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ABSTRACT 
 

Quantile Treatment Effects in the Regression 
Discontinuity Design 

 
This paper shows nonparametric identification of quantile treatment effects (QTE) in the 
regression discontinuity design (RDD) and proposes simple estimators. Quantile treatment 
effects are a very helpful tool to characterize the effects of certain interventions on the 
outcome distribution. The distributional impacts of social programs such as welfare, 
education, training programs and unemployment insurance are of large interest to 
economists. 
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1 Introduction

In recent years, the regression discontinuity design (RDD) has received tremendous attention in

applied economic research.1 All these applications focus on the estimation of average treatment

e¤ect. In many research areas, one is not only interested in mean impacts, but also in the

distributional consequences of treatment interventions. In the �eld of education (e.g. Angrist and

Lavy (1999), Puhani and Weber (2007)), educational inequality e.g. in cognitive achievement is

of large public interest. When examining the e¤ects of training (e.g. Black, Galdo, and Smith

(2005)), policy makers are often more interested in the e¤ects at the lower quantiles than at

the upper quantiles. When analyzing the e¤ects of unemployment insurance on unemployment

durations (e.g. Lalive (2008)), the distribution of the unemployment durations is of interest, e.g.

the risk of becoming long-term unemployed.2

Quantile treatment e¤ects (QTE) are a convenient tool to characterize the potentially het-

erogenous impacts of variables on di¤erent points of an outcome distribution. In this paper we

show how QTE can be identi�ed nonparametrically in the regression discontinuity design and

propose nonparametric estimators.3 We also discuss the identi�cation of the potential outcome

distributions.

2 Identi�cation of QTE in the RDD

Following the setup of Hahn, Todd, and van der Klaauw (2001), let Di 2 f0; 1g be a binary

treatment variable, let Y 0i , Y
1
i be the individual potential outcomes. The potential outcomes

as well as the treatment e¤ect are permitted to vary freely across individuals, i.e. no constant

treatment e¤ect is assumed. In the examples mentioned, D may represent school quality, class

1For an incomplete list see e.g. Angrist and Lavy (1999), Battistin and Rettore (2002), Battistin and Rettore

(2008), Black (1999), Black, Galdo, and Smith (2005), Black, Jang, and Kim (2006), Buddelmeyer and Skou�as

(2003), Brügger, Lalive, and Zweimüller (2008), Chay and Greenstone (2005), Chay, McEwan, and Urquiola (2005),

DiNardo and Lee (2004), Fredriksson and Öckert (2006), Forslund and NordströmSkans (2006), Imbens and Lemieux

(2008), Jacob and Lefgren (2004a), Jacob and Lefgren (2004b), Gormley and Phillips (2005), Guryan (2001), Lalive

(2008), Lalive, Wüllrich, and Zweimüller (2008), Leuven, Lindahl, Oosterbeek, and Webbink (2007), Matsudaira

(2008), NordströmSkans and Lindqvist (2005), Öckert (2008), Puhani and Weber (2007), van der Klaauw (2002),

van der Klaauw (2008) and the special issue of the Journal of Econometrics 2008.
2Note that this distribution also identi�es the hazard rates.
3 In future work we are going to derive the asymptotic properties of these estimators.
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size, participation in training etc. Let Zi be a variable that in�uences the treatment variable in

a discontinuous way, e.g. total school enrollment, pro�ling risk score etc.

In the literature, often two di¤erent designs are examined: the sharp design where Di changes

for everyone at a known threshold z0, e.g.

Di = 1(Zi � z0). (1)

In this sharp design, all individuals change programme participation status exactly at z0. The

fuzzy design, on the other hand, permits D to also depend on other (unobserved) factors but

assumes that the treatment probability changes discontinuously at z0:

lim
"!0

E [DjZ = z0 + "]� lim
"!0

E [DjZ = z0 � "] 6= 0. (2)

This fuzzy design includes the sharp design as a special case when the left hand side of (2) is

equal to one. Therefore the following discussion focusses on the more general fuzzy design.4

Identi�cation of treatment e¤ects requires two assumptions. First, the conditional distribution

of Y 0 has to be continuous at z0. Furthermore, an assumption on the treatment e¤ect is required.

