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Chapter 1

Introduction

Ultrahigh-intensity lasers are fundamental tools in modern physics. Their fast evolution

over the last 15 years [1] started with the invention of chirped pulse amplification (CPA)

[2]. This technique opened a new window to the investigation of light-matter interactions.

The CPA technique made it possible to generate much shorter laser pulses down to the

femtosecond regime with laser peak powers reaching the 1–1000 terawatt level. Nowadays

the most of the ultrahigh intensity lasers in the world are applying this method. One

of these lasers is the Jena 12 TW laser [3]. These lasers can be focussed down to a

few micrometers and enormous intensities up to 1021 W/cm2 can be reached. At these

intensities the electric field exceeds many times the binding energy of electrons in an atom.

After a plasma is formed, the electrons oscillate at relativistic velocities in these fields [4].

The interaction of ultrahigh-intensity laser pulses with plasmas became a central point

of the investigations [5]. There is a great variety of applications of these plasmas from

particle acceleration, generation of electromagnetic waves to inertial confinement fusion.

There is a large body of work about laser-plasma based electron acceleration [6]. It

was suggested originally in underdense plasmas by Tajima and Dawson [7]. One type of

these accelerators, the laser wakefield accelerator, is based on the generation of electron

plasma waves and the electrostatic fields of these waves accelerates the electrons [7].

The other type is the direct laser acceleration, which is similar to inverse free electron

laser. The electrons are transversally oscillating in the self-generated electric and magnetic

fields of a plasma channel generated by the self-focused laser pulse. When this betatron

oscillation frequency coincides with the Doppler shifted laser frequency, a resonant energy

transfer occurs and the electrons gain energy from the laser [8]. The advantage of these

accelerators is the small size due to the large static electric fields in plasmas (about

100 GV/m) compared to the rf accelerator fields (less than 100 MV/m). The highest
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electron energy observed from plasma electron accelerator is 200 MeV [9]. Hot electrons

produced by lasers in dense plasmas on solid targets are also investigated in detail [5, 10].

The plasma waves generated by resonance absorption or the ponderomotive force of the

laser can increase the electron energy.

The electron acceleration mechanisms are studied in detail, because most of the appli-

cations involve these fast electrons. For example as the fast electrons leave the plasma,

large longitudinal static electric fields are generated due to charge separation. Ions can

be accelerated in laser produced plasmas by these fields [11, 12, 13]. Another challenging

field is the generation of electromagnetic emission in plasmas such as high order harmon-

ics [5, 14] for example from steep plasma surface, EUV radiation from atomic transitions

[15, 16] or incoherent x-ray generation [17, 18]. The fast electrons generate bremsstrahlung

in material and this can trigger nuclear reactions for example (γ,n) reactions [10, 19] and

photo-fission of actinides [20].

An important topic of laser produced plasmas involves inertial confinenement fusion

(ICF) [21]. A small capsule including the fuel is irradiated with a short laser, x-ray

or ion beam pulse, which ablates the outer layer of the capsule and implodes the inner

part generating shock waves. The compression of the target ignites the fuel. A fast

ignitor concept was suggested to reduce the energy requirements of ICF [22, 23]. The

precompressed fuel is ignited by an additional high power laser. Some new alternative

concepts were also proposed such as coronal ignition [24].

Parametric instabilities have an important impact on ICF, laser absorption, hot elec-

tron generation and propagation of light in plasmas, therefore, they were investigated in

detail [25, 26] in the long pulse regime (> 100 ps). Relevant instabilities involving the

decay of the incident laser radiation, are stimulated Raman and Brillouin scattering (SRS

and SBS) and two-plasmon decay (TPD). SRS (SBS) in plasmas is the decay of the laser

electromagnetic wave into an electron plasma wave (ion acoustic wave) and another elec-

tromagnetic wave. TPD is the decay of an electromagnetic wave into two electron plasma

waves and takes place in the vicinity of the quarter critical density. These plasma waves

can couple with the incident laser light to generate 3ω0/2 radiation, which was studied

experimentally [27, 28, 29] and theoretically [30]–[31].

After the introduction of CPA the laser based fusion and especially the fast ignitor con-

cept led to a reinvestigation of some of the instabilities at higher intensities and shorter

pulses [32, 33]. Particular attention was paid to SRS of ultrashort laser pulses, because

SRS can affect the laser-based electron acceleration as well as drive the self-modulated

laser wakefield acceleration [6]. Processes that involve ion acoustic waves are generally



3

suppressed due to the short time scales. Very little attention was paid to TPD although

this instability is often present in fs-laser-plasma experiments. It appears as bright col-

ored light originating from the plasma. Using a Ti:Sapphire laser with 800 nm central

wavelength first blue radiation is observed from the plasma, which is the second har-

monic radiation. This turns into green radiation as the intensity on target is increased

and into white light at the highest intensity. Although, several laboratories made similar

observations [34] so far this phenomenon has not yet been analyzed.

The objective of this work is to generate, characterize and explain the origin of three-

halves harmonic radiation from femtosecond laser-produced plasmas. Furthermore, it is

intended to obtain information about parametric laser-plasma instabilities and to search

for possible applications of this emission. The Jena laser without the last amplifier stage,

producing 3 TW power was used for the experiments described in this work.



Chapter 2

Theoretical background

When a high intensity laser pulse impinges on solids a great variety of laser matter interac-

tions can take place depending on the laser intensity. At low intensities reversible processes

are induced in the material such as the generation of optical and acoustic phonons. At

higher intensities irreversible processes are invoked such as nonthermal and thermal melt-

ing [35], ablation and the generation of shock waves and plasma. On the 100 femtosecond

- 1 picosecond time scale, at higher intensities (above ∼ 1013 W/cm2) the dominant pro-

cess is ionization [36]. The electron shell of the atoms is responsible for binding the atoms

into the solid. Therefore after ionization not only the electron is liberated and ejected

into vacuum, but the ions will also be freed. This is reinforced by the space charge effect

between the electron and the ion. This effect is the so called Coulomb explosion. As a

result of ionization from the solid a large number of electrons and ions will escape forming

a plasma [25, 37]. Due to their origin and the space charge these plasmas are quasi neutral

and contain two (or more) components, the ions and the electrons. The particles interact

with one another via their electric and magnetic fields.

The two component plasmas form the center of the investigations in this work. The

method of description of a two-component plasma will be discussed and the relevant

plasma parameters will be defined in the next section.

2.1 Plasma characterization and description

For further discussion some general plasma parameters are defined. The electron and ion

plasma density are the number of electrons and ions respectively per unit volume, ne and

ni = ne/Z, where Z is the ionization stage. The dimension of the densities is cm−3. The

4
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electron plasma temperature Te = 2Ekin/3, where Ekin is the average kinetic energy of the

particles, Te is typically expressed in keV. The energy of a free particle in one degree of

freedom is Te/2 and the number of the degrees of freedom is three. It is connected to

the temperature in Kelvin (T̃ ) by kB, the Boltzmann’s constant Te = kBT̃ . The electron

thermal velocity is defined as [38]

ve =
√

Te/me (2.1)

where me is the electron mass 1. This definition is valid if Te � mec
2, where c is the

speed of light in vacuum. Using normalized parameters ve/c =
√

Te(keV)/511. At 1 keV

temperature the electrons have a thermal speed of ∼ 107 m/s, i.e. ve/c ≈ 0.04. The

ion temperature is denoted Ti and T is the temperature generally without specifying the

plasma component, i.e. it can be Te and Ti also depending on the discussion.

Inserting a charge q into a plasma, the electric field and the potential of this charge

will be modified. The plasma electrons shield out the Coulomb potential of the charge

as φ(r) = q exp(−r/λDe)/(4πε0r), where r is the distance, λDe =
√

ε0Te/(e2ne) is the

electron Debye length, ε0 is the vacuum permittivity and e is the electron charge. The

Debye length is practically the range of the inserted charge, i.e. only particles within a

distance of λDe will interact strongly with the charge. The charge is screened for distances

longer than λDe. The Debye length has a value of 10 nm at ne = 4 × 1020 cm−3 density

and Te = 1 keV temperature. These are relevant parameters in the experiments described

later on. If the number of particles in a sphere with a radius of λDe is much higher than

one, the average of the microfields inserted by particles in the Debye sphere tends to zero

and the plasma behaves collectively. The number of electrons in the Debye sphere is 2600

in the present experiments, which is high enough to consider only the collective behavior

of the plasma.

2.1.1 The phase space distribution

The kinetic theory of plasmas will be briefly introduced in this section, which is important

to obtain the basic equations of plasma models. The collective regime can be investigated

by solving the equation of motion with fields originating from the collective movement of

the charges in the plasma. Since these fields vary slowly in space, many particles will have

similar trajectories and the situation can be simplified with the introduction of the two-

fluid description. This is based on the electron and ion phase space distribution functions

1The kinetic energy of the electron is Ekin = 3mev
2
e/2 with this definition of the electron thermal

velocity. There exist different definitions for ve, but the electron temperature is always the same.
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fe,i(x,v, t), which characterize the particle density at given x and v as a function of time 2.

The distribution functions can be determined experimentally only in some specific cases,

but measurable quantities as the density, the temperature or the pressure are connected

to them. The density can be obtained from the distribution function as

ne,i(x, t) =

∫∫∫
fe,i(x,v, t)dv. (2.2)

The indices e and i for the electrons and ions will now be dropped for simplicity. The

first velocity moment 3 of the distribution function is connected to the mean velocity (u),

nu =

∫∫∫
vf(x,v, t)dv (2.3)

where the dependencies are not shown. This velocity characterizes the average speed of

the fluid at a given position and time. The next moment is connected to the pressure,

P̂ = m

∫∫∫
(v − u) ◦ (v − u)f(x,v, t)dv (2.4)

where P̂ is the pressure tensor. Isotropic plasma will be assumed, i.e. P̂ = Îp, where Î is

the unit tensor and p is the scalar pressure. In other words, the viscosity of the plasma is

neglected. The plasma temperature can be expressed with the second velocity moment,

Te =
2Ekin

3
=

m

3n(x, t)

∫∫∫
v2f(x,v, t)dv. (2.5)

Particles are neither created nor destroyed and the collisions are also neglected. From

these facts it follows that the phase space distribution function is constant along a tra-

jectory, which can be expressed mathematically by the Vlasov equation 4:

∂f

∂t
+ v

∂f

∂x
+

q

m

(
E +

v × B

c

)
∂f

∂v
= 0 (2.6)

where q and m are the electron or ion charge and mass, respectively. This is an equa-

tion for noncolliding particles in electric and magnetic fields. The fields depend on the

distribution and motion of the particles and therefore they can be determined by the

Maxwell equations. That is, the plasma is completely described by the Vlasov and the

Maxwell equations. To account for collisions the Vlasov equation must be completed with

a collision term on the RHS [25].

2The probability of finding a particular particle at time t between x and x+ dx with a velocity in the

range v and v + dv is fe,i(x,v, t)dxdv/Ne,i, where Ne,i is the number of electrons or ions.
3The definition of the zeroth, first and second velocity moments of a scalar function g(v) is

∫
g(v)dv,∫

vg(v)dv, and
∫

v ◦ vg(v)dv, where aij = bi ◦ bj is the dyadic product.
4This is obtained from the collisionless Boltzmann’s equation, which is well known in the kinetic theory

of gases [39], by inserting ẋ = v and v̇ = FLorentz/me,i
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2.1.2 The two-fluid description of the plasma

The basic equations of a collective plasma will now be derived. To obtain equations for

the measurable quantities, the velocity moments of the Vlasov equation are taken for

electrons and ions also, indices are dropped. The zeroth moment yields the well known

continuity equation,
∂n

∂t
+

∂

∂x
(nu) = 0 (2.7)

The first moment is the force equation or fluid equation of motion,

n

(
∂u

∂t
+ (u∇)u

)
=

nq

m

(
E +

u × B

c

)
− 1

m
∇p. (2.8)

As the number of moment equations is infinite, the series must be truncated with an

approximation. This is typically done by the second moment that includes the heat flow

– proportional to ∼ v3. The heat flow is approximated in different parameter regimes

leading to various equations of state. Plasma collective behavior takes the form of different

types of waves, characterized by angular frequency ω – it will be called shortly as frequency

– and wavevector k. Depending on the phase velocity compared to the thermal velocity

of the media (vth), for electrons Eq. 2.1 and for ions analogous, diverse equation of states

must be applied leading to various waves.

When ω/k � vth the particles have enough time to thermalize the plasma causing a

constant temperature and validating the isothermal equation of state

p = nT. (2.9)

It is clear from Eqs. 2.3, 2.4 and 2.5 that in the case of a plasma with Maxwellian velocity

distribution the isothermal equation of state is valid. In the opposite limit ω/k � vth the

particle movement – and so the heat flow – is negligible during the characteristic time

of the wave (∼ 1/ω) compared to the wavelength of the actual wave. In this case the

adiabatic equation of state is applicable

p

nγ
= constant (2.10)

where γ = (d + 2)/d in d dimension, i.e. γ = 5/3 for plasmas in three-dimension.

The Maxwell equations complete the previous description

∇E = ρ/ε0 (2.11)

∇B = 0 (2.12)

∇× E = −∂B

∂t
(2.13)

∇× B = µ0J +
1

c2

∂E

∂t
(2.14)
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where µ0 is the vacuum permeability and Eqs. 2.11, 2.13 and 2.14 are known as the

Poisson, Faraday and Ampere Laws respectively. The connections between the number

density defined earlier and the density and current used here are

ρ =
∑

l

qlnl (2.15)

J =
∑

l

nlqlul (2.16)

where the l index runs over the components of the plasma, i.e. electrons and ions in the

present case.

The Eqs. 2.7, 2.8, 2.9 or 2.10, 2.11–2.16 together provide a complete description of the

plasma collective behavior. This is the so called two-fluid description of the plasma.

