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Estimates from a Search-Matching Model*

 
We construct and estimate by maximum likelihood an equilibrium search model where wages 
are set by Nash bargaining and idiosyncratic productivity follows a geometric Brownian 
motion. The proposed framework enables us to endogenize job destruction and to estimate 
the rate of learning-by-doing. Although the range of the observations is not independent of 
the parameters, we establish that the estimators satisfy asymptotic normality. The structural 
model is estimated using Current Population Survey data on accepted wages and 
employment durations. We show that it captures almost perfectly the joint distribution of 
wages and job spells. We find that the rate of learning-by-doing has an important positive 
effect on aggregate output and a small impact on employment. 
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1 Introduction

The Mortensen and Pissarides (1994) model (thereafter MP94) with endogenous job de-

struction is the canonical macro-framework for the analysis of labor markets. Given its

considerable influence, numerous papers have assessed its ability to explain aggregate out-

comes and business cycle fluctuations. Comparatively little is known about its capacity to

fit the cross-sectional features of the data. This gap in the literature is due to the fact that

jobs’ outputs follow stochastic paths in MP94, whereas structural estimations of equilib-

rium search models typically assume that they remain constant through time.1 This paper

bring together the two approaches by using maximum likelihood to estimate the MP94

model with endogenous job destruction. In order to preserve the aggregation properties

that are required for equilibrium analysis, we follow Mortensen and Pissarides in assuming

that productivity and thus human capital are purely match-specific. We also consider that

firms and workers cannot commit so that wages are set by Nash bargaining. Accordingly,

our first contribution is to show that the standard MP94 model can indeed capture the

joint distribution of wages and job spells, and to identify the parameter values required to

achieve a good fit.

Most interestingly, the structural model identifies the rate at which matches’ outputs

increase with tenure or, for brevity, the rate of learning-by-doing (thereafter LBD). A large

body of empirical research has focused on estimating the rate of LBD.2 This paper attempts

to contribute to this line of research by proposing a structural approach that makes it

possible to quantify the aggregate impact of LBD. We find that it has a significant positive

effect on aggregate output but a small effect on employment.

The rate of LBD cannot be estimated in a purely deterministic set-up because the
1See Eckstein andWolpin (1995) for an early estimation of an equilibrium search model in a deterministic

environment with symmetric Nash-bargaining and Flinn (2006) for an analysis of the effects of the minimum
wage. Only recently has the literature begun to address the observed pattern of wage dynamics. One way
to reconcile theory and evidence can be found in the new line of research (Cahuc et al., 2006; Dey and
Flinn, 2005) where workers bring alternative employers into Bertrand price competition with their current
employer. Although the game of alternating offers effectively generates upward sloping wage profiles, this
prediction is not due to increases in output but to the gradual appropriation of the job’s rent by the worker.
This paper focuses instead on the mechanism prevailing in the equilibrium theory of unemployment whereby
changes in jobs’ productivities determine wage dynamics.

2The related literature is too extensive to be comprehensively reported. An arbitrary sample includes
the seminal paper by Jovanovic and Mincer (1981) and more recent contributions by Altonji and Shakotko
(1987), Topel (1991), Altonji and Williams (2005), Dustmann and Meghir (2005).
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lower bound of the wage distribution increases with tenure when workers regularly progress

along the learning curve. Given that cross-sectional data always contain individuals with

significant seniority and earnings close to the reservation wage, the estimated rate of LBD

necessarily collapses to zero in a deterministic set-up. Hence, one needs to introduce

some noise around the learning curve. A possibility is to allow for measurement errors.

This approach, however, has the major drawback of ignoring the interaction between job

destruction and the rate of LBD. On the other hand, a higher rate of productivity growth

naturally lowers the incidence of endogenous job separations. Thus our structural model

takes into account the positive effect of LBD on job retention.3

Endogenous separations greatly complicate the derivation of the likelihood function be-

cause we have to deduce all the sample paths that breach the reservation productivity.

We show that this problem can be solved through the introduction of geometric Brownian

motions. We therefore assume that jobs’ idiosyncratic productivities follow random walks

with constant growth rate. Such a specification of the stochastic process is justified by sev-

eral empirical studies substantiating that a random walk with transitory shocks accurately

captures the dynamics of log-wages.4 This paper illustrates that this specification also has

great advantages for structural estimation since it allows us to solve for the equilibrium in

closed-form and so to estimate the model by full-information methods.5 Thus, although

we are sympathetic to the idea that more sophisticated ARMA processes have a higher

accuracy, we propose geometric Brownian motions as a useful first-order approximation.

The other main technical difficulty is due to the non-standard properties of the likeli-

hood function: the reservation wage and consequently the support of the data is a function

of the estimated parameters. This peculiarity of equilibrium search models is well know

since Flinn and Heckman (1982). In order to circumvent it, they proposed to evaluate the

likelihood function in two steps. First of all the reservation wage is set equal to the lowest
3The positive effect of skill accumulation on job retention is commonly invoked to justify training

programs. An important example is provided by the official goals of the Workforce Investment Act of
1998. For an econometric assessment of the relationship between job stability and training programs, see
Winter-Ebmer and Zweimüller (1996).

4This finding has been uncovered by Topel and Ward (1992) using the LEED (longitudinal employee-
employer data) over the period going from 1957-1972. It has been recently confirmed by Buhai and Teulings
(2005) using a dataset based on a PSID extract of 18 waves, covering the years 1975 through 1992.

5In a recent paper, Lopes de Melo (2006) also uses stochastic calculus to estimate an equilibrium search
model. Although his model shares similarities to the one considered here, he focuses on the learning process
about the quality of the firm-worker match.
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wage observed in the sample. Since the lowest wage is a super-consistent estimator, one can

treat the estimated reservation wage as being equal to its true value when evaluating the

remaining parameters. This estimation procedure yields consistent estimates for determin-

istic search-marching models. When job destruction is endogenous, however, workers and

firms separate precisely at the reservation wage. As a result, the likelihood of observing

the reservation wage is equal to zero and so the lowest reported wage is not anymore a

super-consistent estimator.

Hence, we have to rely on a different estimation method than the two-step approach

proposed by Flinn and Heckman (1982). Our problem bears similarities to the estimation

of optimal production frontiers. Optimal frontiers models also imply that the range of the

observations changes with the parameters being estimated. Moreover, they share with our

model the additional implication that agents are never exactly on the optimal frontier. As

firms cannot perfectly counteract random perturbations, they remain within the neighbor-

hood of the optimal combination of inputs without ever achieving it perfectly. Given that

the estimation of optimal frontiers is one of the most popular area of applied econometrics,

great attention has been devoted to the econometric solutions for this kind of problem. In

an influential paper, Greene (1980) showed that when the likelihood of observing the actual

boundary of the distribution is equal to zero, standard regularity conditions need not be

satisfied in order to produce standard asymptotic distribution results. We adapt Greene’s

proof to our set-up and establish that, despite the appearance, endogenous separation ac-

tually simplifies the analysis since it enables us to estimate the likelihood function as if it

were completely standard.

After having analyzed the equilibrium of the economy and derived the properties of the

likelihood function, we estimate the model using data from the January 2004 supplement

of the Current Population Survey. We restrict our attention to workers without tertiary

education because the estimates do not capture the accumulation of general human capital

which is known to be much more significant for skilled workers.6 The estimation procedure

returns estimates for the rate of LBD of around 2% per year. We assess the ability of the

model to fit the joint distribution of wages and job spells and find that it reproduces the
6See for example Dustmann and Meghir (2005) for evidence according to which the acquisition of general

skills is important for skilled workers whereas unskilled workers benefit primarily from being attached to a
particular firm.
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data surprisingly well given its parsimonious specification. Then we use the estimates to

characterize the impact of the rate of LBD. We show that it shifts to the right the wage

distribution and significantly increases its dispersion.

