
IZA DP No. 3434

Minimum Wages and Welfare in a Hotelling Duopsony

Leo Kaas
Paul Madden

D
I

S
C

U
S

S
I

O
N

 P
A

P
E

R
 S

E
R

I
E

S

Forschungsinstitut
zur Zukunft der Arbeit
Institute for the Study
of Labor

April 2008



 
Minimum Wages and Welfare in a 

Hotelling Duopsony 
 
 

Leo Kaas 
University of Konstanz 

and IZA  
 

Paul Madden 
University of Manchester 

 
 
 
 

Discussion Paper No. 3434 
April 2008 

 
 
 

IZA 
 

P.O. Box 7240   
53072 Bonn   

Germany   
 

Phone: +49-228-3894-0  
Fax: +49-228-3894-180   

E-mail: iza@iza.org
 
 
 
 
 

Any opinions expressed here are those of the author(s) and not those of IZA. Research published in 
this series may include views on policy, but the institute itself takes no institutional policy positions. 
 
The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center 
and a place of communication between science, politics and business. IZA is an independent nonprofit 
organization supported by Deutsche Post World Net. The center is associated with the University of 
Bonn and offers a stimulating research environment through its international network, workshops and 
conferences, data service, project support, research visits and doctoral program. IZA engages in (i) 
original and internationally competitive research in all fields of labor economics, (ii) development of 
policy concepts, and (iii) dissemination of research results and concepts to the interested public.  
 
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. 
Citation of such a paper should account for its provisional character. A revised version may be 
available directly from the author. 

mailto:iza@iza.org


IZA Discussion Paper No. 3434 
April 2008 

 
 
 
 
 
 
 
 
 
 
 
 

ABSTRACT 
 

Minimum Wages and Welfare in a Hotelling Duopsony 
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announcing wages at which they employ workers who are uniformly distributed; the 
(constant) marginal revenue products of workers may differ. Subgame perfect equilibria of 
the two-stage location-wage game are studied under laissez-faire and under a minimum 
wage regime. Up to a restriction for the existence of pure strategy equilibria, the imposition of 
a minimum wage is always welfare-improving because of its effect on non-wage job 
characteristics. 
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1. INTRODUCTION 

There is a growing literature on the theory of oligopsony, and the insights it can offer 

into the operation of labour markets (Bhaskar and To (1999, 2003), Kaas and Madden 

(2008), Manning (2003)). Analysis of the impact of minimum wage legislation is a 

major theme in this literature, and it is the focus of our paper. 

It is well-known that the monopsony market structure (unlike perfect competition) can 

produce increases in aggregate employment and social welfare after a minimum wage 

imposition, a result that provides explanation of some empirical claims, albeit via the 

perhaps extreme monopsony assumption (see Manning (2003)). Bhaskar and To 

(1999) extend the argument to a wage-setting oligopsony, with exogenous, horizontal 

differentiation of firms’ non-wage job characteristics (symmetric locations around a 

Salop circular city populated by a uniform distribution of workers) and firms of equal 

efficiency. They show that social welfare improvements from the imposition of 

minimum wages again emanate from the aggregate employment channel (see also 

Walsh (2003)). Secondly, in a similar differentiated oligopsony but now with firms of 

heterogeneous efficiency, Bhaskar and To (2003) provide explanations of certain 

empirical features of wage distributions and the impact of minimum wages. There is 

no welfare analysis in this model, and neither paper addresses the consequences of 

asymmetry between firms’ non-wage job characteristics, or choice of these 

characteristics. We allow asymmetry in firms’ efficiency, asymmetric non-wage job 

characteristics and firm choice of these characteristics. We demonstrate a new channel  

through which imposition of minimum wages is welfare improving1, namely their 

impact on horizontally differentiated, non-wage job characteristics2.  

                                                 
1 Kaas and Madden (2008) provide yet another; minimum wages can improve social welfare (in a 
symmetric location Salop oligopsony) because they improve firms’ investment, and reduce the “hold-
up” problem. 
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To facilitate our analysis of job characteristics we switch to a Hotelling linear city 

duopsony model, analogous to the familiar Hotelling duopoly model (d’Apremont et 

al. (1979), Ziss (1993)). Workers are uniformly distributed along the line, and the 

non-wage job characteristic of each firm is a point on the line. One interpretation is 

that the line represents geographical location, so that the distance between a worker 

and a firm is the worker’s commuting distance, and we usually adopt this 

interpretation since there is empirical evidence that commuting time is a significant 

non-wage job characteristic for workers (see Delfgaauw (2007))3. On the other hand, 

there are other interpretations where horizontal differentiation arises because multiple 

vertical characteristics are inherently linked. For example, longer opening hours (of a 

retail shop, say) entails more worker flexibility but, simultaneously, less convenient 

working hours.  

We present a 2-stage game model where two firms choose locations at stage I and 

wages at stage II, and we study the impact of minimum wages on the laissez-faire 

equilibrium and welfare. We assume full employment throughout, so as to abstract 

completely from the known aggregate effect, and we find a new route whereby 

minimum wages can be a good thing; under laissez-faire jobs are too differentiated (as 

in d’Apremont et al. (1979), Ziss (1993)), but (up to a pure strategy existence limit) 

minimum wages always improve (aggregate) social welfare because they reduce the 

job differentiation. All individual workers benefit from increased minimum wages, 

but firm profits decline. Intuitively, with a binding minimum wage the firms’ desire to 

soften wage competition by moving apart is limited; firms move closer to the centre to 

                                                                                                                                            
2 In an asymmetric information labour market model without our oligopsony features, de Fraja(1999) 
studies the effect of minimum wages on a vertically differentiated job characteristic (e.g. working 
conditions) and finds that minimum wage increases can make low-paid workers worse off because of a 
deterioration in working conditions.  
3 Using Dutch data, Delfgaauw (2007, p. 308) finds that from a mix of 15 horizontally and vertically 
differentiated  job characteristics, “the main instigators of job search are dissatisfaction with (future) 
job duties, followed by dissatisfaction with the atmosphere at work, commuting time, and autonomy”. 
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increase market share. By allowing for heterogeneity in firm efficiency, in 

equilibrium, the minimum wage binds either on the less efficient firm only, or on both 

firms. We demonstrate that the market share of the efficient firm is socially too low 

under laissez faire but that it increases when the minimum wage starts binding on its 

less efficient rival. Finally, we wish to emphasize that analogous policy conclusions 

can be obtained for price ceilings in the standard Hotelling duopoly model which is 

formally equivalent to the duopsony model of this paper.      

Section 2 sets out our general framework, section 3 analyses the effect of minimum 

wages on the subgame perfect equilibria of the 2-stage game, and normative, welfare 

issues are addressed in section 4. Section 5 concludes. 

 

2. THE FRAMEWORK 

There are 2 firms (i =0,1) producing output from labour at constant marginal revenue 

product of iφ  where 10 φφ ≥ .  It may be that the marginal physical product is higher at 

firm 0, or the difference may be caused by firm 0 selling in a more profitable output 

market than firm 1; for convenience we refer to firm 0 as the efficient firm when 

10 φφ > .  The wage offered by firm i is wi, i = 0,1 and is subject to minimum wage 

legislation whereby only wi ≥ w  can be chosen; throughout we assume [ )1,0 φ∈w  so 

that the minimum wage does not preclude positive profits for either firm. 

Each firm also has a location (or more generally a non-wage job characteristic), a ∈ 

[0,1] for firm 0 and [ ]1,0)1( ∈− b for firm 1, so firm 0 locates at distance a from the 

left-hand end of the linear city and 1 is b from the right-hand end.  There is a 

continuum of workers of mass 1, whose ideal job locations are uniformly distributed 

over [0, 1].  Taking a job at firm i whose location is at a distance y from a worker’s 
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ideal provides the worker with job utility 2tywi − where t > 0 is a parameter.  

Throughout we assume full employment, with each worker supplying one unit of 

labour to the firm that offers the higher job utility, so that the worker whose ideal job 

location is at x ∈ [0,1] works for firm 0 if 2
1

2
0 )1()( xbtwaxtw −−−>−− , at firm 1 if 

the inequality is reversed, with indifference if there is equality.4  If ba −≠ 1  the 

solution to the equality is x~  in (2.1) below, and the labour market shares or 

employment levels at firm i = 0, 1 are given in (2.2); 

( ) ( ) )1(2/1
2
1~

10 batwwabx −−−++−=                                            (2.1) 

[ ] baifLL
xif

xifx
xif

L −≠−=
⎪
⎩

⎪
⎨

⎧

≥
∈
≤

= 11,
1~1
1,0~~

0~0

010             (2.2) 

We use 0/)( 10 ≥−= tφφδ  to denote a measure of the between firm efficiency 

differential. 

If ba −=1 , the firms co-locate and, when 0>δ  we assume that the high wage firm 

gets the whole labour market if w0 ≠ w1, but the efficient firm gets the whole market 

when w0=w1, analogous to homogeneous product Bertrand duopoly models with 

asymmetric costs; 

⎩
⎨
⎧

>−=−=
≥
<

= 0,11,
1
0

01
10

10
0 δbaifLL

wwif
wwif

L   (2.3) 

If ba −=1 and 0=δ , we follow the standard, homogeneous product, symmetric cost 

Bertrand duopoly assumption; 

                                                 
4 If the workers have a reservation utility of u, a sufficient (but not necessary) condition to ensure 
throughout our analysis that no worker would choose voluntary unemployment is ut +> 21φ , 
implicitly assumed from now on.  
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0,11,1
0

01

102
1

10

10

0 =−=−=
⎪
⎩

⎪
⎨

⎧

=
>
<

= δbaifLL
wwif
wwif
wwif

L      (2.4) 

Firm profits are; 

 ( ) ( ) ., 11110000 LwLw −=−= φπφπ                                                    (2.5) 

The model is a 2-stage game, where firms simultaneously choose locations first and 

then wages at the second stage. We study the subgame perfect equilibria (SPE), and 

compare with the social optimum. To avoid some implausible equilibria in the wage 

subgames when firms co-locate, we follow again a homogeneous product Bertrand 

duopoly lead (see Hurter and Lederer (1986) for a discussion) and assume throughout 

that firms cannot offer wages in excess of their marginal revenue product, so 

].,[],,[ 1100 φφ wwww ∈∈   

Ziss (1993) has analysed a 3-stage entry-location-price game in a Hotelling duopoly 

with asymmetric firm efficiency and laissez-faire (i.e. without price controls). His 

main results have exact parallels for laissez-faire (i.e. 0=w ) in our duopsony model. 

