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The immediate motivation of this paper is California Bill AB 394, legislation which mandates fixed nurse-to-
patient staffing ratios as a means to address the current crisis in the quality of health care delivery. Modeling
medical units as closed queueing systems, we seek to determine whether or not ratio policies are effective
at managing nurse workload. Our many-server asymptotic results suggest that ratio policies cannot provide
consistently high service quality across medical units of different sizes. As a remedy, we recommend policies
that deviate from the restrictive linear nature of ratio policies, employing the “square root rule” commonly
used to staff large service systems. Under some quality of care assumptions, our policies exhibit a type of
“super” pooling effect, in which, for large systems, the requisite workforce is significantly smaller than the
nominal patient load.
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1. Introduction
In 1999, California introduced the nation’s first law mandating nurse-to-patient ratios in hospitals,
Bill AB 394. The legislation, implemented in 2004, specifies the minimum number of nurses that
should be staffed for each hospital unit, given the current number of patients therein. The minimum
number of nurses is a fixed, unit-specific fraction of the number of patients. For instance, according
to AB 394, at least one nurse for every four patients should now be present at any time in any
pediatrics unit within California. This legislation has inspired other states to consider establishing
similar requirements. Further, two House bills in a recent Congressional session proposed regulating
nurse staffing among Medicare-participating hospitals (see for instance Spetz 2005). The rationale
for implementing these ratios stems from the association between nurse workload and clinical
outcomes (see Aiken et al. 2002, Needleman and Buerhaus 2003). The purpose of the mandated
nurse-to-patient ratios is to provide a consistently high level of patient safety throughout the state
by providing adequate nurse staffing levels.

To explore the effectiveness of ratio policies and alternatives thereto, we explicitly model the
dynamics within a single medical unit as a closed, multi-server queueing system. The performance
of the system is based on the probability of excessive delay, the relative frequency with which the
delay between the onset of patient neediness and the provision of care from a nurse exceeds a given
time threshold. We derive many-server asymptotic results and identify novel staffing regimes, each
of which allow staffing according to a pre-specified probability of excessive delay. For specific time
thresholds, our results demonstrate that policies based on fixed nurse-to-patient ratios can provide
consistent quality of care across medical units of different sizes, a desirable property from a decision
maker point of view. However, the resulting probabilities of excessive delay always exceed 50% in
these cases, ostensibly an undesirable frequency. To remedy this problem, effective staffing policies
should deviate from threshold-specific nurse-to-patient ratios by factors which take into account
the total number of patients present in the unit. These specific ratios are, in many cases, smaller
than the ones mandated by AB 394. Moreover, these additional factors, variants of the square root
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rule, take into account congestion due to variability in patient needs, the absence of which, in our
opinion, is the primary shortcoming of ratio policies.

So far, the existing body of clinical research has not succeeded in formulating evidence-based
guidelines for setting staffing levels. Essentially, current research data are actually not rich enough
(Clark 2005). One of the main issues, as noted by Needleman and Buerhaus (2003), concerns
the lack of documentation of “failures” in the nursing process and the impact of such failures on
patient outcomes. So California policy is based primarily on the recommendations of the different
stakeholders – such as the Californian Department of Health Services, the nurse unions and hospital
administrations – whose suggestions differ significantly. As a result, setting ratio levels has been
based more on negotiation than science. Not surprisingly then, the mandated ratios currently
in place have sparked active debate throughout both academic and public sectors, yet no viable
methodology is in place to resolve the disputes. In light of these difficulties, we believe that the
normative methodology advanced in this paper constitutes a compelling approach for deriving
structural results and suggesting future empirical research for the nurse staffing problem.

To our knowledge no empirical studies have explored the impact of the frequency of excessive
delays on patient care and safety. Nevertheless, we argue that excessive delays are akin to possible
adverse events. Indeed, the link between workload and quality of care is often thought of in terms
of adverse events. For instance, in evaluating how hospitals improve quality of care, Tucker and
Edmondson (2003) identify failures that occur in care delivery processes, such as tasks that are
unnecessarily or incompletely performed. Delays also give rise to unfinished tasks, either because
nurses fail to remember them later or because they abandon them in order to take care of more
urgent procedures. Unfinished care has been identified as a strong factor impacting the quality of
nursing care (Sochalski 2004). Further, it is known that delaying certain medical procedures can
endanger patient health. For instance, the medical guidelines for certain myocardial infarctions rec-
ommend the immediate administration of aspirin (ACC/AHA 2002). More generally, even though
many existing empirical studies that analyze the relationship between delay and quality of care
do not concern nursing activities, this link is generally framed in terms of time constraints in the
medical field. An example is the angioplasty procedure, which significantly cuts a patient’s risk of
dying when performed within 90 minutes of a heart attack (see ACC/AHA 2001, Sternberg 2006).
1 Hence, in the absence of a uniformly agreed upon performance metric with clear links to nurse
staffing, we believe that time thresholds and associated frequencies of excessive delay are the most
natural and relevant measures in this setting.

Time thresholds might typically be small in certain units (as in ICU) or long in others (geriatric
services). However, it is worth noting that we do not claim to know what the acceptable time
threshold and noncompliance frequency should be. Neither do we determine the precise values of
the parameters describing our model (average nurse service times, frequency of patient needs, etc.).
Avoiding these simplifications enables us to argue in the most general terms that, whatever con-
stitutes an excessive delay and tolerance thereof, mandating nurse-to-patient ratios cannot ensure
uniform quality of care across all hospitals.

Our queueing model seeks to represent the workload experienced by nurses over time in a medical
unit. Traditionally, medical units have been modelled as multi-server, open-loop, M/M/s queues,
where the arrival process represents the stream of incoming patients and the service time captures
the average length of stay. Studies of these models provide, for instance, the number of required
beds to achieve availability targets in a given unit (see Green 2004, for overviews of queueing
models used in capacity planning and management of hospitals). On the other hand, the nursing
activities taking place in the unit are determined by the patients who require different services and

1 Even when no empirical evidences exist, the medical community seems to intuitively make use of the notion of time
threshold as exemplified by the concept of “golden hour” which commonly characterizes the urgent need for the care
of trauma patients (see Lerner and Moscati 2001).
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the nurses who deliver these services. Hence, during a time period when the number of patients is
relatively constant, the dynamics of the system are better described by a closed queueing system –
i.e. one with a finite population of patients, an M/M/s//n queue – where each patient alternates
between requiring assistance and not.

The staffing ratios mandated by AB 394 are minimum in that they should be adjusted upward
locally at individual hospitals to account for case mix (i.e., the collection of patients and their
respective acuity levels) as well as nurses with varied skill levels. In our model we assume that
nurses and patients are homogeneous. Policymakers may want to assume the lowest possible acuity
level for all patients in the unit and that the nursing staff is equally qualified. Then likewise, as
with the legislated ratios, our model suggests minimums staffing levels that should be adjusted
upwards by hospitals to account for locally realized discrepancies in acuity and nurse skill level.

