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1 Introduction

In tournaments, contestants compete against each other for a limited set of

given prizes. Typically, one contestant with the best performance receives

the winner prize and the less successful competitors only receive lower loser

prizes. Tournament situations have been analyzed analytically within many

different frameworks since the seminal article of Lazear and Rosen (1981)

(for early contributions compare also Nalebuff and Stiglitz (1983) or Green

and Stokey (1983)).

However, most contributions have focussed on optimal effort choices, i.e.

contestants can choose among different outcome distributions with the same

variance but different means where higher means are associated with higher

effort costs. Yet, in real world tournaments contestants often also make

decisions determining the variance of outcomes. For example mutual fund

managers have to decide between risky or safe portfolios, or firms have to

choose between implementing a new technology or staying with the standard

one. In politics a “gambling for resurrection“ phenomenon has often been

observed. That is, political leaders who fear defeat in an election sometimes

seem to choose risky policy alternatives in order to turn around their fate.

A key intuition often expressed is that a front runner should aim at safe

policy options whereas a contestant trailing in the competition has incentives

to choose a riskier strategy. However, this intuition disregards the possibility

that often the sets of policy options fromwhich the contestants can choose are

very similar, making it harder for the trailing candidate to differentiate from

the front runner. That is, a front runner may try to imitate a risky policy

chosen by the competitor exactly in order to protect his lead: independent

of whether the policy fails or succeeds with the voters the relative position

remains unchanged when the policy can be exactly replicated.

In this paper we study risk taking in a formal tournament model as well

as a laboratory experiment. We analyze a simple tournament in which two

contestants can choose among a safe or a risky policy option. We investigate
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under which circumstances a trailing agent indeed gambles and a front run-

ner goes for the safe option. Our main theoretical and empirical observation

is that the result strongly depends on the correlation between the outcomes

of the risky strategies measuring the similarity of the set of policy options

available to the contestants. When the correlation is low, the standard intu-

ition indeed holds but when the correlation is higher this is no longer clear

as the front runner may have an incentive to imitate a risky strategy choice

of his opponent.

Bronars (1986) was the first to discuss risk taking as a choice variable in a

tournament context arguing that leading agents in sequential tournaments

prefer a low risk strategy and whereas their opponents prefer a high risk.

Hvide (2002) or Kräkel and Sliwka (2004) show that when the contestants

first make a risk and then an effort choice, a risky strategy may be attractive

even for a trailing agent as it serves as a commitment device for exerting

lower efforts at the later stage. But in both models the outcomes of the risky

strategies are uncorrelated. Gaba and Kalra (1999), Hvide and Kristiansen

(2003) or Taylor (2003) concentrate on the choice of risk in tournaments

without endogenous efforts. Most closely related to our paper is the model

by Taylor (2003), analyzing the behavior of mutual fund managers who can

invest in portfolios that contain safe and risky assets. In his model the out-

comes of the risky strategies are perfectly correlated such that both managers

receive exactly the same return when they invest in the risky asset. In this

game only a mixed equilibrium exists in which the leading agent chooses the

riskier strategy more often than the trailing agent. In a sense, our model

nests Taylor’s model with the more standard tournament models where the

outcomes are uncorrelated.

There are now numerous examples of empirical studies on tournaments and

some of them analyze risk taking. Becker and Huselid (1992) investigate

individual behavior in stock car racing and show that drivers take more

risk if prizes and prize spreads are large. Brown et al. (1996) or Chevalier
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and Ellison (1997) analyze the behavior of mutual fund managers. They

find that expected losers prefer high risks while expected winners prefer low

risks. Tournaments have been investigated in laboratory experiments as well

but all of the existing contributions focus on effort rather than risk taking

decisions (see for instance Bull et al. (1987), Harbring and Irlenbusch (2003),

Orrison et al. (2004), Eriksson et al. (2006), Sutter and Strassmair (2007) or

Carpenter et al. (2007)).