First the SPE are as follows, analogous to Ziss (1993, Proposition 2, p. 536). 

Proposition 1 (a)If δ ∈[0, δ*] 0ifand81.0336*where =≅−= wδ , the unique (up to 

symmetry) pure strategy SPE outcome has maximum location differentiation of the 

firms (a=b=0 or 1) and the following wages, market shares and profits; 

( ) ( )2
18
1**

1
2

18
1**

0

6
1

2
1**

16
1

2
1**

0

13
2

03
1**

113
1

03
2**

0

33 δδ
δδ
φφφφ

−=Π≥+=Π
−=≥+=

−+=≥−+=

tt
LL

twtw
  

(b) If 0ifand* => wδδ , there is no SPE in pure strategies. 

 

As in the earlier symmetric efficiency duopoly model of d’Apremont et al. (1979), the 

desire of  both firms to move apart so as to soften the wage competition dominates the 



 7

positive effects on market share that moving toward the rival would have at constant 

wages, producing maximum differentiation SPE for δ up to δ*.  For *δδ > , the 

inefficient firm wishes again to get as far away as possible from the rival, but the 

efficient firm wants to co-locate and force the rival out of the market with a wage of 

1φ , leading to (b).  

Turning to the social optimum and continuing to assume full employment, if ba −≤ 1  

it will be socially optimal that workers at locations [ ]0,0 L work for firm 0 and those 

at ( ]1,0L work for 1, for some [ ]1,00 ∈L . Market shares are then 0L  and 01 1 LL −= , and 

social welfare is the aggregate surplus; 

[ ] )6.2()1()()1(

)1()()1(),,(
3

0
3

0
33

3
1

0100

0

1 22
01000

0

0

LbaLbatLL

dxxbtdxaxtLLLbaSW
L

L

−−+−++−−+=

−−−−−−+= ∫ ∫
φφ

φφ
 

Maximization of ),,( 0LbaSW over [ ]1,00 ∈L  and [ ]21,0),( ∈ba with ba −≤1  produces 

the social optimum market shares and locations (with 0 to the left of 1), and clearly 

there is also an optimum with the same market shares and 0 symmetrically to the right 

of 1. Proposition 2 is the result, analogous to Ziss (1993, Proposition 4(i), p.540); 

Proposition 2 The socially optimal locations and market shares are; 

(a) δδ −=+= 4
10

4
10 , ba  or δδ +=−= 4

30
4
30 , ba , with δδ 2,2 2

10
12

10
0 −=+= LL  if 

[ )4
1,0∈δ , 

(b) [ ]1,0, 0
2
10 ∈= ba , with 0,1 0

1
0
0 == LL  if 4

1≥δ . 

 

With symmetric efficiency, the firms optimally locate at the quartiles, as in 

d’Apremont et al. (1979). As δ increases from 0, optimal locations remain a distance 

of 2
1 apart, the efficient firm moving towards the centre of the line and employing 
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more workers up to 4
1=δ , at which point the efficient firm is centrally located and 

employs the whole market. 

Appendix B to this paper includes proofs of subsequent lemmas and of Propositions 1 

and 25. 

 
 
3.       MINIMUM WAGES AND MARKET EQUILIBRIUM 
 
We analyse first the Nash equilibria (NE) of stage II wage subgames at arbitrary stage 

I locations. For the laissez-faire case ( 0=w ) we have the following lemma 3.1, 

where ( ) [ ]{ }1:1,0, 2 =+∈= babaH  defines the set of locations where the firms co-

locate, so jobs are homogeneous, and ( ) [ ]{ }1:1,0, 2 <+∈= babaS  denotes locations 

where firms are separated with firm 0 to the left of firm 1; notice that the wage 

subgame at (a,b) ∈ S has, from symmetry, the same outcome as that at 

[ ]21,0)1,1( ∈−− ba , so the following description of  NE for (a,b) ∈ S ∪ H suffices.  

 

Lemma 3.1  The unique NE wages, market shares and profits of the stage II subgame 

at locations (a,b) under laissez-faire ( 0=w ) is as follows; 

(a)  if (a,b) ∈ { }babaSbaT +−−−<∈= 3)(1(:),( δ , then 

( ) ( )( ) ( )( )babatbawbabatbaw +−−−−+=−+−−−+= 31),(,31, 3
1

13
2

03
1*

13
1

13
1

03
2*

0 φφφφ
( ) ( ) ( ) ( ) )1/(3,),1/(3, 6

1
6
1*

16
1

6
1*

0 bababaLbababaL −−−+−=−−+−+= δδ
( ) ( ) 2

18
1*

1
2

18
1*

0 )]1/(3[1),(,)]1/(3[1),( bababatbabababatba −−−+−−−=Π−−+−+−−=Π δδ
 

(b) if 0>δ  and (a,b) ∈ (S ∪ H)\T, then 

)1)(1(),( 1
*
0 babatbaw +−−−+= φ ,          ( ) 1

*
1 , φ=baw  

                                                 
5 The proofs of Propositions 1 and 2 use our duopsony setting and notation, and so are more 
immediately accessible for the reader of our paper. Also we correct a small error in the Ziss (1993) 
discussion of Proposition 1, and provide a proof of Proposition 2 that does not rely on the Ziss (1993) 
unproven Lagrangean concavity. 
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0),(,1),( *
1

*
0 == baLbaL  

)1)(1(),( 10
*
0 babatba +−−−−−=Π φφ ,  0),(*

1 =Π ba . 

(c) if 0=δ  and (a,b) ∈ (S ∪ H)\T=H, then 

0),(),(,),(),(,),(),( *
1

*
02

1*
1

*
010

*
1

*
0 =Π=Π===== bababaLbaLbawbaw φφ  

Proof See Appendix B. 

 
Various remarks follow. First, T is the subset of locations where both firms receive 

positive market shares when 0>δ . If 3≥δ , T is empty and firm 1’s inefficiency is 

such that it never is active. If 0=δ , T=S and both firms have positive market share 

(but zero profits) on H also6. Figure 3.1 illustrates for ),0( 2
1∈δ , when  1U  (defined 

later with 320 ,,, aaDU ) is non-empty7. 

 

Secondly, it follows from the formulae in Lemma 3.1 that the wages offered by both 

firms increase if either a or b increases. The intuition is standard; as the firms move 

closer together, wage competition becomes more severe as jobs are less differentiated. 

                                                 
6 This is because (2.4) now replaces (2.3). 
 
7 The upper boundary intercepts of T are δ+−= 121a , 141 −−= δb ). 

           1b             1   b           

 

  
 T 

1U  

0U  

H 

 
 
 
Figure 3.1; Various location subsets 

a 
 
 
1 
 
 
 
 

1a

2a
 

3a
 
 
 

     D 
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It follows that the lowest wages occur when jobs are maximally differentiated 

(a=b=0, as in the laissez-faire SPE), and that the lowest wage for either firm in any 

laissez-faire subgame is **
1w  (see Proposition 1). Thirdly, best response graphs behind 

Lemma 3.1 are upward-sloping linear functions (when market shares are positive), 

exactly as in Bhaskar and To (2003)8, of the form ,1,0, =≠+= jiww jii βα  

where ( ){ })1(102
1

0 babat −+−−−= φα , ( ){ })1(112
1

1 babat +−−−−= φα and 2
1=β 9. 

Thus all wage games entail strategic complementarity with equilibria that are stable in 

the usual best response dynamic, and the high wage firm will be the one with the 

higher iα , so ( ) )(,*
1 <>baw ),(*

0 baw  if and only if )(),( 01 UUba ∈  where 

( ) ( )( ){ }babaTbaU −−−>∈= 12:,0 δ , ( ) ( )( ){ }babaTbaU −−−<∈= 12:,1 δ and  

1U  is non-empty when 2
1<δ , as shown in figure 3.110 where 

)211(),211( 2
1

32
1

2 δδ −−=−+= aa . If we restrict attention to symmetric 

locations (as do Bhaskar and To (2003)), then ba = and the high wage firm is the 

efficient firm if 0>δ , again as in Bhaskar and To (2003), and wages are equal 

if 0=δ . At asymmetric locations when 0=δ , the high wage firm is 1(0) if a>(<)b. 

When a>b (say) firm 1 gets the smaller market share at equal wages. If 1 increased its 

wage the marginal revenue would be the same as for 0 if it increased its wage, but the 

marginal cost for 1 is lower than for 0 because of its smaller market share. Thus, from 

equal wages when 0=δ  and a>b, firm 1 has the greater incentive to raise wages, 

which leads to the NE with 01 ww > . At asymmetric locations when 0>δ  and a>b, 

1’s marginal revenue (as well as its marginal cost) is lower, so the previous argument 

is no longer decisive. In fact if locations are nearly symmetric, marginal costs are 
                                                 
8 With a change of notation these are the same as in Ziss (1993, p. 528, equation (5b)). 
9 These formulae are the same as in Bhaskar and To (2003) when the mass of their high reservation 
wage workers (characterised by unemployment, assumed away in our model) is zero. 
10 The dashed curve separating 0U and 1U is )})(1(2:),{( 2 babaRbaD −−−=∈= δ . 
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similar and 0’s higher marginal revenue leads to 10 ww > . Also if locations are close 

together, then eventually 0 will want to take the whole market, again with 10 ww > . 

The residual set of locations that are not too symmetric and not too close is 1U where 

01 ww > . 