As the number of patients in the unit varies over time, we assume that the number of nurses is
quickly adjusted. Bill AB 394 (see also CDHS 2005) makes a similar assumption when it explicitly
specifies that “... the ratios must be maintained ‘at all times’ ”. Approaches used by hospitals to
accommodate this requirement include cross-training nurses who float among units, temporarily
employing nurses from external agencies etc. Although such strategies raise other issues related
to costs and safety (see for instance Alonso-Echanove et al. 2003), we follow AB 394 and assume
that providing the desired staffing level at any time is feasible. Moreover, we assume that between
significant changes in the number of patients and nurses, the system reaches steady-state relatively
quickly. Similar assumptions are common in hospital capacity planning (Green 2004) or call center
staffing (Gans et al. 2003).

We study the probability of excessive delay in a medical unit by letting the numbers of patients
and nurses approach infinity. To our knowledge, this constitutes the first many-server asymptotic
analysis of health care related issues. Such an approach seems nevertheless well suited for policy
making as it allows describing the structure of efficient staffing policies in a simple way. Pioneering
many-server asymptotic results for open queueing systems are due to Halfin and Whitt (1981), who
identified the so-called quality- and efficiency-driven (QED) staffing regime, a notion we extend
to closed queueing systems and generalize. For recent results on staffing many-server queues see
Mandelbaum and Zeltyn (2006) and references within.

In all previous papers, staffing rules in the QED regime can only achieve a pre-specified proba-
bility of excessive delay for which the delay threshold is asymptotically null. If avoiding any wait
is essential in intensive care units, positive delays appear more reasonable in other units, such as
oncology for instance.

In this paper, we identify new staffing regimes that use nursing resources efficiently while pro-
viding good quality of care, where good quality is defined as addressing patient needs within a
time threshold T . Because it is indexed by the service quality parameter T , we refer to these as the
family of QED(T ) regimes (Mandelbaum and Zeltyn 2006, have independently proposed equiva-
lent regimes for open queues with abandonement). de Véricourt and Jennings (2006a) consider the
special case where T = 0. Baron and Milner (2006), a contemporaneous paper, has independently
identified similar staffing regimes for open queueing systems with customer abandonment.

We present the basic model in Section 2. Our many-server analysis and the formulation of the
optimal nurse staffing problem are presented in Section 3. Section 4 contains our main insights on
Bill AB 394. We show through simulations that our main results are robust to some of our key
assumptions in Section 5. We conclude by discussing our results and suggesting future analytical
and empirical research.

2. The Queueing Model
We model a medical unit where s nurses serve n patients as an M/M/s//n closed queueing system.
Patients exist in one of two states: stable and needy. Stable patients become needy after an expo-
nentially distributed activation time with mean 1/λ. Needy patients are served by the nurses on a
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FCFS basis and the duration of service is exponentially distributed with mean 1/µ. Once treated,
a patient becomes stable again, until she needs other care procedures. We assume that nurses work
as a team so that any one of them can serve any patient. In some medical units however, a nurse
is assigned to a specific set of patients. Our model remains relevant in such settings, provided that
nurses whose patients temporarily require less care will help their busier colleagues, as is often the
case in practice.

The exponential distribution assumption is common in hospital capacity planning (Green 2004)
or policy making (Liu and Wein 2005). The main reason for this assumption is mathematical
tractability. The wide range of possible patient needs and nursing tasks also suggests a high degree
of variability in the health care process, which is consistent with the high coefficient of variation
of the exponential distribution. Nonetheless, we show in Section 5 that our main results do not
change with non-exponential service times.

The quantity r≡ λ/(λ+µ) represents the long run fraction of time a patient would spend in the
needy state if her needs were always immediately addressed by a nurse when they arose. Naturally,
the quantity rn is the nominal patient load (also referred to as the total offered workload). The
principal metric of concern is the probability of excessive delay, the likelihood that a needy patient’s
waiting period before getting access to a nurse is longer than the time threshold T ≥ 0 that
delineates between acceptable and excessive delays. For the special case threshold for which any
delay is excessive (T = 0), this performance metric is simply referred to as the probability of delay.
Letting ρ≡ λ/µ = r/r̄ with r̄ ≡ 1− r, the steady state probability distribution of N , the number
of needy patients in the system, is given by (see for instance Kleinrock 1975):

πk =





π0

(
n
k

)
ρk for k = 0, · · · , s;

π0

(
n
k

)
k!
s!

ss−kρk for k = s+1, · · · , n,
(1)

where π0 is a normalizing constant. A patient who becomes needy when there are already k ≥ s
other needy patients will experience an in-queue random waiting time that follows an Erlang
distribution with (k−s+1) stages, each with rate sµ. The probability that this Erlang-distributed
random variable is greater than T is e−sµT

∑k−s

j=0(sµT )j/(j!). Let W denote the steady state, in-
queue waiting time for a hypothetical newly needy patient.

The probability of excessive delay for a system with n patients and s nurses is denoted pn(s,T ),
or simply pn(T ) when no confusion is possible, and is a point along the function pn(s, ·). Letting
λk ≡ λ(n− k) denote the activation rate when k out of n patients are needy (and suppressing the
parameter n except when necessary), we obtain

pn(s,T ) =
n∑

k=s

λkπk∑n

i=0 λiπi

P (W > T |N = k) = e−sµT

n∑
k=s

(n− k)πk∑n

i=0(n− i)πi

k−s∑
j=0

(sµT )j

j!
. (2)

3. Probability of Excessive Delay
In this section, we investigate families of staffing rules, where the staffing level is a function of
the number of patients (n 7→ sn). In particular, we derive a staffing rule that takes the form of a
ratio policy adjusted by a square root term and provides a consistent service level across units of
different size.

The following proposition, our main result, provides necessary and sufficient conditions under
which the probabilities of excessive delay, associated with a sequence of staffing levels, indexed by
the number of patients has a non-degenerate limit ε, as the number of patients goes to infinity.
This result is used later to derive an accurate approximation for the optimal number of nurses in
the staffing problem.
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Proposition 1. For any given T > 0, the probability of excessive delay pn(sn, T ) has a nonde-
generate limit ε∈ (0,1) if and only if

(sn

n
− r̂T

)√
n→ β, as n→∞, (3)

where
r̂T =

r

1+ rµT
, (4)

for some β ∈ (−∞,∞), with

ε = Φ

(
− β

r̂T

√
1+ rµT

r̄ + rµT

)
. (5)

Proof. The probability of excessive delay can be written as

pn(sn, T ) =

(
n∑

k=0

πk(n− k)

)−1 (
n∑

k=sn

πk(n− k)e−snµT

k−sn∑
j=0

(snµT )j

j!

)
=

Dn

Bn

(
1+

An

Bn

)−1

,

where

An ≡
sn−1∑
k=0

(
n
k

)
(n− k)ρk, Bn ≡

n−1∑
k=sn

n!
(n− k− 1)!sn!

ssn
n

(
ρ

sn

)k

and

Dn ≡
n−1∑
k=sn

n!
(n− k− 1)!

ssn
n

sn!