Hahn, Todd, and van der Klaauw (2001) consider two di¤erent versions: In the �rst, they assume

that the treatment e¤ect is independent of D conditional on Z being near z0. This is some kind

of selection on observables assumption. As an alternative, they consider an instrumental variable

type assumption, which assumes for the local compliers that the potential outcomes and the

potential treatment status are independent of Z, near z0. In the sharp design, both assumptions

are equivalent. In the fuzzy design, the IV type assumption is much more frequently used in

applications. We therefore focus on the IV type approach.

For stating the identi�cation results, it is helpful to introduce more precise notation �rst.

Let N" be an " neighbourhood about z0 and partition N" into N+
" = fz : z � z0; z 2 N"g and

N�
" = fz : z < z0; z 2 N"g. According to their reaction to the instrument z over N" we can
4The fuzzy design may apply when the treatment decision contains some element of discretion. Case workers

may have some discretion about whom they o¤er a programme, or they may base their decision also on criteria

that are unobserved to the econometrician.
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partition the population into �ve subpopulations:

Ti;" = a if Di(z) = 1 8z 2 N�
" and Di(z) = 1 8z 2 N+

"

Ti;" = n if Di(z) = 0 8z 2 N�
" and Di(z) = 0 8z 2 N+

"

Ti;" = c if Di(z) = 0 8z 2 N�
" and Di(z) = 1 8z 2 N+

"

Ti;" = d if Di(z) = 1 8z 2 N�
" and Di(z) = 0 8z 2 N+

"

Ti;" = i if Di(z) is nonconstant over N�
" or over N+

" .

These subpopulations are a straightforward extension of the LATE concept of Imbens and Angrist

(1994). The �rst group contains those units that will always be treated, the second contains those

that will never be treated, and the third and fourth group contains the units that are treated

only on one side of z0. The �fth group (labelled inde�nite) contains all units that switch at other

values than z0 and that react non-monotonously, e.g. they may �rst switch from D = 0 to 1 and

then back for increasing values of z. We will assume that in the limit only the �rst three groups

exist, and that the fraction of compliers is positive. Note that in the sharp design, everyone is a

complier for "! 0.

Assumption 1:

i) Existence of compliers lim
"!0

Pr(T" = cjZ = z0) > 0

ii) Monotonicity lim
"!0

Pr (T" = tjZ 2 N") = 0 for t 2 fd; ig

iii) Independent IV lim
"!0

Pr (T" = tjZ 2 N+
" )� Pr (T" = tjZ 2 N�

" ) = 0 for t 2 fa; n; cg

iv) IV Exclusion lim
"!0

FY 1jZ2N+
" ;T"=t(u)� FY 1jZ2N�

" ;T"=t(u) = 0 for t 2 fa; cg

lim
"!0

FY 0jZ2N+
" ;T"=t(u)� FY 0jZ2N�

" ;T"=t(u) = 0 for t 2 fn; cg

v) Density at threshold FZ(z) is di¤erentiable at z0 and fZ(z0) > 0

In words, Assumption 1 requires the existence of some compliers and the absence of de�ers

near z0. In addition, the potential outcomes and the type are jointly independent of Z near z0,

that is (Y 0; Y 1; T )??Z in a neighbourhood of z0.

De�ne the � -th quantile of Y as Q�Y = inf fy : FY (y) � �g. De�ne Q�Y djc = lim"!0Q
�
Y djZ2N";T"=c

as the limit for the local compliers. The quantile treatment e¤ect (QTE) for the compliers is then

de�ned as

��QTE = Q
�
Y 1jc �Q

�
Y 0jc.
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The following theorem shows that Q�Y 1jc and Q
�
Y 0jc are identi�ed under Assumption 1 by a very

simple weighted quantile regression with weights 1 and �1. De�ne I+ = 1 (Z � z0) and I� =

1� I+.

