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parameters problem. This problem is exacerbated by the two step nature of the procedure. 
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1 Introduction

The incidental parameters problem arises in the estimation of nonlinear and dynamic panel

models which include individual specific effects to control for unobserved time invariant

heterogeneity (see, for example, Heckman, 1981, and Greene, 2002). A number of recent

papers, surveyed in Arellano and Hahn (2005) and including Hahn and Kuersteiner (2002),

Lancaster (2002), Woutersen (2002), Hahn and Kuersteiner (2003), Hahn and Newey

(2004), and Carro (2006), provide a range of solutions, so-called large-T corrections, to

reduce the incidental parameters bias in long panels. These papers derive the analytical

expression for the bias (up to a certain order of T ), which can be employed to adjust the

biased fixed effects estimators. Numerical evidence suggests these adjustments eliminate,

or significantly reduce, the bias even in short panels.

While the above papers collectively cover a large class of models, they do not han-

dle endogeneity resulting from unobserved heterogeneity that contains a time varying

component not eliminated via fixed effects style transformations. This kind of hetero-

geneity arises in a large class of models which are important for empirical investigations

in economics. It includes, for instance, models with simultaneity, time varying omitted

variables, measurement error, or sample selection. Accordingly we derive new bias cor-

rections for models with multiple sources of endogeneity. Examples include static and

dynamic models with limited endogenous regressors, panel data sample selection models,

and limited dependent variable models with endogenous explanatory variables.

Below we discuss some papers which have analyzed some of the models we consider

here. We differ from these existing studies in our treatment of the time invariant het-

erogeneity. We treat the unobserved individual effects as fixed effects (FE), potentially

correlated with the explanatory variables, whereas previous investigations generally as-

sume they are random effects (RE) which are distributed independently of the explanatory

variables. RE estimation by-passes the incidental parameters problem by integrating out

the individual effects. This approach, however, has three important shortcomings. First,

the independence assumption is not compelling in many applications. In microeconomic

studies, for instance, individual effects might capture variations in preferences or tech-

nology, and the explanatory variables are often choice variables determined optimally on

the basis of this individual heterogeneity. Second, the RE estimators generally require

an additional round of integration and this can complicate computation. Finally, the RE
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procedures require parametric assumptions for the individual heterogeneity.

We provide a simple estimation procedure for a range of nonlinear panel data mod-

els with both time varying and time invariant endogeneity. Our two-step procedure first

estimates the reduced form of the time variant heterogeneity underlying the endogene-

ity/selection bias by FE. We then estimate the primary equation by FE including an

appropriately constructed control function. Since either or both steps might employ non-

linear FE procedures and the control function might be a nonlinear function of the first

step individual effects, the incidental parameters problem arises. The existing bias cor-

rections are not appropriate for these models, since they are not designed to account

for the additional source of incidental parameters problem coming from the fixed effects

estimation of the control function. We derive the appropriate bias correction.

The following section briefly describes some econometric models covered by our ap-

proach. Section 3 reviews some existing treatments of bias correction in non-linear panel

data models and extends these corrections to two-step estimators. Section 4 gives asymp-

totic theory for the two-step bias corrected FE estimators. Section 5 provides simulation

evidence and Section 6 contains an empirical example. Section 7 contains some concluding

remarks.

2 Econometric Models

The leading class of econometric models we consider has the following two-index structure:

dit = f(I1it), (Control Equation)

yit = g(I2it; dit), (Primary Equation)
(1)

where

I1it := x′itβ1 + z′itβ2 + α1i + ε1it, (2)

I2it := x′itθ1 + θ2dit + α2i + ε2it, (3)

and f(·) and g(·) are known functions. The endogenous variable of primary interest is yit,

and dit is an endogenous explanatory variable or selection indicator. The predetermined

explanatory variables are denoted by xit and zit; α1i and α2i are unobserved individual

effects; and the disturbances are denoted by ε1it, and ε2it. The xit appears in the conditional

mean of each equation and β2 6= 0 ensures identification does not rely on distributional
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assumptions. Lagged dependent variables may appear in each equation and these would

be included in xit or zit.

Assumption 1: The idiosyncratic disturbances ε1it and ε2it are jointly normally dis-

tributed with variances σ2
1 and σ2

2, respectively; with a potentially non zero covariance

σ12; and

E[εjit|xt
i, z

t
i , α1i, α2i] = 0, for j = 1, 2; i = 1, ..., n; t = 1, ..., T , (4)

where xt
i = [xi1, ...xit], and zt

i = [zi1, ...zit].
1 Note that we do not impose any condition

on the joint distribution of α1i and α2i, given xt
i and zt

i . Assumption 1 indicates the

endogeneity in the primary equation arises both through the correlation in the unobserved

individual effects and also the contemporaneous correlation in the idiosyncratic errors.

To estimate the parameters from this model we propose the following strategy. We

first estimate the reduced form control equation from which we construct the appropriate

control function. The form of this control function depends on the type of censoring or

selection, and this is generally captured by the nature of the dependent variable in the

reduced form.2 We then account for the endogeneity in the main equation by eliminating

the first form, due to the α′2s, through the inclusion of individual fixed effects, and the

second, due to the ε′s, through the inclusion of the estimated control function. Estimation

of the primary equation is based on,

yit = g(x′itθ1 + θ2dit + ρ(λit) + α2i + u2it; dit), (Estimation Equation) (5)

where λit := λ(dit, x
′
itβ1 + z′itβ2 + α1i) is the control function and ρ is the appropriate

mapping.3 The incidental parameters problem may arise in both steps and this is com-

plicated by the inclusion of the control function that depends on the individual effects of

the reduced form. We now briefly consider some leading examples of this general model.

1The distinction between the x′s and the y′s is somewhat superficial in that one could also supplement

the model with the reduced form for x when it is correlated with the idiosyncratic disturbances.
2There is a large literature on the use of control functions to establish orthogonality conditions which

would be otherwise violated in the presence of endogeneity or selection. In this paper we do not derive

the control function for any particular model but we assume its existence and refer to the literature in

which it has been developed.
3Our control function approach is computationally more attractive than alternative methods, like Full

or Partial Maximum Likelihood of the system (1). Moreover, system estimators, although more efficient,

are generally less robust to parametric assumptions than two-step procedures.
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One important class of models is related to the sample selection procedure of Heck-

man (1979). This was extended to panels by Ridder (1990), Verbeek and Nijman (1992),

and Vella and Verbeek (1999), under the assumption that the error components are RE.

Wooldridge (1995) introduces a correlated RE estimator under alternative assumptions

on the individual effects. A semi-parametric estimator with FE is proposed by Kyriazidou

(1997). Our approach avoids the distributional assumptions for the unobservable individ-

ual effects assumed in the fully parametric approaches. We differ from Kyriazidou (1997,

2001) in that we impose less data restrictions and our estimator is easier to implement.

We also allow for richer dynamics as the explanatory variables may be predetermined

rather than strictly exogenous.4 Panel data selection models under alternative selection

rules, such as those considered by Vella and Verbeek (1999) with RE, can also be accom-

modated. Our approach encompasses models with censored endogenous regressors such

as those considered by Heckman (1978) and Vella (1993) in the cross sectional context

and by Vella and Verbeek (1999) in panels.

The primary equation in the above mentioned models is estimated by least squares

methods. A second class of models follows the conditional MLE procedure of Smith and

Blundell (1986) and Rivers and Vuong (1988), which has been extended to panels by Vella

and Verbeek (1999) under the assumption of random error components. We extend this

class of models by assuming FE and allowing for dynamic feedbacks in the primary and

control equations.

3 Bias Corrections in Fixed Effects Two-Step Esti-

mation

Consider a general nonlinear panel data model with a common parameter of interest θ10

and individual effects α1i0, i = 1, ..., n. These parameters are the solutions to the following

population optimization problem

(θ10, {α1i0}n
i=1) = arg max

θ1,{α1i}n
i=1

E

[
1

nT

n∑
i=1

T∑
t=1

g1(wit; θ10, α1i0)

]
, (6)

4Gayle and Viauroux (2005) propose a semiparametric estimator for sample selection models with

predetermined explanatory variables. Their estimator does not require normality in the selection equation,

but imposes restrictions on the individual effects of this equation. Moreover, the parameter estimation

is based on a three-step sieve method, which is computationally more difficult to implement.
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where g1(·) is some suitable criterion function, and wit (t = 1, ..., T ; i = 1, ..., n) are

the data observations including the covariates and endogenous variables, i.e., wit =

(xit, zit, dit, yit).
5 FE estimators for model parameters can be constructed by solving the

corresponding sample analog

α̂1i(θ1) = arg max
α1i

1

T

T∑
t=1

g1(wit; θ1, α1i), θ̂1 = arg max
θ1

1

nT

n∑
i=1

T∑
t=1

g1(wit; θ1, α̂1i(θ1)), (7)

where we first concentrate out the individual effects and then solve for θ1.

Neyman and Scott (1948) show that nonlinear and dynamic FE estimators can be

severely biased in short panels due to the incidental parameters problem. This problem

arises because the unobserved individual effects are replaced by sample estimates, α̂1i(θ1).

Since estimation of model parameters cannot be separated from the individual effects

in these models, the estimation error of the individual effects contaminates the other

parameter estimates. To see this, note that from the usual M-estimation properties, for

n →∞ with T fixed,

θ̂1
p−→ θ1T = arg min

θ1

lim
n→∞

1

nT

n∑
i=1

T∑
t=1

g1(wit; θ1, α̂1i(θ1)). (8)

The probability limit θ1T 6= θ10 generally since α̂1i(θ10) 6= α1i0; but θ1T → θ10 as T →∞,

since α̂1i(θ10) → α1i0. For smooth moment conditions, θ1T = θ10+
B1

T
+O

(
1

T 2

)
for some B1.

Then, by asymptotic normality of M-estimators,
√

nT (θ̂1 − θ1T ) → N(0, Σ1) as n → ∞,

and therefore

√
nT (θ̂1 − θ10) =

√
nT (θ̂1 − θ1T ) +

√
nT
B1

T
+ Op

(√
n

T 3

)
. (9)

If T grows at the same rate as n the FE estimator, while consistent, has a limiting

distribution which is not centered at the true parameter value. This large-T version of

the incidental parameters problem invalidates inference based on the standard asymptotic

distribution of the FE estimator.

Large-T bias corrections have been recently developed for nonlinear and dynamic

FE estimators. After deriving an analytical expression for the leading term of the bias,

B1, these corrections remove an estimate of B1 from the original FE estimator. This

5To simplify the exposition we start the analysis with the case where wit are independent across i and

t. The results are extended below to cases where there might be serial correlation across t.
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correction reduces the order of the bias to O(T−2), and produces an estimator that has an

asymptotic distribution centered at the true parameter value under asymptotic sequences

where n = o(T 3); see, e.g., Hahn and Kuersteiner (2002) and Hahn and Newey (2004).

Numerical evidence suggests that these corrections remove most of the bias even in short

panels.

3.1 Two-step analytical bias correction.

We now extend the large-T bias correction methods to two-step FE estimators where

the presence of endogeneity or sample selection corrupts the orthogonality of the moment

conditions of the OLS or ML estimators. This orthogonality can be reestablished, however,

via the inclusion of the appropriate control function. We consider models where the

parameters are identified by population modified problems of the form

(θ20, {α2i0}n
i=1) = arg max

θ2,{α2i}n
i=1

E

[
1

nT

n∑
i=1

T∑
t=1

g2(wit, λit; θ20, α2i0)

]
, (10)

where λit is the control function, and g2(·) is some appropriate objective function, e.g.,

least squares, likelihood, or GMM criterion function. The control function has a para-

metric form, that is λit := λ(wit, θ10, α1i0) where λ(·) is a known function, but generally

depends on the unknown parameters θ10 and α1i0. These parameters are estimated in a

first stage from a (possibly) nonlinear panel model with parameters identified from some

optimization problem as in (6).

FE estimates of the second stage parameters are obtained via the following optimiza-

tion problem in the sample

α̂2i(θ2) = arg max
α2i

1

T

T∑
t=1

g2(wit, λ̃it; θ2, α2i), θ̂2 = arg max
θ2

1

nT

n∑
i=1

T∑
t=1

g2(wit, λ̃it; θ2, α̂2i(θ2)),

(11)

where λ̃it = λ(wit; θ̃1, α̂1i(θ̃1)). To simplify the exposition and focus on the new sources

of incidental parameters bias, we assume that θ̃1 = θ10 in the following discussion. In

general it suffices that θ̃1 = θ10 +Op(1/
√

nT ), which holds if θ̃1 is a large-T bias corrected

estimator of θ10 and n = o(T 3). We show that the resulting FE estimators are biased if

the control function is nonlinear in the first stage individual effects or the second stage is

nonlinear. An additional round of bias correction is therefore needed in the second step.
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The existing correction methods for one-step procedures are generally not valid to carry

out the bias correction in the second stage. Some of the explanators are FE estimates that

depend on the first-stage individual effects, introducing additional incidental parameters

bias. The issue here is similar to the two-step variance estimation (see, for example,

Newey 1984). Thus, as n →∞, we have

θ̂2
p−→ θ2T = arg min

θ2

lim
n→∞

1

nT

n∑
i=1

T∑
t=1

g2(wit, , λ̃it; θ2, α̂2i(θ2)). (12)

Here θ2T 6= θ20, not only because α̂2i(θ20) 6= α2i0, but also because λ̃it 6= λit. To see the

second inequality, note that λit(wit; θ10, α̂1i(θ10)) 6= λit(wit; θ10, α1i0) since α̂1i(θ10) 6= α1i0.

Moreover, the additional source of the bias is not related to the estimation of θ10, since

we are evaluating this parameter at its true value. As a result of the previous analysis,

a bias expression similar to B1 would be not valid because it only would account for the

bias coming from the estimation of the α2i0’s .

We derive the general expression for the bias of the second-step FE estimator using

stochastic expansions that explicitly account for the randomness introduced by the es-

timation of the control function. To describe these expansions we first introduce some

additional notation. Let

u2it(θ, α) :=
∂g2(wit, λit; θ, α)

∂θ
, v2it(θ, α) :=

∂g2(wit, λit; θ, α)

∂α
, (13)

and additional subscripts denote partial derivatives, e.g., u2itθ(θ, α) := ∂u2it(θ, α)/∂θ′. For

notational convenience the arguments are omitted when the expressions are evaluated at

the true parameter value, i.e., v2it := v2it(θ20, α2i0).

