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ABSTRACT 
 

Assessing the Long-term Effects of Conditional Cash 
Transfers on Human Capital: Evidence from Colombia* 

 
Conditional Cash Transfers (CCT) are programs under which poor families get a stipend 
provided they keep their children in school and take them for health checks. While there is 
significant evidence showing that they have positive impacts on school participation, little is 
known about their long-term impacts on human capital. In this paper we investigate whether 
cohorts of children from poor households that benefited up to nine years from Familias en 
Acción, a CCT in Colombia, attained more school and performed better in academic tests at 
the end of high school. Identification of program impacts is derived from two different 
strategies using matching techniques with household surveys, and regression discontinuity 
design using census of the poor and administrative records of the program. We show that, on 
average, participant children are 4 to 8 percentage points more likely than nonparticipant 
children to finish high school, particularly girls and beneficiaries in rural areas. Regarding 
long-term impact on tests scores, the analysis shows that program recipients who graduate 
from high school seem to perform at the same level as equally poor non-recipient graduates, 
even after correcting for possible selection bias when low-performing students enter school in 
the treatment group. Even though the positive impacts on high school graduation may 
improve the employment and earning prospects of participants, the lack of positive effects on 
the test scores raises the need to further explore policy actions to couple CCT’s objective of 
increasing human capital with enhanced learning. 
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1. Introduction 
 

As part of the global efforts to promote universal basic education, a number of programs 

have been put in place with positive effects on school enrollment and attendance. Existing 

evidence shows that the use of educational services responds positively to interventions such as 

school construction, hiring of additional teachers, regular de-worming of children, school 

feeding, take-home ration schemes, school vouchers, and conditional and unconditional cash 

transfers. In particular, Conditional Cash Transfers (CCTs), programs that transfer money to 

poor families contingent on specific education and health behaviors, have been on the rise in 

recent years. Since 1997, more than 30 countries have adopted CCTs with the goals of reducing 

poverty and encouraging investments in human capital. A recent review of the impact evaluation 

literature indicates that all 11 CCTs evaluated against school enrollment and 15 CCTs evaluated 

against attendance have positive effects (World Bank, 2010). However, this may not be 

surprising since most of these programs are conditional upon school outcomes. 

 
CCTs’ impacts on poor children’s school participation are expected to lead to higher 

educational attainment. If students stay in school and progress, they could accumulate more 

human capital and enjoy higher future incomes. Additionally if conditionality of attendance to 80 

percent of the classes is higher than the average attendance with no program, this might be 

reflected in stronger educational performance and also higher future productivity. Furthermore, 

the transfers of CCTs may increase household’s disposable income and their spending towards 

activities that are beneficial for students’ learning, such as foods, books and other school 

supplies. This additional income together with the conditions to keep children in school are also 

expected to reduce the pressure for eligible children to work so they can spend more time on 

school-related activities. Finally, the value that the program places on education could be 

transferred to the families, enhancing their attitude toward the importance of investing in the 

schooling of children. Positive peer influence that the CCT beneficiaries receive as they attend 

classes could also encourage them to study harder and pursue higher education.   

 
Nevertheless, although increased children’s school enrollment and time in school are 

important inputs for the formation of human capital, they do not automatically translate into 

attainment of more education and improved learning outcomes. First, if the school supply 
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remains fixed, schools may get congested due to the rise in enrollment, increasing teacher pupil 

ratios and overcrowding in the classroom. Second, the marginal children who are brought into 

school by the transfers and conditions of the program could have lower expected returns to 

school compared to those already enrolled since they may be, for instance, less motivated, come 

from lower socio-economic background, and have less capacity or time devoted to school work. 

Another plausible reason for limited effects on school attainment and performance is that CCTs 

are often geographically targeted to poor areas where the teaching and school quality may be 

relatively lower. Despite the substantial amount of work devoted to assessing the educational 

impacts of CCTs, little is known about their long-term effects on the stock of human capital, i.e. 

educational attainment and academic performance in early adulthood. 

 
This paper seeks to help fill in this knowledge gap and identify the expected but empirically 

uncertain link between school participation and educational achievement through an evaluation 

of the long-term educational impacts of a Conditional Cash Transfer program in Colombia. More 

specifically, we investigate whether multiple cohorts of children who are covered by Familias en 

Acción (FA) and who have different degrees of program exposure (ranging from one to nine 

years) complete more years of education –measured by the probability of completing high 

school– and perform better in a national standardized test at the end of high school. Although 

these are not necessarily final outcomes since they do not reflect the ultimate educational 

achievement, they are close determinants of human welfare and economic growth. In addition, 

we examine whether there is heterogeneity in program impacts by location (urban and rural) and 

by the gender of child. Finally, this paper explores possible indirect effects on the human capital 

of older children (18 years and older) who by the rules of the program are ineligible to the 

transfer but who reside in households with younger participant children.  

 
Identification of program impacts is derived from two different empirical strategies that use a 

panel of household surveys, a census of the poor and administrative data from the information 

system of Familias en Acción. The first research design employs matching techniques to 

compare the school completion rates and test scores of different cohorts of children from 

treatment and control areas that could have finished high school during the program 

implementation period of 2003-2009 and were interviewed prior to the initiation of the program. 

The second design exploits variation in assignment to treatment arising from the sharp 
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discontinuity that emerges at the eligibility threshold defined to participate in the program. 

Household are assigned a poverty index score from a census of poor people, which determines 

their eligibility into different social programs (including FA) with different thresholds.  

 
We show that the program helps participant children to increase their school attainment by 

making them more likely to complete high school. Results from the first empirical approach 

(matching analysis) indicate that program effects vary between 4 and 8 percentage points. The 

RD approach yields estimates of program effects on school completion that are similar in 

direction and magnitude. Overall, focusing on the preferred specifications, we estimate that 

beneficiary children that belong to households near the threshold of eligibility are between 3 and 

6.5 percentage points more likely to graduate from high school. There is also evidence of 

heterogeneity in program impacts, with effects on school completion being larger for girls and 

beneficiaries in rural areas. Regarding long-term impacts on tests scores, the analysis shows that 

program recipients who graduate from high school perform at the same level as equally poor 

non-recipient graduates in Mathematics, Spanish, or the overall test. This result still holds after 

correcting for possible selection bias when low-performing students enter school in the treatment 

group. Finally, there is no indication of indirect program effects on the school completion of 

ineligible older children residing in the same households as participant children. The results are 

robust to a variety of controls for observable differences between participants and non-

participants, the possibility of sorting around the threshold of eligibility or manipulation of the 

proxy-means test used to allocate the program, misspecification bias, and differences in the 

accuracy of data that could lead to spurious differences in test registration between treated and 

control children.  

 
This paper is structured in five chapters in addition to this introduction. The second chapter 

reviews the relevant literature regarding the impacts of CCTs, including previous evidence on 

FA, and provides an overview of the program. Chapter three describes the data sources used in 

the paper. The fourth chapter presents the empirical analysis, including the discussion of the two 

different research designs, results from the models on program impacts, the heterogeneity of 

program impacts and the indirect effects of the program on nonparticipating adolescents who live 

in the same households as participant children.  Chapter five discusses robustness checks to 

ensure that the findings of the analysis are not subject to selection, misspecification, or data 
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matching bias. Chapter six concludes with different interpretations of the results as well s the 

implications for program beneficiaries and policymakers.  

 

2. Background 
 
2.1 Existing Literature 
 

There is large amount of evidence demonstrating that CCTs encourage households to 

increase the use of educational services. Impact evaluations of programs implemented in an array 

of countries including Brazil, Cambodia, Colombia, El Salvador, Honduras, Jamaica, Malawi, 

Mexico, Nicaragua, Pakistan, and Turkey indicate that, by and large, CCTs lead to immediate 

increases in school enrollment and attendance (World Bank, 2010). Even though the size of the 

impacts varies with the features of each program (amount of the transfers, types of 

conditionalities, target groups, timing of payments), the characteristics of the population (age, 

gender, school grade, socioeconomic status, location), and the conditions of program areas 

(school supply and baseline enrollment), the direction of program effects is largely consistent 

across programs and evaluation methods. A subset of these evaluations also tracked the school 

progression of participant children relative to control children, relying mostly on data that span 

two years of initial program participation. The large majority of these studies show positive 

impacts in indicators such as grade progression, grade repetition, and dropout rates. However, it 

is important to stress that these effects are more prominent among children in primary education, 

and say little about the actual accumulation of human capital in later stages of life. 

 
The evidence is scant when it comes to the impacts of CCTs on final (or close to final) 

outcomes in education. Looking at school completion, existing evidence from Pakistan shows 

that CCT beneficiaries are more likely to complete secondary school by 4 to 6 percentage points 

(Alam et al., 2010). Barrera-Osorio et al. (2008) evaluated a pilot version of a CCT program 

implemented in Bogota (Colombia), called Subsidios, and found similar results.2

                                                           
2 The Subsidios program was implemented in the late 2000´s in Bogotá and targeted vulnerable population classified as Sisben 
level 1 and Sisben 2 based on the proxy-means test constructed with information from a census of the poor. The program’s 
transfers and conditions are similar to Familias en Acción, which is a nationwide and older program. However, the Subsidios 
program offered two other treatments with a different structure of benefits. One is the “savings treatment,” which reserves one 
third of the bimonthly payment to be given to families as a lump sum at the end of the year, just before enrollment into the 
subsequent grade level. The other is the “tertiary treatment,” which also reserves part of the bimonthly payment, but then pays 
families a substantially larger amount if students graduate from high school (eleventh grade). Students who continue to tertiary 
education are eligible to receive that amount one year earlier than those who do not. These two additional treatments may change 

 As for actual 
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school attainment, only evaluations of Oportunidades in Mexico (previously known as Progresa) 

has measured the impact on rural adolescents who were old enough to have plausibly completed 

their schooling after at least five and a half years of benefits. A first study found that children 

with exposure to the benefits of approximately two years or more achieve about 0.2 grades of 

additional schooling (Behrman et al., 2005). Subsequent studies that look at the impacts on 

young adults with longer periods of exposure to the benefits of Oportunidades (nearly 10 years) 

show important increases in grades of schooling achieved by program participants and their labor 

insertion, but no effects on the proportion of high school graduates going to college (Behrman 

and Parker, 2008; Freije and Rodriguez, 2008).3

 

 Results from evaluations of programs in 

Cambodia and Honduras point to similar effects, yet they are estimated through simulation 

analysis or on samples of younger children who were still in school (Filmer and Schady, 2009; 

Glewwe and Olinto, 2004). 

Similarly, the evidence of program effects on learning outcomes is limited and somewhat 

mixed, making it difficult to draw conclusions. Improvements in cognitive development 

attributed to CCTs have been consistently found only for young children in pre-school and 

primary education. The existing literature does not find a discernible effect on learning outcomes 

for older children when tested during the final grades of secondary school. This is probably due 

partly to practical and empirical difficulties in revisiting treatment and control children long after 

a program has been implemented. Furthermore, an evaluation of learning could be confounded 

by selection problems. Evaluations that estimate program effects based on tests given to children 

in school may be confounded by selection problems because the beneficiary and non-beneficiary 

children that go to school are probably not comparable. The “marginal child” that attends school 

thanks to the program may be poorer and of lower ability compared to those already enrolled. 

Behrman et al. (2000), for example, investigate the effects of Oportunidades in Mexico on the 

academic achievement of children in school, a sample prone to suffer from nonrandom selection. 

