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Abstract

We investigate the interplay between environmental policy, incentives to adopt
new technology, and repercussions on R&D. We study a model where a monopolistic
upstream firm engages in R&D and sells advanced abatement technology to polluting
downstream firms which are subject to regulation. We consider four different timing
and commitment regimes of environmental tax and permit policies: ex post taxation
(or issuing permits), ex interim commitment to a tax rate (a quota of permits) after
observing R&D success but before adoption, and two types of ex ante commitment
before R&D activity. We study the second best tax and permit rules and rank the

policies with respect to welfare.



1 Introduction

Important criteria to evaluate environmental policy instruments are effectiveness and
efficiency. As KNEESE and SCHULZE [1975] have pointed out early, however, the long
term incentives provided by environmental policy to adopt and to develop new, less
polluting technology are as least as important as static efficiency. In this paper we
investigate those long term incentives, in particular the interplay between pricing and
adoption of new technology, and the incentives to engage in R&D to develop a new,
less polluting technology. We do not only address the question of instrument choice,
we also ask how the timing of environmental policy and the ability of commitment to
particular tax rates or permit quantities affects both the R&D effort to develop new,
less polluting technology and the incentive to adopt such technology.

In contrast to most of the literature which either assumes ex ante commitment
to a certain policy level, or ex post optimal, time-consistent policy reaction, we study
four different timing and commitment regimes: first, ex post optimal setting of the
tax rate or a quota of permits, respectively; secondly, ex interim commitment to a
particular tax rate or quota of permits after knowing whether or not R&D has been
successful but before pricing and adoption of the new technology. Thirdly, we study
ex ante commitment to a fixed tax rate (or permit quantity, respectively) before R&D
effort and before R&D success is guaranteed. Finally we study ex ante commitment
to a menu of tax rates (or permit quantities, respectively) contingent on R&D success
but before R&D is undertaken.! The last regime is reminiscent of principal agent
theory where a principal makes a commitment to a whole menu of rewards to an agent
contingent on different outcomes. In the classical regulation theory the commitment
to a menu of policy levels has been considered less often.

In our set-up we distinguish between the regulated polluting industry which em-

ploys abatement technology and the R&D industry which develops new abatement

'T am greatful to Paul Mensink who suggested to consider this regime.



technology. Empirical results by LANJOUw and MoDy (1995) support this distinc-
tion. Those authors found that only 5% of air and 8% of water pollution abatement
technology, respectively, developed by the machinery sector is used by the same indus-
try itself. The remaining 95% and 92% of innovations, respectively, are developed for
other industries.

For simplicity we consider the case of a monopolistic R&D industry for the most
part of the paper. In section 8 we briefly sketch how to extend the analysis to R&D
oligopoly.

Our policies and their commitment structures can be ranked as follows: ex ante
commitment to a menu of tax rates contingent on R&D success dominates all other
policies including ex ante commitment to a menu of permit quotas. Ex interim taxation
dominates all ex post optimal policies. Taxation dominates permit trading under both
ex ante commitment contingent on R&D success and ex interim commitment. The
reason for this is that the R&D monopolist can manipulate the price for emission
allowances by his price or output policy which he is not able to do if the regulator makes
a commitment to a particular tax policy. An unambiguous ranking is neither possible
between ex interim and ex ante commitment (either taxes or permits) independent
of R&D success, nor between the tax and permit policies under ex ante commitment
independent of R&D success.

Moreover, we can show that the second best optimal tax rate always exceeds
marginal damage under ex interim regulation and can exceed marginal damage under
ex ante commitment. This result seems to be surprizing in the light of Parry’s (1995)
findings and many results on taxation of imperfectly competing firms. The reason
for our result, however, is that the monopolistic R&D firm prices too high and thus
sells too few units of the new technology to the polluting sector. To compensate for
this distortion the regulator raises the polluting firms’ willingness to pay for the new
technology by enhancing the tax rate above marginal damage. Little can be said in

general concerning a comparison of the optimal tax rates (or permit prices) for the



different timings. Tax rates can be higher or lower under ex post ex post regulation
compared to ex interim regulation. The same holds true for a comparison between ex
ante and ex interim regulation.

Finally, we would like to know whether decentralized policy induces too much
or too little R&D. However, no definite answer can be given to this question. The
(expected) private value of innovation to the monopolist may exceed or fall short of
the (expected) social value of innovation. This contrasts from Arrow’s (1962) result,
popularized e.g. by Tirole (1988), according to which in a world without externalities
a monopolist’s value of innovation always falls short of the social value.

So far we have discussed environmental policy only. In an additional section we
show that the regulator can restore first best outcomes by the choice of three policy
instruments: Emission taxes or permits to regulate pollution, a subsidy for the R&D
monopolist per unit of equipment sold to the polluting industry to adjust for too
little output, and finally a profit tax or subsidy in order to equalize private and social
values of innovation. However, neither individual profit taxes nor output subsidies
(or subsidies for adoption of certain technology) are always feasible. Just recently the
EU commission argued that a new German law which allows to subsidize the use of
renewable resources violates the competition rules of the European Treaty. Hence, it
is important to study the impact of pure pollution control policies on R&D and their
(second best) optimal design as is done for the most part of this paper.

The article builds on two strands of literature. The oldest one deals with the
incentives to adopt new technology, given that the new technology is already available.
In a series of papers DOWNING and WHITE (1987), MILLIMAN and PRINCE (1989),
JUNG et al. (1997), REQUATE and UNOLD (2001, 2002) have investigated those in-
centives. Especially Requate and Unold demonstrated that emission taxes lead to
over-investment if the regulator has made an ex ante commitment to the optimal tax
rate before a new, less polluting technology was available. In contrast, a similar com-

mitment to auctioned or free permit quotas leads to under-investment. Those authors



have also demonstrated that under competitive conditions the regulator can achieve
first best outcomes by optimally responding to diffusion of the new technology.

