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1 Introduction

Wage differentials based on different levels of schooling or experience are well

documented in the labor economics literature. These are generally interpreted

as productivity differentials based on an investment model of human capital.

Models generally predict that wages increase in the early stages of a career until

they reach a plateau, afterwhich, they start do diminish due to human capital

depreciation (Mincer (1974)).

There are many reasons, however, to doubt that wage differentials always

correspond to differences in productivity. Alternative explanations include incen-

tive-compatible wages (Lazear (1979)), forced saving mechanisms (Frank and

Hutchens (1993) and Loewenstein and Sicherman (1991)), efficiency wages (Ak-

erlof and Yellen (1986)), minimization of turnover related costs (Salop and Salop

(1976)), specific training (Hutchens (1989)) or wage discrimination.1

Obtaining empirical evidence is thus important in order to know which the-

oretical model best describes the labor market. Moreover, some theoretical

models predict that productivity-wage differentials will vary by age. For ex-

ample, the employer might be using a deferred compensation package (through

which workers are paid below productivity at the beginning of their career and

above their productivity later) in order to elicit optimal worker effort. If such

a model is supported by the data, this would have important consequences for

the ability of a country facing an aging population to maintain competitiveness.

In one of the first detailed empirical studies on this topic, Medoff and Abra-

ham (1980) find evidence that the wages of older workers might be higher than

their productivity. Corroborating evidence has been found in numerous coun-

tries and for different professions using a variety of methodologies, including
1Discrepancies between wages and productivity could also arise due to labor market im-

perfections (for example due to minimum wages laws and trade unions, or oligopsonistic
wage-setting (Acemoglu and Pischke (1999)), etc.).
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Oster and Hamermesh (1998) for economists, Kotlikoff and Gokhale (1992) for

workers in the U.S. manufacturing industries, Fair (1994) for American ath-

letes, Crépon, Deniau, and Pérez-Duarte (2003) for France2 and Haegeland and

Klette (1999) for Norway. However, many other studies find the opposite result,

for example Mitchell (1990), Smith (1991), Hellerstein and Neumark (1995) and

Hellerstein, Neumark, and Troske (1999).

In this article, we estimate age-specific wage and productivity differentials

using Canadian data from the Workplace and Employee Survey (WES) 1999-

2003. The survey is designed to be representative of all firms operating in

Canada and contains detailed information on each firm’s production process,

organizational practices (and changes in such practices), and human resources

policies. Since the survey is linked, there is no need to assign workers to firms us-

ing statistical matching methods like Hellerstein, Neumark, and Troske (1999).

Also, because the survey is linked, we are able to obtain an external value for a

worker’s productivity, independent of his or her wage.

We use a methodology that is similar to Hellerstein, Neumark, and Troske

(1999) and Aubert and Crépon (2003). More specifically, we use data at the

workplace level to estimate production functions taking into account the age

composition of the firm’s workforce and use data at the employee level to esti-

mate wage equations distinguishing workers based on their age.

However, we improve on their methodologies along several lines. First, we

estimate wage equations taking into account both individual and firm unob-

served heterogeneity using a mixed model of wage determination (as suggested

by Abowd and Kramarz (1999b)). Second, we also control for unobserved time-

varying productivity shocks in the production function using a method suggested

by Levinsohn and Petrin (2003). Third, we look at the sensitivity of the wage

2Aubert and Crépon (2003) show that those results are sensitive to the way unobserved pro-
ductivity shocks are taken into account in the estimation method. Using a different method-
ology, they cannot reject the hypothesis that wages equal productivity.
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productivity-differentials to the measurement of the labor input by the number

of employees or hours of work. Finally, we test whether productivity differentials

are sensitive to the inclusion of workplace practices and organisational changes

in the production function.

We find that wage profiles are not very sensitive to the inclusion of unob-

served heterogeneity at the workplace and worker levels. We do find however

productivity profiles to be steeper once unobserved productivity shocks are con-

trolled for. Finally, while we find concave profiles for both wage and produc-

tivity, our results also show that the productivity of workers aged 55 and more

with at least an undergraduate degree is lower than their wages.

The plan of the rest of the paper is as follows. We first describe our method-

ology in section 2 and present the data and some descriptive statistics in the

following section. We describe the results in section 4 and conclude briefly in

section 5. All tables are in the appendix.