To address this, the analysis reweights the data to align the age and sex distributions of the 

treatment and control groups and finds that there is no effect on test scores after 1.5 years of 

                                                                                                                                                                                           
the way families respond to the program in two ways: one is due to the reduction in the amount of cash families receive on a 
bimonthly basis, therefore limiting their liquidity; another is through the incentives created by linking cash transfers directly to 
grade progression and matriculation in tertiary education.  
3 It is worth noting that the results of these two papers are not generalizable to the entire population covered by Oportunidades 
given that the samples of analysis only contain non-migrant rural households. Migrants are expected to have higher enrollment in 
college and better job opportunities, including higher salaries. 
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exposure to the program. In contrast, evidence based on matching techniques from a scholarship 

program in Argentina, which operated as a CCT, shows that the program improved student 

performance as measured by school grades (Heinrich, 2007). Among analyses that do not 

condition on school enrollment to avoid contamination due to compositional changes, the results 

show that CCT beneficiaries in secondary school do not do better in academic tests given at 

home (Behrman et al., 2005 and Behrman and Parker, 2008 for Mexico; Filmer and Schady, 

2009 for Cambodia).4

 

  

Recent evidence specific to the impacts of FA on learning among young students in primary 

and middle-secondary school provides mixed results. To account for the problem of selection, 

García and Hill (2009) focus on the impacts on school progression and academic achievement 

for the students who would have been enrolled in school even in the absence of the program.5 

While fifth graders in the treatment group did better in math and language tests than those in the 

control group, particularly in rural areas, program effects for ninth graders in both subjects are 

negative. Yet, the validity of the findings of this paper is limited for at least two reasons. First, if 

program effects do exist, they are probably difficult to identify due to the lack of enough 

statistical power in their analysis. Sample sizes for the nonparametric models of the paper are 

very low, ranging from 100 to 300 observations depending on the age groups. Second, and 

perhaps more troublesome, the nationally administered tests used by the authors to infer the 

academic performance of children (known as “Pruebas Saber”) are only representative at the 

school rather than at the individual level.6

 

  

This paper seeks to contribute to the understanding of the effects of CCTs on school 

completion and learning outcomes by early adulthood. In particular, this study adds to the 

existing literature in three ways. First, the analysis focuses on the dynamics of program impacts 

in the long run as it tracks different cohorts of treatment children who have been in the program 

from one to nine years. Most of the few studies that measure program effects on intermediate and 

final outcomes in education did so with children who have been exposed to the treatment for no 

                                                           
4. Results from Behrman and Parker (2008) actually show some positive trends in math and reading tests for program participants. 
Results on math achievement tests are however limited by low sample sizes.  The analysis on reading tests is based on single 
differences between program participants, which according to the authors, could underestimate the actual impacts of the program.  
5 Treated children were then matched to children in the control group based on the propensity to stay in school, derived from 
those in the control group that were enrolled both before and after program implementation. 
6 Schools could be comprised of children that take the test and others that do not take the test.  
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longer than two years. Second, we use three different data sources and samples (the baseline 

survey of the evaluation of the program from 2002, the program’s information system, and a 

census of poor households) to perform two different methodological approaches which allows 

for a comparison of the findings across methodologies. Additionally, by using data from the 

program’s information system for impact evaluation purposes, this paper highlights the 

opportunities for research that may arise from using monitoring and evaluation systems, as these 

are becoming increasingly popular tools to administer CCTs and other safety net programs. 

Finally, this paper also investigates the extent to which the final educational outcomes of older 

children that are not eligible to the program could be influenced by the participation of their 

siblings.  

 

2.2 The Program 
 

In the late 1990s, Colombia was hit by its worst economic downturn in 60 years: GDP shrank 

by 4.5 percent in 1999 alone, and the national poverty rate increased by 7.2 percentage points, 

largely erasing the socio-economic gains made during the early 1990s (World Bank, 2005 and 

2008). A team was put together to address the social dimensions of the crisis from the 

government of Colombia, the World Bank, and the Inter-American Development Bank. One of 

the safety net programs was Familias en Acción (FA), designed as an instrument to help mitigate 

the effects of the economic crisis on the wellbeing of poor households and protect and promote 

human capital formation. FA was inspired by the CCT Oportunidades in Mexico, and consists of 

subsidies to education, nutrition, and health subsidies conditional on specific behaviors 

associated with school participation and attendance to health checks. The program was piloted in 

a few municipalities in 2001, but was scaled up in the second half of 2002 in the context of great, 

but still insufficient, progress in improving educational coverage and attainment. 7

 

  

                                                           
7 Net enrollment rates for children aged 7-11 (primary school) increased from 77 to 93 percent from 1992 to 2002, and from 40 to 
57 percent for those in the 12-17 age group (secondary school) (UNESCO, Institute for Statistics). The average educational 
attainment of people 15 years and older increased from 6.4 years in 1992 to 7.6 years in 2003. This is still low, however, when 
compared with other countries in the region such as Argentina (8.8 years) and Panama (8.6 years) (World Bank, 2005 & 2008). 
In terms of school completion, the numbers had not changed significantly since the beginning of the 1990s. At the pre-program 
time, still only 60 percent of children who started primary school finished fifth grade, while 57 percent of those who began 
secondary school finished ninth grade and only 35 percent completed eleventh grade, that is, high school (García and Hill, 2009; 
World Bank, 2008).  
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The largest component of the program is educational conditional cash transfers. Households 

with children aged 7-18 receive a monthly grant per child, conditional on the child attending to at 

least 80 percent of school lessons. When the program started, the grant was $12,000 pesos 

(approximately $7) for each child attending primary school (grades 1-5) and $24,000 pesos ($14) 

for those in secondary school (grades 6-11). The level of benefits was set to compensate for the 

direct cost borne by low-income families to send their children to school.8

 

 In some urban areas, 

the subsidies were increased to accommodate the higher opportunity cost of secondary education 

in the cities, and the subsidies for primary school students were replaced by nutritional subsidies 

for children 7-11 years old due to almost full enrollment in urban areas (Acción Social, 2010a). 

Like the Oportunidades program, the transfers are specifically given to mothers, a mechanism 

designed to ensure that the money is invested in children and as an incentive for empowering 

women within their communities. 

Within each municipality FA targets the poorest households based on a proxy-means test 

system constructed with information from a census of poor people (known as Sisben). In 

Colombia, all households surveyed by Sisben are assigned to one of six brackets of a poverty 

index score called Sisben that is used to identify the most vulnerable population. The index runs 

from 0 to 100, and it is a function of a set of household characteristics and variables related to the 

consumption of durable goods, human capital endowments, and current income to calculate a 

score that indicates the household economic well-being. The first level includes households that 

are extremely poor. While many social programs target the population with scores falling in the 

first two brackets, FA is only offered to households in the first bracket. Municipal governments 

are responsible for ensuring adequate coordination with schools and health centers working with 

the FA program to ensure its successful local implementation.9

                                                           
8 After a first expansion in 2005, the grant was increased to $14,000 pesos and $28,000 pesos, respectively. The latest change in 
2007 brought the grant to corresponding $15,000 pesos and $30,000 pesos, merely keeping up with inflation. 

 Local banks deliver the cash 

transfers to beneficiaries every two months.  It was estimated that the annual costs of the 

program in 2009 were going to be equivalent to 0.27 percent of GDP in that year (World Bank, 

2008). 

9 Municipalities prepare the list of families to receive the subsidies (Sisben level 1 families with children 18 years old or 
younger). The list is consolidated from municipalities every three years. The subsidies are also contingent on verification of 
compliance with the conditions that involves beneficiary mothers obtaining attendance certificates from schools every two 
months and delivering them to the municipal coordination office, who then sends that information to the regional and finally the 
national coordination unit. In each community, a committee of beneficiary mothers is elected to monitor program 
implementation. 
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The program FA expanded over the years to reach national coverage in 2010. Initially, the 

program was targeted geographically. Only municipalities that were not departmental capitals, 

with fewer than 100,000 inhabitants, with at least one bank branch working in the municipality, 

and had access to facilities that allowed for the implementation of the program were eligible (691 

out of the 1,024 municipalities). Within these communities, a total of 340,000 households in 622 

municipalities were registered to participate (Attanasio et al., 2006). In 2005, the program was 

extended to include displaced families and households in departmental capitals and 

municipalities which either became able to offer the required services or with services accessible 

in nearby towns. Most recently, during 2007, the program expanded to municipalities with more 

than 100,000 inhabitants to include other deprived urban areas. The program now covers nearly 

2.8 million participating households in 1,093 municipalities, representing almost 65 percent of 

the target population (Acción Social, 2010b; Attanasio et al., 2009).  

 
An early evaluation of FA demonstrated positive effects on short-term outcomes such as 

household consumption and children’s school participation and nutrition status. Indeed, within 

the first two years of program implementation, household consumption increased by 13-15 

percent, school enrollment rates increased by around 5 to7 and  2 percentage points for children 

in secondary and primary schools, respectively, child labor participation fell by around 10 to 12 

percentage points, and health and nutrition outcomes such as morbidity, immunization and 

anthropometrics also improved (Attanasio et al., 2005, 2006 and 2009; Attanasio and Mesnard, 

2005).  

 

3. Data 
 

This paper uses four sources of data (a household survey, a census of the poor, and a 

database with administrative records of the program) to construct two samples of participant and 

nonparticipant children of the program FA for the two research strategies. The first approach 

employs matching methods and household survey data collected for the short-term impact 

evaluation of FA. This survey is part of an effort to collect longitudinal data from a stratified 

random sample of eligible families in both treatment municipalities and matched control 

municipalities. The survey is a standard multi-topic household survey that includes questions on 
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demographics, household structure, education, health, consumption, employment, 

anthropometry, housing characteristics, shocks, and community education and health facilities. 

The baseline survey was carried out between June and October 2002.10

 

  

The matching analysis draws only from the baseline survey which interviewed 6,722 

households in 57 treatment municipalities and 4,562 households in 9 control municipalities.11 

The subsample for this analysis includes only children who were born during 1975-1994, and 

who may have graduated from high school between 2003 and 2009.12

 

 For instance, a child that 

had completed grade 6 at baseline (either in a treated or control area) was expected to finish high 

school (grade 11) by 2007 if the child progressed on schedule. In contrast, a child starting 

primary school (grade 1) in 2002 (baseline) will not be able to finish high school at least before 

2013. Therefore, the relevant cohorts of children to estimate the average impacts of the program 

are those who at baseline had 4 to 10 years of schooling, and who were 18 years old or younger 

(called “PSM data”). The baseline survey is also used to construct most of the pre-program 

covariates for the matching procedures.  

The samples of analysis for the RDD approach are constructed with two different 

administrative sources of data. The first is the monitoring and evaluation system, SIFA, created 

for administrative and monitoring purposes at the onset of the FA program. The system is a 

longitudinal census of program beneficiaries from 2001 to present. To date, there is information 

on approximately 2.8 million families currently participating in the program. The second source 

of information is the data from a census of the poor (Sisben) carried out between 1994 and 2003 

to construct the poverty index score for the proxy-means test. Questions were asked regarding 

households’ demographics, structure, durable goods, housing characteristics, human capital, 

labor force participation, income, and access to basic services. By 2003, the surveys covered 

                                                           
10 Two follow-up surveys revisited the same households in 2003 and 2005. 
11 Nearly 12 percent of the households interviewed in treatment municipalities were not registered with the program (Attanasio et 
al., 2005).  
12 We merged the household survey data with administrative data from the standardized test score Icfes. Using this merged 
dataset, we identified that 95 percent of the population that presented the test in the 2000-2009 period were born during the 
period1975-1994. In order to study the indirect effects of participant children on non-eligible young adults that were still in 
school or could rejoin, this sample also includes individuals 19 to 23 years old that were listed as dependents, but are not eligible 
to the program.    
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over 25 million individuals.13 Data from SIFA and Sisben were carefully merged using 

confidential information on date of birth, full name, and national identification numbers. The 

resulting dataset (“SIFA + Sisben data”) contains the universe of individuals above and below 

the threshold of eligibility (whether or not they actually participate in the program). This 

information is then used to construct indicators of program participation and length of exposure. 

