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ABSTRACT 
 

Productivity and Trade Orientation in UK Manufacturing*

 
Within a structural model we explicitly allow for the trade orientation of companies to estimate 
productivity dynamics within 4-digit UK manufacturing industries. We use the FAME data on 
UK companies over the period 1994-2003. Following Ackerberg et al. (2005) we adjust the 
algorithm in Olley and Pakes (1996) by augmenting investment and exit decisions to allow for 
exogenous demand shocks by trade orientation, assuming that labour and capital are state 
variables, and productivity follows a first-order Markov process. We extend the framework 
further by allowing exporting to be an additional control variable that is driven by lagged 
productivity as in Melitz (2003), leading productivity to follow a second-order Markov process. 
We find that over the period of introduction of the Euro improvements in aggregate 
productivity were driven by exporters – mainly by market share reallocations away from 
inefficient and towards efficient export companies. Aggregate productivity also benefited from 
improvements in productivity of non-exporters but was driven by improvements within 
companies rather than by market share reallocations. In a period of sustained real exchange 
rate appreciation both export cleansing and competitive pressure on non-exporters seem to 
have contributed to improvements of productivity in the UK manufacturing. 
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1 INTRODUCTION 
The co-existence of exporting with non-exporting companies within 4-digit industries is a strong 

feature of our UK data. Bernard et al. (2003) outline the same fact for the US. The primary focus of 

the paper is to embed the role of company trade orientation into our structural estimation algorithm 

of productivity dynamics within 4-digit UK manufacturing industries. After estimating productivity 

dynamics for each company we document and analyse the nature of the aggregation over companies 

by trade orientation in order to understand aggregate productivity movements.  

Integrating trade information in productivity estimation is achieved by adapting the 

algorithm developed in Olley and Pakes (1996). Following Ackerberg et al. (2005) we adjust the 

Olley-Pakes algorithm to allow exogenous demand shocks by trade orientation to agument 

investment and exit decisions, assuming that labour and capital are state variables and productivity 

follows a first-order Markov process. We extend the framework further by allowing exporting to be 

an additional control variable that is driven by lagged productivity as in Melitz (2003), leading 

productivity to follow a second-order Markov process. We apply the modified algorithm to an 

unbalanced panel of UK exporting and non-exporting manufacturing companies, with annual 

observations for the period 1997-2001, and estimate time varying productivity for companies within 

each 4-digit industry, over the 1997-2001 period.  

Our approach brings together two strands of literature on productivity and exporting. In the 

first strand, studies estimate company total factor productivity, in a first step, and in a second step 

they proceed to link productivity to exporting and contributions to aggregate productivity.1 It is our 

view that testing for a relationship between exporting and (unobservable) productivity, ex-post, is 

admitting that there is information that should have been used in the structural model of the 

unobservable while estimating the production function. Indeed theory and empirical evidence on 

selection mechanisms guide us. Melitz (2003) employs sunk costs associated with exporting that 

lead to high productivity companies selecting to exporting. Indeed, a second strand of empirical 

literature confirms this. Roberts and Tybout (1997) for Colombia, Bernard and Jensen (2001) for 

the US, and Bernard and Wagner (2001) for Germany, estimate selection to exporting regressions 

and document that sunk export-market entry costs seem important enough to generate immense 

persistence in company export market participation. Our data also confirm this pattern of 

persistence in export market participation. 

                                                 
1 Bernard and Jensen (1999), Pavcnik (2002), Lopez-Cordova (2002), and Fernandes (2001), for example, apply Olley 
and Pakes (1996) algorithm to approximate productivity in the first step and correlate it with trade in a second step. 
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Given this evidence, as argued in Van Biesebroeck (2003), one should allow for trade 

orientation when estimating the parameters of the production function.2 We wish to go a step 

further, following Ackerberg et al. (2005), by allowing exporting to be an additional control 

variable that is driven by lagged productivity (Melitz, 2003), leading to a structural model that 

estimates company productivity dynamics as a second-order Markov process. The model generates 

consistent estimates of the coefficients on labour and capital, amongst other observables. An 

unbiased productivity index for exporters and non-exporters is backed out as a residual. Thus, we 

make a contribution to the efficiency and trade debate, adding new evidence from the UK.3  

We use OLS, GLS and Olley-Pakes estimators of productivity that do not allow for trade 

orientation of companies as our counterfactuals. Our estimates of productivity that allow for 

endogenous trade orientation show clear and persistent differentials in productivity by trade 

orientation and over-time. Using the Olley and Pakes (1996) decompositions, we are also able to 

demonstrate that the improvements in aggregate productivity of the UK manufacturing, during the 

period of introduction of the Euro, was mainly driven by market share reallocations away from 

inefficient and towards efficient export companies, alongside gains in productivity within non-

exporter companies. In a period of sustained real exchange rate appreciation both export cleansing 

and competitive pressure on non-exporters seem to have increased productivity of the UK 

manufacturing, see Harris (2001) for a literature review of these mechanisms. 

The remainder of the paper is structured as follows. Section 2 provides a brief overview of 

data. Section 3 outlines our behavioural model and the estimation methodology used in the paper. 

Our regression results are reported in sections 4. In section 4 we also undertake our analysis of 

aggregate productivity while in Section 5 offer conclusions. 

 

                                                 
2 Van Biesebroeck (2003) and De Loecker (2004) also consider adapting the algorithm developed in Olley and Pakes 
(1996) to allow for exporting, however, their approaches differ from ours in the way trade orientation information is 
incorporated into their model of the unobservable.  
3 In summary, the literature on efficiency and exporting comprises several papers covering various countries: Aw and 
Hwang (1995) and Aw, Chen, and Roberts (2001) on Taiwan; Bernard and Jensen (1995; 1999) on the US; Clerides, 
Lach and Tybout (1998) on Colombia, Mexico and Morocco; Bernard and Wagner (1997) on Germany; Kraay (1999) 
on China; Castellini (2001) on Italy; Delgado, Farinas and Ruano (2002) on Spain; Pavcnik (2002) on Chile. On the UK 
the only existing study that we are aware of is by Girma, Greenaway and Kneller (2004) covering the period 1988-1999. 
The studies cover a range of time periods and use a variety of methodologies. Importantly, every single study finds that 
exporters have higher productivity than non-exporters - a relationship that goes beyond size. They also typically find 
that exporting companies are bigger, more capital intensive and pay higher wages. The literature does disagree on the 
self-selection versus learning hypothesis. Castellini (2001) reports some evidence suggesting that the productivity of 
exporting companies may increase with increases in export intensity. For Chinese companies, Kraay (1999) reports 
evidence of learning by exporting as well as Van Biesebroeck (2003), for exporters in Africa. Interestingly, Girma, 
Greenaway and Kneller (2004) is the only study that supports the learning hypothesis for a developed market economy 
– the UK. The evidence in Delgado, Farinas and Ruano (2001) is inconclusive and Bernard and Jensen (1995, 1999), 
Bernard and Wagner (1997), Clerides, Lach and Tybout (1998) and Aw and Hwang (1995) explicitly test for but fail to 
find any evidence to support the learning by exporting hypothesis.  
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2 THE FAME DATA  
According to Bureau van Dijk, FAME is the most comprehensive database of UK companies 

available. Data cover all companies filing at the Companies House in the UK and information 

comprises detailed financial statements, ownership structure, activity description, direct exports, 

various financial ratios and credit scores.4 The dataset used in our analysis contains annual records 

on more than 80,000 manufacturing companies over the period 1997-2001. The coverage of the data 

compared to the aggregate statistics reported by the UK Office for National Statistics is as follows: 

sales - 86%, employment - 92%, and exports - 100%. The manufacturing sectors are identified on 

the bases of the current 2003 UK SIC at the 4-digit level and range between 1513 and 3663. All 

nominal monetary variables are converted into real values by deflating with the appropriate 4-digit 

UK SIC industry deflators taken from the Office for National Statistics. We use PPI to deflate sales 

and cost of materials, and asset price deflators for capital and fixed investment variables.5  

The descriptive statistics reported in Table 1 are calculated from the FAME sample of 

manufacturing companies on the basis of company averages. We first look at the prevalence of 

exporting among UK manufacturing companies. At one extreme, companies could export the same 

share of their total output. At the other, a few giant companies would account for all exports. In fact, 

out of roughly 80,000 companies in the original sample only 15.6 percent report export sales over 

the period of analysis.   

