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ABSTRACT 
 

Another Look at the Identification at Infinity of 
Sample Selection Models*

 
It is often believed that without instrument, endogenous sample selection models are 
identified only if a covariate with a large support is available (see Chamberlain, 1986, and 
Lewbel, 2007). We propose a new identification strategy mainly based on the condition that 
the selection variable becomes independent of the covariates when the outcome, not one of 
the covariates, tends to infinity. No large support on the covariates is required. Moreover, we 
prove that this condition is testable. We finally show that our strategy can also be applied to 
the identification of generalized Roy models. 
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1 Introduction

Since the seminal work of Heckman (1974), the issue of endogenous selection has been an
active topic of research in both applied and theoretical econometrics (see Vella, 1998, for a
survey). The usual strategy to deal with this issue is to rely on instruments that determine
selection but not the outcome. However, the search of a valid instrument may be difficult
if not impossible in some applications. Another strategy, which has been sometimes advo-
cated, relies on the fact that, loosely speaking, the selection problem becomes negligible “at
the limit”. Following this idea, Chamberlain (1986) proved that the effects of covariates on
an outcome are identified under the linearity of the model and a large support assumption
on at least one covariate.Lewbel (2007) generalized this result by proving that identification
can be achieved without imposing any structure on the outcome equation, provided that
a special regressor has a large support and under restrictions on the selection equation.1

The main drawback of the latter approach is that it requires the existence of a covariate
with a large support. Thus, it breaks down when all covariates are discrete, a case which
is fairly common in practice. In this paper, we consider another route for identifying the
model at infinity. Intuitively, if selection is truly endogenous, then we can expect the
effect of the outcome on the selection variable to dominate those of the covariates for large
values of the outcome. Following this idea, our main identifying condition states that
the selection variable is independent of the covariates at the limit, i.e., when the outcome
tends to infinity. Under this condition, the model is identified without any large support
condition on these covariates. Only an additive decomposition and a mild restriction on
the residuals are required. Moreover, we show that the main condition is testable. Apart
from the standard selection model, we apply our result to a generalization of the Roy
model (1951) of self-selection accounting for non-pecuniary factors. We show that, in
this framework, the effects of covariates on the outcomes are identified without exclusion
restriction under a moderate dependence condition on the residuals.

The note is organized as follows. Section 2 presents the model and establishes the main
identification result. Section 3 proves the testability of our main condition. Section 4
applies this result to generalized Roy models, and Section 5 concludes.

1These restrictions entail that the probability of selection tends to zero or one when the special regressor
tends to infinity.
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2 Main result

Let Y ∗ denote the outcome of interest, X denote covariates and D denote the dummy of
selection. Let us consider the following selection model:{

Y ∗ = ψ(X) + σ(X)ε

D = 1{g(X, Y ∗)− η ≥ 0}.
(2.1)

The econometrician observes D, Y = DY ∗ and X. Without loss of generality, we suppose
that η ⊥⊥ (X, Y ∗) and η ∼ U [0, 1]. In this case, g(X, Y ∗) = P (D = 1|X, Y ∗). We also
make the innocuous normalizations that ψ(x0) = 0 and σ(x0) = 1 for a given x0 ∈ Supp(X)

(where Supp(T ) denotes the support of the random variable T ).2 Our main result is based
on the following assumptions.

Assumption 1 (Additive decomposition) X ⊥⊥ ε.

Assumption 2 (Tails of the residual) sup(Supp(ε)) = +∞. Moreover, there exists β > 0

such that E(exp(βε)) <∞.

Assumption 3 (Independence at infinity) There exists l > 0 such that for all x ∈ Supp(X),
limy→∞ g(x, y) = l.