The rest of the paper is organized as follows. Section 2 lays out the set-up and charac-

terizes the equilibrium. The econometric procedure and the asymptotic properties of the

estimates are detailed in Section 3. Section 4 describes the data and discusses the estima-

tion results. In section 5 we introduce an aggregate matching function to close the model

and evaluate the impact of LBD on the equilibrium. Section 6 concludes and the Appendix

contains the proofs of the propositions.

2 The model

We consider a labor market with search frictions where jobs’ output are subject to random

fluctuations. The set-up differs in three respects from the one proposed by Mortensen and

Pissarides (1994): firstly we allow initial productivities to differ, secondly we assume that

output follows a geometric Brownian motion and finally we introduce LBD. Given that the

Current Population Survey (CPS hereafter) does not contain information on the number

of posted vacancies, the data will not allow us to estimate the parameters of the matching

function. Thus we take as given the rate of contact between firms and job seekers, and

postpone the introduction of the aggregate matching function to section 5.

2.1 The production process

Consider a market in which homogenous workers, who live forever, are either employed or

looking for a job. Each competitive firm has one job which can be either filled or vacant.

Firms use only labor to produce a unique multi-purpose good. When an unemployed worker

meets a firm with a vacant job, they sample a positive output for their match. The initial

productivity is a random draw from the exogenous distribution G (·), which is assumed to
be continuously differentiable. In the remainder of the paper, we will refer to G (·) as the
sampling distribution.

Both parties instantaneously observe the initial productivity. Then the firm can decide

whether or not to make a job offer. If the firm “passes” on the applicant, it does not incur
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any specific cost for doing so and it continues to keep its vacancy open to other workers.

Similarly, the worker can choose to refuse the job offer if he prefers to search for a better

opportunity.

In the case where both parties decide to match, they immediately start to produce and

output begins to fluctuate. We do not consider aggregate shocks so that stochastic fluctu-

ations are uncorrelated across jobs. The stochastic process that changes the idiosyncratic

output is a geometric Brownian motion. Thus its law of motion is given by

dP it
P it

= ζdt+ σdBit (1)

where dBit is the increment of a standard Brownian motion. The subscript i indexes jobs.

In the remainder of the text we will neglect it when not necessary. According to (1), the

expected output at time t + T of a job with current output Pt is equal to PteζT . Hence

ζ is the rate at which productivity on-the-job increases. The acquired skills are purely

job-specific since workers become identical when they return to the unemployment pool.

The parameter σ reflects dispersion: the higher it is, the faster output fluctuates. We also

introduce an exogenous source of uncertainty such that jobs are forced out of business when

hit by random shocks that arrive at the Poisson rate δ.

The introduction of Brownian motions contrasts with the standard practice of consider-

ing Poisson processes. Whereas Brownian motions have continuous sample paths, Poisson

processes are by definition discontinuous. It is explained in Prat (2006) why Brownian

motions deliver more accurate predictions about the hazard rate of job separation and the

shape of the wage distribution. It is also shown in Prat (2006) how most of the statistics

of interest can be derived in closed-form using stochastic calculus. As we will see in section

3, the convenient analytical properties of Brownian motions are crucial for the empirical

implementation of the model.

We also assume that workers do not receive alternative job offers while employed. Thus

we do not consider on-the-job search so that trade in the labor market is completely sep-

arated from production. This restriction is imposed due to technical reasons as it is no-

toriously involved to combine idiosyncratic uncertainty with on-the job-search.7 These
7For example, Nagypál (2005) establishes that the wage distribution cannot be expressed in closed-form

when workers search on-the-job and uncertainty is modelled using a diffusion process.
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difficulties partly explain why empirical models of employers competition typically assume

away idiosyncratic uncertainty.8 We make the converse assumption and leave to further

research the task of devising a comprehensive model.

2.2 Optimal job separation

Because trading in the labor market is a costly process, matched pairs have to share a

quasi-rent. We assume a Nash-bargaining rule whereby each party obtains a constant

share of the job’s surplus S(Pt) at each point in time.9 The rent of each party is defined

as the difference between the asset value obtained by participating in the match and the

disagreement outcome of continued search. Since the two rents remain proportional, it

cannot be the case that one is positive and the other negative. In other words workers and

firms always separate by common agreement.

Let U denote the steady-state expected value of search by an unemployed worker. The

search effort costs the worker s and he meets at the flow rate λ a firm with an open vacancy.

The contact leads to a match if the initial output drawn from the sampling distribution

G(·) is at least as great as the reservation output R. Under the assumption that workers are
risk-neutral and that they discount the future at rate r, U satisfies the following equation

rU = −s+ λ

Z +∞

R

βS(P )dG(P ) (2)

where β denotes the worker’s bargaining power. As opposed to the labor force whose size

is fixed and normalized to one, new firms enter the market until arbitrage opportunities

are exhausted. Thus free-entry ensures that the firm’s outside option is equal to zero and
8A notable exception is the recent paper by Postel-Vinay and Thuron (2005). They estimate a model

with i.i.d. productivity shocks, on-the-job search and wage renegotiation by mutual consent. Given the
complexity of their set-up, they do not incorporate human capital accumulation and take job separation
as exogenous. Nevertheless, the likelihood function of the model cannot be analytically characterized so
they have to rely on Optimal Minimum Distance estimation.

9The Nash-bargaining solution assumes away the difficulty of relating wages to job-specific human
capital. As explained in Felli and Harris (1996), wages increase with human capital to the extent that
workers are able to appropriate some of the return. As specific human capital enhances the worker’s
productivity only in its current working place, it is not clear why the worker should receive any of the
return on it. We do not address this issue and instead follow the typical practice of considering that each
party receives a fixed share of the expected surplus at any point in time.
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the total surplus of the match can be decomposed in the following way

rS (Pt) = Pt − rU − δS (Pt) +
E

dt
[dS (Pt)] (3)

where it is assumed that firms discount the future at the same rate than workers. The

term δS (Pt) corresponds to the loss incurred by both parties when the job is hit by an

exogenous destruction shock. Notice also that the surplus evolves through time due to

output fluctuations. In the deterministic case one can immediately solve for S (Pt) by com-

bining equations (2) and (3). In the stochastic case we have to solve the partial differential

equation satisfied by S (Pt), as explained in the Appendix.

Proposition 1 The expected surplus of a match with current output P and reservation

output R is given by

S (P ;R) =
P

r + δ − ζ
−
µ

1

r + δ

¶
rU −

∙
R

r + δ − ζ
−
µ

1

r + δ

¶
rU

¸µ
P

R

¶α

(4)

where α is the negative root of the following quadratic equation

α2
σ2

2
+ α

µ
ζ − σ2

2

¶
− r − δ = 0

One can solve for the optimal reservation output using a standard first-order condition

with respect to R. The resulting solution is homogenous of degree zero in P , so that R is

identical across matches, as one should expect. Its optimal value is given by

R =

µ
α

α− 1

¶µ
r + δ − ζ

r + δ

¶
rU (5)

From the definition of α, it is easily seen that R is upper-bounded by the opportunity

cost of employment rU . Within the neighborhood of R, output is too low to cover costs

but the job might turn profitable again thanks to future shocks. Therefore the worker and

the firm procrastinate up to the point where the value of waiting equals the operational

losses. On the contrary when productivity is constant, there is no labor-hoarding and the

reservation output is equal to the opportunity cost of employment.
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2.3 The equilibrium

This section characterizes the equilibrium rate of unemployment and the joint distribution

of job spells and wages. It will be shown in section 3 that these statistics have closed-form

solutions when the sampling distribution is lognormal. But for the moment we keep the

analysis as general as possible by not imposing any parametric assumption. First of all, we

notice that the Nash-bargaining problem is satisfied if and only if wages are such that

w(Pt) = βPt + (1− β)rU (6)

The wage follows from output by a location transformation. So the discussion can be

restricted to the output distribution, without loss of generality. The derivations are based

on the premise that the labor market is in steady state so that job flows are constant and

balance at all time.10 The statistics of interest are derived using a progressive approach:

starting from the most informative one, namely the joint distribution of job spells and

output, we aggregate it step by step in order to obtain the rate of unemployment.

