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1 Introduction

Empirical researchers in economics and other disciplines are often interested in the causal e¤ect of a binary

treatment on an outcome of interest. Often randomization is used to ensure comparability (at least in

expectation) across the treatment and control groups. However, when randomization is not feasible �

either due to ethical considerations or cost �researchers must rely on non-experimental or observational

data. In such situations, nonrandom selection of subjects into the treatment group becomes a paramount

concern and the demands placed on the data are heightened.

Econometric methods used to address nonrandom selection in observational data are divided into two

strands depending on whether they require the conditional independence assumption (i.e., independence

of potential outcomes and treatment assignment conditional on a set of observable covariates). If subjects

self-select into the treatment group on the basis of attributes observable to the researcher, this is referred

to as the case of selection on observables. On the other hand, if subjects self-select into the treatment

group on the basis of attributes unobserved to the researcher, but correlated with the outcome of interest,

this is known as the case of selection on unobservables.

The econometric and statistics literature on program evaluation in the case of selection on observables

has witnessed profound growth over the past few decades.1 Researchers now have at their disposal an

array of statistical methods appropriate for the estimation of the causal e¤ect(s) of the treatment, the most

popular of which include parametric regression methods, semiparametric methods utilizing the propensity

score, and combinations of the two. Despite this growth, our understanding of the e¤ects of measurement

error on the performance of these methods is woefully inadequate. In particular, very little is known

about the performance �both in absolute and relative terms �of these methods when measurement error

is present. Moreover, as discussed in Section 3, this lack of attention has occurred alongside a bevy of

recent examples of just how unreliable data may be at times, particularly at the micro-level where program

evaluation methods are most often applied. This is perhaps not too surprising in light of research on

the impact of recall window, social norms, and familiarity with subject matter on the accuracy of survey

responses.2

In this study, the performance of several estimators that require the conditional independence assump-

tion, as well as some that do not, are evaluated in a Monte Carlo study. In all cases, the data-generating

process is such that conditional independence holds with the �real�data, but varying degrees of measure-

ment error are introduced into the observed data along various dimensions. Because the data-generating

process imposes independence of treatment assignment and potential outcomes conditional on observable

1See D�Agostino (1998), Imbens (2004), and Imbens and Wooldridge (2009) for excellent surveys.
2Bound et al. (2001) provide a thorough review of the literature.
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covariates when all data are measured accurately, measurement error along each of these three dimensions

is considered. The goal is to provide researchers some guidance concerning how much measurement error

is �too much�and whether some estimators perform better than others in the presence of measurement

error. Thus, this study is similar in spirit to Almeida et al. (2010), Kreider (2010), and Basu et al. (2008).

Almeida et al. (2010) assess the sensitivity to measurement error of various estimators commonly applied

in the corporate �nance literature. Kreider (2010) examines the width of the worst case bounds for the

coe¢ cient on a mismeasured binary covariate in a linear regression framework and probit speci�cation with

modest, arbitrary misclassi�cation under di¤erent data structures. Basu et al. (2008) is not concerned

with measurement error, but does assess the performance of several program evaluation methods when the

data-generating process is non-linear.

The remainder of the paper is organized as follow. Section 2 provides a brief overview of the literature

on measurement error, focusing on cross-sectional empirical methods common in the program evaluation

literature. Section 3 discusses empirical evidence on the magnitude of measurement errors for many

variables commonly used by empirical researchers. Section 4 begins by providing a quick overview of the

potential outcomes framework and parameter of interest. In addition, it outlines the estimators considered

in this study. Section 5 contains the Monte Carlo study. Section 6 concludes.

2 Consequences of Measurement Error

The existing literature on the consequences of measurement error in the program evaluation literature is

relatively sparse. Rigorous examination of measurement error in treatment assignment dates to the seminal

work in Aigner (1973). Aigner (1973), and subsequent work in Bollinger (1996), Black et al. (2000, 2003),

Frazis and Lowenstein (2003), Hu (2006), Kreider (2010), and others, considers the case of misclassi�cation

of a binary covariate in a regression context. The primary result is that measurement error in a binary �in

fact, any bounded �variable must be non-classical except in degenerate cases. Speci�cally, the measurement

error must be (negatively) correlated with the truth. As a consequence, it is possible for measurement

error to not only result in attenuation bias, but also to cause the estimated treatment e¤ect to be of the

wrong sign. Kreider (2010, p. 2) emphasizes the importance of not ignoring measurement error in this

case: �What may not be fully appreciated, however, is that the extreme nature of the measurement error in

a binary regressor can result in severe identi�cation deterioration of regression coe¢ cients in the presence

of very few classi�cation errors. For a binary regressor, measurement error implies that the variable�s true

value must be the polar opposite of its reported value.�In fact, Kreider (2010) notes that simple examples

with misclassi�cation rates less than two percent can lead to con�dence intervals around the coe¢ cient
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estimates obtained from the mismeasured data and the true data (if this were known) that do not overlap.

The issue is further complicated by the fact that the usual solution to a mismeasured covariate, In-

strumental Variable (IV) estimation, does not in general yield a consistent estimate of the treatment e¤ect

(Bound et al. 2001). This arises from the fact that any instrument correlated with the observed treatment

indicator is likely to be correlated with the measurement error since the measurement error is correlated

with the true value. Thus, these papers focus on using Ordinary Least Squares (OLS) and IV to bound

the treatment e¤ect. Battistin and Sianesi (2010) and Kreider and Pepper (2007) also discuss methods

to bound the e¤ect of a binary treatment, but in a semiparametric (propensity score) and nonparametric

context, respectively. Point identi�cation is possible in a Generalized Method of Moments (GMM) frame-

work, as discussed in Black et al. (2000), Bound et al. (2001), and Lewbel (2007). Keane and Sauer

(2009) utilize Simulated Maximum Likelihood (SML) to estimate the e¤ect of past employment on current

employment in a dynamic probit model when employment is potentially misclassi�ed.

Measurement error in an observed covariate required for the conditional independence assumption to

hold has a lengthy history in a regression context, particularly under classical measurement error (see, e.g.,

Frisch 1934; Koopmans 1937; ReiersØl 1950). In this case, it is well known that the OLS estimate of the

coe¢ cient on the mismeasured regressor su¤ers from attenuation bias. However, the estimated treatment

e¤ect will also be biased if treatment assignment is correlated with the true value of the mismeasured

covariate (Bound et al. 2001). Moreover, the sign of the bias depends on the sign of this covariance. If

the measurement error is nonclassical in that it is correlated with treatment assignment, then the bias

depends on the sign of the partial correlation between the measurement error and treatment assignment

(Bound et al. 2001). Finally, if more than one covariate is measured with error, the bias on any single

coe¢ cient is complex and di¢ cult to sign, even if the measurement errors are classical (Bound et al. 2001).

Understanding these implications is vital since many researchers ignore measurement error in covariates

since these variables are not the focus of the investigation.