A very important classification of plasmas is supplied by the Coulomb coupling pa-

rameter ∼ |〈Uc〉|/〈K〉, where 〈Uc〉 is the average Coulomb energy and 〈K〉 is the average

kinetic energy. In the case of classical systems the average distance between two particles

r ∼ n−1/3 is much larger than the de Broglie wavelength Λ = h/(2π
√

mT ). This condition

is most critical for the electrons due to the smaller mass and higher particle density. The

previous parameters in the present case (ne = 1021 cm−3 and Te = 1 keV) are r ≈ 1 nm

and Λ ≈ 0.02 nm confirming that the classical treatment of the plasma is appropriate.

The classical coupling parameter is defined as Γ ≡ |〈Uc〉|/T , where 〈Uc〉 = e2/(4πε0r) is

the average Coulomb energy. This coupling parameter characterizes the basic properties

of the plasma. If the coupling parameter Γ � 1 the plasma contains weakly interacting

quasi-free particles and the Vlasov equation gives a correct description, on the other hand

in the Γ � 1 coupling regime the plasma is strongly coupled and the Vlasov equation is

not adequate. In fact this classification of plasmas is practically equivalent with the previ-

ously used one associated with the number of particles in the Debye sphere (ND ∼ Γ−3/2).

As expected, the coupling parameter Γ ∼ 0.01 at ne = 1021 cm−3 and Te = 1 keV.

2.2 Waves in plasmas

An introduction to wave propagation is now presented within the two-fluid description in

the absence of large magnetic fields. First the longitudinal electron and ion plasma waves

associated with the collective density fluctuations and subsequently the electromagnetic

waves will be considered.
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2.2.1 Electron plasma waves

Taking high frequency oscillations, the heavy ions are regarded as a homogeneous back-

ground with a density of ni0 = ne0/Z and the adiabatic equation of state Eq. 2.10 is used

for the electrons in one dimension. In addition the continuity (Eq. 2.7) and force (Eq. 2.8)

equations are applied for the electron fluid and the Poisson’s equation (Eq. 2.11) for the

field to establish an equation for the electron density. It is assumed that the mean velocity,

pressure, electron density and the electric field deviate from the steady state values only

slightly. The equations can be linearized with respect to these deviations – neglecting the

second and higher order terms – leading to the wave equation of the electron plasma wave(
∂2

∂t2
− 3v2

e

∂2

∂x2
+ ω2

pe

)
ñ = 0 (2.17)

where ñ = ne − ne0 is the density perturbation and ωpe =
√

e2ne0/(ε0me) is the electron

plasma frequency depending only on the electron density as parameter. Searching the

amplitude in the form ñ = ñ0 exp(ikex − iωet) where ñ0 is slowly varying (normal mode

analysis) the electron plasma wave dispersion relation 5 is obtained,

ω2
e = ω2

pe + 3v2
ek

2
e (2.18)

This is known as the Bohm-Gross dispersion relation [40]. Sometimes this wave is called

Langmuir wave and its quantum is the plasmon. Eq. 2.18 is the short wavevector limit

of the exact dispersion relation and the dominant term is ω2
pe with a small thermal cor-

rection 3v2
ek

2
e , i.e. ωe ≈ ωpe. For this reason the electron plasma wave frequency depends

dominantly on the electron density in the plasma and weakly on its wavevector and on

the temperature. The value of the plasma wave frequency can reach the frequency of the

incident radiation at high densities.

2.2.2 Ion-acoustic waves

The low frequency ion-acoustic wave is investigated next. The electron and ion fluids

must now be considered together. The one-dimensional problem is treated in the same

way as before, but this time for the ions. The force equation for the electrons is rather

simplified – the LHS of Eq. 2.8 is neglected. This approximation is valid because the

electrons move together with the ions leading to similar mean velocities and densities,

but their mass is much smaller. Assuming vi � ω/k � ve, the isothermal equation of

5The ω = ω(k) function, that is the dependence of a wave’s frequency on its wavevector is termed

generally as dispersion relation.
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state is used for the electrons and the adiabatic for the ions. As in the previous case the

equations are linearized to get the following wave equation(
∂2

∂t2
− ZTe + 3Ti

mi

∂2

∂x2

)
ñi = 0 (2.19)

where mi is the ion mass and ñi is the ion density perturbation. The dispersion relation

of ion-acoustic waves obtained by normal mode analyzing the previous wave equation

ωi = ±vski (2.20)

where vs =
√

(ZTe + 3Ti)/mi is the ion sound velocity, ωi and ki are the frequency and

wavevector of the ion-acoustic wave. The quantum of an ion-acoustic wave is analogous

to a phonon in fluids or solids. As one can see from the dispersion relation, this wave is

similar to a sound wave. Consequently, these waves are also known as ion sound waves.

The ion-acoustic wave frequency is small compared to the incident light frequency. A

damping mechanism exists also for these waves, which is significant if ZTe ≈ Ti as in

this case the condition vi � ωi/ki is not fulfilled. The frequency of the wave satisfies the

relation: ωi � ωe ≤ ωl, where ωl is the frequency of the incident light.

The electron plasma and ion-acoustic waves are longitudinal waves caused by electron

and ion density oscillations. They are referred to as electrostatic waves, because the

electric field is generated purely by charge displacement and not the temporally oscillating

magnetic field. Since a clear charge separation is present between electrons and ions, this

electric field can be very high for electron plasma waves. It exceeds 1 GV/cm maximal

values, providing an ideal medium for various phenomenons such as electron acceleration

[6]. The electric field is much smaller for ion-acoustic waves, because there is no large

charge separation.

2.2.3 Electromagnetic waves

In laser-plasma interactions a very important issue is the behavior of the incident laser

light in the plasma. As the light is a high frequency wave, the ions can again be treated

as a neutralizing background. A relation between J and E can be established with the

linearized force equation – neglecting terms of the order of E2 such as (u∇)u and u×B.

Using this connection, Faraday’s and Ampere’s equations the following wave or Helmholtz

equation is obtained for E

∇2E −∇(∇E) +
ω2

0

c2
εE = 0 (2.21)
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where ε = 1−ω2
pe/ω

2
0 is the dielectric function of the plasma 6 and ω0 (k0) is the frequency

(wave number) of the electromagnetic radiation. Taking the electromagnetic wave in the

form E0e
i(k0x−ω0t) the dispersion relation in a homogeneous plasma 7 is readily obtained

ω2
0 = ω2

pe + c2k2. (2.22)

The quantum of the electromagnetic radiation is the photon. There are important con-

sequences of this dispersion relation. An electromagnetic wave with frequency ω0 < ωpe

can not propagate in the plasma, because the characteristic time of the plasma electrons

to shield out the field of the light wave is ∼ ω−1
pe . The electron plasma density at which

the plasma frequency equals the frequency of the light is the critical density

nc = ω2
0meε0/e

2. (2.23)

This has a value of 1.7 × 1021 cm−3 at λ = 800 nm laser wavelength. The phase velocity

of an electromagnetic wave in plasma is vph = ω0/k = c/
√

1 − ω2
pe/ω

2
0. Consequently, the

index of refraction

N =

√
1 − ω2

pe

ω2
0

=

√
1 − ne

nc

(2.24)

is smaller than one. The group velocity of the electromagnetic waves is vg = c
√

1 − ω2
pe/ω

2
0.

For the experiments described in this work it is important to consider electromagnetic

wave propagation in an inhomogeneous plasma. Two different cases must be distinguished,

depending on whether the characteristic length on which the plasma density changes is

longer or shorter than the laser wavelength. This characteristic length is the electron

plasma density scale length

L =

∣∣∣∣∣ne

(
dne

dx

)−1
∣∣∣∣∣
x0

(2.25)

which is generally taken at the critical density (x0 = xcr). L � λ is the typical exper-

imental condition for the long laser pulse regime with a FWHM pulse duration in the

range 100 ps - 10 ns. On the other hand, a 100 fs laser with a good prepulse and pedestal

contrast will not generate preplasma before the arrival of the main pulse and this leads

to scale lengths L � λ. Certainly, the plasma will be expanded with short pulse lasers

6There are two alternative methods to discuss the plasma processes. The first that is applied here, to

regard the charged particles as external to the plasma, not part of the matter. In this case D = ε0E and

the material equations Eqs. 2.15 and 2.16 for the density and the current are valid. The other method is

to view the particles as internal to the plasma and D = εε0E, but ρ = 0 and J = 0. The two procedures

are equivalent, but they should not be mixed – i.e. here ε is not the relation between D and E.
7In a homogeneous plasma ρ = 0 (Eq. 2.15) and from Poisson’s equation (Eq. 2.11) ∇E = 0.
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also if there are deliberately introduced or internal – due to the amplification process –

prepulses.

The long scale length case, L � λ, i.e. the plasma expanded to a size much higher than

the laser wavelength. Using Eq. 2.21 with a linear plasma density profile (ne = nc ∗ x/L)

and perpendicular incidence an analytic solution, the well known Airy function, is ob-

tained [25]. After matching the electric field at the vacuum plasma interface and expect-

ing that it does not penetrate into overdense regions (where ne > nc) with significant

amplitudes, the solution is the Airy A function

E

[(
ω2

0

c2L

)1/3

(x − L)

]
= 2

√
π

(
ω0L

c

)1/6

Evace
−iϕ/2A

[(
ω2

0

c2L

)1/3

(x − L)

]
where Evac is the electric field in vacuum and ϕ = 4ω0L/(3c) − π/2 is the phase of the

wave reflected from the critical density – the first term in ϕ is due to propagation from

vacuum to the critical density and back and the second is the shift caused by reflection.

The following important facts follow from this result: (1) light at perpendicular incidence

is reflected from the critical density; (2) beyond the critical density the electric field is

evanescent in space; (3) the dispersion relation Eq. 2.22 is valid with ωpe taking the local

electron plasma frequency value; and (4) the electric field and the wavelength increases

as the reflection point is approached according to this dispersion relation.

At oblique incidence and s-polarization – the electric field is perpendicular to the plane

of incidence – the wave equation Eq. 2.21 has a similar solution as for perpendicular inci-

dence. The wavevector component perpendicular to the density gradient, ky = ω0 sin(α)/c

is constant during propagation, where α is the angle of incidence in vacuum. In the case

of normal incidence the laser penetrates into the plasma and the turning point is at the

critical density. For oblique incidence the reflection of light occurs when kx, the parallel

component, becomes zero. This is at lower density, when ε(x) = sin2(α), which means

ne = nc cos2(α) at the reflection point. In a plasma with a given density, the angle of

refraction β is calculated using the dispersion relation (Eq. 2.22) and keeping the perpen-

dicular component of the wavevector constant.

sin β =
sin α√

ε
=

sin α√
1 − ω2

pe

ω2

(2.26)

where ω is the angular frequency of the light wave. When the light wave is the incident

laser ω2
pe/ω

2
0 = ne/nc is found. Light generated in the plasma will be subject to refraction

so its propagation direction will change as it reaches the vacuum.

If the obliquely incident wave is p-polarized – the electric field lies in the plane of

incidence – the propagation is similar but the electric field vector has a component per-
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pendicular to the plasma surface, which leads to a new absorption mechanism, resonance

absorption.

The short scale length case, L � λ, i.e. the light collides with a plasma wall. This

situation has been analyzed by different groups [41, 42]. The electric field decays expo-

nentially in the high density plasma as earlier with a skin depth of about c/ωpe, where

the local plasma frequency is higher than the laser frequency (ωpe > ω0), i.e. the plasma

is overdense. The intensity is higher for ultrashort pulses that can create short scale

length, than for long ones. Furthermore, the field decreases much faster due to the short

scale length at the reflection point. Therefore the light pressure gradient, the so called

ponderomotive force becomes much higher than for long scale lengths, in fact it can push

the plasma wall inwards. There is an extraordinary absorption of the incident radiation

in the p-polarized case, the Brunel mechanism, which is the complementary effect to the

resonance absorption.

There are many other types of waves, for example electron-acoustic wave [43], which

is also an eigenmode of the nonmagnetized plasma. The dispersion relation of this mode

looks similar to that of the ion-acoustic wave (ω ∼ k). Whereas, it has 3 - 4 orders of

magnitude lower amplitude than electron plasma waves. In magnetized plasmas are nu-

merous types of oscillations as the shear Alfvén or the magnetosonic waves. Nevertheless,

the dominant modes in the nonmagnetic laser produced plasmas are discussed, which will

be important for the analysis of the experimental results.

2.3 Effects in laser plasma physics

The topics discussed in this chapter include the ionization caused changes on the laser,

the effect of light pressure on the plasma, absorption of laser light in the plasma and loss

mechanisms of different plasma waves.

2.3.1 Effects of ionization

Even for a solid target, the situation can be similar to a gas target when a very long

pedestal is present or a prepulse arrives much earlier than the main laser pulse. This

prepulse or pedestal generates a preplasma that expands and depending on the delay

time recombines, forming a gas-like medium in front of the solid target. Therefore some

effects of high power lasers on a gas will be discussed.
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When a high intensity laser pulse propagates in a gas it will ionize the atoms partially

or fully. Ionization leads to a continuous change in the electron density during the laser

pulse. Since the index of refraction depends on the electron density (Eq. 2.24), various

processes are invoked. One important phenomenon is caused by the radial profile of

the focused laser beam. Due to the beam profile, typically Gaussian, a similar electron

density profile will be generated, i.e. the index of refraction will vary radially as in the

case of a defocusing graded-index lens [44]. Since the intensity is maximal along the

propagation axis, this will lead to the defocusing of the laser beam, so called ionization

defocusing first demonstrated by Auguste, et al. [45]. Fill [46] described this mechanism

and established an equation for the beam radius as a function of the position taking into

account refraction and ionization for homogeneous gas. A very important consequence of

this defocusing there exists a maximum intensity that can be reached when focusing a high

intensity laser in low pressure gas, for example air. This intensity depends strongly on

the pressure of the air and takes the value ∼ 1018 W/cm2 at 5 mbar pressure. Certainly,

this defocusing can also take place in a partially ionized preplasma and could decrease

the maximal attainable intensity. It is important to note that not only ionization changes

the beam profile but electron mass increase due to relativistic oscillation velocity, also can

induce self-focusing [47].

