. Approaches supporting Round-trip Engineering
between UML Class Diagrams and Source Code

Many famous related coevolution and round-trip engineering approaches
focus on the coevolution of source code and UML class diagrams. The
approaches often refer to their consistency preservation process as synchro-
nization mechanism between models. These approaches are related to our
Coevolution approach, yet they are di�erent because the mapping between
UML class diagrams and object-oriented source code is quite clear. Hence,
usually the approaches do not need to allow for di�erent consistent preser-
vation rules between architectural models and source code. The approaches,
however, closely related to our UML class diagram editor Projective UML

class diagram editor for Java (ProjUMLed4J), which we have presented in
Section 4.2.4. In [KLK16], we already identi�ed approaches able to keep UML
class diagrams and source code consistent. We divided these tools in three
di�erent classes depending on how they enable coevolution respectively
round-trip engineering between source code and UML class diagrams. Ap-
proaches within the �rst category use an explicit model, which contains the
UML information. Approaches that fall into second category, use a central
model to store all information about all used artefacts. Approaches in the

284



third category do not use any additional artefacts, i.e. they use the source
code only.

Tools within the �rst category are, for instance, IBM Rational Software
Architect [Cla10], MagicDraw [No 12], UML Lab5, and Fujaba [NNZ00].
MagicDraw allows users to integrate changes in one artefact into the other
artefact. Therefore, it uses an explicit synchronization mechanism for the
source code and the UML class diagram model. The synchronization is ex-
plicit because it needs to be triggered by users. As UML Lab arose from
Fujaba they share the same consistency preservation process and can be
explained together. The used consistency process combines implicit and
explicit consistency preservation. Implicit means that changes to either the
source code or the architectural model are kept consistent directly without
an explicit triggering of the consistency preservation process. UML Lab and
Fujaba using such implicit changes if both the architectural editor and the
source code editors are open. If one of them is closed the consistency preser-
vation process needs to be triggered manually, i.e. explicitly. Information,
which are only contained in the UML class diagram, such as multiplicities,
are stored within structured comments in the source code. Hence, to share
this information it is su�cient to share the source code itself. The diagrams
do not need to be shared. A similar approach is used by Rational Software
Architect for UML class diagrams and source code. It provides an implicit
synchronization mechanism, which transfers information, i.e. changes in
the UML class diagram are kept consistent with the source code and vice
versa.

Enterprise Architect [Spa14], which is a popular tool for allowing coevolution
between UML class diagrams and code, falls into the second category. If users
modify the UML class diagram, Enterprise Architect persists the changes
in a central model. The synchronization of the source code has to be called
explicitly. Hence, concurrent modi�cations in the UML class diagram and
the source code are not possible, as one change would overwrite the other
change.

Tools falling in the third category are, for instance, UML Aid Explorer6,
Architexa, a GMF-based editor [Hei+09b] based on JaMoPP, and Together
[Bor05] from Borland. UML Aid and Architexa use the source code of

5 http://www.uml-lab.com/
6 http://www.objectaid.com

285

7.1. Approaches that keep Architectural Models and Source Code Consistent

http://www.uml-lab.com/


7. Related Work

a project to show an UML class diagram for a speci�c set of classes and
interfaces. The created UML diagram, however, are read-only class diagrams,
i.e. it is not possible to change UML class diagrams. Even though UML
Aid and Architexa not support round-trip engineering, we mention them
here as they both use the source code as underlying model and create a
projectional view onto the source code. The GMF-based editor presented
by Heidenreich et al. [Hei+09b] uses JaMoPP as model for the source code
and provides an editable UML class diagram editor. It is, however, not UML
compliant and is also not compatible with the latest Eclipse versions. The
most popular tool falling into the third category is Together from Borland.
The tool supports a so called LiveSource mechanism, which allows for editing
the source code using UML class diagrams. The used UML class diagrams
are generated dynamically from the underlying source code as projective
view. Information that is represented by the UML class diagram only, e.g.
multiplicities of associations, are stored in structured code comments.

The above mentioned list of tools and approaches, which we already pre-
sented in [KLK16], does not claim to be complete, as they are many tools
allowing for the coevolution between source code and UML class diagrams.
The important fact is that these approaches are optimized for UML class
diagrams. De�ning the consistency preservation rules between UML class
diagrams and object-oriented source code is rather easy, as most UML class
diagram elements have a direct representation in source code. As mentioned
above, the approaches are, however, related to ProjUMLed4J. The di�erences
between ProjUMLed4J and approaches from the �rst category is that Pro-
jUMLed4J does not have an explicit model for storing the UML class diagram.
Instead, it generates the UML class diagram as projective view from the
underlying source code. The main di�erences to the tools from the second
category is that we do not use an additational central model. The tools from
the third category that allow editing of UML class diagrams, i.e. Borland
Together and the GMF editor for JaMoPP, are similar to ProjUMLed4J. How-
ever, they do not support annotations in order to store information that do
not have a direct representation in source code, e.g. multiplicities between
classes. Also ProjUMLed4J is tailored in order to work with the techniques
used in our Coevolution approach and it is thous used as UML class diagram
editor in our Coevolution approach.

286



7.1.4. Approaches Embedding Architectural Information in to
Source Code

Another approach of keeping architectural information and source code
consistent is to embed architectural information into the source code. To do
so, four approaches are common:

1. de�ning architecture in the source code using features of the used
programming language,

2. de�ning architecture in additional features of the used programming
language, e.g. annotations within Java,

3. extending the programming language with architectural artefacts, or

4. using built-in mechanisms of the programming language to de�ne an
architecture.

The �rst approach, is to implement the architecture in the source code di-
rectly. An example for this idea is the Programming-in-the-small-and-many
(PRISM) approach presented by Mikic-Rakic and Medvidovic [MM03]. PRISM
allows developers to specify a component-based architecture in source code
using features of the used source code language, e.g. Java. PRISM is con-
sidered by the authors as middleware platform, which is able to develop
software architectures. Therefore, it enables users to de�ne architectural
level elements, for instance, components, connectors, events, and con�gura-
tions, within the source code. Hence, software developers can implement
architectural decisions directly in the source code. Therefore, software devel-
opers need to specify the architecture and de�ne how the components are
connected and how events are send among the components. The advantage
of such an approach is that no explicit consistency preservation mechanism
is necessary, because the architecture is implemented directly into the source
code. No explicit architectural model, however, exists to represent archi-
tectural elements. Also no behavioural model exists, as the behaviour is
described by the realising source code itself. Hence, the approach cannot
contain information which is not contained in the source code directly. In
future work, we can de�ne consistency preservation rules between archi-
tectural models and source code, which is based on PRISM. Hence, PRISM
architectural models can be combined with our Coevolution approach.

287

7.1. Approaches that keep Architectural Models and Source Code Consistent



7. Related Work

An example for the second approach is provided by Konersmann et al.
[Kon+13]. They present the idea of using Java annotations to embed ar-
chitectural information in source code. An architectural view is dynamically
created, from the underlying source code, on demand. Even though the
technique used by Konersmann et al. [Kon+13] is di�erent as the technique
we use in our Coevolution approach, from a users perspective the approaches
are similar because Konersmann et al. [Kon+13] also use the PCM as archi-
tectural model. Konersmann and Holschbach [KH16] recently extended the
approach in order to keep the PCM Allocation consistent with a software
system running with Java Enterprise Edition. A di�erence between our
Coevolution approach and the the approach presented by Konersmann et al.
[Kon+13] is that Konersmann et al. [Kon+13] do not store the architectural
model explicitly, but store it within the source code. They also currently
do not provide a concept of coevolving behavioural models in terms of the
SEFF. Furthermore, they are also not providing an approach for integrating
existing source code using reverse engineering approaches and di�erent
integration levels.

A famous approach that extends the source code with architectural arte-
facts is ArchJava [ACN02]. ArchJava introduces new languages elements
as keywords for Java. The newly introduced language elements are, for in-
stance, components, ports, requires, provides and connect. They extending the
Java language and can be used to de�ne components and their connection
amongst each other in the source code. Classes, for instance, can be speci-
�ed as component classes. To compile ArchJava code, however, a special
Java compiler is necessary that is able to compile the source code with the
additional keywords. Similar to PRISM, we can combine our Coevolution
approach with ArchJava by de�ning consistency preservation rules between
architectural models and ArchJava based source code.

A similar approach as ArchJava is used by mbeddr [Voe+13], which we
already mentioned above. It supports the integration of components, inter-
faces, ports, and connectors into the C programming language respectively
a programming language that is almost C. As the PRISM approach, ArchJava
and mbeddr omit the need of a consistency preservation mechanism, because
the architectural elements are embedded in the source code. Both, however,
do not have an explicit architectural model available.

288



7.2. Architecture Reverse Engineering Approaches

The last method for embedding is to use built-in mechanisms of the used
programming language. With the upcoming Java version 9 7, Java intro-
duces so called modules. The module concept allows to de�ne modules and
their relations in the source code. A module combines a set of classes and
packages. It also speci�es the exported classes and interfaces and the re-
quired modules. Java 9 modules have the advantage that they are a built-in
feature of the upcoming Java language. Java super packages, which are
similar to Java 9 modules, have been proposed in 2006 [Sun06]. They can
be used to collect other Java packages and Java classes in a super package
to ease the handling of large projects. They are, however, not integrated
in the Java language speci�cation. Instead Java modules are favored. The
di�erentiation between our Coevolution approach and the proposed Java
built-in mechanisms, however, is the same and explained in the following
for Java 9 modules. Similar to the other approaches falling into the category
of embedding architectural information in source code Java modules do not
provide an explicit architecture model. Similar to PRISM and ArchJava, we
can de�ne consistency preservation rules between architectural models and
Java 9 modules. In the future work section of this thesis (see Section 8.2), we
outline how this can be done.

7.2. Architecture Reverse Engineering Approaches

In this section, we focus on architecture reverse engineering approaches that
have the goal to use the reverse-engineered model for coevolution with the
source code. Those approaches are related to the source code integration
strategies, we presented in Section 5.4.

Ducasse and Pollet [DP09] present a taxonomy of software architecture
reconstruction approaches. Within this taxonomy they classi�ed di�erent
approaches according to their goals, processes, input, techniques and outputs

on the top level. The detailed classi�cation is depicted in Figure 7.2.

As the integration of existing source code into our Coevolution approach
is done by using either Source Code Model eXtractor (SoMoX), Extract,
or EJBmoX as reverse engineering approaches, our Coevolution approach

7 http://openjdk.java.net/projects/jigsaw/spec/sotms/

289

http://openjdk.java.net/projects/jigsaw/spec/sotms/


7. Related Work
4

Goals

Processes

Techniques

Outputs

InputsSAR

Hybrid

Bottom-Up

Top-Down

Semi-Automatic

Quasi-Manual

Quasi-Automatic

Abstraction

Investigation

Construction

Exploration

Redocumentation

Reuse

Conformance

Analysis

Co-Evolution

Evolution

Related Artifacts

Styles

Viewpoints

Graph Pattern Matching 

Recognizers

State Engine 

Maps 

Source Code

Dynamic Information

Historical Information

Physical Organization

Human Expertise

Human Organization

Textual Information

Logic Queries 

Programs 

Lexical Queries 

Relational Queries

Architecture

Conformance

Analysis

Horizontal

Vertical

Visual
Clustering

Dominance 

Matrix

Concepts

Non-architectural

Architectural

Fig. 2. A process-oriented taxonomy for SAR

A. Rearchitecting GoalsSeveral authors have categorized architecture roles in soft-
ware development [48]; the roles involved in an architecture
define the motivations for rearchitecting. In particular, Kazman
and Bass have a pragmatic categorization of business goals [73]
that motivate having an architecture in the first place. Similarly,
in the context of maintenance, architecture reconstruction
should answer the business objectives of stakeholders; it is a
proactive process realized for future forward engineering tasks.

Knodel et al. identified ten distinct purposes or needs [83];
however, the purposes they present simultaneously are too
narrow and do not cover all goals. This is why we do not
use them for the present article. To classify SAR approaches
in Table I, we grouped these purposes into six main goal
categories refining the goals mentioned by Garlan [48].

Redocumentation and understanding: The primary goal
of SAR is to re-establish software abstractions. Recovered
architectural views document software applications and help
reverse engineers understand them [165]. For instance, the
software bookshelf introduced by Finningan et al. illustrates

this goal [12,

42, 67, 144]. Svetinotic and Godfrey state that
not only the recovered architecture is important, but also its
rationale, i.e., why it is as it is [155]. They focus on the

architecture rationale forces to recover the decisions made,
their alternatives, and why each one was or was not chosen.

Reuse investigation and product line migration: Software
product lines allow one to share commonalities among products
while getting customized products. Architectural views are
useful to identify commonalities and variabilities among
products in a line [36, 129, 149]. SAR has also been used
in the context of service-oriented architectures, to identify
components from existing systems that can be converted into

services [120].Conformance: To evolve a software application, it seems
hazardous to use the conceptual architecture because it is often
inaccurate with respect to the concrete one. In this case, SAR
is a means to check conformance between the conceptual
and the concrete architectures. Murphy et al. introduced the
reflexion model and RMTool to bridge the gap between high-
level architectural models and the system’s source code [

114,115]. Using SAR, reverse engineers can check conformance of
the reconstructed architecture against rules or styles like in the
SARTool [41, 86], Nimeta [134], Symphony [165], DiscoTect
[180], Focus [24, 104] and DAMRAM [105].

Co-evolution: Architecture and implementation are two
levels of abstraction that evolve at different speeds. Ideally these
abstractions should be synchronized to avoid architectural drift.
Tran and Holt propose a method to repair evolution anomalies
between the conceptual and the concrete architectures, possibly
altering either the conceptual architecture or the source code
[162]. To dynamically maintain this synchronization, Wuyts
uses logic meta-programming [179], and Mens et al. use
intensional source-code views and relations through Intensive
[108, 109, 179]; Favre [38] uses metaware (i.e., meta- and meta-
meta-models); Huang et al. [69] use a reflection mechanism
based on dynamic information.

Analysis: An analysis framework may steer a SAR frame-
work so that it provides required architectural views to compute
architectural quality analyses. Such analysis frameworks assist
stakeholders in their decision-making processes. In ArchView
[126], SAR and evolution analysis activities are interleaved.
QADSAR is a tool that offers several analyses linked to
threads, waiting points and performance properties [150, 151].
Moreover, flexible SAR environments such as Dali [74, 78],

in
ria

-0
04

98
40

7,
 v

er
si

on
 1

 - 
7 

Ju
l 2

01
0

Figure 7.2.: Process-oriented taxonomy for reverse Engineering approaches (taken
from Ducasse and Pollet [DP09])

falls into the following categories of the taxonomy: The main goal of our
Coevolution approach is coevolution. As process, we use a bottom-up process,
because we use the source code as information for the reverse engineering.
As inputs, we use non-architectural information. In particular, we use source

code only as input model. The used techniques during the reconstruction is
quasi-automatic. The output of the reverse engineering approaches are i) an
architecture of the software system, and ii) a visualisation of the software
architecture. Using the reverse-engineered architecture also allows the
analysis of Non-Functional Properties (NFP) if the performance models are
parametrised in a subsequent step.

In the following, we present approaches related to our Coevolution approach,
which use a reversed engineered architecture in order to coevolve architec-
tural model and source code. The approaches were identi�ed by Ducasse
and Pollet [DP09] and have the goal of coevolution.

290



7.2. Architecture Reverse Engineering Approaches

First, we present the approach presented by Tran and Holt [TH99]. They
introduce an approach to repair the architecture of a software system. As
input models they use existing architecture models and evolved source code.
They di�erentiate between the following two di�erent repair approaches:
i) forward architecture repair, which means that the source code (concrete
architecture) is repaired in order to match the architecture (conceptual archi-
tecture), and ii) reverse architecture repair, which means that the architecture
(conceptual architecture) is repaired in order to match the source code (con-
crete architecture). The di�erence to our Coevolution approach is that they
do not coevolve the architecture with source code during the development
but restore the consistency at one time.