Previous work has sought to link trade orientation with industry. It turns out that exporting 

companies are quite spread out across industries. Figure 1 plots the distribution of industry export 

intensity: each of the 215, 4-digit manufacturing industries represented in the sample is placed in 

one of the 10 bins according to the percentage of companies in the industry that export. In almost all 

the industries, the fraction of companies that export lies between 10 and 50 percent. Hence, 

knowing what industry a company belongs to would not answer with sufficient certainty whether it 

exports. This fact, similar to the findings of Bernard et al. (2003) for the US manufacturing, 

suggests that industry has less to do with exporting than standard trade models might suggest.   

                                                 
4 FAME is a combination of high quality information from Jordans with easy to use software which has been developed 
by Bureau van Dijk Electronic Publishing (BvD). The financial breakdown of the companies in the different FAME 
modules is as follows: FAME A - Turnover > £1.5 million or Profits > £150,000 or Shareholder Funds > £1.5 million; 
FAME B - Turnover > £500,000 and < £1.5 million or Shareholder Funds > £500,000 and < £1,500,000 or Fixed Assets 
or Current Assets or Current Liabilities or Long Term Liabilities > £500,000; FAME C - Fixed Assets or Current Assets 
or Current Liabilities or Long Term Liabilities > £150,000 and < £500,000; recently formed companies and other 
companies where full financial information is not available are also included in this module. 
5 Katayama, Lu, and Tybout (2003), and related studies, argue that as production functions should be a mapping of data 
on inputs and outputs, studies using revenues and expenditure data as proxies would produce biased productivity 
measures. As in this study, most use industry level deflators for output, raw material and capital assets to get back the 
quantity data needed. It is clear that inputs and outputs can be priced differently for exporters and non-exporters within 
narrowly defined industries. We note, however, that allowing for endogenous trade orientation in the unobservable will 
control, to a certain degree, for persistent exchange rate adjusted pricing gap between exporters and non-exporters in 
their use of inputs and their outputs within 4-digit industries. Time dummies can control for movements in the real 
effective exchange rate over-time within exporting and non-exporting samples. 
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Not only are companies heterogeneous in whether they export, they also differ substantially 

in various crude measures of productivity. Table 1 reports mean differences, segregating exporters 

from non-exporters, and standard deviations characterising the distributions across companies of 

value added per worker relative to the overall mean. Similarly, the distributions across exporting 

and non-exporting companies of value added per worker relative to the 4-digit industry mean are 

characterised. While differences across industries certainly appear in the data, what is surprising is 

how little industry explains about exporting and productivity. Hence, a satisfactory explanation of 

company level behaviour must go beyond the industry dimension. Therefore, we consequently 

pursue an explanation of these facts that bypasses industries and goes directly to samples defined by 

trade orientation at the company level.   

Table 1 also shows the importance of export markets for the companies that do export. 

Interestingly, the vast majority of exporters export less than 30 percent of what they produce. Less 

than 10 percent of the exporting companies export more than 70 percent of their production. Even 

for the minority of companies that do export, domestic sales dominate. An answer to these facts is 

documented in Table 1 - exporters are much larger. They are almost 4 times the size of non-

exporting companies on average, even when export revenues are excluded from the calculation. 

While only 15.6 percent of manufacturing companies report that they consistently export, these 

companies account for almost 75 percent of the output of UK manufacturing.  

In this paper our goal is to estimate total factor productivity (TFP) in a consistent manner, to 

document the TFP gaps and to cast light on the nature of these gaps between exporters and non-

exporters, within 4-digit industries. In addition we try to explain movements in aggregate 

productivity. The strategy of our empirical analysis implies that we will run regressions within 4-

digit industries, by sub-samples defined according to company export status. This leaves us with the 

41 largest 4-digit industries, with sufficient number of observations to run regressions for exporting 

and non-exporting sub-samples. These largest 4-digit industries account for almost 80 percent of the 

UK manufacturing sales in our data. In terms of the smallest estimated sample, after lags are applied 

and observations with missing values deleted, there are 24,338 remaining observations for 6,722 

companies. The coverage of the data from this sample compared to the aggregate statistics is 58% 

for exports, and 56% for employment. The correlations between the aggregate statistics series and 

the estimated sample series are as follows: value added (used in the regressions as dependent 

variable) - 0.94, employment - 0.97, exports - 0.95.  
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In Table 2 we document summary statistics of regression variables. Exporting companies 

are older, bigger in terms of value added, employment and capital, and invest more.6 The detailed 

definitions of regression variables are as follow: Value added is total annual sales adjusted for 

changes in inventories, minus material costs in thousands of pounds sterling. We assume that 

materials used are in a constant proportion of output. Exports is the reported value of direct exports, 

in thousands of pounds sterling, recorded annually. The problem of potential undercounting, due to 

the fact that indirect exports are not included in this measure is discussed in Bernard and Jensen 

(1995). Labour is full-time equivalent number of employees, recorded annually. Age is constructed 

by using year of incorporation as a starting point. Capital is measured as total fixed assets by book 

value, in thousands of pounds sterling, recorded annually. Investment is constructed from the 

annually observed (for each period, t) capital stock, K and depreciation, δ using the perpetual 

inventory method: It=Kt+1-(1-δ)Kt.  

 

3 BEHAVIOURAL FRAMEWORK AND ESTIMATION METHODOLOGY 
To estimate productivity we relay on a behavioural framework which builds on models of industry 

dynamics by Ericson and Pakes (1995) and Hopenhayn (1992) with applications to firm export 

decisions as in Melitz (2003). Alongside the econometric modelling ideas in Ackerberg et al. 

(2005), the framework underlines our estimation strategy and helps us specify timing and relational 

assumptions for the company decisions in a manner similar to Olley and Pakes (1996).7  

The innovation in our approach is that we extend the Olley and Pakes (1996) framework by 

explicitly allowing market structure (factor markets, demand conditions and  prices) to differ across 

exporting and non-exporting companies. Furthermore, we relax the often criticised assumption 

about labour being variable and non-dynamic input, i.e., that the choice of labour in period t has no 

implications for the future of the company choices. Considering the feature of the labour markets in 

developed European countries with strong employment protection laws, it is unlikely that hiring 

decisions do not have long-term implications for the company.  

 

3.1 Estimation methodology assuming exogenous exporting  

As in Olley and Pakes (1996) the log-linear production function to be estimated is 

jtjtjtljtajtkjt laky ηωββββ +++++= 0 ,        (1) 

                                                 
6 It is worth noting that export status is persistent over time as only 9 percent of exporting companies switch between 
exporting and non-exporting states, in our sample during the period of analysis. We mark a company as an exporter if 
we observe in the data exporting by the company in any year within a 3-year moving window.   
7 Levinsohn and Petrin (2003) modify the Olley and Pakes (1996) approach by using intermediate inputs, such as 
electricity or fuel usage instead of investment which have the advantage of more efficient use of the data. See 
Ackerberg et al. (2005) for a critique of this approach.  
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where the log of company j's value added at time t, yjt, is modelled as a function of the logs of that 

company’s state variables at t, namely age, ajt, capital, kjt, and labour, ljt.  

 Investment demand, ijt determines the capital stock at the beginning of each (next) period. 

The law of capital accumulation is given by jtjtjt ikk +−=+ )1(1 δ . The error structure is 

comprised of a stochastic component, ηjt, with zero expected mean, and a component that represents 

unobserved productivity, ωjt. Both ωjt and ηjt are unobserved, but ωjt is a state variable, and thus 

affects company’s choice variables. On the other hand ηjt has zero expected mean given current 

information, and hence does not affect decisions. 