Using an asymptotic expansion for the two-step FE estimator (see Appendix for details

of the derivation and additional notation) we have, as n, T →∞

T (θ̂2 − θ20)
p−→ T (θ2T − θ20) = −J −1

2 b2 := B2. (14)

Here, J2 = En [ET [u2itθ]− ET [u2itα] ET [v2itθ] /ET [v2itα]] is the limit of the Jacobian of

the estimating equation for θ2, where ET [fit] := limT→∞
∑T

t=1 fit/T , for any function

fit := f(wit), and En [fi] := limn→∞
∑n

i=1 fi/n, for any function fi = ET [fit]; and b2, the

bias of this estimating equation, takes the form

b2 = En

{
ET [u2itαψ2it] + ET [u2itα] β2i +

1

2
σ2

2iET [u2itαα] + ET [u2itλαλitα] σ12i

+ET

[
u2itλ

(
λitα(ψ1it + β1i) +

1

2
λitαασ2

1i

)]
+

1

2
ET

[
u2itλλλ

2
itα

]
σ2

1i

}
. (15)
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Thus, the bias of the two-step estimating equation, in addition to the three components

of a one-step estimating equation (first three terms) derived by Hahn and Newey (2004),

has three new components arising from the FE estimation of the control function and the

nonlinearity of the second stage. Recall that the first terms arise from the randomness

of α̂2i if the primary equation is nonlinear in these individual effects. The new terms

come from the correlation between the estimators of the individual effects in the first and

second stages σ12i (fourth term), arising because both stages use the same individuals to

estimate these effects; the asymptotic bias of the FE estimator of the control function

λ̃it (fifth term), coming from the nonlinearity of this function in the first stage individual

effects; and the nonlinearity of the second stage in the control function (last term). In

the panel sample selection model, for example, the only term of the bias that does not

vanish is the fifth one, since the primary equation is linear in the individual effects and

control function, but the control function, which is the inverse Mills ratio, is nonlinear in

the individual effects of the selection equation.

The analytical expression for B2 can be used to construct analytical (closed form) bias

corrected estimators for the second stage parameters and other functions of parameters

and individual effects, such as marginal effects. A bias corrected estimator for model

parameters can be formed as

θ̃2 = θ̂2 − B̂2

T
, (16)

where B̂2 is an estimator of B2 constructed using sample analogs of the components of J2

and b2. Moreover, since B̂2 generally depends on θ20, we have that B̂2 = B̂2(θ̂2). Iterated

bias corrections can be constructed similarly to those for one-step estimators by solving

θ̃∞2 = θ̂2 − B̂2(θ̃
∞
2 )/T . Note that the analytical expression for the bias in (14) assumes

that the control function is constructed using bias corrected estimators of the first stage

parameters θ10.
6

6A similar expression for the bias can be derived for the two-step estimator that uses a control function

constructed from uncorrected first stage estimates. Our approach has the advantages that it yields bias

corrected estimates of both the control and primary equations, and that the bias expressions in the second

stage involve fewer terms.
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3.2 Two-step Jackknife bias correction.

An alternative bias correction method that does not require the analytical expression

for the bias is based on leave-one-observation-out Jackknife. This procedure obtains T

different FE estimators θ̂
(t)
2 , t = 1, ..., T ; where each θ̂

(t)
2 is computed excluding the t-th

observation for each individual. The Jackknife bias corrected estimator then takes the

form

θ̃J
2 := θ̂2 − T − 1

T

(
1

T

T∑
t=1

θ̂
(t)
2 − θ̂2

)
, (17)

where θ̂2 is the uncorrected (in both steps) two-step FE estimator of θ20. Following Hahn

and Newey (2004), we can show that the second term automatically removes the leading

term of the bias of θ̂2 as n, T → ∞. This method, however, is not directly applicable to

models with predetermined regressors, and can be computationally very intensive when

the model is highly nonlinear and T is moderately large.

3.3 Dynamic Models

We now derive the analytical expression of the bias for dynamic FE estimators. We con-

sider models where the dynamics are fully captured by lags of the endogenous variables

and the explanatory variables can be serially correlated. Moreover, we only assume that

the explanatory variables are predetermined, allowing for feedback from the dependent

variables to the explanators. This is an important departure from previous modeling

approaches in linear and nonlinear panel data estimators that typically assume the ex-

planatory variables to be strictly exogenous.7 These models include, for example, panel

selection models with predetermined regressors and individual effects, and dynamic con-

ditional maximum likelihood estimators with individual effects.

The bias expressions are similar to the fully static case, but include additional terms

due to the serial correlation of the observations (Hurwicz-type terms) that capture all

the possible dynamic feedbacks from the dependent variables to the regressors. Let

ĒT [fitgis] :=
∑∞

j=−∞ ET [fitgi,t−j], for any functions fit = f(wit) and gis = g(wis). Then,

standard higher-order asymptotic expansions give the following expression for the bias

7See Wooldridge (2001), Honoré and Lewbel (2002), and Arellano and Carrasco (2003) for examples

of one-step panel data estimators with predetermined regressors.
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of the estimating equation (see Appendix for details of the derivation and additional

notation), as n, T →∞,

b̄2i = ĒT [u2itαψ2is] + ET [u2itα] β̄2i +
1

2
σ̄2

2iET [u2itαα] + ET [u2itλαλitα] σ̄12i

+ĒT [u2itλλitαψ1is] + ET

[
u2itλ

(
λitαβ̄1i +

1

2
λitαασ̄2

1i

)]
+

1

2
ET

[
u2itλλλ

2
itα

]
σ̄2

1i,

(18)

and

B̄2 := −J −1
2 b̄2, (19)

for the bias of the two-step FE estimator. Here b̄2 := En

[
b̄2i

]
, and the limit Jacobian J2

is the same as for the static estimator. This expression generalizes the bias formula for FE

estimators in dynamic nonlinear panel models derived in Hahn and Kuersteiner (2003) to

two-step estimators. In models defined by conditional moment restrictions, such as the

examples in Section 2, the terms involving the spectral expectation ĒT can be replaced

for ẼT if the regressors are predetermined, where ẼT [fkitψlis] =
∑∞

j=0 ET [fkitψli,t−j] and

ẼT [ψkitψlis] = ET [ψkitψlit] for k, l ∈ {1, 2}; whereas ĒT can be replaced by ET everywhere

if the model is fully static with exogenous regressors, see equation (15).

4 Asymptotic Theory

To guarantee the validity of the higher-order expansions used to derive the expression of

the bias and to establish the validity of the bias corrections in large samples, we impose

the following conditions:

Condition 1 (Sampling) (i) n, T → ∞ such that T = O(n). (ii) For each i, wi :=

{wit}t=1,2,... is a stationary mixing sequence. Let Ai
t = σ(wit, wi,t−1, ...), Di

t = σ(wit, wi,t+1, ...),

and ai(m) = supt supA∈Ai
t,D∈Di

t+m
|P (A ∩B)− P (A)P (D)|. Then, supi |ai(m)| ≤ Cam for

some a such that 0 < a < 1 and some C > 0. (iii) {wi}i=1,2,... are independent across i.

Let J1 := En [ET [u1itθ]− ET [u1itα] ET [v1itθ] /ET [v1itα]], Ω̄1 := En

[
ĒT [U ′

1itU1is]
]
, U1it :=

u1it + ET [u1itα] ψ1it, ψ1it := −v1it/ET [v1itα], and σ̄2
1i := ĒT [ψ1itψ1is]. Here v1it(θ, α) :=

∂g1(wit; θ, α)/∂α, u1it(θ, α) := ∂g1(wit; θ, α)/∂θ, additional subscripts denote partial deriva-

tives, and the arguments are omitted when the expressions are evaluated at the true

parameter value.
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Condition 2 (First Stage) (i) For each i and n, (θ10, α1i0) ∈ int Γ1, and the pa-

rameter space Γ1 is a convex, compact subset of <p1. (ii) For each η > 0 and n,

infi |g1i(θ10, α1i0) − sup{(θ1,α1)∈Γ1:|(θ1,α1)−(θ10,α1i0)|>η} g1i(θ1, α1)
∣∣ > 0, where g1i(θ1, α1) :=

ET [g1(wit; θ1, α1)]. (iii) Let ν = (ν1, ..., νp1) be a vector of non-negative integers, |ν| =
∑p1

j=1 νj, and ∇νg1(wit; γ) = ∂|ν|g1(wit; γ)/(∂γν1
1 ...γ

νp1
p1 ), with γ := (θ1, α1); then, there ex-

ists a function M1(wit), such that |∇νg1(wit; γ1)−∇νg1(wit; γ2)| ≤ M1(wit)|γ1−γ2| for all

γ1, γ2 ∈ Γ1; supγ∈Γ1
|∇νg1(wit; γ)| ≤ M1(wit) for |ν| ≤ 5, and supi ET [|M1(wit)|10q1+12+υ] <

∞ for some integer q1 ≥ p1/2 + 2 and some υ > 0. (iv) J1 is negative definite and finite.

(v) Ω̄1 is positive definite and finite. (vii) For each n, 0 < infi σ̄
2
1i and supi σ̄

2
1i < ∞.

These conditions, extracted from Hahn and Kuersteiner (2003), guarantee the validity

of the first stage bias correction for general one-step dynamic FE M-estimators. The

stationarity assumption is restrictive as it rules out, for example, time dummies and

other deterministic trend components as explanatory variables. How to extend the large-

T bias corrections to allow for non-stationary variables is an open question beyond the

scope of this paper. In our empirical example presented in Section 6, however, we check

that the results are robust to the exclusion of the time dummies.

Let

v̂1it(θ1) := v1it(θ1, α̂1i(θ1)), û1it(θ1) := u1it(θ1, α̂1i(θ1)), (20)

and additional subscripts denote partial derivatives, e.g., v̂1itα(θ1) := v1itα(θ1, α̂1i(θ1)).

Let

ψ̂1it(θ1) := −v̂1it(θ1)/ÊT [v1itα(θ1)] , ˆ̄σ2
1i(θ1) := ˆ̄ET,m

[
ψ̂1it(θ1)ψ̂1is(θ1)

]
, (21)

where ÊT [fit] :=
∑T

t=1 fit/T and ˆ̄ET,m[fitgis] :=
∑m

j=−m

∑min(T,T+j)
t=max(1,j) fitgi,t−j/(T − j), for

any functions fit = f(wit) and git = g(wit). The parameter m is a bandwidth parameter

that needs to be chosen such that m/T 1/2 → ∞ as T → ∞; see Hahn and Kuersteiner

(2003). ψ̂1it(θ1) and ˆ̄σ2
1i(θ1) are estimators of the influence function and asymptotic vari-

ance of α̂1i(θ1) as T grows, respectively. Let

ˆ̄β1i(θ1) := −ÊT [v1itα(θ1)]
−1

{
ˆ̄ET,m[v̂1itα(θ1)ψ̂1is(θ1)] + ÊT [v̂1itαα(θ1)] ˆ̄σ2

1i(θ1)/2
}

,

Ĵ1i(θ1) := ÊT [û1itθ(θ1)]− ÊT [û1itα(θ1)] ÊT [v̂1itθ(θ1)] /ÊT [v̂1itα(θ1)] ,

ˆ̄b1i(θ1) := ˆ̄ET,m

[
û1itα(θ1)ψ̂1is(θ1)

]
+ ÊT [û1itα(θ1)]

ˆ̄βi(θ1) + ÊT [û1itαα(θ1)] ˆ̄σ2
1i(θ1)/2.

(22)

11



Here, ˆ̄β1i(θ1) is an estimator of the higher-order asymptotic bias of α̂1i(θ1) from a stochas-

tic expansion as T grows; whereas Ĵ1i(θ1) and ˆ̄b1i(θ1) are estimators of the Jacobian and

the asymptotic bias of the estimating equation of θ1 for individual i. A bias corrected

estimator of the first-step FE estimator can be formed as

θ̃1 = θ̂1 − ˆ̄B1(θ̂1)/T, (23)

where ˆ̄B1(θ1) := −Ên

[
Ĵ1i(θ1)

]−1

Ên

[
ˆ̄b1i(θ1)

]
is an estimator of the bias of θ̂1, where

Ên [fi] :=
∑n

i=1 fi/n for any function fi = ÊT [fit]; and θ̂1 is the FE estimator of θ10.

Lemma 1 Assume that Conditions 1 and 2 hold, and m → ∞ such that m/T 1/2 → 0.

Then, we have

√
nT

(
θ̃1 − θ10

)
= ϕ1 +

1√
nT

R1
d→ N (0,J −1

1 Ω̄1J −1
1 ), (24)

where ϕ1 :=
∑n

i=1

∑T
t=1 ϕ1it/

√
nT , ϕ1it := −J −1

1 U1it, and R1 = op(
√

nT ). Let α̃1i :=

α̂1i(θ̃1), then

α̃1i = α1i0 +
1√
T

ψ1i − 1√
nT

ET [v1itα]−1 ET [v1itθ] ϕ1 +
1

T
β̄1i +

1

T 3/2
R1i, (25)

where ψ1i :=
∑T

t=1 ψ1it/
√

T , β̄1i := −ET [v1itα]−1 {
ĒT [v1itαψ1is] + σ̄2

1iET [v1itαα] /2
}
, and

max1≤i≤n R1i = op(
√

T ).

Proof. See appendix.

Remark 1 Note that for static models with exogenous regressors we can set m = 0. For

conditional moments models with predetermined regressors we can replace ˆ̄ET,m for ˆ̃ET,m,

where ˆ̃ET,m[fitψ1is] :=
∑m

j=0

∑T
t=j+1 fitψ1i,t−j/(T − j) and ˆ̃ET,m[ψ1itψ1is] := ÊT [ψ2

1it].