Proposition 2 The joint density of output x and tenure T is given by

υ(x, T ) = uλ

µZ +∞

R

ψ (x, T ;P ) dG(P )

¶
(7)

where u denotes the rate of unemployment. For x ∈ [R,+∞), the function ψ (x, T ;P ) is

ψ (x, T ;P ) =

µ
e−δT

x

¶⎛⎝e− 1
2

³
ln(x)−ln(P )−µT

σ
√
T

´2
σ
√
2πT

−
µ
R

P

¶ 2µ

σ2 e
−1
2

³
ln(x)+ln(P )−2 ln(R)−µT

σ
√
T

´2
σ
√
2πT

⎞⎠ (8)

where µ = ζ − σ2

2
.

The first term on the right hand side of (7)measures the number of contacts between job

seekers and firms. The function ψ (x, T ;P ) is the conditional joint density of current output

and tenure given initial output. From the set of sample paths starting from P and reaching
10Although conventional for obvious technical reasons, the steady-state assumption is actually quite

restrictive. We refer to Jolivet et al. (2005) for empirical evidence in its favor.
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x after tenure T , it deduces all those that breach the separation threshold R.11 Given

that initial productivities are drawn from the sampling distribution, the unconditional

joint density is obtained integrating ψ (x, T ;P ) with respect to G(P ). The integration is

performed from R up to infinity because contacts lead to matches solely when P is above

R. The density of jobs with a given current output is readily obtained from (7) after having

integrated tenure from 0 up to infinity. The following proposition shows that the resulting

integral can be expressed analytically.

Proposition 3 The density of output x is given by

υ(x) = uλ

µZ +∞

R

ϕ(x;P )dG(P )

¶
(9)

where the function ϕ(x;P ) is defined for x ∈ [R,+∞) and is equal to

ϕ(x;P ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P−1

¡
x
P

¢µ−γ
σ2
−1
Ã
1−(RP )

2γ

σ2

γ

!
; if x > P

P−1
¡
x
P

¢µ+γ
σ2
−1
Ã
1−(Rx )

2γ

σ2

γ

!
; if x ∈ [R,P ]

(10)

and γ =
p
µ2 + 2δσ2.

In a similar way, the aggregate rate of employment follows integrating equation (9) from

R up to infinity. Again the calculation leads to a closed-form expression that is given in

Proposition 4. The expression is reminiscent of the equilibrium rate of unemployment under

certainty. Actually, when uncertainty vanishes so that σ goes to zero, the term (R/P )
µ+γ

σ2

also converges to zero. Thus the expression of u converges to the standard solution under

certainty.

Proposition 4 The equilibrium rate of unemployment is equal to

u =
δ

δ + λ
R +∞
R

³
1−

¡
R
P

¢µ+γ
σ2

´
dG(P )

(11)

11Notice that an econometrician who observes the workers’ wages at different points in time of their jobs
spells could use equation (8) to compute the likelihood of their sample paths.
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In this section we have presented the statistics that will be useful for the econometric

estimation. Next section details the econometric procedure and analyzes the property of

the likelihood function.

3 Estimation procedure

We now discuss how to estimate the model’s parameters. The searching costs parameter

s is not identified because it enters the likelihood function only through its impact on

R. As explained below, we will treat the reservation output as if it were an endogenous

parameter to be estimated. After all the parameter estimates have been obtained, the

equilibrium conditions can be used to retrieve the implied searching costs. Conversely, the

values of r and β have to be fixed prior to the estimation. While not so problematic for

r since it has been estimated with precision in other research, the calibration of β is more

unsettling. Although the bargaining power is theoretically identified due to the highly non-

linear likelihood function, trials show that in practice the model fails to pin it down. In the

absence of informations on firm profits, it is not surprising that the dataset does not allow

us to recover both sizes and allocations of the jobs’ surpluses. This difficultly is well-known

and is now gradually overcome by research based on matched employer—employees data

(see Cahuc et al., 2006). Given the one-sided nature of the CPS data, we stick to the usual

practice of assuming symmetric bargaining and then perform some robustness test with

respect to β.

3.1 The likelihood function

Following these preliminary steps, the likelihood of the sample can be expressed as a

function of the remaining set of parameters. We slightly restrict the generality of the

problem by assuming that the sampling distribution G(·) can be completely parametrized
in terms of a finite-dimensional vector Ω so that the set of estimated parameters Θ =

{ζ, δ,σ,Ω, R,λ}.
The likelihood of the sample is computed as follows. Let Y denote the set of observa-

tions, so that Y ≡ {y1, y2, ..., yn} where n is the total number of workers in the sample. The
individual observations are defined using three variables: wi , T i, τ i. The variables wi and
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T i are the current hourly wage and job tenure. In the case where worker i fails to report

the length of his job spell, T i is obviously ignored. If worker i is currently searching for a

job, yi is set equal to the unemployment duration τ i. The likelihood function is therefore

made of three distinct components. The individual contribution of a job searcher is equal

to the density associated with an on-going unemployment spell of length τ conditional on

unemployment times the probability of observing an unemployed worker

f(τ , u) = f(τ |u)u =
³
λG(R)e−λG(R)τ

´
u =

δλG(R)e−λG(R)τ

δ + λ
R +∞
R

³
1−

¡
R
P

¢µ+γ
σ2

´
dG(P )

where G(P ) ≡ 1−G(P ). The likelihood of observing an employed worker paid wage w is
given by υ(x (w)). The expression can be further decomposed reinserting (11) into (9) to

obtain

f(w, e) = υ(x (w)) =
δλ
³R +∞

R
ϕ(x(w);P )dG(P )

´
δ + λ

R +∞
R

³
1−

¡
R
P

¢µ+γ
σ2

´
dG(P )

Notice that output is defined as a function of the observed wage. Its implicit value follows

from combining (5) with (6). Similarly, the joint likelihood of observing a worker paid wage

w with a job tenure equal to T is given by

f(w, T, e) = υ(x (w) , T ) =
δλ
³R +∞

R
ψ (x(w), T ;P ) dG(P )

´
δ + λ

R +∞
R

³
1−

¡
R
P

¢µ+γ
σ2

´
dG(P )

Putting together these three components, the log likelihood for the observed sample reads

lnL (Θ, Y ) = n

Ã
ln(λ) + ln(δ)− ln

Ã
δ + λ

Z +∞

R

Ã
1−

µ
R

P

¶µ+γ

σ2

!
dG(P )

!!

+nU ln
¡
G(R)

¢
− λG(R)

X
i∈U

τ i +
X
i∈W

ln

µZ +∞

R

ϕ(x(wi);P )dG(P )

¶
+
X
i∈H

ln

µZ +∞

R

ψ(x(wi), T i;P )dG(P )

¶
(12)

where nU is the number and U is the set of indices of job searchers in the sample, W is the
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set of indices of employees who only report their current wage and H is the set of indices of

employees who report both wage and job spell. Although the parameters ζ and Ω do not

appear in the analytical expression of the likelihood function, they are implicitly identified:

ζ determines the values of µ, γ, ϕ(·) and ψ(·), while the parametric vector Ω obviously

characterizes G(·). Notice that, for the sake of the estimation, the reservation output is
treated as a primitive parameter of the model.

The likelihood function is continuously differentiable and its parameters belong to a

compact support. Nevertheless, it does not satisfy all the standard requirements for a well-

behaved likelihood function since the support of the distribution of the data is a function

of the parameters. Furthermore the likelihood of observing the reservation wage is equal to

zero. As explained in the introduction, this feature implies that we cannot use the smallest

observed wage as a super-consistent estimator. Nevertheless, as stated in Proposition 5,

the estimators satisfy asymptotic normality under standard requirements.