In all those models it was assumed that the new technology was already available.
More recent developments deal with the simultaneous incentives for adoption and R&D
of new technology. With respect to environmental R&D), the papers by BIGLAISER and
HorowiTz (1995), PARRY (1995), and DENICOLO (1999) are closest to the spirit of
this paper. BIGLAISER and HOROWITZ consider a model where the regulated polluting
firms can engage in R&D themselves. As in our model this technology can be sold
to other firms. Those authors consider ex post regulation only. They also restrict
their analysis to linear damage functions and thus neglect important features of policy
adjustment, commitment and timing. By contrast, PARRY studies ex ante commitment
to one tax rate only, independently of R&D success. PARRY finds that the second best
optimal tax rate falls short of marginal damage, whereas in my model the tax rate may
exceed marginal damage. DENICOLO considers a deterministic model with endogenous
technology and compares ex post regulation and commitment. His kind of commitment
corresponds to our regime of ex ante commitment with only one tax rate (or quota of
permits). DENICOLO also finds that taxes and permits are equivalent under ex post
regulation but different under commitment. Moreover, he finds that taxes are superior
to permits under commitment. In contrast to my model, however, Denicolo always finds
under-investment under commitment, whereas in my model over-investment can also
happen. ZHAO (2001) studies a general equilibrium model with exogenous uncertainty.
He finds that permits give higher incentives to invest in cleaner technology than taxes.

This paper is organized as follows. The next section sets up the model. In section
3 we characterize the social optimum. In section 4 we describe the possible timings
of regulation in the decentralized settings. In section 5.1 we characterize both the
polluting ”downstream” firms’ and the ”upstream” monopolist’s behavior under tax
and permit policies. In section 6 we characterize the second best optimal rules for

environmental policies and for the different timing and commitment regimes, and we



make a comparison of those policies. In section 7 we show how to restore first best
outcomes by a combining three policy instruments. In section 8 we briefly discuss
how to generalize the model for the case of upstream duopoly. Most of the proofs are
given in the appendix. The final section summarizes the results, presents some policy

conclusions, and gives some directions for further research.

2 The Model

We consider a model with two industries, a competitive, polluting downstream industry
which is subject to environmental regulation and a non-competitive upstream industry
which engages in R&D to develop a new, environmentally more friendly technology and
sells it to the polluting downstream firms. For the most part of the paper we assume

the R&D industry to be monopolistic.

2.1 Abatement and Investment Cost of Downstream Firms

There is a continuum of downstream firms = € [0,1] which, prior to innovation,
are represented by their identical abatement cost functions® C°(e) which satisfies

— e) = e)/de > 0 an e) = e e) > 0for e <e l.e. we
CS dc? d d C’ge d?C" de)? f 0

max’

have positive and decreasing marginal abatement costs as long as emissions fall short

0

max*

of the maximal, or laisser-faire emission level e

An upstream monopolist engages in R&D. With a certain probability ¥, contin-
gent on R&D effort, the upstream firm develops a new, exogenously given technology
which leads to both, lower abatement cost C(e, ) < C°(e) and lower marginal abate-

ment costs, —C%(e,z) < —C?%(e) for all e < €Y

max

and all =, which is a firm specific

parameter of downstream firm z € [0, 1]. The cost functions C(e, x) satisfy the same

2Since the downstream industry is perfectly competitive, it is not necessary to explicitly model the
output market of those firms since the output adjustment upon environmental regulation is already

implied in the abatement cost function.



properties as C°(e), i.e. —C4(e,x) >0 and C2 > 0 for e < €2, . The new technology,
however, is of different value for the downstream firms. The crucial assumption is
C# > 0and —C4 > 0, which means that the closer the firm specific parameter x is to
0, the more suitable is the technology for that downstream firm. For technical reasons
we assume convexity, implying CAC4 — [CA]2 > 0. The cost function C4(-,-) may
also contain fixed set-up costs which need not be considered explicitely.?

In the decentralized situations, to be treated below, the downstream firms will

also have to pay a price p to the upstream monopolist.

2.2 R&D and Production Costs of Upstream Firms

The upstream R&D firm faces a cost R(y) in order to be to be successful in R&D with
probability y. We assume R(0) = 0, R' > 0, R” > 0, and lim,_,; R(y) = co. Besides
the R&D costs the upstream firm has constant marginal production cost ¢ in order
to produce one unit of the new technology. Let 7™ denote the upstream firm’s gross
monopoly profit after R&D success, i.e. without the R&D costs. Hence, the ex ante

expected profit is given by

I(y) = y=™ — R(y)

2.3 Social Costs and Efficient Allocation

Total emissions are given by

E= /0z e'dz + (1 — x)e’ (1)

and are evaluated by a convex damage function D(-) which depends on total emissions

only. In order to define total social costs we first define SC! = SC(z, ey, {ei}j e w])

as the social cost of pollution in case that the upstream firm has been successful in

3Introducing heterogeneity of non-investing firms is possible but does not change the results.



R&D. Thus:
Sct = /OI[CA(ei,f) + cJdz + (1 — 2)C°(e") + D(E) (2)

In this case those downstream firms represented by the interval [0, z] adopt the new
technology, facing total costs represented by the integral.* The remaining share of
downstream firms (1—x) does not adopt the new technology and hence faces abatement
cost CY(e?) borne from the conventional technology.

In case of no R&D success, the social cost is simply given by®
SCOe%) = C(e") + D(e").