Another important effect is related to the temporal variation of the electron density, i.e.

the temporal variation of the index of refraction. Similarly to self-phase modulation in

nonlinear optics, the temporal change of the refractive index causes a temporal variation

in the phase of the electromagnetic wave, ϕ. Because the frequency is the temporal

derivative of the phase, this temporal evolution of the phase acts as a frequency shift of

the radiation [48]

ωb =
dϕ

dt
= ω0 +

k0s

2nc

dne

dt
(2.27)

where ωb is the (blue) shifted laser frequency, ω0 and k0 is the original frequency and

wavevector of the laser as before and s is the propagation length in the plasma. Ionization

(dne/dt > 0) generates a blue shift of the spectrum [48] as can be seen from the previous

equation. As the blue shift varies during the pulse, interference can appear between the

different temporal components and the interference modulates the spectrum. Ionization

induced spectral blue shift is accompanied by ionization defocusing, which makes the

interpretation more complicated.
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2.3.2 Ponderomotive force

If an electromagnetic wave propagates in a plasma, the plasma electrons are oscillating

in the electric field and the time-averaged force inserted by the light on the electrons is

zero [37]. This picture changes if the light electric field is not homogeneous. Assuming

a radially decreasing intensity from the optical axis the transversally oscillating electrons

are moving to areas with smaller electric field and will not return to their original position

after one oscillation. The electrons will continue this cycle, leading to a lateral movement

and a nonzero time-averaged force acting on them. This ponderomotive force is found to

be

FPond = − e2

4meω2
0

∇E2 (2.28)

and is directed opposite to the gradient of the intensity for electrons. This force is not

always transversal, it can be longitudinal also as the laser pulse has longitudinal gradients.

The ponderomotive force density fPond = neFPond = −neme∇(v2
osc)/4, here is

vosc = eE0/(meω0) (2.29)

the oscillation or quiver velocity of an electron in an electromagnetic field with fre-

quency ω0 and electric field amplitude E0. The quiver velocity in practical units is

vosc =
√

Iλ2/(1.37 × 1018 Wcm−2µm2). The ponderomotive force density has a simi-

lar form to the thermal pressure force −∇p = −∇nemev
2
e , showing that the light pressure

becomes dominant over thermal pressure when vosc ∼ ve. In the case of lasers with 1 µm

wavelength this condition is satisfied at about 3 × 1015 W/cm2 laser intensity [41], so

above this intensity the light pressure inhibits plasma expansion. The ponderomotive

force is responsible for many effects such as the ponderomotive self-focusing, hole boring

and parametric instabilities [42, 47, 49].

The time averaged longitudinal ponderomotive force, i.e. the gradient of the light

pressure, can lead to hole boring into the overdense plasma at ultrahigh intensities in

steep density profiles. The plasma surface move inwards with an intensity dependent

velocity. The momentum and number conservation yields for the front, recession or hole

boring velocity the following equation [42, 50]

u

c
=

√
∆p

ptot

nc

2ne

Zme

mi

Iλµ

1.37 × 1018W/cm2 (2.30)

where λµ is the wavelength of the laser in µm, ptot = 2I/c and ∆p = (2 − a) cos(α)I/c is

the transferred momentum density taking account of absorption (a) and angle of incidence

(α), which decrease the front velocity. A recession velocity of 0.015c has been measured
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at 1019 W/cm2 intensity, producing a measurable Doppler shift [50]. The consequences

of hole boring besides a curved critical surface are a red shift in the reflected light and

increased absorption.

The radial ponderomotive force can expel all electrons within a core radial region leading

to a decreased electron density, i.e. electron cavitation. That leads to a channel with

radially decreasing index of refraction. Due to this channel the tail of the laser pulse will

be self-focused [47], this is called ponderomotive self-focusing.

2.3.3 Absorption of laser light in plasmas

There are a great number of processes in plasmas that absorb the laser energy, for example

the previously discussed plasma waves gain their energy also from the laser. The most

important absorption mechanisms that can absorb a significant amount of laser energy

are collisional and resonance absorption, Brunel mechanism, and j × B heating [5].

Collisions have been neglected in the previous descriptions of the collective effects. The

electrons oscillating in the field of an s-polarized laser can lose their energy in collisions

with ions. This means an effective loss for the laser energy. To describe the collisional

absorption – also called inverse bremsstrahlung – in the case when a lot of particles are in

the Debye sphere, the Vlasov equation must be completed with a collisional term [25]. This

term (∂fei/∂t)C inserted on the RHS of Eq. 2.6 is responsible for the electron-ion collisions,

but will not alter the number of particles and so the zeroth moment, i.e. the continuity

equation stays unchanged. The first velocity moment of the collision term in the electron

and ion plasma can be expressed with averaged quantities
∫

v(∂fei/∂t)Cdv = (∂neue/∂t)i,

where this new form is the change of the electron momentum by collisions with ions. The

momentum transfer further simplified (∂neue/∂t)i = νeineue where νei is the electron-ion

collision frequency. The electron-ion collision frequency expressing the rate of encounters

between the two species [25]

νei =
1

3(2π)3/2

Zω4
pe

nev3
e

ln Λ (2.31)

where Z is the ionization charge state and ln Λ = 9ND/Z is the Coulomb logarithm, here

Λ the ratio of the maximum and minimum impact parameter in the collisions. It depends

weakly on the plasma parameters, therefore the constant value ln Λ = 8 will be used. The

linearized force equation has a slightly different form ∂ue/∂t = −eE/me−νeiue calculated

from the first moment with the collision term 8. The same steps must be applied as before

8As the electron-ion collisions will decrease the momentum of the electron, this modified form of the

fluid equation of motion is expected.
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(Eq. 2.21) to obtain the wave equation with collisions. It is not surprising that the new

wave equation looks like the Eq. 2.21 assuming νei � ω0, only the dielectric function of

the plasma is different

ε = 1 − ω2
pe

ω0(ω0 + iνei)
. (2.32)

Taking the plane wave solution of Eq. 2.21 with this ε gives the dispersion relation

ω2
0 = k2c2 + ω2

pe

(
1 − iνei

ω0

)
(2.33)

To calculate the temporal energy damping rate (ν) ω0 = ωr + iν/2 is substituted yielding

ν =
ω2

pe

ω2
r

νei (2.34)

and ωr satisfies the usual dispersion relation Eq. 2.22. Note that the spatial absorption

coefficient is ki = ν/vg, where vg is the group velocity of the light in the plasma. To

calculate the collisional absorption fraction (fC) the Helmholtz equation (Eq. 2.21) must

be solved [51]. This can be done in an inhomogeneous plasma with obliquely incident

s-polarized light by determining the spatial absorption coefficient from the dispersion re-

lation and integrating over the path of the light. Using density dependent local quantities

the following result is observed for L � λ and an exponential electron density profile

fC = 1 − exp

(
−8ν∗

eiL

3c
cos3(α)

)
(2.35)

where ν∗
ei is the electron-ion collision frequency at the critical density and α is the angel of

incidence in vacuum as before. In the L � λ limit the Fresnel results for metal surface are

obtained [52, 53], where the transmitted wave is absorbed due to the nonzero conductivity.

The electron-electron collisions will thermalize the electrons and make the electron dis-

tribution function Maxwellian. This thermalization takes place on a time scale inversely

proportional to the electron-electron collision frequency, which at 1 keV electron temper-

ature is typically longer than the pulse duration of ultrashort lasers (100 fs). That is the

electrons are heated by the laser, but do not have enough time to thermalize, i.e. their

velocity distribution function does not remain Maxwellian. The energy of the electrons

is absorbed by inverse bremsstrahlung, whose rate depends on this distribution function.

Nonthermal distributions have less slower electrons that dominate the collisional absorp-

tion (Eq. 2.31) and lead to a decrease of the collisional absorption rate [54].

The significance of collisional absorption is diminished in high intensity laser-plasma in-

teractions by the following facts: (a) the electron-ion collision frequency decreases rapidly

with the intensity when the electron oscillation velocity exceeds its thermal velocity,
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νei ∼ 1/(v2
e + v2

osc)
3/2, (b) in moderate scale-length plasmas (L ∼ λ) – typical for high

intensity lasers – the size of the plasma to propagate through is small and the density is

underdense (≤ nc), (c) the electron temperature increases rapidly decreasing the electron-

ion collision frequency and switching out the collisional absorption during the most of

the interaction. Consequently, above ∼ 1015 W/cm2 other absorption mechanisms will

dominate over collisional absorption with s-polarized light. In the p-polarized case the

absorption has a considerable contribution that will be discussed next.

Resonance absorption is an important process that can couple laser energy to the plasma

significantly in the case of p-polarized and obliquely incident waves onto an inhomogeneous

plasma [25]. This is a direct generation of an electron plasma wave at the critical density

by an electromagnetic wave, which then tunnels from the reflection point to the critical

density to fulfil the matching conditions. A longitudinal plasma wave is generated by

the light electric field component perpendicular to the plasma surface, which favors large

incidence angles. On the other hand the longer the tunnelling distance the lower the

electric field amplitude at the critical density, so the mechanism works best at some

intermediate incidence angle. The description of resonance absorption differs from the

previous for the perpendicular electric field component, because the term ∇(∇E) in the

wave equation is not zero 9. Working in terms of the magnetic field the perpendicular

electric field can be expressed as Ex = B(x) sin(α)/ε(x), which has a resonance at the

critical density – where ε = 0. Taking the magnetic field at the reflection point as a

function of the vacuum electric field and considering its decay beyond the turning point

in a linear profile one obtains for the absorbed fraction of the intensity by resonance

absorption fR = 2.6ζ2 exp(−4ζ3/3), where ζ = (ω0L/c)1/3 sin(α). This expression has a

maximum absorption about 50% at the angle

sin(αra) =
0.8

(2πL/λ)(1/3)
(2.36)

where αra is the angle of incidence in vacuum at which the resonance absorption maxi-

mized. The absorption is sizeable in the ∆αra ∼ αra incidence angle range.

Resonance absorption takes place in plasmas when their scale length is longer than the

amplitude of the longitudinal oscillations of the electrons in the laser field, vosc/ω0 < L.

When this oscillation amplitude is larger than the scale length, the electrons are pulled

away from the resonant point. After a half optical cycle the laser electric field reverses

its direction and the accelerated electrons penetrate into the plasma much deeper than

9The ∇(εE) = 0 is deduced from Eqs. 2.7, 2.8, and 2.11 [55], and it is not simply the Poisson equation

as discussed in footnote 6. In inhomogeneous plasmas it implies that ∇E = 0 and there is an electrostatic

perpendicular field component.
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the skin depth of the electromagnetic wave. These electrons are absorbed in the plasma

and take a large amount of energy with themselves, which is effectively a loss of the laser

energy. This is the vacuum heating or Brunel mechanism [56]. Vacuum heating becomes

dominant over resonance absorption below L/λ ≈ 0.1 [57].

Electrons oscillating in the electric field of the laser also experience the laser’s perpen-

dicular magnetic field leading to a longitudinal Lorentz force ∼ ∂v2
osc/∂x(1 − cos(2ω0t)).

The first part is the well known longitudinal ponderomotive force and the second is a

oscillating part of the ponderomotive force, which is averaged out in long scale length

plasmas. In steep plasmas and relativistic intensities this oscillating force is high enough

to accelerate electrons deeper into the plasma than the skin depth during a half laser

period [42, 52]. These electrons, similarly to Brunel effect, absorb energy from the laser.

This so called relativistic j × B heating is most efficient at perpendicular incidence.

It is important to note at the end of this Section that the absorption also depends on

the from of the solid target [42, 58]. In the case of a curved target due to for example

hole boring the absorption increases with the depth of the hole and can reach 80%.

2.3.4 Damping of plasma waves

In laser-plasma interaction the incident electromagnetic radiation can generate various

longitudinal plasma waves. These waves are damped and heat the plasma.

Since electron plasma waves are longitudinal oscillations of electrons, the electron

and ion collisions play an important role in the damping. Collisions will turn the co-

herent oscillation of the electrons into thermal motion, diminishing the energy of the

wave. Balancing the loss in the wave energy with change in the electrons kinetic energy,

νeε0E
2
0/2 = νeinemev

2
osc/2 yields νe = νeiω

2
pe/ω

2
e , where νe is the energy damping rate and

vosc is the oscillation velocity in the electric field of the electron plasma wave. This result

is similar to that obtained for collisional absorption of light waves with the difference

ωe ≈ ωpe and therefore νe ≈ νei. That is electron plasma waves are damped stronger in

an underdense plasma than electromagnetic waves. Typically this damping mechanism

leads to a threshold for instabilities in the long pulse regime.

Electrons moving parallel with the wave oscillate in its longitudinal electric field. The

wave-electron energy exchange is zero if an electron moves slower or faster than the wave’s

phase velocity. Although, when an electron moves with approximately the same speed

as the wave (v = ωe/ke), i.e. the electron is in phase with the wave it is exposed to

a stationary electric field, therefore the energy exchange is not zero. A slightly slower
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electron will gain energy from the wave and a slightly faster will lose energy. Depending

on whether there are more slower or faster particles the wave will be damped or amplified.

This process called Landau damping [39]. Landau damping can be described by the kinetic

equation [39] or directly from the equation of motion of the electron and the energy balance

[25]. A hint is given about the latter. A small perturbation in the coordinate and speed

of an electron around the free streaming quantities due to the plasma electric field is

assumed. The damping rate can be obtained by first calculating the change of the energy

of a particle moving in an electric field, after that averaging over the possible particle

positions and velocities in the wave and at the end using energy conservation between the

particles and the wave. The following wave amplitude damping rate is obtained assuming

a Maxwellian velocity distribution [25]

γL =

√
π

8

ω2
peω

2
e

k3
ev

3
e

exp

(
− ω2

e

2k2
ev

2
e

)
(2.37)

where the energy damping rate is 2γL. For a Maxwellian distribution this leads to damp-

ing, because the number of particles falls exponentially with the velocity. Generally, the

sign of the first velocity derivative of the velocity distribution function at ωe/ke determines

whether there is damping or amplification. Keeping in mind that the wave amplitude is

damped as exp(−γLt), the exponential function in the damping rate makes it a very strong

function of the exponent. Practically, the damping is negligible when the exponential part

is smaller than 0.01, that is 3ve ≤ ωe/ke or equivalently keλDe ≤ 0.3, if the phase velocity

is lower there are enough electrons with about ωe/ke velocity to damp the wave.