Condition 3 (Control function) Let ν = (ν1, ..., νp2) be a vector of non-negative inte-

gers, and λit(γ) = λ(wit; γ) be the control function , with γ = (θ1, α1). There exists a

function Mλ(wit), such that |∇νλit(γ1)−∇νλit(γ2)| ≤ Mλ(wit)|γ1−γ2| for all γ1, γ2 ∈ Γ1;

supγ∈Γ1
|∇νλit(γ)| ≤ Mλ(wit) for |ν| ≤ 5, and supi ET [|Mλ(wit)|10q1+12+υ] < ∞ for some

integer q1 ≥ p1/2 + 2 and some υ > 0.

This condition guarantees the existence of higher-order expansions for the fixed effects

estimators of the control functions in a neighborhood of their true values, and the uniform
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convergence of the remainder terms in these expansions. In most applications the con-

trol functions are generalized residuals, see Gourieroux, Monfort, Renault, and Trognon

(1987), and this condition follows from Condition 2.

Lemma 2 Assume that Conditions 1, 2, and 3 hold, and m →∞ such that m/T 1/2 → 0.

Then, we have

λ̃it = λit + ψ̃λ
it/
√

T + β̄λ
it/T + Rλ

it/T
3/2, (26)

where λ̃it := λ(wit; θ̃1, α̂1i(θ̃1)), ψ̃λ
it := λitαψ1i + J λ

it ϕ1/
√

n = oup

(
T 1/10+υ

)
, J λ

it := λitθ −
ET [v1itα]−1 ET [v1itθ] λitα, β̄λ

it := λitαβ̄1i +λitααψ2
1i/2 = oup

(
T 2/10+2υ

)
, and max1≤i≤n Rλ

it =

op(
√

T ) Pw-almost everywhere, for some 0 < υ < (100q1 + 120)−1.

Proof. See Appendix.

Let J2 := En [ET [u2itθ]− ET [u2itα] ET [v2itθ] /ET [v2itα]], Ω̄2 := En

[
ĒT [U ′

2itU2is]
]
, U2it :=

u2it+ET [u2itα] ψ2it+ET [u2itλλitα] ψ1it+ET

[
u2itλJ λ

it

]
ϕ1it, ψ2it := −{v2it + ET [v2itλλitα] ψ1it

+ET

[
v2itλJ λ

it

]
ϕ1it/

√
n
}

/ET [v2itα], and σ̄2
2i := ĒT [ψ2itψ2is].

Condition 4 (Second Stage) (i) For each i and n, (θ20, α2i0) ∈ int Γ2, and the pa-

rameter space Γ2 is a convex, compact subset of <p2. (ii) For each η > 0 and n,

infi |g2i(θ20, α2i0) − sup{(θ2,α2)∈Γ2:|(θ2,α2)−(θ20,α2i0)|>η} g2i(θ2, α2)
∣∣ > 0, where g2i(θ2, α2) :=

ET [g2(wit, λit; θ2, α2)]. (iii) Let ν = (νλ, ν1, ..., νp2) be a vector of non-negative integers

and γ := (θ2, α2); then, there exists a function M2(wit, λit), such that |∇νg2(wit, λit; γ1)

−∇νg2(wit, λit; γ2)| ≤ M2(wit, λit)|γ1− γ2| for all γ1, γ2 ∈ Γ2; supγ∈Γ2
|∇νg2(wit, λit; γ)| ≤

M2(wit, λit) for |ν| ≤ 5, and supi ET [|M2(wit, λit)|10q2+12+υ] < ∞ for some integer q2 ≥
p2/2+2 and some υ > 0. (iv) J2 is negative definite and finite. (v) Ω̄2 is positive definite

and finite. (vii) For each n, 0 < infi σ̄
2
2i and supi σ̄

2
2i < ∞.

These conditions guarantee the validity of the second stage bias correction extending

the conditions in Hahn and Kuersteiner (2003) to two-step dynamic FE M-estimators.

Condition 4 guarantees parameter identification based on time series variation, but it

does not explicitly imposes exclusion restrictions in the first and second stages. Parameter

identification can be achieved, in principle, by non-linearities in the control and primary

equations, or by non-linearities in the control function. To avoid such an identification

scheme an exclusion restriction should be imposed in the primary equation for each source

of time varying endogeneity.

13



Theorem 1 Under Conditions 1, 2, 3, and 4, we have

√
nT

(
θ̂2 − θ20

)
d→ N (√

ρ B̄2,J −1
2 Ω̄2J −1

2

)
, (27)

where ρ = limn,T→∞ n/T and B̄2 := −J −1
2 b̄2. The general expression for b̄2 is given in

(19) and simplifies to the expression in (14) for static models with exogenous regressors.

Proof. See Appendix.

Let

λ̃itα := λα(wit; θ̃1, α̂1i(θ̃1)), λ̃itθ := λθ(wit; θ̃1, α̂1i(θ̃1)), ṽ2it(θ2, α2) := v2(wit, λ̃it; θ2, α2),

ũ2it(θ2, α2) := u2(wit, λ̃it; θ2, α2), ˆ̃v2it(θ2) := ṽ2it(θ2, α̂2i(θ2)), ˆ̃u2it(θ2) := ũ2it(θ2, α̂2i(θ2)),

(28)

and additional subscripts denote partial derivatives. Let

ψ̂2it(θ2) := −
{

ˆ̃v2it(θ2) + ÊT

[
ˆ̃v2itλ(θ2)λ̃itα

]
ψ̂1it(θ̃1) + ÊT

[
ˆ̃v2itλ(θ2)J̃ λ

it

]
ϕ̃1it

}
/ÊT [ṽ2itα(θ2)] ,

J̃ λ
it := λ̃itθ − ÊT

[
v̂1itα

(
θ̃1

)]−1

ÊT

[
v̂1itθ

(
θ̃1

)]
λ̃itα,

ϕ̃1it := −Ên

[
Ĵ1i

(
θ̃1

)]−1 {
û1it

(
θ̃1

)
+ ÊT

[
û1itα

(
θ̃1

)]
ψ̂1it

(
θ̃1

)}
,

ˆ̄σ2
2i(θ2) := ˆ̄ET,m

[
ψ̂2it(θ2)ψ̂2is(θ2)

]
, ˆ̄σ2

12i(θ2) := ˆ̄ET,m

[
ψ̂2it(θ2)ψ̂1is(θ̃1)

]
. (29)

Here, ψ̂2it(θ2) and ˆ̄σ2
2i(θ2) are estimators of the influence function and asymptotic variance

of α̂2i(θ2) as T grows, and ˆ̄σ2
12i(θ2) is an estimator of the asymptotic covariance between

α̂1i(θ̃1) and α̂2i(θ2) as T grows. Let

ˆ̄β2i(θ2) := −ÊT [v2itα(θ2)]
−1

{
ˆ̄ET,m[ˆ̃v2itα(θ2)ψ̂2is(θ2)] + ÊT [v̂2itαα(θ2)] ˆ̄σ2

2i(θ2)/2

+ ˆ̄ET,m

[
ˆ̃v2itλ(θ2)λ̃itαψ̂1is(θ̃1)

]
+ ÊT

[
ˆ̃v2itλ(θ2)

(
λ̃itα

ˆ̄β1(θ̃1) + λ̃itαα ˆ̄σ2
1i(θ̃1)

)]

+ ÊT

[
ˆ̃v2itλα(θ2)λ̃itα

]
ˆ̄σ12i(θ2) + ÊT

[
ˆ̃v2itλλ(θ2)λ̃

2
itα

]
ˆ̄σ2

1i(θ̃1)/2
}

,

Ĵ2i(θ2) := ÊT

[
ˆ̃u2itθ(θ2)

]
− ÊT

[
ˆ̃u2itα(θ2)

]
ÊT

[
ˆ̃v2itθ(θ2)

]
/ÊT

[
ˆ̃v2itα(θ2)

]
,

ˆ̄b2i(θ2) := ˆ̄ET,m

[
ˆ̃u2itα(θ2)ψ̂2is(θ2)

]
+ ÊT

[
ˆ̃u2itα(θ2)

]
ˆ̄β2i(θ2) + ÊT

[
ˆ̃u2itαα(θ2)

]
ˆ̄σ2

2i(θ2)/2

+ ˆ̄ET,m

[
ˆ̃u2itλ(θ2)λ̃itαψ̂1is(θ̃1)

]
+ ÊT

[
ˆ̃u2itλ(θ2)

(
λ̃itα

ˆ̄β1(θ̃1) + λ̃itαα ˆ̄σ2
1i(θ̃1)/2

)]

+ÊT

[
ˆ̃u2itλα(θ2)λ̃itα

]
ˆ̄σ2

12i(θ2) + ÊT

[
ˆ̃u2itλλ(θ2)λ̃

2
itα

]
ˆ̄σ2

1i(θ̃1)/2. (30)
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Here, ˆ̄β2i(θ1) is an estimator of the higher-order asymptotic bias of α̂2i(θ2) from a stochas-

tic expansion as T grows, which accounts for the estimation error of the control function;

whereas Ĵ2i(θ2) and ˆ̄b2i(θ2) are estimators of the Jacobian and asymptotic bias of the

estimating equation of θ2 for individual i.

A bias corrected estimator of the two-step FE estimator can be formed as

θ̃2 = θ̂2 − ˆ̄B2(θ̂2)/T, (31)

where ˆ̄B2(θ2) := −Ên

[
Ĵ2i(θ2)

]−1

Ên

[
ˆ̄b2(θ2)

]
is an estimator of the bias of θ̂2, and θ̂2 is

the two-step FE estimator of θ20 that uses λ̃it as the control function. As for one-step esti-

mators, iterated bias corrections can also be formed by solving θ̃∞2 = θ̂2− ˆ̄B2(θ̃
∞
2 )/T , and

score-corrected estimators can be obtained by solving the modified first order condition:

Ên

[
ÊT

[
ˆ̃u2it(θ̃

sc
2 )

]
− 1

T
ˆ̄b2i(θ̃

sc
2 )

]
= 0. (32)

Theorem 2 Assume that Conditions 1, 2, 3, and 4 hold, and m →∞ such that m/T 1/2 →
0. Then, we have √

nT
(
θ̃2 − θ20

)
d→ N (0,J −1

2 Ω̄2J −1
2 ). (33)

Proof. See Appendix.

Remark 2 The sandwich form of the asymptotic variance indicates that the two-step

estimator is not efficient as in the cross sectional case, see Rivers and Vuong (1988). A

consistent estimator for this variance can be obtained using cross sectional sample averages

of Ĵ2i(θ̃2) and ˆ̄Ω2i(θ̃2), where

ˆ̄Ω2i(θ2) = ˆ̄ET,m

[
Û2it(θ2)Û2is(θ2)

′
]
, (34)

with Û2it(θ2) = ˆ̃u2it(θ2)+ET

[
ˆ̃u2itα(θ2)

]
ψ̂2it(θ2)+ET

[
ˆ̃u2itλ(θ2)λ̃itα

]
ψ̃1it+ET

[
ˆ̃u2itλ(θ2)J̃ λ

it

]
ϕ̃1it

and ψ̃1it = ψ̂1it(θ̃1).

Remark 3 Note that, as in the first stage, if the model is fully static we can set m =

0. For conditional moments models with predetermined regressors we can replace ˆ̄ET,m

for ˆ̃ET,m, where ˆ̃ET,m[fkitψlis] :=
∑m

j=0

∑T
t=j+1 fkitψli,t−j/(T − j) and ˆ̃ET,m[ψkitψlis] :=

ÊT [ψkitψlit] for k, l ∈ {1, 2}.
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5 Monte Carlo Experiments

This section reports evidence on the finite sample behavior of two-step FE estimators

for static and dynamic models. We examine the finite sample properties of uncorrected

and bias-corrected estimators in terms of bias and inference accuracy of their asymptotic

distributions. The results are based on 1000 replications, and the designs correspond to

a static panel sample selection model with probit selection rule and exogenous regressors,

and a dynamic Tobit model with an endogenous explanatory variable.

5.1 Static Panel Sample Selection Model

The model design is

dit = 1 {x1itβ1 + x2itβ2 + α1i − ε1it > 0} , (35)

yit = dit × (x1itθ + α2i + ε2it), (i = 1, ..., n; t = 1, ..., T ) (36)

where θ = 1; β1 = β2 = 1; x1it and x2it are independent N (−1, .5) variables; α1i =

α2i = 2 +
∑T

t=1(x1it + 1)/
√

T + ξi/
√

2, with ξi an independent N (0, 1) variable; ε1it

and ε2it are jointly distributed as a standard bivariate normal with correlation ρ = .6.

All data are generated i.i.d. across individuals and over time. This design implies that

Pr {dit = 1} ≈ .5, so that approximately 50% of the sample is used to estimate θ in the

second step. We generate panel data sets with n = 100 individuals and three different

numbers of time periods T : 6, 8 and 12.

In this panel version of Heckman sample selection model the control function corre-

sponds to the inverse mills ratio, that is λit = φ(x1itβ1+x2itβ2+α1i)/Φ(x1itβ1+x2itβ2+α1i),

where φ(·) and Φ(·) denote the pdf and cdf of the standard normal distribution, respec-

tively. The second stage is estimated by OLS including an estimate of the control function

λ̃it. Concentrating-out the second stage individual effects and the control function, the

uncorrected estimator of θ takes the form

θ̂ =
µ̂x1yµ̂λ̃λ̃ − µ̂x1λ̃µ̂λ̃y

µ̂x1x1µ̂λ̃λ̃ − µ̂2
x1λ̃

, (37)

where µ̂wv =
∑n

i=1

∑T
t=1 ditw̄itv̄it, and the bars denote that the variables are in devia-

tions with respect to their individual mean in the observed sample; e.g., ¯̃λit := λ̃it −∑T
t=1 ditλ̃it/

∑T
t=1 dit. From this expression we see that, after the fixed effects transforma-

tion, the only source of bias is the nonlinearity of the estimated control function in the
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first stage individual effects. Thus, individual differences remove the individual effects of

the primary equation α2i; but they do not completely eliminate the individual effects of

the selection equation that enter the primary equation through the control function since

λ̃it is a nonlinear function of these individual effects, i.e., ¯̃λit still depends on α1i. Our

general bias correction procedure in this case is equivalent to removing the bias from each

of the FE averages involving the control function, that is from µ̂λ̃λ̃, µ̂x1λ̃, and µ̂λ̃y.