(
ρ

sn

)k

e−snµT

k−sn∑
j=0

(snµT )j

j!
.

The quantity An can be expressed as

An = n(1+ ρ)n−1

sn−1∑
k=0

(
n− 1

k

)
rkr̄n−1−k = n(1+ ρ)n−1P (Xn ≤ sn− 1),

where for each n, Xn is a binomial random variable with parameters n− 1 and r. Similarly, one
can express Bn as

Bn =
n!
sn!

ssn
n

(
ρ

sn

)n−1

esn/ρ

n−sn−1∑
k=0

(
sn

ρ

)k 1
k!

e−sn/ρ

=
n!
sn!

ssn
n

(
ρ

sn

)n−1

esn/ρ P (Yn ≤ n− sn− 1),

where Yn follows a Poisson distribution with parameter sn/ρ, and Dn as

Dn =
n!
sn!

ssn
n

(
ρ

sn

)n−1

esn/ρ

(
n−sn−1∑

k=0

(
n−sn−k−1∑

j=0

(
sn

ρ

)k 1
k!

(snµT )j

j!
e−(sn/ρ+snµT )

))

=
n!
sn!

ssn
n

(
ρ

sn

)n−1

esn/ρ P (Z1
n +Z2

n ≤ n− sn− 1),

where Z1
n and Z2

n are independent Poisson random variables with parameters sn/ρ and snµT ,
respectively. It follows that

Dn =
n!
sn!

ssn
n

(
ρ

sn

)n−1

esn/ρ P (Zn ≤ n− sn− 1),
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where Zn ≡Z1
n +Z2

n is a Poisson random variable with parameter sn/ρ+ snµT .
For each sequence of the random variables {Xn}, {Yn} and {Zn}, we generate a central limit

theorem. We center and rescale to obtain

P (Xn ≤ sn− 1) = P

(
Xn− (n− 1)r√

(n− 1)rr̄
≤ sn− 1− (n− 1)r√

(n− 1)rr̄

)
, (6)

P (Yn ≤ n− sn− 1) = P

(
Yn− sn/ρ√

sn/ρ
≤ n− 1− sn/r√

sn/ρ

)
(7)

and

P (Zn ≤ n− sn− 1) = P


Zn− sn( 1

ρ
+µT )√

sn( 1
ρ
+µT )

≤ n− 1− sn(1
r
+µT )√

sn( 1
ρ
+µT )


 . (8)

The sequences (Xn − (n − 1)r)/
√

(n− 1)rr̄, (Yn − sn/ρ)/
√

sn/ρ and (Zn − sn( 1
ρ

+

µT ))/
√

sn( 1
ρ
+µT ) each converge in distribution to standard normal random variables (i.e., with

mean zero and variance one). From (3), the staffing level as a function of n is sn = rn/(1+ rµT )+
o(n). It follows that [sn−1− (n−1)r]/

√
(n− 1)rr̄→−∞ as n→∞. By (6) one can conclude that

lim
n→∞

P (Xn ≤ sn− 1) = 0. (9)

Likewise, (n− 1− sn/r)/
√

sn/ρ→∞ as n→∞, so that by (7),

lim
n→∞

P (Yn ≤ n− sn− 1) = 1. (10)

Finally, by the conditions provided for sn, we have sn/n→ r̂T and (1− sn/(nr̂T ))
√

n→−β/r̂T . It
follows that, with ρ = r/r̄

n− 1− sn(1
r
+µT )√

sn( 1
ρ
+µT )

=
−1/

√
n+(1− sn/(nr̂T ))

√
n√

sn/n( 1
ρ
+µT )

→ −β

r

√
(1+ rµT )3

r̄ + rµT

as n→∞, and by (8) we have

lim
n→∞

P (Zn ≤ n− sn− 1) = Φ


−β

r

√
(1+ rµT )3

r̄ + rµT


 . (11)

The ratio An/Bn can be written as

An

Bn

= Cn

P (X ≤ sn− 1)
P (Y ≤ n− sn− 1)

,

where

Cn =
sn!

(n− 1)!

(
sn

ρ

)n−1 (1+ ρ)n−1

ssn
n

e−sn/ρ.

Following the analysis in the proof of Proposition 1 of de Véricourt and Jennings (2006a) along
with (3), we have Cn → r̄

(
1
r
+µT

)
e−β2/2r2

as n→∞. The relevant feature is that the limit of Cn
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is finite. It follows then by (9) and (10) that An/Bn → 0. Finally, notice that Dn/Bn = P (Zn ≤
n− sn− 1)/P (Yn ≤ n− sn− 1) so that by (10) and (11),

lim
n→∞

pn(sn, T ) = Φ


−β

r

√
(1+ rµT )3

r̄ + rµT


 .

We show the “only if” part of the equivalence by contradiction. Let f(ε)≡−r̂T Φ−1(ε)
√

r̄+rµT
1+rµT

.
Suppose that pn(sn, T ) has a limit ε ∈ (0,1) and that β 6= f(ε) is a (possibly infinite) limit point
of {(sn/n− r̂T )

√
n}. Assume for now that β > f(ε). Construct a sequence {s′n} such that s′n ≤ sn

and (s′n/n− r̂T )
√

n→ β′ = min((β +f(ε))/2, f(ε)+1), as n→∞. Notice that f(ε) < β′ <∞, which
implies α > f−1(β′) = Φ

(
− β′

r̂T

√
1+rµT
r̄+rµT

)
. Since s′n ≤ sn, pn(s′n, T ))≥ pn(sn, T ). However, taking the

limit of both sides yields f(β′)≥ α, a contradiction. A similar argument shows that β < f−1(α) is
also impossible. Hence, the convergence an → α∈ (0,1) implies {(sn/n− r)

√
n} has a unique finite

limit as well. ¤
In our framework, the nurse staffing problem consists in finding the minimum staffing levels sn

that guarantee a bound ε on the probability of excessive delay pn(sn, T ) for any n. Given T and ε,
a staffing rule n 7→ sn is said to be asymptotically optimal if limn→∞pn(sn, T ) = ε. For positive T ,
Proposition 1 suggests the following policy to solve this minimization problem:

s∗n = dr̂T n+βT

√
ne (12)

with

βT =−r̂T Φ−1(ε)

√
r̄ + rµT

1+ rµT
,

where dxe is equal to the smallest integer larger or equal to x.
Asymptotically as the number of patients goes to infinity, for staffing policies obeying (12), all

servers are busy and the probability of conforming to the service quality threshold T is 1− ε. In
other words, the policy in (12) can be categorized as operating in the QED(T ) regime. For time
thresholds T > 0, the asymptotic distribution of the steady state waiting time is normal. When
T = 0 however, the distribution is a truncated normal. Using Proposition 1 of de Véricourt and
Jennings (2006a)), we can find the optimal staffing policy when T = 0: choose β0 such that

ε =


1+ e−β2

0/2r2√
r
Φ

(
β0√
rr

)

Φ
(
−β0

r
√

r

)