2 Methodology

Our methodology improves on previous work in two main ways (1) we take

into account firm unobserved heterogeneity (in addition to worker unobserved

heterogeneity) in the estimation of the wage equation and (2) we also take

into account unobserved time-varying productivity shocks using an estimation

method suggested by Levinsohn and Petrin (2003) in the estimation of the

production function. We describe both models in the following subsections.
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2.1 Production function

In order to estimate age-productivity profiles, first consider a Cobb-Douglas

production function

logQjt = α logLA
jt + β logKjt + γFjt + ujt (1)

where Q is the value added by firm j at time t, LA is an aggregate function

of different types of workers, K is the capital stock and u the error term. In

what follows, types of workers refer to workers of different age, gender and

education3. F is a matrix of workplace characteristics that are chosen in order

to make the specification in (1) as comparable as possible to the specification for

the wage equation. F therefore includes industry (13), region (6) and year (4)

dummies but also some other characteristics of the workforce like the proportion

of workers in each of six occupation categories and three ethnic origins, the

proportion of employees that are married, the proportion of immigrants and the

proportion of employees covered by a collective bargaining agreement. For each

workplace, we observe a representative sample of workers and we use this sample

to construct worker proportions mentioned above. We also take advantage of

the fact that the WES contains detailed data about workplace practices (6) and

organisational changes (14) by including these as controls in the production

function.

Let Ljtk be the number of workers of type k in firm j at time t, and φk

be their productivity. If we assume that workers of each type are perfectly
3It would be interesting to also distinguish workers based on other dimensions, for example

occupation. However, given the relatively small number of workers that was sampled from
each workplace, this would make our constructed proportions too imprecise. We therefore
stick to age, gender and education in the analysis that follows.
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substitutable, we can write

LA
jt =

K∑
k=0

λkLjtk = λj0Ljt +
K∑
k=1

(λjk − λj0)Ljtk (2)

where Ljt is the total number of workers in the firm λ0 the productivity of the

reference category of workers. If we assume that a worker has the same marginal

product accross firm4, we can rewrite equation (2) as

logLA
jt = log λ0 + logLjt + log

(
1 +

K∑
k=1

(
λk
λ0

− 1
)
Pjkt

)
(3)

where Pjkt is the ratio of the number of workers of type k over the total number

of employees. We then write the production function as

logQjt = α log λ0 + α logLjt +

+α log

(
1 +

K∑
k=1

(
λk
λ0

− 1
)
Pjkt

)
+ β logKjt + γFjt + ujt (4)

As Hellerstein, Neumark, and Troske (1999), we distinguish three age groups:

less then 35, between 35 and 55, and over 55. As to education, we distinguish

workers based on whether they have at least an undergraduate degree or not.

Therefore, workers are thus separated in 7 categories (men and women (M and

W); young, middle age or old (Y, P and O); with or without a degree (D, N)).

If we take young male workers without a degree as our reference category, we

can write:
4Hellerstein, Neumark, and Troske (1999) find that their productivity differentials esti-

mates are robust to that assumption.
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logLA
jt = log λ0 + logLjt +

+ log



1 + γMYD
LMY Djt

Ljt
+ γMPN

LMP Njt

Ljt
+ γMPD

LMP Djt

Ljt

γMON
LMONjt

Ljt
+ γMOD

LMODjt

Ljt
+

γWYN
LW Y Njt

Ljt
+ γWYD

LW Y Djt

Ljt
+

γWPN
LW P Njt

Ljt
+ γWPD

LW P Djt

Ljt
+

γWON
LW ONjt

Ljt
+ γWOD

LW ODjt

Ljt
+


(5)

where γ equal (λ/λ0 − 1). Since log(1 + x) ' x, we can approximate this by

logLA
jt = log λ0 + logLjt + γMYD

LMYDjt

Ljt
+

γMPN

LMPNjt

Ljt
+ γMPD

LMPDjt

Ljt
+

γMON

LMONjt

Ljt
+ γMOD

LMODjt

Ljt
+

γWYN

LWYNjt

Ljt
+ γWYD

LWYDjt

Ljt
+

γWPN

LWPNjt

Ljt
+ γWPD

LWPDjt

Ljt
+

γWON

LWONjt

Ljt
+ γWOD

LWODjt

Ljt
(6)

We call this specification the “complete” model. If we impose the following

restrictions: γMYD = γD, γMPN = γP , γMPD = γP ·γD, γMON = γO, γMOD =

γO ·γD, γWYD = γW , γWYD = γW ·γD, γWPN = γW ·γP , γWPD = γW ·γP ·γD,

γWON = γW · γO, γWOD = γW · γO · γD, we can write a more parsimonious

specification as

logLA
jt = log λ0 + logLjt + γW

LWjt

Ljt
+ γP

LPjt
Ljt

+ γO
LOjt
Ljt

+ γD
LDjt
Ljt

(7)

