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Meta-analytic methods have been widely applied to education, medicine, and the social 
sciences. Much of meta-analytic data are hierarchically structured since effect size estimates 
are nested within studies, and in turn studies can be nested within level-3 units such as 
laboratories or investigators, and so forth. Thus, multilevel models are a natural framework 
for analyzing meta-analytic data. This paper discusses the application of a Fisher scoring 
method in two- and three-level meta-analysis that takes into account random variation at the 
second and at the third levels. The usefulness of the model is demonstrated using data that 
provide information about school calendar types. SAS proc mixed and HLM can be used to 
compute the estimates of fixed effects and variance components. 
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The sheer volume of research related to various topics of scientific interest poses the 

question of how to organize and summarize findings in order to identify and use what is known 

as well as focus research on promising areas (Garvey & Griffith, 1971). This need for 

accumulating research evidence has led to the development of systematic methods for 

quantitative synthesis of research (Cooper, Hedges, & Valentine, 2009). Currently, the use of 

quantitative methods to summarize results from various empirical studies that test the same 

hypothesis is widespread in education, psychology, medicine, and social science research. Meta-

analysis is a statistical method used to combine evidence from different primary research studies 

that test comparable hypotheses for the purposes of summarizing evidence and drawing general 

conclusions (Cooper et al., 2009; Glass, 1976; Hedges & Olkin, 1985; Lipsey & Wilson, 2001). 

Meta-analytic methods involve first describing the results of individual studies via numerical 

indexes that are commonly called effect size estimates (e.g., correlation coefficient, standardized 

mean difference, odds ratio) and second combining these estimates across studies to obtain a 

summary statistic such as a mean (e.g., a standardized mean difference or an average 

association). 

Meta-analytic data are naturally hierarchically structured. For instance, effect sizes are 

nested within studies, which can be nested within investigators, and so forth. Hence, multilevel 

models can provide a useful framework for analyzing meta-analytic data and take into account 

variation in all levels of the hierarchy. Multilevel models have been used extensively over the 

last 20 years (Goldstein, 1987; Longford, 1993; Raudenbush & Bryk, 2002; Snijders & Bosker, 

1999) and their applications to meta-analytic data with a two-level structure have been 

demonstrated in the literature (DerSimonian & Laird, 1986; Goldstein et al., 2000; Hedges & 

Olkin, 1985; Hox & DeLeeuw, 2003; Raudenbush & Bryk, 2002). In this paper I discuss the 
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application of a Fisher scoring algorithm to univariate two- and three-level meta-analysis. This 

algorithm computes the fixed effects and the variance components of the random effects within a 

maximum likelihood framework (Konstantopoulos, 2003; Longford 1987, 1993). I use meta-

analytic data with a two- and three-level nested structure that include information about the 

effects of modified school calendars on student achievement to show the usefulness of the 

models.  

Statistical Models for Meta-Analysis 

Two statistical models have been developed for inference about effect size data from a 

collection of studies: the random or mixed and the fixed effects models for meta-analysis 

(Hedges & Vevea, 1998; Konstantopoulos, 2007). Both models are appropriate for computing 

estimates in meta-analysis and the choice of model depends on the data structure and the 

assumptions about the statistical model. Fixed effects models treat an effect size parameter as 

unknown but fixed and assume that the between-study heterogeneity of the study-specific 

estimates is virtually zero (Hedges, 1982). Random effects models however, treat the effect size 

parameters as if they were a random sample from a population of effect size parameters 

(DerSimonian & Laird, 1986; Hedges, 1983; Raudenbush & Bryk, 2002). The random effects 

model introduces heterogeneity among the effect size parameters that is estimated by the 

between-study variance (Hedges & Vevea, 1998).  

The simplest random effects model follows typically a two-level structure and introduces 

a source of variation at the second level, by taking into account the between-study variance of 

the study-specific estimates (Hedges & Olkin, 1985; Raudenbush & Bryk, 2002). Random 

effects models with a two-level structure have already been developed employing the method of 

moments or maximum likelihood methods (Goldstein et al., 2000; Hedges & Vevea, 1998; 
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Raudenbush & Bryk, 2002). Two-level models for multivariate meta-analysis that take into 

account the dependency in the data have also been discussed in the literature (Berkey, Anderson, 

& Hoaglin, 1996; Gleser & Olkin, 2009). In addition, a recent study discussed the dependency of 

effect sizes within a study using both a random effects and a hierarchical Bayes approach 

(Stevens & Taylor, 2009). The key underlying principle in two-level models is that the effect 

size parameter is not fixed; instead it has its own distribution and is treated as a random variable 

at the second level. The between studies model introduces the inconsistency or heterogeneity in 

study effects across the sample of studies.  

Although a two-level model captures the random variation between studies, it does not 

account for higher levels of nesting in meta-analytic data. Sometimes, however, higher-level 

nesting takes place in meta-analytic data as with other kinds of data. For example, some 

researchers have shown empirically the importance of modeling achievement data using three-

level models that take into account nesting effects at the second level (e.g., classroom) and at the 

third level (e.g., school) (Bryk & Raudenbush, 1988; Nye, Konstantopoulos, & Hedges, 2004). 

Similarly, workers can be nested within departments and firms, and patients can be nested within 

clinics and hospitals. Meta-analytic data could also have a three-level structure. For example, 

effect sizes are nested within studies, and studies are nested within level-3 units such as 

laboratories or investigators. Third level units could also be firms, hospitals, neighborhoods, 

cities, etc, and the choice of the third level unit depends on the nature and structure of the data. 

The idea is that studies conducted by the same investigator for example, will likely produce 

estimates that are correlated and this dependency needs to be taken into account in the analysis. 

In other words, studies are clustered into investigators. In this case, random variation is evident 
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both at the second and at the third levels, since study- and investigator-specific effects can be 

modeled as random effects at the second and third levels respectively.  

In a three-level model the random variation is divided into two parts: the between-study 

within-level-3 unit variation and the between-level-3 unit variation. This decomposition of the 

variance is important and informative since it indicates where most of the random variation lies, 

within or between level-3 units. If the third-level variance is considerable, then it should be 

included in the estimation process instead of being omitted or collapsed at the second level. In 

the three-level model level-3 unit estimates form a distribution of effects with a variance that 

shows differences in effect sizes between level-3 units. 

It is difficult to know exactly the optimal number of units that are needed to compute 

variance components in two- or three-level models. As in the two-level case three-level models 

involve computations of variances of random effects and in principle larger sample sizes at the 

third level are preferred because more information is used in the estimation. For example, when 

there are 10 or more level-3 units a three-level model may be warranted. In contrast, when the 

number of level-3 units is very small (e.g., 2 to 4) perhaps a two-level model should be used and 

the effects of the third level units could be modeled as fixed effects (via dummy indicators) at the 

second level. In addition, ideally, each level-3 unit should include multiple studies. Note that the 

question about the optimal number of units needed to compute variances of random effects is not 

inherent to meta-analysis and applies to any two- or three-level model.  