Throughout the tables, SD is the standard deviation of the estimator; p̂; # denotes a

rejection frequency with # specifying the nominal value; SE/SD is the ratio of the average

standard error to standard deviation; and MAE denotes median absolute error.8 BC1 and

BC2 correspond to the two-step version of the analytical bias-corrected estimators of Hahn

and Newey (2004) based on maximum likelihood setting and general estimating equations,

respectively. BC3 is the two-step version of the bias-corrected estimator proposed in

Fernandez-Val (2005), which replaces observed quantities for expected quantities in the

expression of the bias. JACK is the leave-one-period-out Jackknife-type estimator.

Note that due to the binary nature of the dependent variable in the selection equation

the observations which have the same value for the dependent variable for each period

are automatically removed when estimating the first step. In the second step we retain

the observations for which the dependent variable in the selection equation is always one,

and we assign a value of zero for their correction terms, i.e., their ML estimate.

Table 1 gives the results for the estimators of the probit parameters of the first stage,

β1 and β2. These results are qualitatively similar to previous numerical studies; see,

e.g., Hahn and Newey (2004) and Fernandez-Val (2005).9 The uncorrected FE estimator

MLE is severely biased, and the large-T bias corrections remove most of the incidental

parameters bias for panels with even T = 6. This is especially true with the BC3

refinement.

Table 2 presents the finite sample properties for the FE estimators of θ in the second

stage. OLS denotes a least squares estimator in the observed sample that ignores sample

selection and is therefore inconsistent. H − 1 denotes the unfeasible OLS estimator that

controls for selection by using the true (unobserved) inverse mills ratio, whereas H −
MLE is the feasible version of H − 1 that uses an estimate of the inverse mills ratio

8We use median absolute error instead of root mean squared error as an overall measure of goodness

of fit because it is less sensitive to outliers.
9These studies, however, use a different design and include only one regressor.
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(evaluated at uncorrected estimates of the probit parameters). H − BC1, H − BC2,

and H − BC3 in addition to using estimates of the control function evaluated at bias-

corrected estimates of the probit parameters, perform another round of bias-correction in

the second stage. Uncorrected FE estimators have small biases, about 7%, 4% and 2% for

6, 8, and 12 time periods, respectively, which are reduced by the jackknife and analytical

large-T bias corrections. Rejection frequencies are higher than their nominal levels due

to underestimation of dispersion.10 The corrected estimators have similar MAE to the

uncorrected estimators because the corrections in this case increase dispersion.

Table 3 reports the ratio of estimators to the truth for the coefficient of the control

function in the second stage. This is an important parameter as a significance test for

this coefficient can be used to assess if there is endogenous sample selection. The results

here show important biases towards zero in uncorrected FE estimators. Jackknife and

analytical bias corrected estimators remove most of the bias and bring down the rejection

frequencies closer to their nominal values, although the tests are still oversized due to the

underestimation of the dispersion.

Some intuition for these numerical results can be obtained through a simple example.

Specifically, suppose that αi = α ∀i, that is the individual effects are the same for all the

individuals. Fernandez-Val (2005) finds that in this case the biases for all the parameters

in the first stage probit are scalar multiples of the true value of the parameters, and the

limit probit index is also proportional to the true index. Since the inverse mills ratio is

either close to zero or close to linear in the selected sample, the estimated control function

is approximately proportional to the true inverse mills ratios. This is consistent with the

small bias found for θ and the significant bias for ρ.

10The expressions used to compute the standard errors are robust to heteroskedasticity and account

for estimated regressors using the method in Lee, Maddala, and Trost (1980). In results not reported,

we find that the finite sample adjustments of MacKinnon and White (1985) to the heteroskedasticity

corrections give rise to conservative standard errors.
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5.2 Dynamic CML Tobit Model

The model design is

dit = xitβ + α1i + ε1it, (38)

y∗i0 = di0θ1 + α2i + ε2i0, (39)

y∗it = ditθ1 + yi,t−1θ2 + α2i + ε2it, (40)

yit = (y∗it > 0)y∗it, (i = 1, ..., n; t = 1, ..., T − 1) (41)

where β = 1; θ1 = θ2 = 1; xit is a N (0, 1) variable; α1i = α2i =
∑T−1

t=0 xit/
√

T ; ε1it and

ε2it are jointly distributed as a bivariate normal with correlation ρ = .6 and common

variances σ2
ε = 1 + (T − 1)ρ2/T .11 All data are generated i.i.d. across individuals and

over time. We generate panel data sets with n = 100 individuals and three different total

time periods T : 6, 8, and 12. For the trimming parameter that determines the number

of lags used in the estimation of biases and variances, we choose a bandwidth parameter

m = 1 following Hahn and Kuersteiner (2003).

A Tobit ML estimator for the primary equation is inconsistent here due to the endo-

geneity of dit, even in the absence of dynamics and individual effects. Consistent estimates

can be obtained by generalizing the two-step procedure of Smith and Blundell (1986) and

Rivers and Vuong (1989) from cross sectional data to panel data with fixed effects and

lagged dependent variables. The control function corresponds to the reduced form equa-

tion error, λit = ε1it, and can be estimated as the residuals of a FE regression. Including

this estimated control function and fixed effects in the primary equation allows us to ac-

count for both time varying and time invariant endogeneity. A bias correction is required,

however, to reduce the incidental parameters problem due to the nonlinearity of the Tobit

estimator.

Table 4 presents the finite sample results for the coefficient of the endogenous con-

tinuous explanatory variable dit. TOBIT denotes the FE Tobit estimator that does not

account for the endogeneity of dit and is inconsistent. CMLE − 1 denotes the unfeasible

estimator that uses the true (unobserved) control function in the second stage; whereas

CMLE is the feasible version of CMLE − 1 that replaces the true ε1it’s with the OLS

FE residuals of the reduced form for dit. Overall, all the FE estimators that control for

11We choose the value of σ2
ε such that the variance of the error term in the estimating equation that

includes the estimated control function is approximately equal to 1.
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endogeneity have small finite sample biases, although the inference procedures are over-

sized due to underestimation of the dispersion.12 The results here agree with the Honoré

(1993) and Greene (2004) numerical findings of small biases in Tobit FE estimators of the

slope parameters.

Table 5 reports the results for the coefficient of the lagged dependent variable. Here,

as in the uncensored linear case, uncorrected FE estimators are biased downward even

when we use the true control function. The bias corrections remove an important part of

this bias, and have rejection probabilities closer to their nominal value, although the test

is still oversized. Table 6 shows the results for the coefficient of the control function ρ.

This coefficient captures the correlation between the error terms of the control equation

and primary equation. Here we find small biases for both uncorrected and bias-corrected

estimators, with the endogeneity tests having bigger size than their nominal level due to

the underestimation of the dispersion of the parameters.

6 Empirical Illustration: Estimating the Impact of

Union Status on Wages

To illustrate our approach we estimate a two equation model which describes the manner

in which union status affects wages where the union status decision, which is endoge-

nous to wages, is treated as a dynamic binary choice outcome. The model is similar to

that considered in Vella and Verbeek (1998), hereafter VV, noting that there the individ-

ual components are treated as random effects. In particular, we estimate the following

equations

Unionit = 1 {β1 × Unioni,t−1 + x′itβ2 + α1i + ε1it > 0} , (42)

wageit = θ1 × Unionit + x′itθ2 + α2i + ε2it, (43)

where Union is a binary variable denoting that the individual is a member of a union and

wage is the log of the individual’s hourly wage rate. The vector xit includes completed

years of schooling, log of potential experience (age - schooling - 6), and married, rural

area, health disability, region, industry, time, and occupation dummies. The model is

interesting in the context of the methods presented here as the binary union decision

12The expression for the standard errors accounts for the estimation of the regressors.
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equation has a FE and a lagged dependent variable. Also, the wage equation has a

binary endogenous regressor where the endogeneity is the result of potentially time varying

heterogeneity. This specification is similar to VV.

The sample, selected from the National Longitudinal Survey (Youth Sample), consists

of full-time young working males followed over the period 1980 to 1988. We exclude

individuals who fail to provide sufficient information for each year, are in the active

forces in any year, have negative potential experience in at least one year, their schooling

decreases in any year or increases by more than two years between two interviews, or

report too high (more than $500 per hour) or too low (less than $1 per hour) wages. The

final sample includes 545 men. The first period is used as the initial condition for the

lagged union variable.13

Table 7 reports descriptive statistics for the sample used. Union membership is based

on a question reflecting whether or not the individual had his wage set in a collective

bargaining agreement. Roughly 26 % of the sample are union members. Union and

nonunion workers have similar observed characteristics, though union workers are slightly

less educated, more likely to be married, more likely to live in the northern central region,

and less likely to live in the South. Across industries, there are relatively more union

workers in transportation, manufacturing and public administration, and fewer in trade

and business. Union membership reduces wage dispersion and has high persistence. Note

that all variables, except for the Black and Hispanic dummies, display time variation over

the period considered. The unconditional union premium is around 23 %.

Table 8 presents the estimates for the dynamic probit model of union membership.

The left panel of this Table excludes the occupational dummies while the right panel

includes them. We make this distinction to remain comparable to VV. In each panel,

the first column reports pooled probit estimates that do not account for individual time

invariant heterogeneity, the second column shows the unadjusted FE probit estimates,

while the third column presents the corresponding bias corrected estimates. The fourth

and fifth columns give the average marginal effects for each of the FE models.14 We

include time dummies in the specification to remain comparable to VV, even though they

13Although we do not use the identical data to VV the time period and the summary statistics of the

data sets are very similar.
14The bias corrected estimates reported correspond to the BC3 method. The other methods give

similar results.
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are not covered by the regularity conditions. In results not reported, however, we find

that excluding the time dummies does not have any significant effect on the estimates.15

First, note that for the estimate of primary interest in this table, the coefficient of

the lag dependent variable, the pooled probit estimator that does not account for hetero-

geneity leads to an important overstatement of the importance of the state dependence.

This result can be seen by comparing ratios of coefficients, for example with respect to

the coefficient of log experience, since the pooled and FE estimators use different normal-

izations. Comparing with the VV estimates of .611 and .632 for the left and right panels,

respectively, our unadjusted FE probit estimates are smaller with values of .354 and .318.

More interestingly, however, are the adjusted results. The bias adjusted estimates of the

lagged union variable coefficients are approximately .73 for the specification excluding the

occupational dummies, and .70 for that with the occupation dummies included. These

estimates are more similar to those reported by VV. The effects of the bias corrections

in the FE estimators are easier to interpret by looking at the estimates of the average

marginal effects. While the unadjusted estimates already reveal a substantial degree of

state dependence with average marginal effects of 4 to 5 percentage points, recalling that

the mean of the union membership variable is only 26 percent, the adjusted estimates of

state dependence are approximately 100 percent higher with estimates of 9 to 10 percent-

age points. An inspection of the other marginal effects indicates there is little difference

between the adjusted and unadjusted estimates.

Table 9 presents the estimates of the wage equation. We consider a range of estimators

depending on whether or not they account for possible endogenous time varying sample

selection and/or individual time invariant heterogeneity. We again provide estimates that

include and exclude occupational dummies in the left and right panel, respectively. We

start from a pooled OLS estimator that does not account for any source of heterogeneity

(P − OLS). Then, we control for possible sample selection using a pooled Heckman

estimator (P −Heckit). Next, we introduce a FE estimator that controls for individual

heterogeneity but not for time varying sample selection (FE). Finally, we consider a FE

Heckman estimator that controls for both time varying and time invariant heterogeneity

(FE − Heck), together with a bias corrected version of this estimator that reduces the

incidental parameters problem of FE − Heck (BC − Heck).16 The corrected estimator

15These results are available from the authors upon request.
16Note that the control function in this case is the generalized residual for the probit model.

22



employs the bias corrected estimates of Table 8 to construct the control function, and

performs an additional bias correction of the estimates of the wage equation to fix the

bias problem due to the non linearity of the control function in the estimates of the first

stage individual effects.

Pooled OLS produces estimates of the union effect of 16 and 18 percent. As in pre-

vious studies, these estimates increase when possible non random selection into unions

is taken into account, and decrease when individual heterogeneity is controlled for using

longitudinal estimators. More interestingly, the effect of endogenous selection is more

important for estimators that account also for individual heterogeneity. Thus, the union

effect raises from 15-18 percent to 24-28 percent for pooled estimators, whereas it jumps

from 10-11 percent to 30-32 percent for FE estimators. The difference is even more acute

when we correct the bias problem of the Heckman FE estimator. Thus, the corrected

estimates give a union effect of about 40 to 42 percent. These results are also in line with

VV estimates, which find a union effect of about 39 percent. For the other coefficients we

only observe significant differences between corrected and uncorrected estimates for the

coefficient of the control function.

Overall the evidence leads to a number of conclusions. First, of the parameters of

interest in this empirical investigation it appears that the ones most subject to bias are

that for the lagged dependent variable in the union membership equation, and those for

the union variable and selection correction in the wage equation. Second, the results here

confirm the finding in VV that the increase in the union effect which results from OLS

estimation is due to time varying heterogeneity rather than time invariant heterogeneity.

Finally, the empirical evidence indicates that there is significant interaction between the

individual heterogeneity in the wage equation and the selection mechanism of workers

into unions.

7 Summary and conclusion

This paper introduces bias-corrected estimators for nonlinear and dynamic panel models

with both time invariant and time variant heterogeneity. These estimators have closed

analytical form and are easy to implement. A major attraction of our approach is that

it does not require any assumption on the parametric form of the distribution of the

unobserved individual heterogeneity.
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Our estimation strategy is very flexible and can accommodate other models of interest

with minor adjustments. For example, the estimation method for the dynamic tobit

model with endogenous regressors can be extended to the case where the lag of the latent

dependent variable, instead of the lag of the censored dependent variable, is included as

explanatory variable. This model is arguably more plausible for economic applications

where the censoring comes from data limitations due, for example, to top-coding (see,

e.g., Hu, 2002).