Company’s single period profit function is ),(),,,,( jtjtjtjtjtjtjt eicelak −ωπ , where both π(.) 

and c(.) depend on ejt, which represents the economic environment that companies face at a 

particular point in time; ejt could capture input prices, characteristics of the output market, or 

industry characteristics. As in Olley and Pakes (1996) all these factors are allowed to change over 

time; importantly, in our extension we allow the factors to also vary across companies according to 

their exporting status. Including market structure variation in the state space reflects some of the 

competitive richness of the Markov-perfect dynamic oligopoly models such as Ericson and Pakes 

(1995). 

The company maximizes its expected value of both current and future profits according to 

⎪⎩

⎪
⎨
⎧

+−
Φ

=
+++++

≥

]}.,,,,,|),,,,([
),(),,,,({max

),,,,,(
max),,,,(

11111

0

jtjtjtjtjtjtjtjtjtjtjt

jtjtjtjtjtjtjti

jtjtjtjtjt

jtjtjtjtjt

ielakelakVE
eicelak

elak
elakV

jt

ωωβ
ωπ

ω
ω  (2) 

The Bellman equation explicitly considers two company decisions. First is the exit decision; 

),,,,( jtjtjtjtjt elak ωΦ represents the sell-off value of the company. Second is the investment 

decision, ijt, which solves the interior maximization problem. Under the assumption that equilibrium 

exists and that the difference in profits between continuing and exiting is increasing in ωjt we can 

write the optimal exit decision rule as 

⎩
⎨
⎧ ≥

=Χ
otherwise

lakif jtjtjttjt
jt 0

),,(1 ωω                                                                                         (3) 

and the investment demand function as, 

),,,,( jtjtjtjtjttjt elakii ω= .          (4) 

Productivity, ωjt is assumed to be determined by a family of distributions conditional on the 

information set at time t-1, Jt-1, which includes past productivity shocks. Given this set of 

distributions, both the exit and investment decisions will crucially hinge upon the companies’ 

perceptions of the distribution of future market structure conditional on current information (past 

productivity). The decisions that the companies take will in turn generate a distribution for the 
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future market structure (Maskin and Tirole, 1988). In our behavioural framework we explicitly 

introduce trade orientation by companies in ejt. Decisions on whether to invest and to exit the 

market will depend explicitly on whether a companies exports or not. From the summary statistics 

of our data (Table 2) and the findings of numerous empirical studies we know that exporters invest 

more per worker and are also less likely to exit compared to non-exporting companies.8  

A fundamental problem afflicting investment and thus productivity measurement is that 

companies are made up of different product mixes. In the absence of product-specific data, which is 

a typical problem for micro datasets available, consistent estimates of company productivity can be 

obtained by allowing the parameters of the production technology to vary across companies making 

different (types of) products. The identifying information that we use here to sort companies by 

product types is the companies’ exporting status. As argued above, exporters differ from non-

exporters by both the production techniques they employ and the demand characteristics they face. 

Since we deflate value added with an industry-wide PPI, we do not control for the fact that 

output and factor prices might be different and/or evolve differently over time for exporting and 

non-exporting companies. Therefore we drop this assumption and incorporate the exporting 

information in the investment and survival equilibrium equations. More formally, we explicitly 

allow that exporting companies face differential market structures and factor prices when decisions 

are made about investment and exit from the market.  

 Pakes (1994) discusses conditions under which the investment demand function (equation 

(4)) is strictly monotonic in ωjt. Under such conditions investment can be inverted to generate  

),,,,( jtjtjtjtjttjt lakeih=ω .          (5) 

Then substituting equation (5) into the production function (1) gives us,  

jtjtjtjtjtjttjtljtajtkjt lakeihlaky ηββββ +++++= ),,,,(0 .     (6) 

Equation (6) can be estimated as in Olley and Pakes (1996) with semi-parametric methods that treat 

the inverse investment function ht(.) non-parametrically, using either polynomial or kernel. The 

non-parametric treatment, however, results in collinearity and requires the constant, kjt, ajt and jtl  

terms to be combined into function ),,,,( jtjtjtjtjtt lakeiφ  such that equation (6) becomes 

jtjtjtjtjtjttjt lakeiy ηφ += ),,,,( .          (7) 

It is important to note that the ability to invert investment depends not only on the strict 

monotonicity in ωjt but also on the fact that ωjt is the only unobservable in the investment equation. 

This scalar unobservable assumption implies that there can be no measurement error in the 

                                                 
8 Note that the investment policy function in Olley and Pakes (1996) is a solution to a complicated dynamic 
programming problem and depends on all the primitives of the model like demand functions, the specification of sunk 
costs, form of conduct in the industry and other factors as recently clarified by Ackerberg et al. (2005). All these factors 
are allowed here to be different and evolve differently over time, for exporting and non-exporting companies. 
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investment equation, no unobserved differences in investment costs across companies and no 

unobserved separate factors that affect investment across companies but not production. By 

introducing exporting information in the investment function we are able to control for such 

differences and to relax the above assumptions. In section 3.2 we relax the scalar unobservable 

assumption following Ackerberg et al. (2005) and further discuss implications for our estimation 

algorithm.  

The capital, age and labour coefficients are identified in the second stage of the Olley-Pakes 

procedure. First, note that even though we do not identify any input coefficients in the first stage we 

are able to estimate tφ̂  for use in the second stage. We express jtω  as 

jtljtajtkjtjt lak ββββφω −−−−= 0
ˆˆ . Second, the first stage of the Olley-Pakes procedure is not 

affected by endogenous selection because tφ  fully controls for the unobservable; by construction, 

jtη  represents unobservables that are not known by the company before input and exit decisions are 

made. In contrast, the second stage of the estimation procedure is affected by endogenous exit. 

From equation (3) it is evident that the exit decision in period t depends directly on ωjt. Using the 

assumption that jtω  follows an exogenous first-order Markov process, we can decompose ωjt into 

its conditional expectation given the information known by the company at t-1 and a residual: 

.)(
]|[
]|[

1

1

1

jtjt

jtjtjt

jtjtjtjt

g
E

JE

ξω
ξωω
ξωω

+=
+=
+=

−

−

−

          (8) 

By construction ξjt is uncorrelated with Jjt-1 and thus with kjt, ajt and ljt which are functions of only 

the information set at time t-1. Next from equation (1) and substituting equation (8) above we can 

write 

jtjtjtjtljtajtkjt glaky ηξωββββ ++++++= − )( 10 .      (9) 

Now to correct for endogenous selection (exit) lets take expectations of equation (9) 

conditional on both the information at t-1 and on Xjt=1 (i.e., surviving till the next period). We can 

write 

)).,,(,(
]1,|[]1,|[

10

101

jtjtjttjtjtljtajtk

jtjtjtjtljtajtkjtjtjt
lakglak

JElakJyE
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−
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++++=
=Χ++++==Χ            (10) 

We do not directly observe ),,( jtjtjtt lakω  and to control for it we use data on observed exit. This 

means that the probability of being in the data at period t conditional on information known at t-1 is: 
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11111
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Equation (11) represents the second step of our estimation algorithm and can be estimated non-

parametrically using probit model with a (4th-order) polynomial or kernel as in Olley and Pakes 

(1996). Note that we extend the state variable set with exporting status information which is an 

important determinant of companies’ decision to exit. For a company characterised by 

),,,,( 11111 −−−−− jtjtjtjtjt lakei  we are able to generate a consistent estimate of the probability of the 

company surviving to period t, jtP̂ . As long as the density of jtω  given 1−jtω  is positive in the area 

around ),,( jtjtjtt lakω , we can invert to write ),,( jtjtjtt lakω  as a function of 1−jtω  and Pjt: 

),(),,( 1 jtjtjtjtjtt Pflak −= ωω . 