We call this last specification the “restricted” model. Substituting (2) in (4)
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gives us the restricted production function:

logQjt ' β0 + α logLjt + β logKjt + αγW
LWjt

Ljt
+ αγP

LPjt
Ljt

+

αγO
LOjt
Ljt

+ αγD
LDjt
Ljt

+ γFjt + ujt (8)

and the complete model follows from the substitution of (6) in (4) :

logQjt ' β0 + α logLjt + β logKjt + αγMYD

LMYDjt

Ljt
+

αγMPN

LMPNjt

Ljt
+ αγMPD

LMPDjt

Ljt
+

αγMON

LMONjt

Ljt
+ αγMOD

LMODjt

Ljt
+

αγWYN

LWYNjt

Ljt
+ αγWYD

LWYDjt

Ljt
+

αγWPN

LWPNjt

Ljt
+ αγWPD

LWPDjt

Ljt
+

αγWON

LWONjt

Ljt
+ αγWOD

LWODjt

Ljt
+ γFjt + ujt (9)

where β0 is a constant term that incorporates α log λ0 and δ is a vector of

parameters.

Note that coefficient estimates of equations (8) and (9) will be biased if input

choices in the production function are correlated to unobserved productivity

shocks (Griliches and Mairesse (1998)). Profit maximizing firms will respond

to a positive shock by increasing production, which requires more input. In

a similar manner, negative productivity shocks will lead firms to lower their

production level. Among the studies using production function to estimate

productivity differentials, only Aubert and Crépon (2003) take this problem

into account.5

Many methods have been proposed to overcome this problem. A popular
5However, Hellerstein, Neumark, and Troske (1999) do use instrumental variables for ma-

terials when estimating a production function on gross output.
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estimation strategy relies on system generalized method of moments methods as

first proposed by Blundell and Bond (1999). This is the method used by Aubert

and Crépon (2003) who find that taking into account unobserved productivity

shocks completely reverse the conclusion of Crépon, Deniau, and Pérez-Duarte

(2003). However, Gorodnichenko (2006) shows that the Blundell and Bond esti-

mator is in general weakly identified. A comparison of the coefficient estimates

between Aubert and Crépon (2003) and Crépon, Deniau, and Pérez-Duarte

(2003) shows, as expected, that the productivity differentials are less precisely

estimated in the former case.

To correct for endogenous input choices, we thus prefer to use a two-stages

estimation method suggested by Levinsohn and Petrin (2003). The idea of their

estimator is to invert the demand function for capital and materials to infer

a value for the unobserved productivity shock. The estimated productivity

shock is then used as a regressor in the production function. See Levinsohn

and Petrin (2003) for complete details. We note that the method assumes

that the inversion function is non stochastic. If this assumption is violated,

estimates will be biased (as argued by Bond and Soderborm (2005), Ackerberg,

Caves, and Frazer (2003) and Basu (1999)6). However, Gorodnichenko (2006)

provides Monte-Carlo evidence showing that the resulting bias is likely to be

smaller than the bias from OLS methods, at least in the case of returns to scale

estimation. With this caveat in mind, we present two sets of results using OLS

and Levinsohn and Petrin (2003) methods.

2.2 Wage equations

Turning to the estimation of the relationship between age and wages, it is pos-

sible to use two approaches: wage regressions at the worker level or payroll
6Alternative estimation strategies proposed by Ackerberg, Caves, and Frazer (2003) and

Olley and Pakes (1996) rely on similar assumptions and will share this bias.
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regressions. Crépon, Deniau, and Pérez-Duarte (2003) and Hellerstein, Neu-

mark, and Troske (1999) estimate payroll equations for two reasons (1) they

enable joint estimation of payroll and production function equations, and there-

fore yield a direct test of the hypothesis that wages equal productivity for each

age group; and (2) they argue that the simultaneous model minimizes the impact

of unobserved factors on productivity and wages.

However, an aggregate approach to estimate age-based wage-differentials

cannot take into account unobserved heterogeneity at the worker level. This

could be important if labor attachment varies by age according to unobserved

productivity differences between workers. Therefore, in the analysis that follows,

we will favor the disaggregated approach.7

In order to take into account both firm and workplace heterogeneity in our

model of wage determination, we use a two-factor analysis of covariance with

repeated observations along the lines of Abowd and Kramarz (1999b):

yit = µ+ xitβ + θi + ψj(i,t) + εit (10)

with

θi = αi + uiη (11)

where yit is the (log) wage rate observed for individual i = 1, ..., N , at time

t = 1, ..., Ti. Person effects are denoted by i, firm effects by j (as a function

of i and t), and time effects by t. µ is a constant, xit is a matrix containing

demographic information for employee i at time t8 as well as information con-

cerning the workplace j to which the worker i is linked. Although β and η can

be fixed or random, we assume they are fixed in our estimations. All other
7Thus, our results obtained from wage equations are not directly comparable to Hellerstein,

Neumark, and Troske (1999).
8In particular, we include information about age, gender and education in a consistent

manner with equations (8) and (9) in order to evaluate wage-productivity differentials.
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effects are random. Personal heterogeneity (θi) is a measure of unobserved (αi)

and observed (uiη) human capital and follows the worker from firm to firm.