For ultrahigh intensity lasers the generated electron plasma waves can reach very large

amplitudes. The linear theory applied for Landau damping with the small perturbative

expansion in these waves is then no longer valid. Not only electrons with approximately

ωe/ke velocity can interact with the wave, because the large electric field accelerates dur-

ing a half period of the electron plasma wave slower particles to the phase velocity also.

The larger the velocity range of interacting electrons, the faster the damping of the wave.

The electrons run with the plasma wave and are fixed in a potential well of this wave,

i.e. are trapped. When the oscillation velocity of the electrons in the plasma field reaches

the phase velocity, eEe/(meωe) ≈ ωe/ke initially cold electrons are also brought into reso-

nance and a strong nonlinear damping is evolved. The absorption of the wave takes place

on the same time scale as the time of period of this wave, i.e. the wave amplitude is

decreased radically within a few periods [59]. This leads to the loss of periodicity in at

least one macroscopically observable quantity (for example electron density or longitudi-

nal electric field), which is called wavebreaking [60] and can be expected at amplitudes

eEe/(meωpevph) ≈ 1. Thermal corrections reduce this amplitude. Wavebreaking can play

an important role in ultrashort pulse generated instabilities as a saturation mechanism.



Chapter 3

Parametric instabilities and 3 ω0/2

generation

The generations of different plasma waves are essential processes in laser plasma physics.

Resonance absorption was already discussed. Other important kinds are parametric in-

stabilities [37, 61]. First the general description of parametric instabilities and a physical

picture will be given. After that some particular cases will be discussed as SRS and TPD

that are relevant for this work and the generation of 3ω0/2 radiation.

3.1 General considerations

An instability is a process in which a pump produces in the first linear stage exponentially

growing daughter waves in time – in some cases in space. Parametric instability is a

wave amplification due to the periodic variation of a ”parameter”that characterizes the

oscillation. The source or pump is typically the laser light, but it can also be a plasma

wave. The daughter waves can be electromagnetic as well as plasma waves. Phase and

frequency matching must be satisfied in the process. An instability starts generally when

the amplitude of the source exceeds a threshold value and grows with a rate dependent

on this amplitude. Certainly, the exponential growth does not last long before saturation

appears. There are various saturation mechanisms, but typically pump depletion is not

important because the conversion from the incident laser energy is moderate.

At first a single-mode parametric instability will be considered – the pump generates

one type of oscillation – and the wavevectors will be neglected. It is described by the

21
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equation
d2

dt2
X(t) + 2Γ

d

dt
X(t) + Ω2X(t) = 0 (3.1)

where Γ is the damping, Ω is the frequency and X(t) is the amplitude of the oscillation.

The frequency can be written Ω2 = Ω2
0 (1 − 2� cos(ωft)) for a forced oscillator, where Ω0

is the natural frequency of the oscillation and � and ωf is the amplitude and frequency of

the modulating pump with sinusoidal variation. A small damping and pump perturbation

is assumed, Γ � Ω0 and � � 1, so the terms containing Γ2 are neglected. The influence

of the pump is contained in the temporally dependent frequency, Ω. In practice the

variation of the frequency is achieved by periodically changing a physical parameter that

determines the natural frequency. The parametric name originates from here. After

Fourier transformation

D(ω)X(ω) = �Ω2
0 [X(ω − ωf) + X(ω + ωf)] (3.2)

and D(ω) = −ω2 − 2iΓω + Ω2
0 supplying the dispersion relation without pump. A very

important issue of the previous equation is the coupling of X(ω) with X(ω − ωf) and

X(ω+ωf) due to the pump. Parametric amplification takes place when two of the involved

modes [X(ω) and X(ω ± ωf)] are natural modes, i.e. having Ω0 frequency, as can be seen

from Eq. 3.2. There are two possibilities to satisfy this: (a) ωf ≈ 2Ω0 and (b) ωf ≈ Ω0,

which correspond to the frequency matching condition. In case (a) from Eq. 3.2 for X(ω)

and X(ω − ωf) the dispersion relation of the parametric instability can be deduced

D(ω)D(ω − ωf) = �2Ω4
0 (3.3)

where the nonresonant X(ω + ωf) and X(ω − 2ωf) are neglected. The solution of this

equation provides ω = ωreal + iγ, which describes X temporally. The γ quantity is the

growth rate and characterizes the instability. Waves with maximal growth rate, i.e. maxi-

mal amplitude dominate the process and determine its properties. If the detuning is large

(∆ = ωf − 2Ω0 ≥ �Ω0) an exponentially decreasing solution is obtained according to the

damping, X(t) ∼ exp(−Γt) as expected without pumping. If the detuning is small the

amplitude becomes unstable as X(t) ∼ exp(γt− iωft/2), where γ =
√

�2Ω2
0 − ∆2/2−Γ is

the temporal growth rate. It should be noted that the mode oscillates at a frequency ωf/2

independently from its natural frequency, but if the detuning is not zero this will diminish

the growth rate. To produce unstable oscillations the pump must have a threshold ampli-

tude depending on the damping – and on ∆ in detuned instance. In case (b) the X(Ω0)

and X(−Ω0) are coupled via X(0). A different instability dispersion relation holds, but

similarly to case (a) a damped and an unstable solution is obtained. In distinctions to

the (a) instable solution there is no growth at zero detuning and the three oscillations are
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growing at three different frequencies, ∼ 0,±ωf. An example for single-mode paramet-

ric instability is a child’s swing or a pendulum with periodically varying length. If the

length of the swing or pendulum changes with twice the natural frequency of the swing,

parametric instability occurs.

When the two modes that couple are different, i.e. have unequal natural frequency

and damping rate, the process is the coupled-mode parametric instability. Similarly to

Eq. 3.1, the modes are characterized without pump with different equations

D1X(t) =
d2

dt2
X(t) + 2Γ1

d

dt
X(t) + ω2

1X(t) = 0 (3.4)

D2Y (t) =
d2

dt2
Y (t) + 2Γ2

d

dt
Y (t) + ω2

2Y (t) = 0 (3.5)

where ω1,2 are the natural frequencies and Γ1,2 are the damping rates, X(t) and Y (t)

are the amplitudes of the oscillations. In the presence of a pump in the form Z(t) =

Z0 cos(ω0t) the coupled equations are

D1X(t) = �12Z(t)Y (t) (3.6)

D2Y (t) = �21Z(t)X(t) (3.7)

where �12 and �21 are the small coupling constants, �12�21Z
2
0 � 1. In these equations the

source of X is the modulated Y (t) by Z(t) and for Y (t) is the modulated X(t). This is

best seen by the Fourier transformed equations

D1(ω)X(ω) = �12Z0 [Y (ω − ω0) + Y (ω + ω0)] (3.8)

D2(ω ± ω0)Y (ω ± ω0) = �21Z0 [X(ω) + X(ω ± 2ω0)] (3.9)

where Dj(ω) = −ω2 − 2iΓjω + ω2
j gives the dispersion relation of the waves without the

pump j = 1, 2. There is resonant energy transfer – resonant instability – when these

modes are natural oscillations, which implies

ω0 = ω1 + ω2. (3.10)

Neglecting X(ω±2ω0) as off-resonant, i.e. ω±2ω0 is not a natural frequency, the instability

dispersion relation

1 =
�12�21Z

2
0

D1(ω)

[
1

D2(ω + ω0)
+

1

D2(ω − ω0)

]
(3.11)

for instability two from the previous three D must be zero. There are two types of solutions

as for single-mode instabilities. For the first solution �e(ω) = 0 leading to purely growing

mode instability. It contains a zero frequency wave and two high frequency oscillations
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with the frequency of the pump. The second solution corresponds to the decay instability.

The pump decays into two daughter oscillations and both of them grow with the same

growth rate. The threshold pump value vanishes if one of the damping rates Γ1 and Γ2 is

zero. A more detailed analysis of this model problem leads to complicated results so only

the differences to the previous discussion are emphasized.

Taking a finite wavevector the following points change: the ”dispersion relation”D(ω)

depends also on the wavevector D(ω,k); ωj = ωj(kj) and Γj = Γj(kj), that is the natural

frequency and the damping rate become dependent on the wavevector also, for example

see Eq. 2.33; similarly to the frequency matching the wavevector conservation is also

fulfilled; generally for the first solution there is no purely growing mode solution; and in

some cases only quasi modes are generated, which have different frequency than that from

the dispersion relation.

In practice the spatial extent of a plasma wave is finite due to for example inhomo-

geneity, providing a new classification of instabilities. There are two types of spatially

localized instabilities depending on their long-time behavior: absolute and convective. If

the amplitudes of the generated waves in a parametric instability are growing in time and

approach infinity at a given point in space without including the saturation effects, then

the instability is labelled absolute. When these amplitudes in a given point eventually

become zero, the instability is labelled convective. This type of instability is called con-

vective, because the locally excited and growing wave packets propagate and pass through

every point in space and only during a limited time period is the generated wave amplitude

higher than the thermal background at a given point in the space. Consequently, there

is only a spatial amplification of the daughter waves. Absolute instabilities are growing

exponentially in time as exp(γt) before they reach saturation.

An important remark is that the frequency of the daughter oscillations in general are ω

and ω0±ω according to the Stokes and anti-Stokes modes, correspondingly their wavevec-

tors are k and k0 ± k. These frequencies satisfy the frequency and phase matching con-

ditions or energy and momentum conservation and the daughter waves have maximal

amplitude when their frequency coincide with the natural frequencies, but if they did not

coincide the instability process can occur with a reduced growth and the conservation

laws are satisfied with the real frequencies and not the natural ones. This nonresonant

process is sizeable only at frequencies very near to the natural values.

The decay instability can be treated as an absorption of a pump or source quantum – for

example a laser photon – and the simultaneous generation of one-one quantum from each

daughter wave – for example another photon and a plasmon – in the quantum picture.
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Figure 3.1: Scheme of the stimulated

Raman scattering.

Now the generation of an instability in a particular situation, the stimulated Raman

scattering, will be analyzed. The scheme of this process is depicted in Fig. 3.1. As

mentioned, instabilities are growing exponentially from initial noise, which is provided

for example by thermal fluctuations 1. Assuming an electron plasma wave with small

amplitude and a large amplitude laser light in a homogeneous ion background plasma. The

electrons in the plasma oscillate in the field of the laser and therefore generate a transversal

current that emit dipole radiation. These dipole radiations from various electrons add

together and generate scattered light. Consequently, the properties of scattered emission

as amplitude and propagation direction depend on the electron plasma wave, for example

it moves in the direction of the laser and causes a phase velocity higher than the speed

of the light in vacuum without plasma wave. The scattered radiation beats with the

incident laser light and produces a standing wave pattern, which moves with the electron

plasma wave. The standing wave pattern and the plasma wave are dephased by π/2

causing a resonance. Density rarefaction occurs at the low density points of the electron

plasma wave due to the ponderomotive force and a density maximum is created at the high

density points, thus the ponderomotive force further increases the plasma wave amplitude

[49]. The increased electron wave amplitude generates more scattered radiation, which

inserts larger ponderomotive force. This leads to an amplification cycle and exponential

growth of the scattered and electron plasma wave amplitude. Nonlinear effects limit the

achievable amplitude 2. In the case of two-plasmon decay instability the beating of the

p polarized laser field and the longitudinal electric field of the plasma waves generates a

standing wave pattern and the associated ponderomotive force acts to enhance the plasma

wave amplitudes [49]. The transversal currents from the electron oscillation and the dipole

radiations cancels after superposition from the two plasma waves and the remaining part is

the same as in a homogeneous plasma without plasma waves. The remaining transversal

current generates a forward scattered emission, which adds up with the laser light to

1There will be generally some nonzero amplitude at any ke after Fourier transforming spatially the

electron density with thermal fluctuations.
2Saturation mechanisms generally limit the electron plasma wave and not the scattered wave ampli-

tude.
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satisfy its dispersion relation.

The key point in the laser-plasma instabilities is the variation of the electron density

or the electron and ion density due to the ponderomotive force. A sinusoidal plasma

wave changes the local density and thus the local plasma frequency, which is a periodic

variation of the natural frequency of the other plasma waves. That is, the density is the

parameter in laser-plasma parametric instabilities that controls the process.

3.2 Two-plasmon decay

The most relevant instability for this work is the two-plasmon decay (TPD), therefore

a detailed analysis follows. First the description of TPD will be given in homogeneous

plasmas. After that the instability in an inhomogeneous plasma will be discussed. In TPD

the laser light decays resonantly into two electron plasma waves, or in quantum picture a

laser photon decays into two plasmons as it was first theoretically suggested by Goldman

[62]. The generated electron plasma waves are sources of hot electrons [27, 63, 64]. It can

be shown that TPD is an absolute instability [30].

The TPD process must fulfil the frequency and phase matching conditions, i.e. the

energy and momentum conservations

ω0 = ωe1 + ωe2 , k0 = ke1 + ke2 (3.12)

where ω0, k0 and ωei
, kei

(i = 1, 2) are the frequency and wavevector of the laser light

and the electron plasma waves in the plasma, respectively. Generally, the wavevector of

the electron plasma waves are not parallel with the laser’s wavevector therefore TPD is a

two-dimensional instability and one-dimensional (1D) simulation codes for example a 1D

particle-in-cell code cannot model it.

The description of this parametric instability aims the determination of the complex

frequency of the plasma waves, i.e. not only the (real) frequency that can be obtained

from Eqs. 3.12 in resonant case, but the complex part also, that is the growth rate. As

ωe ≈ ωpe from the frequency matching follows that TPD takes place at the quarter critical

density.