In this study I discuss multilevel models for meta-analysis and focus on three-level 

models. I use an iterative computational algorithm called Fisher scoring to obtain maximum 

likelihood estimates for two- and three-level models. This method updates the estimates of fixed 
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effects and variance components in each iteration using the expected information matrix (see 

Longford, 1993).   

 

Example 

To illustrate the usefulness of the second and third level models let’s consider an example 

about modified school calendars. The data include studies on schools that modified their 

calendars without extending the length of the school year (see Cooper, Valentine, Charlton, & 

Melson, 2003). The sample of studies used here is somewhat different than that used in the 

Cooper et al. study, but it suffices for the purposes of the exercise. Overall, 56 studies were 

included in the sample. First, consider the two-level case, where the first level involves a within-

study model and the second level a between-study model. Each study provided information that 

allowed Cooper et al. to construct effect sizes and their standard errors. In addition, there was 

information about the year of the study which can be modeled as a study-specific predictor. 

Now, consider the three-level case. The 56 studies were conducted by school districts and thus, 

studies were nested within districts. Overall, there were 11 school districts (nearly 5 studies per 

district). In this case, the first level involves a within-study model, the second level a between-

study within-district model, and the third level a between-district model. The year of study can 

be included in the model as a predictor in the third level since it is a district specific variable. The 

data are summarized in Table 1. Of course, one could imagine a similar structure for health data. 

For instance, suppose that neighborhoods conduct studies about treatment effects for patients in 

hospitals in these neighborhoods.  

 

 



Three-Level Meta-Analysis 

 8 

Two-Level Meta-Analysis 

First I illustrate the method in the simplest case that involves two levels. For simplicity 

suppose that there is only one outcome in each study and that one effect size estimate is 

computed in each study (i.e., univariate case). Suppose now that there are k  effect size 

population parameters 1,..., kϑ ϑ  and therefore k  corresponding independent effect size estimates 

1,..., kT T  with known sampling variances 1,..., kv v . In our example, the iT ’s are given in column 

three of Table 1, the iv ’s are given in column four, and the total number of studies k is 56. We 

assume that these effect size estimates iT  are independently and normally distributed about iϑ  

with a mean of iϑ  and variance iv . The variances (the vi’s) are unknown, but they are estimated 

by a consistent estimator and therefore they are assumed to be known (see Table 1). The first 

level of the hierarchy the within-study model is  

i i iT ϑ ε= + ,          (1) 

where the error term is normally distributed with a mean of zero and a variance iv . At the second 

level of the hierarchy the between-study model the population parameter varies around an overall 

mean, namely  

0i iϑ β η= + ,          (2) 

where iη  is a study-specific random effect that is normally distributed with a mean of zero and 

variance τ  ( 0τ > ). In a single level notation the model is written as  

 0i i iT β η ε= + + .         (3) 

The second level can also include p predictors (e.g., study characteristics such as the year of the 

study) namely 
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0 1 1 ... ,i i p pi iX Xϑ β β β η= + + + +             (4)                              

and in this regression model the residual variance of the random effect η  is Rτ . In our example, 

one predictor is year of study and is reported in the last column of Table 1. In the Cooper at al. 

study other study level predictors are also reported such as whether the study was conducted by 

an internal of external evaluator.  

For the within-study model we assume that the variances of the stochastic errors are 

different for each study (i.e., heterogeneity of the sampling error), while for the between-study 

model we assume that the random effects are distributed identically (i.e., homogeneity of random 

effects). The sampling error variances in meta-analytic data cannot be expected to be identical 

across studies since they typically depend on the sample size of each study and hence, the 

heterogeneity assumption seems reasonable. The units at each level are independently distributed 

and thus the error terms iε  and iη  at the first and the second level respectively are uncorrelated, 

that is ( )cov , 0i jε ε = , and ( )cov , 0i jη η = . In a single level equation the two-level model with 

second level predictors is  

0 1 1 ...i i p pi i iT X Xβ β β η ε= + + + + + .      (5) 

The effect sizes iT s  are normally distributed with a mean 0
1

p

j ij
j

Xβ β
=

+∑ , and a variance i Rv τ+ , 

and when there are no predictors in the model the between-study variance is τ . 

 

Estimation 

I compute estimates of the fixed effects, the regression coefficients, and the variance 

components of the random effects at the second level using maximum likelihood estimation. I 
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used a Fisher scoring algorithm to compute the maximum likelihood estimates following 

Longford (1987, 1993). For simplicity, I discuss the simplest two-level case with no predictors at 

the second level. The advantage of the simplest case is that the estimates have simple algebraic 

expressions. Even the inclusion of one predictor in the model complicates the expressions 

considerably. The more general case that can include predictors is expressed in matrix notation 

and is illustrated in the appendix. The idea is to maximize a log-likelihood function in order to 

estimate the fixed effects and the variance components of the random effects (see appendix). The 

Fisher scoring algorithm involves the computation of the first and second order derivatives of the 

parameter estimates, the fixed effects and variance components. 

In the simplest case, where there are no study-level predictors included in the model, the 

objective is to compute one overall mean, the intercept, and the second level random effects 

variance component τ . For example, the fixed effects estimate or overall mean in this case is a 

product of sums as shown in the Fisher scoring equation  

1
1 1

1 1
( ) ( )

k k

i i i
i i

v T vτ τ
−

− −

= =

 + + 
 
∑ ∑ ,       (8)  

where  1

1
( )

k

i i
i

T v τ −

=

+∑  is the scoring function and 1

1
( )

k

i
i

v τ −

=

+∑  is the expected information 

function. The Fisher scoring equation when predictors are included in the model is given in the 

appendix (A-3). Similarly, the between-study variance component at the second level is updated 

as  

1
2 1 2 2

0
1 1 1

12 ( ) ( ) ( )
2

k k k

i i i i
i i i

v v e vτ τ τ τ τ
−

− − −

= = =

   = − + + − +   
   
∑ ∑ ∑ ,    (9) 
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where e  is a residual defined in the appendix, 0τ  is the initial estimate of the second level 

variance, 2

1
1/ 2 ( )

k

i
i

v τ −

=

+∑  is the expected information function and 

1 2 2

1 1
1/ 2 ( ) ( )

k k

i i i
i i

v e vτ τ− −

= =

 − + − + 
 
∑ ∑  is the scoring function. The variance of the fixed effect 

estimate is given by 
1

1

1
( )

k

i
i

v τ
−

−

=

 + 
 
∑ and the variance of the variance component is given by 

1
2

1
2 ( )

k

i
i

v τ
−

−

=

 + 
 
∑ . Convergence is achieved when the log-likelihood remains unchanged for 

several decimal places.  

 

 
Three-Level Meta-Analytic Model 

The computations in the three-level model are more complicated mainly because of the 

estimation of the variance components at the third level. Again, suppose that there is only one 

outcome and one effect size estimate per study. For simplicity let’s consider first the simplest 

case where no predictors are included at levels 2 and 3. The computation involves an overall 

mean estimate and two variance component estimates at levels 2 and 3. Simple algebraic 

expressions are not always possible in the three-level model. The model for the first level of the 

hierarchy (the within-study model) for effect size estimate iT  is identical to equation (1).  