Substituting this equation into equation (10) and using expressions for estimated valus, 1ˆ −jtω  

and jtP̂  gives us 

),ˆ,ˆ(
),(

)),(,(]1,|[

111010

10

1101

jtjtljtajtkjtjtljtajtk

jtjtjtljtajtk

jtjtjtjtljtajtkjtjtjt

Plakglak
Pglak

PfglakJyE

−−−−

−

−−−

−−−−′++++=
′++++=

++++==Χ

ββββφββββ
ωββββ

ωωββββ

which after removing the expectations operator becomes 

,)ˆ,ˆ( 1111 jtjtjtjtljtajtkjtjtljtajtkjt Plakglaky ηξβββφβββ ++−−−′′+++= −−−−           (12) 

where the two 0β  terms have been encompassed into the non-parametric function g”. Equation (12) 

represents the third (last) step of our estimation algorithm and can be estimated with NLLS, 

approximating g” with either polynomial or kernel. It is also important to note that the identification 

of the labour coefficient in the last rather than in the first step of the algorithm requires making 

assumptions how current labour responds to the current realisations of ξjt. One possible treatment is 

that labour is fixed before the realisation of ξjt, which is the same assumption as for capital. This 

implies that current labour is not correlated with current innovation in productivity and βl can be 

identified in the third step. A second, and more realistic, assumption is that current labour can 

respond to current innovations in productivity. We still can obtain estimates of βl using equation 

(12) and the fact that lagged values of labour (ljt-1) should be uncorrelated with ξjt which follows 

from the information structure of the model.  

 

3.2 Estimation methodology assuming endogenous exporting 

The assumption of a scalar unobservable state variable can be relaxed. In the preceding analysis we 

discuss how introducing exporting information results in relaxing the original Olley-Pakes 

assumption in two ways. First, we allow investment to depend on an unobservable demand shock 

that varies across companies according to their exporting status, in addition to the ωjt process. If we 

assume that the demand shock, αjt, also follows a first-order Markov process, independent of the 
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process ωjt then the investment function will be a function of both unobservables: 

),,,,( jtjtjtjtjttjt lakii αω= .9 Using the exporting information as a control together with observed 

investments allows us to substitute for ωjt in the first step of the estimation algorithm. Specifically, 

it is reasonable to assume that the exporting information contains companies’ pricing decisions. If 

we label the bivariate policy function (ijt, ejt) as Ψt and assume as in Ackerberg et al. (2005) that it is 

bijecture in (ωjt, αjt) conditional on (kjt, ajt, ljt), the policy function can be inverted to form 

),,,,(1
jtjtjtjtjttjt eilak−Ψ=ω . Then we can proceed with the first step of estimation as in section 

3.1.  

For the third step, since αjt progresses independently of ωjt the company’s conditional 

expectation of ωjt given Jjt-1 only depends on ωjt-1. Thus the third step can again be specified as 

equation (12). The advantage of using exporting information (interpreted here as a control for 

demand shocks) besides being an important determinant of investment also generates independent 

variance in φ̂  and thus improves the precision of our estimates.  

However, assuming that exporting status of the company is completely independent process 

from the evolution of ωjt is not satisfactory. Besides demand side, information for exporting status 

is related to important supply side characteristics. A large number of empirical studies show that 

there is a strong selection mechanism where more productive companies enter foreign markets. 

Melitz (2003) builds this stylised fact into a theoretical model of firm productivity and trade 

orientation. Thus, a more realistic assumption is that a company’s exporting status at time t depends 

on the company’s productivity in previous periods. These considerations also suggest that 

productivity follows more complicated process than previously assumed. We implement this fact 

through a second-order Markov process describing productivity. The investment demand equation 

then becomes: ),,,,( 1 jtjtjtjtjttjt lakii −= ωω . The presence of two unobservables complicates 

invertability of the investment equation and requires additional assumptions. The solution relies on 

again using a second observable control of the company decision problem. The control that we use 

is the company’s exporting status, which can be interpreted as an indicator of company’s 

investment in developing higher quality products, advertising, and building distribution networks in 

foreign markets. Then we can formulate as in Ackerberg et al. (2005) the bivariate policy function: 

                                                 
9 It is also reasonable to assume that there are two Markov processes that are interrelated. The company’s conditional 
expectation of jtω  given Jjt-1 then depends on both 1−jtω  and 1−jtα . The informational demand in this case is much 

higher though. We will need then to estimate 1−jtα  using detailed demand side data as in Berry et al. (1995) which we 
do not have.  
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),,,,( 1 jtjtjtjtjtt
jt

jt lake
i

−Ψ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ωω . Under certain conditions the tΨ can be inverted in jtω  to obtain 

),,,,(1
jtjtjtjijttjt lakei−Ψ=ω .  

However, we can also interpret exporting status as a state variable representing the 

company’s technology, i.e., the stock of higher quality products, know-how, and distribution 

networks in foreign markets. The company’s technological and logistic assets evolve as a result of 

decisions, affected by the observed productivity in previous periods. Furthermore, the exporting 

status will also be affected by other company-specific factors such as type of ownership and 

corporate governance which generally should not be correlated with the investment decisions but 

may affect demand. Following the argument we can specify the current exporting status as a non-

parametric function of 1111 ,,, −−−− jtjtjtjt laki  and a vector of other company-specific characteristics, 

jtx'  such as type of ownership and corporate governance. Estimating an exporting equation and 

using the propensity to export, jiê  as a control instead of jie  allows as to treat the export decision as 

an endogenous one. This treatment also implies that we implicitly consider two sources of 

productivity growth, one evolving as a controlled Markov process, and one as an exogenous 

Markov process. This is the closest empirical approximation of our behavioural framework. 

The first step of our estimation algorithm remains the same as before - the non-parametric 

function controlling for current productivity is specified as a polynomial, including the exporting 

information. The third step is modified and now becomes 

,)~̂,ˆ,ˆ( 22221111 jtjtjtjtljtajtkjtjtljtajtkjtjtajtkjt Plbabkblbabkbgabkby ηξφφ ++−−−−−−′′++= −−−−−−−−

                    (13) 

where φ̂  variables are obtained from the first stage estimates at t-1 and t-2 periods. Because the 

conditional expectation of jtω  given Jjt-1 now depends on 1−jtω  and 2−jtω , we need to use estimates 

of φ̂  from two prior periods.  

Controlling for endogenous selection has to be modified accordingly as well; note the 

change of notation ( jtP̂~  instead of jtP̂ ). Thus, the second-step equation (11) will become 

),,,,,,,,(~
),,,,(~)),,(,,(~~

22212121

2121

−−−−−−−−

−−−−
=

′=′′=
jtjtjtjtjtjtjtjtt

jtjtjtjtjttjtjtjttjtjttjt
aklleeii

laklakP
ϕ

ωωϕωωωϕ             (14) 

where the second equality holds because of equation (5) and the fact that kt and at are deterministic 

functions of it-1, kt-1, and at-1, kt-1 and at-1 – of it-2, kt-2, and at-2, etc. 

In terms of verifying whether entering foreign markets makes companies more productive, 

we have filtered out market structure specific shocks that are different for exporters (like demand 

conditions, factor markets, exit barriers, etc.) and do not attribute them to productivity gains by 
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exporters.10 However, these factors remain constant across exporters within a given industry and a 

time period. On a more conceptual level, market conditions might just be one of the driving forces 

behind the learning process. So if we still find evidence for productivity gains by exporters, it would 

mean that additional company-specific factors play a significant role in making exporters more 

productive once they have started exporting, e.g., contacts with foreign buyers, location, destination 

of exports. Note that this effect is purified from differences in price trends, factor prices, and market 

conditions common to all exporters within an industry.  