In order to focus on a period of time that is comparable to the one examined in the matching 

analysis, the final subsample is restricted to treatment municipalities that were covered during 

the first phase of expansion between 2001 and 2004. This implies that in addition to the 

comparison group, the samples are comprised of beneficiaries that could have been covered for 

up to nine years until 2009.14

 

 

The two resulting data sets (“PSM data” and “SIFA + Sisben data”) are merged with the 

administrative records on registration and results for the Icfes test.15 This exam is a nationally 

recognized and standardized test that is administered prior to graduation from high school and 

mandatory for entrance to higher education. Over four million students registered and took the 

test between 2003 and 2009. This database identifies test takes by date of birth, full name and 

national identification number. This dataset is merged with the cohorts of children identified in 

the “PSM data” assembled to perform the matching analysis, and with the “SIFA+SISBEN data” 

to implement the RDD strategy. In order to avoid problems of nonrandom mismatch, strict 

procedures were followed to merge the datasets including matching based on full name, birth 

date, national identification number, and a minimization of the phonetic Levenshtein distance.16 

(see Appendix A for more details about the data merging procedures). The final matching rates 

are around 18 percent for the matching analysis and 24 percent for the RDD approach.17

 

 

The long-term impacts of the program on the human capital of children are estimated on two 

outcome variables. The first is an indicator of high school completion that is measured through a 

dummy variable that identifies whether a child registered or not for the Icfes test during the 

                                                           
13 A new Sisben survey was fielded between 2003 and 2007 to update the information, improve the effectiveness of the targeting 
scheme, and change the algorithm due to concerns regarding manipulation by local authorities (Barrera, Linden, and Urquiola, 
2007; Camacho and Conover, 2011).  
14 The final sample also excludes internally displaced people who became eligible to the program much later.   
15 More recently called Saber 11. 
16 The Levenshtein distance measures the difference between two strings, in terms of edits you have to do to convert one string 
into the other.  
17 We considered 10 points above and below the threshold to check the matching for the RDD sample. 
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period 2003-2009. Although the test is given to students just prior to graduation (grade 11), 

registration to the test is a good proxy for high school completion since over 90 percent of the 

test takers end up finishing grade 11 (World Bank, 1993; Angrist et al., 2006).18

 

 The test is also a 

strong determinant of college entrance as it fulfills the qualifying requirements in several 

subjects. The second outcome of interest measures academic achievement. Conditional on Icfes 

registration, we measured academic learning by the actual performance of the students on the 

test. The exam is a standardized test that assesses the academic achievement of students in 

various subjects such as Mathematics, Language, Biology, Chemistry, Physics, History, 

Geography, and a foreign language chosen by the student. We focus on the impacts of the 

program on the standardized scores in the Mathematics and Language modules (35 questions 

each) and the overall score in the test excluding foreign language. 

4. Empirical Analysis 
 
4.1 Research Design 
 

The FA program was not randomly assigned as eligibility requirements were based on 

geographic and welfare targeting. Only extremely poor households with at least one child 

between 7 and 18 years old and a score in the proxy-means test that falls Sisben 1 level are 

deemed eligible for the education transfer of FA. Additionally, the program was initially 

implemented only in certain qualified municipalities based on their supply of health, education 

and financial services. These eligibility criteria may be problematic for evaluation as they may 

induce different sources of selection bias including observable and unobservable factors that 

could be correlated with program eligibility and educational outcomes. For instance, small towns 

like those initially targeted by the program may have poorer public infrastructure, less dynamic 

economies, and therefore lower returns to schooling. Parents living in these places may be less 

willing to send their children to school. In this case, lower improvements in school attainment 

over time among participant children relative to nonparticipant children in other towns could be 

mistakenly attributed to the program as negative effects. Moreover, given that participation in the 

program is voluntary, those families who sign up for the program in treatment areas may be 

different in many aspects from those who decide not to participate.  We attempt to overcome the 
                                                           
18 A small fraction of individuals also take the ICFES test after they have finished high school. Also, since the test can be taken 
many times, only the first registration date and score is kept for the small number of students who took it more than once.      
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potential identification issues that may arise from non-random assignment and voluntary 

participation with two different quasi-experiments, each of which are explained below in more 

detail.  

 
Matching Analysis 
 

The first research strategy builds on the design of the first short-term impact evaluation of the 

program. This evaluation was based on a non-experimental design that compares eligible 

households from municipalities covered by the program with potentially eligible households 

(also classified as Sisben level 1) from selected comparable areas not targeted by the program.19 

We follow different cohorts of children in treatment and control municipalities who were 

interviewed as part of the baseline survey carried out in 2002 and that could have finished high 

school during the period 2003-2009. Hence, the location, age and grade of the children at 

baseline determine their treatment status and length of exposure to the program for the treated. 

Given that 2003 is the first year in which the program was broadly implemented in the samples 

for the matching analysis, the pool of treated individuals includes children with program 

exposure that ranges roughly from one to seven years.20 A limitation of this research strategy is 

the lack of baseline measures of the outcome variables, making it difficult to test for differences 

between groups at the pre-program time. Given that high school graduation and test scores are in 

reality observed only once for the same child, program effects are therefore estimated with post-

program single differences between treated and control children.21

 

  

Matching methods are used in the comparison of outcomes to adjust for potential biases due 

to nonrandom targeting and selection into the program. The standard underlying assumption for 

                                                           
19 Municipalities were grouped based on the number of eligible families that reside in each of them to form 639 Primary 
Sampling Units (PSU). Twenty-five strata were then defined based on geographic location, level of urbanization, number of 
eligible families, and indexes of quality of life and availability of school and health facilities in the municipality. Fifty PSUs (two 
within each stratum) corresponding to 57 municipalities targeted by the program were selected and then matched to 50 “control” 
PSUs (equivalent to 63 municipalities) that were relatively similar to “treatment” PSUs. Matching was done within each stratum 
and the comparability of both types of PSUs was assessed on the basis of population size and an index of quality of life. Finally, a 
stratified random sample of eligible households was selected in treatment and matched control municipalities. For more details 
about the matching process and the stratified random methods followed in the evaluation, see Attanasio and others (2005).  
20 It would be important to measure how the impacts of the program vary with different years of exposure. However, due to 
empirical limitations, this marginal impact cannot be properly identified. Despite the fact that the presence of cohorts would 
induce variation of treatment dosage, the evaluation design used in this paper cannot disentangle the effects of age on the 
outcomes from those of length of exposure. Conditional on being enrolled in school, older beneficiaries (when they joined the 
program) have fewer years ahead of them in school, and perhaps, are more likely to be observed finishing high school. If this is 
the case, shorter length of exposure may be wrongly attributed to higher school completion rates.   
21 Only a very small fraction of children were found to have taken the test more than once. However, although the test can be 
taken several times, it is administered only to students who have achieved grade 11.    
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this approach is that matching on the propensity score (i.e. the estimated probability of 

participation in the program) eliminates any bias generated by pre-treatment differences between 

the two groups as long as there are no differences in unobservable variables that jointly influence 

program participation and the outcomes under analysis. The availability in the baseline survey of 

relevant pretreatment information to model program targeting and participation, in principle, 

makes the application of the matching methodology suitable for the evaluation of FA.   

 
Although careful procedures were followed in the early evaluation to select comparable 

control areas, a comparison of baseline characteristics between treated and control children in 

our sample using standardized t-tests and normalized differences, presented in Table 1, reveal a 

number of differences that are statistical significant. In order to balance the distribution of 

covariates between the two groups and assess the sensitivity of the results, we matched children 

on the basis of three different model specifications to predict the probability of treatment. Table 

2 presents the group of variables included in the three models used to predict participation into 

the program. The first model (Model 1) includes standard individual and household pre-

treatment socio-economic and demographic characteristics such as age and order of the child, 

dummy variables for married and participating in the labor force head of the household, age, 

education and gender of household head, urban location, the number of children in the household 

ages 7 to 11 and 12 to 18, and monthly expenditures. The second model (Model 2) extends 

Model 1 by adding a number of municipality-level covariates that proxy for measures of 

educational supply and demand at baseline (for instance, pupil/teacher ratio and access to 

schools). In addition, the third model (Model 3) includes all but the health variables used by 

Attanasio et al. (2005) in their participation models estimated for the evaluation of the short-term 

impacts of the FA program. This augmented specification includes additional household- and 

municipality-level variables mostly associated with the attributes of the dwellings, family 

structure, access to basic services, population, relevant public infrastructure, population, and 

geographic characteristics.22

                                                           
22 See tables 1, 2 and 3 for a complete list of all variables used in each of the models of participation. 

 Various kernel techniques and bandwidths are used to match 

children and define common supports that exclude poor matches between treatment and control 

groups. The estimated propensity scores for each of the three different model specifications 
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suggest that there is a strong overlap between the treatment and comparison groups.  We then 

estimate the treatment effect in a standard way as follows: 

∆𝐴𝑇𝐸 = 1
𝑛
∑[𝐸(𝑌1|𝐷 = 1,𝑋) − 𝐸(𝑌0|𝐷 = 0,𝑋)]                 (1) 

 
Balancing checks were conducted to assess the comparability of treatment and control 

children after conditioning for observable characteristics that explain participation into the 

program. The results of these balancing tests are particularly robust for Model 1.23

 

 Furthermore, 

we do not find major statistically significant differences in the conditioning variables between 

treated and control within strata having similar probabilities of program participation. Even 

though there is not a formal way to rule out the existence of unobserved factors that could 

determine participation and the final outcomes, these results provide confidence in the ability of 

matching with the estimated propensity scores to indentify program impacts. 

An additional concern for identification remains when program impacts on learning are 

estimated with academic tests given to children enrolled and present in school. By raising school 

enrollment, CCTs –including FA, make program participants more likely to take tests given their 

higher school participation. The “marginal” children that are brought into school and promoted 

through grades due to FA are probably different (for instance, poorer or less motivated) from 

those who would have been enrolled or attended school regardless of the subsidy. There may 

also be heterogeneity in the expected returns to education between those previously enrolled in 

school and the new enrollees. If this type of selection exists, the test score distributions of treated 

and control children tested in school are not comparable. In order to address this issue, we follow 

Lee (2002) and Angrist et al. (2006) to construct nonparametric upper bounds of program effects 

(for the matching analysis) on learning by symmetrically truncating the two distributions at some 

specific quantile. In contrast, unadjusted (selection-contaminated) comparisons of test scores –

conditional on positive scores– provide lower bound estimates of program impacts (see 

Appendix B for details on the methodology for nonparametric bounds of program impacts).  

 

                                                           
23 Additional regression analysis also shows that, after controlling for the estimated probability to participate, no additional 
conditioning variables help predict the receipt of treatment.  
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Regression Discontinuity Design 
 

The second research design employed in this paper exploits variation in assignment to 

treatment arising from the discontinuous rule that determines eligibility to the program. As noted 

before, a proxy-means test designed with the goal of identifying the most vulnerable population 

that qualifies for various social programs was used to define the target population of FA. The 

index (Sisben) varies between 0 and 100 and is the result of an algorithm that weights 

households’ variables associated with their socio-economic wellbeing. Households placed in the 

first bracket of Sisben (level 1), namely those with scores below 18 and 36 in rural and urban 

areas, respectively, were considered eligible for the first phase of the program. In principle, the 

expected discrete change in participation produced by the rule offers an opportunity to estimate 

the causal effects of the program on education outcomes with a Regression Discontinuity Design 

(RDD). The intuition behind this strategy is that households that lie just below and just above the 

threshold are statistically comparable except for their participation in the program. As a result, 

any discontinuity in the conditional distribution of high school graduation rates and tests scores 

at the cutoff could be interpreted as the effect of FA.   

 
We used data from SIFA, an information management system that compiles information on a 

number of operational aspects of the program including historical records of all beneficiaries. 

When merging it with the Sisben scores, these databases allow identification of the universe of 

individuals in households that lie below or above (in a smaller proportion) the cutoff of 

eligibility and participate in the program between one and nine years. Information on the rest of 

the population relevant for the analysis – those eligible but not participating and those with 

Sisben scores above the threshold of eligibility— is obtained from a census of the poor that was 

collected between 1994 and 2003 used to compute the Sisben proxy-means test. Both datasets are 

merged together to create the sample of analysis for the RDD.24

 

 

In practice, the Sisben poverty score predicts substantial but not perfect changes in the 

probability of receiving the treatment. In fact, the data show a significant discontinuity in the 

probability of assignment to treatment at the threshold of around 66 to 72 percentage points as 

                                                           
24 Given that the information system of the program does not  reports SISBEN scores for participant families, uniform  scores for 
the whole sample are calculated by using  the proxy means testing  algorithm  and the information from the Census of the Poor 
1994-2003.  



18 
 

presented in Figure 1 and Table 3.25

 

 Therefore, we perform a fuzzy instead of a sharp RDD. The 

average causal effect of this design is given by the ratio of the jump in the outcome variable at 

the threshold to the jump in the probability of participation in FA also at the threshold. This is 

equivalent to an instrumental variable setting in which the average effect of the treatment is 

obtained from compliers -- individuals whose participation is affected by the cutoff. To check the 

sensitivity of the results to different specifications, estimates of program impacts based on the 

RDD are computed using different parametric functional forms and nonparametric procedures. 