The remainder of the paper is organized as follows. In section 2 we introduce

the model and analyze the possible Nash equilibria. Section 3 describes the

experimental design and procedures. The hypotheses are shown in section 4

and in section 5 we present the experimental results. Section 6 concludes.

2 Theoretical Analysis

2.1 The Model

We consider a simple tournament between two agents A and B. We focus

on the risk taking decisions of the contestants and assume that both agents

simultaneously decide among a risky and a safe strategy, i.e. di ∈ {r, s} for
i = A,B. Each agent’s decision affects the distribution of his performance yi
as:

yi = µs when di = s

yi = ỹi ∼ N (µr, σ
2) when di = r

We allow for the possibility that one of the agents initially has a lead which

may for instance be due to differences in ability or the outcome of some prior

stage in the competition. Without loss of generality we assume that agent

A has a lead and wins the tournament when the sum of his performance yA
and the lead ∆yA exceeds his rival’s performance yB where ∆yA ≥ 0. When
yA +∆yA = yB each agent wins the tournament with probability 1

2
.

Note that the variance of the risky option is the same for both agents. The
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performance outcomes ỹi are correlated with correlation coefficient ρ. Hence,

we allow for the possibility that ρ = 0 as in Hvide (2002) and Kräkel and

Sliwka (2004) or that ρ = 1 as in Taylor (2003) but also consider intermediate

cases. The winner of the tournament receives a prize giving him a utility

normalized to 1 and the loser’s utility is zero. It is important to note that risk

attitudes do not matter at all for the equilibrium outcomes as any rescaling

of these two utility values does not alter the best responses.

2.2 Equilibrium Analysis

When both agents choose the safe option dA = dB = s of course A always

wins the tournament when ∆yA is strictly positive. When ∆yA = 0 each

agent wins with probability 1
2
. When A plays safe agent B’s only chance of

winning is to choose the risky strategy. In this case A’s winning probability

is

P sr
A = Pr (∆yA + µs > ỹB) = Φ

µ
∆yA + µs − µr

σ

¶
where Φ (·) is the cumulative distribution function of a standard normal
distribution. When both agents choose the risky strategy player A wins with

probability P rr
A = Pr (ỹB − ỹA ≤ ∆yA). Note that ỹB − ỹA follows a normal

distribution with mean 0 and variance 2σ2 (1− ρ). Hence,

P rr
A =

 Φ

µ
∆yA

σ
√
2(1−ρ)

¶
when ρ < 1

1 when ρ = 1.

Finally, when A plays risky and B plays safe, A’s winning probability is

P rs
A = Pr (∆yA + ỹA > µs) = 1− Φ

µ
µs −∆yA − µr

σ

¶
.

For ease of notation let ∆µ = µr − µs which is positive if the risky strategy
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has a higher expected outcome than the safe one and negative in the opposite

case. It is instructive to start with the case that ∆yA = 0. In that case the

following simple game is played.

Risky Safe

Risky
1

2
,
1

2
Φ
¡
∆µ
σ

¢
, Φ

¡−∆µ
σ

¢
Safe Φ

¡−∆µ
σ

¢
, Φ

¡
∆µ
σ

¢ 1

2
,
1

2

When ∆µ = 0 both players are indifferent between both strategies. But

there is a unique Nash equilibrium in dominant strategies in which both

agents choose the risky strategy when the risky strategy has a higher return,

i.e. ∆µ > 0. Whatever the opponent’s strategy, a player can always raise

the probability of winning by deviating to the risky strategy. If ∆µ < 0 the

unique Nash equilibrium in dominant strategies is (safe, safe).

Much more interesting is the case where one player has a lead, i.e. where

w.l.o.g. ∆yA > 0. The agents then play the following zero sum game where

the leading player A is the row and player B the column player.