 

4 ESTIMATION RESULTS AND ANALYSIS OF AGGREGATE PRODUCTIVITY 
We run separate regressions for each of the top 41 4-digit industries. In Table 3 we report weighted 

averages, using value added as weight, of the estimated coefficients from these regressions.  In 

addition, we also report weighted averages, using value added as weight, of log company level 

productivity, ω, with and without the first step regression error for results form all estimators used. 

We compute productivity measures aggregating over exporting and non-exporting sub-samples and 

over 4-digit industries, first, where productivity at the company level contains the regression error 

by company. In the second productivity measure the first step regression error is deducted such that 

we are left with the pure deterministic part of TFP, i.e., ω. The difference between the two measures 

is very small and we further focus our discussion on the productivity measure containing the 

regression error, which can be interpreted as stochastic learning process. 

First, in Table 3 we report our regressions where export status of a company is not 

considered. In this context we report OLS, GLS (within group), and the standard Olley-Pakes 

(without exporting information) estimators, columns 2, 3 and 4, respectively. These can be 

compared to the Olley-Pakes estimators, where export status is treated as an exogenous shock to 

investment and exit decisions, column 5, and  where export status is considered to be a control 

variable that leads to a second-order Markov process in productivity - column 6.11 In columns 7 and 

8 we repeat the previous two estimations where we use instrumented probabilities of being an 

exporter instead of export status.  

Finally, we split exporters and non-exporters into sub-samples within industries, allowing 

for differential technology and factor shares, treating the probability of being an exporter 

                                                 
10 Introducing the exporting information into the production function can be treated as introducing an additional input in 

production. If one has to identify the coefficient on the exporting input in the third step, it would imply that exporting 

only affects the average of the future productivity distribution and hence leaves no scope for learning by exporting to be 

a heterogeneous process across companies. In addition it would imply that the effect is time-invariant, i.e. every year 

exporting raises output (conditioned on labour and capital) by the coefficient estimated on exporting.  
11 The standard errors of all Olley-Pakes estimation routines are bootstrapped using 1,000 replications.  
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(conditional on company characteristics) as an exogenous shock to investment and exit decisions 

and alternatively, as an endogenous control variable leading to a second-order Markov process in 

productivity - columns 9 to 12, respectively. By comparing results from OLS and GLS with the 

Olley-Pakes estimators we see plausible (and expected) changes in the estimates of the parametric 

beta’s and in productivity, ω. The R2 on the explained movements in value added progressively 

increases as we incorporate a richer model of the unobservable. In columns (6) and (8) we allow   

export status and the proability of being an exporter to be considered a control variable that leads to 

a second-order Markov process in productivity. This changes the beta’s and the average and 

variance in our company level productivity, ω, estimates.  In columns (11) and (12) we go further 

by allowing the parametric technologies to be different across subsamples of non-exporters and 

exporters, where we allow the proability of being an exporter to be considered a control variable 

that leads to a second-order Markov process in productivity 

Armed with these various estimates of our company level productivity, ω,  we analyse the 

contributions of exporters and non-exporters to aggregate productivity. In the UK manufacturing 

there is a strong positive correlation (correlation coefficients ranging around 80%) between export 

intensity – the ratio of exports to total sales - and aggregate productivity, measured on the basis of 

various company TFP measures, over the period of analysis as illustrated in Figure 2. OP is the 

benchmark TFP measure derived from Olley-Pakes estimator where no export-status information is 

used; OPex1 is the TFP measure derived from an estimation over companies where we allow for 

exogenous trade orientation shocks and where productivity is first-order Markov process; OPex2 is 

the TFP measure derived from an estimation over companies where endogenous exporting decisions 

create a second-order Markov process. Next, xOPex1 denotes a TFP measure estimated separately 

over sub-samples of exporters and non-exporter where ω was modelled as a first-order endogenous 

(instrumenting the export variable with predicted value) Markov process. Analogously, xOPex2 is a 

TFP measure estimated under the assumption that endogenous exporting leads to a second-order 

endogenous Markov process.   

The relationship between export intensity and TFP depicted in Figure 2 may lead one to 

think that recent improvements in productivity are export lead (Beckerman, 1965; Kaldor, 1970). 

Yet, micro-data studies such as Barnes and Haskel (2000; 2001) and Disney et al. (2003) indicate 

that the expansion of more efficient companies accounted for between one third and a half of the 

labour productivity growth in the UK during the 1990s and even for a larger share of TFP growth.  

To relate industry-level productivity to trade orientation, we start by defining industry 

productivity, Pt, as a market-share weighted sum of the company productivity levels: ∑=
i

ititt sP ω , 

where ωit is company productivity as defined in previous sections and sit is the value of company i's 
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real revenue relative to total industry revenue in year t. With this formulation, shifts of output from 

low productivity to high productivity companies will contribute positively to industry productivity 

growth, even if no individual company experiences a productivity increase. This analysis is 

appropriate because our ultimate interest is in the ability of the companies in the industry to convert 

the set of inputs used in the industry into output, and movements of resources from low to high 

productivity companies can be just as effective in increasing industry output as are productivity 

improvements within individual companies. As shown by Olley and Pakes (1996), aggregate 

productivity can be rewritten as: ∑ ΔΔ+=
−

i
ititt sPP ω , where P  is the unweighted mean 

productivity over all companies in a particular industry, in year t and the Δ is used to represent a 

deviation from the un-weighted mean in year t. The second term in the equation is the sample 

covariance between company productivity and market share in year t, and summed up over the 

number of companies in the year. The larger this covariance, the higher the share of output that is 

allocated to more productive companies and the higher is industry productivity.  

Table 4 reports the changes in aggregate productivity for each of the eleven aggregate (2-

digit) industries over the 1997-2001 period as the decompositions of aggregate productivity change 

is reported separately for exporters and non-exporters. We report decompositions of aggregate 

productivity based on five productivity measures corresponding to the original Olley-Pakes 

algorithm (OP) and to our modified estimation algorithm where we use exporting information and 

model the exporting status as a first- or second-order Markov process, while estimating the total 

sample (OPex1 and OPex2) and the exporter and non-exporter sub-samples separately (xOPex1 and 

xOPex2). Furthermore, we report separate decompositions of aggregate productivity for two distinct 

periods, before (for 1997-98) and after (for 2000-01) the implementation of the Euro, in the 

beginning of 1999. By looking in changes of aggregate productivity in the two periods with distinct 

exchange rate regimes and international trade conditions we are able to derive important results 

concerning the impact of foreign trade and macroeconomic conditions on productivity.  

Interestingly, we find a dual pattern, which certainly is not export driven. For the exporter 

sample (containing more productive companies), market share expansion drives aggregate 

productivity, rather than productivity improvements within companies as shown in Table 4, 

columns 4 to 7. Such aggregate outcomes can be explained by mechanisms outlined in the Melitz 

(2003) model, driven by micro selection and market share reallocation effects. For the non-exporter 

sample (containing less productive companies), the pattern is quite the opposite – within company 

productivity change is larger than the productivity change due to market share reallocations. This 

evidence suggests that there is not much learning by exporting but rather less productive companies 



 16

tend to improve their productivity in an attempt to converge to the more productive exporting 

companies. One would be wrong to assume that TFP is export lead in the traditional sense.  

Looking into the patterns of specific industries, we notice that there are interesting 

differences between exporter and non-exporter samples as well as with respect to time periods, 

before and after the implementation of the Euro. For exporters the relocation of market shares 

(column 6 vs. column 7) plays more important role in the changes of aggregate productivity 

compared to non-exporters. Furthermore, a general pattern across the industries is that aggregate 

productivity, driven mostly by market share relocation increases more significantly in the post-Euro 

period. Considering non-exporters, in general, it is evident that the non-exporting companies were 

loosing productivity in the pre-Euro period while in the period after 1999 there is significant 

increase in within company productivity (column 10 vs. column 11), which seems to play important 

role in the changes of the aggregate productivity as well. While increasing their individual 

productivities, non-exporting companies remained relatively small as there are no significant market 

share reallocations in the sample. The decompositions of the total manufacturing sample for 

exporters and non-exporters by time periods confirm the patters observed in individual industries.  