Possible solutions to measurement error in an observed covariate began with the bounding approach

proposed in Gini (1921). Here, the coe¢ cient is bounded using the direct and reverse regressions, each

estimable by OLS. Klepper and Leamer (1984) extend this approach to the case of multiple mismeasured

covariates when the errors are classical and independent of each other. Typically, however, point iden-

ti�cation is achieved via IV estimation, where identi�cation is obtained using an external variable as an

exclusion restriction or using third or higher moments of variables included in the model as instruments

(e.g., Lewbel 1997). Nonetheless, it is important to realize that the estimated treatment e¤ect will still be

biased if treatment assignment is correlated with the measurement error (Bound et al. 2001).

Beyond the regression context, Battistin and Chesher (2009) derive the bias of various treatment e¤ect
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parameters estimated using semiparametric (propensity score) methods as a function of the variance of the

measurement error. The bias may be in either direction. Their proposed solution entails estimating the

bias under various assumptions about the reliability of the data and forming bias-corrected estimates of

the treatment e¤ects. Also noteworthy for the discussion of measurement error in the program evaluation

context is the fact that nonlinearities can accentuate the bias caused by measurement error. Speci�cally,

higher order and interaction terms involving mismeasured covariates tend to su¤er from increased bias

(Griliches and Ringstad 1970; Hausman et al. 1991). This is relevant since speci�cation of the propensity

score model typically entails including non-linear terms to ensure balancing of the covariates (e.g., Millimet

and Tchernis 2009).

Finally, measurement error in the outcome of interest has a lengthy history, but predominantly in a

regression context. Here, with classical measurement error, OLS estimates of the treatment e¤ects remain

unbiased, but e¢ ciency is reduced. However, in many instances, measurement error in the outcome is

more consequential. If the measurement error is correlated with the true value of the outcome, correlated

with the treatment assignment and/or covariates, the dependent variable is a non-linear transformation of

a mismeasured continuous outcome, or the outcome is discrete or categorical, estimates of the regression

coe¢ cients are no longer consistent (e.g., Chua and Fuller 1987; Whittemore and Gong 1991; Hausman et

al. 1998; Bound et al. 2001; Li et al. 2003; Abrevaya and Hausman 2004). To my knowledge, no studies

have considered the impact of mismeasured outcomes on the performance of other estimators common to

the program evaluation literature such as estimators based on the propensity score.

In sum, measurement error in treatment assignment or covariates necessary for the conditional indepen-

dence assumption generally precludes the possibility of obtaining point estimates of the treatment e¤ect(s).

Non-classical measurement error in outcomes, or non-linear transformations of classical measurement error,

is considerably more complex and typically entails strong parametric assumptions to overcome. Even in

the case of classical measurement error, it is not obvious if semiparametric estimators, such as those based

on the propensity score, continue to perform well. In light of these implications, it is not surprising that

many researchers treat measurement error like an elephant in the corner and ignore its existence.

3 Evidence of Measurement Error

Despite the lack of frequent discussion of measurement error in program evaluation studies, missing data

due to measurement error is likely be the norm, not the exception. Many great minds have espoused

the di¢ culty of accurate measurement of quantities of interest. Albert Einstein famously quipped: �Not

everything that can be counted counts, and not everything that counts can be counted.�The English writer
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Jeanette Wintersten opined: �Any measurement must take into account the position of the observer. There

is no such thing as measurement absolute, there is only measurement relative.�Alvin To­ er, a writer and

former associate editor at Fortune, argued: �You can use all the quantitative data you can get, but you

still have to distrust it and use your own intelligence and judgment.�

Within economics, Griliches (1985, p. 197-198) states:

�Economic data tend to be collected (or often more correctly �reported�) by �rms and persons

who are not professional observers and who do not have any stake in the correctness and

precision of the observations they report... The encounters between econometricians and data

are frustrating and ultimately unsatisfactory, both because econometricians want too much from

the data and hence tend to be disappointed by the answers, and because the data are incomplete

and imperfect... [M]easurement errors which tend to cancel out when averaged over thousands

or even millions of respondents, loom much larger when the individual is the unit of analysis...

Thus any serious data analysis has to consider at least two data generation components: the

economic behavior model describing the stimulus-response behavior of the economic actors and

the measurement model describing how and when this behavior was recorded and summarized.

While it is usual to focus our attention on the former, a complete analysis must consider them

both.�

More recently, Hausman (2001, p. 57) states: �The e¤ect of mismeasured variables in statistical and

econometric analysis is one of the oldest known problems...� Hyslop and Imbens (2001, p. 475) argue:

�Many variables used in econometric analyses are recorded with error. These errors may have occurred at

various stages of the data collection. They may be the result of misreporting by subjects, miscoding by the

collectors of the data, or incorrect transformation from initial reports into a form ready for analysis. Often

such errors are ignored.�Similarly, Schennach (2004, p. 33) states: �The assumption that the regressors

are measured without error is often made on the basis of convenience, rather than being based on a formal

justi�cation.�

Indeed, for much of the data used by researchers applying program evaluation methods, there is little

justi�cation for the lack of attention given to measurement error. There are many instances of well-

documented inaccuracy in micro-level data. Consider the following examples of common binary treatments.

Barron et al. (1997) use data from a 1993 survey administered by the Upjohn Institute to compare employee

and employer responses on worker training, perhaps the canonical example of a binary treatment in labor

economics. With respect to on-site (o¤-site) formal job training, the responses di¤er in 28.2% (11.6%) of the
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cases; responses di¤er 11.0% of the time with respect to management training.3 Mellow and Sider (1983),

Freeman (1984), Card (1996), and Barron et al. (1997) examine union coverage, �nding disagreement

between management and worker responses in the range of 3.5-7%. Hausman et al. (1998) estimate the

probability of misclassi�cation of job mobility using a parametric probit model for identi�cation. The

authors estimate that the common method of coding job changers as individuals who report tenure less

than 12 months misclassi�es workers as job changers in 25% of cases; workers are misclassi�ed as job

stayers in more than 1% of cases.

Black et al. (2003) use matched data from the 1990 U.S. Census and the 1993 National Survey of

College Graduates (NSCG) to analyze consistency in self-reported education levels. The authors �nd that

probability of reporting having a Bachelor�s (Master�s) [Doctorate] in the NSCG conditional on reporting

a Bachelor�s (Master�s) [Doctorate] in the Census is 91.3% (87.4%) [82.3%]. Moreover, the extent of

disagreement varies on the basis of observable demographic attributes. Bound et al. (2001, p. 3708)

survey other studies, stating: �Empirical work in economics depends crucially on the use of survey data.

The evidence we have, however, makes it clear that survey responses are not perfectly reliable. Even such

salient features of an individual�s life as years of schooling seem to be reported with some error.� For

example, using a sample of twins, Ashenfelter and Krueger (1994) estimate the reliability rato �the ratio

of the record variance to the survey response variance �of years of schooling to be around 0.9.