Theorem 1 (Quantiles of potential outcomes) Under Assumption 1, the quantiles of

the potential outcomes for the local compliers are identi�ed as the solution of the following

optimization problem

Q�Y 1jc = lim
"!0

argmin
q

E
�
�� (Y � q)

�
2I+ � 1

�
jZ 2 N"; D = 1

�
Q�Y 0jc = lim

"!0
argmin

q
E
�
�� (Y � q)

�
2I� � 1

�
jZ 2 N"; D = 0

�
where �� (u) = u � f� � 1 (u < 0)g. (All proofs are given in the appendix.)

Based on this representation, a straightforward estimator of the quantiles is obtained as

Q̂�Y 1jc = argmin
q

X
i:Di=1

�� (Yi � q) (2 � 1 (Zi � z0)� 1)K
�
Zi � z0
h

�
Q̂�Y 0jc = argmin

q

X
i:Di=0

�� (Yi � q) (2 � 1 (Zi � z0)� 1)K
�
Zi � z0
h

�
,

where K is a kernel function. These are simple univariate quantile regression with weights 1 and

�1, multiplied with kernel weights. Note that Q̂�Y 1jc and Q̂
�
Y 0jc are estimated from independent

observations, since the former uses only the Di = 1 observations and the latter only the Di = 0

observations.

Despite its simplicity one should note that the objective function of the weighted quantile

regression estimator is not convex since some of the weights are negative. This complicates the

optimization problem a little because local optima could exist and conventional linear program-

ming algorithms cannot be used. The problem is, however, not very serious because we have two

one-dimensional estimation problems in the treated and non-treated populations. In addition,

the objective function can change only at the values of Yi observed in the sample such that only

n weighted means need to be computed to �nd the global minimum.

We explore now an alternative approach that may be fruitful when we want to estimate many

(or all) QTE. To this end we estimate the cumulative distribution function. De�ne

FY djc(u) = lim
"!0

FY djZ2N";T"=c(u).
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Theorem 2 shows that the distribution functions of the potential outcomes for compliers are

identi�ed by the ratio of two weighted means.

Theorem 2 (Distribution of potential outcomes) Under Assumption 1, the distribution of

the potential outcomes for the local compliers are identi�ed as

FY 1jc(u) = lim
"!0

E [1 (Y � u) � (2I+ � 1) jZ 2 N"; D = 1]

E [2I+ � 1jZ 2 N"; D = 1]

FY 0jc(u) = lim
"!0

E [1 (Y � u) � (2I� � 1) jZ 2 N"; D = 0]

E [2I� � 1jZ 2 N"; D = 0]
.

Note that in the sharp design, everyone is a complier at z0, such that the cdf of the potential

outcomes in the population is identi�ed in this case as

lim
"!0

FY 1jZ2N"(u) = lim
"!0

E [1 (Y � u) jZ 2 N"; D = 1]

lim
"!0

FY 0jZ2N"(u) = lim
"!0

E [1 (Y � u) jZ 2 N"; D = 0] .

Based on Theorem 2, straightforward estimators of the distribution functions are obtained as

F̂Y 1jc (u) =

P
i:Di=1

1 (Yi � u) (2 � 1 (Zi � z0)� 1)K
�
Zi�z0
h

�
P

i:Di=1

(2 � 1 (Zi � z0)� 1)K
�
Zi�z0
h

� ,

F̂Y 0jc (u) =

P
i:Di=0

1 (Yi � u) (2 � 1 (Zi � z0)� 1)K
�
Zi�z0
h

�
P

i:Di=0

(2 � 1 (Zi � z0)� 1)K
�
Zi�z0
h

� .

The estimated distribution function is well-behaved for all types of outcome variables while the

quantiles identi�ed in Theorem 1 will be well-behaved only when Y is continuously distributed.