Employer heterogeneity
(
ψj
)

is a measure of firm-specific compensation policies

and is paid to all workers of the same firm9. εit is the statistical residual.

In full matrix notation, we have

y = Xβ + Uη +Dα + Fψ + ε (12)

where: y is the N∗ ×1 vector of earnings outcomes; X is the N∗ × q matrix of

observable time-varying characteristics including the intercept; β is a q × 1 pa-

rameter vector; U is the N∗ × p matrix of time invariant person characteristics;

η is a p × 1 parameter vector; D is the N∗ × N design matrix of the unobserved

component for the person effect; α is the N ×1 vector of person effects; F is

the N∗ × J design matrix of the firm effects; ψ is the J ×1 vector of pure firm

effects; and ε is the N∗ ×1 vector of residuals.

Estimation of (12) on large-scale data sets has been achieved by Abowd,

Kramarz, and Margolis (1999) while treating firm and person effects as fixed.

Here we focus on a mixed-model specification for wage determination because

the sampling frame does not follow workers moving from firm to firm. When

this is the case, parametric assumptions embedded in the mixed model are nec-

essary to distinguish firm and individual unobserved heterogeneity. Therefore,

identification of individual and firm random effects comes from the longitudinal

and linked aspects of the data as well as from distributional assumptions. For

individual effects, identification comes from the repeated observations on each

individual over time. Identification of firm effects comes from repeated obser-

vations on workers from the same firm. Our choice for a mixed specification

is done without loss of generality since it can be shown that the least squares
9Firm unobserved heterogeneity in productivity is a common factor in many models of

wage dispersion, see Mortensen (2003).
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estimates of the fixed effects are a special case of the mixed model estimates

(see Abowd and Kramarz (1999b)).

We thus assume α and ψ to be distributed normally :


α

ψ

ε

 ˜ N




0

0

0

 ,

σ2
αIN 0 0

0 σ2
ψIJ 0

0 0 Λ


 (13)

where

Λ =



Σ1 0 ... 0

... ... ...

0 ... Σi ... 0

... ... ...

0 ... 0 ΣN


and

Σi = V (εi)

with

Ω =

 σ2
αIN 0

0 σ2
ψIJ

 . (14)

is the matrix of variance components.

Parameters estimates are obtained in two steps. We first use Restricted

Maximum Likelihood (REML) methods to get parameter estimates for the vari-

ance components in (13). We then solve the mixed equations to get estimates

for the other parameters in the full model (12). These steps are discussed in

details in Abowd and Kramarz (1999b). However, two important points should

be made about the estimates for
(
β̂, η̂, α̂, ψ̂

)
. First, mixed model solutions(

β̂, η̂, α̂, ψ̂
)

converge to the least squares solutions as |Ω| → ∞ (if Λ = σ2
εIN∗).

In this sense, the least squares solutions are a special case of the mixed model
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solutions. Second, unlike the usual random effects specification considered in

the econometric literature, (12) and (13) do not assume that the random effects

are orthogonal to the design (X and U) of the fixed effects (β and η), that is

we do not assume X ′D = X ′F = U ′D = U ′F = 0. If this were the case, we

could solve for β̂ and η̂ independently of α̂ and ψ̂.

3 Data

We use data from the WES conducted by Statistics Canada annually from

the year 1999 to 200310. The survey is both longitudinal and linked in that

it documents the characteristics of workers and workplaces over time11. The

target population for the “workplace” component of the survey is defined as the

collection of all Canadian establishments who paid employees in March of the

year of the survey. The sample comes from the “Business registry” of Statistics

Canada, which contains information on every business operating in Canada.

The survey, however, does not cover the Yukon, the Northwest Territories and

Nunavut. Firms operating in fisheries, agriculture and cattle farming are also

excluded.

For the “employee” component, the target population is the collection of all

employees working, or on paid leave, in the workplace target population. Em-

ployees are sampled from an employees list provided by the selected workplaces.