Self-reported participation in transfer programs is also highly susceptible to misclassi�cation. Bound et

al. (2001) provide an extensive review of studies assessing measurement error in participation in programs

such as Food Stamps, Unemployment Insurance (UI), Social Security, and Aid for Families with Dependent

Children (AFDC). These studies compare survey responses with administrative records to compute false

negative and positive rates. These studies typically �nd a false negative (positive) rate of about 12% (1%),

although a few studies report false negative rates above 40% for UI or AFDC. Aside from the classi�cation

errors being correlated with true participation (since participation is a bounded variable), Bound et al.

(2001) also note that individuals with only intermittent usage of transfer programs are more likely to

incorrectly report no participation. Thus, misclassi�cation is likely to positively correlated with attributes

that reduce the likelihood of prolonged participation.

As a �nal example, Black et al. (2003) re-visit the 1993 survey administered by the Upjohn Institute

to compare employee and employer responses on worker eligibility for group health insurance. The authors

�nd that workers report being eligible (ineligible) for insurance when, in fact, management reports they

are not (are) in over 15% (5%) of the cases. Bound et al. (2001) also discuss the agreement rates between

3The important point is not which source �employer or employee � is more accurate, but rather that the disagreements
suggest errors in both sources.
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worker and �rm responses regarding other fringe bene�ts.

Examples of measurement error in commonly analyzed outcomes abound, particularly outcomes related

to income or wealth, labor market outcomes, or measures of health status. Bound et al. (2001) provide an

extensive review of studies assessing measurement error in earnings and assets. With respect to earnings,

the assessments typically entail comparison of survey responses to records obtained from either the Social

Security Administration or employers. The general conclusions of these studies are that measurement error

is mean-reverting, correlated over time, and less severe for annual earnings than monthly, weekly, or hourly

earnings (with hourly earnings measured the least precisely). The correlation between survey responses

and records is typically between 0.8 and 0.9 for annual earnings and around 0.6 for hourly earnings. With

classical measurement error, the reliability ratio is equal to this correlation squared; with mean-reverting

measurement error, the reliability ratio may be greater or less than the squared correlation. Finally, there

is some evidence that measurement error in earnings is correlated with demographic and human capital

variables.

Poterba and Summers (1986) use data from the Current Population Survey (CPS) to analyze measure-

ment error in current employment. The authors report that individuals misreport being employed (not

employed) in 4.0% (1.5%) of cases. Keane and Sauer (2009) use data from the Panel Survey of Income

Dynamics (PSID). The authors report that individuals misreport being employed (not employed) in 8.1%

(1.0%) of cases when employment is measured as annual employment. Reviewing the literature, Bound

et al. (2001) conclude that 11-16% of individuals classi�ed as unemployed are in error; most of these

individuals are in fact out of the labor force. In addition to overstating unemployment, Hausman (2001)

states that 37% of workers overstate the duration of unemployment spells. Relatedly, Bound et al. (2001)

note that workers consistently overestimate their hours worked. Studies validating reported hours worked

using employers�records typically �nd a correlation between records and survey responses between 0.6 and

0.8.

In terms of health, Strauss and Thomas (1995) discuss the imperfections in commonly used anthro-

pometric measures of health status. Kreider and Pepper (2007) review the existing literature on the

shortcomings associated with self-reported measures of disability status. Bound et al. (2001) provide

a thorough review of self-reported assessments of health status, as well as health care utilization and

expenditures.

A �nal interesting study examines self-reported emissions by �rms in the U.S. Toxic Release Inventory

(TRI), a popular data source in environmental research. de Marchi and Hamilton (2006) compare self-

reported emissions by �rms to measured chemical concentration levels by nearby monitors operated by

the U.S. Environmental Protection Agency (EPA). The authors �nd that large decreases in self-reported
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emissions in an area are not matched by similar declines in measured concentration levels. In addition, the

authors apply Benford�s Law and document a di¤erence in the distribution of the �rst digit of measured

concentration levels and self-reported emissions of lead and nitric acid.

Given the extent of measurement error in commonly used treatments and outcomes, one should also

expect measurement error in many observed covariates utilized by applied researchers. While the covariates

utilized by researcher are too vast to discuss here, a few examples should illustrate the problem. In labor

economics, most empirical research assessing the e¤ect of various treatments on income or employment

include marital status and industry or occupation as covariates. Mitchell (2010) matches data from the

1995 Life Events and Satisfaction Study to administrative data to assess the accuracy of one component

of marital status: divorce. The author �nds that 3.6% of divorced individuals fail to report this in the

survey. Bound et al. (2001) review studies assessing the reliability of industry or occupation reports by

comparing survey responses to employers�records or reports. In general, the agreement rate is higher using

1-digit classi�cation schemes than 3-digit schemes. However, the rate is still only about 90% for industry

and 80% for occupation at the 1-digit level. These rates drop to roughly 80% and 55%, respectively, at the

3-digit level. Lastly, in the empirical �nance literature, the use of program evaluation methods to assess

the e¤ects of treatments such as a merger or spin-o¤ or type of corporate governance structure has grown

rapidly of late. However, Almeida et al. (2010, p. 1) state that �it is hard to think of any empirical proxies

in corporate research whose measurement is not a concern.�

4 Causal Inference Under Conditional Independence

4.1 Potential Outcomes Framework

Consider a random sample of N individuals from a large population indexed by i = 1; :::; N . Utilizing

the potential outcomes framework (see, e.g., Neyman 1923; Fisher 1935; Roy 1951; Rubin 1974), let Yi(T )

denote the potential outcome of individual i under treatment T , T 2 T .4 Here, the focus is on binary

treatments: T = f0; 1g. The observation-speci�c causal e¤ect of the treatment (T = 1) relative to the

control (T = 0) is de�ned as the di¤erence between the corresponding potential outcomes. Formally,

� i = Yi(1)� Yi(0): (1)

4 Implicit in this speci�cation is the Stable Unit Treatment Value Assumption (SUTVA), whereby the potential outcomes
of observation i do not depend on the treatment assignment of other observations in the population (Neyman 1923; Rubin
1986).
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In the evaluation literature, several population parameters are of potential interest. Here, for brevity,

attention is given to the average treatment e¤ect (ATE), de�ned as � = E[� i] = E[Yi(1)�Yi(0)]. The ATE

is the expected treatment e¤ect of an observation chosen at random from the population.

In the absence of measurement error, the triple fYi; Ti; Xig is observed for each observation, where

Yi is the observed outcome, Ti is a binary indicator of the treatment received, and Xi is a vector of

covariates. The only requirement of the covariates included in Xi is that they are pre-determined (that is,

they are una¤ected by Ti) and do not perfectly predict treatment assignment. The relationship between

the potential and observed outcomes is given by

Yi = TiYi(1) + (1� Ti)Yi(0) (2)

which makes clear that only one potential outcome is observed for any individual. As such, estimating �

is not trivial as there is an inherent missing data problem.