Noteworthy is also the fact that the productivity measure, based on the original OP 

estimation algorithm, without taking into account the company exporting status, leads often to 

different interpretations about the factors affecting aggregate productivity compared to measures 

derived on the basis of our modified estimation algorithm. Furthermore, the productivity measures 

calculated by using exporting information and estimates of the total sample (OPex1 and OPex2) 

show similar decomposition pattern to the one depicted by productivity measures calculated on the 

basis of estimates of separate exporter and non-exporter samples (xOPex1 and xOPex2). 

Importantly, all reported productivity measures where exporting information is incorporated into the 

estimation algorithm exhibit similar patterns and confirm the robustness of our conclusions 

concerning the changes in aggregate productivity.  

The observed general pattern indicates that in the exporter sample a larger share of industry 

output is being reallocated to the more productive companies, and thus, industry productivity is 

higher than the unweighted company mean. Unlike the unweighted mean productivity, the 

magnitude of covariance term does vary greatly over time and more so for exporters, although the 

non-exporter sample also exhibits significant reallocations in some industries and periods. This 

variation in the magnitude of the covariance terms indicates that market share reallocations rather 

than shifts of the company productivity distribution are the main source of aggregate industry 

productivity growth observed in Figure 2. It is also important to stress that in the sample of non-

exporters, which are the less productive companies in every industry, there is a tendency of within 
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company productivity improvements. This pattern suggests a trend toward convergence between 

exporter and non-exporter samples as the trend strengthens after the implementation of the Euro. 

 

5 CONCLUSION 
In this paper we outline a methodology for estimating the parameters of a production function while 

linking the unobservable productivity to an endogenous company level trade orientation choice, 

amongst other factors. Following Ackerberg et al. (2005) we adjust the algorithm in Olley and 

Pakes (1996) by augmenting investment and exit decisions to allow for exogenous demand shocks 

by trade orientation, assuming that labour and capital are state variables, and productivity follows a 

first-order Markov process. We extend the framework further by allowing exporting to be an 

additional control variable that is driven by lagged productivity as in Melitz (2003), leading 

productivity to follow a second-order Markov process. We estimate the parameters of production 

functions for exporting and non-exporting samples of companies within the 4-digit UK 

manufacturing industries, for the period 1997 - 2001. Allowing for trade-orientation greatly 

enhances our ability to obtain consistent and unbiased estimates of the parameters of the production 

function. 

 We find that over the period of introduction of the Euro improvements in aggregate 

productivity were driven by exporters - mainly by market share reallocations away from inefficient 

and towards efficient export companies. Aggregate productivity also benefited from improvements 

in productivity of non-exporters but was driven by improvements within companies rather than by 

market share reallocations. These findings show a dual pattern in aggregate productivity changes 

and seem to support the idea that a sustained real exchange rate appreciation can induced export 

(company) cleansing as well as competitive pressure on non-exporters to increase productivity in 

the UK manufacturing.   
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Figure 1: Industry exporting intensity 
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Figure 2: Aggregate productivity and export intensity of the UK manufacturing 
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Table 1: Company level facts on exporting  

 
Exporter share Percentage of all companies Percentage of total output 
 15.6 74.4 
Productivity Standard deviation of log productivity (%) Exporter less non-exporter average log 

productivity (%) 
Labour productivity (LP), within total 
manufacturing 

90.2 16.8 

Labour productivity (LP), within 4-digit 
industries 

85.2 13.3 

Exporter size advantage Ratio of average UK sales Ratio of average total sales 
 3.8 6.5 
Export intensity (%) Percentage of all exporters Percentage of total output of exporters 
0 to 30 66.7 41.7 
30 to 70 25.8 32.4 
70 to 100 7.5 25.8 

 
Note: The statistics are calculated from average company characteristics over the 1994-2003 period. Labour productivity (LP) is measured as value added per worker. Heterogeneity 
is the standard deviation of the logarithm of LP, multiplied by 100. The productivity advantage of exporters is the difference (multiplied by 100) in the mean logarithms of 
productivity between exporting and non-exporting companies. Within industry indicates that we subtract (from the log of productivity for each company) average log productivity of 
the appropriate 4-digit industry. The size advantage of exporters is the average shipments of exporting companies relative to the average for non-exporting companies, presented as a 
simple ratio.  
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Table 2: Summary statistics  
 

Age Value added Total fixed assets Employment Investment Variables 
E N T E N T E N T E N T E N T 

1997 28.9 
(24.0) 

25.3 
(21.6) 

27.4 
(23.1) 

24.8 
(272.8)

8.5 
(46.3)

18.1 
(211.0)

25.6 
(403.6)

9.0 
(54.1)

18.7 
(310.8) 

626 
(3197)

266 
(1263)

477 
(2584)

5.4 
(75.2)

2.4 
(17.6)

4.2 
(58.7)

1998 28.5 
(23.7) 

25.0 
(21.4) 

27.0 
(22.8) 

24.0 
(277.5)

8.7 
(48.8)

17.4 
(212.0)

28.9 
(629.7)

8.0 
(46.6)

19.9 
(476.4) 

596 
(3823)

263 
(1177)

453 
(2991)

11.6 
(360.9)

2.2 
(14.0)

7.5 
(272.6)

1999 28.4 
(23.6) 

24.5 
(20.9) 

26.7 
(22.5) 

25.6 
(319.7)

8.9 
(50.0)

18.3 
(242.4)

27.3 
(616.5)

7.8 
(36.2)

18.8 
(463.5) 

557 
(3615)

258 
(1066)

427 
(2807)

5.7 
(98.4)

2.2 
(18.9)

4.2 
(74.9)

2000 28.6 
(23.5) 

24.9 
(21.1) 

27.0 
(22.6) 

25.2 
(355.6)

10.7 
(59.9)

18.9 
(270.2)

33.8 
(948.0)

8.5 
(44.6)

22.8 
(713.2) 

518 
(3214)

272 
(1114)

411 
(2528)

10.7 
(411.8)

2.2 
(30.2)

7.0 
(310.1)

2001 28.7 
(23.6) 

24.8 
(21.4) 

27.0 
(22.7) 

27.4 
(416.1)

11.2 
(63.6)

20.2 
(314.2)

36.5 
(1013.5) 

9.4 
(55.6)

24.6 
(759.2) 

528 
(3262)

286 
(1318)

422 
(2595)

6.0 
(145.3)

2.0 
(23.0)

4.3 
(109.8)

Average 28.6 
(23.7) 

24.9 
(21.2) 

27.0 
(22.7) 

25.4 
(332.9)

9.6 
(54.4)

18.6 
(253.6)

30.4 
(760.0)

8.5 
(47.6)

21.0 
(573.7) 

564 
(3437)

269 
(1187)

437 
(2710)

7.9 
(262.4)

2.2 
(21.6)

5.5 
(198.3)

 
Note: Total number of observations, after applying lags and deleting observations with missing values, for the smallest estimated sample covering five years and the 1997-2001 
period is 24,338 for the total sample (T); for exporters (E) observations are 13,831 and for non-exporters (N) - 10,507. Monetary values are in millions of constant (with respect to 
year 2000) pounds sterling. Standard deviations are in parentheses.   
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Table 3: Weighted average coefficient estimates for the total sample of UK manufacturing companies 
 

Estimation method 
Export status considered Export status not considered 

Exogenous Endogenous 
OP 1st order MP OP 2nd order MP 

Parameters 

OLS GLSfe OP OP 1st 
order MP 

OP 2nd 
order MP 

OP 1st 
order MP 

OP 2nd 
order MP E NE E NE 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
b_l 
s.e 

0.70 
0.05 

0.47 
0.10 

0.61
0.08

0.61
0.09

0.66
0.06

0.61
0.08

0.66 
0.05 

0.56
0.12

0.65
0.11

0.59
0.07

0.68
0.08

b_k 
s.e. 