Proposition 5 Suppose that (i) The parameter space Γ is compact and contains an open

neighborhood of the true value Θ0 of the population parameter; (ii) The sampling distribu-

tion G(P ) is continuously differentiable. Then the maximum likelihood estimator

bΘ = argmax
Θ∈Γ

lnL (Θ, Y )

converges in probability to Θ0 so that
√
n
³bΘ−Θ0

´
d−→ N (0, H−1JH−1) where H is the

Hessian of the likelihood function and J is the information matrix.

The proof of Proposition 5 relies on the fact that f(w(R), e) and f(w(R), T, e) are both

equal to zero. As shown in Greene (1980), this property justifies the interchange of the

order of integration and differentiation so that the asymptotic property of the estimator

can be characterized by linear approximation. Our problem is slightly less standard than

the one considered by Greene because the derivatives of the density functions with respect

to Θ are not equal to zero when evaluated at the reservation output. Thus the interchange

of the order of integration and differentiation is justified solely for the first derivative. This

is why the hessian matrix H is not equal to −J so that the asymptotic covariance matrix
cannot be simplified and set equal to J−1. But, as explained in Newey and McFadden
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(1994), the information matrix equality is not essential to asymptotic normality. The only

complication is technical and due to the more intricate form of the asymptotic variance.

3.2 Lognormal sampling distribution

We have characterized the estimation procedure for general sampling distributions. The

econometric implementation of the model requires to narrow the analysis to a particu-

lar family of distributions. Accordingly we will hereafter assume that G(·) is lognormal.
Lognormal distributions are commonly assumed because they satisfy the “recoverability

condition” defined by Flinn and Heckman (1982), meaning that their location and scale

parameters can be recovered from truncated observations. The class of functions which

satisfy the “recoverability condition” also encompasses, among others, gamma distribu-

tions.12 Thus lognormality is eventually justified by its good fit of the data. In our case

this assumptions has a more crucial role. Given the intricate expression of the likelihood

function, there is little hope to derive it in closed-form. Solely when initial productivi-

ties are lognormally distributed in the population, does the likelihood function admits an

analytical expression so that approximation errors due to numerical integrations can be

avoided. Given its length, we do not include the expression of L (Θ) in the body of the

paper.13

Proposition 6 Under the assumption that the initial productivities are drawn from a log-

normal distribution, so that

dG(P ) =
e−

1
2(

ln(P )−Σ
ξ )

2

P ξ
√
2π

dP (13)

the likelihood functions L (Θ) has a closed-form solution. The resulting expression is re-

ported in Appendix.

12See Flinn (2006) for a careful discussion of the class of functions which satisfy the “recoverability
condition”.
13The derivation of an analytical expression for the likelihood function is made possible by the fact that

geometric Brownian motions are also lognormally distributed.
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4 Empirical results

4.1 Data

We now estimate the model using cross-sectional data. Whereas most surveys system-

atically ask unemployed workers to report the time they have been searching for a job,

employees are rarely asked the length of their job spells. As a result, data on job du-

rations are scarcer than data on unemployment durations. A notable exception is the

January/February supplement of the Current Population Survey. The CPS is structured

as a rotating panel with 4 months of participation, 8 months without interviews, and 4

more months of participation after which the household is taken out of the panel. In Jan-

uary or February, the current wages and job spells of the Outgoing Rotation Groups14 are

collected. More precisely, employees are asked the following question: How long have you

been working continuously for your present employer?

Hence the job tenure supplement provides data on both job spells and wages for a

supposedly random sample of one fourth from the January 2004 CPS. We use data on

males and females with an age between 20 and 65 years. Since our model does not include

a state of non participation to the labor market, we have restricted our sample to individuals

who indicated that they were currently employed or actively searching for a job. For the

same reason, we have excluded individuals observed as self-employed, working part time

or employed in the non-civilian labor force. After excluding observations with missing

wage data, we restricted the sample to workers with a high school graduation diploma

or less. Finally we have trimmed the sub-sample by excluding observations below the

bottom percentile of the wage distribution. The trimming is particularly important for the

estimation of the reservation wage since it allows us to avoid implausibly low estimates due

to measurement errors.15

14In our case, the Outgoing Rotation Groups are composed of the households that entered the panel in
October 2002 and 2003.
15The trimming of the data is especially useful given the nature of the observations. For the workers

which are not paid on an hourly basis, we have divided their gross weekly wage by their usual hours
of work per week in order to impute their hourly wage. This computation obviously interacts potential
measurement errors and for some observations leads to implausibly low hourly wages.
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TABLE I

DESCRIPTIVE STATISTICS∗

All Males Females

Age 40.475
(11.403)

39.841
(11.316)

41.358
(11.467)

Working week (hours) 41.411
(5.750)

42.324
(6.720)

40.163
(3.723)

Average spells (months)

Unemployed 4.537
(5.011)

4.438
(4.956)

4.704
(5.117)

Job 92.586
(97.160)

96.773
(101.926)

86.601
(89.604)

Hourly wage

All jobs 13.777
(6.982)

14.932
(7.458)

12.199
(5.922)

Job spell<1 year 11.829
(6.308)

12.801
(6.843)

10.394
(5.109)

Entrants 10.301
(4.486)

11.059
(5.140)

9.439
(3.436)

Number
of Observations

Labor Market Position

Unemployed 413 260 153

Employed 4336 2504 1832

Reported job spells

Total number 3676 2163 1513

Job spell<1 year 535 319 216

Entrants 154 82 72

Sample size 4749 2764 1985
∗ Standard Deviations in Parenthesis.

Descriptive statistics are reported in Table 1. It contains statistics for jobs with a re-

ported tenure below one year. Their wage distribution will be very close to the estimated

sampling distribution because the estimation procedure approximates the latter using ob-

servations with short job spells. This points to potential bias since the distribution of wages

among job entrants has a lower mean than the distribution of wages among workers with

less than one year of tenure.16 This feature of the data is easily explained by on-the-job
16We are able to identify individuals entering the employment pool by excluding from the set of workers
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Figure 1: Wage densities.

search as employees select offers which are above their current wage. Given that our model

excludes on-the-job search, the job-ladder effect is ignored and consequently our estimates

of the location and scale parameters of the sampling distribution will be biased upwards.

As shown in section 4.3 where we analyze the robustness of the estimation procedure, this

leads to downward biases for the estimate of the rate of LBD.

The non-parametric kernel density estimates of the three wage distributions are reported

in Figure 1. As expected, the distribution of wages among job entrants is located to the

left and exhibits slightly less dispersion than the distribution of wages among workers

with less than one year of tenure. On the contrary, the dispersion of the aggregate wage

distribution is much higher. This feature fits well the model since Brownian motions are

diffusion processes, meaning that their distributions become more and more dispersed as

time elapses.

4.2 Estimates

The estimated parameters and their standard deviations are reported in Table 2. We

also estimate the deterministic model using the procedure devised by Flinn and Heckman

(1982). Table 2 makes clear that their approach is nested into the one proposed in this

with less than a year of tenure those that were working a year ago.
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paper. Notice that, in addition to the rate of LBD ζ and the variance parameter σ, the

model also allows us to estimate the value and standard deviation of the reservation wage

wr. Conversely, the value reported for the deterministic model corresponds to the lowest

wage in the sample so that its standard deviation is not defined.

The estimates of Σ and ξ imply that the mean and dispersion of the sampling distri-

butions are higher in the deterministic model than in the stochastic model. This result is

intuitive since the deterministic model is based on the premise that the sampling distribu-

tion and the aggregate distribution are one and the same. To the opposite, the estimation

of the stochastic model sets the parameters Σ and ξ so as to fit the distribution of wages

among jobs with a short tenure and so yields smaller values for both parameters.