The TPD growth rate in a homogeneous plasma will be calculated [25]. The ions are

treated as a homogeneous neutralizing background due to the high frequency waves and

the plasma wave damping mechanisms are neglected. The quiver velocity is separated

from the electron velocity ue = vosc + ũe, similarly the background plasma density from

the electron plasma density ne = n0 + ñe and the adiabatic equation of state is used for
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the electron fluid 3. Linearizing the continuity (Eq. 2.7) and the force equations (Eq. 2.8)

for the electrons with respect to the small quantities ñe and ũe

∂ñe

∂t
+ n0∇ũe + vosc∇ñe = 0 (3.13)

∂ũe

∂t
=

e

me

∇φ̃ − 3v2
e

n0

∇ñe −∇(voscũe) (3.14)

where vosc = etE0/(meω0) is the quiver velocity as before, the laser electric field is E0 =

tE0 cos(k0x − ω0t) showing in the transversal direction of the unit vector t (satisfying

tk0 = 0) and φ̃ is the electrostatic potential. The electric field of the electron plasma

wave is E = −∇φ̃, which is assumed to be small enough to neglect nonlinear processes.

This is also labelled as the linear theory due to the previous linearized approach. Using

Poisson’s equation (Eq. 2.11) for the potential �φ̃ = eñe/ε0, Eqs. 3.13, 3.14 and Fourier

transforming the result

(−ω2 + ω2
pe + 3v2

ek
2
e)ñe(ω;k) +

ω

2
kevosc(ñe+ + ñe−) +

n0k
2

2
vosc(ũe+ + ũe−) = 0 (3.15)

where ñe± = ñe(ω±ω0;k±k0) and ũe± = ũe(ω±ω0;k±k0). The electron velocity can be

expressed from the continuity equation as ũe = (k/k2)ωñe/n0, if terms containing vosc/c

were neglected. Applying this equation together with Eq. 3.15 for ñe(ω) and ñe(ω − ω0)

and ignoring nonresonant terms at ω + ω0 and ω − 2ω0 the following TPD instability

dispersion relation is obtained(
ω2 − ω2

pe − 3v2
ek

2
e

) (
(ω − ω0)

2 − ω2
pe − 3v2

e(ke − k0)
2
)

=

[
kevosc

2
ωpe

(ke − k0)
2 − k2

e

ke|ke − k0|
]2 (3.16)

where ω = ωreal + iγ0 here ωreal is the frequency of the plasma wave in the resonant case

ωreal = ωe, and γ0 is the growth rate in a homogeneous plasma. This equation can be

rewritten with the notations D ≡ ω2−ω2
pe−3v2

ek
2
e and D− ≡ (ω−ω0)

2−ω2
pe−3v2

e(ke−k0)
2

as DD− = E2
0f(k), which is similar to Eq.3.3. There is no deeper analogy between the

general single-mode parametric instability and the TPD, because the wavevector was

neglected and TPD does not exists in this case – the growth rate is zero. Assuming

γ0 � ωe the dispersion relation yields the growth rate

γ0 =
kevosc

4

∣∣∣∣(ke − k0)
2 − k2

e

ke|ke − k0|
∣∣∣∣ . (3.17)

The value and properties of the maximum growth rate is important to describe the insta-

bility as discussed. A plasmon wavevector component perpendicular to the vosc and k0

3The 1D adiabatic equation of state pe/n3
e = p0/n3

0, where pe = p0 + p̃ and p0, n0 are the unperturbed

quantities in a homogeneous plasma, satisfying p0 = n0mev
2
e . Combining and linearizing these equations

p̃ = 3ñemev
2
e .
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plane will appear only in the denominator of Eq. 3.17 thus diminishing the growth rate.

Therefore the case is investigated where ke is in the plane of vosc and k0. The wavevectors

of the plasmons having the maximum of this homogeneous TPD growth rate lie on the

maximum growth rate hyperbola

k2
ey = kex(kex − k0) (3.18)

here the x direction is parallel to the wavevector of the laser. It can be obtained by

searching the maximum of γ2
0 as a function of k2

ey. This hyperbola and the wavevectors

of the fastest growing plasmons point in the 45◦ direction between vosc and k0 for large

ke’s. The value of the maximum growth rate along this hyperbola is γmax = k0vosc/4.

Alternatively, Eq. 3.16 must be solved numerically for the complex ω. The numerical

solution has its maximum also along the hyperbola, but the maximum decreases with

an increasing plasmon wavevector component perpendicular to k0 (key in the following

discussion) as shown in Fig. 3.2, where the electron density depends on the wavevector

of the plasmon and is calculated by energy conservation and dispersion relation of the

plasma waves.
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Figure 3.2: The homogeneous TPD

growth rate as a function of the plas-

mon wavevector, obtained by numeri-

cally solving Eq. 3.16 at a laser inten-

sity of 7×1016 W/cm2. Landau damp-

ing is not included. The laser wavevec-

tor at the quarter critical density (k0)

is also plotted as a blue arrow. The

red curve is the maximum growth rate

hyperbola.

There are several publications on the growth rate of TPD in an inhomogeneous plasma

[30, 65, 66, 67]. Using the same equations as in the homogeneous case, but for a linear

density profile the problem can be transformed to the form of the Schrödinger equation.

The details are in the literature. This Schrödinger equation is solved in a perturbation

expansion in powers of L−1. Consequently, these results are valid in long electron density

scale length plasmas (L � 10µm), a condition that is strictly speaking not always fulfilled

in our experimental situations. Nevertheless, it is instructive to summarize the important
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points and deduce the physical consequences. The aim of the theories is to calculate

the maximum growth rate in the k space at given plasma parameters and the plasma

wavevector at which this maximum is reached. Due to the homogeneous results this wave

vector lies on the maximum growth rate hyperbola. This determines the x component

of the plasmon wavevector, so the growth rate is only a function of the y component.

Originally Liu and Rosenbluth [65] calculated the growth rate of TPD for an arbitrary

ke value in an inhomogeneous plasma using an elegant method based on the Fourier

transformed quantities. They determined the growth rate along the maximum growth

rate hyperbola as a function of key for perpendicular incidence, i.e. expanded the previous

homogeneous growth rate with an inhomogeneous part. They derived the correct form

of the inhomogeneous part, only the homogeneous portion was oversimplified. As the

inhomogeneous part reduces the growth rate for small key values (see Eq. 3.23), there is no

upper limit for the plasmon wavevector at the maximal growth rate on the hyperbola. This

was noticed and corrected by Lasinski and Langdon [66]. In their work they performed

numerical simulations and used them to correct the homogeneous growth rate by a term

proportional to −key
4

γ̂(key) =
k0vosc

4

(
1 − 10.32

keyv
2
e

voscω0

)
− ω0

8keyL
(3.19)

where the γ̂ labels a simplified growth rate from the work of Lasinski and Langdon. This

expression has a maximum growth rate value

γ̂max =
k0vosc

4
−
√

0.65k0v2
e

L
. (3.20)

The threshold of the TPD instability is reached when the maximum growth rate reaches

zero. Using Langdon’s result the threshold condition is

v2
osc

4v2
e

k0L = 0.0504
LµλµI14

TkeV

> 2.6 (3.21)

where I14 = I/(1014 W/cm2), TkeV is the electron temperature in keV, i.e. Te(keV)

and λµ is the laser wavelength in µm. This model gives a maximum growth already at

finite ky, but the problem is that the new homogeneous part does not reflect the space

reversal symmetry of the equations for key [30]. A correct form of the growth rate was

first calculated by Simon et al. [67] with the same technique as applied in [65]. They

calculated and simulated the growth rate and the TPD threshold condition in different

4In their original report Lasinski and Langdon made a calculation error and used an unusual definition

for the scale length, which is a factor of 4 smaller than the definition used here.
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parameter regimes. Simon defined the parameter 5

βS ≡ 36v4
ek

2
0

v2
oscω

2
0

=
1.43T 2

keV

I14λ2
µ

(3.22)

The typical plasma parameters in the applied experiments in this work were Te = 1 keV,

λ = 0.8 µm and I > 1015 W/cm2 giving βS < 0.22. Therefore, the parameter range

βS � 1 and key ∼ k0 will be discussed here. The results with other parameters are

in Ref. [67]. They obtained the TPD growth rate in inhomogeneous plasmas with linear

density profile for perpendicular incidence as a function of key along the maximum growth

rate hyperbola (which determines kex),

γ(key) =
k0vosc

4
− 18v4

ek0k
2
ey

voscω2
0

− ω0

8keyL
. (3.23)

This has a maximum value

γmax =
k0vosc

4
−
(

243v4
ek0

128voscL2

)1/3

(3.24)

or in practical units

γmax(fs
−1) = 3.47 × 10−3

√
I14 − 5 × 10−2 T

2/3
keV

λ
4/3
µ (L/λ)2/3I

1/6
14

. (3.25)

where L/λ is the density scale length normalized to the laser wavelength in vacuum. Al-

though, the obtained key dependent growth rate differs from that of Lasinski and Langdon,

its maximal value and so the threshold condition is very similar. The following threshold

is obtained numerically
v2

osc

4v2
e

k0L = 0.0504
LµλµI14

TkeV

> 3.1 (3.26)

where the constant 3.1 slightly deviates from the analytical value (2.8) derived from

Eq. 3.25.

Afeyan and Williams [30] reinvestigated the problem exhaustively invoking the varia-

tional principle. They calculated the growth rate and the threshold not only for linear

density profile, but for parabolic profiles also. Furthermore, they investigated oblique in-

cidence with p and s polarization. They obtained the same results as Simon et al. under

similar conditions. In the case of oblique incidence, s polarization and a linear density

profile, the nominal scale length (L) is larger than the effective scale length in the vosc and

k0 plane, Leff = L/ cos(β). The increased scale length is compensated by the decreased

5There is a difference between the forms of the electric field here and in Ref. [67], which influences

the definition of vosc. Their definition expressed with the one used here is vosc Simon = vosc/2. There are

some other works following the definition adopted by Simon.



3.2. Two-plasmon decay 31

intensity due to the enlarged focus spot in oblique incidence so the threshold will not

change (Eq. 3.26), although above threshold this yields a slightly slower growth. The

situation is more complex for p polarization. Here the effective scale length depends on

the propagation direction of the plasmon, i.e., on the direction of the wave vector com-

ponent perpendicular to k0. Thus, the threshold depends on the fact in which arm of the

maximum growth rate hyperbola the plasma wave is located. It can be higher than for

perpendicular incidence. The theory suggests that the growth rate far above threshold is

not affected by the inhomogeneity and is slightly slower than for perpendicular incidence.

There are two important effects of the inhomogeneity on the TPD which are valid for

small density scale length also and must be taken into account. Firstly, the propagation

of the plasma wave leads to a rapid change of its wavevector due to the high dispersion.

The interaction with the pump wave depends strongly on the wavevector and so does the

instability growth rate. Therefore, the plasma wave propagates away from the maximum

growth area in the k space and switches off the instability. Practically, the plasmon

generated on the maximum growth rate hyperbola propagates and leaves the hyperbola.

Secondly, the more the plasma density changes within a plasmon wavelength the harder

the generation of a plasmon. This is suggested by the inhomogeneous part of the growth

rate in Eq. 3.23, although this part does not contain it explicitly.

The electron plasma waves grow exponentially due to the instability, but this growth

is limited by nonlinear processes. There are several nonlinear processes that play an

important role in this saturation process depending on the laser pulse duration. In the

long pulse regime (> 100 ps) the typical saturation mechanisms are provided by the pon-

deromotive force originating from the beating of the electric fields of the electron plasma

waves [68]. It should be repeated that the TPD instability is based on the ponderomotive

force from the beating of the plasma wave electric fields with the laser electric field. The

electric fields of plasma waves can be represented as Ee1,2 = E1,2 cos(ke1,2x−ωe1,2t). The

corresponding ponderomotive force

Fpond ∼ ∇(Ee1 + Ee2)
2 =∇{E1E2 cos[(ke1 − ke2)x − (ωe1 − ωe2)t]+

+ E2
1 + E2

2 + E1E2 cos[(ke1 + ke2)x − (ωe1 + ωe2)t]}.
After cycle averaging this force, the first term has low frequency ωe1 − ωe2 ≈ 0 and the

periodicity is ke1 − ke2 ∼ 2k0. Therefore this force can drive ion perturbations with

ki ∼ 2k0 leading to a decay of a plasma wave into an ion acoustic wave and another

plasma wave (see Sec. 3.4 and Sec. 3.6). This is the main saturation mechanism of TPD

with long pulses [69, 70]. The saturation is so severe in the long pulse regime that the

linear theory does not apply for the measured results. Second and third terms are the

usual ponderomotive force leading to density profile steepening on a longer time scale that
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quenches the already saturated instability [71, 72]. The last term becomes zero due to

cycle averaging. In the short pulse regime the expected dominant saturation mechanism

is the trapping and wavebreaking, discussed in Sec. 2.3.4.

3.3 Stimulated Raman scattering

Another important parametric instability in laser-plasma interactions is the stimulated

Raman scattering (SRS). This instability is a resonant decay of the laser light into a scat-

tered light and an electron plasma wave. Therefore SRS is responsible for backscattering

of laser radiation besides hot electron generation [73, 74].

The energy and momentum conservations are

ω0 = ω1 + ωe, k0 = k1 + ke (3.27)

where the index ω0,1, ωe and k0,1, ke corresponds to the frequency and the wavevector of

the laser light, the scattered electromagnetic wave and the electron plasma wave, respec-

tively. SRS takes place in a wide range of densities up to quarter critical, which is seen

from the energy conservation for resonant waves.