Aside from random experiments, the methods utilized by researchers to circumvent this missing data

problem are classi�ed into two groups: selection on observables estimators and selection on unobserv-

able estimators. The distinction lies in whether a method consistently estimates the causal e¤ect of the

treatment in the presence of unobservable attributes of subjects that are correlated with both treatment

assignment and the outcome of interest conditional on the set of observable variables. Assuming a lack

of such unobservables is referred to as conditional independence or unconfoundedness assumption (Rubin

1974; Heckman and Robb 1985). Formally, under the conditional independence assumption (CIA), treat-

ment assignment is said to be independent of potential outcomes conditional on the set of covariates, X,

and is expressed as

Y (0); Y (1) ? T j X: (3)

As a result, selection into treatment is random conditional on X and the average e¤ect of the treatment

can be obtained by comparing outcomes of individuals in di¤erent treatment states with identical values

of the covariates. To solve the dimensionality problem that is likely to arise if X is multi-dimensional,

Rosenbaum and Rubin (1983) propose using the propensity score (PS), P (Xi) = Pr(Ti = 1jXi), instead of

X as the conditioning variable. The authors prove that (3) implies

Y (0); Y (1) ? T j P (X): (4)
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4.2 Estimation In The Absence of Measurement Error

4.2.1 Under CIA

Given a random sample from the population, no measurement error, and conditional independence, several

estimators of the ATE are available to researchers. Estimators employed in this study include OLS, OLS in

combination with the propensity score (OLS-PS), strati�cation, a doubly robust (DR) estimator, inverse

propensity score weighting (IPW), and propensity score matching (PSM).

To derive the estimating equation for the OLS estimator, the following assumptions are invoked:

(A1) Potential outcomes and latent treatment assignment are additively separable in observables and

unobservables

Yi(0) = �0 +Xi� + "0i

Yi(1) = �1 +Xi� + "1i

Ti = I[Xi
 + �i > 0]

where I[�] is the indicator function; and,

(A2) "0; "1; � � N3(0;�), where

� =

26664
�20 � 0

�21 0

1

37775 :
(A1) implies that the treatment e¤ect is heterogeneous since "0i 6= "1i, but assumes there is no heterogeneity

due to di¤erential e¤ects of X on the two potential outcomes.5 (A2) implies conditional independence in

that there is no selection into the treatment on the basis of unobservables. Together, these assumptions

imply � = E[�1 � �0 + "1i � "0i] = �1 � �0.

Substituting these functional form assumptions into (2) yields

Yi = �0 + (�1 � �0)Ti +Xi� + ["0i + ("1i � "0i)Ti] (5)

Under (A1) and (A2), OLS estimation of (5) provides an unbiased of the ATE; the estimate is given by

�̂OLS = \�1 � �0.

The next three estimators make use of both OLS and the propensity score. The OLS-PS estimator

maintains the linear regression framework, but replaces the functional form assumption in (A1) with the
5Future may wish to consider estimation of treatment e¤ects when the e¤ect varies on the basis of observables.
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assumption that the potential outcomes are a polynomial function of the propensity score (Rosenbaum

and Rubin 1983; Wooldridge 2002). The estimating equation is now

Yi = �0 + (�1 � �0)Ti +
P3
s=1 �s

h bP (Xi)is + ["0i + ("1i � "0i)Ti] (6)

where bP (Xi) is the estimated propensity score obtained from a �rst-stage probit model. The OLS-PS

estimator of the ATE is given by �̂OLS�PS = \�1 � �0.

The strati�cation estimator is one of the more popular estimators relying on the propensity score

(Basu et al. 2008). After estimating the propensity score, ten indicator variables are created indicating

which decile of the empirical distribution of the propensity score each observation lies. Then, the following

equation is estimated via OLS

Yi =
P10
q=1 �qDqi +

P10
q=1 �qTiDqi + �i (7)

where Dqi = 1 if bP (Xi) lies in the qth decile and zero otherwise. The strati�cation estimate of the ATE is
given by b�S =P10

q=1(b�q=10).
The DR estimator in Scharfstein et al. (1999) and Bang and Robins (2005) entails OLS estimation of

the following speci�cation

Yi = �0 + (�1 � �0)Ti +Xi� + �0(1� Ti)f1� bP (Xi)g�1 + �1Tif bP (Xi)g�1 + �i:
The DR estimate of the ATE is given by �̂OLS = \�1 � �0+(1=N)

P
i[
b�1f bP (Xi)g�1�b�0f1� bP (Xi)g�1]. In

practice, to avoid excessively large values when the propensity score approaches a boundary, the sample is

trimmed by including only observations with P̂ (Xi) 2 [0:02; 0:98].

The �nal two estimators rely solely on the propensity score. The IPW estimator requires CIA, but

replaces a functional form assumption, like that in (A1), with a common support condition to ensure

su¢ cient overlap in the distribution of the propensity score across the treatment and control groups (Dehejia

and Wahba 1999; Smith and Todd 2005). To implement the IPW estimator, the normalized estimator of

Hirano and Imbens (2001) is utilized. The IPW estimator originates in Horvitz and Thompson (1952) who

show that the ATE may be expressed as

� = E
�
Y � T
P (X)

� Y � (1� T )
1� P (X)

�
;
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with the sample analogue given by

�̂HT =
1

N

NX
i=1

"
YiTi

P̂ (Xi)
� Yi(1� Ti)
1� P̂ (Xi)

#
: (8)

The estimator in (8) is the unnormalized estimator as the weights do not necessarily sum to unity. To

circumvent this issue, Hirano and Imbens (2001) propose an alternative estimator, referred to as the

normalized or HI estimator, which is given by

�̂HI =

"
NX
i=1

YiTi

P̂ (Xi)

,
NX
i=1

Ti

P̂ (Xi)

#
�
"
NX
i=1

Yi(1� Ti)
1� P̂ (Xi)

,
NX
i=1

(1� Ti)
1� P̂ (Xi)

#
: (9)

In practice, to avoid giving too much weight to observations with an estimated propensity score near the

boundary, the sample is trimmed by including only observations with P̂ (Xi) 2 [0:02; 0:98]. Millimet and

Tchernis (2009) provide evidence of the superiority of the normalized estimator.

The �nal estimator considered is PSM; speci�cally, a kernel matching (KM) estimator. As with IPW,

this estimator requires CIA and the common support condition. To proceed, � i is estimated for all i by

replacing the missing counterfactual and then averaging b� i over the sample. The missing counterfactual is
estimated by

[Yi(0) =
1X

l2fTl=0g
!il

X
l2fTl=0g

!ilYl(0) if i 2 fTi = 1g

[Yi(1) =
1X

l2fTl=1g
!il

X
l2fTl=1g

!ilYl(1) if i 2 fTi = 0g

where !il is the weight given by observation i to observation l when estimating i�s missing counterfactual.

With KM, these weights have the form

!il = max

8>><>>:0;
G
�
P̂ (Xl)�P̂ (Xi)

aN

�
P

l02fTl0=0g
G
�
P̂ (Xl0 )�P̂ (Xi)

aN

�
9>>=>>;

where G(�) is the kernel function and aN is the bandwidth. In the Monte Carlo study, the Epanechnikov

kernel is used along with two bandwidths: 0.05 and 0.25. The smaller the bandwidth, the more weight is

concentrated on observations with very similar propensity scores.