Besides, to restrict the sample close to the cutoff, optimal bandwidths for the nonparametric 

analysis were also estimated using Imbens and Kalyanaraman (2010) methods.  

Our first stage regression formally tests if the probability of treatment 𝐷𝑖𝑚𝑡 for individual i, in 

municipality m, and in year t changes discontinuously at the cutoff point. We estimate different 

polynomial specifications of the model allowing the regression function to differ on both sides of 

the threshold as follows: 

                       𝐷𝑖𝑚𝑡 = 𝛼0 + 𝛿𝑇𝑖𝑚𝑡 + 𝛼1𝑓(𝑠𝑖𝑚𝑡|𝑠𝑖𝑚𝑡 ≤ 𝑠∗) + 𝛼2𝑓(𝑠𝑖𝑚𝑡 |𝑠𝑖𝑚𝑡 > 𝑠 ∗) + 𝛾𝑚 + 𝜗𝑖𝑚𝑡 (2) 
 

Where 𝑇𝑖𝑚𝑡 = 1[𝑠𝑖 ≤ 𝑠∗] is an index function that indicates whether the Sisben score of the 

individual i is below the eligibility threshold 𝑠∗, 𝛾𝑚correspond to municipality fixed effects 

included in the regression. Results from the first stage of the fuzzy design, summarized in Table 3, 

show that there is a large and significant jump in the treatment probability 𝛿 at the cutoff of the 

assignment variable. In fact, and confirming the graphical analysis presented in Figure 1, all 

point estimates of 𝛿 given by the models vary from 0.69 to 0.73 significant at the 1 percent level, 

regardless of the flexibility specified in the functional form around the threshold..  

 
Our reduced form equation is described by the following equation: 

      𝑌𝑖𝑚𝑡 = 𝜏𝑜 + 𝛽𝐷𝑖𝑚𝑡 + 𝜏1𝑓(𝑠𝑖𝑚𝑡|𝑠𝑖𝑚𝑡 ≤ 𝑠∗) + 𝜏2𝑓(𝑠𝑖𝑚𝑡 |𝑠𝑖𝑚𝑡 > 𝑠 ∗) + 𝛾𝑚 + 𝜏3𝑋𝑖𝑚𝑡 + 𝜀𝑖𝑚𝑡          (3) 

 where 𝑌𝑖𝑚𝑡 corresponds to our outcome of interest (i.e. high school graduation). The fuzzy 

Regression Discontinuity analysis instruments the treatment dummy, 𝐷imt, with 𝑇imt to identify 

                                                           
25 This may happen for at least two reasons. First, take up rates were in the order of 65 percent so participation is not universal 
among the eligible population. Second, households above the threshold may lobby with local authorities to gain access to the 
program. Concerns of nonrandom sorting that could arise from this or other gaming behaviors to influence the Sisben poverty 
index score are discussed in the robustness section.  
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the “intent-to-treat” effect. Our coefficient of interest corresponds to the ratio of the coefficient 

of the treatment effect from the reduced form, 𝛽, and the coefficient of that identifying individual 

eligibility, 𝛿. Results from this approach and the matching analysis are presented next. However, 

before discussing the findings, it is important to mention that the effect estimated with the RDD 

framework is only applicable to the group of individuals around the threshold of eligibility. For 

this reason, although program impacts derived from matching and RDD analyses seek to 

estimate the same parameter, they are not strictly comparable. 

 

4.2 Program Impacts 
 
High School Completion 
 

In theory, the net effect of CCTs on children’s school completion is ambiguous. On the one 

hand, there are two obvious positive direct effects. One is an income effect arising from the cash 

transfer which increases the budget of the family so that they could afford keeping the children in 

school. The second comes from the program’s condition on regular school attendance, which 

introduces a substitution effect for children not in school or not attending regularly as it reduces 

the relative price of education. Together these effects are expected to increase the demand for 

education among the target population, a prediction widely confirmed in the literature in the 

form of positive effects on school enrollment, attendance and progression. If the additional 

investments in educational services are continued over time, one might also expect an increase in 

high school completion. On the other hand, there are other possible mechanisms that could 

reverse these positive effects. For instance, classrooms may be overcrowded by the additional 

enrollment affecting the academic performance and progress of children. Additionally, perverse 

incentives could encourage families to delay children’s graduation just to prolong their 

participation in the program if the child still meets the age criteria for eligibility, i.e. below 18 

years of age. In addition to the standard income and substitution effects, child-specific 

conditional transfers like the ones offered by FA could also have negative impacts on the school 

outcomes of ineligible siblings due to a displacement effect (Ferreira et al., 2009). 

 
Findings from the first empirical approach (matching analysis) on the net effects on high 

school completion are summarized in Table 4. We report 3 sets of regression for each matching 

model. For comparison purposes the first column in each pair corresponds to the OLS 
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specification including a linear form all the variables from the matching model, whereas the 

second column presents the matching model. Overall, OLS results suggests that on average 

treated children are between 3 and5 percentage points more likely to finish high school. Results 

from the three different specifications of the model of participation also show positive and 

statistically significant effects of the program on high school completion. In this case impact 

estimates vary between 4 and 8.4 percentage points depending on the specification of the 

propensity score. Looking at the existing evidence produced for other programs, these effects 

appear to be comparable to those estimated for similar CCT and education fee waiver programs 

in Pakistan and Colombia where, as discussed previously in the background section, participants 

are more likely to complete secondary by 4 to 7 percentage points.26

 

  

Table 4 also includes impacts based on the gender and location (rural or urban) to test for 

heterogeneous effects of the program. The analysis by gender uncovers clear differences in the 

magnitude of impacts for participant boys and girls. On one hand, results for the sample of girls 

based on OLS and matching estimates always yield positive and statistically significant effects 

on high school graduation rates. The magnitude of the effects ranges from 4.6-6.5 percentage 

points in the OLS framework to 5.2-8.9 percentage points in the matching analysis. For all these 

cases, results are strongly significant in statistical terms at the 1 percent level. On the other hand, 

the pattern in impact estimates for boys is less obvious. While OLS point estimates indicate that 

there are no program effects, two of the three point estimates obtained from matching models 

(Model 2 and Model 3) appear to be just marginally significant at the 10 percent level. Results 

from the sample used in the RD analysis, presented in Table 5, also seem to suggest that program 

effects on high school completion are a little larger among girls.  

 
The distribution of impacts on high school completion varies with the location of program 

beneficiaries as well. However, there is a clear difference between the results from the matching 

and RDD approaches. Evidence from the PSM models suggests that the effects on high school 

graduation rates accrue mostly to participant children whose families resided in rural areas at the 

                                                           
26 A similar CCT program implemented in Bogota (Colombia), Subsidios, increased the probability of completing high school by 
4 percentage points. Beneficiaries of Colombian PACES, which offered vouchers to attend private secondary schools to students 
from poor urban neighborhoods, are also found to be 5-7 percentage points more likely to graduate from high school. In Pakistan, 
the Female School Stipend program, a CCT targeting girls, appears to improve the chance of completing grade 9 in high school 
for girls aged 15-16 years old by 5 percentage points (Angrist and others, 2004; Barrera-Osorio and others, 2008; Alam and 
others, 2010). 
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baseline (most likely girls based on the previous results). Whereas the effects on the samples of 

children in rural areas are positive and strongly significant in both economic and statistical sense 

in all models, analogous point estimates obtained for beneficiaries in urban areas are mostly 

insignificant – except for a marginally significant impact from the second matching model. Even 

if the discussion is limited to the parameter estimates of this particular model, the findings show 

that the size of the effect in urban centers is still half of that for children in rural municipalities - 

about 5 percentage points compared to 10.4 percentage points.  Even though there are no data to 

empirically identify the channels that may explain these differences in terms of location and 

gender, a possible explanation is that the marginal effects of the transfer and the conditionality 

are larger for girls in rural settings for whom the opportunity costs of education are relatively 

lower (for instance, if households are less dependent on the labor of the girls for farming 

activities).  

 
We then turn to program effects on high school completion estimated on a different sample 

and using the RDD approach. To inform the discussion, the results of the RDD analysis are first 

shown in a graphical way. Figure 2 show the average and estimated high school completion rates 

of children with respect to their ranking in the Sisben poverty index score relative to the 

threshold.27

 

 Means of high school completion rates for each value of the normalized poverty 

index score also provide suggestive evidence that FA had a positive effect on high school 

graduation. The “jump” at the threshold indicates that the discontinuous change in eligibility 

increases the probability of finishing high school. 

In addition to examining the possibility of impacts and understanding the functional form 

through graphical analysis, program effects are estimated econometrically with different 

parametric regressions that include different polynomial functions and non-parametric 

regressions following Imbens and Kalyanaraman (2010). In specifications 1 and 2 of Table 5, we 

include quadratic forms of the control function  𝑓(𝑠𝑖𝑚𝑡|𝑠𝑖𝑚𝑡 ≤ 𝑠∗),𝑓(𝑠𝑖𝑚𝑡 |𝑠𝑖𝑚𝑡 > 𝑠 ∗), where si 

correspond to the value of the proxy-means test (Sisben) and s* denotes the threshold of 

eligibility, and let the regression function differ on both sides of the cutoff point. In columns 3 to 
                                                           
27 The cut-off of eligibility takes different values for urban and rural municipalities. Therefore, rather than presenting the 
outcomes as a function of the Sisben poverty index score, they are normalized as the distance of each child’s score to the area-
specific cut-off that is used to classify households as level 1 in the proxy-means test system, and determine eligibility for this 
specific program. For instance, a child with a value -5 is in reality 5 points below the cutoff and is therefore eligible to FA. In 
contrast, positive values of the normalized score represent children that belong to ineligible households, given the eligibility rule.  
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6, we also run other flexible specifications of the regression function including cubic and quartic 

functional forms of the control function. Non-parametric estimations of the models are presented 

in column 7.  Throughout all functional form specifications with or without including controls, 

we identify a positive and significant impact on the high school completion of children that 

participate in the program. Overall, focusing on our preferred specifications that are the quartic 

functional form with controls and nonparametric models (columns 6), we estimate that 

beneficiary children are between 3.3 and 4.5 percentage points more likely to finish high school, 

including municipality fixed effects. These results are robust to inclusion of controls for school 

quality (average score in the ICFES test and class size by school and year).  

 
Finally, we looked at the possible indirect effects of FA on the school completion of 

nonparticipating young adults who reside with participant group children. This indirect effect 

could be caused by a substitution of resources and time allocated to work between eligible and 

non-eligible children within the household that, although positive for participant children, is 

expected to run in the opposite direction for ineligible children.28 The treatment group was 

comprised of ineligible young adults who were more than 18 years old and had not finished high 

school when at least one of the children of the same household joined the program. The high 

school graduation rate of this group is compared with those of young adults of similar 

characteristics who reside either in eligible families in control areas (matching analysis) or in 

families that were ineligible for the program, but that are otherwise similar to participant 

households (RDD).29  Overall, the analysis (results not shown) does not reveal consistent 

evidence of either positive or negative indirect effects of the program on the school completion 

of nonparticipating young adults.30

 

 

Test Scores 
 

Analogous to the existent ambiguity in the link between CCTs and high school completion, 

the net effect of interventions that increase school participation on learning outcomes is difficult 

                                                           
28 A clear example is the reallocation of labor or child caring away from participant children—so that they are able to comply 
with the conditionality—towards ineligible children in the household. Existing empirical studies have provided evidence of either 
negative effects or no effects of CCTs or similar programs on the school enrollment of ineligible siblings in Cambodia, Colombia 
and Pakistan (Ferreira and others 2009; Barrera-Osorio and others 2008; Alam and others 2009). 
29 The final sample includes young adults that meet the criteria outlined in the text and that were identified in the survey as 
household members but not as the main breadwinner.        
30 Results available from the authors upon request. 
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to establish theoretically. In principle, students who attend school more regularly and spend more 

time doing school work due to FA are supposed to have higher academic achievement than non-

recipient children who are out of school or attend less regularly31

 

. In fact, cross-country evidence 

shows that school attainment correlates strongly with test scores (Filmer and others, 2006). In 

addition, CCTs like FA could enhance learning at least through two additional channels. First, 

cash and nutritional transfers have been found to encourage positive behaviors towards 

investments in cognitive enhancing inputs such as books, more nutritious food, and parental 

time, and less child work. Second, the conditionality on attendance required by the program 

could lead to more learning for enrolled children who do not attend school regularly. 