Including cost and probability of R&D success we obtain the ex ante expected total

social cost as

TSC(y,x,eo,{ei"} ) =ySC! + (1 — y)SC? + R(y) (3)

z€|0,z]

3 Socially Optimal Allocations

A social planner proceeds as follows. First he chooses the level of R&D. Then given
success or failure of the upstream firm, he chooses the share x of firms to adopt the
new technology. Finally he chooses emission levels €, and {e”};¢jo,4], respectively.

To solve the problem of minimizing total social costs, we start backwards. Inde-

pendently of R&D success, emissions must satisfy the rule
~C2(e") = D'(E) (4)
and

—CMe®,x) = D'(E) for all z, (5)

4Since C/0x > 0, it is efficient that firm & < x adopts the new technology, if = should adopt it.

5Note that in this case Ey = 1 - ¢y since the total of firms has measure 1.



i.e. marginal abatement costs of each firm must be equal to marginal social damage.
The optimal share x of firms to adopt the new technology given that the upstream

firm was successful is given by the first order condition
CA(e”, ) + ¢ — Cy(®) = D'(E)[e’ — €] (6)
Finally, the optimal level of R&D is simply determined by the first order condition:”

SC - SOt =R(y) . (7)

4 Timing of Regulatory Policies:

In sections 5.1 and 6 we will study the impact of downstream regulation on both
upstream R&D effort and pricing of the new technology. Since timing and commitment
of regulation will turn out to be crucial, we will first of all define the different games
between the regulator and the firms. For this purpose look at figure 1. Irresepective
of regulation, the industry moves in the following order: first, the R&D firm decides
on the amount of its R&D effort. In case of R&D success, it fixes a price for the new
technology. Thirdly, the downstream firms decide whether or not to adopt the new
technology. Finally, the downstream firms decide on how much to abate by setting
their marginal abatement costs equal to the tax rate, or the permit price, respectively.
On top of this structure, the regulator as different options to choose the point of time
where to inact policy. Let us start backwards: with timing D (ex post regulation) the
regulator moves after having observed both R&D success and the rate of adoption.
Under timing D’ the regulator observes both, R&D success and the price for the new
technology and inacts policy before adoption of the new technology. Although this

timing does not seem to be very realistic, it can be shown (see Requate and Unold 2001

6Note that (4) yields different values of €?, contingent on R&D success.

"Employing the envelope theorem we can neglect the indirect effect on z and e, {ei}fe[ow}.



and 2003) that this timing is equivalent to timing D. Hence we will not further consider
it here. With timing C (ex interim regulation) the regulator makes a commitment to
the level of his policy instrument after observing whether or not the R&D sector has
been successful. With timings A and B (ex ante commitments) the regulator makes
commitments to the level of his instruments even before the R&D sector engages in
R&D effort. The difference between policy regime A and B is that with regime B the
regulator decides only for a single tax rate, or a single quantity of permits, respectively,
irrespective of whether R&D has been successful or not. With regime B the regulator
makes a commitment to a whole menu of instruments. The latter form of policy is well
known from principal agent theory where the principal moves first by choosing a whole

menu of rewards to pay the agent contingent on different outcomes.
Figure 1 about here.

In the following sections we first analyze the behavior of the downstream firms,
secondly the behavior of the upstream firms, and finally we study second best optimal
tax and permit policies. This procedure is more efficient than analyzing the four
different regimes one by one since the downstream firms’ behavior is always the same

and the upstream firms’ behavior is almost identical for the regimes A, B, and C.

5 The Firms’ Behavior

5.1 Behavior of Polluting Downstream Firms

Irrespective of the timing, in the last stage of all games the downstream firms set their
marginal abatement costs equal to the tax rate 7 or permit price o, respectively (we

treat the case of taxes here, the case of permits works the same), i.e.



—Clle) = 7 (8)
—Ce,x) = 7 (9)

The solutions in e are denoted by €°(7) and e”(7), respectively. At this place an

additional assumption is in order:
Aassumption 1 d[e°(T) — e*(7)]/dT < 0.

The assumption says that the difference between emissions of the old and the
new technology decreases if the tax rate rises or if both firms reduce emissions keeping
marginal abatement costs equal.®

Next consider the downstream firm’s decision whether of not to adopt the new
technology. Recall that p denotes the price of the advanced technology charged by the

upstream firm. Then a downstream firm decides to invest if and only if

C4(e”,x) + 1" +p < C%e%) + 7€ (10)

If (10) holds with equality, the firm is indifferent between investing or not. Observe
that if it pays for firm = to adopt the new technology, it also pays for any firm 7 < x
since the abatement costs with the new technology are lower for firm & then for firm z.
Thus, if (10) holds with equality, it implicitly defines the demand for new technology
as a function of the tax rate, or equivalently, (10) defines the downstream firms’ inverse
demand or willingness to pay function p(z, ) which is downward sloping with respect

to quantity and will be shifted upwards if the tax rate (or permit price) goes up:
Lemma 1 p, <0, and, p; > 0.

For proof see the appendix.

8This assumption is consistent with physical evidence according to which by the entropy law the
marginal abatement costs go to infinity if emissions go to zero. Note that this assumption allows also

for a parallel shift of the marginal abatement cost curve, in which case the derivative is zero.
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5.2 Behavior of R&D Firm

Finally we study the R&D sector, starting with the output decision once R&D was

successful.

5.2.1 Output and Pricing

For the output and pricing decision the regime of regulation does matter. Under the
timings A, B, and C, the monopolist takes the tax rate as given, whereas in timing
D he can manipulate the tax rate, or the permit price, respectively. However, the

monopolist can also manipulate the permit price under the timings A, B, and C.