In the second level of the hierarchy (the between-study within-level-3-unit model) the 

unknown effect-size parameter ϑ  varies around a level-3 unit g mean, namely 

0 ,ig g igϑ β η= +   (10) 
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where 1,...,g m=  represents the level-3 units (e.g., school district). Finally, at the third level the 

level-3 unit means vary around an overall mean 00γ , namely 

0 00 0g gβ γ υ= + ,   (11) 

where 0gυ  is a level-3 unit specific random effect that is normally distributed with a mean of 

zero and variance ω  ( 0ω > ). In our example, ω  is the between-district variance. In a single 

level notation the model is written as  

00 0ig g ig igT γ υ η ε= + + + .        (12) 

Now when p predictors are include at the second level the model is  

0 1 1 ... ,ig g g ig pg pig igX Xϑ β β β η= + + + +       (13) 

where 1 ,...,ig pigX X  are study-specific predictors (e.g., year of study), 0 1, ,...,g g pgβ β β  are 

unknown regression coefficients that need to be estimated, and igη  is a level-2 random effect or 

residual. The residuals at the second level are independently, identically, and normally 

distributed with a mean of zero and a residual variance Rτ . The third level model for the level-3 

unit mean (or intercept) 0gβ  when q level-3 predictors are included in the model is 

0 00 01 1 0 0...g g q qg gW Wβ γ γ γ υ= + + + + ,                (14)                                     

where subscript R indicates residual variance, 1 ,...,g qgW W  are level-3 unit-specific predictors 

(e.g., school district characteristics), 00 01 0, ,..., qγ γ γ  are unknown regression coefficients that need 

to be estimated, and 0gυ  is a level-3 random effect or residual that is normally distributed with a 

mean of zero and residual variance Rω . In this model the year of study can be included in the 

third level as a school district predictor, and Rω  is the residual between-district variance.    
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The model illustrated in equation (14) is also used to model the level-2 slopes in equation 

(13). The study-specific characteristics are modeled either as fixed or random effects at the third 

level. Level-3 predictors can be used to model level-2 slopes as shown in equation (14). In our 

example, a study characteristic is whether the study was conducted by an internal or an external 

evaluator (see Cooper et al., 2003). The effect of this variable could vary by school district (the 

third level unit) perhaps because the internal evaluator effects are more pronounced in some 

districts, but weaker in others. As a result, it is possible that the evaluator effect varies by district. 

The evaluator effect is in this case a random effect and is known as a cross-level interaction 

between the evaluator effect and school districts. When the variance of this random effect is 

significant, then there is evidence of interaction.  

In another example, suppose that a good number of researchers study differences in 

achievement between small and regular classes. Also, suppose that each researcher conducted 

multiple studies on this topic, that is, studies are nested within investigators. One study 

characteristic of interest is the type of research design the study used, whether for example, the 

study was a randomized experiment or not. Let’s assume that each researcher conducted both 

experiments and non-experiments. The research design effect may interact with researchers and 

as a result it may vary across researchers. That is, the research design effect could be smaller for 

some researchers and larger for others. Study characteristics can also interact with specific level-

3 unit characteristics and in this case the cross-level interaction is modeled as a fixed effect. In 

this example, the research design effect may interact with the experience or the training of the 

researcher in the field.   

 When p level-3 unit-specific slopes are regressed on predictors at the third level and are 

treated as random at the third level, these random effects are normally distributed with a mean of 
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zero and a variance-covariance matrix ( )3 RΩ  with p + 1 residual variance components in the 

diagonal and covariances among these variances in the off diagonal, and gυ  is the vector of the   

p + 1 level-3 random effects within level-3 unit g. The omega matrix is a (p + 1) x (p + 1) 

symmetric matrix.   

The variance of an effect size estimate, iT , in the simplest three-level model assuming no 

predictors at any level is    

( ) ,i iVar T v τ ω= + +                                            (15) 

where τ  is the level-2 variance component and ω  is the level-3 variance component. However, 

when predictors are included at the second level and are treated as random effects at the third 

level, the variance of an effect size estimate iT  is  

( ) ( )
2

3vτ .T
i i R ig igRVar T = + + z zΩ                   (16) 

where zig  is a ( 1) 1p + ×  vector assuming p+1 level-2 slopes modeled as random effects at the 

third level. For example, if the intercept and evaluator effect are modeled as random effects at 

the third level the vector z is a 2x1 vector and the omega matrix if a 2x2 variance matrix. The 

random effects at the third level are the level-3 intercepts and slopes. The data are nested in the 

third level since each level-3 unit (e.g., school district) will include multiple level-two units (e.g., 

studies). 

 

Estimation 

In the three-level model we also need to maximize the log-likelihood function in order to 

estimate the fixed effects and the variance components of the random effects (see appendix). The 

log-likelihood equation is identical to that in the two-level model. However, the design matrix X 
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of the fixed effects or predictors and the design matrix Z of the random effects are more 

complicated in the three-level case since more predictors and random effects are introduced in 

the regression equation (see appendix). In the following discussion I illustrate the estimation for 

the simplest case that involves an overall fixed effect, the weighted mean, and two variance 

components, one at the second and one at the third level.  

Consider the simplest error structure at the third level, where only level-3 unit intercepts 

are random at the third level and there are no predictors at any level. Then the design matrix of 

the random effects for unit g at the third level is ( ) ( )3, gng =Z 1 , where ( )gn1  is a vector of ones that 

has as many elements as the number of studies within unit g and ( ) (3) (3, ) ( )3, g

T
g ng ωΩ =Z Z J , where 

( ) ( ) ( )g g g

T
n n n=J 1 1  is a ng x ng matrix of ones. To illustrate the variance structure suppose that the 

level-3 unit g has 3 studies; then the structure of the variance-covariance matrix ( )3,gV  within a 

level-3 unit g when predictors are not included at any level is  

( )

1 1

2 23,

3 3

0 0 1 1 1
0 0 1 1 1

1 1 10 0
g

v v
v v

v v

τ τ ω ω ω
τ ω ω τ ω ω

τ ω ω τ ω

+ + +    
    = + + = + +    
    + + +    

V . 

The variance structure illustrated above is similar when level-2 and level-3 predictors are 

included in the model as fixed effects. The only difference is that the level-2 and level-3 

variances are now residual variances, ,R Rτ ω . When level-2 slopes are treated as random effects 

at the third level however, the variance structure is more complicated and includes the additional 

variance components and the design matrixes of these random effects (see appendix).  

The computation of the log-likelihood involves the inverse of the variance-covariance 

matrix V as well as its determinant. When predictors are not included at any level the between-
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study variance is τ  and the between level-3 unit variance is ω . Now consider a ng x ng diagonal 

matrix D, defined as ( ) ( , 1,..., )
gn i gdiag v i n= + =D τ , and ng represents the number of studies 

within a third level unit g. Then, the inverse of the variance-covariance matrix for a third level 

unit g is   

( )

1

1 1 1 1 1 1
( ) ( ) ( ) ( )3,

1
( )

g

g g g g

n

n i n n ng
i

v
−

− − − − − −

=

 
= − + +  

 
∑V D D J Dω τ .    (17) 

The diagonal elements of matrix ( )
1

3,g
−V  are  

1

1 1 1 1

1
( ) 1 ( ) ( )

gn

i i i
i

v v v
−

− − − −

=

   + − + + +   
   

∑τ τ ω τ   

and the non-diagonal elements of matrix ( )
1

3,g
−V  are  

1

1 1 1 1

1
( ) ( ) ( )

gn

i j i
i

v v v
−

− − − −

=

 
− + + + +  

 
∑τ τ ω τ .   