Another approach that reconstructing architecture with the goal of coevolu-
tion is presented by Huang et al. [HMY06]. They propose an online recovery
and manipulation approach for software architecture. Therefore, they use
the runtime information and recover the architecture of a software system
based on the re�ection mechanism of the used component-framework. The
recovered architecture can be transformed into an ADL. The ADL contains
information about the architecture, its runtime behaviour, and deployment
information of the software system. Changes performed to the ADL model
are kept consistent, for instance, with the deployment environment, i.e. the
deployement can be changed during the runtime via the architectural view.
Hence, they focus on coevolution between the runtime architecture and
the runtime environment. The focus of our Coevolution approach, how-
ever, is to keep architectural models and source code consistent during the
development time.

The last approach, we present, that allows coevolving an reconstructed sys-
tem is the tool suite IntensiVE (Intensional View Environment) introduced
by Mens et al. [Men+06]. We mentioned them again in the section for re-
lated view-based approaches, because IntensiVE is a tool, which can be seen
as view-based. Wuyts [Wuy01] present an approach for reverse engineer-
ing IntensiVE views from source code and use them for coevolution. The
proposed high-level views are, however, not a component-based architec-
tural model, which we use in our Coevolution approach. We, furthermore,
introduce the di�erent integration levels in order to decide whether the
reconstructed and integrated elements can be used for coevolution with
the standard consistency preservation rules, or whether integration speci�c
consistency preservation rules need to be de�ned.

291



7. Related Work

7.3. View-based So�ware Development
Approaches

In this section, we focus on related approaches from the view-based software
development domain.

Atkinson et al. [ATM15] present di�erent strategies for the realisation of
multi-view environments. Our Coevolution approach can be seen as a multi-
view approach that uses a source code view, a UML class diagram view, and
a component-based architectural view. In the following, we classify our
Coevolution approach in the �ve dichotomies presented by Atkinson et al.
[ATM15].

The �rst dichotomy presented is rigorous versus relaxed. Approaches that use
multiple views, which explain how the views need to be kept consistent, and
de�ne what should be contained within the views, are considered rigorous.
Approaches that use multiple views but do neither explain how they need
to be kept consistent nor what the precise form in these views takes, are
considered relaxed. Our Coevolution approach is rigorous, because we de�ne
how the used views respectively models need to be kept consistent.

The second dichotomy is synthetic versus projective views. As we also men-
tioned in the foundations (see Section 2.2.2), view-based software develop-
ment di�erentiates synthetic views form projective views. Projective views
are views generated from an underlying model, which also ensures the con-
sistency. Synthetic views need to be kept consistent amongst each other. Our
consistency preservation process between source code and the architectural
model as described in this thesis is synthetic. The UML class diagram editor
we presented, is a projective view onto the source code. The Vitruvius ap-
proach in general, which is the base for our Coevolution approach, however,
can be seen as projective as well, because it allows for the generation of
views from a Virtual Single Underlying Model (VSUM).

The third dichotomy is Explicit versus Implicit Correspondences. It describes
whether the correspondences between elements in the views are made explic-
itly by using so called inter-view correspondences or whether the correspon-
dences are represented implicitly using intra-view pointers. Our Coevolution
approach uses explicit correspondences, as we build the correspondences
between the model elements using a correspondence model.

292



7.3. View-based Software Development Approaches

Dichotomy Our Coevolution
approach

Rigorous versus Relaxed rigorous
Synthetic versus Projective Views mixed
Explicit versus Implicit Correspondences explicit
Extensional versus Intentional Correspondence
De�nition

intensional

Essential SUM versus Pragmatic SUM pragmatic

Table 7.1.:A Classi�caiton of our Coevolution approach into the realisation strategies
for multi-view approaches presented by Atkinson et al. [ATM15] for multi-view
approaches

The fourth dichotomy is Extensional versus Intensional Correspondence De�-
nition. It distinguishes approaches, whether they de�ne the correspondences
extensionally or intensionally. Extensional approaches describe the corre-
spondence information at the instance level, i.e. directly between views.
Intensional approaches, however, de�ne the correspondence rules also at
type level. As we describe the correspondence rules on the type level respec-
tively on the metamodel level, our Coevolution approach can be considered
as an intensional approach.

The �fth and last dichotomy is Essential SUM versus Pragmatic SUM. An
essential SUM is minimalistic, i.e. it is free of internal redundancy. A prag-
matic SUM is allowed to be constructed using sum-models, which are not
free from redundancy. The VSUM within our Coevolution approach is a
pragmatic SUM, because it contains the source code and the architectural
models, which are not redundancy free.

Even though we mentioned the OSM ([ASB10]) approach in the foundations
already (see Section 2.2.1), it is a related view-based development approach
as well. The idea in OSM is to store all information used in the development
process in a SUM and creating projective views onto this SUM. We reused
the idea of having a SUM for Vitruvius and our Coevolution approach.
However, we use a VSUM, which allows the reuse of existing metamodels.
In our Coevolution approach, we use the Java metamodel and the PCM
metamodel within the VSUM. We already mentioned KobrA, which can be

293



7. Related Work

seen as implementation of OSM, in Section 7.1.1 and identi�ed it as related
work to our Coevolution approach.

Meier and Winter [MW16] present a view-based approach using reference
metamodels (RMMs) to keep instances of di�erent metamodel consistent.
Therefore, they propose to create reference metamodels of all involved meta-
models respectively viewpoints. For object-oriented languages, for instance,
such a reference metamodel would contain all elements that are common
for object-oriented langues (e.g. classes, methods, and �elds). From this
reference metamodels one reference single underlying metamodel (RSUMM)
is derived. This RSUMM de�nes the common concepts of the references
metamodels. The consistency preservation is achieved using the following
process: First, changes in a viewpoint are propagated to the reference mod-
els. Secondly the changes are propagated to the RSUMM. From the RSUMM
they are propagated to the other involved references models. From there
the changes are propagated to the other involved viewpoints to achieve
consistency. Even though Meier and Winter [MW16] do not provide an
implementation of their approach yet, they plan to apply their approach
to architectural models and source code as well. Furthermore, they plan to
integrate requirements and test cases.

Intensional View Environment, introduced by Mens et al. [Men+06], is
an approach that keeps high-level architectural views consistent with the
source code. As high-level views they use, for instance, structural views and
component-like views. This views can be generated dynamically from the
underlying source code. The main di�erence to our Coevolution approach
is that they do not use component-based architectural models as we use.
Furthermore, the consistency preservation only works from code to the
architectural views.

294



8. Conclusions and Future Work

Within this chapter, we �rst summarize the approach, the contributions and
the evaluation of this thesis. Afterwards, we present open questions and
provide an overview of possible future work based on the open questions.

8.1. Summary

In this thesis, we have presented a novel approach for coevolving source code
and architectural models during the development and evolution of a software
system. The approach supports software architects and software developers
by avoiding the well-known problems architecture drift and architecture
erosion. These problems can occur, for instance, if architectural models are
used for the evolution of a software system but not kept up-to-date with
source code changes. The presented approach is a change-driven approach
that uses consistency preservation rules to achieve the consistency between
the models. The approach enables the coevolution of source code and be-
havioural models. It also allows for integrating existing architectural models
and existing source code. The evaluation showed that i) the consistency
preservation rules can be applied to existing architectural models, ii) it is
possible to integrate existing source code, and iii) our Coevolution approach
is able to keep changes performed to the source code consistent with the
architectural model and vice versa. We implemented our Coevolution ap-
proach to support the Palladio Component Model (PCM) as architectural
model and Java as source code language.

To realise the approach, we �rst presented the used consistency preservation
process, which is able to keep arbitrary models consistent during the devel-
opment and evolution of a software system. This process can be used in our
Coevolution approach as well as in the view-based engineering approach

295



8. Conclusions and Future Work

Vitruvius. As the proposed consistency preservation process is change-
driven, we need changes as input for the process. To retrieve the changes,
we decided to monitor the used editors. As one goal is to enable the reuse
of existing editors to allow users to use familiar editors, we implemented
monitors for the PCM architectural models and the Eclipse Java source code
editor.

Next, we presented how our Coevolution approach can be used to keep archi-
tectural models and source code consistent. From the Vitruvius approach,
we reuse the idea of using a Virtual Single Underlying Model (VSUM), which
contains all necessary models for the development of a system. Hence, in our
case the VSUM contains architectural models and source code. We showed
how consistency preservation rules can be used for the coevolution. There-
fore, we de�ned three dimensions for consistency preservation rules: i) a
technology-speci�c dimension, ii) a project-speci�c dimension, and iii) an
element-speci�c dimension. Within this thesis, we introduced the following
four concrete consistency preservation rules from the architectural mod-
els to source code: We �rst introduced the package mapping consistency
preservation rules, which can be used to keep PCM architectural models
consistent with Java source code using Plain Old Java Objects (POJOs). Sec-
ondly, we introduced two technology-speci�c consistency preservation rules.
The �rst one can be used to keep instances of the architectural model PCM
consistent with Java source code built with Enterprise Java Beans (EJBs).
The second technology-speci�c consistency preservation rules can be used
to keep instances of PCM architectural models consistent with Java source
code build with a dependency injection framework. Finally, we introduced
consistency preservation rules between architectural models and artefacts
of Eclipse plugin development. To do so, we focused on the development of
consistency preservation rules between instances of PCM and the Eclipse
Manifest �les and plugin XML �les.

We, furthermore, introduced the concept of user change disambiguation,
which is used if the consistency preservation rules are not able to automati-
cally decide how a model shall be kept consistent with a change performed
to another model. In this case the users of our Coevolution approach need to
clarify they intention and decide how the consistency between the models
can be preserved.

296



8.1. Summary

We also presented an approach to keep behavioural models consistent with
source code during the software evolution. Therefore, we introduced an
approach, which is able to incrementally reverse-engineer the Service Ef-

fect Speci�cations (SEFF) from a method body as soon as the method body
has been changed. During the incremental SEFF creation our Coevolution
approach is able to detect architecture violations.

We introduced di�erent roles users can assume if they use our Coevolution
approach for the software development. During the design time phase, ar-
chitectural consistency methodologists de�nes the consistency preservation
rules. During the actual development of a software system, software archi-
tects and software developers use our Coevolution approach and the de�ned
consistency preservation rules to implement the software system.

As one goal of this thesis is to allow the reuse of already existing models, we
present two integration strategies that are able to integrate existing models.
The �rst integration strategy, which we called Reconstructive Integration
Strategy (RIS), simulates the creation of a model. It is used within our
Coevolution approach to integrate existing architectural models. During
the simulated creation of the architectural models, we use the monitors
to record the changes. These changes can be used by our Coevolution
approach to create the corresponding source code elements. The second
proposed integration strategy, is called Linking Integration Strategy (LIS).
The LIS uses existing Model-to-Model (M2M) transformation or Model-to-
Text (M2T) generation steps in order to create an instance of the model that
shall be integrated. Based on this generation respectively transformation
step, it creates the Vitruvius correspondence model. We implemented a
LIS in order to integrate existing source code. Therefore, we �rst need to
reverse-engineer an architectural model from existing source code. Therefore,
we used the reverse engineering approaches Extract, Source Code Model
eXtractor (SoMoX), and EJBmoX . We contribute the two reverse engineering
approaches Extract and EJBmoX . Extract can be used to reverse-engineer
an architectural model from Java source code, while EJBmoX is tailored
in order to reverse-engineer Java source code build with EJBs. We use the
extracted architectural model, the source code, and the information how the
source code elements are mapped to the architectural elements to create a
Vitruvius correspondence model. This correspondence model can be used
within our Coevolution approach, in order to allow coevolution of the source
code and reverse-engineered architectural model. The elements integrated

297



8. Conclusions and Future Work

with the LIS for source code are grouped into four di�erent groups depending
on the integration level used for they integration. Integration Level 1 is used
for integrated elements, which can be kept consistent using the consistency
preservation rules, while elements of the remaining integration levels cannot
be kept consistent using the standard consistency preservation rules. Hence,
they either need to be kept consistent manually (Integration Level 2) or by
using consistency preservation rules speci�c for a set of integrated elements
(Integration Level 3), or even by element consistency preservation rules
(Integration Level 4).

We have evaluated our Coevolution approach in di�erent case studies. We
showed that the developed reverse engineering approaches Extract and EJB-

moX are able to reverse-engineer an architectural model from source code.
Therefore, we reverse-engineered 14 open source projects with Extract and
two open source case study with EJBmoX . Next, we showed that the four
consistency preservation rules can be applied to existing PCM architectural
models. Therefore, we used the developed RIS to simulate the creation of
seven existing PCM models for each of the developed consistency preserva-
tion rules. Within this evaluation, we were able to integrate between 98%
and 100% of the supported elements per consistency preservation rule set.
Next, we evaluated the integration of existing source code. Therefore, we
integrated four open source projects from sizes up to 112.000 Source Lines of
Code (SLoC) into our Coevolution approach. To show that our Coevolution
approach is able to keep changes performed to source code consistent with
the architectural model, we integrated an old version from the Version Con-
trol System (VCS) and replayed changes to a newer version using a change
replay tool. During the change replay, our Coevolution approach was able
to keep the architectural model consistent with architectural relevant source
code changes. During this evaluation, we also showed that our Coevolution
approach is able to i) keep method body changes consistent with the be-
havioural model, and ii) that changes performed to the architectural model
can be kept consistent with the source code.

We conducted a performance evaluation of our Coevolution approach to mea-
sure the overhead our Coevolution approach introduces during the software
evolution. Within this evaluation, we showed that our Coevolution approach
is in most cases able to keep the architectural model consistent after changes
performed to the source code within one to �ve seconds. Hence, the overhead
introduced by our Coevolution approach is acceptable for the coevolution.

298



8.2. Limitations and Outlook on Future Work

We showed, furthermore, that the overhead does not increase with the size of
the project. The overhead introduced by our Coevolution approach, however,
depends on the time needed to parse the changed compilation unit into the
Eclipse Modeling Framework (EMF) model representation. Even though we
observed some exceptions, the duration of parsing a compilation unit into an
EMF model usually increases with the size of the compilation unit. Hence,
the performance can be improved by either optimizing the used Java parser
or replacing it with a faster parser.

Finally, we evaluated that the coevolved architectural models can be used for
performance prediction. To conduct a performance prediction, we �rst need
to parametrise the models with resource demands. To do so, we need to set
up the software system and measure the execution time of the provided ser-
vices and its internal methods for a given workload. Using this information
allows us to parametrise the architectural model. After the parameterisation
step, we execute the performance prediction using the performance predic-
tion capabilities of the PCM. To analyse the accuracy of the performance
prediction, we compare the predicted value with actual measured values.
The prediction error for the response time is approximately 10%. Hence,
the performance prediction based on the coevolved models can be used to
estimate the performance of the real software system.

8.2. Limitations and Outlook on Future Work

In the approach presented in the thesis, we focus on the coevolution and
consistency preservation between architectural models and source code
during software development. The approach itself, however, currently has
some limitations, which can be part of future research. In the following, we
provide an overview of possible future work:

Changing the used technology of a project Within the presented thesis, we
presented di�erent consistency preservation rules, e.g. the package map-
ping consistency preservation rules. Currently, users need to specify the
consistency preservation rules, which should be used, at the beginning of
the development process. Changing them during the software evolution is

299



8. Conclusions and Future Work

currently not supported. Changing the consistency preservation rules, how-
ever, would allow software architects and developers to adapt the software
system to new requirements or technologies. For instance, our Coevolu-
tion approach could support changing the used technology from POJOs to
EJBs by changing the used consistency preservation rules from the package
mapping consistency preservation rules to the EJB consistency preservation
rules. In this case our Coevolution approach could be used to generate the
necessary EJB annotations for classes and for the refactoring of a�ected
parts in the source code, such as the �elds in classes.

Replacing Java Model Parser and Printer (JaMoPP) with the Eclipse Java De-
velopmentTools (JDT)Abstract SyntaxTree (AST)parser Within this thesis,
we used the JaMoPP parser to parse Java into an EMF model representation.
EMF models are necessary within the implemented consistency preservation
process and within the used change metamodel. The results of the perfor-
mance evaluation, however, show that parsing Java source code into EMF
models consumes the most time during the consistency preservation process
between architectural models and source code. Furthermore, JaMoPP cur-
rently supports Java only up to version 5. Hence a part of future work could
be to replace JaMoPP by using a faster parser and printer that also supports
newer versions of Java. Therefore, we can use, for instance, the parser and
printer is provided by the Eclipse JDT AST. Even though the Eclipse parser
is a fast parser and creates a model representation of the source code, it does
not create an EMF model. Instead, it creates a model, which is based on plain
Java classes. To enable the use of the Eclipse JDT AST parser and keep the
advantages of having EMF model, we plan to transform the classes of the
Eclipse JDT AST parser into EMF model classes. To avoid the manual trans-
formation e�ort, we plan to develop and implement a novel approach, which
is able to transform a set of Java classes into EMF-based model classes.