Assumption 1 is usual in selection models and weaker than Chamberlain (1986)’s condition,
since heteroskedasticity is allowed for here. Assumption 2 puts some weak restrictions on
the tails of the distributions of ε. In the example of a wage equation where Y ∗ denotes
the logarithm of the wage W , it is satisfied if E[W β] < ∞ for a given β > 0.3 Thus, it
holds even if wages have very fat tails, Pareto-like for instance. Assumption 3 is the main
condition here. It requires the probability of selection to be independent of X at the limit,
i.e., for those who have a very large outcome. It holds for instance if the selection model is
additive in Y ∗, i.e., D = 1{Y ∗ + h(X) ≥ η}, with η ⊥⊥ (X, Y ∗). In this latter case, l = 1,
but this condition is not necessary in general. It would also hold in a more general model
with D = U1{Y ∗ + h(X) ≥ η} where U ∈ {0, 1} ⊥⊥ (X, Y ∗, η) is a random shock. For
instance, such a framework is well suited to model participation to the labor market, with

2Unlike Heckman (1990) and Andrews & Schafgans (1998), we do not seek to identify the intercept of
the model, which corresponds here to E(ε). We conjecture that in our context, the intercept cannot be
identified without further restriction.

3We also suppose that ε is unbounded. Identification is still possible otherwise, by using support
variation. We do not consider this case here since it seems less relevant in practice, and does not really
rely on our main condition, i.e., Assumption 3.
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U denoting in that case an unobserved random shock related e.g. to health conditions that
could prevent individuals from entering the labor market.

Theorem 2.1 Under Assumptions 1-3, ψ(.) and σ(.) are identified.

Proof: Subsequently, ST denotes the survival function of the random variable T . Besides,
we use the notation f(y) ∼ g(y) if there exists r(.) such that f(y) = g(y)(1 + r(y)) with
limy→∞ r(y) = 0. The result is based on the following lemma.

Lemma 2.1 Let T be a real random variable such that sup(Supp(T )) = +∞ and E(|T |) <
∞. Suppose also that when y →∞, ST (y) ∼ ST (lf(y)), where limy→∞ f

′(y) = 1 and l > 0.
Then l = 1.

Proof of Lemma 2.1: Suppose that l > 1. Then there exists η > 0 such that l > 1 + η.
Moreover, by assumption, there exists y0 such that for all y ≥ y0,

ST (y) < (1 + η)ST (lf(y)).

Besides, E(|T |) <∞ implies that
∫∞

0
ST (u)du <∞. Thus, for all y > y0,∫ ∞

y

ST (u)du < (1 + η)

∫ ∞
y

ST (lf(u))du. (2.2)

By assumption, the derivative of the function g(y) = lf(y) tends to l > 1 when u → ∞.
Thus, there exists y1 such that g(y) > y and g′(y) > 1 + η for all y ≥ y1. Hence, for all
y ≥ y1, g is one to one and∫ ∞

y

ST (lf(u))du =

∫ ∞
g(y)

ST (v)

g′(g−1(v))
dv

<
1

1 + η

∫ ∞
g(y)

ST (v)dv

<
1

1 + η

∫ ∞
y

ST (v)dv. (2.3)

Inequalities (2.2) and (2.3) imply that
∫∞
y
ST (u)du <

∫∞
y
ST (u)du for all y ≥ max(y0, y1),

a contradiction. Similarly, one can show that l < 1 is impossible. Thus l = 1. �

Now let us prove Theorem 2.1. Let q(y, x) = P (D = 1, Y ≥ y|X = x). We have

q(y, x) =

∫ ∞
y

g(x, u)dP Y ∗|X=x(u)
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By Assumption 3, as u → ∞, we have g(x, u) → l > 0. Thus, using standard results on
integrals, we get as y →∞,

q(y, x) ∼ lP (Y ∗ ≥ y|X = x).