The determinants of matrix V are ( )2,
1

| | ( )
gn

ig
i

v τ
=

= +∏V , (3)| |R ωΩ = , 

( ) ( )
1 1

(3) (2, )3, 3,| |T
R gg gΩ− −+ =Z V Z  1 1

1
( )

gn

i
i

vω τ− −

=

+ +∑  and as a result  

 ( )
1

3,
11

| | ( ) 1 ( )
g gn n

i ig
ii

v vτ ω τ −

==

 
= + + +  

 
∑∏V .      (18) 

In the simplest case where we need to compute the overall mean and the second and third 

level variance components, the matrix X is a column vector of ones and the overall fixed effect 

or mean is computed using the following algebraic forms of the expected information and 

scoring functions, namely 



Three-Level Meta-Analysis 

 17 

1 1

1 1
( )

gnm
T

i
g i g

v τ− −

= =

  = + − 
  

∑ ∑X V X  

1 ( 1)
1 1 2 1 1

1 1 1 1
( ) ( ) ( ) ( )

g g g gn n n nm

i i i j
g i i ig g

v v v vω τ τ τ τ
− −

− − − − −

= = = =

     + + + + + +       
     

∑ ∑ ∑ ∑ , (19) 

and 

 

1 1

1 1

1 ( 1)
1 1 2 1 1

1 1 1 1

( )

( ) ( ) ( ) ( )

g

g g g g

nm
T

i i
g i g

n n n nm

i i i i i j
g i i ig g

T v

v T v T v v

τ

ω τ τ τ τ

− −

= =

− −
− − − − −

= = = =

  = + − 
  

     + + + + + +       
     

∑ ∑

∑ ∑ ∑ ∑

X V T

 (20) 

where i j≠ , 1,..., gj n= . Equations (19) and (20) produce scalars and using equation (A-3) one 

can compute the fixed effects estimate which is essentially the product of equations (19) and 

(20).  

The scoring and expected information functions for the second level variance component 

τ  are  

( ){ } ( ) ( )( ) ( ) ( )( ){ }1 1 1
3, 3, 3, 3, 3,

1 1

1
2

m m
T

g g g g gg gg g
tr − − −

= =

 
− − 

 
∑ ∑V e V V e ,     (21) 

and 

( ) ( ){ }{ }1 1
3, 3,

1

1 .
2

m

g g
gg

tr − −

=

 
 
 
∑ V V         (22) 

respectively, where e is a row vector defined in the appendix, and ( )tr A  is the trace of matrix A, 

the sum of diagonal elements of A. The derivative 
τ

∂
∂
V  produces an identity matrix that is not 
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used in the computation. Equations (21) and (22) produce scalars and the variance of τ  is 

computed by taking the inverse of equation (22). In the simplest case  

 ( ){ }1 1 1 1 1 1
3,

1 1
( ) 1 ( ) ( ( ) )

g gn n

i i ig
i i

tr v v vτ τ ω τ− − − − − −

= =

   = + − + + +      
∑ ∑V .   (23) 

The scoring function for the third level variance component matrix (3)RΩ  for each 

variance or unique covariance is 

( ) ( ) ( )( ){ } ( ) ( ) ( )( ) ( ) ( ) ( )( ){ }1 1 1
3, 3, 3, 3, 3, 3, 3, 3, 3,

1 1

1
2

m m
T T T

g g g g g g g g gjl j l gg gg

− − −

= =

  − − 
  
∑ ∑Z V Z Z V e Z V e   (24)  

where j,l indicate the jth row and lth column element of the matrix. The derivative (3)R

Rjlω
∂Ω

∂
 

produces an incidence matrix with zeros everywhere and one for element j,l (Longford, 1993).  

The diagonal elements (variances) of the expected information matrix for the third-level 

variance components (variances and lower triangular matrix covariances) are computed as 

( ) ( ) ( )( ) ( ) ( ) ( )( ){ }1 1
3, 3, 3, 3, 3, 3,

1

1
2

m
T T

g g g g g gjl jlg g

− −

=

  
 
  
∑ Z V Z Z V Z ,      (25) 

A similar equation is used to compute the off-diagonal elements, the covariances between the 

variance and the covariance components, namely  

( ) ( ) ( )( ) ( ) ( ) ( )( ){ }1 1
3, 3, 3, 3, 3, 3,

1

m
T T

g g g g g gjm klg g

− −

=
∑ Z V Z Z V Z       (26) 

where j,m and k,l are elements of the matrices.          

We assume that the random effects at different levels have a zero covariance, that is, they 

are not correlated. In the simplest case the derivative ( )3,

g

g
nω

∂
=

∂

V
J  is a g gn nx  matrix of ones and 
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hence ( )
( )

( )( )
2

3,1 1
3, 3,

1

g

g

n
g

n ig g
i

tr tr a
ω

− −

=

 ∂
  = =
 ∂ 

∑
V

V V J  is the sum of all elements of ( )
1

3,g
−V , and ia  

represents an element of ( )
1

3,g
−V .   

Reasonable starting values (indicated by subscript 0) for the fixed effects estimates are 

estimates produced from ordinary least squares. Following Longford (1993) reasonable starting 

solutions for Rτ  and the diagonal elements of the variance components matrix (3)RΩ  at the third 

level are functions of the residuals namely    

( )
2

0
1

1 k

iR
i

e
k

τ
=

= ∑  

and 

( ) ( )
( )( )

( )
( )( ) ( )

( )

2

3, 3,
1

(0)

3, 3,
1

1 ,

m
jT

g g
g

Rj m Tj j
g g

g

m
=

=

=
∑

∑

e Z

Z Z
Ω  

where the superscript j  represents the jth  diagonal element of the third level variance 

components matrix Ω .  

 

Data 

In the school calendar example the studies were nested within school districts and thus a 

third level, the school district, was introduced in the model (Cooper et al., 2003). In the data I 

analyzed, each school district included at least three studies. The first level involves a within-

study model, the second level a between-study within-district model, and the third level a 

between-district model. Criteria for selection were complete data that provided information on 

effect size estimates and type of calendar. All studies assessed students from grade 1 through 
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grade 9 and reported achievement differences between students attending schools that follow a 

year-round calendar and schools that follow the traditional nine-month calendar. The 

achievement differences were expressed in standard deviation units to ensure all estimates were 

on the same scale. The data included information on reading achievement, and included 56 

studies nested within 11 school districts. Positive effect sizes indicated that students in schools 

that followed a year-round calendar performed higher on average than students in schools that 

followed the traditional nine-month calendar. I first ran a two-level and then a three-level model. 

