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Estimating a Class of Triangular Simultaneous 
Equations Models Without Exclusion Restrictions*

 
This paper provides a control function estimator to adjust for endogeneity in the triangular 
simultaneous equations model where there are no available exclusion restrictions to generate 
suitable instruments. Our approach is to exploit the dependence of the errors on exogenous 
variables (e.g. heteroscedasticity) to adjust the conventional control function estimator. The 
form of the error dependence on the exogenous variables is subject to restrictions, but is not 
parametrically specified. In addition to providing the estimator and deriving its large-sample 
properties, we present simulation evidence which indicates the estimator works well. 
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1 Introduction

Instrumental variables (IV) is a method commonly employed in empirical ap-

plications for estimating models with endogenous regressors. However, while

there is general agreement that IV is appropriate for a large class of mod-

els with endogeneity, there is frequently disagreement about the exclusion

restrictions imposed in speci�c empirical applications. In fact, the di¢ culty

in obtaining instruments has generated a rapidly growing and important lit-

erature related to inference in the presence of weak instruments (see, for

example, Staiger and Stock 1999).

When the primary equation of interest contains an endogenous regressor,

it is well known that IV is equivalent to an OLS regression that includes an

additional regressor to control for endogeneity. Commonly, this additional

variable or control is the reduced form residual for the endogenous regressor.

In the linear case, as the control is a linear combination of the endogenous

regressor and exogenous variables, the model is only identi�ed in the presence

of at least one exclusion restriction.1

In the above case the control�s impact, as re�ected by the residual�s coef-

�cient, is a constant that is estimated along with the parameters of interest.

As a result, without further information, identi�cation requires an exclusion

restriction. However, when the error distribution depends on the exogenous

variables, it is possible and in some sense natural to develop a control whose

impact is not constant. In particular, as elaborated on below, we assume a

generalized form of heteroscedasticity for both errors.2 We then develop a

"feasible" control whose impact is not constant and show that the model is

identi�ed without exclusion restrictions.

As discussed in section 3, other papers have explored identi�cation via

1This control function approach is equivalent to two-stage-least-squares.
2Identi�cation results are provided for both nonparametric and semiparametric speci-

�cations of the conditional variance functions. To obtain reasonable results at moderate
sample sizes, most of this paper focuses on the semiparametric case.
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second moments (e.g. Vella and Verbeek 1997, Rummery et al 1999, Sentana

and Fiorentini 2001, Rigobon 2003 and Lewbel 2004). For the model that we

consider, identi�cation depends on there being heteroscedasticity in one or

both equations of interest and that it "di¤ers" across equations in a manner

made precise below. The estimator is then based on estimating a semipara-

metric model of heteroscedasticity in each equation. For the structural

equation of interest, such heteroscedasticity must be estimated simultane-

ously with the model�s parameters as consistent residuals are unavailable.

We do this in a setting where the conditional variance of each error is an

unknown function of an index which needs to be estimated. While this semi-

parametric treatment of the unknown functions complicates the analysis, it

avoids the reliance on parametric assumptions for identi�cation.3

In the following section we outline the model. In section 3 we discuss the

estimation method and how to implement it. Formal results are stated in

section 4. This section also outlines the proof strategy for obtaining these

results. Section 5 provides simulation evidence and section 6 concludes. The

Appendix contains detailed proofs of all theorems and intermediate lemmas.

2 Model and Identi�cation Sources

With �o and �o as vectors of true parameter values, consider the following

linear triangular model:

Y1i = Xi�1o + Y2i�2o + ui � Zi�o + ui (1)

Y2i = Xi�o + vi; (2)

where Y1i and Y2i are continuous endogenous variables; Xi is a vector of

variables that are mean-independent of the error components ui and vi: We

3In the Appendix, we provide an identi�cation result for both nonparametric and semi-
parametric models of heteroscedasticity.
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further assume that these errors are correlated. We use the terms primary

and secondary to refer to the �rst and second equations respectively. The

main objective of estimation is to conduct inference on �o; the vector of true

parameter values in the primary equation. Notice that the model allows

the same X 0s in both equations without imposing any restrictions on the

parameter values.

When the errors do not depend on X, the (linear) relation between errors

is captured by the following unconditional population regression:

ao = argmin
a

E [u� av]2 ) ao = cov (u; v) =V ar(v):

By construction, " � u�aov is uncorrelated with v and therefore uncorrelated
with Z, which provides the basis for the controlled regression:

Y1i = Zi�o + aovi + "i:

Provided that the matrix [Z v ] has full column rank, the OLS estimator

for this regression is consistent and would be implemented in practice by

replacing vi by the corresponding residual. However, in the absence of an

exclusion restriction this full rank condition is not satis�ed.

When the distribution of the errors depends on the X-variables, obtain

the (linear) conditional relation between the errors by the following condi-

tional population regression:4

Ao (Xi) = argmin
A

E [ui � Avi j Xi]
2 )

Ao(Xi) = cov (ui; vi j Xi) =V ar(v j Xi):

In this case, "i � ui � Ao (Xi) vi is uncorrelated with vi conditioned on Xi,

4We would like to thank Whitney Newey for this interpretation of the control.
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which provides the basis for the controlled regression:

Y1i = Zi�o + Ao(Xi)vi + "i:

Let R be the matrix with ith row: Ri � [Zi Ao(Xi)vi] and assume that Ao
depends on Xi, which would be reasonable when the error distributions

depend on Xi. In this case, the matrix R will have full column rank and

identi�cation will follow without exclusion restrictions.

As Ao(Xi) is unknown, it must be estimated and restrictions must be

imposed to obtain identi�cation. Here, we explore the restrictions implied

by a generalized form of heteroscedasticity. To this end, assume:

ui � Suiu�i ; vi � Sviv�i ;

where

S2ui � V ar (uijXi)

S2vi � V ar (vijXi)

E (uijXi) = E(vijXi) = 0:

Further, there is a constant relation between unscaled error components:5

�o � E (u�i v�i jXi) = E (u
�
i v
�
i ) :

Subject to the above restrictions, for observation i the error components can

arbitrarily depend on Xi. With the correlation �o constant, the control is

given as:

Ao(Xi)vi = �o [Sui=Svi] vi:

Before discussing how to implement the above control, note that if the

5Note that Bollerslev (1990) also employs a constant correlation assumption in a time-
series context.
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scaling functions are known or can be consistently estimated, then identi�ca-

tion holds if these scaling functions "di¤er" in that for observation i, Sui= Svi
depends on Xi. As a specialized interpretation, view u�i and v

�
i as unob-

served variables with non-constant impacts that depend on the endogenous

variables. These impacts di¤er and are functions of Xi given by Sui and

Svi respectively. For this type of error structure, parametric forms of con-

ditional variance functions have been employed in a variety of applications,

and we expect there will be a number of others where it will be relevant and

reasonable.

Other papers exploit second moment information as a source of identi-

�cation. Vella and Verbeek (1997) and Rummery et al (1999) develop an

estimation procedure based on the rank order of an individual�s position in

the reduced form residual distribution for subsets of the data. The vari-

able determining the selection of subsets is also assumed to be responsible

for the heteroscedasticity. In the context of normal factor models, Sentana

and Fiorentini (2001) examine heteroscedasticity as a source of identi�cation.

Rigobon (2003) formulates a model in which there are two known regimes.

The parameters of interest and the covariance between the equations� er-

rors do not depend on the regime indicator. However, the error variances

do depend on the known regime indicator. Employing an error covariance

restriction similar to that in Rigobon, Lewbel (2004) examines a model of

heteroscedasticity with second moment information depending on a known

vector of variables Z. As Z may coincide with X, for comparative purposes

we focus on this case and without loss of generality take E(X) = 0. He then

considers a model in which:

E (Xiuivi) = E [XiE (uivijXi)] = 0; E
�
Xiv

2
i

�
6= 0.

The model considered here di¤ers in several respects from those above.

First, for the model outlined earlier, E (uivijXi) depends on Xi . Conse-

quently, while the �rst restriction above may hold in special cases, it will not
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hold in general for the model considered here. Second, with the conditional

covariance and variance functions depending onXi; here the conditional vari-

ance of each error is modeled as an unknown function of an index.

In a di¤erent model, Klein and Vella (2004) we also exploit heteroscedas-

ticity to estimate a triangular treatment model where the endogenous regres-

sor is binary. To �exibly model both the shape and conditional variance

for the error distribution in the binary model, a double index formulation is

employed. In so doing, with the estimated binary response probability as

an instrument, the model is "well-identi�ed" without exclusion restrictions.

While the treatment paper is related to this paper, the identi�cation and

estimation strategies are fundamentally di¤erent from those employed here.

Finally note that the use of instruments in the absence of exclusion re-

strictions is not limited to cases of heteroscedasticity. Dagenais and Dagenais

(1997) and Lewbel (1999) also discuss estimation of models where there are

endogenous regressors and no exclusion restrictions. They show that when

there is measurement error of a speci�c form one is able to use instruments

based on the higher powers of the included variables. The model and esti-

mator presented below both di¤er from the approaches in these papers.