0.21 
0.04 

0.13 
0.06 

0.29
0.05

0.29
0.05

0.24
0.04

0.28
0.05

0.26 
0.04 

0.28
0.07

0.26
0.06

0.28
0.05

0.26
0.05

b_a 
s.e 

0.02 
0.06 

-0.08 
0.42 

-0.02 
0.11

-0.12 
0.15

0.11 
0.10

0.01 
0.11

0.03 
0.07 

0.16 
0.16

0.18 
0.13

-0.02 
0.08

0.07 
0.09

log ω 3.24 4.94 3.14 3.24 3.19 3.29 3.32 3.57 3.18 3.59 3.06
s.d. 0.75 1.06 0.81 0.82 0.79 0.82 0.79 1.08 1.08 0.98 0.98
log ω* 3.26 5.02 3.16 3.25 3.18 3.31 3.29 3.55 3.09 3.57 3.04
s.d. 0.11 0.31 0.53 0.57 0.54 0.59 0.57 0.90 0.90 0.83 0.83
R2 0.77 0.73 0.97 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99
No obs. 24,338 24,338 24,338 24,338 24,338 24,338 24,338 13,831 10,507 13,831 10,507

Note: Coefficient estimates reported here are weighted averages of coefficients estimated within each 4-digit industry in the sample. ω is productivity measure with last stage 
estimation error and ω* is productivity measure net of the last stage estimation error. Coefficients reported in bold are significant at the 1% level or better.  
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Table 4 Decompositions of productivity change over the 1997-2001 period, by industry and export status 
 

Exporters Non-exporters Industry 
(Obs.) 

 

Period Estimation 
method Aggregate 

productivity 
in 1997or 

2000 (logω) 

Aggregate 
productivity 

change 

Within 
company 

productivity 
change 

Share 
reallocation 
productivity 

change 

Aggregate 
productivity 
in 1997 or 

2001 (logω) 

Aggregate 
productivity 

change 

Within 
company 

productivity 
change 

Share 
reallocation 
productivity 

change 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

97-98 xOPex2 4.30 -5.8 0.4 -6.2 3.01 -3.6 1.6 -5.2
 xOPex1 4.83 -7.9 0.3 -8.2 3.17 -2.0 1.7 -3.7
 OPex2 2.91 -3.8 0.7 -4.5 2.25 -1.2 0.6 -1.8
 OPex1 2.88 -2.8 0.4 -3.2 2.18 -1.3 0.7 -2.0

15  
Food and 

beverages 
(1394) 

 OP 3.33 -1.0 2.2 -3.2 2.96 -4.2 -0.8 -3.4
00-01 xOPex2 4.56 5.6 1.5 4.1 2.62 13.2 1.6 11.6

 xOPex1 4.21 9.5 1.8 7.7 2.79 11.8 1.2 10.6
 OPex2 2.46 5.1 0.8 4.3 2.17 7.6 2.6 5.0
 OPex1 2.63 7.9 0.8 7.1 2.50 8.0 2.0 6.0

 

 OP 3.05 10.1 1.6 8.5 2.43 17.8 2.5 15.3
97-98 xOPex2 5.65 -3.5 -0.2 -3.3 3.82 -0.1 0.2 -0.3

 xOPex1 5.24 -3.7 -0.1 -3.6 4.05 -0.1 0.3 -0.4
 OPex2 3.95 -6.8 -0.6 -6.2 3.29 -0.4 0.4 -0.8
 OPex1 4.07 -5.1 -0.5 -4.6 3.40 -0.7 0.3 -1.0

18  
Wearing 

apparel 
(534) 

 OP 2.62 -10.5 -1.8 -8.7 2.46 0.1 2.8 -2.9
00-01 xOPex2 5.86 4.6 0.9 3.7 3.91 2.5 2.8 -0.3

 xOPex1 5.42 5.1 1.1 4.0 4.17 2.4 2.5 -0.1
 OPex2 3.99 7.4 2.3 5.1 3.49 3.9 3.6 0.3
 OPex1 4.17 6.6 2.3 4.3 3.54 2.9 2.4 0.5

 

 OP 2.91 15.5 7.2 8.3 2.72 5.5 5.3 0.2
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Table 4 continued 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

97-98 xOPex2 3.86 7.1 -4.4 11.5 2.81 -9.4 -6.9 -2.5
 xOPex1 3.22 11.7 -4.2 15.9 2.43 -12.4 -6.9 -5.5
 OPex2 3.48 5.7 -1.5 7.2 3.33 -5.6 -4.5 -1.1
 OPex1 3.70 6.0 -1.8 7.8 3.60 -6.5 -4.3 -2.2

21  
Pulp and 

paper 
(894) 

 OP 3.56 2.2 -2.8 5.0 3.41 -5.0 -4.2 -0.8
00-01 xOPex2 3.68 4.7 2.0 2.7 2.21 -2.9 -1.1 -1.8

 xOPex1 3.24 4.6 2.7 1.9 2.45 -3.4 -1.4 -2.0
 OPex2 3.62 2.5 2.4 0.1 3.40 -2.2 -1.3 -0.9
 OPex1 4.07 2.3 2.2 0.1 3.67 -3.3 -1.2 -2.1

 

 OP 3.77 2.4 1.7 0.7 3.46 -2.1 -0.9 -1.2
97-98 xOPex2 3.99 4.3 -0.9 5.2 3.68 -8.8 0.2 -9.0

 xOPex1 3.77 6.1 -0.1 6.2 3.42 -6.7 0.4 -7.1
 OPex2 3.97 4.9 -1.1 6.0 3.80 -5.0 0.1 -5.1
 OPex1 4.26 7.9 -0.6 8.5 4.23 -7.2 0.6 -7.8

22  
Publishing 

and 
printing 
(4636)  OP 4.69 -1.6 -0.6 -1.0 4.24 -10.6 -1.0 -9.6

00-01 xOPex2 4.47 6.2 2.1 4.1 4.03 -3.1 -0.6 -2.5
 xOPex1 4.10 4.0 1.2 2.8 3.97 -2.8 -0.1 -2.7
 OPex2 4.27 5.4 0.9 4.5 3.77 -2.1 -0.4 -1.7
 OPex1 4.34 7.7 0.7 7.0 3.96 -2.3 -0.1 -2.2

 

 OP 4.06 -1.2 0.9 -2.1 3.92 -1.4 -0.1 -1.3
97-98 xOPex2 3.71 -9.4 -1.0 -8.4 3.41 -12.0 1.3 -13.3

 xOPex1 3.80 -5.6 -1.0 -4.6 3.31 -14.0 0.8 -14.8
 OPex2 4.20 -5.4 -1.3 -4.1 4.02 -7.1 0.7 -7.8
 Opex1 3.81 -7.9 -2.1 -5.8 3.75 -6.0 1.0 -7.0

23 to 26  
Chemicals 

and fuel 
(4352) 

 OP 4.55 -4.7 -0.1 -4.6 4.16 -18.0 1.3 -19.3
00-01 xOPex2 3.82 6.8 0.8 6.0 3.53 -2.6 -0.5 -2.1

 xOPex1 4.00 4.4 0.4 4.0 3.66 -1.5 -0.3 -1.2
 OPex2 4.29 3.0 0.1 2.9 4.17 -2.6 -0.7 -1.9
 Opex1 4.22 3.9 0.1 3.8 3.93 -2.9 -0.9 -2.0

 

 OP 4.58 2.4 0.0 2.4 3.60 1.6 1.1 0.5
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Table 4 continued 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

97-98 xOPex2 3.20 -2.6 -2.3 -0.3 2.74 -1.9 -2.3 0.4
 xOPex1 3.55 -3.4 -2.6 -0.8 3.19 -2.0 -2.8 0.8
 Opex2 3.43 -4.0 -3.6 -0.4 3.34 -1.5 -2.2 0.7
 Opex1 3.68 -4.2 -3.4 -0.8 3.55 -1.7 -2,1 0.4