Integrating our Coevolution approach within the continuous integration of
a project Modern software development projects often use continuous
integration in order to build the software system and run tests after each
commit automatically. As we showed in the evaluation of our Coevolution
approach, we are able to reverse-engineer an architectural model of a soft-
ware system and replayed changes, which we extracted from a VCS. The

300



8.2. Limitations and Outlook on Future Work

change replay step and a headless version of our Coevolution approach can
be integrated within the continuous integration of a software system to keep
the architectural model up-to date as follows: Therefore, the initial step is
to reverse-engineer the architectural model from the current version and
integrate it into the headless version of our Coevolution approach. After
each new commit the continuous integration can execute the change replay
tool in order to extract the changes performed in the current commit. These
changes can be passed to the headless version of our Coevolution approach,
which can use the changes to keep the architectural model consistent with
these changes. Using this approach would allow us to maintain an up-to-date
architectural model and warn users if the change introduces, for instance,
architectural violations. Combining this with an automatic approach for
parameterisation the coevolved model can be used to simulate the perfor-
mance after each commit and point out, for instance, possible scalability
performance problems, which were introduced with this commit.

Integrating so�ware systems with existing source code and existing corre-
sponding architectural models In this thesis, we propose an approach for
the integration of an existing architectural model and existing source code.
We are, however, currently not able to integrate a software system with an
already existing architectural model that corresponds to existing source code.
This limitation can be overcome in future work. Therefore, for instance, a
special RIS for PCM can be created. Instead of using the simulated changes
to create the source code elements as in the standard RIS for PCM, it is
possible to de�ne speci�c RIS consistency preservation rules. This speci�c
consistency preservation rules can be used to check whether a corresponding
source code element already exists for the architectural element contained
in the simulated change. If this is the case the existing element can be used
as corresponding model. If this is not the case the standard consistency
preservation rules can be used to create the corresponding source code ele-
ments. Mazkatli [Maz16] already proposed a similar approach for integrating
existing artefacts. Mazkatli [Maz16], however, applied this approach for the
automotive standards AMALTHEA and ASCET.

Creating consistency preservation rules between PCM and Java 9 modules
In this thesis, we presented consistency preservation rules between PCM as

301



8. Conclusions and Future Work

architectural model and Java source code adhering to current Java versions,
i.e. we use packages, classes, and interfaces for the mapping of architectural
elements. With the upcoming Java version 91, however, Java introduces a
new module concept. Using the module concept allows developers to de�ne
modules and their relations in the source code. Java 9 modules combine a
set of classes and packages. They also allow the speci�cation of exported
classes and interfaces as well as the de�nition of required modules, classes,
and interfaces. In future work, a concept can be developed that speci�es how
to map architectural models from the PCM to Java 9 modules. Combining
this concept with the support of the Eclipse JDT AST would allow us to
implement consistency preservation rules between PCM and Java 9 modules.
The consistency preservation rules could map, for instance, PCM components
to modules and PCM OperationInterfaces to the methods within exported
interfaces of a module. RequiredRoles and ProvidedRoles could be mapped to
required relations and export relations of Java 9 modules.

Extending the consistency preservation process to support more than two
metamodels The work in this thesis focuses on the consistency preserva-
tion of source code and architectural models. Hence, we use two metamodels
in the VSUM and during the consistency preservation process. Extending the
consistency preservation process to allow more than two metamodels in the
VSUM, would allow us to keep other artefacts used in the software develop-
ment, such as UML class diagrams and UML component diagrams, consistent
with the PCM and Java source code. For the consistency preservation rules
between PCM and Eclipse plugin artefacts, we showed that it is in principle
possible to keep instances of three metamodels consistent. However, the
consistency preservation process currently provides only limited support
for keeping more than two metamodels consistent. Moreover, the task of
keeping instances of more metamodels consistent is becoming more complex
the more metamodels are used within the VSUM. Hence, a part of future
work can be to de�ne strategies how the consistency preservation process
can support the consistency preservation or multiple metamodels within the
VSUM.

1 http://openjdk.java.net/projects/jigsaw/spec/sotms/

302

http://openjdk.java.net/projects/jigsaw/spec/sotms/


8.2. Limitations and Outlook on Future Work

Performing an experiment with users To show the bene�t of our Coevolu-
tion approach during the software evolution, an experiment that involves
di�erent users performing the same evolution task, can be conducted. For
this experiment, the users can be separated into two groups. The task within
the experiment can be, to evolve a given software system and its architec-
tural model in order to ful�ll a new requirement. For the execution of the
evolution task, one user group performs the evolution with our Coevolution
approach, while the control group performs the evolution without our Co-
evolution approach. After the experiment, we can compare the time needed
by the participants within the di�erent groups and evaluate whether the ar-
chitectural models are still up-to date with the source code. The experiment
can be extended with a third user group. The third group is allowed to use
another approach for coevolving architectural models and source code, such
as IBM Rational Rhapsody, to perform the evolution scenario. This would
allow us to compare our Coevolution approach with other approaches.

Extending the consistency preservation process in order to supportmultiple
users The approach we presented in this thesis, is focused on the con-
sistency preservation in one IDE involving one user at a given time. In
real software development processes, however, multiple users are usually
involved simultaneously. To support multiple users developing a software
system simultaneously, the introduced consistency preservation process can
be extended in order to support versioning and simultaneously editing of
artefacts used for the software development and software evolution.

303





A. Appendix

305



A. Appendix

A.1. Change Catalog for the Source Code Monitor

In this section, we present the complete change catalogue for the source
code monitor. The catalogue has been developed by Messinger [Mes14] for
his master’s thesis. It was necessary to de�ne a own catalogue as existing
catalogues did not ful�ll our needs. The tables are taken from Messinger
[Mes14].

Primitive Changes
Create/Delete Structural Modi�cation

Create Class Add Supertype Rename Class
Delete Class Remove Supertype Add Class Modi�er
Create Interface Add Import Remove Class Modi�er
Delete Interface Remove Import Rename Interface
Create Enum Add Method Add Interface Modi�er
Delete Enum Remove Method Remove Interface Modi�er
Create Package Add Field Rename Enum
Delete Package Remove Field Add Enum Modi�er

Add Parameter Remove Enum Modi�er
Remove Parameter Rename Package
Add Variable Rename Method
Remove Variable Add Method Modi�er
Add Statement Remove Method Modi�er
Remove Statement Change Return Type
Add Comment Rename Field
Remove Comment Add Field Modi�er
Add Enum Literal Remove Field Modi�er
Remove Enum Literal Change Field Type

Rename Parameter
Add Parameter Modi�er
Remove Parameter Modi�er
Change Parameter Type
Rename Variable
Add Variable Modi�er
Remove Variable Modi�er
Change Variable Type
Change Comment

Table A.1.: Primitive changes in the change catalogue. They are grouped into the
three subcategories create/delete, structural and modi�cation [Mes14].

306



A.1. Change Catalog for the Source Code Monitor

Composite Changes
1st Order 2nd Order

Move Class Extract Variable
Move Interface Inline Variable
Move Enum Extract Field
Move Method Inline Field
Move Field Extract Method
Move Enum Literal Inline Method
Convert Variable to Field Extract Class
Convert Field to Variable Inline Class
Toggle Comment Split Interface

Merge Interface
Split Enum
Merge Enum
Split Package
Merge Package

Table A.2.:Composite changes in the change catalogue, which are subdivded into
two groups: �rst order, which consists of composed primitive changes, and second
order, which consists of composed composite changes [Mes14].

Type Hierarchy Speci�c
Change Type Move Composite Move

Specialize Return Type Pull Up Method Extract Superclass
Generalize Return Type Push Down Method Inline Superclass
Specialize Parameter Type Pull Up Field Extract Subclass
Generalize Parameter Type Push Down Field Inline Subclass
Specialize Variable Type Extract Superinterface
Generalize Variable Type Inline Superinterface

Extract Subinterface
Inline Subinterface

Table A.3.: Type hierarchy speci�c changes in the change catalogue, which consider
the type hierarchy of object-oriented languages[Mes14].

307



A. Appendix

A.2. Results of the Integration Case Study per
Project

In this section, we present the results of the integration case study for
Reconstructive Integration Strategy (RIS) per project. In Section 6.4.3, we
presented the results combined for all projects. The results for the MediaStore
are shown in Table A.4. The results for CoCoME are shown in Table A.5.
The results for the Open Reference Case are shown in Table A.6. The results
for DSP can are shown in Table A.7. The results for DPS can are shown in
Table A.8. The results for ICS system are shown in Table A.9. The results for
the BRS project are shown in Table A.10.

308



A.2. Results of the Integration Case Study per Project

#e
le
m

PO
JO

EJ
B

D
ep

.I
nj
ec
t.

Ec
li
ps

e
pl
ug

in
PC

M
el
em

en
t

#c
f.

pc
t.

#c
f.

pc
t.

#c
f.

pc
t.

#c
f.

pc
t.

B
a
s
i
c
C
o
m
p
o
n
e
n
t
s

14
0

10
0

0
10

0
0

10
0

0
10

0
C
o
m
p
o
s
i
t
e
C
o
m
p
o
n
e
n
t
s

0
0

10
0

0
10

0
0

10
0

–
0

O
p
e
r
a
t
i
o
n
I
n
t
e
r
f
a
c
e
s

9
0

10
0

0
10

0
0

10
0

0
10

0
C
o
m
p
o
s
i
t
e
D
a
t
a
T
y
p
e
s

2
0

10
0

0
10

0
0

10
0

–
0

C
o
l
l
e
c
t
i
o
n
D
a
t
a
T
y
p
e
s

0
0

10
0

0
10

0
0

10
0

–
0

O
p
e
r
a
t
i
o
n
S
i
g
n
a
t
u
r
e
s

20
0

10
0

0
10

0
0

10
0

–
0

O
p
e
r
a
t
i
o
n
P
r
o
v
i
d
e
R
o
l
e
s

15
0

10
0

6
60

0
10

0
0

10
0

O
p
e
r
a
t
i
o
n
R
e
q
u
i
r
e
d
R
o
l
e
s

16
0

10
0

0
10

0
0

10
0

0
10

0
S
E
F
F
s

26
0

10
0

0
10

0
0

10
0

–
0

A
s
s
e
m
b
l
y
C
o
n
t
e
x
t
s

10
0

10
0

–
0

2
80

–
0

A
s
s
e
m
b
l
y
C
o
n
n
e
c
t
o
r
s

11
0

10
0

–
0

0
10

0
–

0
S
y
s
t
e
m
R
e
q
u
i
r
e
d
R
o
l
e
s

0
0

10
0

–
0

–
0

–
0

R
e
q
u
i
r
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

0
0

10
0

–
0

–
0

–
0

S
y
s
t
e
m
P
r
o
v
i
d
e
R
o
l
e
s

1
0

10
0

–
0

0
10

0
–

0
P
r
o
v
i
d
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

1
0

10
0

–
0

0
10

0
–

0

Ta
bl
e
A.
4.
:I

nt
eg

ra
te

d
an

d
co

n�
ic

tin
g

el
em

en
ts

fo
rt

he
M

ed
ia

St
or

e
pr

oj
ec

t

309



A. Appendix

#elem
PO

JO
EJB

D
ep.Inject.

Eclipse
plugin

PC
M

elem
ent

#cf.
pct.

#cf.
pct.

#cf.
pct.

#cf.
pct.

B
a
s
i
c
C
o
m
p
o
n
e
n
t
s

8
0

100
0

100
0

100
0

100
C
o
m
p
o
s
i
t
e
C
o
m
p
o
n
e
n
t
s

0
0

100
-

0
0

100
–

0
O
p
e
r
a
t
i
o
n
I
n
t
e
r
f
a
c
e
s

8
0

100
0

100
0

100
0

100
C
o
m
p
o
s
i
t
e
D
a
t
a
T
y
p
e
s

19
0

100
0

100
0

100
–

0
C
o
l
l
e
c
t
i
o
n
D
a
t
a
T
y
p
e
s

9
0

100
0

100
0

100
–

0
O
p
e
r
a
t
i
o
n
S
i
g
n
a
t
u
r
e
s

29
0

100
0

100
0

100
–

0
O
p
e
r
a
t
i
o
n
P
r
o
v
i
d
e
R
o
l
e
s

7
0

100
0

100
0

100
0

100
O
p
e
r
a
t
i
o
n
R
e
q
u
i
r
e
d
R
o
l
e
s

13
0

100
0

100
0

100
0

100
S
E
F
F
s

31
0

100
0

100
0

100
–

0

A
s
s
e
m
b
l
y
C
o
n
t
e
x
t
s

20
0

100
–

0
12

40
–

0
A
s
s
e
m
b
l
y
C
o
n
n
e
c
t
o
r
s

24
0

100
–

0
0

100
–

0
S
y
s
t
e
m
R
e
q
u
i
r
e
d
R
o
l
e
s

2
0

100
–

0
–

0
–

0
R
e
q
u
i
r
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

2
0

100
–

0
–

0
–

0
S
y
s
t
e
m
P
r
o
v
i
d
e
R
o
l
e
s

1
0

100
–

0
0

100
–

0
P
r
o
v
i
d
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

1
0

100
–

0
0

100
–

0

Table
A.5.:Integrated

and
con�icting

elem
entsforthe

CoCoM
E

project

310



A.2. Results of the Integration Case Study per Project

#e
le
m

PO
JO

EJ
B

D
ep

.I
nj
ec
t.

Ec
li
ps

e
pl
ug

in

PC
M

el
em

en
t

#c
f.

pc
t.

#c
f.

pc
t.

#c
f.

pc
t.

#c
f.

pc
t.

B
a
s
i
c
C
o
m
p
o
n
e
n
t
s

15
0

10
0

0
10

0
0

10
0

0
10

0
C
o
m
p
o
s
i
t
e
C
o
m
p
o
n
e
n
t
s

0
0

10
0

-
0

0
10

0
–

0
O
p
e
r
a
t
i
o
n
I
n
t
e
r
f
a
c
e
s

15
0

10
0

0
10

0
0

10
0

0
10

0
C
o
m
p
o
s
i
t
e
D
a
t
a
T
y
p
e
s

20
0

10
0

0
10

0
0

10
0

–
0

C
o
l
l
e
c
t
i
o
n
D
a
t
a
T
y
p
e
s

8
0

10
0

0
10

0
0

10
0

–
0

O
p
e
r
a
t
i
o
n
S
i
g
n
a
t
u
r
e
s

54
0

10
0

0
10

0
0

10
0

–
0

O
p
e
r
a
t
i
o
n
P
r
o
v
i
d
e
R
o
l
e
s

14
0

10
0

0
10

0
0

10
0

0
10

0
O
p
e
r
a
t
i
o
n
R
e
q
u
i
r
e
d
R
o
l
e
s

23
0

10
0

0
10

0
0

10
0

0
10

0
S
E
F
F
s

52
0

10
0

0
10

0
0

10
0

–
0

A
s
s
e
m
b
l
y
C
o
n
t
e
x
t
s

13
0

10
0

–
0

0
10

0
–

0
A
s
s
e
m
b
l
y
C
o
n
n
e
c
t
o
r
s

19
0

10
0

–
0

0
10

0
–

0
S
y
s
t
e
m
R
e
q
u
i
r
e
d
R
o
l
e
s

1
0

10
0

–
0

–
0

–
0

R
e
q
u
i
r
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

2
0

10
0

–
0

–
0

–
0

S
y
s
t
e
m
P
r
o
v
i
d
e
R
o
l
e
s

4
0

10
0

–
0

0
10

0
–

0
P
r
o
v
i
d
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

4
0

10
0

–
0

0
10

0
–

0

Ta
bl
e
A.
6.
:I

nt
eg

ra
te

d
an

d
co

n�
ic

tin
g

el
em

en
ts

fo
rt

he
O

pe
n

Re
fe

re
nc

e
Ca

se
pr

oj
ec

t

311



A. Appendix

#elem
PO

JO
EJB

D
ep.Inject.