3 The Estimator: Implementing Strategies

3.1 The Secondary Equation

Before presenting the main results, this section outlines and motivates the

estimation strategy. From the above discussion, we will require residuals and

the conditional variance function for the secondary equation. Accordingly,

�rst obtain consistent estimates of the secondary equation�s conditional mean

parameter values by regressing Y2 on X to get b�: We then estimate the
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residuals as:6 bv = Y2 �Xb�:
To estimate Sv; we impose a single index structure:7

S2vi � E
�
v2i j Xi

�
= E

�
v2i j Ivi (�o)

�
;

where Ivi (�o) � X1i + X2i�o. Next, estimate �o using semiparametric least

squares with bv2i as the dependent variable (see Ichimura, 1993). Namely:
�̂ = argmin

�

X
�̂ i

h
v̂2i � Ê

�
v̂2i j Ivi (�)

�i2
;

where �̂ i is a trimming function that restricts Xi to a compact set depending

on sample quantiles. Employing the estimated index:

Ŝ2vi =
bE �bvi2 j Ivi ��̂��

where bE is a non-parametric estimator for the indicated conditional expec-

tation. Employing the above initial estimator Ŝvi, we then repeat the above

process in a GLS step.8 For notational convenience below, denote the vector

of parameter estimates as: �̂ �
�
�̂0 �̂

0�0
. As our focus will be on the primary

equation, we will refer to these parameters as nuisance parameters.

3.2 The Primary Equation

As consistent residuals are not available for the primary equation, the condi-

tional variance function for this equation and the parameters of interest are

6These residuals could be obtained in a more general nonparametric or semiparametric
regression.

7As discussed below, identi�cation also holds under a nonparametric formulation.
8While it is possible to avoid a GLS step, we have found that the estimator for Svi

based on �̂GLS is improved and that there is a corresponding improvement in the estimates
of the primary equation of interest.
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estimated simultaneously. In so doing, we distinguish two cases according

to whether or not the conditional variance function has an index structure.

Identi�cation arguments for the primary equation do not depend on whether

or not an index structure is imposed on the conditional variance function for

the secondary equation. However, for the primary equation, identi�cation

arguments are quite di¤erent depending on whether or not an index struc-

ture is imposed on its conditional variance function. As will become clear

below, while the index case can be expected to perform better in practice, it

is more di¢ cult to formulate and analyze an estimator for this case. Begin-

ning with a nonparametric formulation for the conditional variance function,

let Zi � [Xi; Y2i] and de�ne:

ui (�) � (Y1i � Zi�)
Ŝ�ui (�)

2 � Ê
�
u2i (�) j Xi

�
:

With � � (�; �) and i = 1; :::; N observations, let:

Âi (�) � �
h
Ŝ�ui (�) =Ŝvi

i
M̂i (�) � Wi� + Âi (�) v̂i

Q̂ (�) � 1

N

X
i

�̂ i

h
Y1i � M̂i (�)

i2
.

An estimator for the primary equation is now de�ned as:

�̂ � argmin Q̂
�

(�) :

Conditioning on Xi, assume that the conditional correlation between u�i
and v�i is constant. Theorem 2a then provides consistency and identi�cation

results for this nonparametric case under a full rank condition. For this case,

the conditional variance function from the secondary equation may be taken

as known, and it is therefore irrelevant (for theoretical purposes) whether or
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not it satis�es an index condition. However, the structure of the conditional

variance function in the primarily equation does have a critical impact on

the identi�cation argument.

To obtain reliable parameter estimates at moderate sample sizes, the

remainder of this paper imposes an index structure on both conditional vari-

ance functions. For reasons discussed below, identi�cation becomes more

di¢ cult in an index formulation for the conditional variance function of the

primary equation. In this case, the following index restriction holds at the

true parameter values:

E
�
u2i (�o) j Xi

�
= E

�
u2i j Iui (bo)

�
;

Iui (bo) � X1i +X2ibo:

For whatever objective function that is employed, for purposes of identi�-

cation it is important that the set of potential minimizers satisfy an index

restriction. As an example of an objective function that implies this re-

striction, for illustrative purposes suppose that we knew �o: In this case, for

the primary equation it would only remain to estimate the index parameter

values of the conditional variance function. Employ SLS as was done for

the secondary equation to obtain:

b̂ = argmin Ŝ; Ŝ � 1

N

X
�̂ i

h
u2i (�o)� Ê

�
u2i jIui (b)

�i2
:

It can be shown that �S is uniformly close to

1

N
E
X

� i
�
u2i � E

�
u2i jIui (b)

��2
:

Let b� be a minimizing value of this objective function. As a necessary

condition for a minimum, it can be shown that the following index restriction
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must be satis�ed:9

E
�
u2i (�o) jIui (b�)

�
= E

�
u2i (�o) jX

�
= E

�
u2i (�o) jIui (b0)

�
:

With this restriction holding away from the truth, the set of potential min-

imizers is su¢ ciently reduced so as to enable an identi�cation argument.

With �o being unknown, identi�cation becomes problematic as it is di¢ -

cult to impose an index restriction away from the truth. To illustrate both

the problem and a solution, return to the objective function employed to ob-

tain nonparametric identi�cation, with the appropriate modi�cations made

to accommodate an index structure. In examining this case, for purposes

of exposition, throughout we take N to be large and discuss the problem in

terms of population objective functions. Let

S2ui (�; b) � E
�
u2i (�) jIui (b)

�
:

Then, similar to the strategy for the nonparametric case above, write kQk �
�Q2i =N and with � � (�; b; �) de�ne:

M1i (�) � Zi� + � [Sui (�; b) =Svi] vi

Q1 (�) � Q (M1) � k�̂ [Y1 �M1]k
�� � argminE [Q1 (�)] :

9Write:

E
��
u2i � E

�
u2i jIui (b�)

��2 jX� =
E
��
u2i � E

�
u2i jX

��2 jX�+��
E
�
u2i jX

�
� E

�
u2i jIui (b�)

��2�
:

The second term above attains a minimum of zero when b� = bo: Therefore, for any
minimum, b� :

E
�
u2i jX

�
= E

�
u2i jIui (b�)

�
on a set where � 6= 0:
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With an orthogonality condition holding between Y1�M1 (�o) and [M1 (�
�)�M1 (�o)],

it can be shown that for any candidate for a minimum, ��; must satisfy:

M1 (�
�)�M1 (�o) = 0:

In other words:

Zi (�
� � �o) + [��Sui (��; b�)� �oSui (�o; bo)] v=Svi = 0:

With additional information relating Sui (�
�; b�) to Sui (�o; bo) ; the identi�ca-

tion strategy would be greatly simpli�ed. For example, if minimizing values

satis�ed: Su (�
�; b�) = Su (�o; bo), then identi�cation would readily follow. In

this case, let R be the matrix with ith row: Ri � [Xi Y2i (Sui (�o; bo) =Svi) vi ].

From above:

R

"
�� � �o
�� � �o

#
= 0:

Accordingly, identi�cation would follow from a full (column) rank assumption

on R.

While it does not appear possible to guarantee the strong index restric-

tion: Sui (�
�; b�) = Sui (�o; bo) apriori as in the above example, it is possible

to modify the objective function so as to ensure that the set of minimizers

is su¢ ciently restricted to yield identi�cation. To this end, let:

S�2ui (�; b) � E
�
u2i (�) jIui (b) ; Ivi

�
M2i (�; b) � Zi� + � [S

�
ui (�; b) =Svi] vi

Q2 (�; b; �) � Q (M2) � k�̂ [Y1 �M2]k :

Then, with � � (�; b; �) consider the "overall" population objective function:

Q (�) � Q1 (�) +Q2 (�) :
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Denote �� as a minimizer for Q (�). In the Appendix it is shown that �o,

the vector of true parameter values, is a minimizer not only for Q but also

separately for Q1 and Q2. It follows that �� must also minimize each of these

component objective functions. As a result, �� must satisfy minimizing

conditions implied by minimizing each separate objective function. Taken

together, we show below that these restrictions and a full rank condition

su¢ ce to establish that �o is the unique minimizer.

To indicate the nature of these restrictions, in an argument similar to that

above we show that �� must satisfy the restrictions: Mk (�
�) =Mk (�o) ; k =

1; 2: Therefore, with X�
i � [Iui (b�) ; Ivi] :

(Ra) : Zi (�
� � �o) + [��Sui (��; b�)� �oSui (�o; bo)] vi=Svi = 0

(Rb) : Zi (�
� � �o) + [��S�ui (��; b�)� �oSui (�o; bo)] v=Svi = 0

(Rc) : E
�
u2i (�

�) jIui (b�)
�
= E

�
u2i (�

�) jX�
i

�
;

where the index restriction in (Rc) follows by di¤erencing the �rst two restric-

tions and employing the de�nitions of S�ui and Sui: In Theorem 2b below,

we show these restrictions in conjunction with a full rank assumption are

su¢ cient to provide identi�cation.

From the above discussion, we are motivated to formulate the following

estimator for the primary equation under an index structure. Recall that

S�ui (�; b)
2 � E

�
u2i (�) jIui (b) ; Ivi

�
Sui (�; b)

2 � E
�
u2i (�) jIui (b)

�
S2vi � E

�
v2i (�) jIvi (�o)

�
:

As de�ned in the next section, let Ŝ�ui (�; b), Ŝui (�; b) ; and Ŝvi be estimators

for the above functions obtained from semiparametric regressions. Obtain Q̂k
from Qk by replacing known functions with the above estimators, k = 1; 2.