Risky Safe

Risky Φ

µ
∆yA

σ
√
2(1−ρ)

¶
, Φ

µ
−∆yA

σ
√
2(1−ρ)

¶
Φ
¡
∆yA+∆µ

σ

¢
, Φ

¡−∆yA−∆µ
σ

¢
Safe Φ

¡
∆yA−∆µ

σ

¢
, Φ

¡−∆yA+∆µ
σ

¢
1, 0

First, it is straightforward to see that (risky, safe) and (safe, safe) can

never be Nash equilibria. In the first case, the leading player A wins for
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sure when deviating to the safe strategy. In the second, player B will always

deviate to the risky strategy as he otherwise loses for sure.

When agent B plays risky the leading player A can indeed lose the tourna-

ment with a positive probability. It is interesting to investigate under what

conditions he still prefers to stick to the safe strategy. He will do so when

Φ

Ã
∆yA

σ
p
2 (1− ρ)

!
≤ Φ

µ
∆yA −∆µ

σ

¶
⇔ ∆µ

∆yA
≤
Ã
1− 1p

2 (1− ρ)

!
.

As playing risky leaves player B the only chance to win the tournament, we

can directly conclude:

Proposition 1 A pure strategy Nash Equilibrium exists in which the leading
player A plays the safe strategy and player B plays the risky strategy if and

only if
∆µ

∆yA
≤ 1− 1p

2 (1− ρ)
. (1)

Hence, higher values of the lead∆yA and smaller values of∆µ tend to make it

more likely that the leading player sticks to the safe strategy. To understand

the result it is instructive first to consider the case where the performance

outcomes of the risky strategies are uncorrelated (i.e. ρ = 0). In this case,

condition (1) is equivalent to ∆µ
∆yA
≤ 1− 1

2

√
2. When the risky strategy does

not lead to a higher expected performance such that∆µ ≤ 0 the leading agent
A will then always stick to the safe strategy as playing the risky strategy will

only raise the probability to forgo the leading position. The larger ∆µ the

more attractive it of course becomes to switch to the risky strategy. This will

be the more so, the smaller the initial lead ∆yA as protecting a small lead is

not worthwhile when the risky strategy becomes more attractive in terms of

expected performance. But it is interesting that this picture changes when

the outcomes of the risky strategies are correlated. Note that condition (1)

is always violated if ρ tends to one.
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The larger the correlation between the risky strategies the more attractive

it becomes for player A to choose the risky strategy when B has done the

same — even when his lead ∆yA is large and even when the risky strategy

does not lead to a much higher expected performance. The reason is that

with correlated performance outcomes, choosing the risky strategy becomes

a means to protect the lead. Hence, we now have to check under which

conditions a Nash equilibrium exists in which both agents play the risky

strategy.

As analyzed above, when B plays risky the leading player A will prefer to

play risky as well when condition (1) is violated, i.e.

∆µ

∆yA
≥
Ã
1− 1p

2 (1− ρ)

!
. (2)

Player B then indeed also prefers the risky option when

Φ

Ã
−∆yA

σ
p
2 (1− ρ)

!
≥ Φ

µ−∆µ−∆yA
σ

¶
⇔ ∆µ

∆yA
≥
Ã

1p
2 (1− ρ)

− 1
!
.

(3)

Hence we can conclude:

Proposition 2 A pure strategy Nash Equilibrium exists in which both play-

ers choose the risky strategy if and only if

∆µ

∆yA
≥ max

(
1− 1p

2 (1− ρ)
,

1p
2 (1− ρ)

− 1
)
. (4)

Note that condition (4) is always violated if ∆µ < 0. If the risky strategy

does not lead to a higher expected outcome than the safe one the players will

never play (risky, risky).

For ∆µ > 0 consider first again the case where the outcomes of the risky
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strategies are uncorrelated (i.e. ρ = 0). Condition (4) is now equivalent to
∆µ
∆yA
≥ 1 − 1

2

√
2. Note that this is the opposite of condition (1) given in

Proposition 1. The reason is that player B always prefers the risky strategy

when ρ = 0 irrespective of A’s decision. As already laid out, when A plays

safe playing the risky strategy is the only way for player B to have at least

a chance of winning. When, however, A plays risky, player B has such a

chance already when playing safe, but can increase the odds by playing risky.