By Assumption 1, P (Y ≥ y|X = x) = Sε((y − ψ(x))/σ(x)), where Sε(.) denotes the
survival function of ε . Thus,

q(y, x) ∼ lSε

(
y − ψ(x)

σ(x)

)
. (2.4)

Similarly,
q(y, x0) ∼ lSε(y) (2.5)

In other words,

q(y, x) ∼ q

(
y − ψ(x)

σ(x)
, x0

)
(2.6)

Now, let us show that actually, as y →∞, for all s > 0 and u ∈ R,

q(y, x) ∼ q(sy + u, x0) =⇒ (s, u) =

(
1

σ(x)
,−ψ(x)

σ(x)

)
(2.7)

Because the function q is identified, this implies that σ(x) and ψ(x) are identified. If
q(y, x) ∼ q(sy + u, x0), then by (2.4) and (2.5),

Sε(t(y + v)) ∼ Sε(y), (2.8)

where t = sσ(x) and v = (1/σ(x))(ψ(x)+u/s). Besides, by Assumption 2, sup(Supp(ε)) =

+∞ and E(|ε|) <∞. Thus, by Lemma 2.1, t = 1, i.e. s = 1/σ(x). Thus, σ(x) is identified.
Besides, by (2.8),

Seβε(wy) ∼ Seβε(y),

where β is defined in Assumption 2 and w = exp(βv). Because E(exp(βε)) < ∞, we
can apply Lemma 2.1 once more. This yields w = 1, or u = −ψ(x)/σ(x). Thus, ψ(x) is
identified. �

3 Testability

The main identifying condition in the setting above is Assumption 3, so one may wonder
whether this assumption is refutable or not. The answer turns out to be affirmative.
Indeed, together with Assumption 1, this condition implies (2.6), which can be stated as

∀x ∈ Supp(X), ∃(s(x), u(x)) ∈ R∗+ × R : q(y, x) ∼ q(s(x)y − u(x), x0). (3.1)
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This condition can be directly tested in the data. The following theorem shows that actu-
ally, under a slight reinforcement of Assumption 2 and another mild condition, Condition
(3.1) and Assumption 3 are equivalent.

Theorem 3.1 Suppose that Assumption 1 holds, ε has unbounded support, there exists
α > 1, β > 0 such that E[exp(β|ε|α)] <∞ and there exists l(x) > 0 such that

lim
y→∞

g(x, y) = l(x). (3.2)

Then Assumption 3 is equivalent to Condition (3.1).

Proof: We shall first prove a result similar to the one of Lemma 2.1.

Lemma 3.1 Let T be a real random variable such that sup(Supp(T )) = +∞ and E(|T |) <
∞. Suppose also that when y → ∞, ST (y) ∼ lST (fδ(y)), where l > 0 and fδ(.) is strictly
increasing for y large enough and satisfies (i) f ′δ(y)→ 0 if δ < 0, (ii) f ′0(y)→ C > 0 and
(iii) f ′δ(y)→∞ if δ > 0. Then δ = 0. Moreover, if f0(y) = y, then l = 1.

Proof of Lemma 3.1: Suppose that δ > 0. By assumption, there exists l′ > 0 and y0

such that for all y ≥ y0,
ST (y) < l′ST (fδ(y)). (3.3)

Besides, there exists y1 such that fδ(.) is one to one on [y1,∞), with f ′δ(y) > l′ and fδ(y) > y

for all y ≥ y1. Thus, for all y ≥ y1,∫ ∞
y

ST (fδ(u))du =

∫ ∞
fδ(y)

ST (v)

f ′δ(f
−1
δ (v))

dv

<
1

l′

∫ ∞
fδ(y)

ST (v)dv

<
1

l′

∫ ∞
y

ST (v)dv. (3.4)

Inequalities (3.3) and (3.4) imply that
∫∞
y
ST (u)du <

∫∞
y
ST (u)du for all y ≥ max(y0, y1),

a contradiction. The proof that δ < 0 is impossible follows similarly. Thus δ = 0. Finally,
if f0(y) = y, then ST (y) ∼ lST (y), which implies directly that l = 1. �

Now let us prove Theorem 3.1. By the proof of Theorem 2.1, Assumption 3 implies
Condition (3.1). Thus, it suffices to prove that Condition (3.1) implies Assumption 3.
For all x ∈ Supp(X), by a similar reasoning as in the previous proof,

q(y, x) ∼ l(x)Sε

(
y − ψ(x)

σ(x)

)
.
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The same holds for q(y, x0). Thus, by Condition (3.1), there exists s > 0 and u ∈ R such
that

Sε(y) ∼ lSε(sy + u), (3.5)

where l = l(x)/l(x0). This implies that

Sexp(βε)(y) ∼ lSexp(βε)(exp(βu)ys).