For every workplace, a maximum number of 24 employees is selected and for

establishments with less than 4 employees, all employees are sampled. In the

case of total non-response, respondents are withdrawn entirely from the survey

and sampling weights are recalculated in order to preserve representativeness of

the sample. The WES selects new employees and workplaces in odd years (at
10This is a restricted-access data set available in Statistics Canada Research Data Centers

(RDC).
11Abowd and Kramarz (1999a) classify WES as a survey in which both the sample of work-

places and the sample of workers are cross-sectionally representative of the target population.
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every third year for employees and at every fifth year for workplaces). Hence,

the survey can only be representative of the whole target population during

these re-sampling years.

One limitation of the WES is that the survey does not incorporate a measure

of the firm’s capital stock. However, Turcotte and Rennison (2003) also use the

WES to estimate production function and solve this problem by using industry

average capital stock as a proxy for the individual firm’s capital stock. We also

use this approach in this paper. Industry average capital stocks come from Table

310002 of CANSIM II at Statistics Canada. These capital stocks correspond

to net geometric end of year stock for all capital accounts. We then divide

these industry averages by the number of firms in each industry to obtain an

individual firm’s capital stock. We discuss the likely impact of this imputation

method below. Table 1 and 2 present descriptive statistics for all variables used

in our analysis. Note that it is not possible for confidentiality reasons to show

minima and maxima.

4 Results

Table 3 summarizes wage-productivity differentials for the restricted model. The

impact of age on wage is shown in the first column while the second and third

column show the impact of age on productivity, distinguishing between whether

we measure the labor input by the proportion of workers in each age group or

the proportion of hours worked by workers in each age group. The first panel

shows OLS results while the second panel shows coefficient estimates obtained

from the (preferred) mixed model for the wage equation and Levinsohn and

Petrin (2003)’s method for the production function.

Our preferred estimates show that both wage and productivity profiles are

concave: wage and productivity are both at their highest for the 35-55 age
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group and diminish afterward. However, the degree of concavity is sensitive to

the way we estimate the model: productivity profiles are steeper if we measure

the labor input by the number of employees in each group and wage profiles are

also steeper when using OLS. This is probably explained by the fact that more

productive workers (due to unobserved reasons) are more likely to stay in the

labor force after age 55, but are working fewer hours. It is worth noting that

productivity-age profiles do not seem very sensitive to the estimation method

we use12.

Comparing wage and productivity differentials, we cannot reject the hypoth-

esis that wages are equal to productivity. While workers aged between 35 and

55 earn 13% more on average than younger workers, we estimate their produc-

tivity to be 15% higher. Similarly, older workers earn on average 12% more

but are 13% more productive. Note that we observe a wage-productivity gap

when measuring the labor input by the number of workers in each age group.

This underlines the importance of correctly measuring labor in the production

function.

To assess the robustness of those results, we now turn to coefficient estimates

from the complete model where we interact age with gender and education.

These results are presented separately for men without (Table 4) or with a

degree (Table 5) and women without (Table 6) and without a degree (Table 7).

Overall, we should note that standard errors for the age-productivity profiles

are much higher than in the restricted model. This is due to the fact that our

constructed proportion of workers for each type is less precise due to the small

sample of workers selected from each workplace.

Still focusing on our preferred estimates (from the mixed model and LP

estimation method with hours) and turning first to men without a degree, we

12Also, we find those productivity profiles not to be sensitive to the inclusion of explicit
controls for workplace practices and organisational changes.
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cannot reject, again, the hypothesis that wages are equal to productivity. While

the wages of men aged between 35 and 55 are 13% higher than men aged below

35, their productivity is similarly 15% higher. Productivity of the workers aged

55 and more seems to be slightly higher than their wage (15% versus 10%) but

the size of the standard error on the productivity differentials (about 5%) does

not allow us to conclude that there is a wage-productivity gap.

However, the coefficient estimates for men with a degree tell a completely

different story. We estimate that wages of the workers aged 55 and more are

39% higher than wages of the reference category while their productivity is only

8% higher. This is the opposite of what we observe for workers aged 35 and

less. This pattern of wage-productivity differentials is thus consistent with an

incentive-compatible wages model where employer defer compensation in order

to elicit the optimal effort level from workers (see for example Lazear (1979)). It

is interesting to note that these differentials appear only in the case of workers

with higher level of education where we expect effort levels to be harder to

monitor.

A likely reason why we reach a different conclusion than Hellerstein, Neu-

mark, and Troske (1999) is that their wage-productivity comparisons are based

on age-wage differentials estimated from a payroll regression. In fact, if we

estimate simple payroll regression by OLS (not shown), we get similar differ-

entials to theirs. This underlines the importance of correctly accounting for

unobserved worker and workplace heterogeneity in order to get unbiased age-

wage profiles. Our results are similar than Aubert and Crépon (2003) for the

restricted model but since they do not interact age with gender and education,

we cannot compare our results for the complete model where we do observe a

differential.