Leaving the laissez-faire scenario, there are, in principle, 4 types of wage subgame 

equilibria that can occur for ),0( 1φ∈w : equilibria in which the minimum wage is 

binding on neither firm (type ∅  equilibrium in what follows, equivalent to laissez-

faire), binding on both firms (type 01), binding only on firm 1 (type 1) and binding 

only on firm 0 (type 0). Clearly **
1ww ≤ will have no effect on any subgame 

equilibrium – the laissez-faire outcome will continue at all locations. As w increases 

from **
1w  it will impact first on the subgame equilibria at the maximum differentiation 

location (a=b=0) and those nearby. With a=b=0 and 0>δ  the effect is as in Bhaskar 

and To (2003), forcing the inefficient firm to raise its wage in line with the minimum 

wage, and producing a smaller increase in the efficient firm’s wage also, because of 

the strategic complementarity, compressing the wage distribution. Thus type 1 

equilibrium emerges first at a=b=0. Eventually w  will reach a level (denoted below 

by )0,0(0w ) where it starts to bind on firm 0 also, and type 01 equilibria emerge. For 

other locations Lemma 3.2 provides a full description of the values of ( baw ,, ) 

associated with each equilibrium type for all 0≥δ , illustrated in Figures 3.2 and 3.3 

later. The notation ( ) ]1[),( 22
00 abtbaw −−−= φ , ( ) ]1[),( 22

11 batbaw −−−= φ  is 

used, where ),( bawi is the lowest minimum wage which binds on both firms if firm i 

is the high-wage firm under laissez-faire, as with )0,0(0w described earlier. 
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Lemma 3.2 The unique NE wages, market shares and profits of the stage II 

subgame at locations ),( ba  for ),0( 1φ∈w are as follows:  

(a) if ( ) Tba ∈, ; 

(i) type∅ , with the laissez-faire values described in lemma 3.1(a)  

            iff ( )],),,([min *
1

*
0 bawbaww ≤  

(ii)  type 01, with www == 10 , ( ) 012
1

0 1,1 LLbaL −=−+= ,      

( )( ),102
1

0 baw −+−=Π φ ( )( )baw +−−=Π 112
1

1 φ  

iff [ ]),(),,(max 10 bawbaww ≥  

 (iii)  type 1, with ( ){ } ,,]1[ 1
22

02
1

0 wwabtww =−−−+= φ  

  ( ){ } ( ) ,114/]1[ 1
22

00 LbatabtwL −=−−−−+−= φ  

  ( ){ } ( ) ( ) ,,18/]1[ 111

222
00 Lwbatabtw −=Π−−−−+−=Π φφ  

  iff ),(),( *
10 bawwbaw ≥≥  

 (iv) type 0, with ( ){ }]1[, 22
12

1
10 batwwww −−−+== φ  

  ( ){ } ( )batbatwLLL −−−−+−=−= 14/]1[,1 22
1110 φ  

  ( ) ( )[ ]{ } ( )batbatwLw −−−−+−=Π−=Π 18/1,
222

11000 φφ  

  iff ),(),( *
01 bawwbaw ≥≥   

(b) if (a,b)∈(S∪H)\T the equilibrium is the laissez-faire equilibrium described in 

Lemma 3.1(b) if 0>δ , and Lemma 3.1(c) if .0=δ  

Proof See Appendix B. 

 

To find the SPE, backward induction requires the NE of the “reduced form” stage I 

location game where firm 0 chooses [ ]1,0∈a , firm 1 chooses [ ]1,0∈b  and payoffs, 
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now denoted ,1,0),,,( =Π iwbai  are defined by Lemma 3.2. The resulting 

functions +++ →×∪Π RRHSi )(: are continuous, and differentiable almost 

everywhere. 

As a first step, we develop diagrams to illustrate Lemma 3.2 via the following 4 

curves in the (a,b) plane for given ),( 1
**

1 φww ∈ 11; 

C1; ( ) ( )( )babatbaww −+−−−+== 31, 3
1

13
1

03
2*

0 φφ  

C2; ( )( )babatbaww +−−−−+== 31),( 3
1

13
2

03
1*

1 φφ  

C3; ( ) ]1[),( 22
00 abtbaww −−−== φ  

C4; ( ) ]1[),( 22
11 batbaww −−−== φ  

It is easily checked that: (a) these 4 curves intersect only on the curve D 

( ))(1(2 baba −−−=δ ) in Figure 3.1, and each is a downward sloping, concave curve  

within the interior of S; (b) in 0U , C4 is above C2 which is above C1 which is above 

C3, with the reverse ranking in 1U . 

When 0=δ  the curve D degenerates, intersecting S in the line 2
10, <≤= aba . From 

(b) above and Lemma 3.2 the following diagram emerges for a typical 

),( 1
**

1 φww ∈ when 0=δ , indicating the subgame equilibrium type at the various 

locations. In this case the intersection of C1-C4 at (a,a) increases monotonically from 

a=0 as **
1ww → , converging to 2

1=a as 1φ→w . 

                                                 
11 When ),0( **

1ww ∈  all locations produce type ∅  equilibrium. 
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For the case ),(,0 1
**

1 φδ ww ∈= , we now provide an intuitive explanation of the signs 

of the derivatives a∂Π∂ /0 and b∂Π∂ /1 on the interiors of regions∅ , 0, 1 and 01 in 

Figure 3.2, indicated by bold arrows. For∅  (laissez-faire) the usual centrifugal force 

dominates, firms wanting to move away from the rival to avoid increased wage 

competition. But at any point in 01 the minimum wage binds on both firms and 

continues to do so at nearby locations, so the increased wage competition from 

moving closer to the rival is absent, and firms now want to move towards the rival to 

increase market share. In region 0(1) the minimum wage binds only on firm 0(1), so 

the effect of the last sentence means firm 1(0) wants to move towards the rival, but 

the centrifugal force remains dominant for firm 0(1). Hence firm 1’s constrained 

location best response graph (where 1 is constrained to locate at or to the right of 0) 

follows the path C3, C1 and the vertical axis up to 0,1 == ba , as a increases from 0 

to 1. Similarly the corresponding graph for firm 0 is C4, C2 and then the horizontal 

axis as b increases from 0 to 1. It follows that the intersection of C1-C4 (shown as P 

in figure 3.2) is the unique (up to symmetry) candidate for the reduced form game NE 

(the only intersection of the constrained best responses). And this is indeed the NE, 

         a 
         1 
                          C1 
               ∅               C4 
 
                
                   0 
                                                 C3 
                01                           
                             P                     C2 
                                   
                             01      1       
                                                  ∅                                      
 
                                                                      b 
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Figure 3.2: Wage subgame equilibrium type, 0=δ  
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since firm 1 (say) will not want to jump to a location in the relatively small region 

(length 2
1< ) to the left of 1 where its profits will be lower, and similarly for firm 0. 

Theorem 1 If 0=δ  and ( )1
**

1 ,φww ∈  the unique (up to symmetry) pure strategy SPE 

outcome has ( )( ) 2
1

1002
1 ,/1 ==−−== LLtwba φ  and ( ).02

1
10 w−== φππ  

Proof Appendix A contains a combined proof of Theorems 1 and 2. 

 

The case 0>δ  is more complicated, and to shorten and simplify exposition in the 

remainder of this paper we restrict attention to 2
1<δ (where 1U  in Figure 3.1 is non-

empty). Figure 3.2 gives way to Figure 3.3, demarcated by the following critical 

minimum wages where 1321
**

1 φ<<<< wwww ; 

( ) ( )δδφδδφφ 211;211; 2
1

132
1

0201 −−+−=−++−=−= twtwtw . 
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When ),( 1
**

1 www ∈ , the intersection of C1-C4 on D now lies outside S, with 2
1<a  

and b<0. As w increases in this range, the C1-C4 intersection moves up along D but 

C3 remains outside S, touching at (0,0) when 1ww = , whilst C2 intersects S as shown 

in figure 3.3(a), defining the boundary between type ∅  and 1 equilibria from Lemma 

3.2. As w increases in ],[ 21 ww the intersection of C1-C4 on D remains outside S with 

b<0 and 2
1<a , converging to the point on D where b=0 and 2

1<a as 2ww → , but 

now C3 intersects S as in figure 3.3(b). For ],[ 32 www ∈ the C1-C4 intersection moves 
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Figure 3.3: Wage subgame equilibrium type, 2
10 << δ . 
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up round D but now in S, generating Figure 3.3(c), the intersection reaching the point 

on D where b=0 and 2
1>a when 3ww = . For 3ww >  the C1-C4 intersection is again 

outside S, producing Figure 3.3(d). 

For the inefficient firm the signs of b∂Π∂ /1 continue as in Figure 3.2 (positive in 

regions 01 and 0, negative in regions ∅  and 1), with the same intuition. Hence for 

firm 1’s constrained best response problem in the reduced form location game 

( ),(max 1 ba
b

Π  subject to ba −≤1 ), it follows that the constrained best response 

correspondence graph is, for [ ]1,0 aa∈ ; 

(a) the vertical axis from the origin to 1a in Figure 3.3(a), 

(b) the locus 121 ,, aYY in Figure 3.3(b), 

(c) the locus 1321 ,,, aYYY in Figure 3.3(c), 

(d) the locus 121 ,, aYY in Figure 3.3(d). 

These constrained best responses are also unconstrained best responses if [ ]2
1,0∈a . 

When [ ]12
1 ,aa∈ , firm 1 would jump to the location in the left half of the line which is 

the constrained best response by 1 to a when 1 is constrained to locate to the left of 

firm 0.  