27 and 28  
Basic and 
fabricated 

metals 
(2985)  OP 1.67 -4.1 -6.6 2.5 1.62 -1.6 -1.8 0.2

00-01 xOPex2 3.30 5.8 1.1 4.7 2.62 1.3 -1.3 2.6
 xOPex1 3.62 4.9 1.2 3.7 3.00 2.4 -1.5 3.9
 Opex2 3.30 8.0 0.8 7.2 3.21 1.1 -0.9 2.0
 Opex1 3.52 9.3 0.6 8.7 3.39 1.4 -0.8 2.2

 

 OP 1.71 -5.4 3.3 -8.7 1.57 1.0 -1.9 2.9
97-98 xOPex2 3,81 4.4 -0.3 4.7 2.77 5.2 0.6 4.6

 xOPex1 3.68 2.0 -0.5 2.5 3.27 4.5 0.8 3.7
 Opex2 3.13 4.0 -1.2 5.2 3.01 5.2 0.3 4.8
 Opex1 3.67 3.5 -0.1 3.6 3.51 4.7 0.4 4.3

29  
Non-

electrical 
machinery 

(1036)  OP 2.42 9.8 1.3 8.5 1.65 9.6 1.5 8.1
00-01 xOPex2 3,68 13.8 4.6 9.2 2.83 -4.5 2.3 -6.8

 xOPex1 3.58 7.3 3.3 4.0 3.37 -3.2 1.8 -5.0
 Opex2 2.98 14.4 4.1 10.3 2.79 -2.9 0.6 -3.5
 Opex1 3.59 9.0 3.4 5.6 3.52 -3.5 1.7 -5.2

 

 OP 2.49 12.6 4.6 8.0 1.68 -13.6 3.7 -17.3
 xOPex2 3.86 8.8 2.2 6.6 3.21 -10.7 2.3 -13.0
 xOPex1 3.40 3.8 0.9 2.9 2.95 -10.1 2.8 -12.9
 Opex2 3.67 10.3 1.7 8.6 2.80 -8.9 2.7 -11.6
 Opex1 3.25 8.2 1.0 7.2 3.07 -8.8 2.6 -11.4

30 to 32  
Electrical 

machinery 
(3054) 

 OP 3.11 7.6 -0.2 7.8 2.97 -8.1 4.5 -12.6
 xOPex2 3.66 -2.4 4.5 -6.9 3.08 7.5 1.9 5.6
 xOPex1 3.76 -3.4 4.9 -8.3 3.22 6.2 0.4 5.8
 Opex2 3.07 -4.7 5.9 -10.6 2.88 8.4 1.9 6.5
 Opex1 3.56 -6.0 4.8 -10.8 3.33 9.7 1.8 7.9

 

 OP 3.09 -9.2 4.7 -13.9 2.79 13.9 1.9 12.0
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Table 4 continued 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

 xOPex2 3.95 -1.4 0.2 -1.6 3.69 -1.6 0.6 -2.2 
 xOPex1 4.56 -1.4 0.4 -1.8 3.87 -1.7 0.7 -2.4 
 Opex2 3.97 -1.7 0.4 -2.1 3.20 -1.9 0.0 -1.9 
 Opex1 3.88 -1.5 0.3 -1.8 3.70 -1.4 0.7 -2.1 

33  
Precision 

instruments 
(1155) 

 OP 2.87 -1.9 0.3 -2.2 2.70 -2.1 0.0 -2.1 
 xOPex2 3.88 3.9 1.5 2.4 3.61 4.5 3.8 0.7 
 xOPex1 4.47 3.6 1.5 2.1 3.91 3.8 3.4 0.4 
 Opex2 3.93 4.8 2.0 2.8 3.51 4.7 3.6 1.1 
 Opex1 3.81 4.0 1.6 2.4 3.52 4.4 3.5 0.9 

 

 OP 2.83 5.0 2.2 2.8 2.67 4.8 4.0 0.8 
 xOPex2 4.00 3.7 -2.8 6.5 2.16 4.6 5.6 -1.0 
 xOPex1 3.88 4.3 -3.3 7.6 2.61 2.7 4.6 -1.9 
 OPex2 4.01 5.4 -2.9 8.3 2.59 3.7 3.8 -0.1 
 OPex1 3.99 9.4 -2.1 11.5 3.31 5.8 4.0 1.8 

34 and 35  
Transportation 

equipment 
(976) 

 OP 3.02 13.6 -3.0 16.6 2.47 6.8 3.3 3.5 
 xOPex2 4.26 4.6 2.0 2.6 2.91 -1.4 7.9 -9.3 
 xOPex1 4.24 4.8 2.3 2.5 3.78 -1.4 6.0 -7.6 
 OPex2 4.19 2.0 0.6 1.4 3.33 -1.2 6.5 -7.8 
 OPex1 4.17 4.3 1.0 3.3 3.66 -0.9 4.8 -5.7 

 

 OP 3.24 4.9 0.8 4.1 2.96 2.3 6.5 -4.2 
97-98 xOPex2 3.24 -1.5 -0.5 -1.0 2.75 0.6 -1.0 1.6 

 xOPex1 2.64 -1.8 -0.1 -1.7 2.44 1.2 -0.9 2.1 
 OPex2 2.79 -1.3 -0.3 -1.0 2.67 1.4 -0.7 2.1 
 OPex1 2.82 -1.5 -0.4 -1.1 2.36 1.3 -1.3 2.6 

36  
Furniture and 

other 
manufacturing 

(2737)  OP 2.76 -1.2 -0.8 -0.4 2.45 0.6 -1.6 2.2 
00-01 xOPex2 3.33 2.9 0.4 2.5 2.85 6.9 3.7 3.2 

 xOPex1 2.73 5.5 1.1 4.4 2.56 6.0 3.0 3.3 
 OPex2 2.68 4.0 0.7 3.3 2.56 6.4 4.9 1.5 
 OPex1 2.60 3.9 0.8 3.1 2.55 9.3 5.4 3.9 

 

 OP 2.84 0.6 -0.4 1.0 2.66 5.8 3.9 1.9 
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Table 4 continued 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

97-98 xOPex2 3.83 2.6 -0.6 3.2 3.14 -7.4 -0.3 -7.1 
 xOPex1 3.88 2.6 -0.3 2.9 3.51 -6.0 -0.4 -5.6 
 OPex2 3.58 4.9 -0.6 5.5 3.30 -3.7 -0.1 -3.6 
 OPex1 3.62 5.0 -0.3 5.3 3.40 -3.4 -0.1 -3.3 

Total 
manufacturing 

(24338) 

 OP 3.87 -1.2 -0.5 -0.7 3.28 -9.2 -0.2 -9.0 
00-01 xOPex2 3.66 5.0 1.8 3.2 3.28 1.0 3.9 -4.9 

 xOPex1 3.81 6.0 1.5 4.5 3.37 1.3 2.6 -1.3 
 OPex2 3.76 3.5 1.3 2.2 3.45 1.0 3.5 -2.5 
 OPex1 3.98 3.7 1.3 2.4 3.56 0.4 3.1 -2.7 

 

 OP 3.89 1.1 1.6 -0.5 3.20 3.2 1.0 2.2 
 
Note: xOPex2 denotes a productivity measure of productivity calculated separately for exporter and non-exporter sub-samples and modelling omega as 2nd order endogenous 
(instrumenting export variable with predicted value) Markov process. Analogously, xOPex1 is a productivity measure where 1st order endogenous Markov process is modelled; 
OPex2 is a measure where 2nd order endogenous Markov process is modelled and the estimation is done for the pooled sample of exporters and non-exporters; OPex1 is a measure 
where 1st order endogenous Markov process is modelled and the pooled sample is estimated; OP is the benchmark standard Olley-Pakes estimator where no export-status information 
is used. Results reported for total manufacturing are not weighted by industry.  
 