Tables 6 and 7 present wage-productivity differentials for women, depending
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on whether they possess at least an undergraduate degree or not. While results

for women without a degree are similar to men, in the case of women with a

degree, we cannot reject the hypothesis that wages are equal to productivity.

Unfortunately, this seems to be mostly due to the fact that productivity differ-

entials are estimated with much less precision. We note again the importance

of taking into account unobserved productivity shocks and measuring the labor

input by hours of work: results using OLS show a very large wage-productivity

gap for women aged 35 and less. However, this gap mostly disappears once we

control for such factors.13

4.1 Capital Stock

The estimated coefficient on capital stock (not shown) is close to zero in all

specifications. This is common in production function estimation using firm-

level micro survey data. Aubert and Crépon (2003), for instance, report capital

shares of between 0.13–0.14 and Hellerstein, Neumark, and Troske (1999), report

an even lower coefficient of 0.05.

That being said, there are at least two explanations for our low capital stock

parameter estimates. First, a large proportion of our sample operates in the

service sector, in which physical capital does not play the type of role it would in,

say, the manufacturing sector. Second – and this is also a common problem – our

imputed capital stock measure is likely to be subject to measurement error. To

assess the extent of the potential bias introduced by this problem, we reestimate

the model omitting the capital stock variable entirely. The age-productivity

differentials were virtually identical in the two models. We conclude from this

that our productivity differential estimates are robust to our measure of the

capital stock.
13Hellerstein, Neumark, and Troske (1999) also estimated a very large gap for women aged

35 and less and made the hypothesis that this was due to weaker labor attachment. Our
results confirm this hypothesis.
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5 Conclusion

In this paper, we provide new evidence on the relationship between wages and

productivity across the lifecycle. We use linked employer-employee data to

estimate wage equations controlling for the age of the worker and estimate pro-

duction functions that depend on the age structure of each firm’s workforce,

and compare results from both specifications. Our framework is thus similar

to Hellerstein, Neumark, and Troske (1999) and Aubert and Crépon (2003).

However, we improve the estimation of wage equations by taking into account

both individual and firm unobserved heterogeneity using a mixed model of wage

determination (as suggested by Abowd and Kramarz (1999b)). We also con-

trol for unobserved time-varying productivity shocks in the production function

using a method suggested by Levinsohn and Petrin (2003).

The data used come from the WES 1999-2003 from Statistics Canada. Since

the survey is linked, there is no need to assign workers to firms using statistical

matching methods like to Hellerstein, Neumark, and Troske (1999). Moreover,

the survey is designed to be representative of all firms operating in Canada.

We have information on each workplace’s production process, organizational

practices (and changes in such practices), and human resources policies.

We find evidence that wages of men with at least an undergraduate degree

aged 35 and less are lower than their productivity while the reverse is true for

men aged 55 and more, a pattern coherent with deferred compensation models.

This is a particularly worrying results with respect to the current aging of the

workforce. Moreover, the presence of back loading of compensation for this

group is likely to translate into fewer hiring opportunities for older workers. In

fact, building on the recognition that many workplaces employ older workers

but do not hire older workers, many studies (for example Daniel and Heywood

(2007) and Hutchens (1988)) find such a link between deferred compensation



19

and hiring opportunities.

We should note that in all our specifications, age-productivity differentials

are estimated with much less precision than age-earning differentials. This is

probably due to the fact that the different age groups in the production function

are computed using a sample of workers from each firm. One should also note

that we distinguish workers only based on age, gender and education. Another

important distinction is occupation. For example, it might be important to dis-

tinguish workers in managerial positions from workers in production positions.

However, our sample of workers from each firm is not big enough to allow such

fine distinctions14.

Finally, all results depend on whether our method for the imputation of the

capital stock is realistic or not. Having the right capital stock is important be-

cause productivity differentials are computed based on parameters for different

age group and on the coefficient on labor (α) in the production function. A bias

in this coefficient will translate to a bias in our age-productivity differentials.
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Table 1: Descriptive statistics - Employees
1999

Mean Std Dev
ln(Wage) 2.778 0.521
Highest completed degree

Less then high school 0.107 0.309
High school 0.175 0.380
Industry training 0.053 0.162
Trade or vocational diploma 0.088 0.283
Some college 0.104 0.305
Completed college 0.181 0.385
Some university 0.077 0.266
Teacher’s college 0.002 0.049
University certificate 0.018 0.132
Bachelor degree 0.130 0.337
University certificate (> bachelor) 0.019 0.135
Master’s degree 0.031 0.174
Degree in medicine, dentistry, etc. 0.008 0.092
Earned doctorate 0.006 0.078