−1

(13)

and use this quantity in (12). Note that r̂0 = r from (4) in this case. A classic refinement to (12)
involves slightly modifying the round up procedure as follows (see Browne and Whitt 1995, Feller
1971),

s̃∗n = dr̂T n+βT

√
n+1/2e. (14)

We have compared our heuristics (12) and (14) (using (13) when T = 0 and (5) when T > 0) with
the optimal policy for n = 2,4, . . . ,10,15, . . . ,25,50,100,200,500, r = 0.1,0.25,0.9, T = 0,1/µ,2/µ
and ε = 1%,5%,10% (which correspond to 432 numerical experiments). For two cases only, the
difference in staffing levels was equal to 2. For all other cases, the difference was less than or equal
to one. Overall, the refined policy s̃∗n worked slightly better. Further, in roughly 90% of the cases
the relative error in the staffing levels was less than 10%. These errors occur when staffing levels
are low (typically less than 3), for which a difference of one unit becomes significant. In short, our
numerical results show that the heuristics perform well.
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Figure 1 Probability of Excessive Delay for sn = d(1/5)ne (above) and s̃∗n = d(1/5)n+0.3
√

n+1/2e (bellow), for
r = 1/4 and T = 1/µ

Figure 1 compares the performance of heuristic (12) with a ratio policy when ε = 5%, r = 1/4 and
T = 1/µ for which r̂T = 1/5 and βT = 0.3. The sharp oscillations in performance can be explained
by the stepwise increase in the staffing level that occurs when r̂T n is rounded up. Obviously, the
ratio policy does not guarantee the target ε for all n while our heuristic consistently provides a
probability of excessive delay less than 5%. This observation is discussed in detail and generalized
in the next section.

4. A Queueing Model Perspective on California Bill AB 394
In this section we present a queueing perspective of California Bill AB 394, to evaluate the effec-
tiveness of ratio policies in providing high quality of care consistently across all medical units and
hospital sizes. Section 4.1 focuses on the probability of excessive delay. Nurse burnouts and average
delays are briefly discussed in Sections 4.2 and 4.3, respectively.

4.1. Inconsistent Quality of Care
The main idea when deriving the collection of staffing ratios mandated by California Bill AB 394
was to evaluate, for each hospital unit, the proportion of nursing time a patient requires during a
typical shift (controlling for patients’ acuity levels and nurses’ skills). Because quantitative data
are lacking, the interest groups and research teams who framed Bill AB 394, and ultimately set the
ratio values, relied heavily on expert panels comprised primarily of highly qualified and experienced
registered nurses and nurse administrators (see CDHS 2003, IHSEP 2001). One should note that
this proportion of time is precisely the same as the load factor r in our queueing framework. That
is, when the number of patients is n, the mandated ratio policy sets the number of nurses sn equal
to the nominal patient load rn: sR

n = drne. For example, the mandated ratio is 1/4 for pediatrics,
which also provides an estimate of r for these medical units. We refer to this staffing rule as the
nominal ratio policy. Within the spectrum of ratio policies of the form dγne, the nominal ratio
policy is the one such that γ = r. The following result captures the asymptotic behavior of both
nominal and more general ratio policies.

Proposition 2. Ratio policies can be asymptotically optimal only when ε≥ 50%. In particular,
the nominal ratio policy mandated by AB 394 is asymptotically optimal only for T = 0 and ε =
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Figure 2 Probability of Excessive Delay for sn = d(1/4)ne, r = 1/4, T = 1/µ

1/(1+
√

r) > 50%. When T > 0, only one ratio policy of the form r̂T n can be asymptotically optimal,
in which case ε = 50%.

Proof. These results follow from Proposition 1 above and Proposition 1 of de Véricourt and
Jennings (2006b). ¤

This result together with the good performance of heuristic (12) suggest that when a ratio policy
performs consistently across all hospital sizes, it necessarily performs consistently poorly, providing
a probability of excessive delay greater than 50%. Further, when T > 0 only one ratio policy can
yield a consistent (and high) probability of excessive delay, but it is not the nominal ratio policy
mandated by California legislation. This is illustrated by Figure 1 (curve above) which depicts the
performance of sn = dr̂T ne (with r̂T = 1/5 when r = 1/4 and T = 1/µ). Ignoring round up effects,
this policy seems to provide consistent but poor quality of care (with a probability of excessive
delay reaching 50% as expected). By contrast, Figure 2 depicts the performance of sn = drne, the
nominal ratio policy required by AB 394. For large n, the policy provides reasonable probability
of excessive delay (less than 5%). However, this performance is not consistent across all n. Indeed,
suppose that the threshold time is strictly positive, the nominal ratio policy is used for staffing, and
the target probability is reasonable: ε << 50%. Equation (12) suggests that the nominal staffing
policy exceeds the target probability, say ε = 5%, for small hospital units (i.e. for n < n̂, where
n̂ is such that rn̂ = r̂T n̂ + βT

√
n̂) and unnecessarily overstaffs for large units. This is illustrated

in Figure 2. Ratio policies can also result in quality of service that worsens with unit size. If the
ratio is below r̂T , which corresponds to β =−∞, Proposition 1 states that the quality of service
converges to 1, as illustrated in Figure 3.

The previous discussion sheds light on pooling effects under the optimal staffing rule. When unit
size and the staffing levels are assumed to take real values (i.e. we ignore round-up effects), s∗n can
easily be shown to be concave for reasonable values of ε (i.e., ε > 50%), which suggests that the
optimal staffing level exhibits usual pooling effects. However, the effects are more dramatic than
just concavity. Recall that rn represents the nominal patient load, that is, the long run cumulative
fraction of nursing time required in the unit provided nurses are always available when patients
become needy. We deduce that for large systems (n > n̂), s∗n actually specifies a number of nurses
less than the baseline rn; moreover, the deviation from the baseline is order n, a phenomenon we
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Figure 3 Probability of Excessive Delay for sn = d(1/5)ne, r = 1/4, T = 0

refer to as the super pooling effect. This constitutes a significant deviation from traditional staffing
problems, where a common point of departure is covering at minimum the offered load of the
system. Note that super pooling effects also appear in open queues with abandonment. When such
systems are staffed in the QED(T ) regime, the service rate is intentionally less than the arrival
rate and the excess workload is accommodated through customer abandonment (Mandelbaum and
Zeltyn 2006). In our case, the effect is due to forcing patients to wait for service, a process which
decreases the carried load.

Our model and analysis are designed to ensure a safe environment for patients. This requires
choosing the right values for T and ε and staffing accordingly. Notice that we make no assumptions
about what these specific values should be; we leave this task to the policy makers. Of course, when
T and ε are not well chosen, patients are not seen in a timely fashion and develop complications
more frequently. For such out of control situations the advantage of the super pooling effect is lost.