Tax regime under ex ante or ex interim regulation (timings A - C): Given
R&D success and facing the tax rate 7, the monopolistic firm maximizes its monopoly
profit m(z,7) = [p(x,7) — cJx. The first order condition for monopoly output is as

usual:
Te(x,7) = py + p(x,7) —c=0 (11)

However, the comparative statics effect of the monopoly output = as a reaction on

T is ambiguous in general. But we obtain:

Lemma 2 If the tax increases, the upstream monopolist produces more output, if and

only if
(?—e")CA 4+ C22 >0 (12)
The reason why x, := dx/0T cannot be signed unambiguously is that, on the

one hand, the inverse demand curve shifts upwards since p, > 0. This would allow the
monopolist to charge a higher price. On the other hand, the inverse demand curve
becomes also more elastic (steeper) since p,, < 0, leading - other things being equal
- to lower monopoly output. If C4 is sufficiently small, which e.g. holds for parallel

shifts of the marginal abatement costs curve through x, we obtain x, > 0.

11



Tax regime under ex post regulation (timing D): Since the R&D firm can
manipulate the tax rate, or permit price respectively, in regime D, we briefly have to

look at the regulator’s behavior. He clearly sets the tax rate equal to marginal damage:
™ = D'(E) (13)

Since aggregate emissions F depend on z and since the regulator is the last to move,
the tax rate 7 depends on z, too. To see the impact of x on 7 we differentiate (13)

with respect to x, obtaining

dr " dr OF

P (E)'{[ex—eo]ﬂL%E} (14)
where

OE  [*Oe(Z,7) deg

E_/o g (- )t <0

is the partial effect of a tax increase on emissions if the share of adopting firms is kept

constant. Note that both % and %2 are negative. Solving (14) for dr/dx yields

dr  D'"(E) eV — e?]
dv ~ 1-D"(E)%&

<0 (15)

Since with this timing the tax rate depends on x, the upstream firm’s profit can be

written as

The first order condition for profit maximum is now given by
() = [pe +prlr+p—c=0 (16)

Since p, + p,(d7/dz) < p, the monopolist’s effective inverse demand function is steeper
in the case where he can influence the tax rate than in the case where the firm has to

take it as given (as is the case in the timings A through C). See Figure 2.
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Permit regime under ex ante or ex interim regulation (timing A through C):
We now study regulation by issuing permits. The total supply of permits is written as
L. The downstream firms take the price for permits ¢ as given and thus choose their
emissions according to —C%(e) = o and —C? (e, ) = o, respectively. The last equation

again defines e”(0). The permit market clears according to

/Ow F(0)d7 + (1 — 2)e%(0) = L (17)

Note that the permit price is a function of both L and x. In the appendix we show the

following result.

Lemma 3 i) 92 =-1 <0.

ii) 92 = <= < 0.
iii) If (12) holds then 2 < 0.

i) is the usual result that the price for permits falls if the supply of permits rises.
ii) says that the monopolistic upstream firm can depress the permit price by selling
more units of her new technology. iii) represents the total reaction of the upstream
monopolist’s output on increasing supply of permits. The latter effect can be ambigu-
ous in general, but it is negative as intuitively expected under some mild additional
assumption, i.e. (12). Note that in contrast to the case of taxes, (12) is a coarse suf-
ficient but no necessary condition for iii) to hold. The monopolist’s profit can now be

written as
m(x) = [p(x,o(z, L)) — =z
The first order condition for profit maximization then given by
[Pz + poozlz+p—c=0 (18)

This equation looks similar to (16). But since under a permit regime in scenarios A

through C' total emissions remain constant whereas they can be manipulated by the

13



monopolist in timing D, the terms o, and 7, are different. Hence (16) and (18) are

not equivalent.

Permit regime under ex post regulation (timing D): Here is no difference to
regulation by taxes since if the regulator is the last to move, the share of adopting
firms z is already fixed. Thus we are in the ordinary case of regulation under perfect
competition and perfect information. We know that in this case taxes and permits are
equivalent. Note, however, that the inverse demand function, faced by the monopolist
is more elastic under the permit regimes than under the tax regimes. The reason is that
if the monopolist increases output, the permit price falls since the adopting firms have
a lower demand for permits. But the decreasing permit price lowers the downstream

firms’ willingness to pay for the new technology.

5.2.2 R&D Effort

For the R&D decision of the upstream firm the final profit is crucial. Hence let II}
denote the monopoly profit under timing j = A, ..., D. Then the expected profit net

R&D costs is given by

(y) := yI}' — R(y)
The first order condition simply reads

It is interesting to study the impact of a tax increase on the success probability and
R&D effort in the timings A through C' (under timing D this question does not make
sense since for the monopolist the tax rate is not an exogenous variable). By employing

the envelope theorem we obtain
dy (e® — &%)
dr R"(y)

For permits we obtain dy/dL = (e — e¢*)xor/R"(y) < 0, i.e. reducing (!) the quota of

>0 (20)

permits also enhances the upstream monopolist’s R&D effort.
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6 The Regulator’s Problem

We are now ready to study the regulator’s problem under the different regimes. Clearly
in Scenario D the regulator sets the tax rate equal to marginal damage or issues the
corresponding number of permits, respectively. We have already made use of this rule
when studying the pricing rule of the upstream monopolist in section 5.1. In the next

section we study second best policies under timings A — C":

6.1 Second Best Tax and Permit Rules for Timing C
6.1.1 Tax Regime

Given R&D success the regulator minimizes the social cost under the constraints (8),
(9), and (11). Thus the objective function is given by (2) where , ¥, and ¢” are all
functions of the tax rate. It is then straightforward to calculate the second best tax

rate:

(p— o)y
dE/dTt

pe(x, T)X - 27

e = D(E) - dE/dr

= D'(E) + (21)

where the total derivative of F with respect to 7 is given by Ccll—f = (eq — ep)xr + Er.
The partial derivative E, = 2 [ [ e(7,2)dZ + (1 — x)eo(7)] < 0 is the reaction of the
downstream firms on the tax rate given the share of adopting firms z. Formula (21) is

proved in the appendix. We can derive the following result:
Proposition 4 Under timing C, with R€D success

i) the second best tax rate T7¢ is higher than marginal damage if and only if

(12) holds.

i) If in timing C' the requlator charges Tp, the second best taz rate from scenario D,
the monopolist sells more units of the new technology than in timing D, formally
zo(Tp) > xp, where xo (xp) is the share of adopting firms under optimal tazation

in timing C' (D).