Experience 16.167 10.714
Seniority 8.517 8.206
Black 0.011 0.104
Other races 0.280 0.449
Women 0.521 0.500
Married 0.566 0.496
Immigrant 0.175 0.380
Years since immigration 3.988 10.181
Union 0.279 0.449
Ptime 0.051 0.220
Occupations

Manager 0.151 0.358
Professional 0.162 0.368
Technician 0.390 0.488
Marketing/sales 0.084 0.277
Clerical/administrative 0.140 0.347
Production w/o certificate 0.074 0.262

Number of employees: 23540
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Table 2: Summary statistics - Workplaces
1999

Mean Std Dev.
Value added ($) 1 235 394 2.12E-07
Number of employees 12.825 54.418
Capital stock ($) 46749 71770
Gross payroll ($) 406127 2759789
Union 0.046 0.181
Labor force
Proportion of men 0.400 0.404
Proportion aged between 35 and 55 0.478 0.388
Proportion aged 55 and over 0.211 0.362
Proportion with a degree 0.244 0.375
Number of workplaces: 5499

Table 3: Wage-productivity differentials - Restricted model - 99-03
OLS

Wage Prod. Prod.(Hours)
Coef. Ratio Coef. Ratio Coef. Ratio

[35 ≤ Age < 55] 0.147*** 1.16 0.124** 1.13 0.158*** 1.16
(0.006) (0.051) (0.051)

[55 ≤ Age] 0.092*** 1.10 -0.003 1.00 0.167** 1.17
(0.009) (0.060) (0.071)

Mixed and LP
Wage Prod. Prod.(Hours)

[35 ≤ Age < 55] 0.125*** 1.13 0.131*** 1.15 0.136*** 1.15
(0.003) (0.029) (0.024)

[55 ≤ Age] 0.110*** 1.12 -0.089*** 0.90 0.113** 1.13
(0.004) (0.033) (0.049)

Reference category: [Age < 35]
Statistically significant at: *=10%; **=5%; ***=1%
Both equations include controls for industry (14), year (5) and region (7).
Wage equation includes controls for union status, part time, black, other
race, married, immigrant, years since migration, occupations (6) and a
constant. N=99425.
Production function includes controls for proportion of workers in each
of six occupation category and three ethnic origins, the proportion
of employees that are married, of immigrants, and of employees covered
by an union, controls for organisation change and workplace practices.
It also includes a constant, the log number of employees and the log of
the imputed capital stock. N=20593 (OLS), N=20225 (LP).
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Table 4: Differentials - [Men] and [No degree]
OLS

Wage Prod. Prod. (Hours)
Coef. Ratio Coef. Ratio Coef. Ratio

[35 ≤ Age < 55] 0.175*** 1.19 0.043 1.04 0.011 1.01
(0.010) (0.066) (0.069)

[55 ≤ Age] 0.095*** 1.10 0.135 1.14 0.271*** 1.30
(0.015) (0.105) (0.070)

Mixed and LP
Wage Prod. Prod. (Hours)

[35 ≤ Age < 55] 0.122*** 1.13 0.182*** 1.20 0.135*** 1.15
(0.004) (0.042) (0.037)

[55 ≤ Age] 0.098*** 1.10 0.194*** 1.22 0.135** 1.15
(0.006) (0.067) (0.063)

Reference category: [Age < 35] and [Men] and [No degree]
Statistically significant at: *=10%; **=5%; ***=1%
Both equations include controls for industry (14), year (5) and region (7).
Wage equation includes controls for union status, part time, black, other
race, married, immigrant, years since migration, occupations (6) and a
constant. N=99425.
Production function includes controls for proportion of workers in each
of six occupation category and three ethnic origins, the proportion
of employees that are married, of immigrants, and of employees covered
by an union, controls for organisation change and workplace practices.
It also includes a constant, the log number of employees and the log of
the imputed capital stock. N=20593 (OLS), N=20225 (LP).
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Table 5: Differentials - [Men] and [Degree]
OLS

Wage Prod. Prod. (Hours)
Coef. Ratio Coef. Ratio Coef. Ratio

[Age < 35] 0.207*** 1.23 0.540*** 1.56 0.463*** 1.48
(0.015) (0.124) (0.131)

[35 ≤ Age < 55] 0.394*** 1.48 0.449*** 1.47 0.388*** 1.40
(0.015) (0.099) (0.100)

[55 ≤ Age] 0.397*** 1.49 0.031 1.03 -0.029 0.97
(0.028) (0.199) (0.208)