4.2. Nurse Burnout
Nurse burnout and fatigue are important factors contributing to the national nursing shortage and
frequent turnover that lead to understaffing of medical units (Wright et al. 2006). These factors
can also affect overall patient satisfaction (Vahey et al. 2004). Burnout and the total workload
experienced by nurses are usually managed by adequately scheduling shifts (which should also
guarantee the staffing levels specified by the queueing model). In particular, these shifts should
limit nurse working hours, allow for enough breaks and consider individual preferences (see Rogers
et al. 2004). In fact, some hospitals offer flexible shifts with long recovery periods in order to retain
nurses (Brooks 2000, Richardson et al. 2003, Cline et al. 2003).

Nonetheless, in conjunction with efficient scheduling systems, legislators may also want to limit
the utilization rates experienced by nurses. In this case, the choice of a staffing rule n 7→ sn should
guarantee that

un ≤ κ (15)

where κ≤ 1 is a pre-specified constraint and un ≡E[Bn]/sn denotes the long run utilization rate of a
nurse, with Bn denoting the number of busy nurses in steady state. Based on a simple fluid approx-
imation, we ignore round-up effects and take E[Bn]≈ n− r/rsn (from Corollary 1 in de Véricourt
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and Jennings 2006a, with Bn = sn − In where In is the number of idled servers). It follows that
(15) becomes sn ≥ γκn with

γκ =
r

rκ+ r
. (16)

This suggests that a γκ-ratio policy can keep the utilization rate of a nurse at a value around κ
across unit sizes. However, the resulting staffing levels may not provide timely services, especially
when γκn < s∗n that is for

√
n ≤ βT /(γκ − r̂T ). The staffing rule in (12) can then be adjusted as

follows,

š∗n =
{

r̂T n+βT

√
n if

√
n≤ βT

γκ−r̂T

γκ n otherwise,
(17)

and should provide a good alternative. On the other hand, the nominal ratio policy mandated by
the law, sn = rn, corresponds in our framework to κ = 1 and nurses are highly utilized (recall that
we ignore round-up effects). This is not surprising since rn represents the nominal patient load.
Note also that the modified policy š∗n does not display the super pooling effect. This effect appears
for n such that the constraint on the utilization rate is binding (since r̂T ≤ r≤ γκ).

4.3. Other Metrics: Average Delays
We argue in this paper that the probability of excessive delay is a natural choice to evaluate and
determine nurse staffing rules. In this section, we briefly explore situations where staffing levels
should guaranty a pre-specified average delay τ .

In this case, fluid approximations suggests the following staffing rules n 7→ sn = rn/(1+µrτ)
(see Corollary 1 in de Véricourt and Jennings (2006a)). This justifies the use of ratio policies when
quality of care is measured in terms of average delays. The corresponding ratios depend on the
pre-specified expected delays. This is however not the case for the nominal ratios required by AB
394. In fact, the California legislation results in staffing too many nurses (since r̂τ < r). Further,
Proposition 1 suggests that under this policy 50% of the medical needs will be delayed more than
τ , which does not seem reasonable for many medical units.

The previous fluid approximation is appropriate when targets on average delays are not too
small. For values of τ close to zero, more refined staffing rules can be derived based on the QED(0)
regime (i.e., when the time threshold T = 0). In this regime, the limit of the average delay Wn

when n→∞ is degenerate. On the other hand, for staffing rules such that (sn/n− r)
√

n→ θ, the
inflated delay W̃n =

√
nWn converges to a diffusion process with steady-state expectation E[W̃ ]

equal to

E[W̃ ] =
ε(θ)

µrΦ
(
−θ
r
√

r̄

)
∫ +∞

0

yφ

(
y +

θ

r
√

r̄

)
dy (18)

where ε(θ) =
(
1+ e−θ2/2r2√

rΦ
(

θ√
rr

)
/
(
Φ

(
−θ

r
√

r

)))−1

(see Theorems 2, 4 and Section 6 in
de Véricourt and Jennings 2006a). Given τ , the target on expected delay, this approach leads to
staffing rule sn = rn+ θτ,n

√
n where θτ,n is such that E[W̃ ] = µrτ

√
n. It is then worth noting that

sn is not a ratio policy. In particular, the nominal ratio policy mandated by the law (for which
θτ,n = 0) generates average delays equal to 2/(µr(1 +

√
r))

∫ +∞
0

yφ(y)dy
√

n which are unit-size
dependent.

In any case, we find the use of average delays in nurse staffing problematic. Rules based on
this objective may allow frequent excessively long delays, which could have dire consequences for
patients. More generally, the probability of excessive delay enables decoupling medical patient
safety (defined by T ) from public policy choices regarding the acceptable risk levels in medical
units and their associated costs (driven by ε).
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5. Robustness
The previous analysis is based on several assumptions that simplify the reality of nurse-staffing
problems in hospitals. Using simulations, we show in this section that our findings are robust in
general when these assumptions are relaxed.

We consider situations where service times are not exponentially distributed, patients’ acuity
levels are non-homogeneous and service times depend on patients’ delays. For each of these cases,
the optimal staffing rule exhibits a structure consistent with (12) which indicates that the main
insights of Section 4.1 still hold.

Other extensions are possible. For instance, the experience levels of nurses can be non-
homogeneous in medical units. Hospitals also hire temporary staff and pool nurses from different
wards. These situations raise questions concerning the mix of nurses that needs to be staffed. This
also brings up issues related to coordination of care and learning effects. Further, decision rules
need to be specified in order to dynamically designate the available nurse that should assist a needy
patient. In any case, mandated ratios2 do not directly address these issues which fall outside the
scope of our study.

5.1. General Service Times
As mentioned earlier, our assumption that service times are exponentially distributed is common in
hospital capacity planning and makes the mathematical analysis tractable. Nevertheless, we show
in the following that the structure of the optimal staffing rule remains consistent with (12) when
distributions are not exponential.

We consider service times following Erlang and hyperexponential distributions with coefficients
of variation less or greater than one, respectively. The optimal staffing levels s∗n are then generated
through simulations and are compared to the staffing rule sn = r̂T n+β

√
n for different values of the

parameters. We do not expect the linear part of the optimal policy to be affected by the variance
of the service time and therefore keep the linear coefficient of sn equal to r̂T as defined in (4).
On the other hand, we need to adjust the square root coefficient β. Since no analytical formula is
available to set the value of this parameter, we resort to the original definition of β in (3) and take
β ≈ (s∗/n− r̂T )

√
n for large values of n.

Tables 2 and 3 (in the appendix) indicate the optimal staffing levels s∗n for different parameters
where C2

s denotes the squared coefficient of variation of the corresponding distribution. For all of
these cases, r = 1/4 and the average service time 1/µ is equal to one. Table 2 corresponds to service
times following Erlang distributions with number of stages η and rate δ (with mean η/δ = 1). The
coefficient of variation is less then one and is equal to 1/δ. Similarly, Table 3 corresponds to service
times generated by the random variable of the form U ×X, where U is bernoulli(p) and X is
exponential with mean 1/p (so that the mean of UX is equal to one). The resulting coefficient of
variation is then equal to (2− p)/p which is larger than one.