Eclipse
plugin

PC
M

elem
ent

#cf.
pct.

#cf.
pct.

#cf.
pct.

#cf.
pct.

B
a
s
i
c
C
o
m
p
o
n
e
n
t
s

3
0

100
0

100
0

100
N

A
N

A
C
o
m
p
o
s
i
t
e
C
o
m
p
o
n
e
n
t
s

0
0

100
-

0
0

100
N

A
N

A
O
p
e
r
a
t
i
o
n
I
n
t
e
r
f
a
c
e
s

3
0

100
0

100
0

100
N

A
N

A
C
o
m
p
o
s
i
t
e
D
a
t
a
T
y
p
e
s

0
0

100
0

100
0

100
N

A
N

A
C
o
l
l
e
c
t
i
o
n
D
a
t
a
T
y
p
e
s

1
0

100
0

100
0

100
N

A
N

A
O
p
e
r
a
t
i
o
n
S
i
g
n
a
t
u
r
e
s

3
0

100
0

100
0

100
N

A
N

A
O
p
e
r
a
t
i
o
n
P
r
o
v
i
d
e
R
o
l
e
s

3
0

100
0

100
0

100
N

A
N

A
O
p
e
r
a
t
i
o
n
R
e
q
u
i
r
e
d
R
o
l
e
s

2
0

100
0

100
0

100
N

A
N

A
S
E
F
F
s

3
0

100
0

100
0

100
N

A
N

A
A
s
s
e
m
b
l
y
C
o
n
t
e
x
t
s

3
0

100
–

0
0

100
N

A
N

A
A
s
s
e
m
b
l
y
C
o
n
n
e
c
t
o
r
s

2
0

100
–

0
0

100
N

A
N

A
S
y
s
t
e
m
R
e
q
u
i
r
e
d
R
o
l
e
s

0
0

100
–

0
–

0
N

A
N

A
R
e
q
u
i
r
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

0
0

100
–

0
–

0
N

A
N

A
S
y
s
t
e
m
P
r
o
v
i
d
e
R
o
l
e
s

1
0

100
–

0
0

100
N

A
N

A
P
r
o
v
i
d
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

1
0

100
–

0
0

100
N

A
N

A

Table
A.7.:Integrated

and
con�icting

elem
entsforthe

D
esktop

Search
project

312



A.2. Results of the Integration Case Study per Project

#e
le
m

PO
JO

EJ
B

D
ep

.I
nj
ec
t.

Ec
li
ps

e
pl
ug

in

PC
M

el
em

en
t

#c
f.

pc
t.

#c
f.

pc
t.

#c
f.

pc
t.

#c
f.

pc
t.

B
a
s
i
c
C
o
m
p
o
n
e
n
t
s

5
0

10
0

0
10

0
0

10
0

N
A

N
A

C
o
m
p
o
s
i
t
e
C
o
m
p
o
n
e
n
t
s

0
0

10
0

-
0

0
10

0
N

A
N

A
O
p
e
r
a
t
i
o
n
I
n
t
e
r
f
a
c
e
s

3
0

10
0

0
10

0
0

10
0

N
A

N
A

C
o
m
p
o
s
i
t
e
D
a
t
a
T
y
p
e
s

0
0

10
0

0
10

0
0

10
0

N
A

N
A

C
o
l
l
e
c
t
i
o
n
D
a
t
a
T
y
p
e
s

0
0

10
0

0
10

0
0

10
0

N
A

N
A

O
p
e
r
a
t
i
o
n
S
i
g
n
a
t
u
r
e
s

4
0

10
0

0
10

0
0

10
0

N
A

N
A

O
p
e
r
a
t
i
o
n
P
r
o
v
i
d
e
R
o
l
e
s

5
0

10
0

2
60

0
10

0
N

A
N

A
O
p
e
r
a
t
i
o
n
R
e
q
u
i
r
e
d
R
o
l
e
s

4
0

10
0

0
10

0
0

10
0

N
A

N
A

S
E
F
F
s

6
0

10
0

0
10

0
0

10
0

N
A

N
A

A
s
s
e
m
b
l
y
C
o
n
t
e
x
t
s

5
0

10
0

–
0

2
60

N
A

N
A

A
s
s
e
m
b
l
y
C
o
n
n
e
c
t
o
r
s

4
0

10
0

–
0

0
0

N
A

N
A

S
y
s
t
e
m
R
e
q
u
i
r
e
d
R
o
l
e
s

0
0

10
0

–
0

–
0

N
A

N
A

R
e
q
u
i
r
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

0
0

10
0

–
0

–
0

N
A

N
A

S
y
s
t
e
m
P
r
o
v
i
d
e
R
o
l
e
s

5
0

10
0

–
0

0
10

0
N

A
N

A
P
r
o
v
i
d
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

5
0

10
0

–
0

0
10

0
N

A
N

A

Ta
bl
e
A.
8.
:I

nt
eg

ra
te

d
an

d
co

n�
ic

tin
g

el
em

en
ts

fo
rt

he
D

PS
pr

oj
ec

t

313



A. Appendix

#elem
PO

JO
EJB

D
ep.Inject.

Eclipse
plugin

PC
M

elem
ent

#cf.
pct.

#cf.
pct.

#cf.
pct.

#cf.
pct.

B
a
s
i
c
C
o
m
p
o
n
e
n
t
s

14
0

100
0

100
0

100
N

A
N

A
C
o
m
p
o
s
i
t
e
C
o
m
p
o
n
e
n
t
s

0
0

100
-

0
0

100
N

A
N

A
O
p
e
r
a
t
i
o
n
I
n
t
e
r
f
a
c
e
s

10
0

100
0

100
0

100
N

A
N

A
C
o
m
p
o
s
i
t
e
D
a
t
a
T
y
p
e
s

0
0

100
0

100
0

100
N

A
N

A
C
o
l
l
e
c
t
i
o
n
D
a
t
a
T
y
p
e
s

0
0

100
0

100
0

100
N

A
N

A
O
p
e
r
a
t
i
o
n
S
i
g
n
a
t
u
r
e
s

10
0

100
0

100
0

100
N

A
N

A
O
p
e
r
a
t
i
o
n
P
r
o
v
i
d
e
R
o
l
e
s

14
0

100
4

0
100

N
A

N
A

O
p
e
r
a
t
i
o
n
R
e
q
u
i
r
e
d
R
o
l
e
s

28
0

100
0

100
0

100
N

A
N

A
S
E
F
F
s

14
0

100
0

100
0

100
N

A
N

A
A
s
s
e
m
b
l
y
C
o
n
t
e
x
t
s

11
0

100
–

0
4

63
N

A
N

A
A
s
s
e
m
b
l
y
C
o
n
n
e
c
t
o
r
s

18
0

100
–

0
0

100
N

A
N

A
S
y
s
t
e
m
R
e
q
u
i
r
e
d
R
o
l
e
s

0
0

100
–

0
–

0
N

A
N

A
R
e
q
u
i
r
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

0
0

100
–

0
–

0
N

A
N

A
S
y
s
t
e
m
P
r
o
v
i
d
e
R
o
l
e
s

6
0

100
–

0
0

100
N

A
N

A
P
r
o
v
i
d
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

6
0

100
–

0
0

100
N

A
N

A

Table
A.9.:Integrated

and
con�icting

elem
entsforthe

IndustrialControlSystem
project

314



A.2. Results of the Integration Case Study per Project

#e
le
m

PO
JO

EJ
B

D
ep

.I
nj
ec
t.

Ec
li
ps

e
pl
ug

in

PC
M

el
em

en
t

#c
f.

pc
t.

#c
f.

pc
t.

#c
f.

pc
t.

#c
f.

pc
t.

B
a
s
i
c
C
o
m
p
o
n
e
n
t
s

14
0

10
0

0
10

0
0

10
0

0
10

0
C
o
m
p
o
s
i
t
e
C
o
m
p
o
n
e
n
t
s

2
0

10
0

-
0

0
10

0
–

0
O
p
e
r
a
t
i
o
n
I
n
t
e
r
f
a
c
e
s

10
0

10
0

0
10

0
0

10
0

0
10

0
C
o
m
p
o
s
i
t
e
D
a
t
a
T
y
p
e
s

2
0

10
0

0
10

0
0

10
0

–
0

C
o
l
l
e
c
t
i
o
n
D
a
t
a
T
y
p
e
s

1
0

10
0

0
10

0
0

10
0

–
0

O
p
e
r
a
t
i
o
n
S
i
g
n
a
t
u
r
e
s

28
0

10
0

0
10

0
0

10
0

–
0

O
p
e
r
a
t
i
o
n
P
r
o
v
i
d
e
R
o
l
e
s

15
0

10
0

5
66

0
10

0
0

0
O
p
e
r
a
t
i
o
n
R
e
q
u
i
r
e
d
R
o
l
e
s

14
0

10
0

0
10

0
0

10
0

0
10

0
S
E
F
F
s

44
0

10
0

0
10

0
0

10
0

–
10

0
A
s
s
e
m
b
l
y
C
o
n
t
e
x
t
s

9
0

10
0

–
0

1
88

–
0

A
s
s
e
m
b
l
y
C
o
n
n
e
c
t
o
r
s

11
0

10
0

–
0

0
10

0
–

0
S
y
s
t
e
m
R
e
q
u
i
r
e
d
R
o
l
e
s

0
0

10
0

–
0

–
0

–
0

R
e
q
u
i
r
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

0
0

10
0

–
0

–
0

–
0

S
y
s
t
e
m
P
r
o
v
i
d
e
R
o
l
e
s

2
0

10
0

–
0

0
10

0
–

0
P
r
o
v
i
d
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

2
0

10
0

–
0

0
10

0
–

0

Ta
bl
e
A.
10
.:

In
te

gr
at

ed
an

d
co

n�
ic

tin
g

el
em

en
ts

fo
rt

he
BR

S
pr

oj
ec

t

315



A. Appendix

A.3. Results of the Change Replay Case Study per
Project

Within this section, we present the results of the change replay case study
from Section 6.5.4 for each project.

A.3.1. Results for the core project of Apache Any23

Table A.11 shows the results for the change replay evaluation for the core
project of Apache Any23. We replayed changes from version 0.9 to version 1.0
for Any23. Please note: Renaming changes for parameters and type changes
of parameters are combined in the row “changes method parameter”.

handled by
standard

handled by
dialog

handled
by inte-
gration
reaction

Change #occ. IL2 IL3 IL2 IL 3 IL 3

remove import 18 0 0 18 0 18
remove method 14 0 0 14 0 14

add import 7 0 0 7 0 7
remove �eld 7 0 0 7 0 7
add method 4 0 0 4 0 4

ch. method parameter 4 0 0 4 4 0
add super class 3 0 0 0 0 0

rem. super interface 3 0 0 3 0 3
ch. method modi�er 2 0 0 2 2 0

add annotation 1 0 0 1 0 1
remove super class 1 0 0 0 0 0

create package 1 1 1 0 0 0

Table A.11.:Change replay evaluation results for the core project of Apache Any23

316



A.3. Results of the Change Replay Case Study per Project

A.3.2. Results for the core project of Apache Gora

The results for the change replay for the core project of Apache Gora is
shown in Table A.12. We replayed changes from version 0.6 to version 0.6.1
for Gora. During the evaluation of Gora, we can observe di�erent number
of occurenc for rename method, remove method and add method. As we
mentioned above, this can occur due to the indirect interaction between
the change replay tool and the Java monitor. The resulting code after the
change replay remains the same for both cases. The di�erence is that the
change replay for Integration Level 2 was either faster as the change replay
for Integration Level 3 or the Java monitor was not noti�ed in a di�erent way
by the Eclipse Java Development Tools (JDT) Abstract Syntax Tree (AST)
noti�caiton mechanism. From this behaviour, we get the di�erence between
renaming of a method respectively “removing” the method and “adding” it
again.

handled by
standard

handled by
dialog

handled
by inte-
gration
reaction

Change #occ. IL2 IL3 IL2 IL 3 IL 3

add super class 29 0 0 0 0 0
add import 17 0 0 17 0 17

remove import 16 0 0 16 0 16
change �eld modi�er 6 0 0 6 0 6

change �eld type 6 0 0 6 0 6
add annotation 5 0 0 5 0 5

add �eld 4 0 0 4 0 4

rename method 2(IL2)/
1(IL3) 0 0 2 0 1

create package 1 1 1 0 0 0
remove annotation 1 0 0 1 0 1

remove method 0(IL2)/
2(IL3) 0 0 0 0 2

add method 1 0 0 0 0 1

Table A.12.:Change replay evaluation results for the core project of Apache Gora

317



A. Appendix

A.3.3. Results for Apache Velocity

All changes performed to Apache Velocity are performed to integrated areas,
i.e. no changes are handled by the standard consistency preservation rules.
We replayed changes from version 1.6 to version 1.6.4 for Velocity. Hence,
all changes (except for remove super class and add super class), are handled
by integration dialogs when Integration Level 2 is used. If Integration Level
3 together with element-speci�c reactions for the Parser classes is used all
changes are handled by integration reactions respectively by the element-
speci�c reactions. Table A.13 shows the detailed results of the evaluation for
Apache Velocity.

Change #occ.
IL2:

handled by
dialog

IL3:
handled by
integra-
tion

reaction

IL3:
handled by
element-
speci�c
reaction

add method 25 25 7 18
rename method 19 19 19 0
remove method 17 17 17 0

add import 16 16 16 0
add �eld 6 6 6 0

remove import 5 5 5 0
change �eld modi�er 4 4 1 3

remove �eld 3 3 3 0
remove super class 2 0 0 0

add super class 2 0 0 0
change �eld type 1 1 1 0

Table A.13.:Change replay evaluation results for Apache Velocity

A.3.4. Results for Apache Xerces

Table A.14 shows the result for the change replay evaluation for Xerces.
For Xerces, we replayed the changes from version 2.10.0 to 2.11.0. Due to
technical reasons, we observed di�erent occurrences for some changes during

318



A.3. Results of the Change Replay Case Study per Project

the di�erent evaluation runs. Please note: As in the table for Any23, renaming
changes for parameters and type changes of parameters are combined in the
row “changes method parameter”.

#occ. handled by
standard

handled by
dialog

handled
by inte-
gration
reaction

Change IL2 IL3 IL2 IL3 IL2 IL 3 IL 3

add method 43 45 0 0 38 0 40
add import 29 29 0 0 26 0 22

remove super class 25 25 0 0 0 0 0
add super class 25 25 0 0 0 0 0

remove �eld 19 18 0 0 19 0 18
ch. method modi�er 14 12 0 0 0 0 0

ch. �eld type 9 8 0 0 6 0 5
ch. method param. 9 6 0 0 6 5 0

rename �eld 6 7 0 0 6 7 0
add �eld 6 5 0 0 3 0 2

remove import 6 6 0 0 6 0 6
ch. class modi�er 4 3 0 0 4 3 0
ch. �eld modi�er 3 2 0 0 3 0 2

add interface 2 2 0 0 2 2 0
create class 1 1 0 0 1 1 0

Table A.14.:Change replay evaluation results for core Apache Xerces

319





Bibliography

[ACN02] Jonathan Aldrich, Craig Chambers, and David Notkin. “Arch-
Java: Connecting Software Architecture to Implementation”.
In: Proceedings of the 24th International Conference on Software

Engineering. ICSE ’02. Orlando, Florida: ACM, 2002, pp. 187–
197. isbn: 1-58113-472-X. doi: 10.1145/581339.581365. url:
http://doi.acm.org/10.1145/581339.581365.

[ASB10] Colin Atkinson, Dietmar Stoll, and Philipp Bostan. “Ortho-
graphic Software Modeling: A Practical Approach to View-
Based Development”. In: Evaluation of Novel Approaches to Soft-
ware Engineering. Ed. by LeszekA. Maciaszek, César González-
Pérez, and Stefan Jablonski. Vol. 69. Communications in Com-
puter and Information Science. Berlin/Heidelberg: Springer,
2010, pp. 206–219. isbn: 978-3-642-14819-4.

[Atk+01] C. Atkinson, B. Paech, J. Reinhold, and T. Sander. “Developing
and applying component-based model-driven architectures in
KobrA”. In: Proceedings Fifth IEEE International Enterprise Dis-

tributed Object Computing Conference. 2001, pp. 212–223. doi:
10.1109/EDOC.2001.950441.