Conversely, the exogenous rate of job destruction δ is similar. This is somewhat surpris-

ing since the stochastic model generates endogenous separations. Thus one might expect

that the rate of exogenous job destruction would be significantly lower in a stochastic en-

vironment. For the very small estimate of the variance parameter, however, endogenous

separation is a marginal phenomenon. Accordingly the separation rates are quite similar

in both models with an estimated average length of a job close to 90 months.

The estimated values of λ imply that job searchers receive a job offer every 6 months.

Although the model over-estimates the average unemployment duration, the predicted

unemployment rate is equal to 6.4% whereas its value in the data is 8.7%. These opposite

biases suggest that the sample does not completely satisfy the stationarity assumption,

most probably because of a significant and recent entry of workers into the labor force.

We now turn our attention to the estimates that are specific to the stochastic model.

First of all, we notice that the variance parameter σ is quite low. With a standard de-

viation close to 3.5%, the model predicts that the sample paths are nearly deterministic.

Nonetheless, one cannot set σ to zero and at the same time estimate ζ. In a deterministic

environment the lower-bound of the joint distribution is an increasing function of tenure

and consequently the likelihood of observing a worker with a seniority equal to T and a

wage inferior to eζTwr is zero. Given that the sample contains such observations as long as

ζ significantly differs from zero, the deterministic model necessarily collapses to the case

where the sampling and aggregate wage distributions are indistinguishable. Thus there is

a fundamental link between the introduction of uncertainty and the estimation of the LBD
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rate, the former being necessary to implement the latter.17

TABLE II

MODEL ESTIMATES∗

β = 0.5 β = 0.4

Parameters Stochastic Deterministic Stochastic Deterministic

wr 3.76
(.180)

4.11
(___)

3.60
(.213)

4.11
(___)

ζ .0204
(.001)

___ .0207
(.001)

___

σ .0350
(.006)

___ .0267
(.012)

___

δ .133
(.002)

.133
(.002)

.133
(.002)

.133
(.002)

Σ 2.86
(.018)

3.01
(.008)

3.05
(.023)

3.19
(.008)

ξ .488
(.008)

.526
(.006)

.506
(.008)

.550
(.006)

λ 1.95
(.073)

1.95
(.081)

1.94
(.073)

1.95
(.085)

ln L −28874 −29045 −29837 −30000
Discount rate: r = 5%
∗ Standard Errors in Parenthesis.

The estimated rate of LBD is close to 2%. This translates into a smaller wage growth of

around 1.75% per year because the constant outside option accounts for a substantial share

of wages. The model predicts that ten years of tenure raises the average wage by about

18.8% so that our estimate of the cumulative returns to tenure lies in the range separating

the low returns obtained by Altonji and Williams (2005) from the high returns obtained

by Topel (1991). Notice that given the low value of the variance, non-random selection in

who acquires seniority is not a source of important bias.

Table 2 also contains the estimates when β is equal to 0.4 instead of 0.5. A bargaining

power of 0.4 is in the range of the estimates obtained by Flinn (2006) using wage-share

informations for CPS sample members between 16 and 24 years of age. Of all the estimates,
17An alternative strategy is to introduce measurement errors. As discussed in the introduction, it has

the drawback of neglecting the interactions between job separation and LBD. Furthermore, the likelihood
function with normally distributed measurement errors cannot be expressed in closed-form. Thus, although
this alternative strategy is arguably more stylized, it has to be implemented through numerical integration.
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the most sensitive to the change in β are the parameters determining the shape of the

sampling distribution of output. A lower value of β implies that the worker receives a

smaller share of the job’s output, so the observed dispersion of wages must result from a

higher degree of productivity dispersion. This is why both Σ and ξ substantially increase.

Conversely, the estimate of ζ is quite robust to variations in the bargaining power. It

slightly increases because workers must learn at a higher rate to benefit from a given pay

raise.

We now consider the ability of the model to fit the sample information. Of most interest

to our analysis are its predictions about the joint distribution of wages and job spells. The

data for jobs with a tenure below 1, 5 and 10 years as well as the aggregate distribution are

reported against their simulated counterparts in Figure 2. The panels illustrate the ability

of the model to fit almost perfectly the gradual increase in dispersion of the cross-sectional

distributions. Yet, careful inspection shows that the simulation tends to be a little bit

less responsive to changes in tenure. More precisely, the mean of the wage distribution

among workers with less than one year of tenure is slightly higher than in the data. Next

section proposes an alternative estimation procedure which reduces this discrepancy and

evaluates its impact on ζ. We also notice that the model matches very well the right tails

of the distributions. This a classical test for models of wage dispersion due to the “heavy

tail” property of the data. As explained in Prat (2006), the cross-sectional distribution

aggregates underlying distributions with right-tails of Pareto functional form. Therefore it

is not surprising that the model easily fits the wage distribution at high quantiles.

Since we have excluded on-the-job-search, one may wonder whether the fit of the wage

distribution is achieved at the expense of the turnover process. To address this potential

concern, we report in Figure 3 the actual distribution of job spells together with the struc-

tural estimation. While not as convincing than for wages, the simulation is still reasonably

close to the data. Given that endogenous separations are quite rare, the stochastic and de-

terministic models have very similar predictions about the distribution of job spells. Thus

the hazard rate of job separation is almost flat. This result is somewhat disappointing since

it is shown in Prat (2006) that the framework estimated in this paper has the potential to

fit the hump-shaped hazard rate of job separation that is observed in the data. Unfortu-

nately this would require to set the idiosyncratic variance σ to a higher value than the one

resulting from the estimation.
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Figure 2: Wage densities at different job spells.
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4.3 Robustness

In this section we assess the robustness of the estimation procedure. We focus on the

biases induced by the exclusion of on-the-job search. Obviously a complete evaluation

would require to devise a comprehensive model but such a project is beyond the scope of

this paper. Nevertheless, we are able to partly control for the impact of the job ladder

effect on the estimation of the sampling distribution. By focusing on employees who were

unemployed a year ago, we can infer the actual wage distribution among job entrants.

Thus we can set Ω = {Σ, ξ} so as to fit the entrants distribution for every given value
of the vector of remaining parameters Θ1 ≡ {ζ, δ,σ, R,λ} and then maximize the sample
likelihood with respect to Θ1.

The resulting estimators are not “two-step” estimators as the optimal parametric vector

Ω = {Σ, ξ} changes with Θ1. In other words, we cannot estimate Ω independently because

the mapping between wages and productivity depends on Θ1. Instead we define Ω (Θ1, Y1)

as a function of Θ1 and of the sub-set of observations Y1 ⊆ Y used to infer the shape of the
sampling distribution. The procedure shares some formal similarities with concentrating

the likelihood function but it is substantially different since we do not set Ω (Θ1, Y1) to

maximize the likelihood of the sample but instead to approximate available information

about the sampling distribution.18 This approach is particularly justified if one suspects

that the model is somehow misspecified. Then it is well known that full-information esti-

mation can be a source of significant bias. By constraining Ω to fit the entrants distribution

and imposing its value afterwards, we are able to reduce the size of the bias.19

We call the values resulting from this procedure restricted estimates. They are reported

in Table 3 for the two distinct restrictions where Y1 contains either the wages of job entrants

or the wages of workers with less than one year of tenure. In the first case, the experiment

gives us a sense of how estimates are biased by the job-ladder effect. As expected, both
18Notice that when Y1 is equal to Y , the restricted estimation is equivalent to concentrating the likelihood

function so that it coincides with the full estimation procedure.
19Since the properties used in the proof of Proposition 5 are satisfied, the estimators are still consistent

and normally distributed although not efficient. The asymptotic variance of bΩ is derived using the delta
method so that

V ar
³bΩ´ = ∂Ω (Θ1, Y1)

∂Θ01

¯̄̄̄0
Θ1=bΘ01

¡
H−1JH−1

¢ ∂Ω (Θ1, Y1)
∂Θ01

¯̄̄̄
Θ1=bΘ01
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Σ and ξ significantly decrease. This leads to noticeable increases in both ζ and σ: given

that the wage distribution among job entrants has a lower mean and dispersion than the

one resulting from the full-estimation, the fit of the sample information is achieved through

a higher rate of LBD and more idiosyncratic uncertainty. The estimated value of 3.4%

for ζ should be interpreted as an upper-bound since the job-ladder effect is excluded from

the sampling distribution but not from the aggregate distribution. Accordingly a complete

evaluation would require to explicitly model on the job search and the restricted estimation

suggests that this would lead to substantial adjustments of the estimates.