Tables 4 and 5 (in the appendix) indicate the difference s∗n− sn corresponding to Tables 2 and
3, respectively. The square root term β of sn is evaluated at n = 100. For instance, when ε = 5%,
C2

s = 0.5 and T = 0, the optimal staffing level for n = 100 is equal to 33 which leads to β = 3.1
using (3).

Tables 4 and 5 show that the absolute value of the difference s∗n− sn is always less than or equal
to one. This confirms the non-linear structure of the optimal staffing rule. It also follows that our
main results and insights still hold. For instance, the ratio policy dn/4e mandated by the law staffs
too few nurses when T = 0, even for low C2

s , unless ε is large. These results are consistent with
Proposition 2. Table 1 briefly illustrates this point and reports the values of s∗n−dn/4e for different
values of n and ε. On the other hand, the optimal policy staffs below the nominal load when T and

2 The law requires the ratios to be adjusted to account for nurse’s skills levels but without specifics.
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n are large, showing a super-pooling effect even when the coefficient of variation is less than one.
For instance, the optimal staffing level for ε = 1%, n = 20, T = 10 and C2

s = 0.1 is equal to s∗n = 2
which is less than the offered load rn = 5.

Table 1 Performance of the Ratio Pol-
icy: s∗n − dn/4e for T = 0 and
C2

s = 0.1

ε n=5 n=10 n=20 n=30 n=100

1% 2 3 5 6 11
5% 2 2 4 4 8
10% 1 2 3 3 7
30% 1 1 2 2 4

5.2. Non-Homogeneous Acuity Levels
In general, patients’ needs depend on their acuity levels. However when setting public policy, the
possible combinations of patient states are too vast to fully accommodate with specific guidelines.
Instead, policy makers may want to set nurse-to-patient ratios assuming either the lowest or the
highest possible acuity level for all patients in the unit. In fact, California Bill AB394 specifically
advises that, in order to account for case mix and patient acuity levels, hospitals use the man-
dated minimum staffing ratio recommendations in conjunction with staffing policies and procedures
developed locally at the hospitals. We have considered so far the case of homogeneous patients for
which such adjustments are not required. Nonetheless, we explore in the following how our result
will change when patients present in the unit have different acuity levels.

Specifically, we consider a situation where two types of patients are present in the system. In
our framework, a patient’s acuity level is represented by her corresponding activation rate. Hence,
we assume that patients of the two types generate needs at different activation rates λ1 and λ2,
respectively, with λ1 ≤ λ2. Note that acuity levels can also affect the service times, but we do not
expect the results to significantly change and for the sake of simplicity we set 1/µ = 1 regardless
of the patient’s type. We denote by ν (resp. 1− ν) the proportion of type 1 patients (resp. type
2) in the unit. For n patients in the system, the total offered load is then equal to rn where
r = νλ1/(λ1 + µ) + (1− ν)λ1/(λ1 + µ) (which constitutes a natural generalization of the definition
of r in Section 2 and therefore uses the same notation when no confusion is possible).

Table 6 indicates the optimal staffing levels s∗n evaluated through simulations for different values
of ν. For all of these cases, we set λ1 = 0.1 and determine λ2 such that r = 1/4 (for instance when
ν = 50%, we have λ2 = 0.692). Table 7 reports then the difference s∗n−sn, where s∗n is found in Table
6 and sn is of the form sn = r̂T n + β

√
n, with r̂T defined in (4) using r = 1/4. Since no analytical

result exists, β is estimated at n = 100 with β ≈ (s∗/n− r̂T )
√

n. Table 6 confirms the non-linear
structure of the optimal staffing rule and the main insights of Section 4.1 hold. In particular, an
analysis similar to Section 5.1 easily shows that ratio policies systematically understaff the system
for T = 0 unless ε is large. Further, the optimal policy staffs below the nominal load when T and n
are large, showing a super-pooling effect (this is for example the case with n = 20, ε = 1%, T = 10/µ
and v = 50% where s∗n = 3 < rn = 5).

5.3. Delay-Dependent Service Times
The vast majority of staffing models in health care settings consider delay-independent service
times. (For recent reviews of the use of queueing models in health care settings, see for instance
Green (2004), Preater (2002b,a), Singh (2006).) A sample of such models is Tucker et al. (1998)
which determines the need to activate a backup OR team during the night shift at a Level II trauma
center. Another recent example is Green et al. (2006) which studies staffing levels in Emergency
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Departments. The absence of delay-independent service times in all these studies is justified in
general by the fact that reasonable delays in access to care should not affect patients’ treatment
times.

To illustrate this point, we relax our assumption that service times do not depend on delays.
In the absence of an existing proper framework to model this relationship (to the best of our
knowledge), we present two approaches which appear natural and general enough for our purposes.
In our first model, a patient has k potential needs which may occur when she is waiting or in a
stable condition. The activation time of a particular need follows an exponential distribution with
rate λ/k, so that the activation rate of the first issue is equal to λ when the patient’s condition
is stable. When assisting a patient, nurses must handle one issue at a time. The resulting service
time follows an Erlang distribution with rate µ and a delay-dependent number of stages equal to
the number of activated needs. In our second case, we assume that the potential number of issues
is infinite and follows a Poisson distribution with rate λ. For instance, a nurse serving a patient
who has not received care for the last t units of time, must treat λt issues on average. Again the
distribution of the service time is Erlang with rate µ and a delay-dependent number of stages equal
to the number of needs that occurred before service. We also denote by s(k)

n , the optimal staffing
level when a patient can potentially accumulate k needs. In particular s(1)

n corresponds to the base
case of this paper.

Table 8 (in the appendix) indicates the optimal staffing levels for different values of k, while
Table 9 reports the difference s(1)

n − s(k)
n , which measures the impact of delay-dependent service

times. For most reasonable cases (that is for n≤ 30, T < 10/µ and ε≤ 30% in our study), delay-
dependent service times have a negligible impact on the optimal staffing levels. This is because the
optimal staffing rule dimensions the system in such a way that nurses can assist patients before
additional needs accumulate. By contrast, issues may build up under mandated ratio policies when
the resulting staffing level is too low, as described in Section 4.1. Patients also accumulate needs
when the values of T and ε are not appropriately chosen. This is clearly the case in our numerical
results for T = 10/µ and ε = 67%, although the effect appears only for large n (n≥ 30). In fact,
the time threshold T should precisely be selected so as to avoid this accumulation of issues or
even a dramatically worse event to occur that would require additional services or a transfer to
the ICU. This interpretation reinforces the role of the second parameter ε to limit the frequency
of unreasonable delays.

6. Conclusion
In this paper, we argue that closed queueing models and the probability of excessive delay constitute
a good framework to tackle nurse staffing problems. Using new many-server asymptotic results, we
have shown that ratio policies (nominal or not), as mandated by California Bill AB 394, cannot
provide consistently low probability of excessive delay across units of different sizes. Ratio policies
can sometimes provide consistent quality levels across hospital sizes, a desirable trait from a policy
making point of view. (One should note the contrast with staffing proportionally to the nominal
load in open queues, which never displays this consistency.) However, the corresponding probability
of delay is always larger than 50% and this is likely to result in poor quality of care. Further, some
fixed ratio policies may perform well over the typical unit size range (n < 100), but the resulting
level of care will then be inconsistent.