Our simulation evidence strongly suggests that our approach is a very effective bias

reduction method for two important models. Moreover, it is very likely that this perfor-

mance would also extend to other models of interest to economists. Finally, an empirical

example which investigates the effect of endogenous union membership on wages illus-

trates the importance of accounting for both unobserved time invariant and time varying

heterogeneity and highlights the need to bias adjust the fixed effects estimates.
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Appendix

Throughout the appendices Oup and oup denote uniform orders in probability. For ex-

ample, for a sequence of random variables {ξi, i = 1, ..., n}, ξi = Oup(1) means max1≤i≤n ξi =

Op(1), and ξi = oup(1) means max1≤i≤n ξi = op(1). For a matrix A = (aij), i = 1, ..., m, j =

1, ..., n, |A| denotes Euclidean norm, that is |A|2 = trace[AA′]. HK refers to Hahn and

Kuersteiner (2003).

A Notation

A.1 First Stage

Let α̂1i0 = α̂1i(θ10). Then, a standard higher-order asymptotic expansion gives (see, e.g.,

Hahn and Kuersteiner, 2003), as T →∞,

α̂1i0 = α1i0 +
1

T

T∑
t=1

ψ1it +
1

T
β̄1i +

1

T 3/2
R1i0, ψ1it = −ET [v1itα]−1 v1it, R1i0 = oup(

√
T )

β̄1i = −ET [v1itα]−1

{
ĒT [v1itαψ1is] +

1

2
ET [v1itαα] σ̄2

1i

}
, σ̄2

1i = ĒT [ψ1itψ1is] . (44)

The asymptotic bias of the first stage FE estimator has the form B̄1 := −J −1
1 b̄1, where

J1 = En [ET [u1itθ]− ET [u1itα] ET [v1itθ] /ET [v1itα]] , (45)

b̄1 = En

[
ĒT [u1itαψ1is] + ET [u1itα] β̄1i +

1

2
σ̄2

1iET [u1itαα]

]
. (46)

A.2 Control Function

Let

λit(θ, α) := λ(wit; θ, α), (47)

denote the control function. Additional subscripts refer to partial derivatives, e.g., λitθ(θ, α)

:= ∂λit(θ, α)/∂θ′. For notational convenience the arguments are omitted when the expres-

sions are evaluated at the true parameter value, i.e., λit := λit(θ10, α1i0); and arguments

are omitted and a tilde is added when the expressions are evaluated at bias corrected

estimates of the parameters, i.e., λ̃it := λit(θ̃1, α̃1i). Then, by Lemma 2, we have

λ̃it = λit + ψ̃λ
it/
√

T + β̄λ
it/T + Rλ

it/T
3/2, (48)
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where ψ̃λ
it = λitαψ1i +J λ

it ϕ1/
√

n, J λ
it = λitθ−ET [v1itα]−1 ET [v1itθ] λitα, and β̄λ

it = λitαβ̄1i +

λitααψ2
1i/2.

A.3 Second Stage

Let α̂2i0 = α̂2i(θ20). Then, a higher-order asymptotic expansion gives (see Lemmas 8 and

9 in Appendix B), for T →∞

α̂2i0 = α2i0 +
1

T

T∑
t=1

ψ2it +
1

T
β̄2i + op(T

−1), (49)

ψ2it = −ET [v2itα]−1 {
v2it + ET [v2itλλitα] ψ1it + ET

[
v2itλJ λ

it

]
ϕ1it/

√
n
}

, (50)

β̄2i = −ET [v2itα]−1 {
ĒT [v2itαψ2is] + ET [v2itαα] σ̄2

2i/2 + ET [v2itλαλitα] σ̄12i

+ĒT [v2itλλitαψ1is] + ET

[
v2itλ

(
λitαβ̄1i +

1

2
λitαασ̄2

1i

)]

+ET

[
v2itλλλ

2
itα

]
σ̄2

1i/2
}

, (51)

σ̄2
2i = ĒT [ψ2itψ2is] , σ̄12i = ĒT [ψ1itψ2is] . (52)

B Proofs of Main Results

B.1 Proof of Lemma 1

The result for θ̃1 follows from Theorem 2 in HK. For α̃1i, note that

α̃1i = α̂1i (θ10) +
∂α̂1i(θ̄1)

∂θ′1
(θ̃1 − θ10), (53)

where θ̄1 lies between θ̃1 and θ10. Then, the asymptotic expansion for α̃1i can be derived

using the asymptotic expansion for α̂1i0 in (44), the first result of the Lemma, and

∂α̂1i(θ̄1)

∂θ′1
= −ET [v1itα]−1 ET [v1itθ] + oup(1). (54)

The last result follows by differentiating the first order condition of α̂1i(θ1), 0 =

ÊT [v1it (θ1, α̂1i(θ1))], with respect to α̂1i and θ1. The remainder terms are uniformly

bounded in probability by Lemmas 10, 12, 14, and 16 in HK.
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B.2 Consistency of θ̂2 and α̂2i(θ̂2)

Lemma 3 Assume that Conditions 1, 2, and 3 hold. Let h(wit, λit; θ, α) be a function

such that (i) h(wit, λit; θ, α) is continuous in λit; (ii) there exists a function M(wit, λit)

such that |h(wit, λit; θ, α)| ≤ M(wit, λit) and |∂h(wit, λit; θ, α)/∂λit| ≤ M(wit, λit), with

supi E[M(wit, λit)] < ∞. Then, for any η > 0, we have

Pr

{
max
1≤i≤n

sup
(θ,α)∈Γ2

∣∣∣ˆ̄hi(θ, α)− ĥi(θ, α)
∣∣∣ ≥ η

}
= o(T−1). (55)

where

ˆ̄hi(θ, α) = ÊT

[
hi(wit, λ̄it; θ, α)

]
, (56)

ĥi(θ, α) = ÊT [hi(wit, λit; θ, α)] , (57)

with λ̄it := λ(wit; θ̄1, ᾱ1i), and (θ̄′1, ᾱ1i) lies between (θ′10, α1i0) and (θ̃′1, α̃1i).

Proof. By Condition 3 and assumption (ii), we can write

max
1≤i≤n

sup
(θ,α)∈Γ2

∣∣∣ˆ̄hi(θ, α)− ĥi(θ, α)
∣∣∣ ≤ sup

i
E [M(wit, λit)] sup

i
E [Mλ(wit)] max

1≤i≤n

∣∣(θ̄1, ᾱ1i)− (θ10, α1i0)
∣∣ .

(58)

Then, the result follows by Lemma 1, Condition 3, and assumption (ii) of the Lemma.

Lemma 4 Assume that Conditions 1, 2, 3, and 4 hold. Then, for any η > 0, we have

Pr

{
max
1≤i≤n

sup
(θ,α)∈Γ2

∣∣ˆ̄g2i(θ, α)− g2i(θ, α)
∣∣ ≥ η

}
= o(T−1), (59)

where

ˆ̄g2i(θ, α) = ÊT

[
g2i(wit, λ̄it; θ, α)

]
, (60)

g2i(θ, α) = ET [g2i(wit, λit; θ, α)] , (61)

where λ̄it := λ(wit; θ̄1, ᾱ1i), and (θ̄′1, ᾱ1i) lies between (θ′10, α1i0) and (θ̃′1, α̃1i).

Proof. By triangle inequality, note that

∣∣ˆ̄g2i(θ, α)− g2i(θ, α)
∣∣ ≤

∣∣ˆ̄g2i(θ, α)− ĝ2i(θ, α)
∣∣ + |ĝ2i(θ, α)− g2i(θ, α))| , (62)

where ĝ2i(θ, α) = ÊT [g2i(wit, λit; θ, α)]. Then, the conclusion follows by Lemma 3 applied

to h(wit, λit; θ, α) = g2(wit, λit; θ, α), and Lemma 1 in HK.
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Proposition 1 Assume that Conditions 1, 2, 3, and 4 hold, and m → ∞ such that

m/T 1/2 → 0. Then, for any η > 0, we have

Pr
{∣∣∣θ̂2 − θ20

∣∣∣ ≥ η
}

= o(T−1). (63)

Proof. This Lemma can be proven using the same argument as in the proof of

Theorem 3 in HK, replacing Lemma 4 for of Lemma 1 in HK.

Proposition 2 Assume that Conditions 1, 2, 3, and 4 hold, and m → ∞ such that

m/T 1/2 → 0. Then, for any η > 0, we have

Pr

{
max
1≤i≤n

∣∣∣α̂2i(θ̂2)− α2i0

∣∣∣ ≥ η

}
= o(T−1). (64)

Proof. The result follows using the same argument as in the proof of Theorem 4 in

HK, replacing Lemma 4 and Proposition 1 for Lemma 1 and Theorem 3 in HK.

Corollary 1 Assume that Conditions 1, 2, 3, and 4 hold, and m → ∞ such that

m/T 1/2 → 0. Then,

Pr

{
max
1≤i≤n

|α̂2i0 − α2i0| ≥ η

}
= o(T−1), (65)

for any η > 0, where α̂2i0 := α̂2i(θ20).

Proof. Same arguments as in the proof of Proposition 2 replacing θ̂2 for θ20.

B.3 Asymptotic Expansion for λ̃it

Lemma 5 Assume that Conditions 1, 2, 3, and 4 hold, and m →∞ such that m/T 1/2 →
0. Let λ̄it denote the estimator of the control functions, λ(wit; θ̄1, ᾱ1i), where θ̄1 and

ᾱ1i lie between the bias corrected estimators of the control equation parameters, θ̃1 and

α̃1i := α̂1i(θ̃1); and the true parameter values θ10 and α1i0, respectively. Let λ̄itαd1θd2

denote its derivatives

∂d1+d2λ(wit; θ, α)

∂d1α∂d2θ
, (66)

evaluated at (θ̄′1, ᾱ1i), and λitαd1θd2 denote the derivatives evaluated at (θ′10, α1i0), for 0 ≤
d1 + d2 ≤ 3. Then, for almost every wit, we have

√
T

(
λ̄itαd1θd2 − λitαd1θd2

)
= oup

(
T 1/10+υ

)
, (67)

for some 0 < υ < (100q1 + 120)−1.
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Proof. The result follows by Condition 3, Lemma 1, and Lemma 11 in HK.

Proof of Lemma 2

Proof. By a standard Taylor expansion around (θ10, α1i0), we have

λ̃it = λit +λitα(α̃1i−α1i0)+λθ(wit; θ1, α1i)(θ̃1−θ10)+
1

2
λαα(wit; θ̆1, ᾰ1i)(α̃1i−α1i0)

2, (68)

where (θ1, α1i) and (θ̆1, ᾰ1i) lie between (θ̃1, α̃1i) and (θ10, α10i). The expressions for ψ̃λ
it,

and β̄λ
1it can be obtained using the expansions for θ̃1 and α̃1i in Lemma 1, after some

algebra. For the remainder term, we have

Rλ
it = λitαR1i +

√
T

(
λθ(wit; θ1, α1i)− λitθ

)
T (θ̃1 − θ10) + λitθ

√
TR1/n

+
1

2
λitαα

(
−
√

TET [vitα]−1 ET [vitθ] ϕ1/
√

n + β̄1i + R1i/
√

T
) [√

T (α̃1i − α1i0) + ψ1i

]

+
√

T
(
λαα(wit; θ̆1, ᾰ1i)− λitαα

)
T (α̃1i − α1i)

2/2 = oup

(√
T

)
. (69)

The uniform rate of convergence then follows by Lemmas 1 and 5.

B.4 Proof of Theorem 1

Proof. From a Taylor Expansion of the FOC for θ̂2 around θ20, we have

0 = Ên

[
ÊT

[
ˆ̃u2it(θ̂2)

]]
= Ên

[
ÊT

[
ˆ̃u2it(θ20)

]]
+ Ên

[
ÊT

[
dˆ̃u2it(θ2)

dθ′

]]
(θ̂2 − θ20), (70)

where θ2 lies between θ̂2 and θ0.

Part I: Asymptotic limit for Ĵ2i(θ̄2) := ÊT

[
dˆ̃u2it(θ2)

dθ′

]
. Note that

Ĵ2i(θ̄2) = ÊT

[
ũ2itθ(θ2, α̂2i(θ2))

]
+ ÊT

[
ũ2itα(θ2, α̂2i(θ2))

] ∂α̂2i(θ2)

∂θ
(71)

Then, differentiation of the FOC for α̂2i, ÊT

[
ṽ2it(α̂2i(θ2), θ2)

]
= 0, with respect to θ2 and

α̂2i gives

ÊT

[
ṽ2itθ(α̂2i(θ2), θ2)

]
+ ÊT

[
ṽ2itα(α̂2i(θ2), θ2)

] ∂α̂2i(θ2)

∂θ
= 0. (72)

By repeated application of Lemma 11 in HK and Lemma 3, we can write

∂α̂2i(θ2)

∂θ
= −ET [v2itα]−1 ET [v2itθ] + oup(1). (73)
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From Lemma 3 and Lemma 11 in HK, we have

ÊT

[
ũ2itθ(θ2, α̂2i(θ))

]
= ÊT

[
u2itθ(θ2, α̂2i(θ))

]
+ oup(1) = ET [u2itθ] + oup(1), (74)

ÊT

[
ũ2itα(θ2, α̂2i(θ2))

]
= ÊT

[
u2itα(θ2, α̂2i(θ2))

]
+ oup(1) = ET [u2itα] + oup(1). (75)

Finally, replacing the expressions for the components in (71) we have

Ĵ2i(θ̄2) = ET [u2itθ]− ET [v2itα]−1 ET [u2itα] ET [v2itθ] + oup(1) := J2i + oup(1), (76)

where En [J2i]
d→ J2 by LLN.

Part II: Asymptotic Expansion for θ̂2− θ20. From part I and Lemma 12, we have

0 =
√

nTÊn

[
ÊT

[
ˆ̃u2it(θ20)

]]

︸ ︷︷ ︸
Op(1)

+ Ên

[
Ĵ2i(θ̄2)

]

︸ ︷︷ ︸
Op(1)

√
nT (θ̂2 − θ20). (77)

Therefore,
√

nT (θ̂ − θ0) = Op(1). Then, by (76), Condition 4, and Lemma 12, we have

√
nT (θ̂2 − θ20) = −J −1

2

√
nTÊn

[
ÊT

[
ˆ̃u2it(θ20)

]]
+ op(1)

d→ N (√
ρB̄2,J −1

2 Ω̄2J −1
2

)
. (78)

The expression for B̄2 follows from part I and Lemma 11.