15



iii) The second best share of adopting firms x¢ is less than socially optimal but greater

than xp.

iv) The social value of innovation, and thus also the ex ante expected social value of

innovation, is greater under timing C' than under timing D.

v) The second best tax rate ¢ may exceed or fall short of Tp.

The most important of the above results is certainly iv). It says that some com-
mitment is good if the regulator cannot directly enhance output of the monopolistic
innovator. Observe further the apparent contradiction between i) and v) since 7. ex-
ceeds marginal damage whereas 7 is always equal to marginal damage. However,
emissions and thus the marginal damage are different in the two regimes. Since the
monopolist produces fewer units under ex post regulation (timing D) as compared to
the ex interim case, emissions and thus marginal damage are higher in timing D than
in timing C.

Proof: i) follows immediately from the signs z, > 0 and E, < 0. For ii) observe
that, on the one hand, the monopolist’s inverse demand function under timing C' is
less elastic if the tax rate is given as fixed. On the other hand, the two inverse demand
functions p(x, 7p) for timing C' and p(z, 7(x)) for timing D cross at x = x¢ (see Figure
2). Hence the optimal point for the monopolist under timing C' must be on the right
hand side of zp. iii) follows from ii) and is proven in the appendix (see also Figure
3). iv) Follows from the slopes of the reaction functions and Figure 3. Since z, > 0
and 7'(z) < 0, the regulator is clearly better off when moving first. In Figure 3 7p is
smaller than 7¢. It is obvious that 7p can also be greater than 70.7 Qed.

Figures 2 and 3 about here.

9Numerical examples where 7p is smaller or greater than 7 can be obtained by the auhor on

request.
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6.1.2 Second Best Permit Rule for Timing C

We now study regulation by issuing an amount L of permits. The regulator minimizes

the social cost given by
SC(L) = / [CA(e",Z) + ¢]dT + (1 — 2)C°(e%) + D(L)
0

Using (dE/do)oy, = 1, we can write dx/dL = x,0;, = v,0./((dE/do)oy) = x,/(dE/do).

The first order condition for the second best number of permits can then be written as

o = D’(L)—% (22)
_ pp)- Zg;‘;‘jm" (23)

Now we are ready to compare the performance of taxes versus permits under timing

C.

Proposition 5 i) If the regulator issues the number of permits corresponding to
the resulting emissions of any tax rate T, i.e. L = E(T), then the resulting permit
price exceeds the tax rate, i.e. o(x,L) > 7, and the resulting share of adopting
firms under permits, denoted by xL., is smaller than the resulting share of adopting

firms under tazes x(7¢).

ii) The second best optimal permit regime yields lower welfare than the second best

optimal tax regime.

iii) The second best optimal number of permits can be higher or lower than the second

best optimal emission level under tazes.

The result, proved in the appendix, seems to be surprising at first glance. If the
regulator issues permits and some firms adopt the new technology, the price should
be expected to fall. However, the monopolistic producer of new technology anticipates

this. Since his inverse demand function is steeper under permits than under taxes at

17



the point of his monopoly price for taxes, he charges a higher price under permits
than under taxes. The higher permit price is a direct consequence of the monopolist
lowering output. Thus for any emission target, be it achieved by issuing permits L
or by charging the corresponding tax with resulting emissions E(7) = L, there is less
supply and thus less adoption of new technology under permits than under taxes. Since
the monopolist supplies less units of the new technology under the second best optimal
permit policy compared to the second best optimal tax policy and since there is too

little supply even under taxes, welfare must be lower under permits compared to taxes.

6.2 Second Best Optimal Tax and Permit Rules for Timing B

Under this timing the regulator makes a commitment to a tax policy before the firms
engage in R&D. However, the regulator sets two different tax rates 7% and 7} contingent

on R&D success. Thus the regulator’s problem is now

min {ySC’I(TJIg) + (1= y)SC°(r3) + R(y)}

0,71
taking the behavior of up- and downstream firms as given through the equations (8),
(9), (11) and (19). Note that the monopolist’s behavior is as in timing C. Since he
does not make a profit in case of R&D failure, we obtain dy/d1y = 0. Thus following a
similar procedure as in the last section we obtain the solution for the two second best

optimal tax rules

Ty = D'(FEp) (24)
Oy
o = D(E) — B B (50, (ry) - SColr) + R () (25)

If there is no R&D success, there is no further market imperfection and the regulator
should set the tax equal to marginal damage. Looking at 7}, we see that the first two
terms are the same as for the second best optimal tax rule for timing B, given by (21).
In addition there is a term which in a first best allocation is equal to zero due to (7).

I was not able sign SC7(75) — SCo(73) + R'(y) for this second best scenario. However,
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since Jy /0T is positive, and dF;/dr is negative, the last term is positive if and only if
there is too little R&D effort. The same applies to formula (24). We see also that, by
contrast to timing C', where the regulator moves after R&D success, in which case there
is no way to influence R&D effort, the regulator is now able to correct for too little or
too much R&D effort. Hence welfare must be higher under this timing compared to
timing C, where we have also two tax rates contingent on R&D success.