12



4.2.2 Without CIA

Each of the preceding estimators will be biased if CIA fails to hold. While the Monte Carlo study only

considers data-generating processes where CIA holds, it may not hold in the sample once measurement

error is introduced. Thus, three estimators that do not require CIA are also examined for comparison.

The most common approach for dealing with a failure of the CIA is to utilize IV methods. Here, we do

not wish to assume the existence of a standard exclusion restriction or make use of higher moments (e.g.,

Lewbel 1997).6 Instead, three estimators are utilized that do not require CIA and also do not require an

exclusion restriction for identi�cation.

The �rst estimator is based on Heckman�s bivariate normal (BVN) selection model. The model relies

on a relaxed version of (A2):

(A2�) "0; "1; � � N3(0;�), where

� =

26664
�20 � �0�

�21 �1�

1

37775 :

Under (A1) and (A2�), OLS applied to the following augmented estimating equation

yi = �0 +Xi� + (�1 � �0)Ti + ��0(1� Ti)
�

�(Xi
)

1� �(Xi
)

�
+ ��1Ti

�
��(Xi
)
�(Xi
)

�
+ & i (10)

where �(�)=�(�) is the inverse Mills�ratio, & is a well-behaved error term,

��0 = �0��0 (11)

��1 = �0��0 + ��u��;

and � = "1 � "0 will yield an unbiased estimate of the ATE; the estimate is given �̂BV N = \�1 � �0. In

practice, OLS estimation of (10) occurs after replacing 
 with an estimate obtained from a �rst-stage probit

model.

The second estimator is the bias-corrected IPW estimator proposed in Millimet and Tchernis (2010).

Following Black and Smith (2004) and Heckman and Navarro-Lozano (2004), the bias of the ATE at a

particular value of the propensity score (i.e., E[� j P (X)]) when CIA does not hold is given by

B[P (X)] =
�
�0��0 + [1� P (X)]�����

	� �(��1(P (X)))

P (X)[1� P (X)]

�
: (12)

6Future work may certainly wish to assess the performance of such estimators.
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By integrating (12) over the distribution of P (X), a bias-corrected version of the normalized IPW estimator

is given by

�BC�HI = �HI �
R
B[P (X)]fP (P (X))dP (X) (13)

with a sample analogue given by

�̂BC�HI = �̂HI �
1

N

P
i
\B[P (Xi)] (14)

where the propensity score continues to be estimated by a �rst-stage probit model and �0��0 and �����

are estimated using (10).

The �nal estimator considered comes from Klein and Vella (2009). The parametric implementation

of this estimator relies on a similar functional form assumption to the BVN estimator in the absence of

heteroskedasticity, but e¤ectively induces a valid exclusion restriction in the presence of heteroskedasticity.

To proceed, suppose that latent treatment assignment is now given by

T � = X
 + ��

where �� = S(X)� and � is drawn from a standard normal density. In this case, the probability of receiving

the treatment conditional on X is given by

Pr(T = 1jX) = �
�

X

S(X)



�
: (15)

Assuming S(X) = exp(X�), the parameters of (15) are estimable by maximum likelihood (ML), with the

log-likelihood function given by

lnL =
X

i

�
ln�

�
X


exp(X�)

��Ti �
ln

�
1� �

�
X


exp(X�)

���1�Ti
(16)

where the element of � corresponding to the intercept is normalized to zero for identi�cation.

The ML estimates are then used to obtain the predicted probability of treatment, P̂ (X), which may

be used as an instrument for T in equation (5). In the Monte Carlo study, the ATE is estimated via

two-stage least squares (KV-TSLS). Note, even if S(X) = 1, P̂ (X) remains a valid instrument since it is

non-linear in X. However, since the non-linearity arises mostly in the tails, identi�cation typically relies on

a small fraction of the sample.7 On the other hand, if S(X) 6= 1, then the Klein and Vella (2009) approach
7Mroz (1999) analyzes this case and �nds that while an IV strategy using the predicted probability obtained from a

homoskedastic probit performs reasonably well in terms of bias, it does very poorly in terms of mean squared error.
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e¤ectively induces a valid exclusion restriction as Z � X=S(X) is frequently linearly independent of X.

5 Monte Carlo Study

5.1 Setup

To assess the performance of the various estimators, data are simulated using a data-generating process

(DGP) that imposes (A1) and (A2); thus, CIA holds in the population and the functional form for the

observed outcome is known. This allows one to assess the impact of measurement error without confounding

the e¤ects of model misspeci�cation.

Speci�cally, 1000 data sets are simulated, each with 1000 observations, containing

Y (0) = 1 + g(X) + "0

Y (1) = 2 + g(X) + "1

T = I[�0:25 + g(X) + � > 0]

Y = TY (1) + (1� T )Y (0)

g(X) = 0:5(X1 �X2) + 0:25(X2
1 �X2

2 ) + 0:25X1X2

X1; X2
iid� N(�1; 1)

"0; "1; �
iid� N(0; 1)

implying that E[� ] = E[1 + "1 � "0] = 1. As a result, all the estimators considered here are consistent if

fY; T;Xg are observed; OLS is the most e¢ cient. However, varying amounts of measurement error are

introduced to explore the absolute and relative performance of the various estimators.

Initially, measurement error is introduced one dimension at a time. Thus, when measurement error in,

say, T is introduced, Y and X are measured correctly. Similarly, when measurement error in Y or X is

introduced, the other two aspects are accurately observed. In the �nal simulation, measurement error in

all three dimensions are introduced simultaneously. This is a particularly interesting case since not only

is it the most plausible scenario in most applications � in light of the discussion in Section 3 �but the

vast majority of the existing methodological literature on addressing measurement error only considers

measurement error along a single dimension.

To begin, two types of classi�cation errors in treatment assignment are considered. In the �rst case,
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the observed treatment assignment, T o, is given by

T o =

8<: T if u > c

1� T otherwise

where u iid� U[0; 1] and c = 0; 0:01; 0:025; 0:05; and 0:10. Thus, c is the misclassi�cation rate; when c = 0,

T o = T and there is no misclassi�cation. Note, the potential outcomes depend on T , not T o. As such, the

measurement error is non-di¤erential and, in fact, completely arbitrary.

In the second case, the probability of misclassi�cation depends on X1 and X2. Speci�cally, the observed

treatment assignment is now given by

T o =

8<: T if F (Z) < 1� c

1� T otherwise

where Z = X1�X2, F (Z) is the empirical CDF of Z, and c = 0; 0:01; 0:025; 0:05; and 0:10. This amounts

to misclassifying observations with values of Z above the (1 � c)th quantile of its empirical distribution.

As in the �rst case, c is the misclassi�cation rate; T o = T and there is no misclassi�cation when c = 0.