I also ran two different specifications. The first specification was an unconditional model with no 

predictors. This model estimates an overall mean as a fixed effect, and the variances at the 

second and third levels. The second specification added a predictor, the year the study was 

conducted. The year of study was used at the top level in the two- or the three-level model.  

 

Using Software to Compute Estimates 

To compute the fixed effects and the variance components one can use either the SAS or 

the HLM software. The procedure proc mixed in SAS is well-suited for two- and three-level 

univariate meta-analysis. Similarly, the windows version of HLM produces estimates for two- 

and three-level univariate meta-analysis. SAS proc mixed is a general purpose routine that can be 

used for fitting random effects models (Singer, 1998). The codes I used to analyze the data with 

SAS proc mixed are presented in the appendix for unconditional models. Predictors can of 

course be included in the regression equation. However in order to obtain an intercept that 

represents an adjusted, by the predictors, average effect size estimate the predictors need to be 

centered around their grand mean before they are included in the equation. Detailed information 

about the proc mixed procedure is provided by Littell et al. (1996), Konstantopoulos and Hedges 
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(2004), and Singer (1998). Alternatively, one could use the HLM software that is designed 

especially for fitting multi-level models. The windows version of HLM can be used to fit two- 

and three-level meta-analysis models (Raudenbush, Bryk, Cheong, & Congdon, 2004). The code 

created by HLM for two- and three-level meta-analysis is also reported in the appendix for 

unconditional models. In HLM the user can choose to grand-mean center predictors in order to 

obtain a meaningful intercept, the overall effect size adjusted by predictors. The user needs to 

specify in the estimation settings that the first level variances are known and that the weighting 

variable is the variance of the effect size. Detailed information about the HLM software is 

provided by Raudenbush et al. (2004).   

 

Results 

The studies included in the sample were conducted between 1976 and 2000 (see Table 1). 

Approximately 34% of the samples were from studies conducted in 1976, while 27% were from 

studies conducted in 1997. The remaining 39% were from studies conducted in 1989 (7%), 1994 

(9%), 1995 (3.5%), and 2000 (19.5%). Approximately 61% of the samples were obtained from 

dissertations or theses, while the remaining samples were obtained from journal articles (18%), 

school reports (7%), or studies by the research departments of school districts (14%). Nearly 

44% of the samples were obtained from studies conducted in large urban areas, another 35% 

from studies in small urban or suburban areas, and the remaining 21% from studies in rural areas. 

The samples included studies conducted in grades one through nine. All standardized mean 

differences or effect sizes used in the data do not reflect adjustments for covariates, and thus 

were unadjusted differences between school calendar and traditional calendar schools.  

------------------------------ 
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Insert Table 1 Here 

------------------------------ 

The effect size estimates ranged from -0.52 to 1.19 with a mean of 0.12 and a standard 

deviation of 0.33 (see Table 2). Negative effect sizes indicate that students attending traditional 

(nine-month) calendar schools outperformed their counterparts in year-round schools. In 

contrast, positive effect sizes point to higher student achievement in year-round schools. The 

sample sizes ranged from 28 to 4,403 students with a mean of 913 students. About 52% of the 

samples were from year-round schools on a nine-week instruction followed by a three-week 

break schedule, 12.5% from schools on a twelfth-week instruction followed by a four-week 

break schedule, and nearly 35.5% from schools on other types of schedules. 

------------------------------ 

Insert Table 2 Here 

------------------------------ 

The dataset has an unbalanced structure. There were 11 level-3 units (districts) and within 

each district the number of studies ranged from 3 to 11 with an average of 5.1. Table 3 reports 

means and standard deviations for effect size estimates by district. It appears that there is 

considerable variability within as well as between districts. District 71 had the highest mean and 

second highest standard deviation, while district 11 had the lowest mean. District 108 had the 

largest standard deviation and district 86 had the lowest standard deviation. 

------------------------------ 

Insert Table 3 Here 

------------------------------ 
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The results from the two-level meta-analysis are summarized in Table 4. Specifically, 

Table 4 reports the estimates of the fixed effects and the variance components, their standard 

errors (SE), and 95% confidence intervals (CI)1 around the estimates. The overall effect size 

estimate was 0.128 and significant indicating that on average students in schools that follow 

year-round calendars outperformed their peers in schools that follow traditional calendars. The 

between-study variance component was 0.088 and significantly different from zero, which 

indicates that the effect sizes varied across studies. The range of the 95% CI was 0.059 to 0.146. 

When the year of study was included in the model at the study level the effect size estimate was 

0.126 and still significant. The variance component estimate did not change and the year of study 

was not a significant predictor of the effect sizes and did not explain any of the level-2 variance. 

The estimate of year of study was very close to zero. Now, using the same data the estimate of 

the overall mean using fixed effects models was nearly one-half as large as the estimate of the 

mean using a two-level random effects model because of the different structure of the weight 

matrix. The estimate of year of study was still very close to zero and insignificant. In addition, 

the standard error of the weighted mean in the two-level random effects model was 50 percent 

larger than that in the fixed effects model. 

------------------------------ 

Insert Table 4 Here 

------------------------------ 

The three-level analysis estimates are summarized in Table 5. The structure of Table 5 is 

the same as the structure in Table 4. The overall effect size estimate is now 0.184 and significant. 

The overall weighted mean estimate is different than that in the two-level model or the fixed 

effects model, because a different weight matrix V-1 is used in the three-level model 
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computation. The variance-covariance matrix is block diagonal in the three-level model, while it 

is a diagonal matrix in the two-level model (and includes the between study-variance τ ). In the 

fixed effects model case the weight matrix is also diagonal but includes only the vi’s. A change 

in the magnitude of the overall mean should be expected whenever random effects are introduced 

in the model because the variance components of these random effects are included in the weight 

matrix. For example, using the same data the estimate of the overall weighted mean using fixed 

effects models was one-half to one-third as large as the estimate of the mean using a three-level 

random effects model. In addition, the standard errors of the weighted mean and the year of 

study using fixed effects models were at least one-half as large as those in the three-level model. 

Similarly, the standard errors of the weighted mean and the year of study in the three-level model 

were twice as large than those in the two-level case. 

The second level variance was 0.033 and was significantly different from zero. The 95% 

CI was 0.020 to 0.070. The third level variance was almost twice as large and also significantly 

different from zero. The 95% CI was 0.027 to 0.256. Hence, most of the random variation was 

between districts not between studies within districts. The advantage of the third level model is 

that it provided a more accurate picture of the dependencies in the data through the variance 

decomposition. When the level-3 variance is significant and non trivial in magnitude it should be 

included in the computation of the regression estimates and their standard errors. In the two-level 

model all random variation was assumed to be between-study variation, where in fact nearly 

60% of this variation is due to district differences. When the year of study was included in the 

model at the third level the effect size estimate was 0.183 and was still significant. The variance 

component estimates did not change much and the year of study was not a significant predictor 

of the effect sizes and did not explain any of the level-2 or level-3 variance. The estimate of the 
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year effect was similar to that in two-level model, small and insignificant. The standard errors of 

the fixed effects estimates where larger in the three-level model, as expected.  