The SRS instability was thoroughly investigated theoretically in homogeneous [25, 75]

and inhomogeneous plasmas [76, 77]. The growth rate has been calculated in different

situations depending on the direction of the scattered electromagnetic radiation, i.e. in

back, side, and forward direction. In order to obtain the instability dispersion relation

first the electromagnetic wave and the plasma wave is described similarly to Eq. 2.21

and Eq. 3.15 [25]. The fields are expressed with potentials and the vector potential

(A) is associated with the transversal light waves and the scalar potential (φ) with the

longitudinal electron plasma wave in the ∇A = 0 gauge. The current can also be split

into transversal and longitudinal parts assuming A∇ne = 0, which results in two coupled

equations. Using A = A0+Ã, where A0 (Ã) is the vector potential of the laser (scattered

light). Linearizing with respect to Ã, Fourier transforming, and combining with Eq. 3.15

the SRS dispersion relation is received

ω2 − ω2
pe − 3v2

ek
2
e =

ω2
pek

2
ev

2
osc

4
×[

1

(ω + ω0)2 − ω2
pe − c2(ke + k0)2

+
1

(ω − ω0)2 − ω2
pe − c2(ke − k0)2

] (3.28)

where ω = ωreal + iγSRS is the complex frequency of the plasma wave as before, ωreal is

the real frequency and γSRS is the growth rate in homogeneous plasmas. Introducing the
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notations D ≡ ω2 − ω2
pe − 3v2

ek
2
e and D1± ≡ (ω ± ω0)

2 − ω2
pe − c2(ke ± k0)

2 the dispersion

relation can be transformed into the following form

1 =
E2

0g(ke)

D

(
1

D1+

+
1

D1−

)
where E0 is the laser electric field and g(ke) is a function determined from Eq. 3.28. The

analogy between this equation and the general multi-mode dispersion relation (Eq. 3.11)

is striking. Since the measurements were performed in the plane of polarization the

investigations are restricted to scattering in this plane. The SRS backscattering growth

rate with the resonant plasma wave (ωreal = ωe) in a homogeneous plasma neglecting the

nonresonant D1+ part and assuming ωe � γSRS and ve � c is

γSRS =
kevosc

4

[
ω2

pe

ωe(ω0 − ωe)

]1/2

(3.29)

where the plasmon wavevector

ke = k0 +
ω0

c

(
1 − 2ωpe

ω0

)1/2

(3.30)

which reaches k0 around quarter critical density, where the growth rate is maximal and

has a value of k0vosc/4 similarly to TPD. Side scattering generally has a lower growth

rate and vanishes in the plane of polarization, because the electric fields of the laser and

the scattered light are perpendicular and thus their common ponderomotive force that

drives the instability is zero (Fig. 3.1). Forward Raman scattering has a lower growth

in underdense plasmas, but around the quarter critical density becomes comparable with

the back scattering.

It should be noted that around the threshold SRS has somewhat different growth rate

[75], but this is irrelevant for this work. When the laser is strong enough that γSRS ≈ ωe

the instability is strongly coupled and the previous results are invalid. In the strongly

coupled regime the growth rate is proportional to E
2/3
0 and the �e(ω) = (ω2

pe + 3v2
ek

2
e)

1/2,

but depends on the laser intensity and the generated waves are a strongly modified version

of the natural ones [32]. This regime for SRS and TPD also requires relativistic intensity

at the quarter critical density, where a completely new description is needed. Damping

of the daughter waves or gradient in the plasma density cause a threshold laser intensity.

Including a damping coefficient for the plasma wave (γe) that can be for example collisional

damping as before in Eq. 2.33 and another coefficient for the scattered wave (γ1) which

is for example collisional absorption the following threshold condition is received γSRS ≥
(γeγ1)

1/2. The actual growth rate is zero and γSRS is the growth rate in a homogeneous

plasma without damping. Using this result the threshold caused by inhomogeneity can
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also be determined. In an inhomogeneous plasma the phase matching (κ ≡ k0−k1−ke = 0)

depends on the density and can be approximately fulfilled only in a finite spatial range (l).

This is taken into account as a damping term proportional to vg/l, where vg is the group

velocity of the wave [25]. Expressing κ(x) = κ(0)+κ
′
x and the phase matching is exactly

satisfied in x = 0 (κ(0) = 0). Using the previous threshold condition γ2
SRS/(κ

′
vg1vge) ≥ 1

is obtained for the threshold due to density gradients. Much below nc/4 the vg1 ≈ c and

this threshold can be written as

v2
osc

4c2
k0L = 1.1 × 10−4LµλµI14 > 0.5 (3.31)

This threshold is higher than that for TPD. Near to the quarter critical density the

scattered electromagnetic wave has a slower group velocity and therefore the threshold is

lower by (k0L)1/3 [26].

Rousseaux et al. have experimentally validated the linear theory of SRS using a laser

with 500 fs pulse duration [33], because this regime is hardly accessible with long laser

pulses. Meyer et al. showed that the exponential growth lasts approximately 1% of the

pulse duration of a long laser pulse with 2 ns pulse duration [78].

It is important to mention that around the quarter critical density SRS and TPD can

share the same plasma waves. The growth of the instabilities depends, among others,

on the amplitude of the daughter waves. The amplitude of the shared wave is certainly

higher in this case, which leads to a boost in the growth of both instabilities. Afeyan

and Williams elaborated the previous situation and called this high frequency hybrid

instability [79], but others have identified it at relativistic intensities also [80, 81]. This

was first suggested based on experimental observations by Meyer [82]. As it will be

shown, this effect can contribute to the presented results in this work due to the plasmon

propagation.

3.4 Other parametric instabilities

Other parametric instabilities connected to laser-plasma interaction will be briefly dis-

cussed. Stimulated Brillouin scattering (SBS) is a resonant decay of a laser photon into

a scattered photon and an ion-acoustic wave. The ion-acoustic waves have very low fre-

quency, but a significant wavevector of the order of the laser’s wavevector k0, therefore

the scattered light has almost the same wavelength as the laser light. The growth rate

is highest for backscattered light, in which case the reflection can reach large values as

10 − 50% [26]. This fact made this instability an important concern in the long pulse
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experiments. Nevertheless, this instability is not present in sub-ps laser-plasma interac-

tion. This is due to the long time period of the ion-acoustic waves – typically some ps –

which exceeds the laser pulse duration. 1.2 ps is the shortest FWHM laser pulse duration

wherewith SBS was observed [83], whereas the pulse width at the SBS threshold intensity

was much longer than the FWHM value and the period of the ion-acoustic wave [84]. It is

much easier to reach the strongly coupled regime with SBS (ωi ≤ γSBS) than with SRS due

to the lower ion-acoustic frequency [85]. This regime is accessed already at an intensity

about 1015 W/cm2 at 1 µm laser wavelength. It was shown before that TPD saturation is

caused by the ponderomotive force associated with the electron waves. There are no in-

volved electron plasma waves in SBS only ion-acoustic waves having smaller electrostatic

fields therefore saturation occurs at higher wave amplitudes and it is expected that these

larger waves induce the large reflection.

Stimulated electron-acoustic decay instability (SEAS) is a resonant decay of a laser

radiation into a scattered radiation and an electron-acoustic wave [43]. This process is

similar to SRS, but the generated electron wave has an acoustic dispersion relation and

for this reason a smaller phase velocity. Since the amplitude of the acoustic wave is three

orders of magnitude smaller than that of the electron plasma wave the SEAS is not an

important mechanism.

Certainly plasma waves can also decay resonantly. Langmuir wave decay instability

(LDI) is a process by which a large amplitude electron plasma wave decays into a secondary

plasma wave and an ion acoustic wave [86]. LDI plays a dominant role in the saturation of

electron plasma waves generated by for example TPD or SRS [31, 86, 87]. The daughter

Langmuir wave has the same frequency as the original, but an antiparallel wavevector.

The previous coupling process of a plasmon to another plasmon and a phonon can repeat

from the new plasmon leading to a LDI cascade [88].

The electromagnetic decay instability (EDI) involves the decay of an electron plasma

wave into a scattered electromagnetic wave and an ion acoustic wave. This instability

generates from the TPD plasmons at the quarter critical density electromagnetic waves

with an efficiency ω0/2 [89] in long pulse experiments. Although SRS can produce directly

light at ω0/2 frequency, but the observed double-peaked half harmonic spectrum refers to

TPD origin.

It is interesting to note that a possible process in magnetized plasmas is the resonant

decay of a plasma wave into two electromagnetic waves [90], which is not possible in

unmagnetized plasmas.
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3.5 3 ω0/2 generation

To explain the origin of three-halves harmonic radiation several processes were suggested

(see for example [91] and references therein). Nevertheless, the unusual frequency of this

emission reduces the number and the sort of models, which generally contain two main

stages. The production of plasmons with a frequency of about ω0/2 is the first step in

the three-halves harmonic generation. The candidates for this step are the previously

discussed parametric instabilities: TPD and SRS. In long pulse laser-plasma experiments

SRS is rejected due to the higher threshold in inhomogeneous plasmas [92]. It will be

shown in the present work that under certain circumstances SRS from fs-laser produced

plasmas can lead to 3ω0/2 generation. Barr proposed for the second step a combination

of three plasmons or a combination of an incident or reflected laser photon with a plasmon

[93, 94, 95]. The former is a higher order process having negligible probability. The basic

conservation laws of the latter coupling process are

ω3/2 = ωe + ω0, k3/2 = ke + k0 (3.32)

where ω3/2 and k3/2 are the frequency and wavevector of the three-halves harmonic ra-

diation. In the long pulse regime TPD was identified experimentally as the source of

3 ω0/2 radiation using spectroscopy and Thomson scattering [72, 28]. This radiation is

an indirect sign of TPD instability. The typical 3ω0/2 spectra contains a pair of peaks, a

stronger red and a weaker blue shifted component originating from slightly different elec-

tron densities below quarter critical [29]. These two peaks correspond to the forward and

backward propagating plasmons in the TPD instability (Fig. 3.2). It was suggested to use

the spectral splitting of the 3 ω0/2 radiation as an electron plasma temperature diagnostic

[96, 97]. The problem is that the spectrum depends not only on the temperature, but on

the experimental geometry also as the incident and the observation angles and therefore

this radiation is not well suited for diagnostic purposes [98]. In fact, the original plasma

waves cannot generate three-halves harmonic radiation without propagation, but colli-

sional damping is so severe that these plasmons are damped before they could reach the

point, where coupling is already possible. The amplitude of the TPD Langmuir waves is

high enough to reach saturation governed by LDI and generate new electron plasma waves

and ion acoustic waves. These daughter plasma waves from LDI are already capable of

coupling to the laser in long pulse experiments [87]. This saturation process can explain

the asymmetric spectra with double peaks in the same time [31, 99].

The situation changes at relativistic intensities higher order processes start to play

a more and more dominant role [80, 81]. For example the simultaneous absorbtion of

two laser photons at the quarter critical density can lead to a direct generation of the
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3 ω0/2 and a Langmuir wave. This processes is labelled as stimulated Raman harmonic

scattering. These higher order effects will be briefly discussed later.

Three-halves harmonic radiation together with the second harmonic were used as plasma

diagnostics. Imaging the target and filtering the plasma emission to get these two harmon-

ics the position of the quarter critical and critical density surfaces were tracked [100, 101].

There is no systematic study about 3ω0/2 radiation with sub-picosecond lasers, al-

though it is regularly observed in ultrashort high intensity laser-plasma experiments [34].

A striking difference between the long and short pulse regimes is that the bandwidth of

the three-halves harmonic emission is much broader with short high intensity lasers. The

width is larger than the typical splitting of the spectral peaks with long less-intense lasers

and therefore the spectrum contains only one broad spectral feature expanding to the red

and blue side of the exact 3 ω0/2 wavelength. The present work involves a systematic

experimental and theoretical investigation of parametric instabilities with sub-picosecond

laser pulse durations through the characterization of the three-halves harmonic radiation.

3.6 Application to experiments

In this section the previously discussed theory (Chap. 2 and 3) will be applied and ex-

panded for specific experiments. In the experiments described later (Chap. 5) the electron

density scale length was below 10 µm, typically 2-3 µm, indicating that care must be taken

in adopting the well known analytic models [30, 65, 66, 67] for the TPD.

The initial process in the 3 ω0/2 generation is the plasmon production with approxi-

mately ω0/2 frequency. The TPD and the SRS will be investigated as potential sources of

these plasmons. Following these parametric instabilities, a coupling between a plasmon

and a laser photon produces a new photon with 3ω0/2 frequency. The theoretical descrip-

tion of the above mentioned processes is started with the frequency and phase matching

conditions, i.e. energy and momentum conservation, in the k space using the dispersion

relations of the generated waves, similarly to Meyer and Zhu [28]. One should keep in

mind, however, that frequency and phase matching alone is not sufficient to determine

whether a 3 ω0/2 wave with detectable amplitude is generated. To complete the analysis,

the growth rates in k space of the instabilities have to be considered. The k space analysis

yields the wavevector of the generated 3ω0/2 radiation, which determines the propagation

direction and with it the angular distribution. This analysis is a compact and illustrative

form of the generation process. To start, the simplest model, i.e. resonant unsaturated

parametric instabilities will be used. Later in Sec. 5.4 the picture will be completed by
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discussing additional effects, such as plasmon propagation or saturation.

The laser beam is focused with an angle of incidence α onto an inhomogeneous plasma

with a density scale length of L = ne/|dne/dx| at the quarter critical density. The

direction of the density gradient is parallel to the x axis and the plane of incidence is the

x-y plane. The momentum conservation (Eq. 3.12) restricts the TPD generated plasmon

wavevectors to a circle in k space at given plasma parameters (temperature and density).

The normalized wavevectors are introduced here as k̃ = kc/ω0. Using Eqs. 2.18, 2.22,

and 3.12 the plasmon wavevector generated by TPD has to satisfy(
k̃ex −

√
cos2(α) − 1/4

2

)2

+

(
k̃ey − sin(α)

2

)2

=

√
ne/nc − 2ne/nc

3TkeV/511
− 3

16

(3.33)

where the ω2
pe � 3v2

ek
2
e , or using normalized quantities the 42 � TkeVk̃2

e approximation

was used in the dispersion relation and the laser wavevector is taken at nc/4. It can

be seen from this equation that in fact TPD takes place below nc/4 due to the finite

electron temperature. Eq. 3.33 is a circle centered at the normalized wavevector k̃0/2

with a radius that depends on TkeV and ne. The analytical expression obtained without

these approximations deviates negligibly from this TPD circle, the difference is on the

order of 1%. The plasmon wavevector is limited by the Landau damping in the case of

TPD, as will be discussed later.