Next, measurement error in the covariates, X, is introduced. Again, two cases are considered. First,

varying degrees of classical measurement error are simultaneously introduced in X1 and X2. Formally, the

observed covariates are given by

Xo
1 = X1 + u1

Xo
2 = X2 + u2

where u1; u2
iid� N(0; �2u) and �2u is chosen such that the reliability ratio �the ratio of the variance of Xk

to the variance of Xo
k , k = 1; 2 �of X

o
1 and X

o
2 is equal to 0:90; 0:95; 0:975; 0:99; and 1 (in expectation).

The baseline case of no measurement error corresponds to a reliability ratio of one for both covariates. In

the second case, u1 and u2 are correlated, with a correlation coe¢ cient of 0.5, and they are also correlated

with treatment assignment. The DGP yields an expected correlation coe¢ cient between u1 (u2) and T of

roughly 0.8 (0.4), and sets �2u to roughly achieve the desired reliability ratio.
8

8Speci�cally, the data are generated by �rst drawing N realizations, u1i and u2i, from a bivariate normal distributon,
N2(0; 0; �2u; �2u; 0:5). The data are sorted in ascending order by u1. The measurement errors are then merged with the �true�
data, fY; T;Xg, sorted in ascending order by T . As a result, observations with T = 1 are merged with higher values of u1
(and hence higher values of u2 on average). The variance of the measurement errors, �2u, is chosen to come su¢ ciently close
to the desired reliability ratio. Based on simulations using �ve million observations, the reliability ratios of X1 and X2 are
0.992 and 0.962, respectively, in the case where the reliability ratio is said to be 0.99. These ratios are 0.982 and 0.950 in the
0.975 case; 0.966 and 0.929 in the 0.95 case; and, 0.928 and 0.886 in the 0.90 case. Thus, X1 is measured more reliably than
X2, but both are close to the desired values.
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Next, four cases of measurement error in the outcome, Y , are considered. In the �rst case, classical

measurement is introduced. Speci�cally, the observed outcome is given by

Y o = Y + u

where u iid� N(0; �2u) and �2u is chosen such that the reliability ratio of Y o is equal to 0:90; 0:95; 0:975; 0:99;

and 1 (in expectation). Again, no measurement error corresponds to a reliability ratio of one.

In the second case, the measurement error is mean-reverting. The motivation for this follows from the

fact that earnings is frequently the outcome of interest and, as detailed earlier, mean-reverting measurement

error is frequently observed at the individual-level. In this case, the observed outcome is generated as

Y o = �Y

where � = cu, u iid� U[0; 1] and c is chosen such that the reliability ratio of Y o is 1; 1:01; 1:025; 1:05; and

1:10 (in expectation).9 As before, no measurement error correspond to a reliability ratio of one. This

procedure yields a correlation coe¢ cient between the deviations from the truth, Y o�Y , and the truth, Y ,

of roughly -0.4.

The third and fourth cases consider a binary outcome. The motivation here is that outcomes are often

binary, such as employment or a binary measure of health status such as obesity. To proceed, the prior

DGP is amended; potential outcomes are now simulating according to

Y (0) = I[�1:5 + g(X) + "0 > 0]

Y (1) = I[0:5 + g(X) + "1 > 0]:

The remainder of the DGP is identical to above.

In the third case, the observed outcome is now given by

Y o =

8<: Y if u > c

1� Y otherwise

where u iid� U[0; 1] and c = 0; 0:01; 0:025; 0:05; and 0:10. When c = 0, Y o = Y and there is no misclassi-

�cation. Note, E[� ] = E[Y (1)� Y (0)] � 0:599.10 In the fourth case, the probability of misclassi�cation is
9Note, this corresponds to mean-reverting measurement error since the true values, Y , take on both positive and negative

values.
10The �true�value of the ATE is obtained using a simulation of �ve million observations.

17



correlated with X1 and X2. Speci�cally, the observed outcome is now generated as

Y o =

8<: Y if F (Z) < 1� c

1� Y otherwise

where Z = X1�X2, F (Z) is the empirical CDF of Z in the sample, and c = 0; 0:01; 0:025; 0:05; and 0:10.

Again, this induces measurement error in observations with values of Z above the (1� c)th quantile of the

empirical distribution. As in the prior case, Y o = Y and there is no misclassi�cation when c = 0.

In the �nal scenario, measurement errors in Y , T , X1, and X2 are introduced simultaneously. Two cases

are considered. First, mean-reverting measurement error in Y is introduced such that the reliability ratio

is 1.01, one percent of observations have treatment assignment misclassi�ed, and classical measurement

errors in X1 and X2 are introduced such that the reliability ratio for each is 0.99. Second, mean-reverting

measurement in Y is introduced such that the reliability ratio is 1.05, �ve percent of observations have

treatment assignment misclassi�ed, and classical measurement error in X1 and X2 are introduced such

that the reliability ratio for each is 0.95. The �rst case is referred to as the �mild�case and the second case

as �more severe�case.

5.2 Results

The results from each scenario are displayed in Figures 1-9. Each �gure contains four panels. The top left

panel displays the average bias of each estimator across the di¤erent degrees of measurement error. The

top right panel displays the mean absolute percentage error (MAPE), de�ned as

MAPEs =
1

R

PR
r=1

����b� sr � ��

����
where s indexes a particular estimator, r = 1; :::; R indexes the number of data replications (R = 1000),

and � is the population ATE according to the DGP. The bottom two panels display box and whisker plots

to illustrate the distribution of point estimates. The bottom right plot simply excludes the three estimators

that do not require CIA since these estimators tend to have much wider distributions and distort the scaling

of the graphs.

Errors in Treatment Assignment Figure 1 displays the results with varying degrees of random mis-

classi�cation in treatment assignment. A few observations stand out. First, with no misclassi�cation, all

the estimators have a bias near zero, as one would expect. However, the three estimators that do not
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require CIA �BVN, BC-HI, and KV-TSLS �are very ine¢ cient.11 Second, even with relatively infrequent

classi�cation errors (one percent of the sample), the bias of the most e¢ cient estimators �OLS, OLS-PS,

and DR �increase more than sixfold, although the MAPE remains essentially una¤ected. When the rate

of misclassi�cation increases to �ve (ten) percent, the MAPE doubles (quadruples) relative to no misclas-

si�cation for most of the estimators that require CIA. Misclassi�cation also has a sizeable deleterious e¤ect

on BVN and BC-HI, particularly in terms of bias. Third, and most importantly, not all estimators are

equally adversely a¤ected by random misclassi�cation. KM with a large bandwidth performs marginally

worse in the absence of misclassi�cation (due to the bias introduced by giving more weight to observations

with large di¤erences in propensity scores), but its performance does not deteriorate �in terms of bias or

precision �with misclassi�cation. KV-TSLS also remains unbiased in the presence of misclassi�cation, but

is very imprecise despite the fact that its precision actually improves modestly with misclassi�cation.