Hence, for ρ = 0 only player A’s considerations determine which equilibrium

is played. Both play risky in this case if and only if ∆µ
∆yA

is sufficiently large

as only then it will be reasonable for player A to take the risk and not to

protect the lead.

As pointed out above, the reasoning is different if the outcomes of the risky

strategies are correlated. As we have already seen, agent A has an incentive

to imitate a risky strategy of his opponent if the correlation gets larger. To

see that consider figure 1, in which the equilibrium conditions are mapped in

the
³
ρ, ∆µ

∆yA

´
-space. Condition (2) determines the downward sloping curve

that separates the region in which agent A plays safe and agent B plays risky

from that where both play risky. The higher ρ the more attractive it becomes

for agent A to switch to the risky strategy as well. A special case is ρ = 1
2
.

In this case condition (4) simplifies to ∆µ
∆yA
≥ 0 and, hence, the agents will

always play (risky, risky) whenever ∆µ ≥ 0 no matter how large the initial
lead is.

But when the correlation gets larger, choosing the risky strategy becomes

less attractive for player B. The stronger the correlation the smaller is the

probability for player B to overtake player A when both play risky. In the

extreme, when ρ = 1, both agents will always attain the same outcome when

playing the risky strategy and, hence, agent A would win for sure in this case.

In that case, however, playerB has an incentive to deviate to the safe strategy

when player A plays risky. Playing safe leaves at least the possibility that

A is unlucky and falls behind. But of course, when player A in turn knows
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Figure 1: Nash equilibria of the game

that B chooses the safe strategy, he would again want to deviate and choose

the safe strategy as well. Hence, we cannot have equilibria in pure strategies

if ρ = 1 as has already been shown by Taylor (2003). But note that we can

already conclude from Propositions 1 and 2 that a similar reasoning must

hold for a larger set of parameters. As we already have checked the existence

conditions for all potential pure strategy equilibria, when conditions (1) and

(4) are both violated only mixed strategy equilibria can exist. Hence, we can

show the following result:

Proposition 3 A Nash Equilibrium in mixed strategies exists if and only if

1− 1p
2 (1− ρ)

≤ ∆µ

∆yA
≤ 1p

2 (1− ρ)
− 1. (5)

In any mixed strategy equilibrium, player A chooses the risky strategy with a

larger probability than player B if the risky strategy leads to a higher expected

outcome than the safe one. If ∆µ < 0 player B chooses the risky strategy
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with a higher probability than his opponent.

Proof: See appendix.

Hence, only mixed strategy equilibria exist in the area between the both

curves in figure 1 if ρ > 1
2
. The larger the correlation between the outcomes

of the risky strategies and the smaller ∆µ
∆yA

the more likely it is that a mixed

strategy is played. In such an equilibrium, the leading player always chooses

the risky strategy with a higher probability than his opponent if ∆µ > 0.

In this case, the higher expected payoff of the risky strategy makes it more

attractive to gamble and the leading player can afford to gamble with a higher

probability due to his lead. If the outcome of the safe strategy is equal to

the expected outcome of the risky strategy both players will choose the risky

strategy with equal probability. The trailing player chooses the risky strategy

with a higher probability than the leading one if ∆µ < 0. Here, the trailing

player has a stronger incentive to play risky although this entails a loss in

expected payoffs.

3 Experimental Design and Procedure

We implemented the simple risk taking tournament in a laboratory experi-

ment. We ran three different treatments for each of which we conducted one

session with 24 participants. In each of 23 periods two players were matched

together randomly and anonymously. Hence, each participant played 23

times and each time with a different opponent. This perfect stranger match-

ing was implemented to prevent reputation effects. We varied the correlation

coefficient of the risky strategy between the treatments. The first treatment

had a correlation coefficient of zero, the second of one and the third of 1
2
.