The k space analysis of the SRS is alike that of the TPD. However, similar assumption

about the dispersion relations cannot be made, because the frequency of the scattered

electromagnetic wave depends strongly on the wavevector. The SRS generated plasmon

wavevectors satisfy

1 =

√
ne

nc

+
3TkeV

511

(
k̃2

ex + k̃2
ey

)
+

+

√
ne

nc

+

(
k̃ex −

√
cos2(α) − ne

nc

)2

+
(
k̃ey − sin(α)

)2
(3.34)

This analytical curve is approximately a circle centered at the normalized wavevector

k̃0. Around the quarter critical density the plasmon frequency dependency on its wavevec-

tor can be neglected and [1 − 2(ne/nc)
1/2]1/2 is obtained for the radius. SRS causes the

scattered light wavevector to be smaller than the incident laser wavevector and this ulti-

mately limits the plasmon wavevector. The scattered wavevector is negligible (k1 � k0)

around the quarter critical density and consequently ke ≈ k0.
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Plasmons in the k space that can generate 3ω0/2 radiation, are determined basically by

the momentum conservation of this process (Eqs. 3.32 and 2.22). The equation governing

their wavevectors is (
k̃ex +

√
cos2(α) − 1

4

)2

+
(
k̃ey + sin(α)

)2

= 2. (3.35)

This is the so called ’radiation circle’ centered at the normalized wavevector −k̃0 and

with a radius of k̃3/2 =
√

2. Any deviation from the analytical expression is relative small.

Only the radius covers a wide range of values corresponding to the three-halves harmonic

bandwidth.

The propagation of the electromagnetic and plasma waves in inhomogeneous plasmas

is easily illustrated in the k space. The perpendicular components of the wavevector

with respect to the density gradient (y and z components) are conserved and only the

parallel component (x) changes in order to satisfy the dispersion relation. Therefore,

the propagation direction of the waves in k space is antiparallel to the direction of the

density gradient. As the waves propagate inwards the electron density increases and the

x component of the wavevector eventually vanishes. At this point the waves are reflected

and the x component of their wavevector starts to grow again. Correspondingly the 3ω0/2

radiation that is generated at the quarter critical density, will also be refracted and its

direction of propagation will change slightly as it reaches the vacuum. The propagation

of the laser light in the plasma is illustrated with the red curves in Fig. 3.3 in the normal

space and also in the k space.
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ky

k0

ke2

ke1

�

n cosc

2� Figure 3.3: Propagation of the laser light

in the plasma (red lines) and the TPD in

the normal space and in the k space. The

black arrow is the laser wavevector, and

the green arrows correspond to the plasma

waves.

The plasmons propagate with a group velocity of vg = 3v2
eke/ωe, which using the

normalized wavevector for plasmons and a frequency of ωe ≈ ω0/2 has the value vg =

ck̃e6TkeV/511. The maximal distance that a plasmon propagates is restricted either by

the collisional damping of plasmons or by the maximal length of the wavevector, which in

turn is limited by the Landau damping of plasma waves with long wavevector. The former

is important in long pulse experiments and makes the plasma wave propagation and the

change of the wavevector negligible, while the latter will be important in the ultrashort
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pulse experiments. The plasmon propagation during the pulse duration is important,

because 3 ω0/2 is generated only during this time. While the frequency of the plasmon

remains constant during propagation, the parallel component of the wavevector changes

according to Eq. 2.18

∆k̃ex = k̃ex

√ ω0τ

4πk̃exL/λ
+ 1 − 1

 (3.36)

where τ is the pulse duration. Here, a linear density profile is assumed, that is, the

distance covered by the plasmons is smaller than the scale length. The calculation uses

the WKB approximation, so it underestimates the wavevector change around kex ≈ 0.

To conclude the theoretical analysis the formalism is applied to a specific example of

three-halves harmonic generation in the k space. It is possible to predict the directions

in which the 3 ω0/2 radiation is generated, and moreover, their spectra. As mentioned

previously, this analysis will be far from complete without taking into account the evolu-

tion of the first step of the 3 ω0/2 production process, the parametric instabilities. The

reason is that the initial exponential growth rates cause large variations in the amplitudes

of plasma waves. Therefore, in some directions, which are in principle phase-matched,

the three-halves harmonic radiation will have a negligible amplitude. Beyond that the

spectral shape is even more sensitive to the details of the instabilities.

The value and properties of the maximum growth rate are only important as discussed.

Restricting the analysis to the case where ke is in the plane of vosc and k0 since these

plasma waves grow faster. A plasmon wavevector component perpendicular to the vosc

and k0 plane will appear only in the denominator of Eq. 3.17 thus diminishing the growth

rate. As the coordinate system is fixed to the plasma density gradient the wavevectors

of the plasmons having the maximum of this homogeneous TPD growth rate lie on the

rotated hyperbola(
k̃ex sin(β) + k̃ey cos(β)

)2

=
(
k̃ex cos(β) − k̃ey sin(β)

)
×
(
k̃ex cos(β) − k̃ey sin(β) −

√
3/2
) (3.37)

here β is the previously calculated angle of incidence at the quarter critical density. This

is the well known k2
ey = kex(kex − k0) maximum growth rate hyperbola for perpendicular

incidence. This hyperbola and the wavevectors of the fastest growing plasmons point in

the 45◦ direction between vosc and k0 for large values of ke. The value of the maximum

growth rate along this hyperbola is γmax = k0vosc/4. Eq. 3.16 has to be solved numerically

to obtain the growth rate at an arbitrary plasmon wavevector. The numerical solution
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also has its maximum along the hyperbola, but the maximum decreases with an increasing

plasmon wavevector component perpendicular to k0 (key in the following discussion). The

TPD is illustrated in Fig. 3.3 in the normal and in the k space. The black arrow is the

wavevector of the laser and the green ones correspond to the plasma waves. It should be

noted that in this figure both the plasmons and the laser photons are plotted, later only

the plasmon k space will be used.

Parametric instabilities certainly do not grow unlimited, because different processes

such as coupling to other waves, pump depletion or plasma wavebreaking limit the ampli-

tude of their daughter waves. LDI was identified as the nonlinear saturation mechanism

of the TPD in the long pulse regime [31] (Sec. 3.4 and 3.2). In these experiments LDI

had another very important role, it produced plasmons with ’new’ wave vectors that were

not produced by TPD and these plasmons could couple with the laser to generate 3ω0/2.

This is the main three-halves harmonic generation process in the ns regime. This process

requires the generation of ion acoustic waves with some ps cycle time, which are generally

suppressed in the fs regime. Consequently, the same or higher saturation amplitude is

expected than for long pulses. An amplification of the plasma wave intensity of 7 - 9

e-foldings (103 - 104) was measured [69], which is a lower limit in the short pulse regime.

Pump depletion does not play a role, because the three-halves harmonic energy is low

enough to assume a negligible amount of energy in the plasma waves. Other processes

involving only electromagnetic and plasma waves as well as wavebreaking are possible

candidates as saturation mechanisms in short pulse experiments.

Now, the instabilities generated by a long and a short pulse laser with the same fluence

will be compared. The amplification depends on the fluence (F = Iτ in the case of a

rectangular pulse) and the pulse duration (τ), in e-foldings γmaxτ ∼ √
Iτ =

√
Fτ . This

estimate implies a factor of 100 less amplification with a 100 fs than with a 1 ns laser.

Taking into account that the linear growth lasts 10 - 20 ps [28], approximately 1% of the

pulse duration with ns lasers, it is expected a predominantly exponential growth for fs

pulses. Consequently the instabilities have an absolute different behavior in the two pulse

length regimes.

It is important to discuss briefly the plasma wave damping in the present experimen-

tal situation. The collisional and the Landau damping are considered as plasma wave

damping mechanisms. In both cases the previously calculated instability growth rate is

diminished by a corresponding term. The collisional damping similar to collisional ab-

sorption occurs due to the electron and ion collisions and the temporal damping rate at
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the quarter critical is

γcoll =
ω2

pe

2ω2
e

νei ≈ 8.8 × 10−5 Z

λ2
µT

3/2
keV

fs−1 (3.38)

where νei is the electron ion collisional frequency and Z is the ionization charge state.

Electrons moving with approximately the phase velocity of a plasma wave are exposed

to its electric field. These electrons are accelerated or decelerated depending on whether

their speed is smaller or larger than the phase velocity of the wave. The laser plasma

based electron acceleration and the Landau damping are utilizing this fact. In the case

of a Maxwellian electron velocity distribution the number of electrons accelerated by the

wave is higher than the decelerated ones, which leads to a net energy transfer from the

wave to the particles. This loss mechanism, the Landau damping, is a very strong function

of the phase velocity. Therefore, this is treated either as negligible or as dominant, in

which case the plasmon is heavily damped. An easy estimation of the sizeable Landau

damping keλDe ≥ 0.3 where λDe =
√

ε0Te/(nee2) is the Debye length, in useful units

k̃e ≥ 3.4/
√

TkeV. The complete Landau damping coefficient is:

γL =

√
π

8

ω4
pe

k3
ev

3
e

exp(− ω2
pe

2k2
ev

2
e

)

≈ 857.3

λµk̃3
eT

3/2
keV

exp

(
− 63.88

k̃2
eTkeV

)
fs−1.

(3.39)



Chapter 4

Validation of the linear theory

This chapter reports first experimental studies of high intensity fs-laser generated 3 ω0/2

radiation in inhomogeneous plasmas. It will be shown that measurements of the 3/2-

harmonic yield as a function of the incident pulse duration are in excellent agreement

with linear theory.

Parametric plasma instabilities contribute to the production of suprathermal electrons

and also lead to the generation of large amplitude plasma waves which couple to the inci-

dent electromagnetic wave and result in new, frequency-shifted electromagnetic emission.

An example of such a process is the generation of light with a frequency of 3/2 times the

fundamental frequency. In the interaction of intense Ti:sapphire femtosecond laser pulses

with solids, this manifests itself as a strong green emission [34], and is a signature of para-

metric instabilities operating close to quarter critical density (nc/4). It is important to

study the 3 ω0/2 generation process since this radiation is generally observed in femtosec-

ond, high intensity experiments. As there was no experimental study in this field, the first

experiment with the three-halves harmonic radiation was performed to characterize its

properties and identify the parametric instability that generates it with ultrashort laser

pulses (in the 100 fs - 1 ps range) in a long density scale length plasma (L ∼ 100 µm ).

These experimental conditions are similar to that of the fast ignitor concept [22], which

is another important issue in the presented results.

In long pulse laser-plasma interaction, the dominant production process for 3ω0/2 ra-

diation was found to be TPD, which occurs resonantly at nc/4 [28]. With nanosecond

and sub-nanosecond pulses, the instability reaches a nonlinear saturation caused by LDI

[31]. Time-resolved Thompson scattering measurements in CO2 laser-plasma interaction

experiments at 3 × 1013 W/cm2 (with 2 ns pulse length) revealed that for times up to

25 ps, TPD growth is within a linear regime; whereas after 50 ps, saturation occurs [28].

43
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Temporal measurements of the plasma wave amplitude support these results [102]. How-

ever, the saturation timescale depends on the laser and plasma conditions and therefore

will be different in other experiments. Typical TPD saturation levels of the enhanced

electron plasma fluctuations for nanosecond laser-pulse experiments are a factor of 103 to

104 (7 to 9 e-foldings) above thermal noise levels [68].

In the femtosecond regime, however, the product of growth rate and pulse duration is

much smaller as discussed in Sec. 3.6, so that one would expect analogous measurements

to fall within the linear regime. In addition, almost no hydrodynamic motion occurs

during the interaction time. Although several groups have reported SRS-backscatter

measurements in underdense plasmas (ne < 0.01 nc) [32, 33], no investigations of 3ω0/2

generation by femtosecond lasers have been performed before this work [103].

The chapter starts with the description of the experimental setup, then the results are

presented and it is followed by the discussion of the experimental results at the end.

4.1 Experimental setup

A 2-TW Titan:sapphire laser beam with 200 mJ pulse energy and with a repetition rate

of 10 Hz was used for the experiment. The laser spectrum is centered around (790±1) nm

and has a bandwidth of about (11±1) nm as shown in Fig. 4.1. The pulse duration directly

after the pulse compressor was 100 fs. The beam propagated from the last compressor

grating a distance of 4 m in air before entering a target chamber filled with air with a low

ambient pressure of 5 mbar. This was chosen to reduce the debris from the target which

tends to degrade the focusing optics especially when operating at 10 Hz. Nonlinear effects

in air and in the 10 mm thick fused silica entrance window caused a pulse prolongation

which resulted in an effective pulse duration of about 135 fs on target, but did not change

the spectrum as can be seen in Fig. 4.1.
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Figure 4.1: The spectrum of the Ti:sapphire

laser directly after the compressor (black

dashed line) and after a 10 mm thick fused

silica window with full power (red solid line).
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The experimental setup is shown in Fig. 4.2. The p-polarized laser was focused with

Ti:Sapphire

Diagnostics

Al

Figure 4.2: The experimental setup. The

Ti:Sapphire laser was lead into the vac-

uum chamber through a quartz window

and focussed at 45◦ with a gold off-axis

mirror onto an aluminum target in an am-

bient pressure of 5 mbar. The averaged in-

tensity in vacuum was 2.3 × 1017 W/cm2.