When the third level is not included in the analysis the overwhelming majority of the 

third level variance is part of the second level variance. Results from previous work on multi-

level models have indicated that when the top level is omitted almost all of its variance is 

captured by the immediate lower level that is present (Moerbeek, 2004). In our example, when 

the district level was omitted, the between-district variance was captured by the between-study 

variance.                                    

                                             ------------------------------ 

Insert Table 5 Here 

------------------------------ 

 

Conclusion 

Multilevel models have been used widely over the last two decades and one of their main 

advantages is that they take into account the clustering or dependencies in the data. 

Conceptually, one way to think about clustering is via sampling. If one assumes for example that 

schools are sampled first, and then classrooms within schools are sampled, a three-level model 

seems appropriate for analyzing such data. However, if sampling does not take place at different 

levels fixed effects models seem reasonable. Multilevel methods also seem natural methods for 

analyzing meta-analytic data and three-level models have advantages over two-level models 

when there is variability, or clustering, at the third level. In this case, first level-3 units (e.g., 

school districts) would be sampled first, and then studies within districts would be sampled. 

Other times however, we are interested empirically in whether clustering takes place at different 
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levels because that clustering indicates level-specific effects (e.g., study or district effects). In 

addition, sometimes, conceptually, we are interested in modeling predictors at the appropriate 

level. In the calendar data example one could include for instance the evaluator variable as a 

study-specific predictor or district year or size as a third level predictor. So long as there are 

enough studies and districts the model should run with no problems.  

One advantage of employing three-level models is that such models allow the estimation 

of variance components of random effects at the third level. For example, a three-level model 

will estimate the between-researcher variance of study-specific effect size estimates. This model 

is useful and appropriate when the between level-3 unit variance is different from zero and there 

are enough level-3 units in the sample to be able to estimate that variance. When the above 

conditions hold the third level variance should be included in the estimation of regression 

estimates and their standard errors. If the third level variance is not different from zero however, 

or when there are only a few level-3 units, one could argue that a two-level model is more 

appropriate since the level-3 units can be treated as fixed effects (e.g., binary indicators). In the 

same vein, if the between-study variance in two-level models is not different from zero, or is 

assumed to be zero by design, then a fixed effects model is appropriate. Nonetheless when 

variance components are included in the computation of the fixed effects estimates and their 

standard errors these estimates will be different than in the fixed effects models case. 

Specifically, the standard errors of the estimates in the random effects models that take into 

account variance components should be larger than those in the fixed effects models.    

Another advantage of the three-level model is that study-specific variables, or slopes, at 

the second level can be modeled as random effects at the third level (Raudenbush & Bryk, 2002). 

Again the assumption is that there are enough level-3 units to compute such variance 
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components. The example illustrated earlier was about the evaluator effect that could vary across 

districts. Now, consider another example that is conceptually a meta-analytic problem. Suppose 

that the researcher is interested in whether small classes affect the classroom variance in 

achievement differently than regular classes and whether this effect varies across schools. The 

classrooms are nested within schools. Each classroom variance (i.e., the effect size) has a known 

asymptotic variance (i.e., vi) (see Raudenbush & Bryk, 1987). The main independent variable 

has two categories, small or regular class, is included at the study level, and captures class size 

effects on the classroom achievement variance. One of the researcher’s objectives is whether the 

class size effects on the classroom achievement variance differ across schools. That is, the class 

size effects may not be consistent across schools and may interact with school context. In a two-

level model the estimate of the class size effect can’t be treated as random effect. In a three-level 

model however, the class size estimate can be modeled as a random effect at the third level, the 

school, and thus the variability of the class size effects across schools can be estimated. In this 

example, the research question can be addressed by using three-level models that allow the 

treatment effect to vary across schools.  

To conclude, multilevel models are appropriate for modeling meta-analytic data with 

nested structure and dependencies in the data. Two- or three-level models could be used to model 

meta-analytic data, and the choice of the model should be supported by the data structure and the 

sample sizes at each level of the hierarchy as well as the assumptions about the sampling that 

takes place at each level.   

Note:  

1 The 95% CI for the variance components was constructed using methods by Burdick and 

Graybill (1992). For example, the 95% CI for the second level variance component was 
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constructed as  2 2
,1 /2 , /2/ /ν α ν αντ χ τ ντ χ− ≤ ≤  , where 22( / ( ))SEν τ τ= . This formula is used in 

SAS proc mixed.  

 

Appendix 

 
The log-likelihood function is 

11 1 1log(π) log(| |)
2 2 2

TL n −= − − −V e V e ,                                                                 (A-1) 

where log is the natural logarithm, π is a mathematical constant, V  is a k k×  variance-

covariance matrix, e  is a 1k ×  column vector of residuals, = −e T Xβ , T is a 1k ×  vector of 

effect sizes, X is a k k×  matrix of predictors, β  is a 1k ×  vector of fixed effects estimates, and 

| |V  is the determinant of V. 

 
 
Two-Level Estimation 
 In the two-level case 2V  is k k×  diagonal variance-covariance matrix with diagonal 

elements i Rv τ+ . When no predictors are included at the second level the diagonal elements are 

iv τ+ . The computation of the log-likelihood involves essentially the computation of the inverse 

and the determinant of matrix V2. The inverse of matrix V2 is also a diagonal matrix with 

diagonal elements ( i Rv τ+ )-1. 

Similarly, following standard results for determinants of matrices (Harville, 1997) the 

determinant of the diagonal matrix 2V  is the product of the diagonal elements of V2  

2
1

| | ( )
k

i R
i

v τ
=

= +∏V                   (A-2)  
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and when there are no covariates in the model 2
1

| | ( )
k

i
i

v τ
=

= +∏V . In each iteration the Fisher 

scoring algorithm updates the fixed effects vector  

 ( ) 11 1
2 2

T T−− −= X V X X V Tβ .        (A-3) 

The asymptotic variance matrix of the fixed effects is computed from the inverse of the expected 

information matrix, namely 

( )
^ 11

2var .T −−  = 
 

X V Xβ         (A-4) 

In the simplest case the computation of the overall mean is updated by 

1 1
2

1
( )

k
T

i
i

v τ− −

=

= +∑X V X , 1 1
2

1
( )

k
T

i i
i

T v τ− −

=

= +∑X V T .     (A-5) 

The Fisher scoring equation for the variance component when predictors are included in the 

second level is  

1
2 1 2

0 2
1 1

12 ( ) ( )
2

k k
T

R R i R i R
i i

v vτ τ τ τ
−

− − −

= =

   = − + + −   
   
∑ ∑ e V e . 

 

Three-Level Estimation 

When we follow the general formulation for the linear mixed model the three-level meta-

analytic model in a single-level equation is  

,Β= + +T X Zξ ε                                                                                                       (A-6)                                  

where T  is the vector of effect-size estimates, X  is the design matrix of the fixed effects that 

includes the level-2 and level-3 predictors, Β  is the vector of fixed effects at the second and 

third levels that need to be estimated, Z  is a design matrix of the random effects at the second 
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and third levels, ξ  represents the vectors of random effects at the second and third levels, and ε  

is the vector of the level-1 sampling errors. The matrix Z at the second level is ( )2 k=Z I , where I 

is an identity matrix, and at the third level (assuming no predictors at any level) the matrix 

( )3 k=Z 1  is a vector of ones since the third level random effect involves the level-3 unit 

intercepts. When level-2 slopes are treated as random effects at the third level the Z matrix is 

complicated and includes columns that represent these random slopes.  