Furthermore, we varied the lead ∆yA between the periods such that we are

able to investigate the effects of ∆yA on player’s strategy choices.
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The experiment was conducted at the Cologne Laboratory of Economic Re-

search at the University of Cologne in January 2007. Altogether 72 students

participated in the experiment. All of them were enrolled in the Faculty of

Management, Economics, and Social Sciences and had completed their sec-

ond year of studies. For the recruitment of the participants we used the online

recruitment system by Greiner (2003). We used the experimental software

z-tree by Fischbacher (2007) for programming the experiment.

At the outset of a session the subjects were randomly assigned to a cubical

where they took a seat in front of a computer terminal. The instructions

were handed out and read out by the experimenters.1 After that the subjects

had time to ask questions if they had any difficulties in understanding the

instructions. Communication - other than with the experimental software -

was not allowed.

Each session started with 5 trial periods so that the players could get used to

the game. In the trial rounds each player had the opportunity to simulate the

game by choosing the strategies for both players and observing the outcomes.

After that the 23 main periods started. All periods were identical but played

with a different partner. In the beginning of each period the players were

informed about their score of points which they had in the beginning and

the score of their opponent. So they knew whether they were the player

in lead and how large the difference between the scores was. The initial

scores of points were drawn from a normal distribution with a mean of 150

points and a standard deviation of 42 points. Then the players had to decide

whether they wanted to play a safe or a risky strategy. If a player chose the

safe strategy he received 80 additional points for sure. When choosing the

risky strategy the additional points awarded where determined by a random

draw from a normal distribution with a mean of 100 points and a standard

deviation of 20 points. In the first treatment the risky strategies of both

1The full set of all our experimental instructions can be obtained from the authors
upon request.
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players were uncorrelated. In the second treatment the risky strategies were

perfectly correlated and in the third they were correlated with ρ = 1
2
. This

information was common knowledge. The key concepts where explained in

the instructions and the players had the opportunity to develop a “feel” for

the distribution in the trial rounds. After each player made his decision they

were informed about the additional points received and the final score of

the game. The final score was the sum of the initial points of each player

and his additional points won in the game. They were also informed which

player was the winner of the period. They played 23 periods with different

partners. In the end of the experiment one of the 23 periods was drawn by

lot. Each player who won the tournament in which he participated in the

drawn period earned 25 Euro each loser earned only 5 Euro. Additionally, all

subjects received a show up fee of 2.50 Euro independent of their status as

winner or loser. After the last period the subjects were requested to complete

a questionnaire including questions on gender and age. The whole procedure

took about one hour.

4 Hypotheses

First of all, based on the theoretical reasoning above, we expect that in the

treatment without correlation the leader plays the safe strategy more often

than the trailing player (Hypothesis 1). But of course, the model makes a

more precise prediction. Recall that the trailing player should always choose

the risky strategy. The leader should play the safe strategy if and only if the

lead is sufficiently large and the expected gains from playing risky are low.

In our experiment the expected gains from playing risky were fixed for all

treatments (∆µ = 20). In other words the player in lead should choose the

safe strategy if ∆yA > 20
1− 1

2

√
2
= 68.28 and otherwise should prefer the risky

strategy.

In the second treatment the performance outcomes of the risky strategies are
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Figure 2: Equilibrium mixed strategies if ρ = 1

perfectly correlated and therefore only an equilibrium in mixed strategies

exists in the theoretical model. But the most important and testable impli-

cation is that — in contrast to the zero correlation case — we expect that the

player in lead will play risky more often than his opponent (Hypothesis 2).

Although we cannot expect that participants in the experiment are able to

coordinate on the mixed strategies equilibrium perfectly, the data should at

least be in line with some qualitative features of the equilibrium. Therefore it

is useful to consider the probabilities with which the players choose the risky

strategy derived in the proof of proposition 3. Figure 2 shows these proba-

bilities as a function of ∆yA for the parameter values used in the experiment.