Then, with � � [�; �; b] ; the estimator for the primary equation is now de�ned
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as:10

�̂ � argmin
�

Q̂ (�) ; Q̂ (�) �
2X
k=1

Q̂k (�) :

4 Assumptions, De�nitions, and Results

In obtaining asymptotic results, we make the following assumptions:

A1 The vector (Y1i; Y2i; Xi; ui; vi) is i.i.d distributed over i, with the variables
Xi being bounded.11

A2 The parameter vector: 
 � (�; �; �; b; �) is in a compact parameter space,
�; where 
o is in the interior of �:

A3 Write the error components as:

u � Suu
�; S2u � V ar(ujX)

v � Svv
�; S2v � V ar(vjX);

Assume:

E (ujX) = E (vjX) = 0

�o � E (u�v�jX) = E (u�v�) ; 0 < �o < 1:12

A4 Let f be the density of either u2 or v2: Assume there exists c > 0 such
10It would be interesting to explore a variance minimizing weighting for these objective

functions. However, this extension is beyond the scope of the present paper.
11While it is possible to handle the unbounded case, uniform convergence arguments are

simpli�ed under this assumption.
12If the errors are not su¢ ciently di¤erent (�o = 1); we are unable to identify the

parameters. If �o = 0; the main parameters of interest are identi�ed, but the index
parameters of the primary equation are not identi�ed by the estimator for the primary
equation. Identi�cation of index parameters from squared (primary-equation) residuals
would hold when �o = 0:
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that for t > c; : f satis�es the tail condition:13

f (t) � 1=
�
1 + t2

�(r+1)=2
; r = 5:

A5 Write Xi � [X1i X2i X3i] ; where X1i and X2i are continuous variables

that are not functionally related. Assume that Iui depends on X1i

and that Ivi depends on X2i: Then, without imposing any exclusion re-

strictions on variables entering the indices, write the normalized linear

indices as:

Iui (bo) � X1i + [X2i X3i] bo

Ivi (�o) � X2i + [X1i X3i] �o:

With bo � [b1o b2o] and �o � [�1o �2o] assume 1-b2o�1o 6= 0 and that :

S2u (�o; bo) � E
�
u (�o)

2 jX
�
= E

�
u (�o)

2 j Iui (bo)
�
> 0

S2v (�o) � E
�
v (�o)

2 jX
�
= E

�
v (�o)

2 j Ivi (�o)
�
> 0:

For X in a compact set, these functions and their �rst six derivatives

are uniformly bounded. Further, each index depends on a continuous

variable.

A6 Referring to (A5), assume that the joint conditional density g(x1; x2jx3)
is bounded away from zero on the interior of its support and has

bounded derivatives up to the sixth order.

A7 For estimating expectations and densities, assume that the kernel func-
13This assumption, which guarantees that both u2 and v2 have at least 4 moments, is

stronger than is needed. We require uniform convergence results involving sample means
whose elements u2 and v2; may be unbounded random variables. As in Ichimura (1993),
we can reduce the required order of the kernel if we assume that at least the 3rd moment
of these variables is bounded. Under the stronger tail assumption employed here, we can
simplify the proofs in addition to lowering the order of the required kernel.
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tion, K, is a symmetric density with up to 4 bounded derivatives.

A8 Let R be a matrix with ith row: [Xi; Y2i; (Sui=Svi) vi] and assume that

R has full column rank.

As noted above in a footnote, (A4) is stronger than is needed. This

assumption simpli�es uniform convergence proofs pertaining to unbounded

random variables and makes it possible to reduce the required order of the

kernels employed. If the standardized errors u� and v� are independent of

X, then it is possible to relax this assumption signi�cantly.14 Most of the

remaining assumptions are somewhat standard, with the last assumption re-

quired for identi�cation (see Theorem 2 of this section). In addition to these

assumptions, we need to de�ne the estimators and a bias reduction device

used to establish asymptotic normality. In de�ning the kernels used below,

we are motivated to employ kernels that provide the required degree of bias

reduction, perform reasonably well in �nite samples, and for which tedious

detail in the resulting proofs is minimized. We have found that twicing

kernels (see Newey et. al. (2004)) satisfy these objectives under an appropri-

ate trimming sequence.15. Assumptions (A4-5) are useful in obtaining bias

expansions for the components of a nonparametric expectations estimator.

For example, the denominator of an expectations estimator involves the joint

density of an index. Derivatives of this density need to be bounded up to

the sixth order. Assumption (A6) guarantees that this is the case.

14In this case, a variance function can be recovered up to a multiplicative constant
(which is all that is required) with minimal assumptions on higher moments as follows.
Let W � u2=m or v2=m and estimate the variance function up to a multiplicative constant
as: h

Ê (W )
im
:

15It is possible to follow a mixed strategy with single index components being estimated
under locally-smoothed kernels. Under this strategy, double index components would be
estimated with a twicing kernel. While the �nite sample performance of the estimator
might be improved under this strategy, the resulting proofs would be signi�cantly longer.
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D1 Let fWi; Iig be i.i.d., where Ii is a single index upon whichWi depends.

Then, the estimator for the expectation of Wi conditioned on Ii is

given by:

Ê (WijIi) =
X
j 6=i

Wj

Nh
K1 [(Iiu � Iju)=h] =

X
j 6=i

1

Nh
K1 [(Iiu � Iju)=h] ;

where, with k(w) a standard normal:

K1(w) � 2k(w)�
Z
k(w � v)k(v)dv:

With s as the standard deviation of I, the window h is given by h = sN�r;

1=8 < r < 2=15:16

D2 Let fWi; I1i; I2ig be i.i.d., where I1i and I2i are indices upon which Wi

depends. Then, the estimator for the expectation of Wi conditioned

on (I1i; I2i) is given by

Ê (WijI1i; I2i) =
P

j 6=i
Wj

Nh1h2
K2 [(I1i � I1j)=h1]K2 [(I2i � I2j)=h2]P

j 6=i
1

Nh1h2
K2 [(I1i � I1j)=h]K2 [(I2i � I2j)=h]

;

where with K1(w) given as in (D1):

K2(w) � 2K1(w)�
Z
K1(w � v)K1(v)dv:

16The lower limit on r is required for bias control. Namely, for this kernel, numerator
and denominator of the conditional expectation each has a bias uniformly of order h4; and
we require that the bias vanish faster than N�1=2: The tight upper bound is required to
establish uniform convergence of a second derivative when the conditional expectation is
being applied to an unbounded random variable. This condition can be relaxed under
either a kernel of higher order than K1 or under a more restrictive tail condition than that
in (A4).
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With sk as the standard deviation for Ik; set hk = skN�r; 1=12 < r �
1=10:

To insure that various estimated denominators are bounded away from

zero in large samples, we employ a trimming function that restricts the com-

ponents of X to a compact set depending on estimated sample quantiles. As

a result, the trimming function should be viewed as being estimated. 17 This

trimming function is given in (D3).

D3 Indicator Trimming. Let c
¯k
and c̄k be lower and upper population

quantiles for Xik; k = 1; :::; K: Let qo be the vector of these quantiles.

With x: 1xK, de�ne P �fx : c
¯k
< xk < c̄k; k = 1; :::; Kg : With Xi �

[Xi1; :::XiK ], de�ne the trimming indicator:

� ix � � i (qo) � f Xi � P g :

With q̂ as a vector of sample quantiles, the estimated trimming function

is given as: �̂xi � � i (q̂) :

D4 Y2-Model: Let �̂ be the GLS estimator from the regression of Y2 on

X.18 De�ne the residual:

v̂ � Y2 �X�̂:
17For one of the gradient components (Lemma GA), estimated trimming may be taken

as known under a result due to Pakes and Pollard (1989). In other gradient components
(Lemma GB), under standard convergence arguments estimated trimming may be taken
as known.
18First, obtain OLS residuals v̂i. Second, obtain Ivi

�
�̂
�
; from the SLS estimator of �o.

Next, de�ne estimate Ŝ2vi :

Ŝ2vi = Ê
�
v̂2i j Ivi

�
�̂
��
:

Reweighting observations in the Y2 model provides the GLS estimator of �o: All of the
results in this paper hold using the OLS estimator of �o: The �nite sample properties
of the estimator for the Y1 model are improved by employing the GLS estimator for the
secondary equation.
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The estimated index parameters of the conditional error variance are

then given by:

�̂ = argmin
�

R̂ (�) ; R̂ (�) �
NX
i=1

�̂ i

h
v̂2i � Ê

�
v̂2i j Ivi (�)

�i2
=N;

where Ê is a nonparametric estimated expectation de�ned above. With

�̂ �
�
�̂; �̂
�
estimating �o � (�o; �o), we refer to �̂ as the (nuisance)

vector of estimates for the secondary equation.

In estimating the model above, the monte-carlo results were improved

under a two-stage trimming strategy similar to but less complicated than

that in Klein and Spady (1993). Namely, in the �rst stage obtain estimates

under X-trimming as described above with �̂ i � �̂xi. In a second-stage, re-
estimate the model with index trimming and minimal (for technical reasons)

X-trimming. By targeting the problem at its source, such index trimming

provides a better control for small values of the index density.19 In either

case, as argued below, the trimming function can be taken as known.

Employing the above de�nitions, it is now possible to de�ne the

estimated conditional variance from the Y2�Model.