The case of permits is similar. The regulator now commits to two different
quantities L% and L satisfying the following rules:

op = D'(Lp) (26)

9y da

op = D'(Ly)—(p—czr+ % [SC!(Ly) — SCO(LY) + R'(y)] (27)
However, the distortion is larger under permits since the innovating monopolist’s in-
verse demand function is more elastic by the same reason as in timing C. Hence

expected welfare must be larger under taxes than under permits.

6.3 Second Best Optimal Tax and Permit Rules for Timing
A.

Finally we consider the case where the regulator commits to a tax policy before the
upstream firm starts R&D, but he is not able to commit to a menu of different tax
rates contingent on R&D success. In other words, the tax rate remains the same
irrespective of whether or not the upstream firm is successful. In this case the regulator
minimizes (3) with respect to one tax rate, again taking as given the behavior of up-
and downstream firms. Some tedious but straightforward calculations yield the second

best optimal tax formula:

1 dE! dz
T4 = n =y - D'EI——pwx,T—>
= T (p(E) G ~ e
de® dy
. /(.0 A 0 /
+(1—y)D'(e )_dT + (SC* - SC —l—R(y))—dT] (28)
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where E' are total emissions after successful innovation, and €° is the emission level in
case of no R&D success. The formula takes into account the reaction of R&D firm with
respect to its R&D effort. It also takes into account that with a certain probability
there is no R&D success which in turn results in high emissions. Note that the tax
formula boils down to (21) if y = 1, which in equilibrium, of course, cannot be the case
by the assumption that R&D costs go to infinity as y goes to 1.

The second best optimal permit rule is similar as the second best optimal
tax rule. In this case, however, the price of permits is subject to uncertainty whereas
emissions and thus the marginal damage is under the control of the regulator. Similar

calculations as in the tax case lead to the following rule:
G =D'(L)+y-[ps+poos]rr +[SC" = SC° + R (y)lyr (29)

where & = yo! + (1 — y)o® is the expected permit price, 0! is the permit price after

R&D success, and ¢ is the permit price in the absence of success.

6.4 Comparison

We are now ready to summarize our results from this section and rank the policies as far
as possible. It is clear that ex ante commitment to a menu of tax rates (timing B) beats
all other policy regimes. It beats taxation with timing A since it can always mimick
timing A by choosing 75 = 7% = 74. Taxation with timing B also beats taxation with
timing C' because through ex ante commiting to a particular tax level the regulator can
take influence on the R&D effort, which he is not able to do with timing C'. (Note that
with timing B the regulator can also always mimick the result of timing C since in both
cases he can use two tax rates.) It it also clear from our arguments put forward above
that each tax regime under timing B and C' beats the corresponding permit regime.
The reason is that with permits the inverse demand function faced by the R&D firm

is more elastic, and the distortion under permits is thus more severe than under taxes.

We summerize this as follows:
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Proposition 6 i) Ez ante taz policy contingent on RED success (taxation with

timing B) dominates all other regimes (including permit policy with timing B).

ii) FEach tax regime beats the corresponding permit regime under timing A, B, and

C.

iii) Ex interim tax policy (timing C') dominates ex post (tax or permit) policy (timing

D).

Under ex ante commitment with only a single tax rate (timing A), no unique
ranking between the tax and the permit policy is possible. One can show, however,
that for relatively flat damage functions taxes dominate permits whereas for relatively
steep damage function the opposite holds true. This is consistent with Weitzman’s
(1976) results. The situation here is similar to Weitzman’s scenario since in our model
there is uncertainty on the abatement costs due to random R&D success. Since timing
A is dominated by timing B anyway, this result is not so important and we do not give
a proof.

Comparison between the tax or permit regimes under timing A to those of timing
C are also ambigous. Little can also be said in general about a ranking of the second
best optimal tax rates (or permit prices) under the different regimes. Furthermore,
we would like to know whether decentralized policy induces too much or too little
R&D! Even here no definite answer can be given. The (expected) private value of
innovation to the monopolist can exceed or fall short of the (expected) social value
of innovation.!® This stands in contrast to ARROW’s [1962] early result according to
which a monopolist’s value of a process innovation always falls short of the social value
of innovation. In Arrow’s model, however, there are no externalities and no regulation.
The reason why we may arrive at a different result is that our second best tax rates

may exceed the marginal damage, and thus the marginal cost incurred by the firms

ONumerical examples can be obtained by the author on request.
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may exceed the total social marginal costs. If this is so, the private value of innovation

may also exceed the social value of innovation.

7 First Best Regulation

In the last section it was assumed that the regulator could use environmental policy
only although in the long term there are three market imperfections: pollution, too
high prices for new technology due to monopoly power, and insufficient R&D effort
since the social and the private values of innovation may differ. In this section we show
that the regulator can restore first best allocations by the choice of three instruments:
an emissions tax, a subsidy on the purchase of the advanced abatement technology, and
a profit tax for the R&D monopolist. It is well known from conventional monopoly
theory that a regulator can induce a monopolist to produce the socially optimal output
by paying a suitable subsidy. This also works here. However, the timing and the choice
of the environmental policy instrument do still matter for the size of the subsidy. If
the regulator decides ex post on the size of the tax rate etc., he makes himself a slave
to the regulator who can take influence on the tax rate by holding down or enhancing
output. Even under the ex interim permit policy (timing C') the monopolist is in a
better position than under ex interim taxation. The permits regime requires a higher
subsidy than in case of a tax policy. Finally an output tax is necessary to guarantee
that the monopoly profit after R&D success is equal to the social value of innovation.

To see this more clearly consider first ex interim taxation.