Corollary 2 Assume that Conditions 1, 2, 3, and 4 hold, and m → ∞ such that

m/T 1/2 → 0. Then, we have

√
nT

(
θ̂2 − θ20 − 1

T
B̄2

)
= ϕ2 + op(1)

d−→ N (
0,J −1

2 Ω̄2J −1
2

)
. (79)

Proof. The result follows from Theorem 1 and Slutsky Theorem.

B.5 Proof of Theorem 2

Proof. First, note that

√
nT

(
θ̃2 − θ20

)
=
√

nT

(
θ̂2 − θ20 − 1

T
B̄2

)
−

√
n

T

(
ˆ̄B2(θ̂2)− B̄2

)
. (80)

By Corollary 2 and Condition 1 we only need to show that ˆ̄B2(θ̂2)− B̄2 = op(1).

Recall that B̄2 is a (continuous) function of expectations of derivatives of the ob-

jective function evaluated at the true parameter values, i.e., expressions of the form

hi(θ20, α2i0) = ET [h(wit, λit; θ20, α2i0)].
ˆ̄B2(θ̂2), the fixed effects estimator of B̄2, re-

places expected values by sample analogs, and the true values of the parameters and
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control functions by fixed effects estimates, i.e., ˆ̄B2(θ̂2) has components of the form
ˆ̃hi(θ̂2, α̂2i) = ÊT

[
h(wit, λ̃it; θ̂2, α̂2i)

]
. Propositions 1 and 2, and Lemma 6 establish the

uniform consistency of the components of the estimator of B̄2. The result for the entire

expression then follows by the continuous mapping theorem and a LLN, where the con-

sistency of the truncated estimators of the spectral variances and covariances follow by

Lemma 6 in HK.

Lemma 6 Assume that Conditions 1, 2, 3, and 4 hold. Let θ̂2 and α̂2i, i = 1, ..., n, be

(uniformly) consistent estimators of θ20 and α2i0, i.e., θ̂2 − θ20 = op(1) and α̂2i − α2i0 =

oup(1). Let h(wit, λit; θ2, α2i) be a function such that (i) h(wit, λit; θ, α) is continuous in

γit := (λit, θ
′
2, α2i); (ii) there exists a function M(wit, λit) such that |h(wit, λit; θ, α)| ≤

M(wit, λit) and |∂h(wit, λit; θ, α)/∂γit| ≤ M(wit, λit), with supi E[M(wit, λit)
2] < ∞.

Then, for any η > 0, we have

Pr

{
max
1≤i≤n

∣∣∣ˆ̄hi(θ̄2, ᾱ2)− hi(θ20, α2i0)
∣∣∣ ≥ η

}
= o(T−1). (81)

where (θ̄′2, ᾱ2i)
′ lies between (θ̂′2, α̂2i)

′ and (θ′20, α2i0)
′, and

ˆ̄hi(θ, α) = ÊT

[
hi(wit, λ̄it; θ, α)

]
, (82)

hi(θ, α) = ET [hi(wit, λit; θ, α)] , (83)

with λ̄it := λ(wit; θ̄1, ᾱ1i), and (θ̄′1, ᾱ1i) lies between (θ′10, α1i0) and (θ̃′1, α̃1i).

Proof. By triangle inequality,

max
1≤i≤n

∣∣∣ˆ̄hi(θ̂2, α̂2i)− hi(θ20, α2i0)
∣∣∣ ≤ max

1≤i≤n

∣∣∣ˆ̄hi(θ̂2, α̂2i)− hi(θ̂2, α̂2i)
∣∣∣

+ max
1≤i≤n

∣∣∣hi(θ̂2, α̂2i)− hi(θ20, α2i0)
∣∣∣ (84)

Then, the first term is uniformly bounded by a similar argument as in the proof of Lemma

4. The second term is bounded by supi E [M(wit, λit)]
(|θ̄2 − θ20|+ max1≤i≤n |ᾱ2i − α2i0|

)
=

op(1).

B.6 Stochastic Expansion for α̂2i0 = α̂2i(θ20)

Lemma 7 Assume that Conditions 1, 2, 3, and 4 hold, and m →∞ such that m/T 1/2 →
0. We then have √

T (α̂2i0 − α2i0) = ψ2i +
1√
T

R21i, (85)
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where

ψ2i = −
√

TET [v2itα]−1
{

ÊT [v2it + ET [v2itλλitα] ψ1it] + ET

[
u2itλJ λ

it

]
ϕ1/

√
nT

}

= oup(T
1/10+υ),

R21i = oup(T
2/10+2υ) = oup(

√
T ). (86)

for some 0 < υ < (100q + 120)−1, where q = max{q1, q2}.

Proof. By two first order Taylor expansions of the FOC for α̂2i0 with respect to λ̃it

and α̂2i0, respectively, and Lemma 2, we have

0 = ÊT [ṽ2it(θ20, α̂2i0)] = ÊT [v2it(θ20, α̂2i0)] + ÊT

[
v̄2itλ(α̂2i, θ20)(λ̃it − λit)

]

= ÊT [v2it] + ÊT [v2itα(θ20, ᾱ2i0)] (α̂2i0 − α2i0) + ÊT

[
v̄2itλ(α̂2i, θ20)(λ̃it − λit)

]
,(87)

where ᾱ2i lies between α2i0 and α̂2i0, and v̄2itλ(·) = v2λ(wit, λ̄it; ·) where λ̄it lies between

λit and λ̃it. Next,

√
T (α̂2i0 − α2i0) = −ET [v2itα]−1

︸ ︷︷ ︸
=Oup(1)





√
TÊT [v2it(θ20, ᾱ2i0)]︸ ︷︷ ︸

=oup(T 1/10+υ)

+ ET

[
v2itλ

√
T (λ̃it − λit)

]

︸ ︷︷ ︸
=oup(T 1/10+υ)

+
(
ÊT [v2itα]− ET [v2itα]

)

︸ ︷︷ ︸
=oup(1)

√
T (α̂2i0 − α2i0)

+
√

T
(
ÊT

[
v̄2itλ(α̂2i, θ20)(λ̃it − λit)

]
− ET

[
v2itλ(λ̃it − λit)

])

︸ ︷︷ ︸
=oup(1)





= oup(T
1/10+υ) + oup

(√
T (α̂2i0 − α2i0)

)
(88)

by Lemma 2 and Lemma 11 in HK. Next, the expression for ψ2i follows from Lemma 2.
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Finally, for the remainder term, we have

R21i = −ET [v2itα]−1

︸ ︷︷ ︸
=Oup(1)





√
T

(
ÊT [v2itα(θ20, ᾱ2i0)]− ET [v2itα]

)

︸ ︷︷ ︸
=oup(T 1/10+υ)

√
T (α̂2i0 − α2i0)︸ ︷︷ ︸
=oup(T 1/10+υ)

+
√

T
(
ÊT

[
v̄2itλ(α̂2i, θ20)

√
T (λ̃it − λit)

]
− ET

[
v2itλ

√
T (λ̃it − λit)

])

︸ ︷︷ ︸
=oup(T 2/10+2υ)

+ ÊT

[
v2itλ(β̄

λ
it + Rλ

it/
√

T )
]

︸ ︷︷ ︸
=oup(T 2/10+2υ)





= oup(T
2/10+2υ), (89)

by Lemma 11 in HK.

Lemma 8 Assume that Conditions 1, 2, 3, and 4 hold, and m →∞ such that m/T 1/2 →
0. We then have √

T (α̂2i0 − α2i0) = ψ2i +
1√
T

Q21i +
1

T
R22i, (90)

where

Q21i = −ET [v2itα]−1

{√
T

(
ÊT [v2itα]− ET [v2itα]

)
ψ2i +

1

2
ET [v2itαα] ψ2

2i

+ ET [v2λαitλitα] ψ1iψ2i +
√

T
(
ÊT [v2iλλiα]− ET [v2iλλiα]

)
ψ1i

+ ET

[
v2itλβ̄

λ
it

]
+

1

2
ET

[
v2itλ

(
ψ̃λ

it

)2
]}

= oup(T
2/10+2υ),

R22i = oup(
√

T ), (91)

for some 0 < υ < (100q + 120)−1, where q = max{q1, q2}.

Proof. By two second order Taylor expansions of the FOC for α̂2i0, 0 = ÊT [ṽ2it(θ20, α̂2i0)],

with respect to λ̃it and α̂2i0, respectively, we have

0 = ÊT [v2it(θ20, α̂2i0)] + ÊT

[
v2itλ(θ20, α̂2i0)(λ̃it − λit)

]
+

1

2
ÊT

[
v̄2itλλ(α̂2i, θ20)(λ̃it − λit)

2
]

= ÊT [v2it] + ÊT [v2itα] (α̂2i0 − α2i0) +
1

2
ÊT [v2itαα(θ20, ᾱ2i0)] (α̂2i0 − α2i0)

2

+ÊT

[
v2itλ(λ̃it − λit)

]
+ ÊT

[
v2itλα(ᾱ2i0, θ20)(λ̃it − λit)

]
(α̂2i0 − α2i0)

+
1

2
ÊT

[
v̄2itλλ(α̂2i, θ20)(λ̃it − λit)

2
]
, (92)
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where ᾱ2i lies between α2i0 and α̂2i0, and v̄2itλλ(·) = v2λλ(wit, λ̄it; ·) where λ̄it lies between

λit and λ̃it. The expression for Q21i can be obtained from the expansion of λ̃it in Lemma

2 following a similar argument as in Lemma A4 in Newey and Smith (2004). The uniform

rate of convergence for Q1i follows by Lemma 7, and Lemma 11 in HK. For the remainder

term, we have

R22i = −ET [v2itα]−1
{√

T
(
ÊT [v2itα]− ET [v2itα]

)
R21i

+

√
T

2

(
ÊT [v2iαα(θ20, ᾱ2i0)]− ET [v2iαα]

)
T (α̂2i0 − α2i0)

2R21i

+
1

2
ET [v2itαα] R21i

(√
T (α̂2i0 − α2i0) + ψ2i

)

+
√

T
(
ÊT

[
v2itλ

(
β̄λ

it + Rλ
it/
√

T
)]
− ET

[
v2itλ

(
β̄λ

it + Rλ
it/
√

T
)])

+ ET

[
v2itλR

λ
it

]
+ ET

[
v2itαλ

√
T

(
λ̃it − λ

)]
R21i

+ ET

[
v2itαλ

(
β̄λ

it + Rλ
it

)]√
T (α̂2i0 − α2i0)

+
√

T
(
ÊT

[
v2itαλ(θ20, ᾱ2i0)

√
T

(
λ̃it − λ

)]
− ET

[
v2itαλ

√
T

(
λ̃it − λ

)])√
T (α̂2i0 − α2i0)

+

√
T

2

(
ÊT

[
v̄2itλλ(θ20, α̂2i0)T

(
λ̃it − λit

)2
]
− ET

[
v2itλλT

(
λ̃it − λit

)2
])

+
1

2
ET

[
v2itλλ

(
β̄λ

it + Rλ
it

) (√
T

(
λ̃it − λit

)
+ ψ̃λ

it

)]
= oup

(
max

{
T 3/10+3υ,

√
T

})
. (93)

The uniform rates of convergence follow by Lemma 2 and Lemma 11 in HK.

Lemma 9 Assume that Conditions 1, 2, 3, and 4 hold, and m →∞ such that m/T 1/2 →
0. We then have

1√
n

n∑
i=1

ψ2i
d−→ N(0, σ̄2

2 := En

[
σ̄2

2i

]
), (94)

1

n

n∑
i=1

Q21i
p−→ β̄2 := En

[
β̄2i

]
, (95)
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where

σ̄2
2i = ĒT [ψ2itψ2is] , (96)

ψ2it = −ET [v2itα]−1 {
v2it + ET [v2itλλitα] ψ1it + ET

[
v2itλJ λ

it

]
ϕ1it

}
, (97)

β̄2i = −ET [v2itα]−1

{
ĒT [v2itαψ2is] +

1

2
ET [v2itαα] σ̄2

2i + ĒT [v2itλλitαψ1is]

+ET [v2λαitλitα] σ̄2
12i + ET [v2itλλitα] β̄1i +

1

2
ET [v2itλλitαα] σ̄2

1i

+
1

2
ET

[
v2itλλλ

2
itα

]
σ̄2

1i

}
, (98)

σ̄2
12i = ĒT [ψ1itψ2is] . (99)

Proof. The result for the influence functions ψ2i’s follows by Lemma 7, and Lemma 3

in HK. The result for the Q21i’s can be shown using a similar argument as in the derivation

of the limiting behavior of θεε(0) in the proof of Theorem 1 in HK. In particular, uniform

convergence of Q21i, i = 1, ..., n, can be established using Corollary A.2 of Hall and Heyde

(1980), and Lemma 3 in HK.

B.7 Stochastic Expansion for ÊT

[
ˆ̃u2it(θ20)

]

Lemma 10 Assume that Conditions 1, 2, 3, and 4 hold, and m →∞ such that m/T 1/2 →
0. We then have

ÊT

[
ˆ̃u2it(θ20)

]
=

1√
T

ψu
2i +

1

T
Qu

21i +
1

T 3/2
Ru

22i, (100)

where

ψu
2i =

√
TÊT [u2it] + ET [u2itα] ψ2i + ET

[
u2itλψ̃

λ
it

]
= oup(T

1/10+υ), (101)

Qu
21i = ET [u2itα] Q21i +

√
T

(
ÊT [u2iα]− ET [u2iα]

)
ψ2i +

1

2
ET [u2itαα] ψ2

2i + ET

[
u2itλβ̄

λ
it

]

+ ET

[
u2itλαψ̃λ

it

]
ψ2i +

√
T

(
ÊT

[
u2itλψ̃

λ
it

]
− ET

[
u2itλψ̃

λ
it

])
+

1

2
ET

[
u2itλλ

(
ψ̃λ

it

)2
]

= oup(T
2/10+2υ), (102)

Ru
22i = oup(

√
T ), (103)

for some 0 < υ < (100 + 120q)−1, where q = max{q1, q2}.