A new critical minimum wage appears between 3w and 1φ when 2
1=a at 2Y in Figure 

3.3(c). This is ww = = ( ) ( )322
1

0 ,2 wwt ∈+− δδφ , and Figure 3.4 shows in bold firm 

1’s unconstrained best response graphs12 with w now as the demarcation between 

parts (c) and (d) of the diagram; obviously these are the only candidates for SPE 

locations. It remains to identify which (if any) points on these bold segments are also 

best responses for firm 0 in the reduced form location game. This is point P (plus its 

                                                 
12 Appendix B contains  precise statements (with proofs) of  firm 1’s constrained and unconstrained 
best responses. 
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symmetric counterpart) in Figure 3.4 (a),(b), and (c). In Figure 3.4(a) and (b), a small 

upward (downward) deviation in a by firm 0 takes us into region ∅ (1), and, with the 

same intuition as in Figure 3.2, 0)(/0 ><∂Π∂ a . Thus P is at least a local best location 

response for 0, and the next Theorem shows it is global. And similarly for P in Figure 

3.4(c), except downward deviations now lead to type 01 equilibrium. But in Figure 

3.4(d), the bold segments are on the 01/1 border and firm 0 now wants to move 

(locally) closer to firm 1 from all such points, precluding SPE with pure strategies. 
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** )()( wwwbwwwa ≤≤≤≤  
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     1   b 

     
   a 
    
       1 
             
       
       
                   
  
     P 

          
 
 
 
 
 P 
 
 

  wwwc ≤≤2)(  

                           
      
 
                  
                   
                
                                
                                                   1      b 
                 wwd ≤)(  
                    
                  
 

 
Figure 3.4 Firm 1’s location best responses with minimum wages   
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Theorem 2 If ),0( 2
1∈δ  there are critical values for minimum wages **

1 2w w<  < w  

such that: 

(a) for ),( **
1 www ∈ the unique (up to symmetry) pure strategy SPE outcome has the 

locations ),( baP = shown in Figure 3.4(a), (b), (c), with; 

          (i) (a,b) defined by waw =)0,(*
1 and b=0, ,)0,( 1

*
00 wwaww =>=  ( )0,* aLL ii =       

and ( ) ,1,0,0,* =Π= iaiiπ  if ],( 2
**

1 www ∈ ;   

          (ii) (a,b), (w0,w1) defined by == ),(),( *
1

*
0 bawbaw ( )baLLwww ii ,, *

10 === , and 

,1,0),,(* =Π= ibaiiπ  if ],( 2 www ∈ ; 

(b)  for ),( 1φww ∈ , there is no pure strategy SPE. 

Proof See Appendix A for a combined proof of Theorems 1 and 2. 

 

Figure 3.5 illustrates the effects on SPE locations of increasing the minimum wage 

from **
1w to w . When 0=δ  locations are always symmetric, starting at maximum job 

differentiation when **
1ww = , the firms gradually moving closer together as 

w increases, converging to co-location at the centre of the line as 1φ=→ ww . Here 

minimum wages above **
1w bind on both firms, so that moving towards the rival fails 

to produce the increased wage competition of laissez-faire, removing the centrifugal 

force that dominates under laissez-faire and bringing the firms closer together as w  

increases. When 0>δ the initial effect (for w increasing from **
1w to 2w , along 0A) is 

that the minimum wage binds only on the inefficient firm, removing the above 

centrifugal force for the efficient firm (only) which moves towards the rival, but 

leaving the inefficient firm at the extremity. Minimum wages above 2w bind on both 
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firms, both centrifugal forces disappear and both firms move towards the rival, along 

AB. 

 

 

In all cases it is clear that the effect of increasing minimum wages is to reduce job 

differentiation (the distance ba −−1  between firms). The effects of the minimum 

wage on market shares also follow easily from Theorems 1 and 2; 

Corollary to Theorems 1 and 2 For δ ∈[0, 2
1 ), as w increases from **

1w to w , the effects 

on the SPE are; 

(a) a reduction in job differentiation, 

(b) an increase (decrease) in the efficient (inefficient) firm market share 

when 0>δ , and no change in market shares when 0=δ , 

Proof See Appendix A. 

 

 

 

 
Figure 3.5 SPE location paths as w  increases from **

1w to w  

   
  a                                                                    a 
 
 
 
                                                                                
                           A                                                     B 
                                                                        A 
 
 
    0                                                                   0  
                                               b                                                              b 
 
            (a) 0A for 0=δ                                         (b) 0AB for ),0( 2

1∈δ  
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4. SOCIAL WELFARE AND MINIMUM WAGES 

We now turn to the impact of minimum wages on welfare. With some abuse of 

notation, let SW ( )w  denote the value of social welfare ( ),,( 0LbaSW defined in (2.6)) 

when 0,, Lba  are the SPE locations and market shares at minimum wage w ∈ 

],,[ **
1 ww  and let SW ( )**

1w =SW** denote its laissez-faire value and SW° its value at the 

social optimum described in Proposition 2. 

The case 0=δ  is straightforward. From the Corollary to Theorems 1 and 2, and from  

(2.6), for ),[ 11
**

1 φφ tww −=∈ , 2
1

0 =L and locations follow 0A in figure 3.4(a), so; 

     ])1([)( 33
3
2

1 aawSW −+−= φ , where ( )( )twba /1)( 02
1 −−== φ  

It is easy to check that )(wSW is strictly concave with maximum at tw 2
1

1 −= φ  where 

4
1=a , and as **

6
1

11 )(, SWtwSWw =−→→ φφ . This proves; 

Theorem 3 If 0=δ , )(wSW is strictly increasing for ( )tww 2
1

1
**

1 , −∈ φ  and strictly 

decreasing for ( )12
1

1 ,φφ tw −∈ , attaining a unique maximum and the social optimum 

(SW°) when tw 2
1

1 −= φ ; SW ( )w  > SW** for all ),( 1
**

1 φww ∈ . 

 

From the laissez-faire SPE, as the minimum wage increases, social welfare thus 

increases until tw 2
1

1 −= φ  when the full social optimum is attained, and then declines 

but remains above its SPE level for all ),( 1
**

1 φww ∈ 13. When 0>δ  the picture is a bit 

more complicated. Note that all pure strategy SPE for w ∈ ],,[ **
1 ww  occur in (on the 

border of) region ∅  (see Figure 3.2), so the efficient firm market share is 

                                                 
13 Alternatively in the symmetric efficiency case, maximization of social welfare is equivalent to 
minimization of aggregate commuting time, which attains the same, largest value when firms are at the 
extremes or co-locating at the middle of the line, with lower values in between and the global minimum 
at the socially optimal quartile locations. 
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)1(6/)3(6
1

0 babaL −−+−+= δ from Lemma 3.1(a). Locations now follow 0AB in 

Figure 3.4(b), producing; 

Theorem 4  Suppose ( )2
1,0∈δ  and ],[ **

1 www ∈ . 

(a) SW ( )w  is strictly increasing for ],[ 2
**

1 www∈ . 

(b) If [ )2
1

5
2 ,∈δ  then SW ( )w  is strictly increasing for all 

],[ **
1 www∈  

(c) If ( )5
2,0∈δ  there is a unique minimum wage, *w  say, which 

maximizes SW ( )w  over ],[ **
1 www∈ ; at *w , a+b > .2

1  

(d) SW ( )w  > SW** for all ],[ **
1 www∈ . 

(e) SW° > SW ( )w   for all ],[ **
1 www∈ . 

Proof See Appendix A. 

 

Hence, as the minimum wage increases from ,**
1w  the effect is to increase social 

welfare monotonically (up to the pure strategy existence limit )ww =  if 

[ )2
1

5
2 ,∈δ (part (b)).  If ( )5

2,0∈δ  the minimum wage (again up to the limit )ww =  

always improves on laissez-faire (part (d)), but now the improvement is not 

monotonic over the whole w  range (parts (a) and (c)), social welfare reaching a 

maximum at some ( )www ,**
1

* ∈ , similar to Theorem 2.  Although minimum wages 

(up to the pure strategy existence limit) always improve on laissez-faire, they never 

now allow attainment of the full social optimum (part (e)). 

The above shows that in the “long-run”, via its impact on the non-wage job 

characteristic, the imposition of a minimum wage is welfare-improving over laissez-

faire.  
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It is instructive to consider also the “short-run” impact, where we assume that the 

locations remain fixed at the laissez-faire maximum differentiation. When 0=δ , from 

Lemma 3.2 (a)(ii) and Figure 3.2, the short-run (subgame) equilibrium is type 01 with 

equal market shares for all ),( 1
**

1 φww ∈ . Hence, as w  increases, there is no effect on 

welfare in the short-run, and the above beneficial long-run effects are therefore due to 

the effects of the minimum wage on locations. Again when 0>δ  the picture is 

different, and indeed the short-run effect is disadvantageous to welfare. Note first that 

with a=b=0, (2.6) becomes the following, strictly concave function of 0L  whose 

maximum is at )1(2
1

0 δ+=L ; 

])1([)1(),0,0( 3
0

3
03

1
01000 LLtLLLSW −+−−+= φφ  

The laissez-faire SPE market share for firm 0 is )1(2
1

6
1

2
1**

0 δδ +<+=L , and so 

provides too low a share to the efficient firm in the short-run (i.e. given a=b=0). 

Because firms cannot perfectly wage discriminate among workers, the efficient firm 

does not internalise all social gains that are associated with a wage increase. As a 

result the wage premium offered by the efficient firm in the SPE is too low and its 

market share is too low. But minimum wages above **
1w  bind first (for ),( 1

**
1 www ∈ , 

see Figure 3.3(a)) only on the inefficient firm, increasing its wage more than that of 

the efficient rival, compressing the wage differential and decreasing the efficient firm 

market share ( { } ttwL 4/00 +−= φ , see Lemma 3.2), thus reducing welfare in the 

short-run. Eventually the minimum wage binds on both firms (Figure 3.3(b), (c), (d)), 

market shares are equalised and welfare remains constant thereafter. Formally, define 

short-run social welfare as ),0,0()( 0LSWwSSW = where 0L  is its subgame 

equilibrium value at locations a=b=0 and minimum wage w . We have shown; 
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Theorem 5 For ),( 1
**

1 φww ∈  )(wSSW  is constant everywhere if 0=δ , and if 0>δ , 

)(wSSW is strictly decreasing for ),( 1
**

1 www ∈ , and constant for ),[ 11 φww ∈ . 

 

Thus in the short-run minimum wages cannot be beneficial to social welfare, and the 

positive long run welfare impact of minimum wages is therefore totally driven by and 

dependent on the effect of minimum wages on the non-wage job characteristics. 

Moreover, the change in job characteristics turns the policy’s impact on market shares 

upside down; since the efficient firm moves closer to the centre when the minimum 

wage binds on its rival, its market share increases relative to laissez-faire. 

Theorems 3 and 4 relate to social welfare in aggregate; finally we note the 

consequences for individual firms and workers. Not surprisingly firm profits fall as 

the minimum wage increases. The worker located at 0 sees the wage increase from 

laissez-faire, but the commuting time also increases as we move up the SPE paths 

shown in figure 3.5. However the net effect is advantageous14, and this worker is the 

most likely to suffer a utility loss; hence all workers are better off.  