In the second case Ω (Θ1, Y1) fits the distribution of wages among workers with less than

one year of tenure. As can be seen from Figure 2, this restriction is motivated by the fact

that the full-estimation uses Ω to improve the fit of the aggregate distribution at the cost of

slightly over-estimating the mean of the wage distribution among jobs with a tenure below

one year. Controlling for this bias leads to small but noticeable increases in ζ.

TABLE III

RESTRICTED ESTIMATES∗

β = 0.5 β = 0.4

Parameters Entrants Tenure < 1Year Entrants Tenure < 1Year

wr 3.79
(.398)

3.58
(.409)

3.58
(.129)

3.48
(.115)

ζ .034
(.005)

.0223
(.001)

.034
(.001)

.0228
(.0006)

σ .059
(.002)

.0271
(.002)

.055
(.001)

.0276
(.0003)

δ .132
(.005)

.133
(.002)

.132
(.003)

.133
(.002)

Σ 2.67
(.037)

2.84
(.032)

2.86
(.014)

3.02
(.010)

ξ .477
(.019)

.514
(.016)

.491
(.007)

.531
(.005)

λ 1.94
(.082)

1.96
(.076)

1.93
(.073)

1.96
(.075)

ln L −29009 −28892 −29974 −29856
Discount rate: r = 5%
∗ Standard Errors in Parenthesis.
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5 The effect of learning-by-doing

In this section we introduce an aggregate matching function to close the model and evaluate

the impact of the rate of LBD on labor market outcomes. We assume that the matching

process is similar to the one described in Pissarides (2000). Since the matching function

has become the workhorse for the study of equilibrium unemployment, the exposition can

be brief. Firms post vacancies that are randomly matched and incur a flow cost equals to

c. The number of job matches per unit of time is a function of the number of vacancies

and job seekers. When the aggregate matching function is homogenous of degree one, the

rate at which a vacancy meets a worker only depends on the unemployment rate u and on

the ratio v of vacant jobs divided by the size of the labor force. The transition rate for

vacancies is given by a function q (θ) where the labor market tightness parameter θ denotes

the vacancy-unemployment ratio. Similarly, jobs seekers meet firms at the rate θq (θ).

As opposed to the labor force whose size is fixed and normalized to one, new firms enter

the market until arbitrage opportunities are exhausted. Therefore the Free-Entry condition

is given by

c = q (θ)

Z +∞

R

(1− β)S(P )dG(P ) (14)

Similarly we can replace in (2) the exogenous contact rate λ by θq (θ) to obtain

rU = −s+ θq (θ)

Z +∞

R

βS(P )dG(P )

Reinserting (14) into the previous equation allows us to solve for the asset value of being

unemployed as a function of the labor market tightness

rU = −s+ cθ
µ

β

1− β

¶
The job’s surplus follows from replacing the previous equation into (3). Accordingly the

Optimal Separation rule is such that

R =

µ
α

α− 1

¶µ
r + δ − ζ

r + δ

¶µ
−s+ cθ

µ
β

1− β

¶¶
(15)

The equilibrium values of the two endogenous variables θ and R are determined by the
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equilibrium conditions (14) and (15).20 Given that the aggregate matching function defines

a one-to-one mapping between λ and θ, a parametric assumption allows us to retrieve the

values of the labor market tightness and searching costs using the estimates reported in the

previous section. As it is common in the literature, we assume that the matching function is

Cobb-Douglas. We further restrict our attention to the case where the allocation is efficient

and consequently use the “Hosios condition” to set the elasticity of the matching function

equal to β, so that q (θ) = θ−1/2.

Table 4 contains the implied costs of search and equilibrium labor market tightness for

the deterministic and stochastic models as well as for the restricted estimates. The high

values of the equilibrium tightness is unreasonable if interpreted as the ratio of vacancies

to job seekers. Thus one should interpret θ as measuring the ratio of recruitment effort

to search effort. The relatively high searching costs are required to offset the important

surpluses of the matches in the right tail of the sampling distribution.

TABLE IV

POINT ESTIMATES OF REMAINING VARIABLES∗

Deterministic Stochastic Entrants Tenure < 1Year

Tightness

θ 3.86
(.320)

3.80
(.286)

3.86
(.321)

3.95
(.302)

Flow Costs of Search

s 98.2
(4.36)

92.7
(4.45)

80.2
(7.29)

96.0
(6.37)

c 26.8
(1.26)

25.4
(1.25)

21.8
(2.23)

25.2
(1.85)

∗ Standard Errors in Parenthesis.

By keeping the values of the environmental parameters constant and varying the rate

of LBD, we can simulate its impact on labor market outcomes. The results are reported

in Figure 4. The upper-left panel contains the effect on the aggregate wage distribution.

Not surprisingly, a higher rate of LBD increases the mass in the right-tail. But this does

not necessarily leads to higher inequality because the left tail of the wage distribution

is truncated by the increase in the reservation wage. The ratio of standard deviation to
20We refer the reader to Prat (2006) for a proof of the existence and uniqueness of the equilibrium when

the sampling distribution G (·) is degenerate.
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Figure 4: Effect of LBD on the equilibrium.

average wage reported in the upper-right panel shows that the latter effect dominates when

the rate of LBD is close to zero.

The unemployment rate as a function of ζ is reported in the lower-left panel. As

expected, the function is decreasing but its elasticity is probably below what one’s intuition

might suggest. To understand why this is the case, it is useful to recall that the opportunity

cost of employment rU is equal to −s+ cθβ/ (1− β). This implies that, for the estimated

value of the recruitment costs, the impact of θ on the worker’s outside option is amplified

by more than one order of magnitude. Hence, small adjustments of the labor market

tightness have drastic effects on jobs’ surpluses and so unemployment remains remarkably

stable. Obviously the rigidity of the unemployment rate is even more pronounced in the

deterministic model since its estimated recruitment costs are higher.21

The lower-right panel contains a plot of the aggregate output as a function of the LBD

rate. We normalize aggregate output to one when ζ = 0 for ease of interpretation. The
21See Hornstein et al. (2006) for a detailed analysis of the discrepancy between the value of non-market

activity derived from structural estimations and the one required to fit business-cycle fluctuations of the
unemployment rate. Our analysis shows that controlling for the effect of tenure on wage dispersion reduces
the gap, but only modestly.
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model predicts that an increase of the LBD rate from 0 to 4% raises aggregate output by

around 45%. These gains arise due to three reinforcing effects: (i) the direct impact of

LBD obviously leads to a higher average output for a given job spell, (ii) the increase of the

reservation wage implies that, ceteris paribus, ongoing job relationships have a higher aver-

age productivity, (iii) the higher rate of employment mechanically raises aggregate output.

Decomposing the relative importance of these effects show that the first one accounts for

nearly 97% of the total gains whereas the increase in the reservation wage explains most

of the remaining 3%.

6 Conclusion

It has been shown in this paper how the production side of the Mortensen and Pissarides

model with endogenous job separation can be estimated by maximum likelihood using

cross-sectional data. The analysis establishes that the parsimoniously specified model con-

vincingly fits the joint distribution of wages and job spells once LBD is taken into account.