Nonetheless, there may be other effects running in the opposite direction. For instance, the extra 

influx of students may increase class size and put additional pressure on existing educational 

resources. In addition to congestion, increased enrollment may also affect class composition and 

trigger negative peer effects in learning. Moreover, CCTs are often targeted to the neediest areas 

where school quality may be low. Finally, with just a few exceptions -not in the Colombian case, 

CCTs have not been designed with explicit objectives and incentives to raise academic 

performance.     

However, as noted above, selection bias can confound the analysis due to different 

observable and unobservable characteristics of the marginal students who would not have joined 

school, progressed until grade 11 and taken the exam in absence of the program. If it exists, this 

sort of selection will most probably introduce low-scorers into the distribution of the treatment 

group. To address the probability of sample selection for children that took the test, we 

performed bounding procedures to symmetrically truncate the distributions of the treatment and 

control group at a quantile φ0 where non-selected control children begin having positive scores 

(i.e. start taking the exam), that is, for each score Y, the following should hold: 𝑌�𝑞𝜑0� > 0 

(Appendix B provides more details on this methodology). This is equivalent to estimating the 

impacts for the students who would have taken the exam in the absence of the program (“always 

takers”). Given that the procedure rests on the assumption that the selection bias is negative, the 

unadjusted conditional-on-positive comparison of test scores provides a lower bound of the 

impact of the program. Table 6 presents Model 1, 2 and 3 in the following way:  the OLS 

                                                           
31 If regular attendance on average is lower than 80 percent of the classes.  
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estimates, the unadjusted nonparametric lower bound estimates, the quantile φ0 where non-

selected control children begin having positive scores, and the corresponding adjusted 

nonparametric upper bounds estimates. Overall, these findings do not provide an indication of 

program effects on test scores either. For the most part, program effects estimated at φ0 are 

insignificant. There are, however, some positive and significant effect of 0.098 and 0.069 of a 

standard deviation on Spanish and the overall test score, respectively. However, these results are 

very unstable and hold only for the specifications of the first model of participation in the 

matching analysis.   

 
In general, findings from the second research design (RDD) on the “SIFA + Sisben” sample, 

in Table 7, also indicate that program recipients who graduate from high school perform at the 

same level as equally poor non-recipient graduates. The graphical analysis32

 

 does not provide 

visual evidence of a jump in the regression function at the threshold. Overall, econometric results 

based on functional forms with second, third and fourth-order polynomials in general show that 

participant children do as good as the children in the control group in their math test scores. 

There is a partial negative effect of the program on Spanish (significant at the 5 percent level) 

but not consistent throughout all the functional form specifications. Furthermore, the findinga 

indicate that there is no systematic evidence of differential performance between participant and 

non-participant children based on the scores in the overall test. The non-parametric estimations 

(estimated on an optimal bandwidth close to the cutoff following Imbens and Kalyanaraman 

(2010)) consistently show that test scores are lower for treated children. Nevertheless we should 

take into that account that we were not able to correct for the negative selection bias, given that 

the controls appear to be over-represented in this data. Additionally, results coming from the 

non-parametric estimation use a local sample very close to the threshold assigned by the optimal 

bandwidth. When compared against the little evidence available, the absence of impacts of FA 

on learning outcomes reported in this paper mirrors the findings available from previous 

evaluations of comparable interventions in Mexico and Cambodia (Behrman and others, 2005; 

Filmer and Schady, 2009). 

                                                           
32 Not presented, but available upon request to the Authors. 
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5. Robustness Checks 
 

This section discusses the robustness of the findings regarding a number of identification 

issues that may affect the internal validity of the analysis. We start by discussing in more detail 

the quality of the treatment and control groups in terms of their comparability. In the case of 

matching, the underlying assumption states that there are no unobservables that could create 

nonrandom selection into the program after matching treated and control children on the 

estimated probability of assignment to treatment. Although there is no definitive test to formally 

rule out selection on unobservables, a series of checks on observable variables do not provide a 

serious indication of this type of bias in our matching analysis. We performed balancing checks 

to assess the comparability of treatment and control children after conditioning for a large set of 

observable pre-program characteristics at the individual, household, and community levels that 

explain participation into the program. Regression analysis shows that, after controlling for the 

probability of participation, no additional conditioning variables help predict the receipt of 

treatment. Furthermore, there are no major statistically significant differences in the conditioning 

variables between the treatment and control within the same strata of similar probabilities of 

program participation. These balancing tests are particularly robust for the first specification of 

the model of participation (Model 1). In addition to the common support restriction, we also 

dropped observations with probability of participation below 0.1 or above 0.9.   

 
As for the RDD approach, the analogous condition for identification is that the groups of 

people right below and above the threshold of eligibility need to be statistically equivalent and 

that the only difference between them is the treatment itself. To account for possible differences 

in addition to participation in the program, we run RDD models based on specifications 

including municipality fixed effects. Overall, the main findings of the paper regarding the 

impacts on high school completion appear to be stable across these different model 

specifications, signaling robustness to a variety of covariates. Unfortunately, it was not possible 

to control directly for school fixed effects in the econometric analysis. 33

                                                           
33 It was not possible to control for school fixed effects in the econometric analysis for at least three reasons. First, high school 
completion is observed only for individuals in the relevant ages that registered for the ICFES test and therefore it is impossible to 
know the school of children that were not matched to the ICFES database. Second, information with the name and code of 
schools exists only for a – probably not random- subsample of the students who took the ICFES test. Third, in many cases – 
particularly in small municipalities where the school supply is fixed – the inclusion of municipality fixed effects is expected to 
remove any existing school fixed effects.  

 This, however, seems to 
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be less problematic in the RDD since treatment and control groups are in some cases comprised 

of children that attend the same schools, particularly in small municipalities. Additionally, for the 

RDD analysis, we constructed a more balanced (trimmed) sample using the distribution of the p-

score and dropping units with a propensity score below 0.1 or above 0.9 to make estimates more 

precise and less sensitive to changes in specification (Crump et al. 2009).  

 
To test the identifying assumption of the RDD approach formally, we carried out a number of 

continuity checks on baseline characteristics at the individual and household level –all of them 

available from the census of the poor and used for the Sisben proxy-means test – that could be 

associated with the outcomes of interest. Figure 3 and Table 9 show graphical and regression 

analysis on the relationship between the Sisben poverty index score and these variables. Because 

of the large size of the sample used in the analysis, these differences are very precisely estimated. 

In general, there are not remarkable statistically significant differences in pre-program 

characteristics between the two groups on each side of the cutoff that could be argued to drive 

the results. In cases where the differences are statistically significant, the magnitude of the 

discontinuity is either relatively small in economic sense to drive the results (on average 0.046 

more children in households right above the threshold of eligibility) or the direction of the 

difference (smaller household size or larger home ownership) is unlikely to introduce a bias that 

could affect the interpretation of our results.   

 
Another potential concern in the RDD is the possibility that individuals could manipulate the 

assignment variable (the Sisben poverty index score) and generate nonrandom sorting around the 

threshold. For example, the RDD approach may be invalid if more motivated and education-

driven people seek to influence the value of their scores by taking actions such as hiding assets, 

‘borrowing’ children from other families to increase the size of the household, or bribing local 

authorities and program administrators. This may undermine the comparability of people on each 

side of the cutoff. While it is impossible to fully rule out this type of behavior in the context of 

FA, there are several reasons to believe that direct manipulation of the assignment mechanism is 

not a major concern for identification. First, an examination of the density of the Sisben score, 

presented in Figure 4, itself shows that there are no jumps in the distribution at the eligibility 
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threshold of this program34

 

 for the whole sample or when broken down by gender and location. 

Second, and related to the continuity checks discussed above, there is no evidence of discrete 

changes in the distribution of other observable dimensions beyond the probability of 

participation in the program that could indicate some degree of manipulation of the scoring and 

ranking system. 

Another issue is the possibility of nonrandom migration and crossover. In theory, families in 

control areas could try to migrate to treatment areas to become eligible for the program. This 

may affect the internal validity of the analysis if, for instance, families that are poor – and 

perhaps systematically different from non-migrants in other dimensions – are more likely to 

engage in this type of migration. Similarly, parents that live in control areas may prefer to send 

their children to schools that serve program beneficiaries if they are perceived to be of higher 

quality and are within their geographical reach. There are, however, a number of reasons to think 

that migration and crossover effects of this sort are unlikely to invalidate the findings of this 

paper. First, migration from control to treatment municipalities is close to zero among the 

baseline households examined in the PSM approach and that were resurveyed in the two 

subsequent rounds of longitudinal data collected in 2003 and 2005. Second, as noted above, part 

of the control group used for the RD analysis is comprised of children and adolescents that are 

above the cutoff of eligibility but reside in the same municipalities than participating children. 

Third, the economic incentives induced by the amount of the transfer (around $7-14 per eligible 

child) are probably not enough to compensate for the direct and indirect costs of migration. 

Fourth, Acción Social, the national agency that administers the program opens calls for 

inscription and enrollment into the FA program only on specific dates for each municipality, 

making it impossible for people to join the program at other times.  

 
Problems of misspecification of the underlying regression models may introduce bias in 

treatment effects, particularly in the RD design. In order to avoid such problems, we checked the 

sensitivity of program impacts using various alternative specifications. Overall, the existence or 

lack of program effects on school completion and test scores, respectively, from the first 

approach is fairly stable across parametric (OLS) and nonparametric (matching) models. 
                                                           
34 Camacho and Conover (2011) find evidence of manipulation for the Sisben proxy-means test constructed with the same census 
of the poor. However, this problem occurs only for people around the level 2 threshold which determines eligibility for other 
social programs such the Subsidized Health Insurance (Régimen Subsidiado). 
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Similarly, and given that the consequences of model misspecification are more serious in the 

RDD approach, the empirical models in this design were run for a number of low-order 

polynomial functions as well as other more flexible functional forms including third- and fourth-

order polynomials and non-parametric models. The direction – and even in some cases the 

magnitude – of the RDD estimates to test for school completion are robust to the inclusion of 

different polynomial terms in the control function.  

 
Finally, another concern is that the higher rates of matching survey data and test records 

observed for the treatment group may be driven by differences in the merging procedures and 

quality of information rather than by the effect of the program. In particular, considering that part 

of the information used to construct the treatment and control groups come from different 

datasets, it could be that the individual-level variables used to merge them (name, date of birth 

and national identification number) may be more accurate for people in the treatment group. For 

instance, surveyors that collected the data for the short-term impact evaluation could have been 

more careful to correctly keep the information to identify individuals in the treatment group for 

the subsequent rounds of data collection. Similarly, as part of the regular updates of the data 

entered in the information systems of FA (SIFA), program administrators may be more likely to 

correct mistakes in names, birth dates, and national identification numbers of program 

beneficiaries. As a result, individuals in the treatment group may be more likely to be matched 

with records in the Icfes database, not because they are more likely to take the test, but because 

of better information quality. In practice, however, measures computed from the matching 

algorithms such as the Levenshtein distance do not indicate systematic differences in the 

accuracy of data between the treatment and control groups. Therefore, it seems unlikely that this 

could be a reason to find children covered by the FA program to be more likely to be matched to 

Icfes registration records. 

 

6. Conclusions 
 

Despite growing efforts directed to assessing the impacts of CCTs, the most popular type of 

safety net applied in developing countries, on education, gaps in knowledge exist as to whether 

the largely documented positive effects on enrollment and attendance are sustained over time and 

result in higher school attainment. The evidence on the relationship between higher utilization of 
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school inputs due to CCTs and learning outcomes is equally scant. This paper seeks to help fill 

these gaps by empirically investigating the schooling trajectories and academic performance of 

various cohorts of participant children who have different levels of program exposure ranging 

from one to nine years. We find robust evidence that the FA program increases school attainment 

by helping participant children to finish high school. Indeed, treated children are on average 

between 4 and 8 percentage points – equivalent to an increase of 8-16 percent – more likely to 

graduate from high school relative to those in the control group. If at present the program 

supports nearly 3.5 million poor children and only about 36 percent of the children in Colombia 

who start primary school are expected to graduate from high school35, a conservative 

extrapolation of program impacts to this population would be equivalent to around 100,000-

200,000 additional high school graduates.36

 

. Moreover, the size of these program impacts is in 

the same range of magnitude as the effects found in similar CCT and education fee waiver 

programs in Colombia and Pakistan.  