This inconsistency can only be observed when accounting for the randomness inherent to the
care delivery processes. However, to the best of our knowledge, variability and congestion have
been systematically ignored in both the debate surrounding nurse-to-patient ratios and the sup-
porting empirical studies; for instance, The Institute of Medicine never mentions these issues in its
recent nurse-staffing recommendations, see Greiner and Knebel (2004). As an alternative to ratio
policies, we also develop a policy which provides staffing rules that 1) are easy to implement, 2) are
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consistent across unit size, and 3) can achieve pre-specified limits on the probability of excessive
delay. Furthermore, our results do not make any assumptions about what this target or the system
parameters should be.

Heretofore, the tasks of understanding and measuring patient needs, in terms of total nursing
time, and understanding what provides quality service has been tightly coupled. For instance, the
general belief implicit in ratio policy arguments is that improving patient outcomes is as simple as
increasing nursing ratios (Aiken et al. 2002). This paper helps to unravel the two issues. Namely,
one should understand patient needs (calculating r) independently of defining how quickly patients
must be attended to (determining T and ε). We feel that our approach can help better frame the
policy debate and further statistical studies on patient outcomes. In particular, empirical studies
should examine how the time threshold T affects the quality of care in different types of medical
units. Variability and congestion in the care delivery process should also be quantified. Finally,
public policies and the society as a whole need to decide what constitutes an acceptable level of
safety through the choice of ε while considering resulting costs.

There are several ways our model can be extended. For instance, accounting for a heterogeneous
workforce (such as the combination of licensed and registered nurses) can be achieved by considering
mean service times which are skill-level specific. This raises the question of how to dynamically
dispatch nurses with different experience levels when patients are in need. Finally, following the
underlying hypothesis of AB 394, we have assumed that the number of nurses in a medical unit
could be easily adjusted as the number of patient changes. To fully understand the associated
transient effects, one should add patient arrivals and random lengths of stay to our model.
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7. Appendix

Table 2 Optimal Staffing levels for C2
s ≤ 1

n=5 n=10 n=20 n=30 n=100
µT µT µT µT µT

C2
s 0 1 2 10 0 1 2 10 0 1 2 10 0 1 2 10 0 1 2 10

ε=1%

1 4 3 3 1 7 5 4 2 10 7 6 3 14 9 8 4 36 25 21 9
0.5 4 3 2 1 7 4 3 2 10 7 5 2 14 9 7 3 36 24 20 9
0.2 4 3 2 1 7 4 3 2 10 6 5 2 14 9 7 3 36 24 20 9
0.1 4 3 2 1 6 4 3 1 10 6 5 2 14 8 7 3 36 23 19 8

ε=5%

1 4 3 2 1 6 4 3 2 9 6 5 2 12 8 7 3 33 24 20 9
0.5 4 2 2 1 6 4 3 2 9 6 5 2 12 8 7 3 33 23 19 9
0.2 4 2 2 1 6 4 3 1 9 6 5 2 12 8 6 3 33 23 19 8
0.1 4 2 2 1 5 3 3 1 9 6 5 2 12 8 6 3 33 23 19 8

ε=10%

1 3 2 2 1 5 4 3 1 8 6 5 2 11 8 7 3 32 23 19 9
0.5 3 2 2 1 5 3 3 1 8 6 5 2 11 8 6 3 32 22 19 8
0.2 3 2 2 1 5 3 3 1 8 5 4 2 11 8 6 3 32 22 19 8
0.1 3 2 2 1 5 3 3 1 8 5 4 2 11 7 6 3 32 22 18 8

ε=30%

1 2 2 2 1 4 3 2 1 7 5 4 2 10 7 6 3 29 21 19 8
0.5 2 2 1 1 4 3 2 1 7 5 4 2 10 7 6 3 29 21 18 8
0.2 3 2 1 1 4 3 2 1 7 5 4 2 10 7 6 3 29 21 18 8
0.1 3 2 1 1 4 3 2 1 7 5 4 2 10 7 6 3 29 21 18 8

Table 3 Optimal Staffing levels for C2
s ≥ 1

n=5 n=10 n=20 n=30 n=100
µT µT µT µT µT

C2
s 0 1 2 10 0 1 2 10 0 1 2 10 0 1 2 10 0 1 2 10

ε=1%

1 4 3 3 1 7 5 4 2 10 7 6 3 14 9 8 4 36 25 21 9
3 4 4 3 2 6 5 5 2 10 8 7 3 14 11 9 4 36 27 23 11
9 4 4 4 2 6 6 5 3 10 9 8 4 14 12 11 5 36 31 26 13

ε=5%

1 4 3 2 1 6 4 3 2 9 6 5 2 12 8 7 3 33 24 20 9
3 3 3 2 1 5 4 4 2 9 7 6 3 12 9 8 4 33 25 21 10
9 3 3 3 2 5 5 4 2 9 8 7 4 12 10 9 4 33 28 24 11

ε=10%

1 3 2 2 1 5 4 3 1 8 6 5 2 11 8 7 3 32 23 19 9
3 3 3 2 1 5 4 3 2 8 6 5 3 11 9 7 3 31 24 20 9
9 3 3 3 2 5 4 4 2 8 7 6 3 11 9 8 4 31 26 22 10

ε=30%

1 2 2 2 1 4 3 2 1 7 5 4 2 10 7 6 3 29 21 19 8
3 2 2 2 1 4 3 3 1 7 5 4 2 9 7 6 3 28 22 18 8
9 2 2 2 1 3 3 2 1 6 5 4 2 9 7 6 3 27 22 19 8
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Table 4 s∗n− sn for C2
s ≤ 1

n=5 n=10 n=20 n=30
µT µT µT µT

C2
s 0 1 2 10 0 1 2 10 0 1 2 10 0 1 2 10

ε=1%

1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
0.5 0 1 0 0 1 0 0 0 0 1 0 -1 0 0 0 -1
0.2 0 1 0 0 1 0 0 0 0 0 0 -1 0 0 0 -1
0.1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

ε=5%

1 0 1 0 0 0 0 0 0 0 0 0 -1 0 -1 0 -1
0.5 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 -1
0.2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0
0.1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 -1 0

ε=10%

1 0 0 0 0 0 1 0 -1 -1 0 0 -1 -1 0 0 -1
0.5 0 0 0 0 0 0 0 0 -1 1 0 0 -1 0 -1 0
0.2 0 0 0 0 0 0 0 0 -1 0 -1 0 -1 0 -1 0
0.1 0 0 0 0 0 0 0 0 -1 0 0 0 -1 -1 0 0

ε=30%

1 -1 0 0 0 0 0 -1 0 0 0 -1 0 0 0 -1 0
0.5 -1 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0
0.2 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0
0.1 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0