Theorem 6  Suppose δ ∈[0, 2
1 ) and ),( 1

**
1 φww ∈ . As w  increases, SPE profits of both 

firms decline, but the utility of all workers increases. 

Proof See Appendix A. 

 

 6. CONCLUSIONS 

We have shown how the imposition of minimum wages can be welfare improving on 

laissez-faire, because of their impact on firms’ choice of non-wage job characteristics.  

In the context of a Hotelling duopsony, jobs are horizontally differentiated (e.g. by 

                                                 
14 In the vertical job differentiation model of de Fraja (1999) this is not so – minimum wage workers 
may end up worse off because of the deterioration in working conditions. 
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location) and the effect of the minimum wage is to narrow the gap between locations 

chosen by firms compared to the maximum differentiation chosen under laissez-faire , 

in a welfare improving way.  The paper thus provides a new route through which 

minimum wages can be “a good thing”. Following the quite different labour market 

model of de Fraja (1999), the paper also generates a natural question for further 

research in the differentiated oligopsony framework, namely the effect of minimum 

wages on vertically differentiated job characteristics, as opposed to, or in addition to, 

our horizontal differentiation. 

REFERENCES 

 
Bhaskar, V., and T. To (1999), “Minimum wages for Ronald McDonald monopolies: 
a theory of monopsonistic competition”, Economic Journal, 109, 190-203. 
 
Bhaskar, V., and T. To (2003), “Oligopsony and the distribution of wages”, European 
Economic Review, 47, 371-399. 
 
d’Aspremont, C., J-J. Gabszewicz and J-F. Thisse (1979), “On Hotelling’s stability in 
competition”, Econometrica, 47, 1145-1150. 
  
de Fraja, G., (1999), “Minimum wage legislation, productivity and employment”, 
Economica, 66, 473-88. 
 
Delfgaauw, J. (2007), “The effect of job satisfaction on job search; not just whether, 
but also where”, Labour Economics, 14, 299-317. 
 
Kaas, L., and P. Madden (2008), “Hold-up in oligopsonistic labour markets – a new 
role for the minimum wage”, Labour Economics, forthcoming. 
 
Lederer, P.J. and A.P. Hurter(1986), “Competition of firms; discriminatory pricing 
and location”, Econometrica, 53(3), 623-640. 
 
Manning, A. (2003), Monopsony in Motion, Princeton University Press, Princeton. 
 
Walsh, F. (2003), “Comment on ‘Minimum wages for Ronald McDonald 
monopsonies; a theory of monopsonistic competition’“, Economic Journal, 113, 718-
722. 
 
Ziss, S. (1993), “Entry deterrence, cost advantage and horizontal product 
differentiation”, Regional Science and Urban Economics, 23, 523-543. 



 26

Appendix A: Proofs of the main theorems 

Proof of Theorems 1 and 2 The proof involves a number of steps.   

Step 1 We have the following derivatives a∂Π∂ /0 when ( ) ., Tba ∈  

(A) In region ∅ , ),(),( *
00 baba Π=Π , firm 0’s laissez-faire profit, and so, 

⎟
⎠
⎞

⎜
⎝
⎛ −−−

−−
⎟
⎠
⎞

⎜
⎝
⎛ −++

−−
=∂Π∂=∂Π∂ ba

ba
ba

ba
taa 31

1
3

118
1// *

00
δδ  whose sign is 

that of F(a,b) = ( )( ).311 baba ++−−−δ  When 0>δ  the curve F(a,b) = 0 intersects 

the boundary of T where ( )( )baba +−−−= 31δ uniquely at ,2
1=a  ,1492

1 −−= δb  

the boundary of T where a = 0 uniquely at ,1 δ−=b  and is downward sloping in T 

between these intercepts; 0/*
0 >∂Π∂ a to the right of the curve and 0/*

0 <∂Π∂ a to the 

left. When 0=δ , 0/*
0 <∂Π∂ a everywhere on S. 

(B) In region 01, ( ) 0/ 02
1

0 >−=∂Π∂ wa φ . 

(C) In region 1, a∂Π∂ /0 has the sign of ( )( ).3110 abbatw −−−−+−φ   But in region 

1, ( ) ],1[ 22
0 abtw −−−< φ so ( )( ).110 abbatw +−−−>−φ  It follows that 

0/0 >∂Π∂ a  since ( )babaab +>−+>+− 1i.e.131 . 

(D)  In region 0, a∂Π∂ /0 has the sign of ( ) ( ).1 1
2 wbat −−−− φ  But in region 0, 

,)1()1)(1( 2
1 batbabatw −−>+−−−>−φ  so 0/0 <∂Π∂ a . 

Step 2 Suppose ∅=∈ ](,( 2
**

1 www  if 0=δ ). From Figure 3.3(a), (b), the positive 

derivatives in (B) and (C) above imply that b=0 (or, symmetrically, 1) in any SPE. 

Given b=0, (A), (B) and (C) above imply that the point P in Figure 3.4 (a), (b) is the 

best response of firm 0 amongst ],0[ 1aa∈ . Amongst ]1,[ 1aa∈ , firm 0’s best response 

to b=0 is to co-locate (a=1), from Lemma 3.1(b), so P will be the unique SPE location 

(up to symmetry) firm 0’s profits at P exceed those at a=1, b=0. The required 
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inequality becomes  ( )( ) 01831),( 2
1 ≥−++−= − δδ δ

aaaaH , where a is its value at P, 

certainly in ],0[ 2
1  and so it is sufficient for the result if 0),( ≥δaH everywhere 

on 2
2
1 ],0[),( ∈δa . It is easy to check H is decreasing in both a and δ on this domain, 

and 0),( 2
1

2
1 >H , proving (a)(i). 

Step 3 Consider now ],[ 2 www ∈ , and for convenience let (a*, b*) denote P, shown in 

Figure 3.2 for 0=δ  and Figure 3.4(c) for 0>δ ; note 2
1* <b . From (C) and (D), P is 

the only remaining SPE candidate (up to symmetry). The maximum possible value of 

1492
1

22
1* −−<−= δδb , so a* is the best response by 0 to b* over Tba ∈),( * .  

We show next that firm 0 does not want to deviate from P to co-locate; this requires, 

 10
2

18
1

0 ]
1

3)[1(),( φφδ
−≥

−−
+−+−−=Π

ba
babatba  

where ))(1(2 baba −−−=δ .  Equivalently, 

 )()1(3618]
1

3[)1( 2 baba
ba

baba −−−=≥
−−

+−+−− δδ  

which becomes 0])(1[ 2 ≥−− ba , and clearly is satisfied.  It remains to show that firm 

0 does not want to deviate from P to any location strictly to the right of firm 1. From 

symmetry the profits attainable by firm 0 from such right deviations are the same as 

when firm 1 is at *1 b−  and firm 0 chooses strictly to the left of firm 1.  From step 1 

the only candidates for local maxima of ),(0 baΠ  on this latter set are; 

(a) along the ∅ /1 border (C2) to the right of P 

(b) in ∅  with a=0 if .11)( ** δ−<−< bb  

The proof of (a) (ii) is completed by showing; 

(i) along the ∅ /1 border firm 0’s profits decrease with b. 

(ii) in ∅  where a = 0 and .0/,1 0 <∂Π∂−< bb δ  
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For (i): here ),(0 baΠ 2
18
1 ]

1
3[)1(

ba
babat

−−
+−+−−=

δ , 

)3()1(),( 3
1

13
2

03
1*

1 babatbaww +−−−−+== φφ  so that  

)2/()1(/ abdbda −+−= , and )3()1( baba +−−−<δ . 

Differentiating ),(0 baΠ totally with respect to b and using the da/db expression 

shows that ( ) )9(1if0/0 babadbd +−−−<<Π δ  which follows since 

)3()1( baba +−−−<δ . 

For (ii): it follows straightforwardly that, with a = 0, 

( ) .351/iff0/0 bbb −<−<∂Π∂ δ  Using the restriction δ−< 1b , 

bb +<− 1)1/(δ and the required inequality follows as b < 1. 

Finally, for ∅=∈ (),( 1φww if 0=δ ), (B) and (C) ensure that P in Figure 3.4(d) (the 

only candidate) is not an equilibrium completing (b).     

 

Proof of Corollary to Theorems 1 and 2 (a) is established in the text. For (b), from 

Theorem 1, the efficient firm market share when 0>δ and [ ]2
**

1 , www ∈  (along 0A in 

Figure 3.4) is ))1/(3(6
1

0 aaL −++= δ , which is increasing in a, in turn increasing in 

w . When 0>δ and [ ]www ,2∈  (along AB in Figure 3.5), the SPE value of 0L is 

defined by (from Theorem 1); 

)2())(1(2
)1())1/(3(6

1
0

baba
babaL

−−−=

−−+−+=

δ
δ

 

Now (2) implies )21/()21(/ abdbda −−= and hence (1) implies that 

⎥
⎦

⎤
⎢
⎣

⎡
−−

−−
−−= )1(

)1(
1

6
1

2
0

db
da

badb
da

db
dL δ 0

1)21(3
1

>⎥⎦
⎤

⎢⎣
⎡

−−
+−

−
=

ba
ba

a
δ  

So along AB as b increases, a increases, w increases and 0L increases.                       
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Proof of Theorem 4 

First note that substitution of the laissez-faire SPE (a = b = 0, δ6
1

2
1

0 +=L ) into SW(a, 

b, L0) produces, after some manipulation: 

 2
36
5

2
1

12
1**1 / δδβ ++−=− tSWt  

(a) For ],,[ 2
**

1 www ∈  SPE locations are b = 0 and a = a ( )w , where a ( )w  is 

defined by ).3)(1()0,( 3
1

13
2

03
1*

1 aataww −−−+== φφ  It follows that 

( ) 11 )24(3' −− −= atwa > 0.  Social welfare can then be written as the following 

function of a, on the domain [ )2
1,0∈a , )1(2 aa −≥δ with ( ) ( )a

aL
−

++=
16

36
1

0
δ ; 

 ( ) ( ) ( ) ]1[1)( 3
0

3
0

3
3
1

0100 LaLatLLaSW −+−+−−+= φφ  

Since 0)(' >wa it suffices to show that 'SW (a) > 0 on its domain.  Differentiation 

and manipulation produces 

)('36 1 aSWt − 2
2

2

1526910
)1(

5 aa
a

−−++
−

= δδ  

Since aa 2)1/( ≥−δ  on the domain, 222 202010,20)1/(5 aaaa −≥≥− δδ , and so; 

 01569)('36 21 >−−≥− aaaSWt  since [ ),,0 2
1∈a completing the proof of (a). 