D5 Estimated Conditional Variance. With �̂ given in (D4) and with
expectations estimated under the kernel in (D1):

Ŝ2vi �
���Ê �v̂2i jIvi ��̂����� :

19In the �rst stage, we trimmed on the basis of the .975 upper and .025 lower sample
quantiles of the continuous X-variables. In the second stage, let �̂ iv denote trimming on
the basis of the .975 and .025 index sample quantiles. Denote �̂ ix as a trimming function
under "minimal" X-trimming, where the .995 upper and .005 lower quantiles formed the
basis for such trimming. The trimming function employed in the second stage is then
given by the product: �̂ iv �̂ ix: As an alternative to minimal X-trimming, it is possible to
modify the expectations estimator as in Klein and Spady (1993).
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Notice that absolute values are employed above. While the estimated

expectation is positive under "regular" kernels, it can be negative under

higher order kernels. While this is not a problem asymptotically, in any

�nite sample there can be a small fraction of observations for which the

estimated expectation is negative. In estimating the primary, Y1-model, we

will smoothly trim out observations for which this problem occurs.20 For

this purpose, we employ the following smooth trimming function.

D6 Smooth Trimming. With �̂2i � Ê
�
v̂2i jIvi

�
�̂
��
; de�ne:

�̂ si � �
�
�̂2i
�
=
�
1 + exp

�
� an�̂2i

���1
; an = Ln(N)

2:

The function above will tend to 0 as �̂2i becomes negative and to 1

otherwise. As this function approximates an indicator, its derivative must

become high in a neighborhood of zero. To control for the magnitude of

the derivative, the slowly increasing sequence an is selected above. Note that

this trimming function is based on the estimated index obtained from esti-

mating the secondary equation and does not depend on any of the unknown

parameter values for the primary equation.

D7 Y1-Model. With the Y1� model given as:

Y1 = [X Y2] �o + u � Z�o + u;
20When trimming is based on an estimated linear index, the lemma in Pakes and Pollard

applies to indicator trimming. However, when the trimming involves nonparametric
expectations, it does not appear that the required Euclidean property of this lemma holds
for indicator trimming. Moreover, we have found trimming to be important for those few
but in�uential observations where estimated variance functions are negative. Accordingly,
a smooth trimming function is employed to control for this problem.
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de�ne u (�) � Y1 � Z� and let:

Ŝ2ui (�) �
���Ê �u2i (�) jIui (b)����

Ŝ�2ui (�) �
���Ê �u2 (�) jIu (b) ; Îv����

where the �rst, single-index component is obtained under the kernel in

(D1) and the second, double-index component is obtained under the

kernel in (D2). Let:

Ŝui (�; k) � Ŝui (�) ; k = 1; Ŝui (�; k) � Ŝ�ui (�) ; k = 2:

Then, for k = 1; 2:

M̂ik (�; b; �) � Z� + �
h
Ŝi=Ŝvi

i
vi;

Q̂k (�; b; �) �
X

�̂ si�̂ i

h
Y1 � M̂ik

i2
=N:

Then, with � � (�; b; �) and Q̂ � Q̂1 + Q̂2 :

�̂ = argmin Q̂ (�)
�

:

As with the secondary equation, trimming is based on a two-stage

process. Namely, �̂ i is obtained under X-trimming in the �rst stage at

the same levels as for the secondary equation (see the discussion following

(D4) above). In the second stage, �̂ i is a product of index and minimal

X-trimming trimming similar to that for the secondary equation discussed

above.

Employing the above assumptions and de�nitions, the Appendix pro-

vides all proofs for asymptotic results. In the remainder of this section,

we summarize these results and provide a brief outline of the proof strategy.
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Beginning with the secondary equation (Y2�Model); Theorem 1 provides the
large sample results for the estimators of the nuisance parameters.

Theorem 1 (The Y2-Model): Under the above assumptions and de�-
nitions, estimates of regression and index parameters satisfy the characteri-

zations:
p
N [�̂ � �o] =

p
N

NX
i=1

"�i=N (a)

p
N
h
�̂ � �o

i
=
p
N

NX
i=1

"�i=N + op(1); (b)

where "�i and "�i each are i:i:d. with 0 expectation and �nite variance.

The �rst result above is immediate and the second follows from a standard

Taylor series argument and Ichimura (1993). This second result also follows

from the same type of U-statistic arguments used to establish asymptotic

normality for estimator of the primary equation :

For the Y1�Model, Theorem 2 below provides the consistency/identi�cation
result.

Theorem 2 (Consistency: the Y1-Model):With �o � (�o; �o; bo) and
�̂ �

�
�̂; �̂; b̂

�
, under the above assumptions and de�nitions:

�̂
p! �o:

To outline the consistency argument, which is provided in detail in the

Appendix, recall from (D7) that:

�̂ = argmin Q̂ (�)
�

:

Referring to (D7), obtain Mik (�) from M̂ik (�) by replacing all estimated

functions with their uniform probability limits. Then, de�ne Q (�) by re-
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placing M̂ik (�) in Q̂ (�) with Mik (�). It can be shown that���Q̂ (�)�Q (�)��� and jQ (�)� E [Q (�)]j
each converge in probability, uniformly in � to zero. Consistency follows

if E [Q (�)] is uniquely minimized at �o: From an orthogonality condition

between Y1i �Mik (�o) and [Mik (�o)�Mik (�)] ; any minimizing value of

EQ must satisfy:

Mi (�o)�Mik (�) = 0; k = 1; 2.

Clearly, � = �o is a minimizer. Under a constant correlation assumption,

in the appendix we establish identi�cation (uniqueness) when the matrix

[X; Y2; (Su=Sv)v] has full column rank. The theorem in the appendix pro-

vides this result for both nonparametric and semiparametric speci�cations of

conditional variance functions.

Theorem 3 below, which is proved in the appendix, provides the normality

result.

Theorem 3 (Normality: the Y1�Model): Under the assumptions
and de�nitions above:

p
N [�̂� �o]

d! Z; Z~N (0;�) :

To outline the argument, note that under a standard Taylor series argu-

ment for the gradient21 to the objective function and a uniform convergence

argument for the Hessian, normality will follow if the normalized gradient is

asymptotically distributed as normal. To establish this result, in the Appen-

dix it is established that the gradient has an i.i.d. sample mean characteriza-

tion to which a standard central limit applies. To outline the argument, for

21With all estimating expectations functions converging uniformly to positive functions,
this expansion is valid on a set with probability approaching one.
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expositional purposes, neglect �rst-stage estimation, which matters,22 but

poses no technical di¢ culties. With ŵik � �̂ isr�M̂ik termed a weight

function, de�ne:

p
NĜk � �

p
N
X

�̂ i [Y1i �Mi] ŵik=N +
p
N
X

�̂ i

h
M̂ik �Mi

i
ŵik=N

�
p
NĜAk (�o) +

p
NĜBk (�o) ; k = 1; 2:p

NĜA �
p
N
h
ĜA1 + ĜA2

i
;
p
NĜB �

p
N
h
ĜB1 + ĜB2

i
:

The normalized gradient to the objective function is then given by:

p
NĜ =

p
NĜA +

p
NĜB

For the A-component, from results in Pakes and Pollard (1989) and

mean-square convergence arguments, Lemma GA shows that the estimated

trimming (�̂ i) and weight (ŵik) functions may be taken as known. Accord-

ingly: p
NĜAk (�o) =

p
N
X

� i [Y1i �Moi]wik + op(1):

With

"Ai � � i [Y1i �Moi] [wi1 + wi2]

it then follows that:

p
NĜA =

p
N�"A + op (1) ; �"A �

X
"Ai=N:

For the B-component, Lemma 5 shows that the estimated trimming and

weight functions may be taken as known:

p
NĜBk =

p
N
X

� i

h
M̂ik �Mik

i
wik=N + op(1):

22See Newey and McFadden (1994).
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Lemmas 5 and GB of the Appendix establishes that
p
NĜBk is close in prob-

ability to a linear combination of U-statistics. From a standard projection

argument, it is then possible to characterize this gradient component in the

same form as the A-component.23 Namely in the Appendix we de�ne a vec-

tor "Bi which is i.i.d. with expectation zero and �nite variance components.

Then, with �"B as the corresponding sample mean, we show that:

p
NĜB =

p
N�"B + op (1) :

With �rst-stage estimation uncertainty having a similar i.i.d. characteriza-

tion, asymptotic normality follows.

5 Simulation Evidence

To analyze the �nite sample performance of the estimator we examine the

following setting. We simulated the following model where the same exoge-

nous variables appear in the conditional means and the conditional variances

of both endogenous variables. The two indices underlying the heteroscedas-

ticity are also highly correlated. Moreover, we use the same functional form

for the heteroscedasticity in each equation. The model has the form:

Y1i = 1 + x1i + x2i + Y2i + ui

Y2i = 1 + x1i + x2i + vi

ui = 1 + exp(:2 � x1i + :6 � x2i) � u�i
vi = 1 + exp(:6 � x1i + :2 � x2i) � v�i
u� = :33 � v�i +N(0; 1) and v�i s N(0; 1):

We generate x1i and x2i as standard normal random variables and then trans-

form x2i into a chi-squared variable with 1 degree of freedom. We then esti-

23See Ser�ing (1980) and Powell, Stock, and Stoker (1989).
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mated the model by OLS and the control function procedure developed here,

which we denote CF in the tables. The simulation results for n = 1000 and

100 replications are reported in Table 1.

An examination of Table 1 reveals a number of interesting features of the

simulations. First, consider the OLS estimates noting that the entries in the

Table represent the mean value from the 100 replications with the standard

deviation of the replications reported in parentheses under the estimate. The

OLS estimates for the main equation�s parameters in this speci�cation are

severely biased with respect to their true values of 1 indicating that there is

a large degree of endogeneity in this model. The estimates for each of the x0s

are approximately .86, indicating a bias of around 14 percent, while the bias

on the coe¢ cient for the endogenous regressor is approximately 14 percent.