By encouraging participant children to finish high school, the FA program is expected to 

have other positive effects on further human capital gains (increasing the probability of entering 

into higher education), future employability, and income growth. As is the case in most 

developing countries, finishing high school is a critical achievement for low-income individuals 

and may lead to significant positive externalities in various dimensions. The first obvious 

channel is eligibility to apply for college or formal technical training, which may increase their 

qualifications and economic prospects.37

                                                           
35 Reference about work from Sanchez 

 Likewise, having a high school diploma already has a 

fairly high value in the labor market in the form of improved access to more and better jobs and 

higher wages. Moving to other plausible dynamic effects, empirical findings in the Colombian 

context suggest that more educated individuals tend to not only have fewer children but also 

36 If households classified in SISBEN 1 have on average 1.37 children between 7 and 18 years and the number of families 
covered by the program is about 2.8 million, FA supports nearly 3.8 million children. The effect of the program in terms of the 
number of students is proxied by the increment in the high school completion rates induced by the program (from 36 percent to 
40-44 percent) with respect to the 3.8 million that are currently participating in FA. Estimates based on the high school 
completion rates observed for the control group from the PSM analysis (children between grades 4 and 10 at baseline) suggests 
that approximately 50 percent of these children would graduate from high school. Applying the effects of the program to this 
completion rate implies that the aggregate effect would be in the order of 140,000-280,000 additional high school graduates. 
37 Indeed, recent evidence for Colombia shows that higher education (college and technical training) provides positive returns on 
wages that range from 7.4 to 12.8 percent (García-Suaza et al., 2009). 
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invest more in their human capital, consistent with the prediction of theories about the trade-offs 

in the quantity and quality of children.38

 

  

The impact analysis on learning outcomes shows mostly no statistical differences in test 

scores between the treatment and equally disadvantaged control group children. Furthermore, 

there is no clear pattern in the direction, size, and significance of impact estimates across 

different model specifications after adjusting for the probability of sample selection that restricts 

the treated sample to children that would have finished school even without the program. The 

fact that children covered by FA do not perform better than non participant children despite the 

monetary transfer and the conditionality is in line with existing evidence on similar programs in 

Mexico and Cambodia. CCT programs could have various conflicting effects on the learning 

outcomes of participant children. On one hand, beneficiary children may be expected to perform 

better as they stay more in school and their parents invest more time and money in their nutrition, 

health and education. On the other hand, these interventions are often targeted to disadvantaged 

areas where the quality and supply of education are probably low. Besides, the increase in the 

demand for schooling could also cause classroom congestion and induce negative peer effects.  

 

Although interventions like CCTs are designed to improve school participation of poor 

children, not to directly raise learning, there is growing concern regarding the level of skills and 

quality of education with which program participants seek admission to higher education or enter 

the labor force after exiting the program. Therefore, assessing the potential of CCTs and/or 

supplementary interventions for increasing learning is critical for policy making. Innovations in 

project design (for instance, changing the timing of transfers or tying them to performance rather 

than attendance) as well as supplementary supply-side interventions aimed at improving school 

quality and increasing resources for low-performing students are possible options. Pilot tests, 

together with careful evaluations, would surely yield valuable knowledge about the efficacy of 

these policies in linking the objectives of increasing human capital with improving learning 

outcomes.   

  
                                                           
38 Conditional correlations show, for instance, that having a secondary education degree reduces the expected number of children 
by 27 percent, almost twice the effect calculated for primary education; in addition, children’s enrollment status and educational 
attainment are shown to be largely determined by their parents’ education (N. Forero and L. Gamboa, 2009; Nunez and Sanchez, 
2003). 
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Table 1. Summary Statistics, t-tests and Normalized Differences by Treatment Status 

(Sample for the Matching Analysis) 
 

 
Notes: Significant at 90(*), 95(**), 99(***) percent confidence. Summary statistics calculated for households with at least one child (enrolled or not in school) 
who were 18 or below when she joined the program and that, based on their school attainment at the pre-program time, could have achieved grade 11 between 
2003 and 2009. 

 
 
 
 
 
 
 
 
  

Mean N Mean N
Demographic

Age (household head) 45.330 2,415 44.940 1,766 0.390 1.076  0.034
Age (spouse) 41.388 2,415 41.002 1,766 0.386 1.115  0.035
Age (child) 12.359 2,420 12.481 1,766 -0.123 -1.746 * -0.055
Gender (household head) 0.772 2,420 0.840 1,766 -0.068 -5.576 *** -0.173
Gender (child) 0.436 2,420 0.428 1,766 0.008 0.517  0.016

Household structure
Is household single headed? 0.021 2,420 0.020 1,766 0.002 0.376  0.012
Number of household members 6.072 2,420 6.165 1,766 -0.093 -1.327  -0.042
Number of children 1.337 2,420 1.419 1,766 -0.082 -2.484 ** -0.078

Consumption and assets
Monthly household consumption 200,000 2,362 212,000 1,697 -12,600 -3.80 *** -0.12
Does the family own the house? 0.667 2,420 0.649 1,766 0.018 1.184  0.037

Education, health and work
Does household head read? 0.826 2,276 0.831 1,673 -0.004 -0.362  -0.012
Household head completed secondary or more? 0.057 2,267 0.078 1,673 -0.02 -2.493 ** -0.081
Years of schooling (household head) 3.715 2,129 4.037 1,576 -0.322 -2.969 *** -0.099
Did children suffer from diarrhea? 0.112 1,086 0.112 702 0 0.013  0.001
Does household head work? 0.887 2,316 0.885 1,720 0.002 0.182  0.006

Dwelling characteristics
Located in an urban area? 0.562 2,420 0.695 1,766 -0.133 -8.943 *** -0.278
No walls? 0.007 2,414 0.011 1,765 -0.004 -1.41  -0.045
Connected to piped water? 0.685 2,409 0.762 1,766 -0.078 -5.599 *** -0.174
Connected to gas? 0.12 2,390 0.14 1,759 -0.021 -1.955 * -0.062
Connected to sewage? 0.334 2,417 0.324 1,766 0.01 0.708  0.022

Community
Altitude 658.161 2,415 567.069 1,766 91.092 3.846 *** 0.121
Students per teacher 22.485 2,415 22.678 1,766 -0.192 -1.139  -0.036
Square metres of classroom per student 2.949 2,415 2.502 1,766 0.448 6.969 *** 0.215
Number of banks 1.694 2,369 0.909 1,766 0.784 14.215 *** 0.446
Number of health centers 1.134 2,369 0.844 1,766 0.29 6.875 *** 0.215
Region = East? 0.214 2,415 0.245 1,766 -0.03 -2.281 ** -0.072
Region = Central? 0.289 2,415 0.162 1,766 0.127 9.953 *** 0.307
Region = Pacific? 0.114 2,415 0.127 1,766 -0.013 -1.227  -0.039
Affected by violent attacks? 0.025 2,415 0.031 1,766 -0.006 -1.107  -0.035

NDVariable Treated Control t-stat SignificanceDifference
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Table 2. Variables included in Models 1, 2 and 3 as determinants of participation in FA program 

 
Notes: a Measured in square meters per student in the municipality.  

 
 

Variables Model 1 Model 2 Model 3
Age X X
Order of the child X X
Household head is married X X X
Household head works X X
Male household head X X
Age household head X X X
Urban X X
Household head  years of schooling X X
Number of children ages 7 to 11 X X
Number of children ages 12 to 17 X X
Monthly expenditures X X
Teacher-pupil ratio in municipality X
Classroom spacea X
Resides in most dense part of municipality X
Resides in least dense part of municipality X
Number of urban schools registered in the municipality X
Number of rural Schools registered in the municipality X
Live in a rural disperse area X
Live in a rural populated area X
Age spouse of household head
Education of household head: incomplete  primary X
Education of household head: complete  primary X
Education of household head: incomplete  secondary X
Education of household head: complete  secondary X
Education spouse: incomplete  primary X
Education spouse: complete  primary X
Education spouse: incomplete  secondary X
Education spouse: complete  secondary X
Family lives in a house or room X
Wall materials: Tapia, Abobe or Bahareque X
Wall materials: wood X
Wall materials: bad quality wood X
Wall materials: cardboard or no Walls X
House has is connected to natural gas  X
House has water pipe X
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Table 3. Probability of Participation in FA Program 
(First Stage Estimates – ‘Fuzzy’ RDD) 

 
Notes: Heteroskedasticity-robust standard errors reported in square bracket. Significant at 90(*), 95(**), 99(***) percent 
confidence. The units of observation are children (enrolled or not in school) who were  18 years old or younger when 
they joined the program and that, based on their school attainment at the preprogram time, could have achieved grade 11 
between 2003 and 2009 and the number of years needed to complete high school was lower than the number of years of 
treatment. Models include quadratic [(Si - S*)2], cubic [(Si - S*)3], and quartic [(Si - S*)4] specifications of the control 
function below and above the cutoff of eligibility S*. Optimal bandwidths for non-parametric models were computed 
following a cross-validation method suggested by Imbens and Kalyamaran (2010) 

 

  

(1) (2) (3) (4) (5) (6) (7)

Eligibility 0.732*** 0.726*** 0.731*** 0.726*** 0.705*** 0.714***
[0.002] [0.001] [0.001] [0.001] [0.002] [0.002]

Observations 624,028 624,028 624,028 624,028 624,028 624,028
R2 0.688 0.741 0.688 0.741 0.689 0.742

Eligibility 0.702*** 0.711*** 0.706*** 0.708*** 0.696*** 0.702*** 0.703***
[0.002] [0.002] [0.002] [0.002] [0.003] [0.002] [0.008]

Observations 624,028 624,028 624,028 624,028 624,028 624,028 14,647
R2 0.689 0.742 0.689 0.742 0.690 0.742
Quadratic Yes Yes
Cubic Yes Yes
Quartic Yes Yes
Municipality fixed effects Yes Yes Yes
Imbens Optimal Bandwidth 0.7573

Panel A: Same functional form above and below threshold

Panel B: Different functional form above and below threshold
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Table 4 - OLS and Matching Estimates of the Impacts of FA Program on High School Completion 

 
Significant at 90(*), 95(**), 99(***) percent confidence. Bootstrapped standard errors reported in square brackets are 
obtained from 200 replications.The units of observation are children (enrolled or not in school at baseline) who were 18 or 
below at baseline (2002) and that, based on their school attainment at the preprogram time, could have achieved grade 11 
between 2003 and 2009 and the number of years needed to complete high school was lower than the number of years of 
treatment. The mean high school completion rate of the control group for the period 2003-2009 is 0.501. Units of analysis 
are matched on the propensity score from three different specifications of a logistic regression on participation in the 
program. Preprogram covariates of each specification of the logit models of participation are listed in Table 2. 