Note that the leading player should choose the risky strategy in more than

80% and the trailing player in less than 20% of the cases. Furthermore we

expect that the probability that the trailing player plays the risky strategy

should decrease in ∆yA and the probability that the leader does the same

should increase in his lead.

For the third treatment we predict that both players will always choose the

risky option no matter how large the lead is (Hypothesis 3) or at least that
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they both learn during the course of the experiment that the risky strategy

is beneficial.

5 Results

We now test these hypotheses with the data from our experiment. Figure

3 shows the fraction of rounds in which the players in each treatment chose

the risky strategy depending on whether the player had a lead.2

We start by investigating the results from treatment 1 where the outcomes

of the risky strategies were uncorrelated. Looking at figure 3 we see already

that the trailing player almost always chose the risky strategy when the

risky strategies were uncorrelated but that the leading player chose the safe

strategy in nearly 50% of the cases. Hence, these observations are well in line

2Table A1 in the Appendix gives the precise values.
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with hypotheses 1. To analyze whether the lead had an effect on the choice

of strategy for the leader we ran a binary probit regression. The dependent

variable is the probability that the leading agent chooses the risky strategy.

The observations are not independent from each other as one subject plays

the game 23 times. Therefore we report robust standard errors clustered by

subject.3 The results are reported in table 1.4

(1) (2)

Leading player Leading player

Lead −0.0284∗∗∗
(0.0043)

Lead > 68.28 −1.399∗∗∗
(0.22)

Period 0.00588 0.00523

(0.012) (0.0095)

Constant 1.192∗∗∗ 0.244

(0.22) (0.19)

Observations 276 276

Pseudo Log Likelihood −136.62092 -163.80531

Pseudo R2 0.2858 0.1436

Robust standard errors in parentheses are calculated by clustering on subjects
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 1: Probit regression for leading players in treatment 1

The period is included to check for time trends capturing possible learning

effects. We see from column (1) that in line with the theoretical prediction, a

larger lead makes it indeed more likely for the leader to choose the safe strat-

3As an alternative we ran random effects regressions. The results remain qualitatively
unchanged and are reported in the Appendix.

4In the Appendix we report the marginal effects for all probit regressions.
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Figure 4: Choice of the risky strategy for different leads in treatment 1

egy. This effect is highly significant. Regression (2) uses a dummy variable

which takes value one if the lead is larger than 68.28 and zero otherwise. The

results are qualitatively similar to those of regression (1). Note that there are

no significant time trends. Of course, the participants did not switch to the

safe strategy precisely at the predicted cut-off value, but still they learned

surprisingly well that playing safe is preferable when the lead gets larger as

is also illustrated in figure 4. It shows the frequencies of the risky strategy

choice for different leads in treatment 1 (interval size 5).

We can summarize these observations as follows.

Result 1 (ρ = 0): When the outcomes of the risky strategies are uncorrelated
the leading players choose the safe strategy more often than their opponents.

The trailing players nearly always choose the risky strategy ( 98.9%). The size
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of the lead has a strong influence on the probability that the leader chooses the

safe strategy: The larger the lead, the more often the safe strategy is chosen.

We now turn to the perfect correlation case in treatment 2. A look at figure

3 already indicates that the leading player picked the risky option more often

than his opponent which is in stark contrast to the results from treatment 1

but well in line with the theoretical prediction.

(1) (2)

Leading player Trailing player

Lead −0.00540∗ 0.00941∗∗∗

(0.0031) (0.0035)

Period 0.0775∗∗∗ −0.0332∗∗∗
(0.016) (0.011)

Constant 0.976∗∗∗ 0.246

(0.21) (0.19)

Observations 276 276

Pseudo Log Likelihood −63.417594 −173.62979
Pseudo R2 0.1161 0.0623

Robust standard errors in parentheses are calculated by clustering on subjects
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 2: Probit regression for treatment 2