Column 2 shows results for the control function procedure. First consider

the estimates of the parameters for the conditional mean of the main equa-

tion as these are our major focus. The average values of the coe¢ cients for

the x0s and Y2 are all close to 1 indicating that the inclusion of the control

function is accounting for the endogeneity bias. Moreover, while there is

more variability in the estimates, in comparison to the OLS estimates, the

estimates, as indicated by their standard deviations, are generally quite pre-

cise. Second, consider the auxiliary parameter estimates which are obtained

in the estimation process. The parameter � corresponds to the coe¢ cient on

the control function. The true value is .3134 and thus the average estimate of

.298 is reasonable. The parameter � is the parameter in the index generating

the heteroscedasticity in the secondary equation. The average estimate is

.377 which is reasonably close to the true value of .33, noting that it has a

relatively large standard deviation. The parameter b is the coe¢ cient in the

index generating heteroscedasticity in the main equation. The average point

estimate of .245 is reasonable relative to the true value of .33, but again there

is a very large standard deviation associated with this estimate. Recall that

this estimate is obtained simultaneously with the slope coe¢ cients and its
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imprecision re�ects that it is di¢ cult to estimate this parameter accurately

while simply minimizing the squared residuals for this model.

If conditional variance parameters in the primary equation are of direct

interest, then as described below, it is possible to exploit other sources of

information to increase their precision. One approach which we employed was

to employ the residual from the primary equation using the �nal estimates.

Using this squared residual as the dependent variable, we obtained the SLS

estimator as was done for �: The average estimate for b from this approach

is reported as bsls in Table 1. We see that there is a notable improvement

with an average estimate of .358 and a large increase in the precision of the

estimate. This would suggest that this additional step produces worthwhile

gains.

Though not reported here, we also considered several variants on the es-

timator presented. Here, we have explored the case in which the conditional

variance of the errors is characterized by a single index. However, suppose

that the entire distribution of each error is characterized by a single index

(as is the case in the simulations). Under this more restrictive index as-

sumption, it may be possible to develop a modi�ed version of the estimator

presented here with better �nite sample performance (especially for index

parameters).24 We have also examined several "GLS" variants of the CF

method presented here. While these resulted in a noticeable improvement

in the estimates, we judged the improvement not su¢ cient to warrant any

further (albeit minor) lengthening of the Appendix.25

24When the entire distribution of the errors depends on a single index, any function of the
squared residual will satisfy a single index assumption. Accordingly, in an SLS regression,
there will be many ways of estimating the index parameters. For the multiplicative
heteroscedasticity employed in the monte-carlo, the (trimmed) log transform of the squared
residual would appear to a natural transformation to employ.
25We examined estimators based on consistent residuals from the primary equation to

estimate the conditional variance parameter in a manner similar to that employed for the
secondary equation. Not surprisingly, as the information on the conditional variance is
largely contained in the residuals, the resulting estimator for the index parameter had a
much smaller variance that obtained from the control method reported here. Indeed,
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Table 1: Simulation Results

OLS CF

constant .858 1.003

(.122) (.201)

x1 .858 1.003

(.120) (.210)

x2 .866 1.011

(.121) (.203)

Y2 1.137 .993

(.108) (.119)

� .298

(.110)

b .245

(.435)

bsls .358

(.193)

� .377

(.245)

it would be interesting to combine this moment information with that in the �rst-order
conditions to the minimization problem de�ned here. We have not explored this possibility
in the present paper.
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6 Conclusion

We have examined a triangular simulatenous model where there are no

available exclusion restrictions to employ as instruments but where we allow

for generalized forms of heteroscedasticity with the model�s errors depending

on the explanatory variables. We have shown that the model is identi�ed

and have formulated a method for estimating it. We have also established

that the estimator is consistent and asymptotically distributed as normal.

In a monte-carlo study the estimator for the parameters of interest in the

primary equation performed quite well in �nite samples. As indicated pre-

viously, there is scope for further improvements in the estimator for the

index parameters. Such improvements would come from fully exploring in-

dex structure in the monte-carlo (see footnote 24) or from making use of all

available moment information (see footnote 25).

We have focused on the linear structure in part because it is most often

used in practice. More importantly, in the absence of other information, it

is this structure for which identi�cation fails without exclusion restrictions.

Nevertheless, it would seem relatively straight-forward to extend the model to

allow nonlinear functions of the exogenous variables to enter both primary

and secondary equations. With a control modi�ed to re�ect conditional

mean rather than linear dependence of u on v, it may also be possible to

allow for nonlinearities in the endogenous variables.
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7 Appendix

7.1 Intermediate Lemmas

The Appendix is organized into a section on intermediate lemmas and a

main section providing consistency and asymptotic normality of the pro-

posed estimator for both primary and secondary equations. We begin with

convergence rates for the components of the expectations estimator. In

the primary equation, recall that u (�o) � Y1i�Zi�o and that �o denotes the
true regression coe¢ cients for the secondary equation. Let

r2i � vi (�o)2 � vi2 or ui (�)2 ;

where the error in the primary equation, ui (�) ; is de�ned for an arbitrary

value of the parameter vector.

To provide convergence results for estimated conditional expectations of

the above squared errors and for estimated index densities, for m = 1; 2

let Wm � X1 + X2
m, 
 � (
1; 
2) � (�; 
), and W � (W1;W2). With

wm � x1 + x2
m as a conditioning value for Wm and with � � (�; 
) ; de�ne
w (�) as the conditioning vector. Then, de�ne:

a (w (�) ;�; s) � g (w)E (rs2jW = w) ; s = 0; 1;

where g(w) is the density for W and 
 � (
1; 
2). For s = 0; 1 and m =

1; ::;M � dim(W ), write the estimator for a as:

â (w (�) ;�; s) �
NX
j=1

rs2i�m

�
1

hN
KM [(wm �Wjm) =h]

�
:

For M = 1, K1 is the twicing kernel in (D1) while for M = 2, K2 is the
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(double) twicing kernel in (D2). Note that

â (w (�) ;�; 1) =â (w (�) ;�; 0) � f̂=ĝ

estimates a conditional expectation of the form shown in (D1-2). De�ne the

derivative operator:

rd
� (â) �

@

@�
â; with r0

� (â) � â:

Employing the above notation, the following lemma provides convergence

results useful for analyzing the gradient.

Lemma 1 Assume that a(w) has bounded derivatives to order 4 for M

� dim(W ) = 1 and to order 6 for M = 2: Then, for d = 1; 2, s = 0; 1 and

for X in a compact set:

a) : sup
w
( E [â (w;�; s)]� a (w;�;m) )2 =

(
O (h8) : M = 1

O (h12) : M = 2

b) : sup
x

��E �rd

 â (w;�; s)

�
�rd


a (w;�; s)
��2 = O �h2� ; d = 1; 2

c) : sup
x
E
��
rd

 â (w;�; s)� E

�
rd

 â (w;�; s)

� �2�
= O

�
1

Nh2d�1+M

�
:

Proof of Lemma 1 . Noting that the kernels in (D1-2) are higher order
kernels, the proof for the squared bias readily follows from standard Taylor

series arguments; the variance result is standard.

To establish consistency and to analyze the Hessian matrix, we require

convergence uniform in the parameters. The following lemma provides these

results.
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Lemma 2 (Uniform Convergence). Under the assumptions and

de�nitions in section 4, for s = 0; 1 and d = 0; 1; 2:

� � sup
z;


��rd

 â (w; 
; s)� Erd


 â (w; 
; s)
�� = op (1) .

Proof of Lemma 2. Here, we provide the result for d = 0, s = 1,

M � dim(W ) = 1, and r2i = u2i (�).The proofs for other cases are similar

and somewhat simpler when r2j = v2j (�o) : Write

u2j (�) = u
2
j (�o)� 2uj (�o)Zj (� � �o) + (� � �o)

0 Z 0jZj (� � �o) :

With � in a compact set, the argument for all three terms is quite similar.