A concrete contribution of the analysis is to identify the rate of LBD in an equilibrium set-

up, whereas the estimates available in the literature are typically based on “reduced-form”

estimations. Introducing an aggregate matching function allows us to close the model. We

find that the rate of LBD has a significantly positive effect on aggregate output and a small

impact on employment.

The structural model could easily be estimated using panel data. Actually, Proposition

2 already contains the expression of the likelihood function for the jobs’ sample paths. This

explains why we have decided to devise an estimation procedure for cross-sectional data,

since it is a more comprehensive task. From an empirical perspective, however, panel data

would certainly be desirable. They would make it possible to take into account the patterns

of wage dynamics. We conjecture that estimating the model using panel data would raise

the idiosyncratic variance and thus the rate of endogenous separation.

As we have deliberately tipped the balance in favor of tractability over realism, the

model also lends itself naturally to several theoretical extensions. We conclude by briefly

discussing some of these. The most obvious refinement would be to introduce general

human capital. Although not so demanding at the conceptual level, this extension will

come at the cost of closed-form solutions. More interesting is the introduction of on-the-
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job search since it would connect the model with the burgeoning econometric literature

based on employers competition. Until recently, uncertainty and on-the-job search have

been considered in isolation. But, as attested by a series of recent papers (Postel-Vinay

and Thuron, 2005; Yamagushi, 2006), the importance of combining both dimensions is

now widely recognized. Such a research project raises serious technical challenges. For the

moment, these structural models treat job separations as exogenous and available estimates

are based on indirect inference methods. This paper suggests that stochastic calculus can

help to alleviate some of the difficulties. Finally, we also hope that the derivations of the

asymptotic properties of the estimators would be of some interest to researchers working in

other areas than labor economics since our result can be applied to a wide class of models

with endogenous exit.

28



Appendix

• Proof of Proposition 1: We guess that R does not depend on current output. Then

the Bellman equation satisfied by the surplus within the continuation region follows by Ito’s

Lemma

(r + δ)S(P it , R) = P
i
t − rU + ζP itS1(P

i
t , R) +

(P itσ)
2

2
S11(P

i
t , R)

where number subscripts denote the partial derivatives of the function. It is well known

that the general solution of this partial differential equation is of the form

S(P it , R) = C(R)

µ
P it
R

¶α

+D (R)

µ
P it
R

¶η

+EP it

∙Z +∞

t

e−(r+δ)(τ−t)
¡
P iτ − rU

¢
dτ

¸
(16)

where C(R) and D(R) are some constants of integration which do not depend on the

current state P it , while α and η are respectively the negative and positive roots of the

quadratic equation
σ2

2
χ (χ− 1) + χζ − r − δ = 0

The values of C(R) and D(R) are pinned down by the two boundary conditions. Firstly,

when P it diverges to infinity, the values of the option to separate converges to zero. This

implies that we can set D (R) equals to zero in order to eliminate the positive root η.

The second boundary, limP it−→R S(P
i
t , R) = 0, follows from the definition of the reser-

vation threshold R. One can easily verify that the solution proposed in (4) satisfies the

differential equation and boundary conditions. The optimal reservation productivity is set

so as to maximize the surplus. Since current revenues are independent of the reservation

productivity, it can be shown that ∂S(P it , R)/∂R = 0 when
22

∂S(P it , R)

∂P it

¯̄̄̄
P it=R

= 0 (17)

22See Merton(1973), p.171.
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It is commonly referred to equation (17) as the smooth-pasting condition. Its solution reads

R =

µ
α

α− 1

¶µ
r + δ − ζ

r + δ

¶
rU (18)

which is equivalent to (5) and verifies our guess that R is independent of P it .

• Proof of Proposition 2: Consider a match i that is operational at date t. We define
the stopping time τ i1 as the time of arrival of the first exogenous destruction shock and

τ i2 = min
©
τ > t : P iτ = R

ª
So τ i2 is the first time at which the job would have been endogenously destroyed. Hence, job i

is operational at time t+T if and only if τ i1 and τ
i
2 are both superior to t+T . As destruction

shocks and idiosyncratic fluctuations are independent, it follows by complementarity that

Pr
©
P it+T ∈ A ∩ τ i2 > t+ T ∩ τ i1 > t+ T

¯̄
P it
ª

=
¡
Pr
©
P it+T ∈ A

¯̄
P it
ª
− Pr

©
P it+T ∈ A ∩ τ i2 ≤ t+ T

¯̄
P it
ª¢
∗ Pr

©
τ i1 > t+ T

ª
(19)

where the Borel set A ⊂ (R,+∞). These probabilities are more easily computed consider-
ing ln(P it+T ) since it is a standard Brownian motion. Thus

Pr
©
ln(P it+T ) ∈ A

¯̄
P it
ª
=

Z
A

e
− 1
2

Ã
ln(x)−ln(Pit)−µT

σ
√
T

!2

σ
√
2πT

d ln(x) (20)

where µ = ζ − σ2

2
is the trend of ln (P iτ). When µ is equal to zero, the expression of

Pr
©
lnP it+T ∈ A ∩ τ i2 ≤ t

¯̄
P it
ª
is easily obtained from the reflection principle. The general

expression is derived in Harrison (1985) through a change of measure

Pr
©
ln(P it+T ) ∈ A ∩ τ i2 ≤ t+ T

¯̄
P it
ª
=

Z
A

µ
R

P it

¶ 2µ

σ2 e
− 1
2

Ã
ln(x)+ln(Pit)−2 ln(R)−µT

σ
√
T

!2

σ
√
2πT

d ln(x)

(21)

Expressing the densities (20) and (21) in terms of x instead of ln(x), substituting the

resulting expressions into (19) and multiplying by Pr {τ i1 > t+ T} = e−δT implies that
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for all x > RZ
A

ψ (x, T ;P ) dx ≡ Pr
©
P it+T ∈ A ∩ τ i2 > t+ T ∩ τ i1 > t+ T

¯̄
P it = P

ª
=

Z
A

e−δT
µ
1

x

¶⎛⎝e− 1
2

³
ln(x)−ln(P )−µT

σ
√
T

´2
σ
√
2πT

−
µ
R

P

¶ 2µ

σ2 e
− 1
2

³
ln(x)+ln(P )−2 ln(R)−µT

σ
√
T

´2
σ
√
2πT

⎞⎠ dx
According to Bayes’ rule, the unconditional density is given by

Pr
©
P it+T ∈ A ∩ τ i2 > t+ T ∩ τ i1 > t+ T

ª
= Pr

©
P it+T ∈ A ∩ τ i2 > t+ T ∩ τ i1 > t+ T

¯̄
P it ∈ B

ª
∗ Pr

©
P it ∈ B

ª
where the Borel set B ⊂ (R,+∞). Therefore, under the assumption according to which
the initial output P it is drawn from G (·), the unconditional density is equal to

Pr
©
P it+T ∈ A ∩ τ i2 > t+ T ∩ τ i1 > t+ T

ª
=

Z
A

ÃR +∞
R

ψ (x, T ;P ) dG(p)

1−G(R)

!
dx

Finally the measure υ(x, T ) is given by the unconditional density multiplied by the rate

of job creation. According to the stationarity assumption, the job creation flow is constant

and equal to uλ (1−G(R)) which yields the expression in Proposition 2.