[ATM15] Colin Atkinson, Christian Tunjic, and Torben Möller. “Funda-
mental Realization Strategies for Multi-view Speci�cation Envi-
ronments”. In: Enterprise Distributed Object Computing Confer-

ence (EDOC), 2015 IEEE 19th International. IEEE. 2015, pp. 40–
49.

[Bal91] R. Balzer. “Tolerating inconsistency [software development]”.
In: [1991 Proceedings] 13th International Conference on Software
Engineering. May 1991, pp. 158–165. doi: 10.1109/ICSE.1991
.130638.

321

https://doi.org/10.1145/581339.581365
http://doi.acm.org/10.1145/581339.581365
https://doi.org/10.1109/EDOC.2001.950441
https://doi.org/10.1109/ICSE.1991.130638
https://doi.org/10.1109/ICSE.1991.130638


Bibliography

[BCR94] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. “The
Goal Question Metric Approach”. In: Encyclopedia of Software
Engineering - 2 Volume Set. Ed. by John J. Marciniak. John Wiley
& Sons, 1994, pp. 528–532.

[Bec+07] Bernhard Beckert et al. “The KeY system 1.0 (deduction compo-
nent)”. In: Proceedings, International Conference on Automated

Deduction. Lecture Notes in Computer Science. Bremen, Ger-
many: Springer Berlin Heidelberg, 2007, pp. 379–384. url: http
://link.springer.com/chapter/10.1007/978-3-540-73595-

3%5C_26.
[Bec08] Ste�en Becker. Coupled Model Transformations for QoS Enabled

Component-Based Software Design. Vol. 1. The Karlsruhe Series
on Software Design and Quality. Universitätsverlag Karlsruhe,
2008.

[Ber+12] Gábor Bergmann, István Ráth, Gergely Varró, and Dániel Varró.
“Change-driven model transformations”. English. In: Software
& Systems Modeling 11.3 (2012), pp. 431–461. issn: 1619-1366.
doi: 10.1007/s10270-011-0197-9. url: http://dx.doi.org/1
0.1007/s10270-011-0197-9.

[BKR09] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio
component model for model-driven performance prediction”.
In: Journal of Systems and Software 82 (2009), pp. 3–22. doi:
10.1016/j.jss.2008.03.066. url: http://dx.doi.org/10.10
16/j.jss.2008.03.066.

[Bor05] Borland Software Corporation. Borland Together UML 2.1 Guide

Version 2008 R3. 2005. url: http://techpubs.borland.com/tog
ether/2008R3/EN/TogetherUML21.pdf (visited on 10/15/2015).

[BP08] Cédric Brun and Alfonso Pierantonio. “Model Di�erences in
the Eclipse Modelling Framework”. In: UPGRADE The European
Journal for the Informatics Professional IX.2 (2008), pp. 29–34.
url: http://www.cepis.org/upgrade/files/2008-II-pieran
tonio.pdf.

[BR05] Rainer Böhme and Ralf Reussner. “Validation of Predictions
with Measurements”. In: Dependability Metrics. Ed. by Irene
Eusgeld, Felix C. Freiling, and Ralf Reussner. Vol. 4909. Lecture
Notes in Computer Science. Springer, 2005, pp. 14–18. isbn:

322

http://link.springer.com/chapter/10.1007/978-3-540-73595-3%5C_26
http://link.springer.com/chapter/10.1007/978-3-540-73595-3%5C_26
http://link.springer.com/chapter/10.1007/978-3-540-73595-3%5C_26
https://doi.org/10.1007/s10270-011-0197-9
http://dx.doi.org/10.1007/s10270-011-0197-9
http://dx.doi.org/10.1007/s10270-011-0197-9
https://doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://techpubs.borland.com/together/2008R3/EN/TogetherUML21.pdf
http://techpubs.borland.com/together/2008R3/EN/TogetherUML21.pdf
http://www.cepis.org/upgrade/files/2008-II-pierantonio.pdf
http://www.cepis.org/upgrade/files/2008-II-pierantonio.pdf


Bibliography

978-3-540-68946-1. url: http://dx.doi.org/10.1007/978-3-5
40-68947-8%5C_3.

[Bro+12] Franz Brosch, Heiko Koziolek, Barbora Buhnova, and Ralf Reuss-
ner. “Architecture-based Reliability Prediction with the Palladio
Component Model”. In: IEEE Transactions on Software Engi-

neering 38.6 (Nov. 2012), pp. 1319–1339. issn: 0098-5589. doi:
10.1109/TSE.2011.94.

[Bro+15] Fabian Brosig et al. “Quantitative Evaluation of Model-Driven
Performance Analysis and Simulation of Component-based
Architectures”. In: Software Engineering, IEEE Transactions on

41.2 (Feb. 2015), pp. 157–175. issn: 0098-5589. doi: 10.1109/TS
E.2014.2362755.

[Bru+10] Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and Frédéric Ma-
diot. “MoDisco: a generic and extensible framework for model
driven reverse engineering”. In: Proceedings of the IEEE/ACM in-

ternational conference on Automated software engineering. ASE
’10. Antwerp, Belgium: ACM, 2010, pp. 173–174. isbn: 978-1-
4503-0116-9. doi: 10.1145/1858996.1859032. url: http://doi
.acm.org/10.1145/1858996.1859032.

[BS16] Erik Burger and Oliver Schneider. “Translatability and Trans-
lation of Updated Views in ModelJoin”. In: Theory and Practice

of Model Transformations: 9th International Conference, ICMT

2016, Held as Part of STAF 2016. (Vienna, Austria). Ed. by Pieter
van Gorp and Gregor Engels. Vol. 9765. Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, July
2016, pp. 55–69. isbn: 978-3-319-42064-6. doi: 10.1007/978-3-
319-42064-6_4.

[BT14] Erik Burger and Aleksandar Toshovski. “Di�erence-based Con-
formance Checking for Ecore Metamodels”. In: Proceedings of
Modellierung 2014. Vol. 225. GI-LNI. Vienna, Austria, Mar. 2014,
pp. 97–104. url: http://sdqweb.ipd.kit.edu/publications
/pdfs/burger2014a.pdf.

[Buc+13] Jim Buckley, Sean Mooney, Jacek Rosik, and Nour Ali. “JIT-
TAC: A Just-in-time Tool for Architectural Consistency”. In:
Proceedings of the 2013 International Conference on Software En-

gineering. ICSE ’13. San Francisco, CA, USA: IEEE Press, 2013,

323

http://dx.doi.org/10.1007/978-3-540-68947-8%5C_3
http://dx.doi.org/10.1007/978-3-540-68947-8%5C_3
https://doi.org/10.1109/TSE.2011.94
https://doi.org/10.1109/TSE.2014.2362755
https://doi.org/10.1109/TSE.2014.2362755
https://doi.org/10.1145/1858996.1859032
http://doi.acm.org/10.1145/1858996.1859032
http://doi.acm.org/10.1145/1858996.1859032
https://doi.org/10.1007/978-3-319-42064-6_4
https://doi.org/10.1007/978-3-319-42064-6_4
http://sdqweb.ipd.kit.edu/publications/pdfs/burger2014a.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/burger2014a.pdf


Bibliography

pp. 1291–1294. isbn: 978-1-4673-3076-3. url: http://dl.acm.o
rg/citation.cfm?id=2486788.2486987.

[Bur+14] Erik Burger, Jörg Henß, Martin Küster, Ste�en Kruse, and Lucia
Happe. “View-Based Model-Driven Software Development with
ModelJoin”. In: Software & Systems Modeling 15.2 (2014). Ed. by
Robert France and Bernhard Rumpe, pp. 472–496. issn: 1619-
1374. doi: 10.1007/s10270-014-0413-5.

[Bur13] Erik Burger. “Flexible Views for Rapid Model-Driven Devel-
opment”. In: Proceedings of the 1st Workshop on View-Based,

Aspect-Oriented and Orthographic Software Modelling. VAO ’13.
Montpellier, France: ACM, 2013, 1:1–1:5. isbn: 978-1-4503-2070-
2. doi: 10.1145/2489861.2489863. url: http://doi.acm.org
/10.1145/2489861.2489863.

[Bur14] Erik Burger. “Flexible Views for View-based Model-driven De-
velopment”. PhD thesis. Karlsruhe, Germany: Karlsruhe Insti-
tute of Technology, July 2014. isbn: 978-3-7315-0276-0. doi:
10.5445/KSP/1000043437. url: http://digbib.ubka.uni-kar
lsruhe.de/volltexte/1000043437.

[CA78] Liming Chen and Algirdas Avizienis. “N-version programming:
A fault-tolerance approach to reliability of software operation”.
In: Digest of Papers FTCS-8: Eighth Annual International Confer-
ence on Fault Tolerant Computing. 1978, pp. 3–9.

[Cla10] Claire Liu. Round Trip Engineering Scenario using Rational Soft-
ware Architect and ClearCase Remote Client. 2010. url: http:
//www.ibm.com/developerworks/rational/library/10/rou

ndtripengineeringscenariosusingrsaandccrcv7-5-5/round

tripengineeringscenariosusingrsaandccrcv7-5-5-pdf.pdf

(visited on 10/15/2015).
[CS13] Daniel Calegari and Nora Szasz. “Veri�cation of model transfor-

mations: A survey of the state-of-the-art”. In: Electronic notes
in theoretical computer science 292 (2013), pp. 5–25.

[Dac16] Muamer Dacic. “A KobrA Model and Implementation of the
CoCoME”. MA thesis. Universität Mannheim, 2016.

[DJ06] Danny Dig and Ralph Johnson. “How do APIs evolve? A story of
refactoring”. In: Journal of software maintenance and evolution:

Research and Practice 18.2 (2006), pp. 83–107.

324

http://dl.acm.org/citation.cfm?id=2486788.2486987
http://dl.acm.org/citation.cfm?id=2486788.2486987
https://doi.org/10.1007/s10270-014-0413-5
https://doi.org/10.1145/2489861.2489863
http://doi.acm.org/10.1145/2489861.2489863
http://doi.acm.org/10.1145/2489861.2489863
https://doi.org/10.5445/KSP/1000043437
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043437
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043437
http://www.ibm.com/developerworks/rational/library/10/roundtripengineeringscenariosusingrsaandccrcv7-5-5/roundtripengineeringscenariosusingrsaandccrcv7-5-5-pdf.pdf
http://www.ibm.com/developerworks/rational/library/10/roundtripengineeringscenariosusingrsaandccrcv7-5-5/roundtripengineeringscenariosusingrsaandccrcv7-5-5-pdf.pdf
http://www.ibm.com/developerworks/rational/library/10/roundtripengineeringscenariosusingrsaandccrcv7-5-5/roundtripengineeringscenariosusingrsaandccrcv7-5-5-pdf.pdf
http://www.ibm.com/developerworks/rational/library/10/roundtripengineeringscenariosusingrsaandccrcv7-5-5/roundtripengineeringscenariosusingrsaandccrcv7-5-5-pdf.pdf


Bibliography

[DP09] Stéphane Ducasse and Damien Pollet. “Software architecture
reconstruction: A process-oriented taxonomy”. In: Software En-
gineering, IEEE Transactions on 35.4 (2009), pp. 573–591.

[DPB13] Markus von Detten, Marie Christin Platenius, and Ste�en
Becker. “Reengineering Component-Based Software Systems
with Archimetrix”. In: Journal of Software and Systems Mod-

eling (2013). Theme Issue on Models for Quality of Software
Architecture.

[Dua+10] Flavio Duarte et al. “Experience with a new architecture review
process using a globally distributed architecture review team”.
In: 2010 5th IEEE International Conference on Global Software

Engineering. IEEE. 2010, pp. 109–118.
[EV06] Sven E�tinge and Markus Völter. “oAW xText: A framework

for textual DSLs”. In: Eclipsecon Summit Europe 2006. Nov. 2006.
url: http://eclipsecon.org/summiteurope2006/presentati
ons/ESE2006-EclipseModelingSymposium12_xTextFramework

.pdf.
[Fal+14] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias

Martinez, and Martin Monperrus. “Fine-grained and Accu-
rate Source Code Di�erencing”. In: Proceedings of the 29th

ACM/IEEE International Conference on Automated Software En-

gineering. ASE ’14. Vasteras, Sweden: ACM, 2014, pp. 313–324.
isbn: 978-1-4503-3013-8. doi: 10.1145/2642937.2642982. url:
http://doi.acm.org/10.1145/2642937.2642982.

[FKL16] Sebastian Fiss, Max E. Kramer, and Michael Langhammer. “Au-
tomatically Binding Variables of Invariants to Violating Ele-
ments in an OCL-Aligned XBase-Language”. In: Proceedings of
Modellierung 2016. Ed. by Andreas Oberweis and Ralf Reussner.
Vol. P-254. Lecture Notes in Informatics (LNI). Bonn, Germany:
Gesellschaft für Informatik e.V. (GI), 2016, pp. 189–204. isbn:
978-3-88579-648-0.

[Fow+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and
Don Roberts. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, Reading, MA, USA, 1999.

325

http://eclipsecon.org/summiteurope2006/presentations/ESE2006-EclipseModelingSymposium12_xTextFramework.pdf
http://eclipsecon.org/summiteurope2006/presentations/ESE2006-EclipseModelingSymposium12_xTextFramework.pdf
http://eclipsecon.org/summiteurope2006/presentations/ESE2006-EclipseModelingSymposium12_xTextFramework.pdf
https://doi.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982


Bibliography

[GBB12] Thomas Goldschmidt, Ste�en Becker, and Erik Burger. “To-
wards a Tool-Oriented Taxonomy of View-Based Modelling”.
In: Proceedings of the Modellierung 2012. Ed. by Elmar J. Sinz
and Andy Schürr. Vol. P-201. GI-Edition – Lecture Notes in In-
formatics (LNI). Bamberg: Gesellschaft für Informatik e.V. (GI),
Mar. 2012, pp. 59–74. isbn: 978-3-88579-295-6.

[GBU10] Thomas Goldschmidt, Ste�en Becker, and Axel Uhl. “Incremen-
tal Updates for Textual Modeling of Large Scale Models”. In:
Proceedings of the 15th IEEE International Conference on Engi-

neering of Complex Computer Systems (ICECCS 2010) - Poster

Paper. IEEE, 2010.
[GIM13] Joshua Garcia, Igor Ivkovic, and Nenad Medvidovic. “A com-

parative analysis of software architecture recovery techniques”.
In: Automated Software Engineering (ASE), 2013 IEEE/ACM 28th

International Conference on. 2013, pp. 486–496. doi: 10.1109/A
SE.2013.6693106.

[Gou+11] Daniel Dominguez Gouvêa et al. “Experience Building Non-
Functional Requirement Models of a Complex Industrial Ar-
chitecture”. In: Proceedings of the second joint WOSP/SIPEW in-

ternational conference on Performance engineering (ICPE 2011).
Ed. by Samuel Kounev, Vittorio Cortellessa, Ra�aela Mirandola,
and David J. Lilja. Karlsruhe, Germany: ACM, 2011, pp. 43–54.
isbn: 978-1-4503-0519-8. doi: 10.1145/1958746.1958757. url:
http://icpe2011.ipd.kit.edu/call_for_papers/industria

lexperience_track/.
[Gou+12] Daniel Dominguez Gouvêa et al. “Experience with Model-based

Performance, Reliability and Adaptability Assessment of a Com-
plex Industrial Architecture”. In: Journal of Software and Sys-

tems Modeling (2012). Special Issue on Performance Modeling,
pp. 1–23. issn: 1619-1366. doi: 10.1007/s10270-012-0264-x.

[Hat97] Les Hatton. “Reexamining the Fault Density-Component Size
Connection”. In: IEEE Softw. 14.2 (Mar. 1997), pp. 89–97. issn:
0740-7459. doi: 10.1109/52.582978. url: http://dx.doi.org
/10.1109/52.582978.