In Figure 2, the classi�cation errors are correlated with the covariates in the model. A few interesting

di¤erences emerge relative to the prior case of random misclassi�cation. First, KV-TSLS is no longer

unbiased; its performance is dramatically a¤ected even when the misclassi�cation rate is only one percent

(bias increases roughly eightfold). Second, the other two estimators that do not require CIA �BVN and

BC-HI �do not perform quite as poorly as in the prior case, but they still do not perform well in terms

of either bias or precision. Finally, KM with a large bandwidth continues to perform best in the face of

misclassi�cation. However, even so, researchers need to be wary as the MAPE increases by more than 30%

moving from no misclassi�cation to a ten percent misclassi�cation rate.

Errors in Covariates Figures 3 and 4 display the results with measurement error in the covariates;

Figure 3 corresponds to classical measurement error in each of the two covariates, while Figure 4 corresponds

to nonclassical measurement error (measurement errors are positively correlated with each other as well as

actual treatment assignment).

In Figure 3, several observations stand out. First, with the exception of KM with a large bandwidth,

the bias of the estimators that require CIA roughly double each time as the reliability ratio of the covariates

falls from one to 0.99 to 0.975 to 0.95 to 0.90. KM with a large bandwidth has a relatively sizeable bias

even with no measurement error in the covariates, and the bias nearly doubles as the reliability ratio of

the covariates drops to 0.90. Second, in terms of the MAPE, there is a less noticeable deterioration in

performance as the measurement error worsens. The MAPE roughly doubles for each of the estimators

that require CIA with the exception of HI, which only increases by about 30%, as the reliability ratio falls

from one to 0.90. In addition, as with bias, the MAPE for KM with a large bandwidth is above that of
11Note, the DGP imposes homoskedasticity in the treatment assignment equation. Thus, the imprecision of KV-TSLS

re�ects, at least in part, this fact. See footnote 7.
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the other estimators that require CIA. Finally, the three estimators that do not require CIA continue to

be very imprecise. However, KV-TSLS does relatively well in terms of bias, particularly as the reliability

ratio falls. Speci�cally, whereas the bias more than doubles in (absolute) magnitude �going from -0.040

to 0.099 �as the reliability ratio of the covariates falls from one to 0.99, the bias is only 0.092 when the

reliability ratio falls further to 0.90.

Figure 4 presents a fairly stark contrast to Figure 3 in terms of cost of measurement error in the

covariates. With nonclassical measurement error, a reliability ratio of roughly 0.99 severely impacts the

performance of all the estimators considered with the possible exception of KV-TSLS. For example, the

bias of OLS, OLS-PS, DR, and KM with a small bandwidth increase roughly fortyfold when the reliability

ratio falls to 0.99. The bias of the other estimators at least double in magnitude. Performance as measured

by bias continues to deteriorate as the reliability ratio falls, but at a slower rate. A similar picture emerges

when analyzing performance in terms of MAPE as well. Finally, KV-TSLS is most robust in terms of bias

once measurement error is introduced, but it is much less precise than the estimators requiring CIA.

Errors in Outcome The next set of �gures, Figures 5 and 6, display the results when measurement

error is induced in a continuous outcome. Figure 5 corresponds to the case of classical measurement error;

Figure 6 to nonclassical (mean-reverting) measurement error. The results in Figure 5 are as expected:

measurement error has no impact on the bias of the estimators, but all estimators su¤er a loss in precision

as the reliability ratio of the outcome decreases. It does not appear that classical measurement error has

a di¤erential e¤ect on performance across the estimators.

Figure 6 reveals that nonclassical measurement error in the outcome is not nearly as benign as classical

measurement error. With even a small amount of mean-reverting measurement error �yielding a reliability

ratio of 1.01 �the bias of all the estimators considered increase at least �vefold with the exception of KM

with a large bandwidth. In fact, the bias of OLS, OLS-PS, DR, and KM with a small bandwidth increases

by roughly �ftyfold. In terms of precision, the estimators requiring CIA �again, with the exception of

KM with a large bandwidth �su¤er a four to �vefold increase when the reliability ratio increases to 1.01.

However, the bias and MAPE do not deteriorate further as the reliability ratio deviates further from one.

Lastly, as noted, KM with a large bandwidth is the most robust under mean-reverting measurement error

in the outcome, although the improvement over the other estimators requiring CIA is not dramatic. KM

with a large bandwidth still has a MAPE of roughly 20% when the reliability ratio is 1.01; twice as large

as under no misclassi�cation.

Figures 7 and 8 display the results using a binary outcome subject to classi�cation errors. Figure 7

corresponds to random misclassi�cation; Figure 8 re�ects classi�cation errors correlated with the covariates
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in the model. A few �ndings stand out. First, with the exception of the estimators that do not require CIA,

the performances of the estimators is relatively consistent across the two cases. Moreover, for the estimators

requiring CIA, the estimators do not su¤er as a result of the misclassi�cation until the misclassi�cation

rate reaches ten percent. With a misclassi�cation rate of ten percent, the MAPE increases two to threefold

(relative to a misclassi�cation rate of only �ve percent) for this set of estimators. Second, there is little

di¤erence in the performance across the various estimators requiring CIA. In contrast, the three estimators

that do not require CIA perform signi�cantly worse in terms of bias and precision, although misclassi�cation

in the outcome does not further deteriorate their performance.12 Finally, while the performance of the

estimators requiring CIA is una¤ected by the change from random to nonrandom misclassi�cation, the

three estimators that do not require CIA perform worse �particularly in terms of precision �when the

classi�cation errors are correlated with the covariates in the model. For example, with a misclassi�cation

rate of ten percent, the MAPE for KV-TSLS is more than twice as large when the classi�cation errors are

nonrandom.

Simultaneous Errors In the �nal �gure, Figure 9, simultaneous measurement errors in the outcome,

treatment assignment, and covariates are introduced. Speci�cally, the data contain mean-reverting mea-

surement error in a continuous outcome, classi�cation errors in treatment assignment correlated with the

true values of the covariates, and classical measurement error in the covariates. In the mild case �a relia-

bility ratio of the outcome of 1.01, a misclassi�cation rate for treatment assignment of one percent, and a

reliability ratio of the covariates of 0.99 �the performance of all the estimators su¤ers fairly dramatically

relative to no measurement errors. For the estimators requiring CIA, the bias increases from close to zero

(except for KM with a large bandwidth) to around 0.3 in absolute value; the MAPE increases roughly

four to �vefold. The exception is KM with a large bandwidth. This estimator, not surprisingly, fares

worse than the other estimators requiring CIA in the baseline case of no measurement error. However, in

the mild case, the bias and MAPE deteriorate less rapidly relative to the other estimators; this estimator

achieves the lowest bias and MAPE among the estimators requiring CIA. In terms of the three estimators

that do not require CIA, the bias is actually relatively small for BVN and BC-HI; the bias of KV-TSLS

is quite sizeable. However, as in all the previous scenarios, all three estimators are very imprecise. Lastly,

in the more severe case �a reliability ratio of the outcome of 1.05, a misclassi�cation rate for treatment

assignment of �ve percent, and a reliability ratio of the covariates of 0.95 �the results are qualitatively

similar across the estimators and the additional measurement error has only a marginal detrimental e¤ect

12 In a linear probability model, it is well known that the error term is heteroskedastic. As such, the parametric assumptions
of the standard BVN model do not hold, explaining the considerable bias in the BVN and BC-HI estimators even under no
misclassi�cation.
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relative to the mild case.