Below, we provide the argument for the �rst term. Following Ichimura

(1993), de�ne:

tj �
1 : ju2i (�o)j < N�

0 : Otherwise

and write:

â1 �
NX
j=1

tju
2
j (�o)

�
1

hN
K [(w �Wj) =h]

�
a1n � E

�
tj u

2
j (�o) j Wj = w

�
g (w) :

Similarly, de�ne â0 and a0n by replacing tj with (1� tj) : Then, with �

de�ned as above, � � �1 +�2 +�3; where:

�1 � sup
z;

jâ1 � E (â1)j ; �2 � sup

z;

jâ0j ; �3 � sup

z;

jE (â0)j :

The proof then follows by showing �k =op (1), k = 1; 2; 3. Since N��h�1

is bounded, from Hoe¤ding�s inequality (see Lemma 1 of Klein and Spady
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(1993)):

�1 = Op
�
hN�[1=2��]� = op (1)

for the selected window and � su¢ ciently small. For the second term:

�2 �
 
c
NX
j=1

(1� tj)u2j (�o) = (hN)
!
;

where c is a positive and �nite constant. The above expression converges to

its expectation. From the tail-assumption on r2i; this expectation tends to

zero as:

1

h

Z 1

N�

 
w

[1 + w2](s+1)=2

!
dw <

1

h

Z 1

N�

w�sdw = o (1) :

A similar argument shows that �3 =op (1) :

Lemma 3. Assume:

Sa �
X

â2i =N = Op
�
N�s� ; Sb �X b̂2i =N = Op

�
N�t� ;

where s+ t > 1: Then,

p
N
X

âib̂i=N = op(1):

Proof of Lemma 3. The result follows from Cauchy�s inequality:���pNX âib̂i=N
��� � pNS1=2a S

1=2
b :

In the remainder of this intermediate section, we use the above lem-

mas to characterize the gradient to the objective function for the primary

equation. Asymptotic normality for the estimator of the primary equation

will then follow from this characterization. To preview the argument, we
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require the following notation. Denote �̂ as the vector of estimated parame-

ters from the Y2-equation (including estimated parameters of the conditional

error variance). Write �o � (�0o; �o; b
0
o)
0 for the vector of true parameter

values from the Y1-model (including correlation and conditional variance pa-

rameter values). Refer to the averaged objective function for the primary

equation (Y1�model) shown in (D7). Taken with respect to � let Ĝ (�o; �̂)
and Ĥ (�o; �̂) be the corresponding gradient and Hessian when estimated

variance functions are positive.

With estimated conditional variance functions converging uniformly to

positive functions, the following Taylor series expansion is valid on a set with

probability approaching one:

p
N [�̂� �o] = �Ĥ

�
�+; �̂

��1p
NĜ (�o; �̂) ; (1)

�+� [�o:�̂]. Obtain H (�; �) from Ĥ by replacing all estimated nonparamet-

ric expectations by their probability limits in Ĥ. Uniformly in the parame-

ters, it can be shown that
���Ĥ (�; �) �H (�; �)��� and jH (�; �)� EH (�; �)j

each converge in probability to zero. Therefore, once consistency is estab-

lished, Ĥ (�+; �̂) will converge in probability to Ho � EH (�o; �o). Asymp-
totic normality will then follow if the gradient component is asymptotically

normal.

To analyze the gradient, recall from (D7) that:

M̂ik (�o; �o) � [Xi Y2i] �o + �o
Ŝui (�o; k)

Ŝvi (�o)
v̂i (�o) (2)

Mi (�o; �o) � [Xi Y2i] �o +
Sui (�o)

Svi (�o)
vi �Moi:

From (D7) , recall that �̂ si is a smooth trimming function for observations

where Svi < 0: Denote ŵik � �̂ si

h
r�M̂ik (�o; �o)

i
, ŵi � [ŵi1 + ŵi2], and

ĜC �
h
rĜ� (�o; bo; �+)

i
[�̂ � �o]. Then, the gradient with respect to � at
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�o is given as:

Ĝ (�o; �̂) = Ĝ (�o; �o) + ĜC = ĜA + ĜB + ĜC ; (3)

ĜA � �
X

�̂ i [Y1i �Moi] ŵi=N; ŵi � [ŵi1 + ŵi2]

ĜB � ĜB1 + ĜB2; ĜBk �
NX
i=1

�̂ i

h
M̂ik (�o; �o)�Moi

i
ŵik=N:

Lemmas GA and GB below provide appropriate characterizations forp
NĜA and

p
NĜB: The characterization of the remaining component will

immediately follow from the characterization of the �rst-stage estimator, �̂,

in Theorem 1 of the next section. All asymptotic results hold if trimming

is based on X throughout or on X and estimated indices.26 Below we

will show that known trimming functions may replace estimated trimming

functions in a number of terms. In one critical term (see Lemma GA below),

this result will follow from Pakes and Pollard (1989, Lemma 2.17, p. 1037).

In other cases, we will employ results on convergence rates for indicators in

Klein (1993), which are based on inequalities due to Jim Powell.

Lemma GA (First Gradient Component). With M̂ik (�; �o) de�ned

in (2) above:

r�M̂ik (�o; �o) =

2666664
Wi + �o

�
r�Ŝui (�o; k)

�
vi=Ŝvi�

Ŝui (�o; k) =Ŝvi

�
vi

�o

�
rbŜui (�o; k)

�
vi=Ŝvi:

3777775
Recalling that ŵi � �̂ si [ŵi1 + ŵi2] ;de�ne wi by replacing all estimated func-
26As stated in the assumptions section, we have found that the �nite sample performance

is improved when X-trimming is followed by trimming based on estimated indices (with
minimal X-trimming maintained for technical reasons).
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tions with their probability limits. With � io � � i (qo), let:

"1i � �� io [Y1i �Moi]wi; �"1 �
NX
i=1

"1i=N:

Then, for ĜA in (3):

p
NĜA � �N�1=2

X
� io [Y1i �Moi]wi =

p
N�"A + op (1) :

Proof of Lemma GA. With �̂ i � � i (q̂),
p
NĜA is the sum of the

following three terms:

A � N�1=2
X

[Y1i �Moi] [�̂ i � � io]wi

B � N�1=2
X

[Y1i �Moi] [�̂ i � � io] [ŵi � wi]

C � N�1=2
X

[Y1i �Moi] � io [ŵi � wi] :

The proof will follow if each of these terms is op (1) : Employing a similar

strategy to that in Klein (1993), denote qo as a vector of population quantiles

(see (D1), Section 4) and let N " � hq : jq � qoj < "i ; " = o(1): Then, A

= op(1) if

A� � sup
N"
N�1=2

X
[Y1i �Moi] [� i (q)� � i (qo)]wi = op(1)

for all " = o(1):27 From Pakes and Pollard (1989, Lemma 2.17, p. 1037),

A� = op(1):

For the term B; note that �̂ i � � i (q̂) and � io � � i (qo) ; where jq̂ � qoj �
op (N

�s) : Letting N � � hq : jq � qoj < �i ; � = o(N�s) it su¢ ces to show

27If uniformity holds for � � N" for all " = o(1); then uniformity holds over op (1)
neighborhoods of qo :
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that for all � = o(N�s) :

B� � sup
N�
N�1=2

���X [Y1i �Moi] [� i (q)� � i (qo)] [ŵi � wi]
��� = op(1):

Let � �i (q) be an indicator de�ned on the union of the sets on which the

indicators � i (q) and � i (qo) are de�ned. Then, it su¢ ces to show that:

B� � sup
N�
N�1=2

���X [Y1i �Moi] [� i (q)� � i (qo)] � �i (q) [ŵi � wi]
��� = op(1):

From Cauchy�s inequality (see Lemma 3):

B� � N1=2B�1B
�
2;

B�1 = sup
N
�

hX
[Y1i �Moi]

2 [� i (q)� � i (qo)]2 =N
i1=2

B�2 = sup
N�

hX
� �i (q) [ŵi � wi]

2 =N
i1=2

:

From Klein (1993), with indicators approximated by smooth functions, it can

be shown that for any �xed " arbitrarily small : B�1 = op (N
�s+") : It also

can be shown that B�2 = op
�
N�1=2+s�"� ; which completes the argument for

B.28

Turning to C; the analysis is similar to that in Klein and Spady (1993),

with the result following from a mean-square convergence argument. To

illustrate the argument, with ri � [Y1i �Moi] vi, the second component of

28When q̂ is a X sample quantile, s = 1=2� ":
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the weight vector generates the following component of C:

C2 � N�1=2
X

� iori

"
�̂ is
Ŝui

Ŝvi
� � is

Sui
Svi

#

= N�1=2
X

� iori

24
�
�̂ isŜui � � isSui

�
Ŝvi

� � is
Sui
Svi

�
�̂ isŜvi � � isSvi

�
Ŝvi

35
� D1 +D2:

With the analysis for both of these terms being similar, focus on D1: From

Lemmas 1 and 3:

D1 = D11 �D12 + op (1) ;

D11 � N�1=2
X

� iori

24 �̂ is
�
Ŝui � Sui

�
Ŝvi

35 Ŝvi
Svi
;

D12 � N�1=2
X

� iori

�
Sui (�̂ is � � is)

Ŝvi

�
Ŝvi
Svi
:

For D11; from a Taylor series on �̂ is and Lemmas 1 and 3:

D11 = N
�1=2

X
� iori

24� is
�
Ŝui � Sui

�
Svi

35+ op (1)
On a set with probability approaching 1, from a Taylor series expansion of�
Ŝ2ui

�1=2
about S2ui and Lemmas 1 and 3:

D11 = N
�1=2

X
� iori� is

�
Ŝ2ui � S2ui

�
= (2SuiSvi) + op (1)
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Employing the ratio form of Ŝ2ui and Lemmas 1 and 3:

D11 = N�1=2
X

� iori

h
f̂i=ĝi � S2ui

i ĝi
gi

� is
2SuiSvi

+ op (1)

= D�
11 + op (1) ;

D�
11 � N�1=2

X
� iori

h
f̂ii � ĝiS2ui

i
[� is= (2giSuiSvi)] :

With the above term being linear in estimated functions and with ri having

expectation conditioned on X of 0, it can be shown that

E
�
(D�

11)
2�! 0:

With �̂ is being a smoothed indicator with derivative controlled by aN ; the

analysis for D12 is similar.

To simplify ĜB � GB1 + GB2; the second gradient component in (3),

Lemma 4 below shows that the estimated trimming and weight functions

may be taken as known.