7.1 Ex interim taxation

The regulator commits to an emission tax 7, he pays a subsidy ¢ per unit of output of
the advanced abatement technology, and he charges a tax t on gross profits after R&D
success, i.e. R&D expenditures are not deductible from the tax bill. The tax ¢t may be

negative, i.e. resulting in a further subsidy. This, however, is unlikely since the output

22



subsidy shifts the inverse demand function outwards, thus leading to huge gross profits

anyway. Thus the gross profit of the R&D firm is given by

M(z;t,7,0) =t -y-[p(x,7)+ 0 — clr — R(y)
After R&D success the upstream monopolist sets

P +p+o—c=0 (30)
As usual the regulator has to set

o = —py(a*, 72" (31)

where x* denotes the socially optimal share of adoption (=output) of the new technol-

ogy, and
™ = S'(E}) (32)

is the optimal tax rate equal to marginal damage.

Since the output price is given by
p=C%e") — CA4e®, x) 4+ 7[e” — €] (33)

(see 10), plugging (33), (32), and (31) into (30) yields the corresponding first order
condition for the socially optimal share of adoption (6).
Let IT* = [p(z*,7*)+ o* — cJz* denote the resulting gross profit. Then the optimal

profit tax has to be set according to:

= (Sco* . SCI*)/ﬁ*

7.2 Ex interim permit policy and ex post regulation

Let us now consider the choice of the three instruments under ez interim commitment

to permits. Clearly, in order to obtain first best the regulator must set L* = Ej.

23



However, the profit after R&D is now given by 7(z) = [p(x,o(x, L)) + 0 — c]z, and the
first order condition becomes [p, +py0.|r+p+0c—c = 0. From this we see immediately

that the optimal subsidy is now given by

o™ = —py (2", o(x*, L")z — pe(z*,0(x*, L") - 0,(z*, L) > o* (34)

L.e. in case of a permit policy, the subsidy rate to be paid to the monopolist exceeds
the subsidy rate which corresponds to the tax regime. Hence also the corresponding
profit tax t** must be greater than ¢*.

A similar argument holds if the regulator fixes the tax rate (or the number of
permits) ez post. Under a tax policy the profit writes 7(z) = [p(z,7(z) + 0 — ]z,
leading to a subsidy o*** = —p,z* — p,7/(x*) > o*.

If gross profit taxes are possible, ex ante commitment does not provide further
advantages towards ex interim regulation since the regulator can use the profit tax to
equalize private and social benefits from innovation and thus can stir the R&D effort.

Often individual profit taxes are not feasible though. The lesson to be drawn
from our analysis then is that, if subsidizing advanced abatement technology is still
possible and an individual profit tax is not, the regulator is clearly better off by making
an ex interim commitment to the tax policy because in this case he needs to pay less
subsidies to the monopolist compared to the case of ex interim commitment to permits

and compared to ex post regulation with either taxes or permits.

8 Extensions to R&D Duopoly

In this section we briefly sketch how to extend the model to R&D duopoly. The easiest
way is to assume two symmetric upstream R&D firms j = A, B which develop a new,
exogenously given technology with abatement cost C4(e, z) or CB (e, z), respectively,

where x is a firm specific parameter of the downstream firm x € [0, 1]. The abatement
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cost function of firm B satisfies the same properties as that of firm A, with the only
difference that for B now C’f < 0 and —C’gc < 0 holds whereas for firms A we have
C#4 > 0 and C2A > 0 as assumed above. This means that the closer to 0 the firm
specific parameter x, the more suitable is technology A for that firm. The closer to 1
the parameter x, the less suitable is technology A and the more suitable is technology
B. Thus we have a Hotelling kind of model of product differentiation. In this case
in a social optimum, there is either a gap of firms in the middle of the interval [0,1]
which should not adopt the new technology, or all the firms should adopt one of the
two technologies. The first case boils down to two ”local” natural monopolies. If we
assume in the latter case that the market is covered in the decentralized situation,
there will be no difference between ex post and ex interim regulation, in case that both
upstream firms have been successful. If the market is covered, there is no distortion
by the upstream firms. If, however, only one firm is successful, we are in the same
situation as in the monopoly case with ex interim and ex post regulation.

One can show that the R&D effort by a single firm is lower than in the monopoly
case. Since both firms engage in R&D, the total probability that at least one firm is
successful can be higher or lower than in the case of pure monopoly. Hence it is also
difficult to compare the ex ante optimal tax rates of the duopoly case to the monopoly
case.

Full market coverage by a duopoly may be considered as little plausible. One can
avoid this by extending the one dimensional parameter space [0, 1] to higher dimension.
In such a model, some firms may be indifferent between the technology of upstream
firm A and upstream firm B, but prefer both technologies to the conventional one,
whereas another set of firms does not like, say, technology B but is indifferent between
the technology A and the old technology. In that case, lowering the price by upstream
firm A not only steels demand from firm B, but also sells more units to firms which
otherwise would not buy new technology at all. The main effects, discovered from our

monopoly model carry over to this case: There is too little output by the duopoply.
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The second best optimal tax rate exceeds marginal damage under timing C. In this
case, too, the regulator can restore first best by using three instruments. The subsidy
is of course lower for duopoly than for monopoly.

Thus with the monopoly model we have worked out basic insights which would

also hold if there are more than only one R&D firm.

9 Conclusions

In this paper we investigated the interplay of environmental policy, incentives to adopt
new technology, and the repercussions on R&D. We have studied an industry structure
consisting of many competitive, but heterogenous polluting firms and a monopolistic
R&D sector. We investigated different forms of timings and commitment: Ex post
regulation, ex interim regulation after observing R&D success but before adoption of
new technology, and finally ex ante regulation with both different tax rates contingent
on R&D success and with a single tax rate independently of R&D success. We found
that ex ante commitment with different tax rates dominates all other regimes. Ex
interim regulation dominates ex post regulation, and tax regimes dominate permit
regimes for the timings B and C. For the most part of the paper the regulator was
assumed to have only one instrument. We have seen that the regulator can restore the
first best outcome by a combining three policy instruments: emission taxes, subsidies
on adoption of the advanced abatement technology, and a profit tax on the R&D firms.
Nevertheless even with these three instruments the timing turned out to be crucial since
it has an impact on the size of the subsidy.