The variance-covariance matrix 3V is now a k k×  block diagonal matrix  

( ){ } ( ) ( ){ }13 3, 3, 3,,..., ,
mm g g gdiag= ⊗ =V I V V V  

assuming m level-3 units. Each block matrix is 

( ) ( ) ( ) (3) (3, )3, 2, 3,
T

R gg g g= +V V Z ZΩ ,       (A-7) 

where ( ) { } ( )(2, ) 12, ,...,
g g gn n R n Rg V diag v vτ τ= ⊗ = + +V I  is a diagonal matrix with elements i Rv τ+  

and ng is the sample size or the number of studies within a level-3 unit g, and ⊗  is the Kronecker 

product. When no predictors are included at any level the diagonal elements are iv τ+ . From 

standard matrix algebra we know that 

{ } ( ) ( ) ( ){ }3 (2, ) 3, 3 3,
T

m g m g R g= ⊗ + ⊗V I V I Z ZΩ ,      (A-8) 

where ( )3,Z g  is the design matrix of the random effects at the third level within level-3 unit g (the 

subscript 3, g  indicates unit g  at the third level) and ( )3 RΩ  is the matrix of the third level 

residual variance components and covariances.  

The computation of the log-likelihood involves the computation of the inverse and the 

determinant of matrix V3. To facilitate these computations I employ standard results from matrix 
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algebra (see Harville, 1997; Longford, 1987, 1993). The inverse of matrix V3 is also a block 

diagonal matrix expressed as  

{ }1 1
3 (3, )m g
− −= ⊗V I V                                                                                                     (A-9) 

assuming a total number of m level-3 units where each block is 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

1
1 1 1 1 1 1

(3) (2, ) (3, )3, 2, 2, 3, 3, 3, 2, ,T T
R g gg g g g g g g

−
− − − − − −= − +V V V Z Z V Z Z VΩ                             (A-10) 

and  

{ }1 1
(2, ) (2, )g gg n nV− −= ⊗V I ,  1 1

(2, ) ( )
gn i RV v τ− −= + , 

that is, 1
(2, )g
−V  is a diagonal matrix with elements 1( )i Rv τ −+ .  

Similarly, following standard results for determinants of matrices (Harville, 1997) the 

determinant of the block-diagonal matrix 3V  is  

3 (3, )
1

| | | |
m

g
g=

=∏V V   

and the determinant of  (3, )gV  is  

( ) ( ) ( ) ( )
1 1

(3) (3) (2, )3, 2, 3, 3,| | | || || |T
R R gg g g gΩ Ω− −= +V V Z V Z      (A-11)  

where  
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| | ( )
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g
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n i Rg
i i

V v τ
= =

= = +∏ ∏V . 

The first- and second-order derivatives of the log-likelihood equation with respect to the 

second level variance component τ  are  
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3, 3, 3, 3, 3,
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1
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g g g g g
gg gg

tr − − −

= =

  − − 
  
∑ ∑V e V V e ,     (A-12) 
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and 

( ) ( ){ }1 1
3, 3,

1

1 .
2

m

g g gg
tr − −

=
∑ V V          (A-13) 

respectively, where ( )tr A  is the trace of matrix A, the sum of diagonal elements of A. The 

derivative 
τ
∂
∂

V  produces an identity matrix that is not used in the computation.  

The first-order derivatives of the log-likelihood equation of the third level variance 

component matrix (3)RΩ  for each variance or unique covariance is 

( ) ( ) ( )( ){ } ( ) ( ) ( )( ) ( ) ( ) ( )( ){ }1 1 1
3, 3, 3, 3, 3, 3, 3, 3, 3,

1 1

1
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T T T
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− − −

= =

 
− − 

 
∑ ∑Z V Z Z V e Z V e   (A-14)  

where j,l indicate the jth row and lth column element of the matrix. The derivative (3)R

Rjlω
∂Ω

∂
 

produces an incidence matrix with zeros everywhere and one for element j,l (Longford, 1993).  

The diagonal elements (variances) of the expected information matrix for the third-level 

variance components (i.e., the variances and lower triangular matrix covariances) are computed 

as 

( ) ( ) ( )( ) ( ) ( ) ( )( ){ }1 1
3, 3, 3, 3, 3, 3,

1

1
2

m
T T

g g g g g gjl jlg g

− −

=
∑ Z V Z Z V Z ,      (A-15) 

To compute the off-diagonal elements (covariances) between the variance and the covariance 

components we use  

( ) ( ) ( )( ) ( ) ( ) ( )( ){ }1 1
3, 3, 3, 3, 3, 3,

1

m
T T

g g g g g gjm klg g

− −

=
∑ Z V Z Z V Z .         (A-16) 
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Two-level unconditional meta-analysis using proc mixed in SAS 
 
proc mixed data=temp covtest; 
        class studyid; 
        model effectsize = / solution ddfm = bw notest ; 
        random int / sub = studyid; 
        repeated / group = studyid; 
        parms (0.1) 
( 0.118 ) ( 0.118 ) ( 0.144 ) ( 0.144 ) ( 0.014 ) ( 0.014 ) ( 0.015 ) ( 0.024 ) ( 0.023 ) ( 0.043 ) 
( 0.012 ) ( 0.020 ) ( 0.004 ) ( 0.004 ) ( 0.007 ) ( 0.019 ) ( 0.007 ) ( 0.005 ) ( 0.004 ) ( 0.020 ) 
( 0.018 ) ( 0.019 ) ( 0.022 ) ( 0.020 ) ( 0.021 ) ( 0.006 ) ( 0.007 ) ( 0.007 ) ( 0.007 ) ( 0.007 ) 
( 0.015 ) ( 0.011 ) ( 0.010 ) ( 0.001 ) ( 0.001 ) ( 0.001 ) ( 0.001 ) ( 0.001 ) ( 0.001 ) ( 0.001 ) 
( 0.001 ) ( 0.010 ) ( 0.011 ) ( 0.010 ) ( 0.009 ) ( 0.013 ) ( 0.013 ) ( 0.031 ) ( 0.031 ) ( 0.030 ) 
( 0.030 ) ( 0.030 ) ( 0.087 ) ( 0.082 ) ( 0.067 ) ( 0.067 ) 
        / eqcons=2 to 57; 
run; 
 
 
 