Lemma 4. With wik and ŵik de�ned as in Lemma GA and with all

terms evaluated at true parameter values:

N1=2ĜBk �
p
N
X

� i

h
M̂ik �Moi

i
wik=N + op (1) ;

where ĜBk is a gradient given in (3).

Proof of Lemma 4. Referring to �̂ iŵi as an estimated weight, the

di¤erence in terms with estimated and true weights is given as:

�k = N
1=2
Xh

M̂ik �Moi

i
[�̂ iŵik � � iowik] =N; k = 1; 2:

The result follows from repeated application of Lemmas 1 and 3, a Taylor se-

ries arugment for the smooth trimming component of ŵik; and a convergence
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rate for indicators in Klein (1993).

To further simplify ĜB; Lemma 5 below shows that the components of

ĜB can be written as a linear combination of estimated functions. As this

form will be a U-statistic, standard projection arguments will complete the

characterization of this gradient term.

Lemma 5. Referring to Lemma 4 and the de�nition of M̂ik in (2):

N1=2ĜBk = N1=2
X

� ivi

24
�
Ŝui (�o; k)� Sui

�
Ŝvi

� Sui
Svi

�
Ŝvi � Svi

�
Ŝvi

35wik=N
� N1=2T1k �N1=2T2k:

For the single index case, (D1) provides the ratio form for Ŝ2ui (�o; 1) and

Ŝ2vi . In the double index case, (D2) provides the ratio form for Ŝ2ui (�o; 2) :

Accordingly, write:

Ŝ2ui (�o; k) � f̂1i (�o; k) =ĝ1i ((�o; k))

Ŝ2vi � f̂2i=ĝ2i:

De�ne:

a1i �
�

1

2g1i (�o; k)SviSui

�
; a2i �

�
Sui

2g2iSviSvi

�
:

Then, on a set with probability tending to one:

N1=2ĜBk = N1=2T �1k �N1=2T �2k + op (1) ;

T �1k �
X

� i

h
f̂1i (�o; k)� ĝ1i (�o; k)S2ui

i
a1iwik=N

T �2k �
X

� i

h
f̂2i � ĝ2iS2vi

i
a2iwik=N:
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Proof of Lemma 5: For the term T1k, from Lemmas 1 and 3:

N1=2T1k = N
1=2
X

� i� is

�
Ŝui (�o; k)� Sui

�
Ŝvi

Ŝvi
Svi

+ op (1) :

On a set with probability approaching 1, Taylor expand
h
Ŝ2ui (�o; k)

i1=2
about

S2ui and employ Lemmas 1,3 to obtain:

N1=2T1k = N1=2
X

� i

�
Ŝ2ui (�o; k)� S2ui

� � is
2SuiSvi

wik=N + op (1)

= N1=2
X

� i

 
f̂1i (�o; k)

ĝ1i (�o; k)
� S2ui

!
� is

2SuiSvi
wik=N + op (1)

= N1=2
X

� i

 
f̂1i (�o; k)

ĝ1i (�o; k)
� S2ui

!�
ĝ1i ((�o; k))

g1i ((�o; k))

�
� is

2SuiSvi
wik=N + op (1) ;

which completes the argument. The proof for T2k is identical.

From Lemma 5, ĜBk is a U-statistic to which standard projection argu-

ments apply to complete the required characterization for this term. Lemma

GB below provides this result.

Lemma GB (U-Statistic Projection): Referring to Lemma 5, write
the trimming indicator as � i � � Ii�xi; the product of index and X-trimming
indicators. Then, with indices Iui and Ivi evaluated at the true parameter

values:29

N1=2ĜBk = N1=2GBk + op (1) ; (a)

GBk �
X�

u2i � S2ui
�
E [� ia1iwikjIi (k)] =N �X�

v2i � S2vi
�
E [� ia2iwikjIvi] =N;

29Within the expectations, the indices are naturally evaluated at true parameter values.
Though not theoretically necessary, for reasons argued earlier, we have adopted a strategy
of re-estimating the model and trimming on the basis of estimated indices.
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where Ii (k) = Iui for k = 1 and (Iui; Ivi) for k = 2. With "Bi as the ith term

of GB1 +GB2 it then follows that:

N1=2ĜB = N
1=2 [GB1 +GB2] � N1=2

X
"Bi=N � N1=2�"B: (b)

Proof of Lemma GB. For k = 1 (the argument for k = 2 is identical),
refer to Lemma 5 and write:

T �11 �
X

� i

h
f̂1i (�o; 1)� ĝ1i (�o; 1)S2ui

i
� ia1iwi1=N

=
1

N (N � 1)
X
i

X
j 6=i

��ij; �
�
ij �

�
u2jk1 [i; j]� k1 [i; j]S2ui

�
� ia1iwi1

=

 
N

2

!�1X
i

X
j>i

�
��ij + �

�
ji

�
=2 � UN :

As the above expression is a U-statistic with expectation 0, from standard

projection arguments:

p
N
h
UN = ÛN

i
= op (1) ;

ÛN =
2

N

X
i

E
� �
��ij + �

�
ji

�
=2 j Y1i; Zi

�
=

X
i

�
u2i � S2ui

�
E [� ia1iwikjIui] =N;

which follows because ��ij has conditional expectation of o
�
N�1=2� from the

higher order kernel and ��ji has the conditional expectation shown above.

Employing the same argument, T �21 has a similar form. The characterization

for ĜB1 follows. The analysis of ĜB2 is similar to that for ĜB1, which

completes the argument for (a). The required form in (b) now directly

follows from (a).

42



7.2 Main Results
Recall that the third gradient component for the second stage estimator

depends on �̂; the estimator for the nuisance parameter vector from the Y1-

model. To analyze such �rst-stage estimation uncertainty, Theorem 1 below

characterizes the components of �̂ .

Theorem 1: First Stage Consistency and Characterization. De-
�ne:

v2i (�) � (Y2i �Xi�)
2 ;

where

E
�
v2i (�o) j Ivi (�o)

�
= E [Yi (�) j Xi] :

De�ne

R̂ (�; �) � 1

N

NX
i=1

�̂ ir̂
2
i (�; �) ; r̂i (�; �) � v2i (�)� Ê

�
v2i (�) j Ivi (�)

�
�̂ (�) = argmin

�
R̂ (�; �) ;

Ŝvi (�) �
h���Ê �(Y2i �Xi�)

2 jIvi
�
�̂ (�)

� ����i1=2 :
With �̂ols as the OLS estimator for �o; let:

X̂�
i � Xi=Ŝvi (�̂ols) ; X

�
i � Xi=Svi (�o) :

Then, with 
 � p lim
�
X�0X�=N

�
and with "�i � X�0

i v
�
i ; the GLS estimator

of �, �̂, satis�es:

p
N [�̂ � �o] = 
�1

p
N
X

"�i=N + op (1) : (a)
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De�ne

R (�; �̂) � 1

2N

NX
i=1

� ior
2
i (�; �̂) ; ri (�; �) � v2i (�̂)� E

�
v2i (�̂) j Ivi (�)

�
wi � � io

@

@�
ri (�o; �o) ; w

�
i � wi � E [wijIvi (�o)]

R11 � p lim

�
@2

@�@�0
R (�o; �o)

�
; R21 � p lim

�
@2

@�@�0
R (�o; �o)

�
:

The estimator for the index parameters, �̂ (�̂), satis�es:30

p
N
h
�̂ � �o

i
= �R�111

p
N
hX

ri (�o; �o)w
�
i =N +R21 [�̂ � �o]

i
+ op (1) : (b)

Proof of Theorem 1. The proof for (a) is immediate. For (b),

accounting for estimation uncertainty in �̂; the proof follows from Ichimura

(1993) or from the intermediate lemmas above.31

Recall from (1-3) at the beginning of the Appendix that the second stage

estimator has three gradient components, with the �rst two being charac-

terized in Lemmas GA and GB above. Lemma GC characterizes the third

gradient component.

Lemma GC. Referring to (1-3) and employing the notation in Theorem
1, de�ne:

"Ci � p lim (rG� (�o; bo; �o))
"


�1"�i�
�R�111 [ri (�o; �o)w�i +R21
�1"�i]

� # :
30This characterization holds under a more general semiparametric formulation of the

Y2-model: Here, to emphasize identi�cation issues, we have focused on the case where the
Y2 model is linear with an unknown conditional variance function.
31With the weight rede�ned for the second-stage estimator, �rst and second-stage gra-

dients have a similar structure. Consequently, the intermediate lemmas used to prove
Theorem 3 could also be employed to prove Theorem 1.
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Then:
p
NĜC =

p
N�"C + op(1); �"C �

NX
i=1

"Ci=N:

Proof of Lemma GC. The proof follows from (1-2), Theorem 1, and a

standard uniform convergence result.

Theorem 2: Second Stage Consistency and Identi�cation. With

Zi � [Xi Y2i] ; let R be the matrix with ith row:

[Zi ( Sui (�o; bo) =Svi) vi] :

Then, the model is identi�ed under the constant correlation assumption if

R has full column rank and the correlation parameter satis�es:

0 < j�oj < 1:

The proof for the above theorem is given separately for the case where

Sui (�o; bo) is obtained nonparametrically (case A) and the case in which a

single index structure is imposed (case B).