(b)/(c) For ( )www ,2∈ SPE locations are ( )wa  and b = b(a) where b(a) is defined by 

))(1(2 baba −−−=δ  for ]),211(( 2
1

2
1 δ−−∈a  and (e.g.) ( )wa  is defined by 

( )( ))(3)(1))(,( 3
1

13
2

03
1*

1 abaabatabaww +−−−−+== φφ . From the )(ab  

definition )21/()21()(' baab −−= , and it follows from ( ))(,*
1 abaww =  that 

( ) 0)1)(21(' 11
2
1 >−−−= −− babtwa . Now social welfare is the following function of 

a, where ( ) ],211( 2
1

2
1 δ−−∈a , )(abb = and )1(2

1
0 abL +−= , and where b increases 

from 0 to 2/2
1 δ− as a increases over its domain; 
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SW(a) = ])1()([)1( 3
0

3
0

33
3
1

0100 LbaLbatLL −−+−++−−+φφ  

Since 0)(' >wa it suffices again to show that 0)(' >aSW  on its domain. 

Differentiation and manipulation produces; 

 3
2
1221 )1()21()21()()(')21( baabbabaaSWbt −−+−−−−−=−− δ  

Substituting )1/(2
1 baba −−=− δ , s=a+b (which increases from ( )δ2112

1 −−  to 

2/1 δ− as a varies over its domain) and manipulating: 

 ),()1)(12(4)53()(').21()1(8 3221 smsssaSWbst =−−−−=−−− δ say 

It is easy to check that ( ) 0>sm for ( ) ],211( 2
1

2
1 δ−−∈s , that m(s)<0 for 5

3>s ,that 

0)(' <sm for [ ]5
3

2
1 ,∈s , and that  )2/1( δ−m has the sign of 25 −δ . Hence, if 5

2≥δ , 

m(s) is positive over its domain, proving (b). If ),0( 5
2∈δ  m(s) has a unique maximum 

at some ( )2/1,2
1 δ−∈s , so 2

1>+ ba , which corresponds to a unique maximum of 

SW(a) over its domain; (c) follows with *w as the associated minimum wage.  

(d) From (a), (b) and (c) it suffices to show that ( ) .**SWwSW >  At ,w  

2/, 2
1

2
1 δ−== ba  and the required inequality becomes after manipulation; 

09184520)( 23 <−+−= yyyyn  

where ( ).1,02/ ∈= δy   Now n(0) < 0, n(1) < 0, n is concave on [ ],,0 4
3  convex on 

[ ].1,4
3  A straightforward calculation shows that at the unique stationary point on 

[ ] 0)(,,0 4
3 <yn  which ensures the result. 

(e) This follows since at the unique social optimum 2
1=+ oo ba  whereas at the 

SPE location which maximizes social welfare .2
1>+ ba      
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Proof of Theorem 6 The fall in profit is immediate from Theorem 1 when 0=δ . 

From Theorem 2(a)(i), when 0>δ  and ],( 2
**

1 www ∈ , ( ) ,1,0,0,* =Π= iaiiπ  and a 

increases along OA in Figure 3.4(b) as w increases in this range. It is easy to check 

that )0,(* aiΠ is decreasing in a ( )2
1< , so profits fall as w increases. Similarly, from 

Theorem 2(a)(ii) when 0>δ  and ],( 2 www ∈ , ,1,0),,(* =Π= ibaiiπ  with (a,b) 

increasing along AB in Figure 3.4(b) as w increases in this range. Along AB 

))(1(2 baba −−−=δ , so )21/()21(/ badadb −−= , and it is easy to check that 

),(* baiΠ  is decreasing as a ( )2
1<  increases along AB, so again profits fall as w  

increases. 

If ),,,( 10 wwba are their SPE values when ),( 1
**

1 φww ∈ , the equilibrium utility of the 

workers at the extreme locations is, with obvious notation, 2
0)0( tawu −=  and 

2
1)1( tbwu −= .  Since ),,,( 10 wwba never decrease as w increases in this range, it is 

clear that the extreme workers are the most likely to suffer a utility loss from an 

increase in the minimum wage since their commuting times increase the most. But 

when 0=δ , and using Theorem 1, 01/)1(/)0( >−=∂∂=∂∂ awuwu , so the utility of 

all workers increases monotonically with w . When 0>δ  the worker at 0 is 

unambiguously most likely to suffer a utility fall, because an increase in the minimum 

wage produces a smaller wage increase but larger increase in commuting time than 

that for the worker at 1. Using Theorem 2 it is easy to check that u(0) is again 

monotonically increasing in w , both for ],( 2
**

1 www ∈  (Theorem 2(a)(i), along OA in 

Figure 3.4(b)) and for ],( 2 www ∈  (Theorem 2(a)(ii), along AB in Figure 3.4(b)). 

Again the utility of all workers increases monotonically with w .                             
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Appendix B: Proofs of lemmas and propositions 

Proof of Lemma 3.1   

For a wage subgame with location (a,b) ∈ S, we first show that the following (i) – (iii) 

describe firm 0’s best responses and (iv) – (vi) those of firm 1, where 

( )( ),3110 babat −+−−−= φγ  

( )( ),1110 babat +−−−+=Λ φ ( )( ),3101 babat +−−−−= φγ
( )( );1101 abbat +−−−+=Λ φ  

(i) )1)(1(10 babatww +−−−+=       11if γ<w  

(ii) ( ){ } [ )111102
1

0 ,if)1(1 Λ∈−+−−−+= γφ wbabatww  

(iii) [ ]00 ,0 φ=w          11if w≤Λ  

(iv) =1w )1)(1(0 babatw −+−−+       00if γ<w  

(v) ( ){ } [ )000012
1

1 ,if)1(1 Λ∈+−−−−+= γφ wbabatww  

(vi) [ ]11 ,0 φ=w          00if w≤Λ  

From the definitions of ;~and0 xπ  

(1) 00 =π   ])1[(i.e.,0~if 22
10 abtwwx −−−≤≤  

(2) ( )xw ~
000 −= φπ

 ( ] ])1[(]1[(i.e.,1,0~if 22
10

22
1 batwwabtwx −−+≤<−−−∈  

(3) 000 w−= φπ  0
22

1 ])1[(i.e.,1~if wbatwx ≤−−+≥  

It is easy to check that (1), (2) and (3) define 0π as a continuous, quasi-concave 

function of w0 over the whole range [0, 0φ ] (constant at 0 over the range of (1), strictly 

concave over (2) and linear, decreasing over (3)). 

If ,0~then11 ≤Λ≥ xw  and so ,000 == πL  for all [ ]00 ,0 φ∈w .  Thus any [ ]00 ,0 φ∈w  

is a best response for firm 0 to .11 Λ≥w  If 11 Λ<w  then strictly positive profits are 
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attainable by firm 0 (by choosing εεφ ,00 −=w small enough), and a best response 

must lie in the range of (2) above.  In this range, 0π is a strictly concave function of 

w0 with stationary point { }])1[( 22
102

1
0 abtww −−−+= φ  which lies in the range of 

(2), and so is the best response, iff [ )., 111 Λ∈ γw   If 011 , πγ<w  is increasing over the 

range of (2) so the maximum of 0π  occurs at ])1[( 22
10 batww −−+= , which is 

therefore the best response.  Interchanging 0/1 subscripts, a/b and ,/ 10 φφ  and 

replacing ( )xbyx ~1~ −  produces the firm 1 result.  Thus the set of subgame NE for 

(a,b) ∈ S correspond to simultaneous solutions of one of (i) – (iii) with one of (iv) – 

(vi), where [ ] [ ].,0and,0 1100 φφ ∈∈ ww   

(a) Assume (a,b) ∈ T and consider the (ii)/(v) pairing.  The equations intersect at 

( ) 1,0,,* == ibaww ii  and the resulting w0, w1 satisfy the inequalities in (ii)/(v) iff 

( )( ) ( )( ).,or31 Tbababa ∈+−−−<δ   It is straightforward to check that no pairings 

produce any other NE for (a,b) ∈ T, which completes the proof of (a), using the NE 

wages to derive the corresponding market shares and profits.   

(b) Assume (a,b) ∈ S/T.  Consider the (i)/(vi) pairing where w1 = 1φ  in (vi).  The 

resulting wages ( )11
22

10 ],)1[( φφ =−−+= wbatw  satisfy the required inequalities iff 

( )( ).31 baba +−−−>δ   The (ii)/(vi) pairing with 11 φ=w  produces 

( )[ ]{ } 11
22

100 ,1
2
1 φφφ =−−−+= wabtw , which satisfies the inequalities iff 

( )( ),31 baba +−−−=δ  in which case w0 = ].)1[( 22
1 bat −−+φ  Again one can check 

that no pairings produce other NE for (a,b) ∈ S/T and that the NE wages produce the 

market shares and profits in (b).  Consider now the case (a,b) ∈ H.  From the 

definition of L0 for this case, if 11 φ=w , firm 0 attains 0100 >−= φφπ with w0 = 1φ , 
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which cannot be improved upon 

( ).0, 0101000010 =⇒<−<−=⇒> πφφφφπφ www   If ,10 φ=w  firm 1 can do no 

better than choose ,11 φ=w  giving .01 =π   Thus 110 φ== ww is a NE.  This is the 

unique NE: if 1011 then www =< φ is again 0’s best response giving ,01 =π but 

( )0,11 ><+ εφεw  strictly improves for 1; market shares and profits are as claimed, 

completing the proof.     