Three-level unconditional meta-analysis using proc mixed in SAS 
 
proc mixed data=temp covtest; 
        class districtid studyid; 
        model effectsize = / solution ddfm = bw notest ; 
        random int / sub = districtid; 
        random int / sub = studyid(districtid); 
        repeated / group = studyid(districtid); 
        parms (0.1) (0.1) 
( 0.118 ) ( 0.118 ) ( 0.144 ) ( 0.144 ) ( 0.014 ) ( 0.014 ) ( 0.015 ) ( 0.024 ) ( 0.023 ) ( 0.043 ) 
( 0.012 ) ( 0.020 ) ( 0.004 ) ( 0.004 ) ( 0.007 ) ( 0.019 ) ( 0.007 ) ( 0.005 ) ( 0.004 ) ( 0.020 ) 
( 0.018 ) ( 0.019 ) ( 0.022 ) ( 0.020 ) ( 0.021 ) ( 0.006 ) ( 0.007 ) ( 0.007 ) ( 0.007 ) ( 0.007 ) 
( 0.015 ) ( 0.011 ) ( 0.010 ) ( 0.001 ) ( 0.001 ) ( 0.001 ) ( 0.001 ) ( 0.001 ) ( 0.001 ) ( 0.001 ) 
( 0.001 ) ( 0.010 ) ( 0.011 ) ( 0.010 ) ( 0.009 ) ( 0.013 ) ( 0.013 ) ( 0.031 ) ( 0.031 ) ( 0.030 ) 
( 0.030 ) ( 0.030 ) ( 0.087 ) ( 0.082 ) ( 0.067 ) ( 0.067 ) 
        / eqcons=3 to 58; 
run; 
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Two-level unconditional meta-analysis using HLM 
 
NUMIT:100 
STOPVAL:0.0000010000 
NONLIN:n 
LEVEL1:EFFECT_S=INTRCPT1+RANDOM 
LEVEL2:INTRCPT1=INTRCPT2+RANDOM/ 
LEVEL1WEIGHT:NONE 
LEVEL2WEIGHT:NONE 
VARIANCEKNOWN:VARIANCE 
RESFIL1:N 
RESFIL2:N 
HETEROL1VAR:n 
ACCEL:5 
LVR:N 
LEV1OLS:10 
MLF:n 
HYPOTH:n 
FIXSIGMA2:1.000000 
FIXTAU:3 
CONSTRAIN:N 
OUTPUT:C:\hlm2.txt 
FULLOUTPUT:N 
TITLE:no title 
 
 
Three-level unconditional meta-analysis using HLM 
 
NUMIT:100 
STOPVAL:0.0000010000 
NONLIN:n 
LEVEL1:EFFSIZE=INTRCPT1+RANDOM 
LEVEL2:INTRCPT1=INTRCPT2+RANDOM/ 
LEVEL3:INTRCPT2=INTRCPT3+RANDOM/ 
LEVEL1WEIGHT:NONE 
LEVEL2WEIGHT:NONE 
LEVEL3WEIGHT:NONE 
VARIANCEKNOWN:VARIANCE 
RESFIL1:N 
RESFIL2:N 
RESFIL3:N 
FISHERTYPE:2 
HYPOTH:n 
FIXSIGMA2:1.000000 
FIXTAU2:3 
FIXTAU3:3 
CONSTRAIN:N 
OUTPUT:C:\hlm3.txt 
FULLOUTPUT:N 
ACCEL:5 
LVR-BETA:N 
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Table 1. Data Used in the Analysis
District ID Study ID Effect Size Variance Year

11 1 -0.18 0.118 1976
11 2 -0.22 0.118 1976
11 3 0.23 0.144 1976
11 4 -0.30 0.144 1976
12 5 0.13 0.014 1989
12 6 -0.26 0.014 1989
12 7 0.19 0.015 1989
12 8 0.32 0.024 1989
18 9 0.45 0.023 1994
18 10 0.38 0.043 1994
18 11 0.29 0.012 1994
27 12 0.16 0.020 1976
27 13 0.65 0.004 1976
27 14 0.36 0.004 1976
27 15 0.60 0.007 1976
56 16 0.08 0.019 1997
56 17 0.04 0.007 1997
56 18 0.19 0.005 1997
56 19 -0.06 0.004 1997
58 20 -0.18 0.020 1976
58 21 0.00 0.018 1976
58 22 0.00 0.019 1976
58 23 -0.28 0.022 1976
58 24 -0.04 0.020 1976
58 25 -0.30 0.021 1976
58 26 0.07 0.006 1976
58 27 0.00 0.007 1976
58 28 0.05 0.007 1976
58 29 -0.08 0.007 1976
58 30 -0.09 0.007 1976
71 31 0.30 0.015 1997
71 32 0.98 0.011 1997
71 33 1.19 0.010 1997
86 34 -0.07 0.001 1997
86 35 -0.05 0.001 1997
86 36 -0.01 0.001 1997
86 37 0.02 0.001 1997
86 38 -0.03 0.001 1997
86 39 0.00 0.001 1997
86 40 0.01 0.001 1997
86 41 -0.10 0.001 1997
91 42 0.50 0.010 2000
91 43 0.66 0.011 2000
91 44 0.20 0.010 2000
91 45 0.00 0.009 2000
91 46 0.05 0.013 2000
91 47 0.07 0.013 2000

108 48 -0.52 0.031 2000
108 49 0.70 0.031 2000
108 50 -0.03 0.030 2000
108 51 0.27 0.030 2000
108 52 -0.34 0.030 2000
644 53 0.12 0.087 1995
644 54 0.61 0.082 1995
644 55 0.04 0.067 1994
644 56 -0.05 0.067 1994  
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Table 2. Summary Statistics
Reading

Mean SD Min Max
Effect Size Estimate 0.120 0.326 -0.52 1.19
Type of Calendar 51.79% 0.504 0.00 1.00
Sample Size Across Studies 913.018 1459.680 28.00 4403.00  
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Table 3. Descriptive Statistics by District
Reading

District ID Mean SD Min Max
11 -0.118 0.237 -0.30 0.23
12 0.095 0.250 -0.26 0.32
18 0.373 0.080 0.29 0.45
27 0.443 0.227 0.16 0.60
56 0.061 0.103 -0.06 0.19
58 -0.077 0.126 -0.28 0.07
71 0.823 0.465 0.30 1.19
86 -0.029 0.042 -0.10 0.02
91 0.247 0.271 0.00 0.66
108 0.016 0.487 -0.52 0.70
644 0.180 0.295 -0.05 0.61  
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Table 4. Two-Level Estimates of Fixed Effects and Variance Components

Unconditional Model Including Year of Study
Estimates SE 95% CI Estimates SE 95% CI

Fixed Effects
     Intercept 0.128* 0.044 (0.040, 0.216) 0.126* 0.043 (0.040, 0.212)
     Year of Study - - - 0.005 0.004 (-0.003, 0.013)

Variance Components
     Second Level 0.088* 0.020 (0.059, 0.146) 0.088* 0.020 (0.059, 0.146)
* p < 0.05
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Table 5. Three-Level Estimates of Fixed Effects and Variance Components

Unconditional Model Including Year of Study
Estimates SE 95% CI Estimates SE 95% CI

Fixed Effects
     Intercept 0.184* 0.080 (0.006, 0.362) 0.183* 0.080 (0.002, 0.364)
     Year of Study - - - 0.005 0.009 (-0.015, 0.025)

Variance Components
     Second Level 0.033* 0.010 (0.020, 0.070) 0.033* 0.010 (0.020, 0.070)
     Third Level 0.058* 0.030 (0.027, 0.256) 0.056* 0.030 (0.027, 0.315)
* p < 0.05
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