Table 5 s∗n− sn for C2
s ≥ 1

n=5 n=10 n=20 n=30
µT µT µT µT

C2
s 0 1 2 10 0 1 2 10 0 1 2 10 0 1 2 10

ε=1%

1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 1 0 0 0 0 -1 0 1 0 -1
9 0 0 1 0 0 0 0 0 0 0 0 -1 0 -1 0 -1

ε=5%

1 0 1 0 0 0 0 0 0 0 0 0 -1 0 -1 0 -1
3 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0
9 -1 0 0 0 -1 0 0 0 0 0 0 0 0 -1 -1 -1

ε=10%

1 0 0 0 0 0 1 0 -1 -1 0 0 -1 -1 0 0 -1
3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
9 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0

ε=30%

1 -1 0 0 0 0 0 -1 0 0 0 -1 0 0 0 -1 0
3 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0
9 0 0 0 0 -1 0 -1 0 0 0 -1 0 0 -1 -1 0
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Table 6 Optimal Staffing levels with Different Acuity Levels

n=10 n=20 n=30 n=100
µT µT µT µT

ν 0 1 2 10 0 1 2 10 0 1 2 10 0 1 2 10

ε=1%

0% 7 5 4 2 10 7 6 3 14 9 8 4 36 25 21 9
20% 6 5 4 2 10 7 6 3 14 9 8 3 36 25 20 9
50% 6 4 3 2 10 7 5 3 13 9 7 3 35 24 19 9
80% 5 4 3 2 9 6 5 2 12 8 6 3 33 21 17 7

ε=5%

0% 6 4 3 2 9 6 5 2 12 8 7 3 33 24 20 9
20% 5 4 3 2 9 6 5 2 12 8 7 3 33 23 19 9
50% 5 4 3 1 9 6 5 2 12 8 7 3 33 22 18 8
80% 5 3 3 1 8 5 4 2 11 7 6 3 30 20 15 7

ε=10%

0% 5 4 3 1 8 6 5 2 11 8 7 3 32 23 19 9
20% 5 3 3 1 8 6 5 2 11 8 6 3 31 23 19 8
50% 5 3 3 1 8 5 4 2 11 8 6 3 31 22 18 8
80% 4 3 2 1 7 5 4 2 10 7 5 3 29 19 15 7

ε=30%

0% 4 3 2 1 7 5 4 2 10 7 6 3 29 21 18 8
20% 4 3 2 1 7 5 4 2 10 7 6 3 29 21 17 8
50% 4 3 2 1 7 5 4 2 9 7 5 3 28 20 16 7
80% 3 2 2 1 6 4 3 2 9 6 5 2 27 17 14 6

Table 7 s∗n− sn for Different Acuity Levels

n=10 n=20 n=30
µT µT µT

ν 0 1 2 10 0 1 2 10 0 1 2 10

ε=1%

0% 1 1 0 0 0 0 0 0 0 0 0 0
20% 0 1 1 0 0 0 1 0 0 0 1 -1
50% 0 0 0 0 0 1 0 0 0 0 0 -1
80% -1 1 1 1 0 1 1 0 0 1 0 0

ε=5%

0% 0 0 0 0 0 0 0 -1 0 -1 0 -1
20% -1 1 0 0 0 0 0 -1 0 0 0 -1
50% -1 1 0 0 0 1 1 0 0 0 1 0
80% 0 1 1 0 0 1 1 0 0 1 1 0

ε=10%

0% 0 1 0 -1 -1 0 0 -1 -1 0 0 -1
20% 0 0 0 0 0 0 0 0 0 0 -1 0
50% 0 0 0 0 0 0 0 0 0 0 0 0
80% 0 1 0 0 0 1 1 0 0 1 0 0

ε=30%

0% 0 0 -1 0 0 0 0 0 0 0 0 0
20% 0 0 0 0 0 0 0 0 0 0 0 0
50% 0 1 0 0 0 1 0 0 -1 1 0 0
80% -1 0 1 0 0 1 0 1 0 1 1 0
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Table 8 Optimal Staffing levels with Delay-Dependent Service Times

n=5 n=10 n=30 n=100
µT µT µT µT

K 0 1 2 10 0 1 2 10 0 1 2 10 0 1 2 10

ε=1%

1 4 3 3 1 7 5 4 2 14 9 8 4 36 25 21 9
2 4 3 3 2 7 5 4 2 14 10 8 5 36 26 24 15
10 4 3 3 2 7 5 4 3 14 10 9 8 36 28 26 23

Poisson 4 3 3 2 7 5 4 3 14 10 9 8 36 28 27 26

ε=10%

1 3 2 2 1 5 4 3 3 11 8 7 3 32 23 19 9
2 3 2 2 1 5 4 3 2 11 8 7 5 32 25 22 14
10 3 2 2 2 5 4 3 3 11 9 8 7 32 26 25 23

Poisson 3 2 2 2 5 4 3 3 11 9 9 8 32 27 26 26

ε=30%

1 2 2 2 1 4 3 2 1 10 7 6 3 29 21 18 8
2 2 2 2 1 4 3 3 2 10 8 7 4 29 24 21 13
10 2 2 2 2 4 3 3 3 10 8 8 7 29 25 25 22

Poisson 2 2 2 2 4 3 3 3 10 8 8 8 29 26 26 26

ε=67%

1 2 1 1 1 3 2 2 1 8 6 5 2 26 20 16 7
2 2 1 1 1 3 3 2 2 8 7 6 4 26 22 20 12
10 2 1 1 1 3 3 3 3 9 8 7 7 26 25 24 22

Poisson 2 2 2 2 3 3 3 3 9 8 8 8 27 26 26 26

Table 9 s
(1)
n − s

(k)
n for Delay-Dependent Service Times

n=5 n=10 n=30 n=100
µT µT µT µT

k 0 1 2 10 0 1 2 10 0 1 2 10 0 1 2 10

ε=1%
2 0 0 0 -1 0 0 0 0 0 -1 0 -1 0 -1 -3 -6
10 0 0 0 -1 0 0 0 -1 0 -1 -1 -4 0 -3 -5 -14

Poisson 0 0 0 -1 0 0 0 -1 0 -1 -1 -4 0 -3 -6 -17

ε=10%
2 0 0 0 0 0 0 0 1 0 0 0 -2 0 -2 -3 -5
10 0 0 0 -1 0 0 0 0 0 -1 -1 -4 0 -3 -6 -14

Poisson 0 0 0 -1 0 0 0 0 0 -1 -2 -5 0 -4 -7 -17

ε=30%
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 -1 0 0 0 -1 0 0 -1 -3 0 -1 -4 -9

Poisson 0 0 0 -1 0 0 0 -1 0 0 -1 -4 0 -2 -5 -13

ε=67%
2 0 0 0 0 0 -1 0 -1 0 -1 -1 -2 0 -2 -4 -5
10 0 0 0 0 0 -1 -1 -2 -1 -2 -2 -5 0 -5 -8 -15

Poisson 0 -1 -1 -1 0 -1 -1 -2 -1 -2 -3 -6 -1 -6 -10 -19
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