326

https://doi.org/10.1109/ASE.2013.6693106
https://doi.org/10.1109/ASE.2013.6693106
https://doi.org/10.1145/1958746.1958757
http://icpe2011.ipd.kit.edu/call_for_papers/industrialexperience_track/
http://icpe2011.ipd.kit.edu/call_for_papers/industrialexperience_track/
https://doi.org/10.1007/s10270-012-0264-x
https://doi.org/10.1109/52.582978
http://dx.doi.org/10.1109/52.582978
http://dx.doi.org/10.1109/52.582978


Bibliography

[Hei+09a] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko
Seifert, and Christian Wende. “Derivation and Re�nement
of Textual Syntax for Models”. In: Model Driven Architec-

ture - Foundations and Applications: 5th European Conference,

ECMDA-FA 2009, Enschede, The Netherlands, June 23-26, 2009.

Proceedings. Ed. by Richard F. Paige, Alan Hartman, and Arend
Rensink. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 114–129. isbn: 978-3-642-02674-4. doi: 10.1007/978-3-642
-02674-4_9. url: http://dx.doi.org/10.1007/978-3-642-02
674-4_9.

[Hei+09b] Florian Heidenreich, Jendrik Johannes, Mirko Seifert, and Chris-
tian Wende. Jamopp: The java model parser and printer. Tech.
rep. 2009.

[Hei+10] Florian Heidenreich, Jendrik Johannes, Mirko Seifert, and Chris-
tian Wende. “Closing the Gap between Modelling and Java”.
In: Software Language Engineering. Ed. by Mark van den Brand,
Dragan Gašević, and Je� Gray. Vol. 5969. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2010, pp. 374–383.
isbn: 978-3-642-12106-7. doi: 10.1007/978-3-642-12107-4_25.
url: http://dx.doi.org/10.1007/978-3-642-12107-4_25.

[Hei15] Simon Heiss. “Coevolution von komponentenbasierten Ar-
chitekturmodellen und Eclipse Plugins”. Bachelor’s Thesis. Karl-
sruhe Institute of Technology (KIT), 2015.

[Her+08] Sebastian Herold et al. “CoCoME - The Common Component
Modeling Example”. In: The Common Component Modeling Ex-

ample. Ed. by Andreas Rausch, Ralf Reussner, Ra�aela Miran-
dola, and František Plášil. Vol. 5153. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2008, pp. 16–53. isbn: 978-
3-540-85288-9. doi: 10.1007/978- 3- 540- 85289- 6_3. url:
http://dx.doi.org/10.1007/978-3-540-85289-6_3.

[HMY06] Gang Huang, Hong Mei, and Fu-Qing Yang. “Runtime recov-
ery and manipulation of software architecture of component-
based systems”. In: Automated Software Engineering 13.2 (2006),
pp. 257–281. issn: 1573-7535. doi: 10.1007/s10515-006-7738-
4. url: http://dx.doi.org/10.1007/s10515-006-7738-4.

327

https://doi.org/10.1007/978-3-642-02674-4_9
https://doi.org/10.1007/978-3-642-02674-4_9
http://dx.doi.org/10.1007/978-3-642-02674-4_9
http://dx.doi.org/10.1007/978-3-642-02674-4_9
https://doi.org/10.1007/978-3-642-12107-4_25
http://dx.doi.org/10.1007/978-3-642-12107-4_25
https://doi.org/10.1007/978-3-540-85289-6_3
http://dx.doi.org/10.1007/978-3-540-85289-6_3
https://doi.org/10.1007/s10515-006-7738-4
https://doi.org/10.1007/s10515-006-7738-4
http://dx.doi.org/10.1007/s10515-006-7738-4


Bibliography

[HRR16] Robert Heinrich, Kiana Rostami, and Ralf Reussner. The Co-
CoME Platform for Collaborative Empirical Research on Infor-

mation System Evolution. Tech. rep. 2016,2; Karlsruhe Reports
in Informatics. Karlsruhe Institute of Technology, Feb. 2016.
url: http://digbib.ubka.uni-karlsruhe.de/volltexte/100
0052688.

[HVW11] Markus Herrmannsdoerfer, Sander D Vermolen, and Guido
Wachsmuth. “An extensive catalog of operators for the coupled
evolution of metamodels and models”. In: Software Language
Engineering. Springer, 2011, pp. 163–182.

[ISO11] ISO/IEC/IEEE 42010:2011(E). Systems and software engineering

– Architecture description. International Organization for Stan-
dardization, Geneva, Switzerland, Dec. 2011, pp. 1–46. doi: 10
.1109/IEEESTD.2011.6129467.

[JK06] Frédéric Jouault and Ivan Kurtev. “Transforming models with
ATL”. In: Satellite Events at the MoDELS 2005 Conference.
Springer. 2006, pp. 128–138.

[KBH07] Heiko Koziolek, Ste�en Becker, and Jens Happe. “Predicting the
Performance of Component-based Software Architectures with
di�erent Usage Pro�les”. In: Proc. 3rd International Conference
on the Quality of Software Architectures (QoSA’07). Vol. 4880.
Lecture Notes in Computer Science. Springer-Verlag Berlin Hei-
delberg, July 2007, pp. 145–163. url: http://sdqweb.ipd.uka
.de/publications/pdfs/koziolek2007b.pdf.

[KBL13] Max E. Kramer, Erik Burger, and Michael Langhammer. “View-
centric engineering with synchronized heterogeneous mod-
els”. In: Proceedings of the 1st Workshop on View-Based, Aspect-

Oriented and Orthographic Software Modelling. VAO ’13. Mont-
pellier, France: ACM, 2013, 5:1–5:6. isbn: 978-1-4503-2070-2.
doi: 10.1145/2489861.2489864. url: http://doi.acm.org/10
.1145/2489861.2489864.

[KH16] Marco Konersmann and Jens Holschbach. “Automatic Synchro-
nization of Allocation Models with Running Software”. In:
Softwaretechnik-Trends 36.4 (2016). url: http://pi.informa
tik.uni-siegen.de/stt/36_4/./01_Fachgruppenberichte/S

328

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000052688
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000052688
https://doi.org/10.1109/IEEESTD.2011.6129467
https://doi.org/10.1109/IEEESTD.2011.6129467
http://sdqweb.ipd.uka.de/publications/pdfs/koziolek2007b.pdf
http://sdqweb.ipd.uka.de/publications/pdfs/koziolek2007b.pdf
https://doi.org/10.1145/2489861.2489864
http://doi.acm.org/10.1145/2489861.2489864
http://doi.acm.org/10.1145/2489861.2489864
http://pi.informatik.uni-siegen.de/stt/36_4/./01_Fachgruppenberichte/SSP2016/ssp-stt/24-Automatic_Synchronization_of_Allocation_Models_with_Running_Software.pdf
http://pi.informatik.uni-siegen.de/stt/36_4/./01_Fachgruppenberichte/SSP2016/ssp-stt/24-Automatic_Synchronization_of_Allocation_Models_with_Running_Software.pdf
http://pi.informatik.uni-siegen.de/stt/36_4/./01_Fachgruppenberichte/SSP2016/ssp-stt/24-Automatic_Synchronization_of_Allocation_Models_with_Running_Software.pdf


Bibliography

SP2016/ssp-stt/24-Automatic_Synchronization_of_Alloca

tion_Models_with_Running_Software.pdf.
[KKR10] Klaus Krogmann, Michael Kuperberg, and Ralf Reussner. “Us-

ing Genetic Search for Reverse Engineering of Parametric Be-
haviour Models for Performance Prediction”. In: IEEE Transac-

tions on Software Engineering 36.6 (2010). Ed. by Mark Harman
and Afshin Mansouri, pp. 865–877. issn: 0098-5589. doi: http:
//doi.ieeecomputersociety.org/10.1109/TSE.2010.69. url:
http://sdqweb.ipd.kit.edu/publications/pdfs/krogmann2

009c.pdf.
[KL14] Max E. Kramer and Michael Langhammer. “Proposal for a Multi-

View Modelling Case Study: Component-Based Software En-
gineering with UML, Plug-ins, and Java”. In: Proceedings of
the 2nd Workshop on View-Based, Aspect-Oriented and Ortho-

graphic Software Modelling. VAO ’14. York, United Kingdom:
ACM, 2014, 7:7–7:10. isbn: 978-1-4503-2900-2. doi: 10.1145/2
631675.2631676. url: http://doi.acm.org/10.1145/2631675
.2631676.

[KL86] J. C. Knight and N. G. Leveson. “An Experimental Evaluation
of the Assumption of Independence in Multiversion Program-
ming”. In: IEEE Trans. Softw. Eng. 12.1 (Jan. 1986), pp. 96–109.
issn: 0098-5589. doi: 10.1109/TSE.1986.6312924. url: http:
//dx.doi.org/10.1109/TSE.1986.6312924.

[Kla14] Benjamin Klatt. “Consolidation of Customized Product Copies
into Software Product Lines”. PhD thesis. Karlsruhe, Germany:
Karlsruhe Institute of Technology (KIT), Oct. 2014. url: http:
//digbib.ubka.uni-karlsruhe.de/volltexte/1000043687.

[Kla16] Heiko Klare. “Designing a Change-Driven Language for Model
Consistency Repair Routines”. Master’s Thesis. Karlsruhe: Karl-
sruhe Institute of Technology (KIT), 2016. doi: 10.5445/IR/10
00080138. url: http://dx.doi.org/10.5445/IR/1000080138.

[KLK16] Heiko Klare, Michael Langhammer, and Max E. Kramer. “Pro-
jecting UML Class Diagrams from Java Code Models”. In:
4thWorkshop on View-Based, Aspect-Oriented and Orthographic

Software Modelling (VAO). VAO ’16. Karlsruhe, Germany, Mar.

329

http://pi.informatik.uni-siegen.de/stt/36_4/./01_Fachgruppenberichte/SSP2016/ssp-stt/24-Automatic_Synchronization_of_Allocation_Models_with_Running_Software.pdf
http://pi.informatik.uni-siegen.de/stt/36_4/./01_Fachgruppenberichte/SSP2016/ssp-stt/24-Automatic_Synchronization_of_Allocation_Models_with_Running_Software.pdf
http://pi.informatik.uni-siegen.de/stt/36_4/./01_Fachgruppenberichte/SSP2016/ssp-stt/24-Automatic_Synchronization_of_Allocation_Models_with_Running_Software.pdf
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/TSE.2010.69
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/TSE.2010.69
http://sdqweb.ipd.kit.edu/publications/pdfs/krogmann2009c.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/krogmann2009c.pdf
https://doi.org/10.1145/2631675.2631676
https://doi.org/10.1145/2631675.2631676
http://doi.acm.org/10.1145/2631675.2631676
http://doi.acm.org/10.1145/2631675.2631676
https://doi.org/10.1109/TSE.1986.6312924
http://dx.doi.org/10.1109/TSE.1986.6312924
http://dx.doi.org/10.1109/TSE.1986.6312924
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043687
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043687
https://doi.org/10.5445/IR/1000080138
https://doi.org/10.5445/IR/1000080138
http://dx.doi.org/10.5445/IR/1000080138


Bibliography

2016, pp. 11–18. url: http://digbib.ubka.uni-karlsruhe.de
/volltexte/1000053686.

[Kon+13] Marco Konersmann, Zoya Durdik, Michael Goedicke, and Ralf
Reussner. “Towards Architecture-Centric Evolution of Long-
Living Systems (The ADVERT Approach)”. In: Proceedings of
the 9th ACM SIGSOFT International Conference on the Quality

of Software Architectures (QoSA 2013). June 2013.
[KOS06] Philippe Kruchten, Henk Obbink, and Judith Sta�ord. “The

Past, Present, and Future for Software Architecture”. In: IEEE
Software 23.unde�ned (2006), pp. 22–30. issn: 0740-7459. doi:
doi.ieeecomputersociety.org/10.1109/MS.2006.59.

[Koz+08] Heiko Koziolek, Ste�en Becker, Jens Happe, and Ralf Reussner.
“Evaluating Performance of Software Architecture Models with
the Palladio Component Model”. In: Model-Driven Software De-

velopment: Integrating Quality Assurance. Ed. by Jörg Rech and
Christian Bunse. IDEA Group Inc., Dec. 2008, pp. 95–118.

[Koz08] Heiko Koziolek. Parameter Dependencies for Reusable Perfor-

mance Speci�cations of Software Components. Vol. 2. The Karl-
sruhe Series on Software Design and Quality. Universitätsverlag
Karlsruhe, 2008. isbn: 978-3-86644-272-6.

[Koz11] Anne Koziolek. “Automated Improvement of Software Archi-
tecture Models for Performance and Other Quality Attributes”.
PhD thesis. Karlsruhe, Germany: Institut für Programmstruk-
turen und Datenorganisation (IPD), Karlsruher Institut für Tech-
nologie, July 2011. url: http://digbib.ubka.uni-karlsruhe
.de/volltexte/1000024955.

[KR08] Klaus Krogmann and Ralf H. Reussner. “The Common Com-
ponent Modeling Example”. In: vol. 5153. Lecture Notes in
Computer Science. Springer-Verlag Berlin Heidelberg, 2008.
Chap. Palladio: Prediction of Performance Properties, pp. 297–
326. url: http://springerlink.com/content/63617n4j56888
79h/?p=9666cb29a31b453aba8a1ae6ee7831b6&pi=11.

[Kra+15a] Max E. Kramer, Michael Langhammer, Dominik Messinger,
Stephan Seifermann, and Erik Burger. “Change-Driven Con-
sistency for Component Code, Architectural Models, and Con-
tracts”. In: Proceedings of the 18th International ACM SIGSOFT

330

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000053686
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000053686
https://doi.org/doi.ieeecomputersociety.org/10.1109/MS.2006.59
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000024955
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000024955
http://springerlink.com/content/63617n4j5688879h/?p=9666cb29a31b453aba8a1ae6ee7831b6&pi=11
http://springerlink.com/content/63617n4j5688879h/?p=9666cb29a31b453aba8a1ae6ee7831b6&pi=11


Bibliography

Symposium on Component-Based Software Engineering. CBSE
’15. Montréal, QC, Canada: ACM, 2015, pp. 21–26. isbn: 978-1-
4503-3471-6. doi: 10.1145/2737166.2737177. url: http://doi
.acm.org/10.1145/2737166.2737177.

[Kra+15b] Max E. Kramer, Michael Langhammer, Dominik Messinger,
Stephan Seifermann, and Erik Burger. Realizing Change-Driven
Consistency for Component Code, ArchitecturalModels, and Con-

tracts in Vitruvius. Tech. rep. Karlsruhe: Karlsruhe Institute of
Technology, Department of Informatics, 2015. url: http://nbn
-resolving.org/urn:nbn:de:swb:90-456541.

[Kra14] Max E. Kramer. “Synchronizing Heterogeneous Models in a
View-Centric Engineering Approach”. In: Software Engineering
2014 – Fachtagung des GI-Fachbereichs Softwaretechnik. Ed. by
Wilhelm Hasselbring and Nils Christian Ehmke. Vol. 227. GI
Lecture Notes in Informatics. Doctoral Symposium. Kiel, Ger-
many: Gesellschaft für Informatik e.V. (GI), 2014, pp. 233–236.
isbn: 978-388579-621-3. url: http://subs.emis.de/LNI/Proce
edings/Proceedings227/P-227.pdf.

[Kra15] Max E. Kramer. “A Generative Approach to Change-Driven Con-
sistency in Multi-View Modeling”. In: Proceedings of the 11th
International ACM SIGSOFT Conference on Quality of Software

Architectures. QoSA ’15. 20th International Doctoral Sympo-
sium on Components and Architecture (WCOP ’15). Montréal,
QC, Canada: ACM, 2015, pp. 129–134. isbn: 978-1-4503-3470-9.
doi: 10.1145/2737182.2737194. url: http://doi.acm.org/10
.1145/2737182.2737194.

[Kra17] Max Emanuel Kramer. “Speci�cation Languages for Preserving
Consistency between Models of Di�erent Languages”. PhD
thesis. Karlsruhe, Germany: Karlsruhe Institute of Technology
(KIT), 2017. 278 pp. doi: 10.5445/IR/1000069284. url: http:
//nbn-resolving.org/urn:nbn:de:swb:90-692845.

[Kro12] Klaus Krogmann. Reconstruction of Software Component Archi-

tectures and Behaviour Models using Static and Dynamic Analy-

sis. Vol. 4. The Karlsruhe Series on Software Design and Quality.
KIT Scienti�c Publishing, 2012. doi: 10.5445/KSP/1000025617.