Furthermore, as the theory predicts the leading players chose the risky strat-

egy in more than 80% (92.8%) of the cases. But the trailing players also

chose the risky option in 60.5% of the cases and not as we predicted in less

than 20% of the cases. This behavior may be due to the false intuition that

they had nothing to lose and therefore they preferred to gamble. The trailing

players seemed to disregard at least partially that the leader may also want

to play the risky strategy in which case the best reply is to play safe as only
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this leaves a chance to win the tournament. Again, we ran probit regressions

to test the predictions of the model. We first consider the leading players’

behavior in model (1) and then that of the trailing players in model (2) of

table 2. First note, that we have to reject our prediction concerning the effect

of the lead in both cases. The theoretical model predicted that the leader

plays the risky strategy more often the larger the lead and the trailing player

plays risky less often for larger initial differences. The empirical analysis

shows the opposite signs for both effects. It seems that initially the players

followed the much more straightforward intuition from the case where the

outcomes were uncorrelated, i.e. that the leader should protect his lead by

playing safe and the trailing player can only ‘attack’ the leader by choosing

the risky strategy. But note that we observe strong learning effects that seem

to direct the players closer to the equilibrium prediction. Over the course of

the experiment the leading players significantly increased the probability of

playing the risky strategy and the trailing players reduced this probability.

We can summarize:

Result 2 (ρ = 1): When the outcomes of the risky strategies are perfectly
correlated the leading players choose the risky strategy more often than their

opponents. The leaders choose the risky strategy in 92.8% and the trailing

players in 60.5% of the cases. Over the course the leading players increased

the probability of playing the risky strategy, whereas the trailing players re-

duced this probability.

Finally, we consider the results from the third treatment in which the cor-

relation coefficient between the outcomes of the risky strategies was ρ = 1
2
.

According to our theoretical predictions both players should always play the

risky strategy regardless how large the lead is. As we see in figure 3 this pre-

diction is true only for the trailing players. Leading agents chose the risky

option only in 68.1% of the cases. To analyze learning effects and the effect

of the lead on the choice of the strategy we use again a probit regression with
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the choice of strategy as dependent variable. The results of the regression are

reported in table 3. The regression shows that the lead indeed had an effect

on the choice of the strategy. The probability that the leader played the safe

option rises when the lead got larger. This effect might occur because the

leader thought that playing safe was an appropriate way to protect his lead-

ing position. During the experiment the leader learned that this assumption

is not true and played risky more often.

Leading player

Lead −0.0139∗∗∗
(0.0034)

Period 0.0263∗∗∗

(0.0094)

Constant 0.807∗∗∗

(0.20)

Observations 276

Pseudo Log Likelihood −153.97572
Pseudo R2 0.1088

Robust standard errors in parentheses are calculated by clustering on subjects,
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 3: Probit regression for leading players in treatment 3

When we take a look at the decisions the leading players made in the last

5 periods, we see that 76, 7% of them preferred the risky strategy. We can

conclude:

Result 3 (ρ = 1
2
): When the outcomes of the risky strategies are correlated

with ρ = 1
2
the trailing players play the risky strategy nearly in all cases

(94.6%). The leading players choose the risky strategy in only 68.1% of the

cases but increase this probability over the course of the experiment.
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Hence, it seems to be the case that learning directed the players towards the

equilibrium prediction.

6 Conclusion

We have investigated a simple tournament model in which two agents simul-

taneously choose between a risky and a safe strategy. We have shown that

the equilibrium outcome strongly depends on the correlation between the

outcomes of the risky strategy. We then tested the predictions made based

on the model in a laboratory experiment. The key predictions have been

confirmed: The leading players choose the safe strategy more often than the

trailing players if the outcomes are uncorrelated, but the contrary is true if

the outcomes are perfectly correlated.

From a more general standpoint, our model as well as the empirical results

have cast some light on the attractiveness of gambling in competitive situ-

ations. One interpretation of the correlation between the risky strategies is

the similarity in the set of available policy options. When the competitors

have access to similar policies, the correlation between the outcomes of the

risky strategies will be high. In this case, a trailing contestant can no longer

be certain that his opponent will stick to the safe strategy when choosing to

gamble. It even has turned out that the leading player will have a stronger

incentive to gamble than his trailing opponent when the risky strategy has

higher rewards in expected terms.