By assumption, E[exp(βε)] <∞. Thus, by applying Lemma 3.1 to fδ(y) = exp(βu)yexp(δ)

(with δ = ln s), we get s = 1. Hence, by (3.5),

Sexp(βεα)(exp(βyα)) ∼ lSexp(βεα)(exp(β(y + u)α)).

After some manipulations, we obtain

Sexp(βεα)(y) ∼ lSexp(βεα)(fu(y)),

where

fu(y) = y

(
1+u( β

ln y )
1/α

)α
.

Some computations show that fu is strictly increasing for y large enough and (i) f ′u(y)→ 0

if u < 0, (ii) f0(y) = y and (iii) f ′u(y) → ∞ if u > 0. Thus, by Lemma 3.1, u = 0 and
l = 1. In other terms, l(x) = l(x0) for all x ∈ Supp(X), which proves that Assumption 3
holds. �

Consider for instance the case where selection is exogenous and x 7→ g(x, y) = P (D =

1|X = x) is nonconstant. In this case, Condition (3.2) is satisfied with l(x) = P (D =

1|X = x). Thus, by Theorem 3.1, Condition (3.1) fails to hold, and one is able to reject
the “independence at infinity” assumption.

4 Application to generalized Roy Models

Let us consider a class of generalized Roy models where each individual chooses the sector
D ∈ {0, 1} that provides him with the higher utility. Suppose that the utility Ui associated
with each sector i ∈ {0, 1} is the sum of the log-earnings4 lnYi = ψi(X) + εi and a
random nonpecuniary component Gi(X) + ηi. Thus, D = 1{lnY1 > lnY0 + G(X) + η}
with G(X) = G0(X) − G1(X) and η = η0 − η1, and the econometrician only observes
lnY = D lnY1 + (1−D) lnY0, as well as D and X. Without loss of generality, we assume

4For the sake of simplicity, we shall consider an homoskedastic model on the outcome in the following.
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that there exists x0 ∈ Supp(X) such that ψ0(x0) = ψ1(x0) = 0. The standard Roy model,
in which the chosen sector is the one yielding the higher earnings, corresponds to η = 0

and G(X) = 0. This framework also encompasses Heckman (1974)’s model of labor market
participation. In this latter case, Y1 corresponds to the logarithm of the potential wage,
G1(X) = η1 = 0, lnY0 = 0 and G0(X) (resp. η0) is the observable (resp. unobservable)
part of the logarithm of the reservation wage.

The generalized Roy models we consider in this section can be used in a broad range of
economic settings. Basically, these models are well suited for most of the situations in which
self-selection between two alternatives is driven both by the relative pecuniary and non-
pecuniary returns. This framework can be used for instance to model the decision to attend
higher education after graduating from high school, thus extending Willis & Rosen (1979)
by accounting for non-pecuniary factors entering the schooling decision (see, e.g., Carneiro
et al., 2003, and D’Haultfœuille & Maurel, 2009). Other examples of applications include
occupational choice (see, e.g., Dagsvik & Strøm, 2006 for the choice between private and
public sector) as well as migration decisions (see, e.g., Borjas, 1987 and Bayer et al., 2008)
accounting for non-pecuniary factors.5 Theorem 2.1 can be applied to provide identification
of (ψ0, ψ1) without exclusion restriction nor any large support condition on the covariates,
as the following result shows.