331

https://doi.org/10.1145/2737166.2737177
http://doi.acm.org/10.1145/2737166.2737177
http://doi.acm.org/10.1145/2737166.2737177
http://nbn-resolving.org/urn:nbn:de:swb:90-456541
http://nbn-resolving.org/urn:nbn:de:swb:90-456541
http://subs.emis.de/LNI/Proceedings/Proceedings227/P-227.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings227/P-227.pdf
https://doi.org/10.1145/2737182.2737194
http://doi.acm.org/10.1145/2737182.2737194
http://doi.acm.org/10.1145/2737182.2737194
https://doi.org/10.5445/IR/1000069284
http://nbn-resolving.org/urn:nbn:de:swb:90-692845
http://nbn-resolving.org/urn:nbn:de:swb:90-692845
https://doi.org/10.5445/KSP/1000025617


Bibliography

url: http://digbib.ubka.uni-karlsruhe.de/volltexte/100
0025617.

[KSB10] Heiko Koziolek, Bastian Schlich, and Carlos Bilich. “A Large-
Scale Industrial Case Study on Architecture-based Software
Reliability Analysis”. In: 2010 IEEE 21st International Sympo-

sium on Software Reliability Engineering. IEEE. 2010, pp. 279–
288.

[Lan+16] Michael Langhammer, Arman Shahbazian, Nenad Medvidovic,
and Ralf H. Reussner. “Automated Extraction of Rich Software
Models from Limited System Information”. In: 2016 13th Work-

ing IEEE/IFIP Conference on Software Architecture (WICSA). Apr.
2016, pp. 99–108. doi: 10.1109/WICSA.2016.35.

[Lan13] Michael Langhammer. “Co-Evolution of Component-based
Architecture-Model and Object-Oriented Source Code”. In: Pro-
ceedings of the 18th international doctoral symposium on Com-

ponents and architecture. ACM. 2013, pp. 37–42.
[LBR99] GT Leavens, AL Baker, and Clyde Ruby. “JML: A Notation for

Detailed Design”. In: Behavioral Speci�cations of Businesses and
Systems. Ed. by Haim Kilov, Bernhard Rumpe, and Ian Sim-
monds. Boston, USA: Springer Berlin Heidelberg, 1999, pp. 175–
188. url: http://link.springer.com/chapter/10.1007/978-
1-4615-5229-1%5C_12.

[Le+15] Duc Minh Le et al. “An Empirical Study of Architectural Change
in Open-Source Software Systems”. In: 12th IEEE Working Con-

ference on Mining Software Repositories (2015), pp. 235–245.
[Leo+15] Sven Leonhardt, Benjamin Hettwer, Johannes Hoor, and

Michael Langhammer. “Integration of Existing Software Ar-
tifacts into a View- and Change-Driven Development Ap-
proach”. In: Proceedings of the 2015 Joint MORSE/VAO Work-

shop on Model-Driven Robot Software Engineering and View-

based Software-Engineering. MORSE/VAO ’15. L’Aquila, Italy:
ACM, 2015, pp. 17–24. isbn: 978-1-4503-3614-7. doi: 10.1145/2
802059.2802061. url: http://doi.acm.org/10.1145/2802059
.2802061.

332

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025617
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025617
https://doi.org/10.1109/WICSA.2016.35
http://link.springer.com/chapter/10.1007/978-1-4615-5229-1%5C_12
http://link.springer.com/chapter/10.1007/978-1-4615-5229-1%5C_12
https://doi.org/10.1145/2802059.2802061
https://doi.org/10.1145/2802059.2802061
http://doi.acm.org/10.1145/2802059.2802061
http://doi.acm.org/10.1145/2802059.2802061


Bibliography

[LK14] Michael Langhammer and Max E. Kramer. “Determining the
Intent of Code Changes to Sustain Attached Model Informa-
tion During Code Evolution”. In: Fachgruppenbericht des 2.

Workshops “Modellbasierte und Modellgetriebene Softwaremod-

ernisierung”. Vol. 34 (2). Softwaretechnik-Trends. Gesellschaft
für Informatik e.V. (GI), 2014. url: http://pi.informatik.uni
-siegen.de/stt/34_2.

[LK15] Michael Langhammer and Klaus Krogmann. “A Co-evolution
Approach for Source Code and Component-based Architec-
ture Models”. In: 17. Workshop Software-Reengineering und-

Evolution. Vol. 4. 2015. url: http://fg- sre.gi.de/filead
min/gliederungen/fg-sre/wsre2015/WSRE2015-Proceeeding

s-preliminary.pdf#page=40.
[MA00] Daniel A. Menascé and Virgilio A. F. Almeida. Scaling for E-

Business: Technologies, Models, Performance, and Capacity Plan-

ning. Prentice Hall, Englewood Cli�s, NJ, USA, 2000.
[MAD94] Daniel A. Menascé, Virgilio A. F. Almeida, and Larry W.

Dowdy. Capacity Planning and Performance Modeling: From

Mainframes to Client-Server Systems. New Jersey: Prentice-Hall,
Mar. 1994, p. 432. isbn: 0-13-035494-5.

[Maf+13] Cristiano Ma�ort, Marco Tulio Valente, Nicolas Anquetil, Andre
Hora, and Mariza Bigonha. “Heuristics for discovering architec-
tural violations”. In: Working Conference on Reverse Engineering

(WCRE’13). 2013.
[Maz16] Manar Mazkatli. “Automotive Systems Modeling with Vitru-

vius”. MA thesis. Karlsruhe Institute of Technology (KIT), Ger-
many, 2016.

[Men+06] Kim Mens, Andy Kellens, Frédéric Pluquet, and Roel Wuyts.
“Co-evolving Code and Design with Intensional Views: A case
study”. In:Comput. Lang. Syst. Struct. 32.2-3 (July 2006), pp. 140–
156. issn: 1477-8424. doi: 10.1016/j.cl.2005.09.002. url:
http://dx.doi.org/10.1016/j.cl.2005.09.002.

[Mer+16] Philipp Merkle, Jörg Henss, Sebastian Lehrig, and Anne Kozi-
olek. “Under the Hood”. In: Modeling and Simulating Software

Architectures – The Palladio Approach. Ed. by Ralf H. Reussner
et al. Cambridge, MA: MIT Press, Oct. 2016. Chap. 8, pp. 167–

333

http://pi.informatik.uni-siegen.de/stt/34_2
http://pi.informatik.uni-siegen.de/stt/34_2
http://fg-sre.gi.de/fileadmin/gliederungen/fg-sre/wsre2015/WSRE2015-Proceeedings-preliminary.pdf#page=40
http://fg-sre.gi.de/fileadmin/gliederungen/fg-sre/wsre2015/WSRE2015-Proceeedings-preliminary.pdf#page=40
http://fg-sre.gi.de/fileadmin/gliederungen/fg-sre/wsre2015/WSRE2015-Proceeedings-preliminary.pdf#page=40
https://doi.org/10.1016/j.cl.2005.09.002
http://dx.doi.org/10.1016/j.cl.2005.09.002


Bibliography

191. url: http://mitpress.mit.edu/books/modeling-and-si
mulating-software-architectures.

[Mer11] Philipp Merkle. “Comparing Process- and Event-oriented Soft-
ware Performance Simulation”. MA thesis. Karlsruhe Institute
of Technology (KIT), Germany, 2011.

[Mer17] Philipp Merkle. “Guiding the Design of Transactional Informa-
tion Systems by Architecture-level Modeling and Simulation”.
to appear. PhD thesis. Karlsruhe, Germany: Karlsruhe Institute
of Technology, 2017.

[Mes14] Dominik Messinger. “Incremental Code Architecture Consis-
tency Support through Change Monitoring and Intent Clari-
�cation”. MA thesis. Karlsruhe Institute of Technology (KIT),
2014.

[MH11] Philipp Merkle and Jörg Henss. “EventSim – An Event-driven
Palladio Software Architecture Simulator”. In: Palladio Days

2011 Proceedings (appeared as technical report). Ed. by Ste�en
Becker, Jens Happe, and Ralf Reussner. Karlsruhe Reports in
Informatics ; 2011,32. Karlsruhe: KIT, Fakultät für Informatik,
2011, pp. 15–22. url: http://digbib.ubka.uni-karlsruhe.de
/volltexte/1000025188.

[MK15] Philipp Merkle and Holger Knoche. “Extending the Palladio
Component Model to Analyze Data Contention for Modernizing
Transactional Software Towards Service-Orientation”. In: Pro-
ceedings of the Symposium on Software Performance (SSP) 2015.
Softwaretechnik-Trends. 2015. url: http://sdqweb.ipd.kit.e
du/publications/pdfs/merkle2015a.pdf.

[MM03] Marija Mikic-Rakic and Nenad Medvidovic. “Adaptable Archi-
tectural Middleware for Programming-in-the-small-and-many”.
In: Proceedings of the ACM/IFIP/USENIX 2003 International Con-

ference on Middleware. Middleware ’03. Rio de Janeiro, Brazil:
Springer-Verlag New York, Inc., 2003, pp. 162–181. isbn: 3-540-
40317-5. url: http://dl.acm.org/citation.cfm?id=1515915
.1515927.

334

http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025188
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025188
http://sdqweb.ipd.kit.edu/publications/pdfs/merkle2015a.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/merkle2015a.pdf
http://dl.acm.org/citation.cfm?id=1515915.1515927
http://dl.acm.org/citation.cfm?id=1515915.1515927


Bibliography

[Mon15] Alexander Monev. “Injecting Component Dependencies into
Architecture and Code Co-Evolution Transformations using
a Dependency Injection Framework”. Bachelor’s Thesis. Karl-
sruhe Institute of Technology (KIT), 2015.

[MW16] Johannes Meier and Andreas Winter. “Towards Metamodel In-
tegration Using Reference Metamodels”. In: 4th Workshop on

View-Based, Aspect-Oriented and Orthographic Software Mod-

elling (VAO). VAO ’16. Karlsruhe, Germany, Mar. 2016, pp. 19–
22. url: http://digbib.ubka.uni-karlsruhe.de/volltexte
/1000053686.

[Nic+00] Ulrich A Nickel, Jörg Niere, Jörg P Wadsack, and Albert Zündorf.
“Roundtrip engineering with FUJABA”. In: Proceedings of the
2nd Workshop on Software-Reengineering (WSR), August. 2000.

[NNZ00] Ulrich Nickel, Jörg Niere, and Albert Zündorf. “The FUJABA En-
vironment”. In: Proceedings of the 22Nd International Conference
on Software Engineering. ICSE ’00. Limerick, Ireland: ACM, 2000,
pp. 742–745. isbn: 1-58113-206-9. doi: 10.1145/337180.337620.
url: http://doi.acm.org/10.1145/337180.337620.

[No 12] No Magic, Inc. MagicDraw Technical Overview. 2012. url: http
://www.nomagic.com/files/brochures/letter/MagicDraw_T

echOverview_2012.pdf (visited on 10/15/2015).
[Obj09] Object Management Group (OMG). Meta Object Facility (MOF)

2.0 Query/View/Transformation Speci�cation – Version 1.1 Beta

2. Dec. 2009. url: http://www.omg.org/spec/QVT/1.1/Beta2/.
[Obj15] Object Management Group (OMG). OMGUni�edModeling Lan-

guage TM (OMG UML): Version 2.5. 2015. url: http://www.uml
.org.

[Obj16] Object Management Group (OMG). MOF 2.5.1 Core Speci�cation

(formal/2016-11-01). Nov. 2016. url: http://www.omg.org/spe
c/MOF/2.5.1/.

[Oqu+04] Flavio Oquendo et al. “ArchWare: Architecting Evolvable
Software”. In: Software Architecture: First European Workshop,

EWSA 2004, St Andrews, UK, May 21-22, 2004. Proceedings. Ed.
by Flavio Oquendo, Brian C. Warboys, and Ron Morrison. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 257–271. isbn:

335

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000053686
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000053686
https://doi.org/10.1145/337180.337620
http://doi.acm.org/10.1145/337180.337620
http://www.nomagic.com/files/brochures/letter/MagicDraw_TechOverview_2012.pdf
http://www.nomagic.com/files/brochures/letter/MagicDraw_TechOverview_2012.pdf
http://www.nomagic.com/files/brochures/letter/MagicDraw_TechOverview_2012.pdf
http://www.omg.org/spec/QVT/1.1/Beta2/
http://www.uml.org
http://www.uml.org
http://www.omg.org/spec/MOF/2.5.1/
http://www.omg.org/spec/MOF/2.5.1/


Bibliography

978-3-540-24769-2. doi: 10.1007/978-3-540-24769-2_23. url:
http://dx.doi.org/10.1007/978-3-540-24769-2_23.

[Pet16] Frederik Petersen. “Extending an Architecture and Code Co-
Evolution Approach to Support Existing Software Projects”.
MA thesis. Karlsruhe Institute of Technology (KIT), 2016.

[PSV13] Vaclav Pech, Alex Shatalin, and Markus Voelter. “JetBrains MPS
As a Tool for Extending Java”. In: Proceedings of the 2013 Inter-
national Conference on Principles and Practices of Programming

on the Java Platform: Virtual Machines, Languages, and Tools.
PPPJ ’13. Stuttgart, Germany: ACM, 2013, pp. 165–168. isbn:
978-1-4503-2111-2. doi: 10.1145/2500828.2500846. url: http:
//doi.acm.org/10.1145/2500828.2500846.

[PW92] Dewayne E. Perry and Alexander L. Wolf. “Foundations for the
Study of Software Architecture”. In: ACM SIGSOFT Software

Engineering Notes 17.4 (Oct. 1992), pp. 40–52.
[Rat13] Christoph Rathfelder. Modelling Event-Based Interactions in

Component-Based Architectures for Quantitative System Evalu-

ation. Vol. 10. The Karlsruhe Series on Software Design and
Quality. Karlsruhe, Germany: KIT Scienti�c Publishing, 2013.
url: http://www.ksp.kit.edu/shop/isbn2shopid.php?isbn
=978-3-86644-969-5.

[Reu+11] Ralf Reussner et al. The Palladio Component Model. Tech. rep.
Karlsruhe: KIT, Fakultät für Informatik, 2011. url: http://dig
bib.ubka.uni-karlsruhe.de/volltexte/1000022503.

[Reu+16] Ralf H. Reussner et al. Modeling and Simulating Software Archi-

tectures – The Palladio Approach. Cambridge, MA: MIT Press,
Oct. 2016. 408 pp. isbn: 9780262034760. url: http://mitpress
.mit.edu/books/modeling-and-simulating-software-archi

tectures.
[RVV09] István Ráth, Gergely Varró, and Dániel Varró. “Change-Driven

Model Transformations”. In: Model Driven Engineering Lan-

guages and Systems. Ed. by Andy Schürr and Bran Selic. Berlin,
Heidelberg: Springer, 2009, pp. 342–356. isbn: 978-3-642-04425-
0. doi: 10.1007/978-3-642-04425-0_26. url: http://dx.doi
.org/10.1007/978-3-642-04425-0_26.

336

https://doi.org/10.1007/978-3-540-24769-2_23
http://dx.doi.org/10.1007/978-3-540-24769-2_23
https://doi.org/10.1145/2500828.2500846
http://doi.acm.org/10.1145/2500828.2500846
http://doi.acm.org/10.1145/2500828.2500846
http://www.ksp.kit.edu/shop/isbn2shopid.php?isbn=978-3-86644-969-5
http://www.ksp.kit.edu/shop/isbn2shopid.php?isbn=978-3-86644-969-5
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
https://doi.org/10.1007/978-3-642-04425-0_26
http://dx.doi.org/10.1007/978-3-642-04425-0_26
http://dx.doi.org/10.1007/978-3-642-04425-0_26


Bibliography

[Sak09] Kenneth Saks. JSR 318: Enterprise JavaBeansTM,Version 3.1 EJB

Core Contracts and Requirements. Tech. rep. JCP (Java Commu-
nity Process), 2009. url: http://download.oracle.com/otn-p
ub/jcp/ejb-3.1-pfd-oth-JSpec/ejb-3_1-pfd-spec.pdf.