There are many open questions for future research. For instance, we so far

did not consider endogenous effort choices and focused only on risk-taking

behavior. Moreover, it would be interesting to study risk taking behavior in

dynamic tournaments where the agents can react to past choices of their op-

ponents, for instance, to cast more light on the timing of risk-taking decisions

in competitive environments.
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7 Appendix

Proof of Proposition 3:
Both players will randomize only if they are indifferent between the payoffs

of both strategies. Suppose that player A chooses the risky strategy with

probability p and player B with probability q. Hence, we must have that
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Player A will indeed choose the risky strategy with higher probability than

player B when
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using that Φ (x) = 1− Φ (−x) this is equivalent to

Φ
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which is true if ∆µ > 0. In the special case ∆µ = 0 both players choose the

risky strategy with equal probability. If ∆µ < 0 Player B will choose the

risky strategy with a higher probability than player A.
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Correlation 0 Correlation 1 Correlation 1
2

no lead lead no lead lead no lead lead
safe 0.011 0.507 0.395 0.072 0.054 0.319
risky 0.989 0.493 0.605 0.928 0.946 0.681

Table A1: Distribution of strategy choices for all treatments

(1) (2)
Leading player Leading player

Lead −0.0453∗∗∗
(0.0057)

Lead > 68.28 −1.852∗∗∗
(0.26)

Period 0.00586 0.00791
(0.017) (0.014)

Constant 1.962∗∗∗ 0.334
(0.43) (0.25)

Observations 276 276
Log Likelihood −110.38209 −147.50784
random effects estimation, standard errors in parentheses,
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table A2: Probit regressions with random effects for leading players in treat-
ment 1
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(1) (2)
Leading player Trailing player

Lead −0.00665 0.0140∗∗∗

(0.0047) (0.0029)
Period 0.0927∗∗∗ −0.0501∗∗∗

(0.027) (0.014)
Constant 1.406∗∗∗ 0.361

(0.45) (0.29)
Observations 276 276
Log Likelihood −56.693898 −151.3198
random effects estimation, standard errors in parentheses,
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table A3: Probit regressions with random effects for treatment 2

Leading player
Lead −0.0252∗∗∗

(0.0043)
Period 0.0460∗∗∗

(0.017)
Constant 1.286∗∗∗

(0.40)
Observations 276
Log Likelihood −117.24643
random effects estimation, standard errors in parentheses,
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table A4: Probit regression with random effects for leading players in treat-
ment 3
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(1) (2)
Leading player Leading player

Lead −0.0113∗∗∗
(0.0016)

Lead > 68.28 −0.483∗∗∗
(0.062)

Period 0.00233 0.00208
(0.0046) (0.0038)

Observations 276 276
Pseudo Log Likelihood −136.62092 −163.80531
Pseudo R2 0.2858 0.1436

Robust standard errors in parentheses are calculated by clustering on subjects,

Marginal effects reported, ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table A5: Probit regressions for leading players in treatment 1

(1) (2)
Leading player Trailing player

Lead −0.000545∗ 0.00361∗∗∗

(0.00041) (0.0013)
Period 0.00783∗∗∗ −0.0127∗∗∗

(0.0027) (0.0043)
Observations 276 276
Pseudo Log Likelihood −63.417594 −173.62979
Pseudo R2 0.1161 0.0623

Robust standard errors in parentheses are calculated by clustering on subjects,

Marginal effects reported, ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table A6: Probit regressions for treatment 2
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Leading player
Lead −0.00483∗∗∗

(0.0015)
Period 0.00918∗∗∗

(0.0033)
Observations 276
Pseudo Log Likelihood −153.97572
Pseudo R2 0.1088

Robust standard errors in parentheses are calculated by clustering on subjects,

Marginal effects reported, ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table A7: Probit regression for leading players in treatment 3
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