Mixed and LP
Wage Prod. Prod. (Hours)

[Age < 35] 0.108*** 1.11 0.469*** 1.52 0.391*** 1.43
(0.007) (0.081) (0.068)

[35 ≤ Age < 55] 0.304*** 1.36 0.535*** 1.60 0.452*** 1.50
(0.006) (0.071) (0.056)

[55 ≤ Age] 0.331*** 1.39 0.166 1.05 0.072 1.08
(0.011) (0.146) (0.151)

Reference category: [Age < 35] and [Men] and [No degree]
Statistically significant at: *=10%; **=5%; ***=1%
Both equations include controls for industry (14), year (5) and region (7).
Wage equation includes controls for union status, part time, black, other
race, married, immigrant, years since migration, occupations (6) and a
constant. N=99425.
Production function includes controls for proportion of workers in each
of six occupation category and three ethnic origins, the proportion
of employees that are married, of immigrants, and of employees covered
by an union, controls for organisation change and workplace practices.
It also includes a constant, the log number of employees and the log of
the imputed capital stock. N=20593 (OLS), N=20225 (LP).
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Table 6: Differentials - [Women] and [No degree]
OLS

Wage Prod. Prod. (Hours)
Coef. Ratio Coef. Ratio Coef. Ratio

[Age < 35] -0.105*** 0.90 -0.340*** 0.65 -0.373*** 0.61
(0.011) (0.083) (0.088)

[35 ≤ Age < 55] -0.010 0.99 -0.063 0.93 -0.081 0.92
(0.010) (0.065) (0.070)

[55 ≤ Age] -0.052*** 0.95 -0.001 1.00 -0.016 0.98
(0.014) (0.107) (0.110)

Mixed and LP
Wage Prod. Prod. (Hours)

Coef. Ratio Coef. Ratio Coef. Ratio
[Age < 35] -0.117*** 0.89 -0.113** 0.87 -0.164*** 0.82

(0.005) (0.050) (0.037)
[35 ≤ Age < 55] -0.027*** 0.97 0.058 1.06 0.010 1.01

(0.005) (0.041) (0.036)
[55 ≤ Age] -0.041*** 0.96 0.082 1.09 0.033 1.04

(0.007) (0.078) (0.070)
Reference category: [Age < 35] and [Men] and [No degree]
Statistically significant at: *=10%; **=5%; ***=1%
Both equations include controls for industry (14), year (5) and region (7).
Wage equation includes controls for union status, part time, black, other
race, married, immigrant, years since migration, occupations (6) and a
constant. N=99425.
Production function includes controls for proportion of workers in each
of six occupation category and three ethnic origins, the proportion
of employees that are married, of immigrants, and of employees covered
by an union, controls for organisation change and workplace practices.
It also includes a constant, the log number of employees and the log of
the imputed capital stock. N=20593 (OLS), N=20225 (LP).
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Table 7: Differentials - [Women] and [Degree]
OLS

Wage Prod. Prod. (Hours)
Coef. Ratio Coef. Ratio Coef. Ratio

[Age < 35] 0.066*** 1.07 0.008 1.08 -0.084 0.91
(0.015) (0.133) (0.141)

[35 ≤ Age < 55] 0.266*** 1.30 0.199 1.21 0.166 1.17
(0.013) (0.128) (0.116)

[55 ≤ Age] 0.190*** 1.21 0.259 1.27 0.178 1.18
(0.029) (0.177) (0.168)

Mixed and LP
Wage Prod. Prod. (Hours)

Coef. Ratio Coef. Ratio Coef. Ratio
[Age < 35] 0.003*** 1.00 0.206*** 1.23 0.161* 1.18

(0.007) (0.073) (0.090)
[35 ≤ Age < 55] 0.162*** 1.18 0.354*** 1.39 0.271*** 1.30

(0.007) (0.073) (0.070)
[55 ≤ Age] 0.139*** 1.15 0.269 1.30 0.218 1.24

(0.014) (0.176) (0.193)
Reference category: [Age < 35] and [Men] and [No degree]
Statistically significant at: *=10%; **=5%; ***=1%
Both equations include controls for industry (14), year (5) and region (7).
Wage equation includes controls for union status, part time, black, other
race, married, immigrant, years since migration, occupations (6) and a
constant. N=99425.
Production function includes controls for proportion of workers in each
of six occupation category and three ethnic origins, the proportion
of employees that are married, of immigrants, and of employees covered
by an union, controls for organisation change and workplace practices.
It also includes a constant, the log number of employees and the log of
the imputed capital stock. N=20593 (OLS), N=20225 (LP).