Corollary 4.1 Suppose that (ε0, ε1, η) ⊥⊥ X, ε has unbounded support and there exists
β0, β1 > 0 such that E[exp(βiεi)] <∞ for i ∈ {0, 1} and

lim
u→∞

P (εi + (1− 2i)η ≤ a+ u|ε1−i = u) = l1−i > 0 (4.1)

for all a ∈ R and i ∈ {0, 1}. Then ψ0 and ψ1 are identified.

Proof: Since (ε0, ε1, η) ⊥⊥ X, Condition (4.1) implies that

lim
u→∞

P (lnY1 > lnY0 +G(X) + η| lnY1 = u,X = x) = l1.

In other words,
lim
u→∞

P (D = 1| lnY1 = u,X = x) = l1.

Thus, we can apply Theorem 2.1 to (D, lnY1, X) and ψ1 is identified. The same result
holds for ψ0. �

5Note that this generalized Roy model is also used as a structural underlying framework for the esti-
mation of treatment effects, with D corresponding in that case to the treatment status and G+ η to the
cost of receiving treatment (see Heckman & Vytlacil, 2005).
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To the best of our knowledge, this is the first identification result on the effects of co-
variates in generalized Roy models without exclusion restriction. Identification without
exclusion restriction of the competing risk model, which is strongly related to the standard
Roy model, has already been considered in the literature by Heckman & Honore (1989),6

Abbring & van den Berg (2003), Lee (2006) and Lee & Lewbel (2008).7 However, all of the
strategies proposed in these papers break down when turning to generalized Roy models.

Identification of (ψ0, ψ1) is obtained in Corollary 4.1 under rather mild restrictions on the
unobservables. In particular, Condition (4.1) can be understood as a moderate dependence
assumption between the unobservables. It is automatically satisfied for instance if ε0, ε1

and η are independent. It also holds if (ε0, ε1, η) is gaussian, provided that

|Cov(εi, ε1−i + (2i− 1)η)| < V (εi), i ∈ {0, 1}.

Noteworthy, this condition does not put drastic restrictions on the dependence between
unobservables. For instance, it will be satisfied in the standard Roy model if V (ε0) =

V (ε1), as long as (ε0, ε1) is not degenerated. It is also satisfied for instance in Heckman
(1974)’s empirical application to labor market participation of married women, although
the estimated correlation between ε and η is quite large (0.83).

Condition (4.1) is appealing because of its simple interpretation in terms of dependence
between the unobservables. Nevertheless, ψ0 and ψ1 may be identified even if it fails, as
soon as the “independence at infinity” conditions hold in this context, namely as soon as
for all x ∈ Supp(X), limu→∞ P (D = 0| lnY0 = u,X = x) = l0 > 0 and limu→∞ P (D =

1| lnY1 = u,X = x) = l1 > 0. Furthermore, one can apply Theorem 3.1 to this generalized
Roy model, thus implying that the latter identifying conditions can be tested.

5 Concluding remarks

This note shows that identification of sample selection models can be achieved without
instrument by letting the outcome, not a covariate, tend to infinity. The main condition,
apart from the additive separability, is the “independence at infinity” of the selection vari-
able and the covariates. In particular, unlike Chamberlain (1986) and Lewbel (2007), our

6Heckman & Honore (1989) use exclusion restrictions but only to identify the distribution of the un-
derlying durations. Their proof shows that the effects of covariates are identified without such restrictions.
Besides, identification of the standard Roy model has also been considered by Heckman & Honore (1990),
but in the presence of exclusion restrictions.

7Interestingly, these last two papers do not rely on identification at the limit.
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identification strategy does not rely on the existence of a covariate with a large support.
Noteworthy, our identification proof is constructive, and an estimator of ψ(.) and σ(.) could
be based on (2.7) for instance. One possible route for estimation would be to use trimmed
means, in a similar spirit as Andrews & Schafgans (1998). In this case, we conjecture that
the rate of convergence would depend on the thickness of the tail of the distribution of the
outcome, as in Andrews & Schafgans (1998) and Khan & Tamer (2009). The derivation of
the estimators and their properties seems quite intricate, however, and we leave this issue
for future research.
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