• Proof of Proposition 3: By definition, the mass of jobs with current output equal to
x is given by

υ(x) ≡
Z +∞

0

υ(x, T )dT = uλ

Z +∞

0

µZ +∞

R

ψ (x, T ;P ) dG(P )

¶
dT

Reversing the order of the integrals allows us to find an analytical solution for υ(x). A few

algebra yields

ψ (x, T ;P ) = P−1
³ x
P

´µ+γ

σ2
−1
⎛⎝e− 1

2

³
ln(x)−ln(P )+γT

σ
√
T

´2
σ
√
2πT

−
µ
R

P

¶− 2γ

σ2 e
− 1
2

³
ln(x)+ln(P )−2 ln(R)+γT

σ
√
T

´2
σ
√
2πT

⎞⎠
where γ =

p
µ2 + 2δσ2. Using the result in Leland and Toft (1997) according to which
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for positive values of x

Z τ

0

e
−1
2

³
ln(x)+γT

σ
√
τ

´2
σ
√
2πT

dT =

µ
1

γ

¶µ
−Φ
µ
− ln (x)− γτ

σ
√
τ

¶
+ x−

2γ

σ2Φ

µ
− ln (x) + γτ

σ
√
τ

¶¶
where Φ(·) is the standard normal cumulative distribution function, we obtain

lim
τ→+∞

Z τ

0

e
−1
2

³
ln(x)+γτ

σ
√
τ

´2
σ
√
2πτ

dT =
x−

2γ

σ2

γ

Using this limit to integrate ϕ(x;P ) ≡
R +∞
0

ψ (x, T ;P ) dT and ensuring that the inte-

gration is always performed over positive values, yields the expression of υ(x) reported in

Proposition 3.

• Proof of Proposition 4: Given that the size of the labor force has been normalized to
one, the rate of employment is equal to the integral of υ(x) from R up to infinity. Thus

1− u =

Z +∞

R

υ(x)dx

= uλ

Z +∞

R

µZ +∞

R

ϕ(x;P )dG(P )

¶
dx = uλ

Z +∞

R

µZ +∞

R

ϕ(x;P )dx

¶
dG(P )

Integrating ϕ(x;P ) with respect to x is straightforward though tedious. It yields

Z +∞

R

ϕ(x;P )dx =

µ
1

δ

¶Ã
1−

µ
R

P

¶µ+γ

σ2

!

The expression of the unemployment rate u is immediately obtained reinserting this solution

into the previous equation and simplifying.

• Proof of Proposition 5:WhenG(·) is continuously differentiable, the density functions
f(w, e), f(w, T, e) and consequently the likelihood function L (Θ) are also continuously

differentiable. Since Z +∞

wr(Θ)

f(w, e;Θ)dw = 1
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where wr (Θ) is the reservation wage. Leibnitz’s rule implies thatZ +∞

wr(Θ)

∂f(w, e;Θ)

∂Θ
dw =

∂

∂Θ

Z +∞

wr(Θ)

f(w, e;Θ)dw + f(wr (Θ) , e;Θ)
dwr (Θ)

dΘ

=
∂

∂Θ

Z +∞

wr(Θ)

f(w, e;Θ)dw = 0

The second equality holds because ϕ(R;P ) = 0 for all P , so that f(wr (Θ) , e;Θ) = 0.

Similarly, since ψ (R (Θ) , T ;P ) = 0 for all P and T , we have f(wr (Θ) , T, e;Θ) = 0.

Thus Z +∞

wr(Θ)

∂f(w, e;Θ)

∂Θ
dw =

Z +∞

wr(Θ)

∂f(w, T, e;Θ)

∂Θ
dw = 0

Therefore the order of integration can be reversed and the central limit theorem yields

1√
n

Ã
nX
i=1

∂ ln f (Θ, yi)

∂Θ

!
d−→ N (0, J)

where J is the information matrix. Since the estimator bΘ is consistent, by the law of large

number

−1
n

Ã
nX
i=1

∂2 ln f (Θ, yi)

∂Θ∂Θ0

!
p−→ H

where H is the Hessian matrix. Notice, that the Hessian matrix is not equivalent to the

information matrix asZ +∞

wr(Θ)

∂2f(w, e;Θ)

∂Θ∂Θ0
dw =

∂

∂Θ0

Z +∞

wr(Θ)

∂f(w, e;Θ)

∂Θ
dw + fΘ(wr (Θ) , e;Θ)

dwr(Θ)

dΘ

= fΘ(wr(Θ), e;Θ)
dwr(Θ)

dΘ
6= 0

Given that the likelihood function satisfies all the other regularity conditions, asymptotic

efficiency and asymptotic normality of the maximum likelihood estimator are established.

• Proof of Proposition 6: The proof of proposition 6 follows by direct calculation. Given
that the algebra is tedious, we decompose the solution in several steps. First consider

the integral with respect to ψ(x, T ;P ). Under the parametric assumption that G(P ) is
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lognormal, it reads

R +∞
R

xψ (x, T ;P ) dG(P )

e−δT
=

Z +∞

R

µ
xψ (x, T ;P )

e−δT

¶⎛⎝e− 1
2(

ln(P )−Σ
ξ )

2

ξ
√
2π

⎞⎠ d ln(P )

=

⎛⎜⎜⎜⎝e
− 1
2

Ã
B(x,T )(ξ2+σ2T)

ξ2σ2T

!2
√
2π
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R

⎛⎜⎜⎜⎝e
− 1
2

Ã
ln(P )−(A(x,T )ρ2(T )+Σ(1−ρ2(T )))√

(ξ2+σ2T)ρ2(T )(1−ρ2(T ))

!2

ξσ
√
2πT

⎞⎟⎟⎟⎠ d ln(P )

−R
2µ

σ2

⎛⎜⎜⎜⎝e
− 1
2

Ã
D(x,T )(ξ2+σ2T)

ξ2σ2T

!2
√
2π

⎞⎟⎟⎟⎠
Z +∞

R

⎛⎜⎜⎜⎝P−
2µ

σ2 e
− 1
2

Ã
ln(P )−(C(x,T )ρ2(T )+Σ(1−ρ2(T )))√

(ξ2+σ2T)ρ2(T )(1−ρ2(T ))

!2

ξσ
√
2πT

⎞⎟⎟⎟⎠ d ln(P )

=

⎛⎜⎜⎜⎝e
−1
2

Ã
B(x,T )(ξ2+σ2T)

ξ2σ2T

!2
q
2π
¡
ξ2+σ2T

¢
⎞⎟⎟⎟⎠Φ

⎛⎝− ln (R) +A (x, T ) ρ2(T ) + Σ
¡
1− ρ2(T )

¢q¡
ξ2+σ2T

¢
ρ2(T )

¡
1− ρ2(T )

¢
⎞⎠

−R
2µ

σ2

⎛⎜⎜⎜⎝e
− 1
2

Ã
D(x,T )(ξ2+σ2T)

ξ2σ2T
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q
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¢
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(− 2µ
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2
µ

ξ2σ2T

2(ξ2+σ2T)

¶
+(− 2µ

σ2
)(C(x,T )ρ2(T )+Σ(1−ρ2(T )))

¶

∗Φ

⎛⎝− ln (R)+ ¡−2µσ2

¢ ³
ξ2σ2T
ξ2+σ2T

´
+ C (x, T ) ρ2(T ) + Σ
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1− ρ2(T )

¢q¡
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¢
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1− ρ2(T )

¢
⎞⎠ (22)

where
ρ2(T ) = ξ2

ξ2+σ2T

A (x, T ) = −µT + ln(x) B (x, T ) =
−(A(x,T )ρ2(T )+Σ(1−ρ2(T )))

2

+A(x.T )2ρ2(T )(1−ρ2(T ))

C(x, T ) = 2 ln(R) + µT − ln(x) D(x, T ) =
−(C(x,T )ρ2(T )+Σ(1−ρ2(T )))

2

+C(x,T )2ρ2(T )(1−ρ2(T ))
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Now consider the integral with respect to ϕ(x;P )

Z +∞

R

ϕ(x;P )dG(P ) =

Z x
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³ x
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Finally consider
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The closed-from expression of the likelihood function is obtained inserting (22), (23) and

(24) into (12). Notice that the unemployment rate also has an analytical solution

u =
δ

δ + λ

µ
G(R)−R

µ+γ

σ2 e

³
(−µ−γ
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)
2
³
ξ2

2

´
+(−µ−γ
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µ
− ln(R)+(−µ−γ

σ2
)ξ2+Σ

ξ

¶¶
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