 
 
 

  
 

 
  

OLS Matching OLS Matching OLS Matching
All sample 0.030* 0.0401** 0.050***  0.0840** 0.049*** 0.0696 **

[0.017] [0.0187] [0.018] [0.0220] [0.017] [0.0214]
Observations 3,452 3,476 3,452 3,476 3,861 3,888
Boys 0.011 0.0206 0.036      0.0661* 0.041      0.0587*

[0.026] [0.0301] [0.027] [0.0363] [0.026] [0.0348]
Observations 1,478 1,490 1,478 1,490 1,676 1,687
Girls 0.046**      0.0523** 0.065***      0.0856*** 0.062***      0.0899***

[0.022] [0.0245] [0.023] [0.0290] [0.023] [0.0290]
Observations 1,974 1,986 1,974 1,986 2,185 2,198
Urban -0.008 -0.0052 0.015      0.0492* 0.019 0.0391

[0.021] [0.0229] [0.022] [0.0274] [0.022] [0.0254]
Observations 2,102 2,120 2,102 2,120 2,352 2,372
Rural 0.091***      0.0868*** 0.115***      0.1044*** 0.108***      0.1176***

[0.028] [0.0314] [0.029] [0.0402] [0.029] [0.0398]
Observations 1,350 1,356 1,350 1,356 1,509 1,514

(1) (2) (3)

Dependent Variable:School Completion
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Table 5. RDD- 2SLS Estimates of the Impacts of FA on High School Completion 

 
Notes: Heteroskedasticity-robust standard errors reported in square bracket. Significant at 90(*), 95(**), 99(***) 
percent confidence. The units of observation are children (enrolled or not in school) who were  18 or below when they 
joined the program and that, based on their school attainment at the pre-program time, could have achieved grade 11 
between 2002 and 2009 and the number of years needed to complete high school was lower than the number of years 
of treatment. Models include quadratic [(Si - S*)2], cubic [(Si - S*)3], and quartic [(Si - S*)4] specifications of the 
control function below and above the cutoff of eligibility S*. Optimal bandwidths for non-parametric models were 
computed following a cross-validation method suggested by Imbens and Kalyamaran (2010).  

 
 
 
 

 
 

(1) (2) (3) (4) (5) (6) (7)
All sample 0.011*** 0.018*** 0.026*** 0.027*** 0.052*** 0.039*** 0.024**

[0.003] [0.003] [0.004] [0.004] [0.005] [0.005] [0.011]
Observations 624,028 624,028 624,028 624,028 624,028 624,028 25,249
Imbens Optimal Bandwidth 1.3101
Boys 0.016*** 0.023*** 0.023*** 0.025*** 0.045*** 0.033*** 0.023

[0.004] [0.004] [0.005] [0.005] [0.007] [0.006] [0.015]
Observations 308,345 308,345 308,345 308,345 308,345 308,345 11,374
Imbens Optimal Bandwidth 1.204
Girls 0.007 0.014*** 0.029*** 0.029*** 0.059*** 0.045*** 0.018

[0.005] [0.005] [0.006] [0.006] [0.007] [0.007] [0.017]
Observations 315,544 315,544 315,544 315,544 315,544 315,544 11,191
Imbens Optimal Bandwidth 1.143
Urban 0.000 -0.000 0.018** 0.022*** 0.060*** 0.044*** 0.042**

[0.006] [0.006] [0.007] [0.007] [0.009] [0.009] [0.019]
Observations 257,689 257,689 257,689 257,689 257,689 257,689 10,202
Imbens Optimal Bandwidth 1.414
Rural 0.026*** 0.029*** 0.021*** 0.022*** 0.051*** 0.038*** 0.021*

[0.004] [0.004] [0.005] [0.005] [0.006] [0.006] [0.013]
Observations 359,952 359,952 359,952 359,952 359,952 359,952 16,078
Imbens Optimal Bandwidth 1.342
Quadratic Yes Yes
Cubic Yes Yes
Cuartic Yes Yes
Municipality fixed effects Yes Yes Yes

Dependent Variable: High School Completion 2SLS. Effect of Predicted FEA
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Table 6. OLS and lower and upper bound Matching Estimates of Program Impacts on Mathematics, Spanish, and Overall Test Scores  
 

 
Notes: Test scores are normalized by the mean and the standard deviation in each subject by semester. The definition of the overall test score excludes results of the foreign language test chosen by the 
student. Bootstrapped standard errors reported in square brackets are obtained from 200 replications. Significant at 90(*), 95(**), 99(***) percent confidence. The units of observation are children 
(enrolled or not in school) who were 18 or below at baseline (2002) and that based on their school attainment at the preprogram time could have achieved grade 11 between 2003 and 2009, the number 
of years needed to complete high school was lower than the number of years of treatment, and registered for the ICFES test. Units of analysis are matched on the propensity score from three different 
specifications of a logistic regression on participation in the program. Preprogram covariates of each specification of the logit models of participation are listed in Table 2.  

 
 
  

OLS
Lower 
Bound

 Control 
Ф

Upper 
Bound OLS

Lower 
Bound

 Control 
Ф

Upper 
Bound OLS

Lower 
Bound

 Control 
Ф

Upper 
Bound

Mathematics -0.401 -0.0189 48 0.033 -0.593 -0.0141 50 0.0374 -0.265 -0.0439 60 0.0179 
[0.392] [0.0474] [0.0419] [0.413] [0.0545] [0.0495] [0.410] [0.0558] [0.0464]

Observations 1,867 1,867 1,850 1,867 1,867 1,850 2,047 2,044 2,023
Spanish 0.398 0.0502 48 0.0982** 0.079 -0.0113 50 0.0421 0.246 0.0171 60 0.0689 

[0.350] [0.0465] [0.0438] [0.368] [0.0902] [0.0525] [0.370] [0.0579] [0.0567]
Observations 1,867 1,867 1,847 1,867 1,867 1,847 2,047 2,044 2,021
Overall test score 0.179 0.0292 48 0.0698** -0.086 0.0040 60 0.0413 0.184 0.0171 60 0.0498 

[0.226] [0.0327] [0.0328] [0.237] [0.0340] [0.0419] [0.239] [0.0361] [0.0358]
Observations 1,867 1,867 1,850 1,867 1,867 1,850 2,047 2,044 2,022

Outcome: Test 
Score

(3)(2)(1)



40 
 

 
 
 
 
 
 
 
 
 
 

Table 7. RDD - 2SLS Estimates of the Impacts of FA Program on Test Scores. 

 
Notes: Test scores are normalized by the mean and the standard deviation in each subject by year. The definition of the overall test score 
excludes results of the foreign language test chosen by the student. Heteroskedasticity-robust standard reported in square bracket. 
Significant at 90(*), 95(**), 99(***) percent confidence. The units of observation are children (enrolled or not in school) who were 18 or 
below when they joined the program and that, based on their school attainment at the pre-program time, could have achieved grade 11 
between 2003 and 2009, and the number of years needed to complete high school was lower than the number of years of treatment. Models 
include linear [(Si - S*)], quadratic [(Si - S*)2], cubic [(Si - S*)3], and quartic [(Si - S*)4] specifications of the control function below and 
above the cutoff of eligibility S*. Optimal bandwidths for non-parametric models were computed following a cross-validation method 
suggested by Imbens and Kalyamaran (2010) 

 
  

Outcome: Test scores (1) (2) (3) (4) (5) (6) (7)
Mathematics -0.024 -0.022 -0.034 -0.034 -0.002 -0.015 -0.048***

[0.018] [0.018] [0.023] [0.022] [0.027] [0.027] [0.015]
Observations 131,744 131,744 131,744 131,744 131,744 131,744 11,689
Imbens Optimal Bandwidth 0.60
Spanish -0.044** -0.039** -0.037 -0.037 -0.039 -0.048* -0.100***

[0.018] [0.018] [0.023] [0.023] [0.028] [0.027] [0.010]
Observations 131,744 131,744 131,744 131,744 131,744 131,744 24,724
Imbens Optimal Bandwidth 1.283
Overall test score -0.020 -0.020 -0.025 -0.028* -0.009 -0.025 -0.057***

[0.013] [0.013] [0.016] [0.016] [0.020] [0.019] [0.009]
Observations 131,744 131,744 131,744 131,744 131,744 131,744 17,031
Imbens Optimal Bandwidth 0.886
Quadratic Yes Yes
Cubic Yes Yes
Quartic Yes Yes
School fixed effects Yes Yes Yes
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Table 8. RDD- 2SLS Estimates of the Impacts of FA on Mathematics, Spanish, and Overall Test Scores  
(by gender and area) 

 
Notes: Scores are normalized by the mean and the standard deviation in each subject by year. The definition of the overall test 
score excludes results of the foreign language test chosen by the student. Heteroskedasticity-robust standard reported in square 
bracket. Significant at 90(*), 95(**), 99(***) percent confidence. The units of observation are children (enrolled or not in 
school) who were 18 or below at baseline (2002) and that based on their school attainment at the preprogram time could have 
achieved grade 11 between 2003 and 2009, the number of years needed to complete high school was lower than the number of 
years of treatment and registered for the ICFES test. Models include linear [(Si - S*)], quadratic [(Si - S*)2], cubic [(Si - S*)3], 
and quartic [(Si - S*)4] specifications of the control function below and above the cutoff of eligibility S*. Optimal bandwidths 
for non-parametric models were computed following a cross-validation method suggested by Imbens and Kalyamaran (2010).  

Outcome: Test scores (1) (2) (3) (4) (5) (6) (7)
Boys
Mathematics -0.008 -0.005 -0.007 -0.007 0.039 0.025 0.036**

[0.029] [0.029] [0.035] [0.035] [0.042] [0.041] [0.015]
Observations 57,637 57,637 57,637 57,637 57,637 57,637 9,319
Spanish -0.072** -0.061** -0.075** -0.066* -0.064 -0.057 -0.111***

[0.028] [0.028] [0.035] [0.034] [0.042] [0.041] [0.012]
Observations 57,637 57,637 57,637 57,637 57,637 57,637 12,828
Overall test score -0.018 -0.014 -0.029 -0.028 -0.005 -0.015 -0.064***

[0.021] [0.021] [0.026] [0.025] [0.031] [0.030] [0.010]
Observations 57,637 57,637 57,637 57,637 57,637 57,637 11,619
Girls
Mathematics -0.041* -0.036 -0.051* -0.049* -0.035 -0.045 -0.132***

[0.024] [0.024] [0.029] [0.029] [0.035] [0.035] [0.021]
Observations 74,087 74,087 74,087 74,087 74,087 74,087 6,992
Spanish -0.024 -0.022 -0.011 -0.012 -0.021 -0.034 -0.073***

[0.024] [0.024] [0.030] [0.030] [0.037] [0.036] [0.019]
Observations 74,087 74,087 74,087 74,087 74,087 74,087 8,119
Overall test score -0.024 -0.026 -0.021 -0.025 -0.011 -0.028 -0.068***

[0.017] [0.017] [0.021] [0.021] [0.026] [0.025] [0.011]
Observations 74,087 74,087 74,087 74,087 74,087 74,087 12,881
Urban
Mathematics 0.019 0.026 0.020 0.019 0.006 -0.011 -0.063***

[0.028] [0.028] [0.034] [0.034] [0.042] [0.042] [0.019]
Observations 64,036 64,036 64,036 64,036 64,036 64,036 9,076
Spanish 0.003 0.020 0.014 0.022 0.024 0.024 0.018

[0.027] [0.027] [0.033] [0.033] [0.042] [0.041] [0.025]
Observations 64,036 64,036 64,036 64,036 64,036 64,036 4,443
Overall test score 0.020 0.034* 0.032 0.037 0.030 0.018 -0.017

[0.020] [0.020] [0.024] [0.024] [0.031] [0.030] [0.014]
Observations 64,036 64,036 64,036 64,036 64,036 64,036 8,413
Rural
Mathematics -0.057** -0.060** -0.063** -0.051 -0.048 -0.064* -0.017

[0.028] [0.027] [0.032] [0.032] [0.039] [0.039] [0.011]
Observations 65,523 65,523 65,523 65,523 65,523 65,523 8,925
Spanish -0.072*** -0.077*** -0.092*** -0.075** -0.090** -0.102*** -0.154***

[0.028] [0.027] [0.032] [0.033] [0.040] [0.039] [0.012]
Observations 65,523 65,523 65,523 65,523 65,523 65,523 14,116
Overall test score -0.056*** -0.064*** -0.087*** -0.074*** -0.066** -0.084*** -0.065***

[0.020] [0.020] [0.023] [0.023] [0.029] [0.028] [0.011]
Observations 65,523 65,523 65,523 65,523 65,523 65,523 9,223
Quadratic Yes Yes
Cubic Yes Yes
Quartic Yes Yes
Municpality fixed effects Yes Yes Yes
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Table 9. Continuity Checks for Preprogram Household and Individual Level Variables 

 
Notes: Heteroskedasticity-robust standard errors reported in square bracket. Significant at 90(*), 95(**), 99(***) percent confidence. Regressions include quartic specifications of the control 
function below and above the cutoff of eligibility S*. Optimal bandwidths were computed following a cross-validation method suggested by Imbens and Kalyamaran (2010). 