[SB12] Lakshitha de Silva and Dharini Balasubramaniam. “Control-
ling software architecture erosion: A survey”. In: Journal of
Systems and Software 85.1 (2012). Dynamic Analysis and Test-
ing of Embedded Software, pp. 132–151. issn: 0164-1212. doi:
http://dx.doi.org/10.1016/j.jss.2011.07.036. url:
http://www.sciencedirect.com/science/article/pii/S016

4121211002044.
[Sei14] Stephan Seifermann. “Model-Driven Co-Evolution of Contracts,

Unit-Tests and Source-Code”. MA thesis. Karlsruhe Institute of
Technology (KIT), Germany, 2014.

[SGM02] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Com-

ponent Software: Beyond Object-Oriented Programming. 2nd ed.
New York, NY: ACM Press and Addison-Wesley, 2002.

[SK16] Misha Strittmatter and Amine Kechaou. The Media Store 3 Case

Study System. Tech. rep. 2016,1. Faculty of Informatics, Karl-
sruhe Institute of Technology, Feb. 2016. url: http://digbib
.ubka.uni-karlsruhe.de/volltexte/documents/3792054.

[Spa14] Sparx Systems. Enterprise Architect User Guide. 2014. url: http
://www.sparxsystems.com.au/bin/EAUserGuide.pdf (visited
on 10/15/2015).

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Wien: Springer
Verlag, 1973. isbn: 3-211-81106-0.

[Ste+08] David Steinberg, Frank Budinsky, Marcelo Paternostro, and
Ed Merks. EMF: Eclipse Modeling Framework. second revised.
Eclipse series. Addison-Wesley Longman, Amsterdam, Dec.
2008. isbn: 978-0321331885.

[Sun06] Sun Microsystems. JSR 294: Improved Modularity Support in the

Java Programming Language. Tech. rep. 2006.
[Tel13] Christian Telpl. “Partial Lock for Eclipse Source Code Editors

against User Input”. Bachelor’s Thesis. Karlsruhe Institute of
Technology (KIT), 2013.

337

http://download.oracle.com/otn-pub/jcp/ejb-3.1-pfd-oth-JSpec/ejb-3_1-pfd-spec.pdf
http://download.oracle.com/otn-pub/jcp/ejb-3.1-pfd-oth-JSpec/ejb-3_1-pfd-spec.pdf
https://doi.org/http://dx.doi.org/10.1016/j.jss.2011.07.036
http://www.sciencedirect.com/science/article/pii/S0164121211002044
http://www.sciencedirect.com/science/article/pii/S0164121211002044
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/3792054
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/3792054
http://www.sparxsystems.com.au/bin/EAUserGuide.pdf
http://www.sparxsystems.com.au/bin/EAUserGuide.pdf


Bibliography

[TH99] John B. Tran and Richard C. Holt. “Forward and Reverse Re-
pair of Software Architecture”. In: Proceedings of the 1999 Con-
ference of the Centre for Advanced Studies on Collaborative Re-

search. CASCON ’99. Mississauga, Ontario, Canada: IBM Press,
1999, pp. 12–. url: http://dl.acm.org/citation.cfm?id=781
995.782007.

[Van08] Robbie Vanbrabant. Google Guice : Agile Lightweight Depen-

dency Injection Framework. �rstPress. Berkeley, CA: Apress,
2008. isbn: 978-1-59059-997-6. url: http://swbplus.bsz- b
w.de/bsz303965231cov.htm.

[VMP14] Vladimir Viyovic, Milan Maksimovic, and Branko Perisic. “Sir-
ius: A rapid development of DSM graphical editor”. In: Intel-
ligent Engineering Systems (INES), 2014 18th International Con-

ference on. IEEE. 2014, pp. 233–238.
[Voe+13] Markus Voelter, Daniel Ratiu, Bernd Kolb, and Bernhard Schaetz.

“mbeddr: instantiating a language workbench in the embedded
software domain”. English. In: Automated Software Engineering

20.3 (2013), pp. 339–390. issn: 0928-8910. doi: 10.1007/s10515-
013-0120-4. url: http://dx.doi.org/10.1007/s10515-013-0
120-4.

[Vog13] Lars Vogel. Eclipse 4 RCP : The complete guide to Eclipse ap-

plication development; second edition based on eclipse 4.3. [2.
ed.] vogella series. Leipzig[Druckort]: Lars Vogel, 2013. isbn:
9783943747072.

[VS06] Markus Völter and Thomas Stahl. Model-Driven Software De-

velopment – Technology, Engineering, Management. Chichester,
England: John Wiley & Sons, Ltd, 2006. isbn: 978-0-470-02570-3.

[Wer16] Dominik Werle. “A Declarative Language for Bidirectional
Model Consistency”. MA thesis. Karlsruhe Institute of Technol-
ogy (KIT), 2016.

[Wuy01] Roel Wuyts. “A Logic Meta-Programming Approach to Support
the Co-Evolution of Object-Oriented Design and Implementa-
tion”. PhD thesis. Vrije Universiteit Brussel, 2001.

338

http://dl.acm.org/citation.cfm?id=781995.782007
http://dl.acm.org/citation.cfm?id=781995.782007
http://swbplus.bsz-bw.de/bsz303965231cov.htm
http://swbplus.bsz-bw.de/bsz303965231cov.htm
https://doi.org/10.1007/s10515-013-0120-4
https://doi.org/10.1007/s10515-013-0120-4
http://dx.doi.org/10.1007/s10515-013-0120-4
http://dx.doi.org/10.1007/s10515-013-0120-4


Bibliography

[WW04] Xiuping Wu and Murray Woodside. “Performance Modeling
from Software Components”. In: SIGSOFT Softw. Eng. Notes 29.1
(2004), pp. 290–301. issn: 0163-5948. doi: http://doi.acm.org
/10.1145/974043.974089.

339

https://doi.org/http://doi.acm.org/10.1145/974043.974089
https://doi.org/http://doi.acm.org/10.1145/974043.974089




Band 1	 Steffen Becker
	� Coupled Model Transformations for QoS Enabled  

Component-Based Software Design. 
	 ISBN 978-3-86644-271-9

Band 2	 Heiko Koziolek
	� Parameter Dependencies for Reusable Performance  

Specifications of Software Components. 
	 ISBN 978-3-86644-272-6 

Band 3	 Jens Happe
	� Predicting Software Performance in Symmetric  

Multi-core and Multiprocessor Environments. 
	 ISBN 978-3-86644-381-5 

Band 4	 Klaus Krogmann
	� Reconstruction of Software Component Architectures and 

Behaviour Models using Static and Dynamic Analysis. 
	 ISBN 978-3-86644-804-9 

Band 5	 Michael Kuperberg
	� Quantifying and Predicting the Influence of Execution Platform 

on Software Component Performance. 
	 ISBN 978-3-86644-741-7 

Band 6	 Thomas Goldschmidt
	 View-Based Textual Modelling. 
	 ISBN 978-3-86644-642-7 

Band 7	 Anne Koziolek
	� Automated Improvement of Software Architecture Models  

for Performance and Other Quality Attributes. 
	 ISBN 978-3-86644-973-2 

The Karlsruhe Series on 
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner // ISSN 1867-0067

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.



Band 8	 Lucia Happe
	 �Configurable Software Performance Completions through  

Higher-Order Model Transformations. 
	 ISBN 978-3-86644-990-9

Band 9	 Franz Brosch
	� Integrated Software Architecture-Based Reliability  

Prediction for IT Systems. 
	 ISBN 978-3-86644-859-9

Band 10	 Christoph Rathfelder
	� Modelling Event-Based Interactions in Component-Based  

Architectures for Quantitative System Evaluation. 
	 ISBN 978-3-86644-969-5 

Band 11	 Henning Groenda
	� Certifying Software Component  

Performance Specifications. 
	 ISBN 978-3-7315-0080-3

Band 12	 Dennis Westermann
	� Deriving Goal-oriented Performance Models  

by Systematic Experimentation. 
	 ISBN 978-3-7315-0165-7

Band 13	 Michael Hauck
	� Automated Experiments for Deriving Performance-relevant 

Properties of Software Execution Environments. 
	 ISBN 978-3-7315-0138-1

Band 14	 Zoya Durdik
	� Architectural Design Decision Documentation through  

Reuse of Design Patterns. 
	 ISBN 978-3-7315-0292-0 

Band 15	 Erik Burger
	� Flexible Views for View-based Model-driven Development. 
	 ISBN 978-3-7315-0276-0

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.



Band 16	 Benjamin Klatt
	 Consolidation of Customized Product Copies 
	 into Software Product Lines. 
	 ISBN 978-3-7315-0368-2

Band 17	 Andreas Rentschler
	� Model Transformation Languages with  

Modular Information Hiding. 
	 ISBN 978-3-7315-0346-0

Band 18	 Omar-Qais Noorshams
	� Modeling and Prediction of I/O Performance  

in Virtualized Environments. 
	 ISBN 978-3-7315-0359-0

Band 19	 Johannes Josef Stammel
	� Architekturbasierte Bewertung und Planung  

von Änderungsanfragen.
 	 ISBN 978-3-7315-0524-2 

Band 20	 Alexander Wert
	 Performance Problem Diagnostics by Systematic Experimentation.
 	 ISBN 978-3-7315-0677-5 

Band 21	 Christoph Heger
	� An Approach for Guiding Developers to  

Performance and Scalability Solutions.
 	 ISBN 978-3-7315-0698-0  

Band 22	 Fouad ben Nasr Omri
	� Weighted Statistical Testing based on Active Learning and Formal 

Verification Techniques for Software Reliability Assessment.
 	 ISBN 978-3-7315-0472-6   

Band 23	 Michael Langhammer
	� Automated Coevolution of Source Code  

and Software Architecture Models.
 	 ISBN 978-3-7315-0783-3

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.



The Karlsruhe Series on 
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner

M
ic

h
ae

l L
an

g
h

am
m

er
A

u
to

m
at

ed
 C

o
ev

o
lu

ti
o

n
 o

f 
So

u
rc

e 
C

o
d

e 
an

d
 S

o
ft

w
ar

e 
A

rc
h

it
ec

tu
re

 M
o

d
el

s

To develop complex software systems, source code and other artefacts, such 
as architectural models and behaviour descriptions, are used. Keeping these 
software architecture-based models consistent with the systems’ source code 
during software development and software evolution helps software architects.

In this book, we introduce a novel approach to keep high-level component-based 
architecture models consistent with source code during software development 
and software evolution. In particular, the approach can be used to keep instanc-
es of the Palladio Component Model (PCM) consistent with Java source code. 
The approach consists of a change-driven consistency preservation process, 
incremental reverse-engineering of Service Effect Specifi cations of PCM, and 
several integration strategies for existing source code and architectural models.

ISSN 1867-0067 
ISBN 978-3-7315-0783-3  
Gedruckt auf FSC-zertifi ziertem Papier

9 783731 507833

ISBN 978-3-7315-0783-3


	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Motivation
	Goals and Questions
	Approach and Contributions of this Thesis
	Contributions
	Evaluation

	Existing Approaches
	Approaches that keep architectural models and source code consistent during software development and software evolution
	Architecture reverse engineering approaches
	View-based software development approaches

	Structure of the Thesis

	Foundations
	Model-Driven Software Development
	Meta Object Facility
	Eclipse Modeling Framework and Ecore

	View-based Software Development
	Orthographic Software Modelling
	Vitruvius

	Palladio Component Model
	PCM Repository with SEFFs
	PCM System

	Source Code Model eXtractor
	Overview
	SoMoX SEFF Reconstruction

	Used Tools and Standards
	Java Model Parser and Printer
	Eclipse Plugin Development
	Dependency Injection Frameworks for Java
	Enterprise Java Beans
	Replaying Changes from a Version Control System

	Evaluation foundations
	Goal Question Metric
	Validation Levels of Böhme and Reussner


	A Change-driven Consistency Process for Models 
	Scientific Challenges
	Terminology
	Change Metamodel
	Correspondence Metamodel
	Change Monitoring
	Monitoring Changes in Architectural Models 
	Monitoring Source Code Changes

	Defining Consistency Preservation Rules
	Defining Consistency Preservation Rulesusing a GPL
	Defining Consistency Preservation Rules using the MIR Languages

	Consistency Preservation Process
	Change Triggering and Initializing ChangeConsistency Preservation Process 
	Command Creation
	Command Executing


	A Method for keeping Architecture Consistent with Source Code
	Scientific Challenges
	Coevolution of Architectural Models and Code
	The VSUM of our Coevolution Approach and the Definition of Consistency Preservation Rules
	Monitored Source Code Editor
	Monitored Architectural Editor
	UML Class Diagram Editor for Java Code 
	Classification of our Coevolution Approach into the View-based Engineering Approach Vitruvius

	Consistency Preservation Rules between Component-based Architecture and Source Code
	Dimensions of Consistency Preservation Rules
	Package Mapping Consistency Preservation Rules as Example
	Outline on How to Verify and Validate our Consistency Preservation Rules

	Consistency Automation Levels and User Change Disambiguation
	Levels of Automation
	Point in Time and Kind of User Change Disambiguation
	Interactive Interactions using Dialogs
	Task list to enable late resolving of inconsistency

	Coevolution of Source Code Behaviour and Architectural Elements 
	Mapping from SEFF to Source Code
	Incremental SEFF Creation to Create up-to Date Behavioural Models 
	Coevolution of Behavioural Architectural Models and Source Code

	Consistency Preservation Rules between Architectural Models and Code
	Source Code Technology Specific Consistecncy Preservation Rules
	Mappings between Architectural Models,Source Code, and Additional Artefacts
	Mapping between Architectural Models, Source Code, and Eclipse Plugin Development Artefacts

	User Roles in our Coevolution Approach
	Architectural Consistency Methodologists
	Software Architects
	Software Developers


	Include Existing Artefacts 
	Scientific Challenges
	Include Existing Artefacts in Vitruvius
	Reconstructive Integration Strategy
	Linking Integration Strategy
	The Role of the Integrators

	Include existing Architecture Models using Reconstructive Integration Strategy
	Include existing Source Code using a Linking Integration Strategy
	Extracting Architecture Models from exiting Source Code 
	The Four Code Integration Levels
	Integration Level 1: Include Architecture-Code-Mapping Compliant Source Code
	Integration Level 2: Include Non-Compliant Source Code
	Integration Level 3: The Definition and Executionof Special Bidirectional Consistency Preservation Rules for Non-Compliant Source Code
	Tasks for the Integrators during the Code Integration


	Evaluation
	Evaluation Overview
	Overview of the Performed Evaluation
	Validation Levels of the performed Evaluations
	Evaluation Results

	GQM Plan for the Evaluation
	Include existing Artefacts
	Coevolution of Architectural Models and Source Code
	Model-based Analyses using coevolvedArchitecture Models

	Evaluation of reverse engineering approaches
	Evaluation of Extract
	Evaluation of EJBmoX
	Comparison of a Reverse Engineered Model witha Manually created Model

	Evaluation of the Consistency Preservation Rules and the PCM RIS
	Existing PCM Models
	Execution of the Case Study
	Results of the Integration Case Study

	Integrating Existing Source Code and Replaying Changes
	Used Open Source Projects
	Reverse Engineering of the Case Study Systems
	Integrating the Case Study Systems
	Replaying Changes Extracted from a VCS

	Performance Evaluation of our Coevolution Approach
	Performance Evaluation for the Java Monitor
	Performance during Change Replay
	Discussion

	Model-based Performance Prediction using Coevolved Architecture Models
	Evolution Scenario for mRUBiS
	Coevolution during the Implementation of the Evolution Scenario
	Enriching the Architectural Model with Resource Demands
	Experiment Results

	Threats to validity

	Related Work
	Approaches that keep Architectural Models and Source Code Consistent
	Coevolution Approaches for Source Code and High-Level Architectural Models
	Approaches Supporting Change-driven Extraction or Coevolution of Behavioural Models
	Approaches supporting Round-trip Engineering between UML Class Diagrams and Source Code
	Approaches Embedding Architectural Information in to Source Code

	Architecture Reverse Engineering Approaches
	View-based Software Development Approaches

	Conclusions and Future Work
	Summary
	Limitations and Outlook on Future Work

	Appendix
	Change Catalog for the Source Code Monitor
	Results of the Integration Case Study per Project
	Results of the Change Replay Case Study per Project
	Results for the core project of Apache Any23
	Results for the core project of Apache Gora
	Results for Apache Velocity
	Results for Apache Xerces


	Bibliography