Therefore, Theorem 2 is interesting for discrete or mixed outcome variables. Furthermore, since

we have a closed-form solution for the distribution function, its estimation may be a �rst step

towards the estimation of the QTE. The negativity of some of the weights, however, implies that

the estimated distribution function will not be monotonously increasing in �nite samples. This

problem can be solved by monotonizing the estimated distribution function using the method of

Chernozhukov, Fernandez-Val, and Galichon (2007) and �nally inverting it to obtain the quantiles.
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3 QTE with estimated threshold probability

In the preceding section we have used the fact that lim
"!0

Pr (Z � z0jZ 2 N") = 1
2 . This result

follows by di¤erentiability of FZ at z0 and led to the very simple formulae of Theorems 1 and 2.

In small samples, however, we may not have very many data points available at z0 and therefore

have to rely on a larger smoothing window. In this case, the number of data points could be

asymmetric around z0, and we could obtain more precise estimates by estimating the probability

of being above the threshold (within the smoothing area). De�ne p" = Pr (Z � z0jZ 2 N") for a

given ".

Theorem 3 (Quantiles of potential outcomes with estimated threshold probability)

Under Assumption 1, the quantiles of the potential outcomes for the local compliers are identi�ed

as

Q�Y 1jc = lim
"!0

argmin
q

E

�
�� (Y � q)

I+ � p"
p" (1� p")

jZ 2 N"; D = 1

�
Q�Y 0jc = lim

"!0
argmin

q
E

�
�� (Y � q)

I+ � p"
p" (1� p")

jZ 2 N"; D = 0

�
.

This result simpli�es to Theorem 1 by using that lim
"!0

p" =
1
2 . The representation of Theorem

3, nevertheless, suggests a di¤erent estimation strategy where one plugs in an estimate of

Pr (Z � z0jZ 2 N") instead of the value 1
2 . Using the estimated p" often performed better in

Monte Carlo simulations in small samples than when using lim
"!0

p" =
1
2 . In some sense this result

appears to be related to the well-known result in the propensity score matching literature that

estimators which use the estimated propensity score are more e¢ cient than estimators that use

the true propensity score. This result might not be directly transferable here, though, since we

are in a nonparametric context.

For completeness, we give the identi�cation results for the distribution function.

Theorem 4 (Distribution of potential outcomes with estimated threshold probability)

Under Assumption 1, the distribution of the potential outcomes for the local compliers are
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identi�ed as

FY 1jc(u) = lim
"!0

E
h
1 (Y � u) I+�p"

p"(1�p") jZ 2 N"; D = 1
i

E
h
I+�p"
p"(1�p") jZ 2 N"; D = 1

i
FY 0jc(u) = lim

"!0

E
h
1 (Y � u) I+�p"

p"(1�p") jZ 2 N"; D = 0
i

E
h
I+�p"
p"(1�p") jZ 2 N"; D = 0

i .

4 QTE in RDD with covariates

In this section, we extend the regression discontinuity design to incorporate additional covariates

X in a fully nonparametric way, and suppose that Assumption 1 holds conditionally on X.

There are several reasons why one might want to control for X. To mention a few: Covariates

can help to eliminate small sample biases, especially if the number of observations close to the

threshold z0 is rather small such that one also has to include observations in the estimation process

that are further apart. This point is emphasized particularly in Black, Galdo, and Smith (2005).

We also permit that the density fXjZ is discontinuous at z0. This can occur when the variable Z

itself is confounded, e.g. in a situation of dynamic treatment assignment as in van der Klaauw

(2008). It can also occur when di¤erent data collection schemes have been used for individuals

above the threshold z0 versus those below z0, e.g. if those above z0 have been hospitalized while

those below z0 received outpatient care with restricted follow-up data collection. Another reason

for incorporating covariates applies when the threshold crossing at z0 itself a¤ects various X

variables that one would like to control for. For example, Z may represent proximity to a state or

regional border and crossing the border is associated with certain changes in laws or regulations

that one is interested in. At the same time, a few other covariates may change in distribution

as well, which one would like to control for. For a recent example see Brügger, Lalive, and

Zweimüller (2008). As a �nal example for a discontinuity in fXjZ we consider the decomposition

between direct and indirect e¤ects of the treatment e¤ect. X is here a post-treatment variable,

and a change in treatment status D may have an e¤ect on Y via X as well as a direct e¤ect on