Variable Imbens 0.25 points Variable Imbens 0.25 points Variable Imbens 0.25 points
Household size -0.145*** 0.470 Social Security 0.012 -0.039 Fridge -0.01 0.092*

[0.054] [0.322] [0.013] [0.066] [0.009] [0.052]
Observations 26,970 9,907 498,138 9,907 23,608 9,897
Kids 0.046* 0.290 Farmer 0.001 0.014 Dining -0.007 -0.029

[0.028] [0.183] [0.002] [0.009] [0.010] [0.043]
Observations 34,368 9,907 15,660 9,907 16,077 9,907
Household head age -0.168 -0.657 Male -0.002 0.030 Bed 0.015 0.033

[0.193] [1.560] [0.014] [0.084] [0.028] [0.134]
Observations 55,962 9,907 24,477 9,907 18,764 9,907
Household head male 0.016 0.017 Age -0.007 -0.062 Owner 0.039** -0.056

[0.012] [0.064] [0.080] [0.476] [0.017] [0.077]
Observations 20,076 9,907 34,045 9,907 16,608 9,907
Household head education -0.033 0.120 Regular Activity 0.087 0.117

[0.029] [0.187] [0.060] [0.379]
Observations 30,456 9,886 35,097 9,907
Partner education -0.039 0.060

[0.025] [0.206]
Observations 32,181 7,749
Married household -0.011 -0.033

[0.014] [0.070]
Observations 23,186 9,907

Household variables Characteristics of the houseIndividual variables
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Figure 1. Effects of the SISBEN Score on Participation in the Program 

 
Notes: The X axis presents the normalized distance of each child’s proxy-means score to the 
cutoff that is used to classify households as SISBEN 1 and determines eligibility to the 
program. The Y axis presents the program participation probability. 

 

Figure 2. Impacts of FA on High School Completion (RD Analysis) 

 
Notes: The X axis presents the normalized distance of each child’s proxy-means score to the 
cutoff that is used to classify households as SISBEN 1 and determines eligibility to the 
program. The Y axis presents the probability of the child completing high school. 
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Figure 3. Continuity Checks for Household- and Individual-level Variables 
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Figure 3. Continuity Checks for Household- and Individual-level Variables (continued) 
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Figure 4. Distribution of the SISBEN Score  
(total and by gender and area) 
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Appendix A -- Data Merging Procedures 
 
 
Propensity Score Matching. The propensity score matching exercise builds on the short- and middle-
term evaluation and utilizes data from the survey collected in 2002 (There are more than 10,000 
households,and51,056 individuals who were seven years or older at the baseline. This sample is merged 
with the ICFES database of around 6 million registrants between 2000 and 2009 to obtain their test scores 
and estimate whether they have completed high school. The ICFES tests are administered in Colombia 
twice a year - October and May – and are used as a pre-requisite for enrollment into tertiary education. 
The majority of students who took the ICFES tests (90 percent) have finished their 11th grade and around 
90 percent of high school graduates take the test so the test registration is a good estimator for secondary 
school graduation (World Bank, 1993; Angrist et al., 2006). Although the ICFES exam takers in 2000 and 
2001 could not have participated in the FA, which started in 2002, they are kept in the dataset because 
they may include older siblings of FA participants for the analysis of the program indirect effects.  
 
Since one of the relevant outcomes is high school completion, different merging strategies are used to 
enhance the probability of finding the surveyed individuals in the ICFES database, making sure that 
relevant people are not excluded. If an individual is not matched to any ICFES registration, it is assumed 
that the child did not take the test, either because they did not finish 11th grade or because they chose not 
to. The latter is more unlikely because of the high proportion of secondary school graduates that take the 
ICFES exam (Angrist et al., 2006). There are many difficulties in matching the sampled children with the 
ICFES registration. However, there is no reason to believe that the matching errors, often due to name and 
ID mismatches, would be systematically different between the treatment and control groups. 
 
Four different merging methods are employed:  
 
• The first method uses only the ID numbers reported in the surveys as the matching criterion. This is a 

unique ID number assigned to all citizens of Colombia when they turn 11-12 years old. However, the 
ID numbers change when individuals turn 18, which may result in the failure to match individuals 
who took the ICFES test at or after 18 years of age. Furthermore, since an ID includes 11 digits, there 
are, expectedly, many occasions of IDs being misreported in the evaluation surveys. This merge, 
consequentially, gives only 4,048 matched observations.  

• The second method uses only full name as the matching criterion with the probability of 
orthographical mistakes (for instance, Catherine vs. Katherine). While this may resolve the issue of ID 
change or misreporting as observed in the first method, it has some potential mismatches due to a 
number of common last names in Colombia. It is therefore important to be cautious of the likelihood 
of matching different individuals with the same name. This merge results in 6,563 matches.  

• The third method uses both the two last names and date of birth for merging. Again, due to many 
common last names in Colombia, this method does not guarantee unique matches. The merge provides 
46,360 observations.  

• The final method uses the two last names and the first 7 digits of the ID number for the merge.39

 

 For 
children under 18 years of age, the first 6 digits correspond to the date of birth so this strategy is 
potentially more accurate than the third method of using last names and date of birth. With shorter 
IDs, it is also expected that there are fewer misreporting cases than in the first method. However, since 
the short ID numbers are not unique, this strategy has similar issue with the full name merge. It 
provides 5,927matches.  

The results from all four matches are used to minimize the probability of exclusion. In order to ensure that 
the matches are correct, the four merges are appended and subject to three cleaning processes. First, the 
                                                           
39 The IDs distributed before 2004 have 9 digits. We used 7 digits in order to maximize the number of merges we could get.  
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records with the exact name and similar date of birth are kept (either the same date and month of birth and 
within four years of birth, or the same year of birth and within two months and two days of birth). Second, 
those that do not fulfill the first check are tested whether they have the exact date of birth and similar 
name (again, to account for orthographical mistakes). Finally, among those that fail both tests, the 
observations with similar name and similar date of birth are kept to account for mistakes in recording.  
After each cleaning, duplicates are checked within both the evaluation survey sample and the ICFES 
dataset. Only the duplicates across both datasets are deleted to avoid eliminating individuals that took the 
exam multiple times. The result is 5,022 observations. When multiple test scores are found for one 
individual, the first test result is kept, which produces 4,820 records corresponding to unique individuals. 
This final data set makes up the sample used in the analysis.  
 
The accuracy of the merges is tested using the information on students enrolled in schools in the 
evaluation surveys. This test follows the cohorts of students who in principle could have completed the 
11th grade between 2000 and 2009, assuming no grade repetition, and obtains 5,395 records. Again, this 
includes students who could have finished high school in 2000 and 2001 since they serve as the analysis 
group for another outcome. Incorporating the average dropout rates of students from grades 7 to 11, there 
should be 4,073 individuals who completed the 11th grade within this time period. The final sample of 
4,820 individuals obtained from the merging and cleaning process comes quite close to this estimate.   
Among the 4,820 matched individuals, 3,002 have exactly the same full name and date of birth. Among 
the 5,022 matched records, 67 percent are 18 years old or younger and 88 percent are under 20 at the time 
they took the test. Most of the observations correspond to tests taken in the second semester of the year 
when public schools administer the exam, which is consistent with the fact that most of FA beneficiaries 
attend public schools.  
 
Regression Discontinuity Design. As for the RD analysis, the merge uses three set of administrative data: 
(1) the System of Information of Beneficiaries of the program (SIFA) provided by Acción Social; (2) the 
Poverty Index Score Survey collected between 1994 and 2003 (SISBEN); and (3) records on registration 
for the national ICFES test. The following steps describe the use of these data: 
 
• SIFA is used to construct the treatment groups whereas SISBEN provides the control group – 

individuals under and above the threshold of eligibility, respectively. 
• After running the same merging procedures followed in the PSM analysis, the merge is able to 

identify that 95 percent of the matching distribution was born between the years of 1975 and 1994.  
This information is used to restrict the sample to those individual that are mostly likely to be merged 
between SIFA+SISBEN and ICFES. 

• The analysis focuses on information from the SISBEN survey that was collected between 1994 and 
2003, since FA targeted the beneficiaries during the first phase of the program with the scores from 
the first version of the poverty score index.  For consistency of result, the sample is restricted in this 
way to evaluate comparable children who joined the program during the first expansion that took 
place between 2002 and 2003; these children come from the records of SIFA in 2001-06. 

• The same four merging strategies employed in the PSM analysis were followed to guarantee the 
comparability of the outcome variable that measures secondary school completion.  

• Individuals with score zero were excluded from the analysis for two reasons: First, it is not possible to 
establish whether a score zero is the result of a problem in the algorithm -- the probability of getting 0 
is very low. Second, the probability of getting FA is much lower for this group when compared with 
the probability of receiving the treatment for people with scores equal to one. 
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Appendix B – Methodology for Nonparametric Bounds of Program Impacts 

 
This paper uses the results of ICFES, a mandatory academic test given to students in school, to infer the 
impacts of FA on learning outcome. Such approach is problematic from a methodological standpoint 
because the program increases school enrollment and attendance among beneficiaries and with it the 
probability that they take the exam. Participant children are therefore more likely than nonparticipants to 
register for the ICFES test, which makes the scores distributions of beneficiaries and nonbeneficiaries not 
comparable. The intuition behind this is a selection bias created by the ‘marginal’ child who is brought 
into school due to the incentives of the program and may be different in many dimensions (socio-
economic background, inner ability, motivation, expected returns to schooling, etc.) than those already 
enrolled in school. For these reasons, a simple comparison of participant and nonparticipant children may 
be deceptive and – given that the bias is expected to be negative – would probably underestimate the 
actual effect of the program on learning.  
 
In order to address this identification issue, this evaluation uses bounding procedures on specific quantile 
average treatment effects estimated with matching techniques to correct for the selection bias brought 
about by the likely introduction of low-scorers into the group of program beneficiaries who ended up 
taking the test (Lee, 2002; Angrist et al., 2006). The two key assumptions of the procedure are: (1) 
independence of the treatment status and the errors in the outcome and selection equations (expected to be 
addressed by the PSM strategy); (2) a monotonicity condition in the sense that assignment to treatment 
affects the outcome in only one direction, namely that the program does not reduce the test scores of 
program participants:  

𝑆1𝑖 ≥  𝑆0𝑖 for all i 
 
where 𝑆, 1 and i denote test scores, treatment status and individuals, respectively. Following Angrist and 
others (2006), students are assumed to choose to take the test if their expected scores are above a certain 
threshold so that the quantiles of test-takers are identified from the quantiles of non-takers (𝑆𝑡𝑘 = 0 where 
𝑡 = 0,1 indexes treated and control children and k equals 1 if the student takes the test) for 𝜑 ≥ 𝜑𝑘, where 
𝑞𝑘(𝜑𝑘) = 0. The 𝜑-quantile of the distributions of non-participants and participants are denoted by 
𝑞0(𝜑0) and 𝑞1(𝜑1), respectively.  
 
The main idea of the procedure is to find the quantile 𝜑0 for the control group such that 𝑞0(𝜑0) = 0 and 
restrict the distribution of 𝑆1 to the percentiles above 𝜑0. This defines the upper bound based on the 
subsample of individuals who would have taken the test regardless of the program 𝐸[𝑆1 − 𝑆0|𝑘 = 1] as 
follows: 

𝐸[𝑆|𝐷 = 1,𝑆 > 𝑞0(𝜑)] −  𝐸[𝑆|𝐷 = 0,𝑆 > 𝑞0(𝜑)] 
 
Unadjusted comparisons between treated and control children – conditional on positive test scores for 
each group – provide lower bounds on the actual effects of the program: 
 

𝐸[𝑆|𝐷 = 1,𝑆 > 𝑞1(𝜑)] −  𝐸[𝑆|𝐷 = 0,𝑆 > 𝑞0(𝜑)] 
 
Since the problem of selection is expected to be more prevalent at the bottom of the distribution, upper 
bounds should be tighter at upper parts of the distribution. Angrist (1997) shows that under the 
assumptions (1) and (2), the symmetric truncation of the score distributions is expected to eliminate the 
sample selection bias. As noted above, this equivalent to restricting the sample to the individuals thought 
to be the ‘always takers’   
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