What policy conclusions can be drawn from our results? First of all, if only
environmental policy is feasible, early commitment before R&D activity is socially
beneficial since then environmental policy has a stronger impact on R&D effort. How-
ever, the commitment should include a flexible menu of tax rates (permit quantities)

contingent on R&D success. Secondly, taxes are unambiguously superior to permits
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since the R&D firm’s inverse demand function under permits is more elastic and hence
leads to higher distortions. However, the more competition in the upstream sector the
less severe these distortions will be.

It is once again interesting to compare our results to those obtained by PARRY
(1995). Since his model is fully symmetric, and there are no fixed cost of technology
adoption, all the firms always adopt the new technology. PARRY also allows for free
entry. As a consequence in his model, a tax increase induces a move along the demand
curve, whereas it shifts up the inverse demand curve in my model. Whereas in PARRY’s
model ” reducing the tax rate drives down the licence fee, and hence increases diffusion”,
the opposite is true here: enhancing the tax rate makes the new technology more
attractive to polluting firms and thus increases their willingness to pay for the new
technology. This effect will be exploited by the monopolist who can charge a higher
licence fee if the tax rate increases. Thus PARRY obtains a tax rate falling short of
marginal damage whereas in my model the tax rate may exceed marginal damage. It
would be desirable to bring together features of PARRY’s free entry model and features
of firm heterogeneity. Unfortunately this seems to be impossible since free entry is
(almost) inconsistent with heterogeneity of firms.

In the model considered here, the number of R&D firms was assumed to be exoge-
nous. It would be worthwhile to endogenize this number through a model of market
entry and monopolistic competition. It would also be interesting to take advantage
of these results for endogenous growth models with technological progress induced by

environmental policy.

10 Appendix

Proof of Lemma 1: Rewriting (10) we get:

pz,7) = C%e%) — CA(e®, x) + 7(° — ) (35)
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Differentiating w.r.t.  and 7 yields:
pp(e,m) = —Cil(e"x) <0 (36)
pAa,7) = L —e">0 (37)

Qed.
Proof of Lemma 2: First observe that e := de®/dx = —C% /CA > 0, i.e. the

higher the firm specific parameter z, the less advantageous the new technology, i.e. the

higher the emissions e”. Next we differentiate (36) w.r.t. = to obtain:

Poo(®,7) = —Cp(e”,x) = Chres (38)
_CLCa - (G
CA( F o (39)

Next we differentiate (37) w.r.t.  and 7 :

prn(2,7) = Cp/Clt <0 (40)

Py = et <) (41)

where the latter holds by Assumption 1. Differentiation of (11) with respect to 7 yields
Pr + Dur® (e® —e®) + Clz/CA

;= — = — 42
’ Doz + 2D Doz + 2Dy ( )

Proof of formula (21): If firm A was successful, the social cost is given by

SC(r) = /0 [OAE, ) + F@)) dF + ex + (1 - 2)C()

+S (/0 edT + (1 — x)eo>

The first order condition w.r.t. the tax rate is:

SC(r) = {CAe",2) + F(a) +c - CO)} ar
v [ e >02f; +8(E) Y
= {-(p—c)+7[" =€}z, — T%—f—FS’( )Ccllf 0
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In the last expression we have employed (8), (9), and (10) as an equality. Solving for
T yields the result.
Proof of Lemma 3: Differentiating (17) w.r.t. L yields i). Differentiating (17)

w.r.t. x yields
e’ — e’ + [/ eXdz 4+ (1 —2)el| 0, =0
0
Solving for o, yields ii). To show iii) differentiate (18) with respect to L and solve for
Xy

(P26 + Poo0cT + Pol|OL + DoOrr®
D2z + 2P000s + Poc02 + Po0sz]® + 2[Ds + D0y

Ty, — —

where 0, = (¢ — €*)/E, < 0, o = 1/E,, and o, = (¢! — €*)/E? < 0. The
denominator is negative by the second order condition of the monopolist which we
assume to be satisfied. The last term of the numerator is negative by inspection. o,
is also negative. The terms in the bracket are positive apart from the first one. If we
take the first and the third together we obtain C2Ax/C%4 + (e — e*) > 0 by condition
(12). Hence the numerator is negative and we obtain z;, < 0.

Proof of Proposition 5: i) Denote by () the monopoly output under a tax

regime. Then clearly

p(x"(7),0(x" (), E(7)) = p(z" (7). 7)

Then the two inverse demand functions intersect at the point (7). However the
inverse demand function under permits is more elastic than under taxes since marginal

revenue is given by

[Pz + PoOz]x < pr

Hence the monopolist’s output under permits must be to the left of z* (7). Since the
number of permits remains constant when the monopolist raises his price, we have

o(z™(L),L) > 7 for L = E(7).
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ii) follows from i) since the monopolist’s reaction x”(L), is always lower than
under taxes with E(7) = L.

iii) Numerical examples can be obtained by the author on request.
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Figure 1: The possible game structures between the regulator and the firms. U-
firm stands for the upstream monopolist. D-firms stands for the requlated polluting

downstream firms.
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Figure 2: The inverse demand functions under timing B (the flatter one) and timing

C.

Figure 3: The reaction curves of the requlator and upstream firm. The dotted lines

belong to the upstream firm.
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