Discussion and Proof of Proposition 1 

To find the SPE of the laissez-faire game we need the NE of the “reduced form” stage 

I location game where firm 0 chooses a ∈ [0, 1], firm 1 chooses b ∈ [0, 1] and 

payoffs are given by ),(* baiΠ in lemma 3.1.  It turns out that the inefficient firm 

always wants to locate as far as possible from the rival, because of the usual 

centrifugal force; it moves away to soften wage competition and avoid the zero profits 

near co-location. In contrast, the efficient firm gets positive profits when it co-locates, 

and these can overcome the centrifugal tendency. If δ is small ( 4/1<δ ) the 

centrifugal force dominates. But if ],4/1[ *δδ ∈ 81.0336*where ≅−=δ , the 

efficient firm co-locates if the rival is near the mid-point (b=1/2) and the centrifugal 

force is therefore small since th efficient firm cannot get “very far” from the rival; 

otherwise it moves to the extremity.  Lemmas B.1 and B.2 provide the formal 

statements. 

Lemma B.1 The best response of firm 1 in the reduced form stage I game when 

( ) { } 2
1

2
1

2
1

4
5 1,0andif1,if0is,,0 ==>=<=∈ aifbababδ . 

Proof We look first at the “constrained best response” of the inefficient firm in this 

game, which solves: 
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),(max *
1 ba

b
Π  s.t. .10 ab −≤≤   We denote this solution ),(1 aψ  and )(~

1 aΠ  are the 

resulting profits. 

For [ ] ( ) 0,,1, *
1 =Π∈ baaa for all [ ],1,0 ab −∈ so ( ) [ ] .0)(~1,0 11 =Π−= aandaaψ   

For [ ),,0 aa∈  firm 1 can attain positive profit only by choosing b so that (a,b) ∈ T, 

but then, from lemma 3.1(b); 

( )( ) ( )( ) 01/311/3/ 18
1*

1 <−−−−−−−−−+−=∂Π∂ babababatb δδ  

Thus ( ) [ ),,0for0,)(~and0)( *
111 aaaaa ∈Π=Π=ψ  completing the description of firm 

1’s constrained best responses.  The function )(~
1 aΠ  thus defined is easily seen to be 

continuous, strictly decreasing on [ )a,0  and constant at 0 on [ ].1,a  

In firm 1’s unconstrained best response problem, it can also choose [ ].1,1 ab −∈  From 

symmetry the maximum attainable profit over this b interval is ( ),1~
1 a−Π  and the 

unconstrained best response profit for firm 1 is max ( )[ ,~
1 aΠ  ( )]a−Π 1~

1  attained at the 

best responses ( ) ( )aaaifa −−−Π>Π 11,1~)(~)( 1111 ψψ  if )(~)1(~
11 aa Π>−Π  and at 

( ){ } ).1(~)(~if11),( 1111 aaaa −Π=Π−−ψψ  When ,, 2
1

4
5 >< aδ  which completes the 

proof of the Lemma.                                                                                                     

 

Lemma B.2 The best response of firm 0 in the reduced form stage I game is; 

(a) for ( ) { } 2
1

2
1

2
1

4
1 if1,0,if1,if0,,0 ==>=<=∈ bababaδ   

(b) for [ ],, *
4

1 δδ ∈  there is a strictly decreasing function b(δ) with ( ) ,2
1

4
1 =b  

( ) 0* =δb such that a = 0 if b < b(δ), a = { } ( ) babbb −==− 1,if1,0 δ if 

( )( ),)(1, δδ bbb −∈  a = { } ( )δδ bbabbb −>=−=− 1if1and)(1if1,1  

Proof Suppose .0 *δδ ≤<  From lemma 3.1 we have;  
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(i) ( ) 012/*
0 >−=∂Π∂ ata  when (a, b) ∈ (S ∪ H)\T and a < 1. 

(ii) When (a, b) ∈ T, ⎟
⎠
⎞

⎜
⎝
⎛ −−−

−−
⎟
⎠
⎞

⎜
⎝
⎛ −++

−−
=∂Π∂ ba

ba
ba

ba
ta 31

1
3

118
1/*

0
δδ  

whose sign coincides with that of F(a,b) = ( )( ).311 baba ++−−−δ  The curve F(a,b) 

= 0 intersects the boundary of T where ( )( )baba +−−−= 31δ uniquely at ,2
1=a  

,1492
1 −−= δb  the boundary of T where a = 0 uniquely at ,1 δ−=b  and is 

downward sloping in T between these intercepts when .4
3≤δ  For ],,( *

4
3 δδ ∈  the 

curve slopes down when 3a+2b > 1, but is upward sloping when 3a+2b < 1 (with a 

turning point at b = 2 - δ3 , a = 3
1 (1-2b)).  In each case, 0/*

0 >∂Π∂ a to the right of 

the curve and 0/*
0 <∂Π∂ a to the left. 

Consider 0’s constrained best response problem: ( ) [ ].1,0s.t.,max *
0 baba

a
−∈Π  Define 

G(b,δ) = ),1(),0( *
0

*
0 bbb −Π−Π on the domain ( ]*,0],1,0[ δδδ ∈−∈b .  Then; 

,183
1

)1(
18
1),(

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ −+
−

−= δδδ b
b

btbG  

( ) 0443
118

153
1

3
118

1/ <−⎟
⎠
⎞

⎜
⎝
⎛ −+
−

≤⎟
⎠
⎞

⎜
⎝
⎛ −+
−

⎟
⎠
⎞

⎜
⎝
⎛ −+
−

=∂∂ bb
b

tb
b

b
b

tbG δδδ  

and .domaintheon1
1

using06
1

/ 9
1 ⎟

⎠
⎞

⎜
⎝
⎛ +≤

−
<⎟

⎠
⎞

⎜
⎝
⎛ −−
−

=∂∂ b
b

b
b

tG δδδ  

Thus there is a decreasing function b(δ) on the domain ],0( *δδ ∈  such that b=b(δ) iff 

G(b,δ)=0, b < b(δ) iff G(b,δ) > 0 and b > b(δ) iff G(b,δ) < 0.  Moreover ( ) 1lim
0

=
→

δ
δ

b  

(since G(1,δ) → 0 as δ→0), ( ) 2
1

4
1 =b  ( )( )0,since 4

1
2
1 =G  and ( ) 0* =δb (since 

( ) ( ) *2
18
1 when0]183[,0 δδδδδ ==−+= tG ). 
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In the case where ( ],,0 4
3∈δ  the derivative signs in (i) and (ii), and the downward 

slope of the curve F(a,b) = 0 imply that a = 0 and a = 1-b are the only 2 candidates for 

0’s constrained best response when ],1,0[ δ−∈b and it follows from the previous 

paragraph that a = 0 if b < b(δ), { }ba −= 1,0  if b=b(δ) and a = 1-b if b > b(δ).  

Moreover ( ) ( )
2

18
1*

0 3
1

1,0 ⎟
⎠
⎞

⎜
⎝
⎛ −+
−

−=Π b
b

btb δ is continuous and strictly decreasing in b, 

and βα −=−Π ),1(*
0 bb independent of b.  When ( ) ( ) 2

1
4
1 ,,0 >∈ δδ b  and using the 

symmetry of the (a,b) and (1-a, 1-b) subgames, 0’s unconstrained best response is as 

described in (a).  When [ ] ( ) 2
1

4
3

4
1 ,, ≤∈ δδ b  and the symmetry ensures the 

unconstrained best response of (b). 

When ],,( *
4
3 δδ ∈  the above arguments ensure the unconstrained best responses in 

(b) if ].1,32[ifor]1,0[ δδ −∈−∈ bb  When ( )δδ 32,1 −−∈b  the candidates 

for 0’s constrained best response are a= 1-b and the value of a where (a,b) ∈ T is on 

the upward sloping part of the F(a,b) = 0 curve; let a = a(b) denote this curve, defined 

by F(a,b) = 0 and 3a+2b < 1 for ( ).32,1 δδ −−∈b  Along this curve 0’s profit is 

( )( )bba ,*
0Π  whose derivative with respect to b is –4(1-a-b) < 0.  Also 

( ) ( ) 01898,1 9
1 <−−−=− δδδδ tG so ( ) ,1 δδ −<b  and a = 1-b is 0’s constrained 

best response to any b > b(δ), as in the last paragraph, producing again the (b) 

statement.          

Best response graphs are shown in Figures B.1 and B.2. 
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               Figure B.2; 0’s laissez-faire best location response graph 

Superimposing figure B.1 on figure B.2 (a) or (b) establishes Proposition 1(a) when  
 

0>δ , and it is straightforward to extend arguments for 0=δ .   On the other hand,  
 
when *δδ > , the simultaneous-move location game has no equilibrium in pure  
 
strategies: firm 1 wants to locate as far as possible from firm 0, and firm 0 wants to  
 
co-locate with firm 1. 
 
REMARK; Ziss (1993) suggests that figure B.2 (a) is 0’s best response graph for all  
 

],0[ *δδ ∈ , overlooking figure B.2 (b). 
 
 

 
 
 )(δb              )(1 δb−   1    b   
(b) *

4
1 δδ ≤≤  

 
 
      ½                  1     b 
(a) 4

10 << δ   

  a 
       
       1 
    

  a 
 
       1 

a 
 
    1 
 
 
 
 
 
   1/2 

 
 
 
 
            1         b                           

 
 
 
Figure B.1; 1’s laissez-faire best location response graph 
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Proof of Lemma 3.2 

 For (a, b) ∈ S, Lemma 3.1(a) and the quasi-concavity of iπ  as a function of wi 

noted in its proof ensure that the best responses of firm 0 are described by (i) – (iii) 

below, and those of firm 1 by (iv)-(vi): 

 (i) ]])1[(,max[ 22
10 batwww −−+=   11if γ<w  

 (ii) [ ]{ }⎥⎦
⎤

⎢⎣
⎡ −−−+= 22

100 )1(
2
1,max abtwww φ  [ )111 ,if Λ∈ γw  

 
 (iii) [ ]00 ,φww =      11if w≤Λ  
 
 (iv) ]])1[(,max[ 22

01 abtwww −−+=   00if γ<w  
 

 (v) [ ]{ }⎥⎦
⎤

⎢⎣
⎡ −−−+= 22

011 )1(
2
1,max batwww φ  [ )000 ,if Λ∈ γw  

 
 (vi) [ ]11 ,φww =      00if w≤Λ  
 
Thus NE for subgames with (a, b) ∈ S and ],0( 1φ∈w  correspond to solutions for 

[ ] [ ]1100 ,,, φφ wwww ∈∈  of one of (i)-(iii) coupled with one of (iv)-(vi). 