Y . While RDD estimation without covariates estimates the total e¤ect, in various situations one

is interested in disentangling the direct from the indirect e¤ect, which under certain conditions

7



can be done by controlling for X.5

We assume in the following that Assumption 1 holds conditionally on X. Theorems 1 to

4 now apply immediately to the treatment e¤ect conditionally on X. In many situations we

are however more interested in the unconditional e¤ect, i.e. the e¤ect on all local compliers

irrespective of their value of X. There are at least three reasons why unconditional e¤ects are

interesting. First, for the purpose of evidence-based policy making a small number of summary

measures can be more easily conveyed to the policy makers and the public than a large number of

estimated e¤ects for each and every value of X. Second, unconditional e¤ects can be estimated

more precisely than conditional e¤ects. Third, the de�nition of the unconditional e¤ects does

not depend on the variables included in X.6 One can therefore consider di¤erent sets of control

variables X and still estimate the same object, which is useful for examining robustness of the

results to the set of control variables.

The following results identify the unconditional e¤ects, which are obtained by �rst condition-

ing on X and thereafter integrating with respect to X. For identi�cation we need a common

support restriction with respect to X and we also assume the existence of a density. (At the

expense of more complex notation we could also easily permit discrete X.)

Assumption 2: Assume Assumption 1(i), (ii), (v) and Assumption 1(iii) and (iv) conditionally

on X. Further assume:
- Common support lim

"!0
Supp(XjZ 2 N+

" ) = lim
"!0

Supp(XjZ 2 N�
" )

- Density at threshold lim
"!0

FXjZ2N+
"
(x) and lim

"!0
FXjZ2N�

"
(x) exist and are di¤erentiable in x at z0

with pdf f+(xjz0) and f�(xjz0), respectively.
(Regarding notation: f+(x; z0) = f+(xjz0)f(z0) refers to the joint distribution of X and Z

whereas f+(xjz0) refers to the conditional distribution of X. Analogously for the limit from

below.)

Note that we permit f(x; z) to be continuous at z0, i.e. f+(xjz0) = f�(xjz0), or to be

discontinuous, i.e. f+(xjz0) 6= f�(xjz0).

With these additional assumptions, we can identify the quantile and cumulative distribution

functions of the potential outcomes. The formulae, however, are not so neat as in Section 2.
5Even if fXjZ is not discontinuous at z0, we conjecture that there may be e¢ ciency gains by incorporating X.

We will analyze this issue in more detail in future work.
6This, of course, is only true if X contains only pre-treatment variables.
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De�ne p"(x) = Pr (Z � z0jX = x;Z 2 N").

Theorem 5 (Quantiles of the potential outcomes) Under Assumption 2, Q�Y 1jc and Q
�
Y 0jc

are the solutions of the following optimization problem

Q�Y 1jc = lim
"!0

argmin
q

E

�
�� (Y � q)

I+ � p"(X)
p"(X) (1� p"(X))

jZ 2 N"; D = 1

�
Q�Y 0jc = lim

"!0
argmin

q
E

�
�� (Y � q)

I+ � p"(X)
p"(X) (1� p"(X))

jZ 2 N"; D = 0

�
.

An analogous result is obtained for the distribution function.

Theorem 6 (Distribution of potential outcomes) Under Assumption 2, the distribution of

the potential outcomes for the local compliers are identi�ed as

FY 1jc(u) = lim
"!0

E
h
1 (Y � u) I+�p"(X)

p"(X)(1�p"(X)) jZ 2 N"; D = 1
i

E
h

I+�p"(X)
p"(X)(1�p"(X)) jZ 2 N"; D = 1

i
FY 0jc(u) = lim

"!0

E
h
1 (Y � u) I+�p"(X)

p"(X)(1�p"(X)) jZ 2 N"; D = 0
i

E
h

I+�p"(X)
p"(X)(1�p"(X)) jZ 2 N"; D = 0

i .
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