Summary While a number of scenarios have been considered in the Monte Carlo study, a few conclusions

can be drawn. First, some types of measurement error lead to an immediate deterioration in performance

of the various estimators, while other types of errors do not adversely a¤ect performance until the errors

are relatively severe. On the one hand, classi�cation errors � random or correlated with covariates � in

treatment assignment, classical measurement error in the covariates, and classi�cation errors �random or

correlated with covariates �in a binary outcome do not signi�cantly harm the performance of the various

estimators until the measurement error is relatively large. Note, however, that �relatively large� in the

Monte Carlo study is still fairly small for some commonly used variables for which validation studies are

available, as detailed in Section 3. On the other hand, nonclassical measurement error in the covariates,

mean-reverting measurement error in the outcome, and simultaneous measurement errors in the outcome,

treatment assignment, and covariates have a stark, deleterious e¤ect on the performance of the various

estimators even with relatively small ad infrequent errors. Unfortunately, as discussed in Section 3, these

cases are likely to be frequently encountered in empirical work.

Second, there is no clear winner if one views the Monte Carlo study as a horse race among the various

estimators. Nonetheless, KM with a large bandwidth does prove to be more robust to measurement error

in many of the scenarios considered. Speci�cally, with random and nonrandom classi�cation errors in

treatment assignment or a binary outcome, mean-reverting measurement error in the outcome, or mea-

surement error in all aspects of the DGP (outcome, treatment assignment, and covariates), KM with a

large bandwidth performs as well or better than the remaining estimators. However, with just classical or

nonclassical measurement error in the covariates, KM with a large bandwidth is outperformed by other

estimators not requiring the CIA.

Finally, KV-TSLS does well in the cases of classical and nonclassical measurement error in the covariates

in terms of bias, but not precision. This is not surprising as the instrument is linearly independent

of the covariates in the model and, hence, the measurement error in the error term. Thus, while the

TSLS procedure does not eliminate the bias of the estimated coe¢ cients on the covariates, it does not

eliminate the bias in the estimated treatment e¤ect. Moreover, KV-TSLS performs well in terms of bias,

but not precision, with random classi�cation errors in treatment assignment. As stated previously, the

relative imprecision of KV-TSLS is at least partly attributable to the fact that the DGPs considered

here impose homoskedasticity of the errors in the treatment assignment equation. However, in many

of the other scenarios, KV-TSLS does very poorly in terms of both bias and precision. Speci�cally, it

performs particularly poorly �relative to estimators requiring CIA �with nonrandom classi�cation errors
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in treatment assignment, random and nonrandom classi�cation errors in a binary outcome, or measurement

error in all aspects of the DGP (outcome, treatment assignment, and covariates).

6 Conclusion

The program evaluation literature has expanded rapidly over the past few decades. While our knowledge

concerning methods that are designed to provide consistent estimates of some measure of the causal e¤ect

of a binary treatment under conditional independence is relatively well developed, the consequences of

measurement error on the performance of these methods is not. In this study, a fairly extensive Monte Carlo

study is undertaken to examine the absolute and relative performance of many estimators under various

degrees of measurement, entering through di¤erent channels. Overall, the results suggest a cautionary

tale to researchers tempted to treat measurement error like the elephant in the corner and simply ignore

it. In particular, nonclassical measurement error in the covariates, mean-reverting measurement error in

the outcome, and simultaneous measurement errors in the outcome, treatment assignment, and covariates

have a dramatic, adverse e¤ect on the performance of the various estimators even with relatively small and

infrequent errors.

Unfortunately, no single estimator performs best across the various scenarios considered. Thus, applied

researchers ought to utilize a number of methods to assess sensitivity of the estimated treatment e¤ects.

That said, kernel matching with a relatively large bandwidth does outperform the other estimators in

a number of situations frequently encountered. Speci�cally, with random and nonrandom classi�cation

errors in treatment assignment or a binary outcome, mean-reverting measurement error in the outcome,

or simultaneous measurement errors in the outcome, treatment assignment, and covariates, this estimator

does outperform the others considered. Nonetheless, much work is needed to develop estimators that can

address not just measurement error in one aspect of the data-generating process, but multiple aspects.

Until then, researchers need to be extremely wary of the consequences of ignoring measurement error.
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Figure 1. Random Classi�cation Error in Treatment Assignment.

Notes: Numbers on horizontal axis refer to the misclassi�cation rate. MAPE = Mean Absolute Percentage

Error. In the bottom panel, box and whisker plots provide boxes that span the 25th and 75th percentiles of

the estimates with the middle line at the median estimate; the whiskers extend to 1.5 times the interquartile

range. The dashed line in this panel represents the true value of the ATE.
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Figure 2. Correlated Classi�cation Error in Treatment Assignment.

Notes: Classi�cation errors are correlated with covariates in the model. See Figure 1 for additional details.
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Figure 3. Classical Measurement Error in Covariates.

Notes: Numbers on horizontal axis refer to the reliability ratio for each of the covariates in the model. See

Figure 1 for additional details.
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Figure 4. Nonclassical Measurement Error in Covariates.

Notes: Measurement errors for each of the covariates are correlated with each other and treatment assign-

ment. See Figure 1 for additional details.
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Figure 5. Classical Measurement Error in the Outcome.

Notes: Numbers on horizontal axis refer to the reliability ratio for the outcome. See Figure 1 for additional

details.
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Figure 6. Mean-Reverting Measurement Error in the Outcome.

Notes: Measurement error in the outcome is negatively correlated with the true value. See Figure 1 for

additional details.
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Figure 7. Random Classi�cation Error in a Binary Outcome.

Notes: Numbers on horizontal axis refer to the misclassi�cation rate. See Figure 1 for additional details.
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Figure 8. Correlated Classi�cation Error in a Binary Outcome.

Notes: Classi�cation errors are correlated with covariates in the model. See Figure 1 for additional details.
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Figure 9. Simultaneous Measurement Error in Treatment Assignment, Outcome, and Co-

variates.

Notes: �No ME�case entails no measurement error in any of the data. �Mild ME�case entails a misclassi�-

cation rate of 1% for treatment assignment correlated with the true values of the covariates, mean-reverting

measurement error in the outcome yielding a reliability ratio of 1.01, and measurement error in the co-

variates yielding a reliability ratio of 0.99. �More Severe ME�case entails a misclassi�cation rate of 5%

for treatment assignment correlated with the true values of the covariates, mean-reverting measurement

error in the outcome yielding a reliability ratio of 1.05, and measurement error in the covariates yielding

a reliability ratio of 0.95. See Figure 1 for additional details.
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