Proof of Theorem 2A (Nonparametric Case). Let:

ui (�) � Y1i � Zi�; Z � [X Y2] ; Ŝui (�)
2 � Ê

�
ui (�)

2 jXi

�
M̂i � Zi� + �

"
Ŝui (�)

Ŝvi

#
v̂i

Q̂ (�) � 1

2

X
�̂ i�̂ is

h
Y1i � M̂i

i2
=N ; Q̂� (�) �

h
Q̂ (�)� Q̂ (�o)

i
�̂ � argmin Q̂ (�) = argmin Q̂� (�) :

Replace estimated functions in Q̂� (�) with their uniform probability lim-
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its to obtainQ� (�) � [Q (�)� Q (�o)].32 It can be shown that sup
���Q̂� (�)�Q� (�)���

is, op(1), uniformly in �: Further, the function Q� (�) converges uniformly

in the parameters to its expectation:

Q� (�)
p! E [Q� (�)] � E [Q (�)�Q (�o) ] ; uniformly in �:

With

Mi (�) � Zi� + �
�
Sui (�; b)

Svi

�
vi & Moi �Mi (�o) ;

write Y1i �Mi = [Y1i �Moi]� [Mi �Moi] : It can be shown that

EQ� (�) = E
NX
i=1

� i [Mi �Moi]
2 =N:

With Mi �Moi = 0 at the true parameter values, consistency follows if this

minimum is unique. If the minimum is not unique, it must be the case that

Mi �Moi = 0 at all potential minimizing parameter values. Then, for any

minimizer, (��; ��)

Zi (�
� � �o) + [��Sui (��)� �oSui (�o)] vi=Svi = 0; (2A.1)

from which it follows that:

��2S2ui (�
�)
�
v2i =S

2
vi

�
= �2oS

2
ui (�o)

�
v2i =S

2
vi

�
�2�oSui (�o) (vi=Svi)Zi (�� � �o)
+ (�� � �o)0 Z 0iZi (�� � �o) :

32The function Q̂� is introduced to avoid convergence arguments for:

1

N

X
[Yi �Moi]

2
:
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Taking an expectation conditioned on Xi :

��2S2ui (�
�) = �2oS

2
ui (�o)� 2�oSui (�o)Svi (�2 � �2o) (2A.2)

+(�� � �o)0E [ Z 0iZi j Xi] (�
� � �o) :

From the de�nition of S2ui (�
�) :

S2ui (�
�) = E

�
(Yi � Zi��)2 j Xi

�
(2A.3)

= E
�
( ui (�o)� Zi (�� � �o))2 j Xi

�
= S2ui (�o)� 2E(uivijXi) (�

�
2 � �2o)

+ (�� � �o)0E [ Z 0iZi j Xi] (�
� � �o)

= S2ui (�o)� 2�oSui (�o)Svi (��2 � �2o)
+ (�� � �o)0E [ Z 0iZi j Xi] (�

� � �o) :

Di¤erencing the expressions in (2A.2) and (2A.3):

��2S2ui (�
�)� S2ui (��) = �2oS2ui (�o)� S2ui (�o) : (2A.4)

Note that ��2 < 1; because ��2 = 1 implies �2o = 1, which violates an iden-

tifying assumption. Let r � [(1� �2o) = (1� ��2)]
1=2 and substitute (2A.4)

into (2A.1) to obtain:

[Zi , ( Sui (�o) =Svi) vi]

"
� � �o
��r � �o

#
= 0:

Under a full rank assumption, � = �o and ��r = �o: Since � = �o; from

(2A.3), Sui (�o) = Sui (�
�) : Consequently, from (2A.4), r = 1:With ��r = �o;

it follows that �� = �o:

Proof of Theorem 2B (The Index Case). In addition to the notation
introduced above, recall that estimated conditional variance functions are
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given as:

Ŝ�ui (�; b)
2 � Ê

�
ui (�)

2 jIii (b) ; Ivi
�

Ŝui (�; b)
2 � Ê

�
ui (�)

2 jIii (b)
�
:

Write estimated response functions as:

M̂1i � Zi� + �Ŝui (�; b) v̂i=Ŝvi

M̂2i � Zi� + �Ŝ
�
ui (�; b) v̂i=Ŝvi:

Let � � (�; b; �) and

Q̂ (�) �
X
k

Q̂k; Q̂k �
1

2N

X
k

�̂ i�̂ s

h
Y1i � M̂ki

i2
:

Then, with Q̂� (�) � Q̂ (�)� Q̂ (�o), the estimator is given as:

�̂ � argmin
�

Q̂ (�) = argmin
�

Q̂� (�) :

Similar to the argument above, with Q� (�) � E [Q (�)�Q (�o)]

sup
�

���Q̂� (�)�Q� (�)��� = op(1):
It can be shown that for k = 1; 2:

EQ� (�) = EQ (�)� EQ (�o) = E�1 + E�2;

E�k = E
NX
i=1

� i [Mki �Moi]
2 =N;
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where

M1i (�) � Zi� + �Sui (�) vi=Svi

M2i (�) � Zi� + �S
�
ui (�) vi=Svi:

At the true parameter values, Mki (�o)�Moi = 0; k = 1; 2: Therefore, both

Q1 and Q2 are separately minimized at the true parameter values. With

�� as a candidate for a minimum, Q1 and Q2 must also be separately be

minimized at ��: It then follows that:

Mki (�
�)�Moi = 0; k = 1; 2:

For k = 2, from the above restriction:

Zi (�
� � �o) + [��S�ui (��)� �oSui (�o)] vi=Svi = 0: (2B.1)

Multiply (2B.1) by vi, take an expectation conditioned on Xi, divide by

Svi 6= 0; and solve for �oSui (�o) vi=Svi to obtain:

�oSui (�o) = Svi (�
�
2 � �2o) + ��S�ui (��) :

Noting that the r.h.s. only depends on X through [Iv Ii (b�)] ; for �o 6= 0; it
follows that:

Smui (�o) = E [S
m
ui (�o) jIv Ii (b�)] ; m = 1; 2:

Returning to (2B.1), solve for ��S�ui (�
�) (v2i =S

2
vi) to obtain:

��2S�ui (�
�)2
�
v2i =S

2
vi

�
= �2oS

2
ui (�o)

�
v2i =S

2
vi

�
� (2B.3)

2�oSui (�o) (vi=Svi)Zi (� � �o) +
(�� � �o)0 Z 0iZi (�� � �o) :
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Letting:

B (Xi) � 2�oSui (�o)Svi (�2 � �2o)
C (Xi) � (�� � �o)0E [Z 0iZijIu (b�) ; Iv] (�� � �o) ;

employ (2B.2) and take an expectation in (2B.3) conditioned on Iu (b�) and

Iv to obtain:

��2S�ui (�
�; b�)2 = �2oS

2
ui (�o)�B (Xi) + C (Xi) : (2B.4)

Proceeding with a strategy similar to the nonparametric case above, from

the de�nition of S2ui (�
�) :

S�ui (�
�)2 � E

�
(Yi � Zi�)2 j Iu(b�); Iv

�
(2B.5)

= E
�
( ui (�o)� Zi (� � �o))2 j Iu(b�); Ivi

�
= E

�
S2ui (�o) jIu(b�); Ivi

�
� 2E(uivi j Iu(b�); Iv) (��2 � �2o)

+C (Xi) :

From the constant correlation assumption and (2B.2):

E(uivi j Xi) = �oSui (�o)Svi ) (2B.6)

E(ui (�o) vi j Iu(b�); Iv) = �oE [Sui (�o) jIu(b�); Iv]Svi
= �oSui (�o) Svi:

Substituting (2B.2) and (2B.6) into (2B.5):

S�ui (�
�; b�)2 = S2ui (�o)�B (Xi) + C (Xi) : (2B.7)

Di¤erencing (2B.4) and (2B.7) :

��2S�ui (�
�; b�)2 � S�ui (��; b�)

2 = �2oS
2
ui (�o)� S2ui (�o) : (2B.8)
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Note that ��2 = 1) �2o = 1; which contradicts an identi�cation assumption.

With ��2 6= 1, let r � [(1� �2o) = (1� ��2)]
1=2 and from (2B.4) write:

S�ui (�
�; b�) = rS (�o) : (2B.9)

Employing an argument identical to that in the nonparametric case, it now

follows from (2B1), a full rank condition, and the above results that �� = �o
and �� = �o:

Since �� = �o, �� = �o, and M1i =M2i

S2�ui (�o; b
�) = E

�
ui (�o)

2 j Iu (b�); Iv)
�
= E

�
ui (�o)

2 j Iu (b�)
�

= S2ui (�o) = E
�
ui (�o)

2 j Iu (bo)
�
:

It can now follows that b� = bo (Ichimura 1993).

Theorem 3 : Asymptotic Normality of the Second Stage Esti-
mator. Employing notation in Lemmas GA-C, let:

"i � "Ai + "Bi + "Ci:

From (1-3) of the previous section and with Ho � E [H (�o; �o)]:

p
N [�̂� �o]

d! Z; Z ~ N
�
0; H�1

o E ("i"
0
i)H

�1
o

�
:

Proof of Theorem 3. With �+ � (�̂; �o), in a set with probability

tending to 1, from (1-3):

p
N [�̂� �o] = �

h
Ĥ
�
�+; �̂

�i�1 hp
N
�
Ĝ1 + Ĝ2 + Ĝ3

�i
;

For the Hessian term, from standard uniform convergence arguments: Ĥ
p!
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Ho. For the gradient, from Lemmas GA-C:

p
N
�
ĜA + ĜB + ĜC

�
=
p
N�"; �" =

NX
i=1

"i=N:

The result now follows.
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