Proof. By two second order expansions of ÊT

[
ˆ̃u2it(θ20)

]
with respect to λ̃it and α̂2i0,
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respectively, we have

ÊT

[
ˆ̃u2it(θ20)

]
= ÊT [û2it] + ÊT

[
û2itλ

(
λ̃it − λit

)]
+

1

2
ÊT

[
ˆ̄u2itλλ

(
λ̃it − λit

)2
]

= ÊT [u2it] + ÊT [u2itα] (α̂2i0 − α2i0) +
1

2
ÊT [u2itα(θ20, ᾱ2i0)] (α̂2i0 − α2i0)

2

+ ÊT

[
u2itλ

(
λ̃it − λit

)]
+ ÊT

[
u2itλα(θ20, ᾱ2i0)

(
λ̃it − λit

)]
(α̂2i0 − α2i0)

+
1

2
ÊT

[
ˆ̄u2itλλ

(
λ̃it − λit

)2
]

, (104)

where ˆ̄u2itλλ = u2(wit, λ̄it; θ20, α̂2i0), λ̄it lies between λ̃it and λit, and ᾱ2i0 is between α̂2i0

and α2i0. The expressions for ψu
2i and Qu

21i can be obtained using Lemmas 2 and 8, after

some algebra. The properties for these terms follow by Lemma 11 from HK. For the

remainder term, we have

Ru
22i = ET [u2itα] R22i +

√
T

(
ÊT [u2iα]− ET [u2iα]

)
R21i

+
1

2
ET [u2itα]

(
R21i

√
T (α̂2i0 − α2i0) + ψ2iR21i

)

+
1

2

√
T

(
ÊT [u2itαα(θ20, ᾱ2i0)]− ET [u2itαα]

)
T (α̂2i0 − α2i0)

2 + ET

[
uitλR

λ
it

]

+
√

T
(
ÊT

[
u2itλ

(
β̄λ

it + Rλ
it

)]− ET

[
u2itλ

(
β̄λ

it + Rλ
it

)])

+ ET

[
u2itλα

(
β̄λ

it + Rλ
it

)]√
T (α̂2i0 − α2i0)

+
√

T
(
ÊT

[
u2itλα(θ20, ᾱ2i0)

√
T

(
λ̃it − λit

)]
− ET

[
u2itλα

√
T

(
λ̃it − λit

)])√
T (α̂2i0 − α2i0)

+ ET

[
u2itλαψ̃λ

it

]
R21i +

1

2
ET

[
u2itλλ

(
β̄λ

it + Rλ
it

) (√
T

(
λ̃it − λit

)
+ ψ̃λ

it

)]

+
1

2

√
T

(
ÊT

[
u2itλλ(θ20, ᾱ2i0)T

(
λ̃it − λit

)2
]
− ET

[
u2itλλ

(
λ̃it − λit

)2
])

= oup

(
T 3/10+3υ,

√
T

)
. (105)

Then, the uniform order in probability for Ru
22i follows by the properties of the components

in the expansion of α̂2i0 and λ̃it, and Lemma 11 in HK.

Lemma 11 Assume that Conditions 1, 2, 3, and 4 hold, and m →∞ such that m/T 1/2 →
0. We then have

√
nEn [ψu

2i]
d−→ N(0, Ω̄2 := En

[
Ω̄2i

]
), (106)

Ên [Qu
21i]

p−→ b̄2 := En

[
b̄2i

]
, (107)
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where

Ω̄2i = ĒT [U2itU
′
2is] , (108)

U2it = u2it + ET [u2itα] ψ2it + ET [u2itλλitα] ψ1it + ET

[
u2itλJ λ

it

]
ϕ1it, (109)

b̄2i = ĒT [Qu
21i] = ĒT [u2itαψ2is] + ET [u2itα] β̄2i +

1

2
σ̄2

2iET [u2itαα] + ET [u2itλαλitα] σ̄12i

+ĒT [u2itλλitαψ1is] + ET

[
u2itλ

(
λitαβ̄1i +

1

2
λitαασ̄2

1i

)]
+

1

2
ET

[
u2itλλλ

2
itα

]
σ̄2

1i,

(110)

Proof. The result for the influence functions ψu
2i’s follows by Lemma 3 in HK. The

result for the Qu
21i’s can be shown using a similar argument as in the derivation of the

limiting behavior of θεε(0) in the proof of Theorem 1 in HK. In particular, uniform con-

vergence of Qu
21i, i = 1, ..., n, can be established using Corollary A.2 of Hall and Heyde

(1980), and Lemma 3 in HK.

Lemma 12 Assume that Conditions 1, 2, 3, and 4 hold, and m →∞ such that m/T 1/2 →
0. We then have, for ρ = limn,T→∞ n/T ,

√
nTEn

[
ÊT

[
ˆ̃u2it(θ20)

]]
d−→ N (√

ρ b̄2, Ω̄2

)
, (111)

where b̄2 and Ω̄2 are defined in Lemma 11.

Proof. From Lemma 10, we have

√
nTEn

[
ÊT

[
ˆ̃u2it(θ20)

]]
=

√
nÊn [ψu

2i]︸ ︷︷ ︸
=Op(1)

+

√
n

T
Ên [Qu

21i]

︸ ︷︷ ︸
=Op(1)

+

√
n

T
Ên [Ru

2i]︸ ︷︷ ︸
=op(1)

. (112)

Then, the result follows by Lemma 11 and Slutsky Theorem.
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Estimator Mean Median SD p; .05 p; .10 SE/SD MAE nobs

H-MLE 1.32 1.31 0.190 0.51 0.62 0.827 0.308 463
H-BC1 1.05 1.05 0.131 0.04 0.08 1.061 0.094 463
H-BC2 1.14 1.13 0.165 0.15 0.25 0.881 0.142 463
H-BC3 0.98 0.97 0.117 0.04 0.07 1.113 0.082 463

H-MLE 1.32 1.31 0.189 0.52 0.64 0.833 0.306 463
H-BC1 1.05 1.05 0.128 0.03 0.08 1.083 0.089 463
H-BC2 1.14 1.13 0.164 0.14 0.23 0.884 0.139 463
H-BC3 0.98 0.98 0.114 0.03 0.07 1.144 0.077 463

H-MLE 1.22 1.22 0.138 0.43 0.55 0.892 0.218 671
H-BC1 1.07 1.06 0.115 0.08 0.14 1.000 0.089 671
H-BC2 1.08 1.07 0.119 0.10 0.17 0.970 0.091 671
H-BC3 1.00 1.00 0.103 0.04 0.07 1.059 0.071 671

H-MLE 1.22 1.21 0.137 0.41 0.54 0.895 0.212 671
H-BC1 1.06 1.06 0.114 0.08 0.14 1.003 0.083 671
H-BC2 1.07 1.07 0.119 0.09 0.17 0.968 0.089 671
H-BC3 1.00 1.00 0.102 0.03 0.07 1.063 0.072 671

H-MLE 1.14 1.13 0.102 0.31 0.44 0.890 0.133 1089
H-BC1 1.04 1.04 0.092 0.09 0.13 0.953 0.065 1089
H-BC2 1.03 1.03 0.091 0.09 0.13 0.959 0.061 1089
H-BC3 1.00 1.00 0.086 0.06 0.11 0.985 0.056 1089

H-MLE 1.13 1.13 0.098 0.30 0.41 0.934 0.131 1089
H-BC1 1.04 1.03 0.088 0.06 0.12 0.997 0.062 1089
H-BC2 1.03 1.03 0.087 0.05 0.11 1.006 0.059 1089
H-BC3 1.00 1.00 0.082 0.05 0.08 1.033 0.055 1089

B. T = 8
B.1. Coefficient β1 (true = 1)

B.2. Coefficient β2 (true = 1)

Table 1: Heckman Selection Model - Probit First Stage, n =100

A.1. Coefficient β1 (true = 1)

A.2. Coefficient β2 (true = 1)

A. T = 6

C. T = 12
C.1. Coefficient β1 (true = 1)

C.2. Coefficient β2 (true = 1)

Notes : 1,000 replications. MLE denotes uncorrected probit FE estimator; BC1 denotes Hahn and Newey (2004) 
bias-corrected estimator based on Bartlett equalities; BC2 denotes Hahn and Newey (2004) bias-corrected 
estimator based on general estimating equations; BC3 denotes Fernandez-Val (2005) bias corrected estimator. 



Estimator Mean Median SD p; .05 p; .10 SE/SD MAE nobs

OLS 1.18 1.18 0.102 0.52 0.63 0.848 0.176 285
H-1 1.01 1.01 0.119 0.10 0.15 0.865 0.077 285

H-MLE 1.07 1.07 0.115 0.14 0.21 0.897 0.094 285
H-JACK 1.00 1.00 0.133 0.15 0.23 0.737 0.090 285
H-BC1 1.03 1.03 0.130 0.11 0.17 0.836 0.090 285
H-BC2 1.04 1.04 0.122 0.12 0.18 0.858 0.090 285
H-BC3 1.03 1.03 0.124 0.11 0.17 0.864 0.089 285

OLS 1.17 1.17 0.082 0.65 0.73 0.892 0.174 390
H-1 1.00 0.99 0.098 0.08 0.15 0.894 0.066 390

H-MLE 1.04 1.03 0.096 0.10 0.16 0.924 0.069 390
H-JACK 0.99 0.99 0.107 0.12 0.19 0.773 0.075 390
H-BC1 1.01 1.01 0.103 0.09 0.15 0.881 0.071 390
H-BC2 1.01 1.01 0.101 0.09 0.15 0.888 0.070 390
H-BC3 1.01 1.01 0.102 0.08 0.15 0.889 0.070 390

OLS 1.18 1.18 0.063 0.83 0.88 0.941 0.176 592
H-1 1.00 1.00 0.078 0.08 0.14 0.908 0.054 592

H-MLE 1.03 1.03 0.078 0.09 0.15 0.922 0.055 592
H-JACK 1.00 1.00 0.084 0.12 0.19 0.786 0.056 592
H-BC1 1.01 1.01 0.083 0.09 0.14 0.889 0.053 592
H-BC2 1.01 1.01 0.082 0.09 0.14 0.892 0.053 592
H-BC3 1.00 1.01 0.082 0.09 0.14 0.892 0.052 592

Notes : 1,000 replications. Numerical algorithm fails to converge 98 times for T = 6 and 4 times for T = 8  for the 
Jackknife. These replications are not used for any of the estimators.  H-1 denotes unfeasible estimator that uses 
(unobserved) true control function; MLE is the feasible version of H-1 that uses estimated control function; 
JACK denotes the two-step Jackknife bias-corrected estimator; BC1 denotes Hahn and Newey (2004) bias-
corrected estimator based on Bartlett equalities; BC2 denotes Hahn and Newey (2004) bias-corrected estimator 
based on general estimating equations; BC3 denotes Fernandez-Val (2005) bias-corrected estimator. Standard 
errors account for heteroskedasticity and generated regressors, when relevant.

Table 2: Heckman Selection Model - OLS Second Stage, coefficient θ, n =100

A. T = 6*

B. T = 8*

C. T = 12



Estimator Mean Median SD p; .05 p; .10 SE/SD MAE nobs

H-1 0.99 0.98 0.382 0.09 0.16 0.849 0.249 285
H-MLE 0.78 0.77 0.362 0.16 0.24 0.864 0.289 285
H-JACK 0.97 0.96 0.476 0.16 0.24 0.729 0.312 285
H-BC1 1.08 1.07 0.551 0.17 0.23 0.682 0.346 285
H-BC2 0.90 0.89 0.420 0.11 0.18 0.831 0.285 285
H-BC3 1.02 1.01 0.468 0.09 0.16 0.835 0.307 285

H-1 1.02 1.01 0.321 0.10 0.16 0.847 0.203 390
H-MLE 0.85 0.84 0.305 0.14 0.22 0.870 0.228 390
H-JACK 1.01 1.00 0.381 0.15 0.22 0.727 0.248 390
H-BC1 1.03 1.03 0.380 0.12 0.21 0.784 0.251 390
H-BC2 0.96 0.96 0.347 0.11 0.17 0.846 0.223 390
H-BC3 1.02 1.02 0.368 0.09 0.17 0.846 0.243 390

H-1 1.01 1.01 0.244 0.08 0.15 0.891 0.157 592
H-MLE 0.90 0.90 0.240 0.11 0.18 0.897 0.173 592
H-JACK 1.01 1.00 0.275 0.12 0.20 0.772 0.191 592
H-BC1 1.01 1.01 0.270 0.09 0.16 0.862 0.177 592
H-BC2 0.99 0.99 0.265 0.09 0.15 0.881 0.179 592
H-BC3 1.02 1.01 0.271 0.08 0.14 0.882 0.178 592

Notes : 1,000 replications. Numerical algorithm fails to converge 98 times for T = 6 and 4 times for T = 8  for the 
Jackknife. These replications are not used for any of the estimators.  H-1 denotes unfeasible estimator that uses 
(unobserved) true control function; MLE is the feasible version of H-1 that uses estimated control function; 
JACK denotes the two-step Jackknife bias-corrected estimator; BC1 denotes Hahn and Newey (2004) bias-
corrected estimator based on Bartlett equalities; BC2 denotes Hahn and Newey (2004) bias-corrected estimator 
based on general estimating equations; BC3 denotes Fernandez-Val (2005) bias-corrected estimator. Standard 
errors account for heteroskedasticity and generated regressors, when relevant.