(a) Suppose (a, b) ∈ T.  Comparing the above best responses (i)-(vi) with those of 

Lemma 3.1(a) it is immediate that the laissez-faire outcomes continue as NE iff 

( ) ( )[ ],,,,min *
1

*
0 bawbaww ≤ completing the proof of (i). 

Solutions with www == 10 can be generated by the (ii)/(v) pairing iff: 
 
(1) ( ) ]1[),( 22

00 abtbaww −−−=≥ φ  (2) ( ) ]1[),( 22
11 batbaww −−−=≥ φ   

 
(3) )3)(1(01 babatw +−−−−=≥ φγ           (4) )3)(1(10 babatw −+−−−=≥ φγ  
 
But (1) ⇒ (3) and (2) ⇒ (4).  Thus (ii)/(v) produce NE with www == 10  (and the 

corresponding market shares and profits in (ii)) iff (1) and (2) hold.  It is straight 
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forward to check that no pairings produce other NE with www == 10 , completing the 

proof of (ii). 

The (ii)/(v) pairing produces solutions with 10 www =≥ iff  
 

( )[ ]{ } wwabtww =−−−+= 1
22

00 ,1
2
1 φ and 

(5) ( ) ]1[),( 22
00 abtbaww −−−=≤ φ       (6) )3)(1(01 babatw +−−−−=≥ φγ  

(7) ( )[ ]{ }22
01 1

2
1 batww −−−+≥ φ            (8) )3)(1(1000 babatw −+−−−=≥>Λ φγ  

 
Substitution of w0 shows (7) is equivalent to ).,(*

1 baww ≥  For (a, b) ∈ T the 

inequalities in (5) and (7) imply those of (6) and (8), so (ii)/(v) produce NE with 

www =≥ 10 (and market shares and profits of (c)) iff (5) and (7) hold.  Again no 

pairings produce other NE with www =≥ 10 , completing (iii).  The proof of (iv) is 

symmetric to that for (iii). 

(b) For (a, b) ∈ THS /)( ∪ , the laissez-faire outcomes in Lemma 3.1(b) and 

3.1(c) always continue as NE since for i=0,1 .),( 1
* wbawi ≥≥ φ   It is straightforward 

to check that no pairings (of (i)-(iii) with (iv)-(vi)) produce any other NE.  

  

 

Proof of Lemma 3.3  

Consider first firm 1’s constrained best response. The proofs of (b) and (a)(i) follow 

immediately from the text arguments. 

(a)(ii) and (iv). In figure 3.3(b) and (d), 21YY  is the curve C3, defined 

by ])1[(),( 22
00 abtbaww −−−== φ . When b=0 this implies 2

0 1/)( atw −=−φ , so 

t
wa )( 01 −−= φ which is then the a-value at 2Y . Hence, for ]1,0[ )( 0

t
wa −−∈ φ , the 
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constrained best response along 21YY is given by the solution in b to ),(0 baww = , so 

t
wab )(2 01 −+−= φ . When ],1[ 1

)( 0 aa t
w−−∈ φ , b=0 is the constrained best response. 

(a)(iii). In figure 3.3, 21YY is again the curve C3, and 2Y  is now defined by  the 

intersection of C3 and the dashed curve (D), so ),(0 baww = and  

))(1(2 baba −−−=δ . Writing twr /)(2 0 −= φ , these 2 conditions are; (1) 

)1)(1(2 babar −+−−=  and (2) ))(1(2 baba −−−=δ  which imply 

)1()( babar −+=− δ , so )1()1( arabr −+=− δ . Substituting back into (1) gives 

[ ] 0)()()1( 2
2
1222 =−−−−−+ δδδ rrraara , which simplifies to produce 

arra rr
r =+−−=−−= −− )(24

1
2
1

4
1

)(2 )()( δ
δ

δ δδ . For [ ]aa ,0∈ , the solution of (1) for b 

in terms of a produces the required constrained best response.  

In figure 3.3(c), 32YY  is the curve C1, defined by (3) ),(*
0 baww =  

)3)(1(3
1

13
1

03
2 babat −+−−−+= φφ . 3Y is defined by the additional condition b=0, 

which produces aa = . The general solution of (3) for b in terms of a then produces 

the required best response for ],[ aaa∈ , with b=0 for ],[ 1aaa∈ . 

Turning to the unconstrained best responses, let )(~
1 aπ denote firm 1’s constrained 

best response profits when [ ].1,0∈a  0)(~
1 =aπ for [ ],1,1aa∈ ; also )(~

1 aπ is a 

continuous function, from Figure 4.1 since ),(ˆ1 baπ is a continuous function. We now 

show that )(~
1 aπ is a strictly decreasing function on [ );,0 1a the symmetry arguments 

used earlier to establish lemmas B.1 and B.2 then complete the proof. 

Along vertical segments of firm 1’s constrained best response graph ((0, 0) to ( )0,1a ) 

in Figure 3.3(a), Y2 to ( )0,1a  in Figures 4.1(b) and (d), Y3 to ( )0,1a  in Figure 4.1(c)), 

( )2
118

1*
11 3)0,()(~

aataa −−−=Π= δπ and .0/~
1 <∂∂ aπ  Along segments of 1’s 
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constrained best response graph that coincide with the C1 ( ))(3.3figureinto 32 cYY  

))(,()(~ *
11 abaa Π=π  where b(a) is defined by ))(,(*

0 abaww = so that 

( )0,1)2)(1()(' 1 −∈−+−= −baab  which ensures 0/~
1 <∂∂ aπ  here also.  Finally, along 

segments of 1’s constrained best response graph that coincide with C3 (Y1 to Y2 in 

Figures 3.3(b), (c) and (d)), ( ) ))(1()(~
12

1
1 aabwa −+−= φπ  where b(a) is now defined 

by ))(,(0 abaww =  so 0)1()(' 1 <−−= −baab  and again .0/~
1 <∂∂ aπ   

 
Discussion and Proof of Proposition 2 
 
REMARK; The Ziss(1993) proof of Proposition 2 uses Lagrangeans without proof of 

a supporting concavity statement that would ensure sufficiency of the resulting 

conditions. We found the required concavity elusive, and offer instead an alternative 

proof. 

Suppose without loss of generality that 1≤+ ba . From (2.6) in the text, social 

welfare is  

       ( ) ( ) ( ) ]1[1),,( 3
0

3
0

33
3
1

01000 LbaLbatLLLbaSW −−+−++−−+= φφ   

Given (a,b) the socially optimal 0L , ( ),,0 baL  equates 

( ) ( )2
01

2
00 1 LbttoaLt −−−−− φφ  if the resulting [ ],1,00 ∈L  otherwise .10 =L  

Hence; 

 ( ) ( )
( )⎩

⎨
⎧

−−≥
−−≤+−+−−

=
22

22
2
1

0 1if1
1if)1()1(2/,

ba
baababbaL

δ
δδ  

Substituting the top branch here into the SW formula and writing ba −−=1l  

produces the function; 

( ) ( ) ( ) ( ) ( ){ }31
8
131

8
133

3
1

2
112

2
1

2
1, −−− −++++−−+++= lllll δδδδβα batbattbaf  

Similar substitution of the bottom branch produces; 
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( ) ( ) ]1[, 33
3
1 aatbag −+−=α  

Hence the maximum social welfare attainable at locations (a,b) ∈ S∪H is; 

( )( ) ( )
( )⎩

⎨
⎧

−−≥
−−≤

=
22

22

0 1if),(
1if),(,,,

babag
babafbaLbaSW

δ
δ  

Note the following features of f(a,b);  

(i) ( ) ( ) ( ) ( )111 221
8
1221

8
12

2
122

2
1 +−+−+−−+=

∂
∂ −−−−− lllllll δδδδδδ a
a
f

t
 

  22
4
12

4
12

2
1 −++−= ll δδ a  

(ii) 22
4
12

4
12

2
11 −++−−=

∂
∂

ll δδ b
b
f

t
 

(iii) Equating (i) and (ii) to 0, f has a unique stationary point δδ −=+= 4
1

4
1 , ba  

with ( ) ., 48
12

2
1* tttfbaf −+−== δδα  Now consider problem 1: 

( ) .),(,1s.t.),(max 22

),(
HSbababag

ba
∪∈−−≥δ  The solutions are ,2

1=a  

,and,if],[ 2
1

4
1

2
1

4
1 =<−∈ ab δδ  [ ] ;if,0 4

1
2
1 ≥∈ δb  in both cases the optimal value 

is .12
1* tg −= α  If ,1≥δ  the feasible set for problem 1 is S ∪ H and the solution to 

problem 1 is then necessarily the social optimum. 

Suppose 1<δ  from now on. 

Next consider problem 2: ( ) .),(,1s.t.),(max 22

),(
HSbababaf

ba
∪∈−−≤δ  The feasible 

set is nonempty (with a non-empty interior) and compact, so there is a solution.  But 

solutions cannot occur, 

(1) on the feasible set boundary where )1,0[,0 δ−∈= ba  since 

;01
1

/
2

4
11 >⎟

⎠
⎞

⎜
⎝
⎛ −+
−

=∂∂− b
b

aft δ  
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(2) on the feasible set boundary where )1,0[,0 δ−∈= ab  since 

0
1

1/
2

4
11 >⎟

⎠
⎞

⎜
⎝
⎛

−
−−=∂∂−

a
abft δ  there. 

In addition, when 4
1≥δ the (unique) stationary point is not interior to the feasible set, 

so any solution to problem 2 belongs to the boundary where ( ) 221 ba −−=δ  and 

.0, ≥ba   But f and g coincide on this boundary which was also feasible, but not 

optimal, in problem 1.  It follows that the solution to problem 1 provides the social 

optimum for all ,4
1≥δ  completing (b).  Finally, when ,4

1<δ  the stationary point of f 

is interior to the feasible set of problem 2 with value ;*f  moreover ** gf >  then.  

Thus the (unique) stationary point is the only solution candidate interior to the 

feasible set for problem 2, and there cannot be a boundary solution.  So the stationary 

point solves problem 2 and, since ,** gf >  provides the social optimum; hence (a). 

            
 

 

 