Table 3: Heckman Selection Model - OLS Second Stage, coefficient ρ (control function), n =100

A. T = 6*

B. T = 8*

C. T = 12



Estimator Mean Median SD p; .05 p; .10 SE/SD MAE nobs

TOBIT 1.31 1.31 0.058 1.00 1.00 0.863 0.314 415
CMLE-1 0.98 0.98 0.074 0.11 0.17 0.868 0.050 415
CMLE 0.98 0.99 0.081 0.11 0.19 0.817 0.056 415
BC1 1.02 1.02 0.094 0.18 0.24 0.727 0.063 415
BC2 1.00 1.00 0.084 0.13 0.19 0.798 0.056 415
BC3 0.98 0.98 0.085 0.14 0.20 0.783 0.058 415

TOBIT 1.33 1.33 0.048 1.00 1.00 0.882 0.328 614
CMLE-1 0.99 0.99 0.060 0.08 0.14 0.909 0.041 614
CMLE 0.99 0.99 0.066 0.10 0.17 0.841 0.043 614
BC1 1.01 1.01 0.072 0.13 0.19 0.796 0.047 614
BC2 1.00 1.00 0.068 0.11 0.16 0.832 0.044 614
BC3 0.99 0.99 0.067 0.11 0.17 0.833 0.044 614

TOBIT 1.34 1.34 0.035 1.00 1.00 0.953 0.336 1016
CMLE-1 1.00 0.99 0.046 0.06 0.12 0.945 0.032 1016
CMLE 1.00 0.99 0.050 0.09 0.14 0.894 0.034 1016
BC1 1.00 1.00 0.052 0.10 0.16 0.860 0.035 1016
BC2 1.00 1.00 0.051 0.09 0.14 0.888 0.034 1016
BC3 1.00 1.00 0.050 0.09 0.15 0.886 0.033 1016

Notes :  1,000 replications. TOBIT denotes Tobit FE maximum likelihood estimator that does not account for 
endogeneity; CMLE-1 denotes unfeasible estimator that uses (unobserved) true control function; CMLE is the 
feasible version of CME-1 that uses estimated control function; BC1 denotes Hahn and Kuersteiner (2003) bias-
corrected estimator based on Bartlett equalities; BC2 denotes Hahn and Kuersteiner (2003) bias-corrected 
estimator based on general estimating equations; BC3 denotes Fernandez-Val (2005) bias-corrected estimator;  
Standard errors account for generated regressors, when relevant.

Table 4: Tobit CMLE, θ1 (endogenous regressor), n =100

T = 6

T = 8

T = 12



Estimator Mean Median SD p; .05 p; .10 SE/SD MAE nobs

TOBIT 0.81 0.81 0.077 0.77 0.84 0.874 0.189 415
CMLE-1 0.84 0.84 0.073 0.71 0.78 0.859 0.162 415
CMLE 0.84 0.84 0.073 0.71 0.78 0.859 0.162 415
BC1 0.98 0.99 0.084 0.14 0.22 0.773 0.057 415
BC2 0.92 0.92 0.074 0.31 0.41 0.854 0.086 415
BC3 0.95 0.94 0.077 0.21 0.30 0.817 0.065 415

TOBIT 0.86 0.86 0.063 0.71 0.79 0.875 0.143 614
CMLE-1 0.88 0.88 0.058 0.64 0.74 0.889 0.121 614
CMLE 0.88 0.88 0.058 0.64 0.75 0.890 0.122 614
BC1 0.99 0.99 0.062 0.11 0.17 0.846 0.044 614
BC2 0.94 0.94 0.057 0.24 0.34 0.904 0.062 614
BC3 0.96 0.96 0.058 0.15 0.23 0.886 0.049 614

TOBIT 0.91 0.91 0.047 0.58 0.68 0.931 0.093 1016
CMLE-1 0.92 0.92 0.044 0.50 0.63 0.928 0.079 1016
CMLE 0.92 0.92 0.044 0.50 0.63 0.928 0.079 1016
BC1 0.99 0.99 0.044 0.07 0.14 0.924 0.032 1016
BC2 0.96 0.96 0.043 0.17 0.25 0.938 0.040 1016
BC3 0.97 0.97 0.043 0.12 0.19 0.933 0.035 1016

Notes :  1,000 replications. TOBIT denotes Tobit FE maximum likelihood estimator that does not account for 
endogeneity; CMLE-1 denotes unfeasible estimator that uses (unobserved) true control function; CMLE is the 
feasible version of CME-1 that uses estimated control function; BC1 denotes Hahn and Kuersteiner (2003) bias-
corrected estimator based on Bartlett equalities; BC2 denotes Hahn and Kuersteiner (2003) bias-corrected 
estimator based on general estimating equations; BC3 denotes Fernandez-Val (2005) bias-corrected estimator;  
Standard errors account for generated regressors, when relevant.

Table 5: Tobit CMLE, θ2 (lagged dep. variable), n =100 

T = 6

T = 8

T = 12



Estimator Mean Median SD p; .05 p; .10 SE/SD MAE nobs

CMLE-1 0.98 0.98 0.158 0.09 0.16 0.882 0.106 415
CMLE 0.98 0.99 0.168 0.10 0.16 0.846 0.113 415
BC1 1.02 1.02 0.193 0.14 0.21 0.760 0.127 415
BC2 1.00 1.00 0.174 0.10 0.17 0.829 0.115 415
BC3 1.00 1.00 0.173 0.10 0.18 0.833 0.117 415

CMLE-1 1.00 1.00 0.131 0.09 0.14 0.892 0.086 614
CMLE 1.00 1.00 0.140 0.11 0.15 0.849 0.092 614
BC1 1.04 1.03 0.152 0.12 0.20 0.800 0.099 614
BC2 1.01 1.01 0.144 0.11 0.17 0.833 0.094 614
BC3 1.01 1.01 0.142 0.09 0.15 0.845 0.093 614

CMLE-1 1.00 1.00 0.102 0.07 0.12 0.912 0.068 1016
CMLE 1.00 1.00 0.107 0.08 0.14 0.884 0.072 1016
BC1 1.03 1.03 0.112 0.10 0.18 0.854 0.080 1016
BC2 1.00 1.01 0.108 0.08 0.14 0.881 0.074 1016
BC3 1.00 1.00 0.108 0.08 0.14 0.884 0.074 1016

Notes :  1,000 replications. CMLE-1 denotes unfeasible estimator that uses (unobserved) true control function; 
CMLE is the feasible version of CME-1 that uses estimated control function; BC1 denotes Hahn and Kuersteiner 
(2003) bias-corrected estimator based on Bartlett equalities; BC2 denotes Hahn and Kuersteiner (2003) bias-
corrected estimator based on general estimating equations; BC3 denotes Fernandez-Val (2005) bias-corrected 
estimator;  Standard errors account for generated regressors, when relevant.

Table 6: Tobit CMLE, ρ (control function), n =100

T = 6

T = 8

T = 12



Variable Definition Mean St. Dev.Within (%) Mean St. Dev. Mean St. Dev.

SCHOOL Years of Schooling 12.33 1.69 5 12.21 1.15 12.37 1.84
LEXPER Log(1 + EXPER) 1.78 0.60 47 1.90 0.49 1.74 0.63
UNION Wage set by collective bargaining 0.26 0.44 41 1.00 0.00 0.00 0.00
UNION1 Lag of UNION 0.27 0.44 43 0.73 0.44 0.10 0.30
MARRIED Married 0.45 0.50 41 0.52 0.50 0.42 0.49
BLACK Black 0.11 0.32 0 0.15 0.36 0.10 0.30
HISP Hispanic 0.15 0.36 0 0.14 0.35 0.15 0.36
HEALTH Has health disability 0.02 0.15 76 0.02 0.15 0.02 0.15
RURAL Lives in rural area 0.20 0.40 22 0.19 0.39 0.20 0.40
NE Lives in North East 0.21 0.40 3 0.20 0.40 0.21 0.41
NC Lives in Northern Central 0.29 0.46 3 0.36 0.48 0.27 0.45
S Lives in South 0.31 0.46 4 0.26 0.44 0.32 0.47
W Lives in West 0.19 0.39 3 0.19 0.39 0.19 0.40
WAGE Log of real hourly wage 1.74 0.46 41 1.91 0.41 1.68 0.46

Industry dummies
AG Agricultural 0.03 0.17 49 0.01 0.11 0.03 0.18
MIN Mining 0.02 0.13 44 0.03 0.16 0.01 0.12
CON Construction 0.10 0.30 41 0.09 0.29 0.11 0.31
TRAD Trade 0.25 0.43 47 0.17 0.38 0.28 0.45
TRA Transportation 0.07 0.26 45 0.13 0.34 0.05 0.22
FIN Finance 0.03 0.16 38 0.01 0.08 0.03 0.18
BUS Business and Repair Service 0.08 0.27 59 0.04 0.20 0.09 0.28
PER Personal Service 0.01 0.12 77 0.01 0.09 0.02 0.13
ENT Entertainment 0.01 0.12 61 0.00 0.05 0.02 0.14
MAN Manufacturing 0.32 0.47 38 0.39 0.49 0.29 0.45
PRO Professional and Related Service 0.05 0.21 56 0.04 0.20 0.05 0.21
PUB Public Administration 0.04 0.18 49 0.08 0.26 0.02 0.14

Occupational dummies
OCC1 Professional, Technical and kindred 0.07 0.25 53 0.03 0.17 0.08 0.27
OCC2 Managers, Officials and Proprietors 0.09 0.28 61 0.03 0.17 0.11 0.31
OCC3 Sales Workers 0.01 0.07 63 0.00 0.03 0.01 0.08
OCC4 Clerical and kindred 0.10 0.30 63 0.10 0.30 0.10 0.30
OCC5 Craftsmen, Foremen and kindred 0.23 0.42 50 0.23 0.42 0.24 0.42
OCC6 Operatives and kindred 0.23 0.42 54 0.32 0.47 0.21 0.40
OCC7 Laborers and farmers 0.11 0.31 69 0.16 0.36 0.09 0.29
OCC8 Farm Laborers and Foreman 0.01 0.11 55 0.00 0.04 0.02 0.13
OCC9 Service Workers 0.11 0.31 50 0.13 0.33 0.10 0.30

Number of Observations 545 × 8
Source : NLSY Men

Nonunion

3219

Table 7: Descriptive Statistics, 1981-1988

4360 1141

UnionFull sample



POOLED FE BC FE BC POOLED FE BC FE BC
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

UNION1 1.80 0.35 0.73 0.05 0.10 1.76 0.32 0.70 0.04 0.09
(0.07) (0.07) (0.07) (0.01) (0.01) (0.07) (0.07) (0.07) (0.01) (0.01)

SCHOOL -0.01 0.09 0.07 0.01 0.01 0.04 0.19 0.16 0.02 0.02
(0.02) (0.11) (0.11) (0.01) (0.01) (0.02) (0.11) (0.11) (0.01) (0.01)

LEXPER 0.16 0.95 0.64 0.12 0.09 0.19 0.98 0.65 0.12 0.09
(0.07) (0.25) (0.23) (0.03) (0.03) (0.07) (0.26) (0.24) (0.03) (0.03)

RURAL -0.09 0.15 0.13 0.02 0.02 -0.12 0.16 0.14 0.02 0.02
(0.07) (0.20) (0.18) (0.03) (0.02) (0.07) (0.20) (0.18) (0.02) (0.02)

MARRIED 0.14 0.26 0.21 0.03 0.03 0.15 0.26 0.21 0.03 0.03
(0.06) (0.11) (0.11) (0.01) (0.01) (0.06) (0.11) (0.11) (0.01) (0.01)

HEALTH -0.18 -0.31 -0.28 -0.04 -0.04 -0.19 -0.32 -0.29 -0.04 -0.04
(0.16) (0.28) (0.30) (0.04) (0.04) (0.17) (0.29) (0.31) (0.04) (0.04)

BLACK 0.24 0.20
(0.08) (0.08)

HISP 0.02 0.01
(0.09) (0.09)

 
Observations 4360 2064 2064 4360 4360 4360 2064 2064 4360 4360

 

Notes : Standard errors in parantheses. All regressions include industry, region, and time dummies. Standard errors in columns [1] and [6] are clustered at the 
individual level.

Index Coefficient Average Marginal Effect

With Occupation

Table 8: Fixed effects probit estimates of union membership (1981-1988)

Without Occupation

Index Coefficient Average Marginal Effect



P - OLS P - Heckit FE FE - Heck BC - Heck P - OLS P - Heckit FE FE - Heck BC - Heck
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

UNION 0.16 0.24 0.10 0.30 0.40 0.18 0.28 0.11 0.32 0.42
(0.02) (0.04) (0.02) (0.06) (0.05) (0.02) (0.04) (0.02) (0.05) (0.05)

SCHOOL 0.08 0.08 0.09 0.09 0.09 0.07 0.07 0.08 0.07 0.07
(0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.02)

LEXPER 0.21 0.20 0.29 0.27 0.26 0.20 0.19 0.28 0.25 0.24
(0.02) (0.02) (0.03) (0.03) (0.04) (0.02) (0.02) (0.03) (0.03) (0.04)

RURAL -0.16 -0.16 -0.01 -0.01 -0.02 -0.15 -0.15 -0.01 -0.01 -0.02
(0.03) (0.03) (0.02) (0.03) (0.03) (0.03) (0.03) (0.02) (0.03) (0.03)

MARRIED 0.11 0.11 0.03 0.02 0.02 0.10 0.10 0.03 0.02 0.02
(0.02) (0.02) (0.01) (0.02) (0.02) (0.02) (0.02) (0.01) (0.02) (0.02)

HEALTH 0.02 0.03 0.03 0.04 0.04 0.03 0.04 0.04 0.04 0.05
(0.04) (0.04) (0.03) (0.03) (0.04) (0.03) (0.03) (0.03) (0.04) (0.05)

BLACK -0.19 -0.20 -0.17 -0.18
(0.04) (0.04) (0.04) (0.04)

HISP -0.08 -0.08 -0.07 -0.07
(0.04) (0.04) (0.03) (0.03)

λ -0.07 -0.12 -0.18 -0.08 -0.13 -0.19
(0.02) (0.03) (0.03) (0.02) (0.03) (0.03)

R-squared 0.36 0.36 0.71 0.71 0.71 0.38 0.38 0.71 0.71 0.71
Obs. 4360 4360 4360 4360 4360 4360 4360 4360 4360 4360

With Occupation

Notes : Standard errors in parantheses. All regressions include industry, region, and time dummies. Standard errors in columns [1], [2], [6] and [7] 
are clustered at the individual level. Standard errors in columns [3], [4], [5], [8], [9], and [10] are robust to heteroskedasticity. Standard errors in 
columns [4], [5], [9], and [10] account for generated regressors (the standard errors in columns [2] and [7] do not account for the estimation of the 
mills ratio).

Table 9: Wage Regressions with union effects (1981-1988)

Without Occupation
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