The specularly emitted 3 ω0/2 radiation

was collimated with another off-axis mir-

ror and sent through a BK7 window to the

diagnostics.

a 122 mm focal length gold coated off-axis parabolic mirror onto a polished aluminum

target. The measured spot size was (20 ± 5) µm by imaging the focus obtained with

the attenuated beam, with a microscope objective onto a CCD. The spot size was the

same with the attenuator placed after the laser compressor and in the vacuum chamber

indicating that nonlinear phase front distortions in the air and in the window did not

affect the focal intensity distribution. The angle of incidence was 45◦ and the aperture

angle was 23◦, which corresponds to an f number of f/2.5. For each laser shot a fresh

surface was provided by shifting the target. Including reflection losses at the window and

at a pellicle shield in front of the parabolic mirror an averaged intensity of (2.3±1.1)×1017

W/cm2 is obtained in vacuum, which is not reduced by ionization defocusing in air at a

pressure of 5 mbar in the vacuum chamber as discussed in Section 2.3.1 [46].

The plasma is produced by a 100 fs long prepulse appearing 12.5 ns before the main

pulse with a typical intensity of about 4×1014 W/cm2. A slightly larger prepulse is shown

in Fig. 4.3 with a contrast of 1:200. This prepulse was generated by allowing some leakage

of a pulse through the extracavity Pockels cell. The pulse is a reflection from the output

coupler thin film polarizer, in the regenerative amplifier, at the last but one round trip.

In addition, a prepulse with 100 fs pulse duration was measured also at 4 ps before the

intense main pulse with about the same intensity as the 12.5 ns prepulse by means of a

third order autocorrelation shown in Fig. 4.4.

The generated 3 ω0/2 radiation was collimated in 45◦ observation angle with a second

off-axis parabolic mirror and sent through a BK7 window to the diagnostics (Fig. 4.2)

such as calibrated photodiode and spectrometer.
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Figure 4.3: Measurement of the contrast

of a prepulse coming 12.5 ns before the

main pulse. The contrast is 1:200.

Figure 4.4: High dynamic range third

harmonic autocorrelation. There is a

short prepulse 4 ps before the main pulse.

4.2 Results

The energy of the 3 ω0/2 signal was measured carefully with a calibrated photodiode pro-

vided with an appropriate filtering and yielded approximately 100 nJ per pulse (average

of ∼ 50 pulses) into a solid angle of ∆Ω ≈ 2× 10−3 sr. Strong shot to shot energy fluctu-

ations were observed. The conversion efficiency of the incident energy into 3/2-harmonic

energy which was measured in specular direction is 5 × 10−7. Assuming homogeneous

angular distribution in the specular direction an efficiency of 3 × 10−5 is obtained. The

second-harmonic emission from the plasma was measured also with a pulse energy of

about 50 nJ.

Figure 4.5(a) shows 3 representative single shot 3 ω0/2 spectra, and in Fig. 4.5(b) an

averaged spectrum is shown which was obtained over 15 shots. While the spectrum in

Fig. 4.5(a) represented by the solid curve (#1) is similar to the averaged spectrum, the

other two are examples show a larger discrepancy. Hence, the spectral details varied from

shot to shot but the spectral width and the center wavelength were essentially conserved.

The spectrum (b) with a center wavelength of (519 ± 1) nm, is blue shifted by about 8

nm with respect to the expected 3 ω0/2 center wavelength of (527 ± 1) nm, and has a
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FWHM of (19 ± 1) nm. The measurement of the spectrum confirms that the observed

radiation is due to 3/2-harmonic emission. In contrast to nanosecond laser experiments

where typically well separated red and a blue shifted wings are observed [29, 98], only

a broad spectral distribution was measured. For nanosecond laser experiments the 3/2-

harmonic spectrum is explained by simulations including nonlinear TPD saturation and

LDI [31]. Obviously, the 3/2-harmonic spectrum shown in Fig. 4.5 indicates that with

femtosecond lasers a completely different coupling regime has to be applied. LDI develops

on the time scale of the cycle time of ion acoustic waves, which is 3.5 ps determined

from Eq. 2.20 for aluminum (Z = 5 Te = 1 keV, ki = 2k0, λ = 800 nm). Hence

LDI is excluded for the present experiment and electron plasma wave propagation is

also insignificant as will be discussed later. Assuming a direct coupling of plasmons

and laser photons, the spectral broadening is due to (1) the large bandwidth of the

Ti:sapphire-laser (∼ 11 nm), (2) the plasma electron temperature which leads to an

electron density range where the 3 ω0/2 is generated, (3) non-resonant TPD (see Sec. 5.5),

and (4) might be influenced by saturation which leads to an increased spectral broadening

[104]. It should be noted that the broad bandwidth of the three-halves harmonic radiation

supports the assumption that the pulse duration is equal with the interaction time. This is

because if the bandwidth of 3 ω0/2 (∆λ3/2) originated only from the laser bandwidth (∆λ),

i.e. ∆λ3/2/λ3/2 = ∆λ/λ, the different 3/2-harmonic wavelengths would be generated in

different times during a chirped laser pulse. The amplitude of a plasma wave with a

given wave vector would not be amplified during the whole incoherent laser pulse, only

as long as the pulse is coherent (during the transform-limited pulse duration). As the

bandwidth of 3 ω0/2 is much broader than the laser’s bandwidth it is plausible that a

given laser wavelength generates a very broad plasma wave and three-halves harmonic

spectrum (this will be discussed in more detail in Sec. 5.5). Furthermore, the relative

small change of the laser wavelength during the pulse – the small chirp – will almost not

affect the produced spectrum and every spectral components will be amplified during the

whole pulse. Figure 4.6 shows the measured signal of the fundamental (open squares), the

second harmonic (crosses), and the 3/2-harmonic radiation (filled circles) as a function of

the incident Ti:Sa laser pulse duration (τ) for a constant fluence. The pulse duration was

varied in the range of 135 fs − 900 fs by changing the distance between the compressor

gratings. The measurement shows both directions from the optimal compressor position

and therefore includes positive and negative chirp. The resulting signals were identical,

consequently the generation process of the harmonics and the reflectivity do not depend

on the sign of the chirp of the incoming laser pulse. Since the energy and the size of

the focus were kept constant, the intensity is inversely proportional to the pulse length.

The measurement shows that the ω0-signal remained almost constant, indicating that the
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Figure 4.5: (a) Three measured 3 ω0/2

single shot spectra and (b) an aver-

aged spectrum obtained over 15 laser

shots. The dashed line shows the ex-

pected 3 ω0/2 wavelength.

reflectivity did not change in the applied intensity range. The second harmonic signal

increases with shorter pulses, as found previously by others [105]. By contrast, the yield

of the 3 ω0/2 radiation has a maximum at (350 ± 50) fs.

The spatial properties of the laser produced plasma are very important in the inter-

pretation of the results. Therefore interferometric measurements were performed in order

to characterize the preformed plasma with the second harmonic of the fs laser [106]. A

Mach-Zehnder setup was used. Here the probe pulse is split into two parts, one propagates

in vacuum and the other though the plasma. Then they are combined again and their

two-dimensional interference image, the interferogram is recorded. As the index of refrac-

tion in vacuum is 1 and it differs from 1 in the plasma, the interferogram is characteristic

to the spatial distribution of the plasma. Assuming radial symmetry the electron plasma

density as a function of the position can be recovered with Abel-inversion technique [107].

The intensity of the preplasma generating laser pulse was varied in the range from

5 × 1014 W/cm2 up to 1017 W/cm2 and the delay between the pump pulse generating

the plasma and the observing probe pulse was changed between 200 ps and 6 ns. An

interferometric image with 2 ns delay and an intensity of about 1016 W/cm2 is shown in

Fig. 4.7 and the obtained density profile is in Fig. 4.8. The scale length (see Eq. 2.25) from

an exponential fit is (65±2) µm . After 2 ns the recombination of the plasma is significant.
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Figure 4.6: Yield of 3ω0/2 (filled green circles), the 2 ω0 (blue crosses), and the reflected ω0

signal (open red squares) as a function of the pulse duration of the incident Ti:Sa laser for

constant fluence. The thick curve represents a theoretical fit with saturation, while the thin

dashed curve is without saturation for the 3/2-harmonic signal.

A sign of the recombination in the interferometric images is that the interference lines start

to bend into the other direction away from the target. This is due to that the refractive

index of a gas is higher than 1, but of a plasma is smaller than 1. From the measurements

a density scale length in the range of 100 µm − 200 µm is inferred for the 12.5 ns time

delay. For long delays (> 2 ns) the obtained scale length depends weakly on the time

delay and much weaker on the intensity, because of the expansion that is accompanied

by recombination and rapid cooling. The 4 ps prepulse produces plasma from the gas

again. The discussion of the experimental results follows based on the detailed theoretical

introduction.

4.3 Discussion

The key point in understanding the peculiar behavior of the 3/2-yield is that due to the

prepulses, the linearly polarized intense laser pulses interacted with an extended inhomo-
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Figure 4.7: The obtained interferogram 2

ns after the generation of the plasma with

a pump intensity of 1016 W/cm2.
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Figure 4.8: The electron density profile

calculated with Abel-inversion technique

from Fig. 4.7. The red line is an expo-

nential fit to get the scale length, which is

(65 ± 2) µm in this case.

geneous plasma with long density scale length to generate the 3ω0/2. The mechanism

for the 3 ω0/2 generation includes two steps as discussed in Sec. 3.5. First, a plasmon is

generated with ω0/2 frequency by SRS or TPD just below the quarter-critical density [25].

Second, the 3 ω0/2 light is produced via a coupling of the plasmons and the laser photons.

The effect of plasmon propagation in the inhomogeneous plasma or other effect changing

the plasmon wavevector are generally important because in most cases the plasmons of

significant growth generated by TPD do not satisfy the matching conditions – momentum

and energy conservation, dispersion relations – of the 3/2-harmonic generation process

[87]. A detailed theoretical analysis of the TPD process was made by Simon et al. [67]

(see Sec. 3.2). Depending on the value of βS (Eq. 3.22) different analytical solutions are

valid. That means TPD generates plasmon pairs with different wave vectors and in some

βS range 3 ω0/2 can be generated without changing the plasmon wave vector, i.e. with a

higher efficiency, as the wave vector matching needs always extra processes for example

plasmon propagation or LDI. Direct coupling is not possible if βS > 1, which is typically
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the case for nanosecond, short wavelength (≤ 1 µm ) laser-plasma interaction [67].

In the present case βS ≈ 2×10−3−2×10−2 is estimated for λ = 0.8 µm , Te = 1 keV, I

∼ 1016 − 1017 W/cm2, which indicates that direct coupling is possible in this experiment.

A detailed k-space analysis was performed for the applied experimental conditions (45◦

angle of incidence, 45◦ angle of observation) which shows also that coupling without

changing the plasmon’s wavevector can be established and plasmon propagation does not

play an important role in 3ω0/2 generation due to the short pulse duration and the long

density scale length, Sec. 3.6. In the following, plasmon propagation is neglected in the

analysis of the data.

The threshold intensity for SRS is in general higher than for TPD [68], but in this

experiment the applied intensity is high enough to invoke both processes. It is readily

shown for SRS that in the vicinity of nc/4 the momentum of the incident light wave is

almost completely transferred to the plasma wave. However, these plasmons do not fulfill

the matching conditions for 3ω0/2 (this will be discussed in more detail in Sec. 5.4).

It is concluded that SRS is not the dominant production process for the 3/2-harmonic

radiation observed under the described experimental conditions.

By contrast, TPD generates two plasmons with a frequency of about ω0/2 which take

up the momentum of the incident photon. TPD provides a wide range of plasmon wave

vectors, which allows the generation of 3/2-harmonic radiation in a large solid angle and

also in the applied geometry. The observed 3/2-emission is therefore assumed to be due to

the coupling of plasmons of ω0/2-frequency, which are generated by TPD in the vicinity

of nc/4 and incoming laser photons. The 3/2-intensity is proportional to the intensity of

the laser beam at nc/4 and to the square of the electron plasma wave amplitude.

In the linear regime, the plasma wave amplitude grows from thermal noise level (nth)

exponentially in time nTPD(t) = nth exp(γt). To calculate the instantaneous amplitude,

the maximum TPD growth rate γ is used in an inhomogeneous plasma, given by Eq. 3.20

extended with damping terms (Sec. 2.3.4) [25, 26]

γ̂ =
k0vosc

4
−
√

0.65k0

L
ve − 1.06 × 10−2

Zω4
pe ln Λ

nev3
e

− γL, (4.1)

where γ̂ is a simplified growth rate as discussed in Sec. 3.2 obtained by Langdon, k0 ≈
(
√

3/2)ω0/c is the light wavevector at nc/4; c is the light speed in vacuum; vosc/c =√
Iλ2/(1.38 × 1018Wcm−2µm 2) is the quiver velocity; Z is the ionization charge state;

ωpe is the local plasma frequency, and ln Λ ≈ 8 is the Coulomb-Logarithm. L is the

electron density scale length defined by Eq. 3.2 at nc/4. The first term on the right hand

side is the maximum growth rate in homogeneous plasmas (L = ∞) without damping.
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Figure 4.9: The electron plasma wave

amplitude (nTPD) and the laser intensity

(I) as a function of time. The time ts

marks the point where saturation (nsat)

is reached from the initial thermal noise

(nth) and τ is the pulse duration.

The second term is due to a smaller interaction range in the inhomogeneous plasma, the

third is the collisional damping and the fourth is the Landau damping, which is negligible

if the plasmon wavevector satisfies ke < 4k0 ≈ 3.4ω0/c (Eq. 2.37) and dominant preventing

the instability otherwise. The second and third terms introduce an intensity threshold. A

preliminary estimate of the amplification using Eq. 4.1 assuming pure exponential growth

(λ = 790 nm, I = 2 × 1017 W/cm2, Te = 1 keV, L = 120 µm , Z = 4, t = 135 fs) shows

that for the experiment described here, 41 e-foldings are obtained, which corresponds to

an amplification of 6 × 1017 and hence saturation has to be taken into account. In order

to include saturation effects, a saturation value for the plasma wave amplitude (nsat) is

assumed which is reached at a time ts as shown in Fig. 4.9.

For times t < ts, the instability grows exponentially; for t ≥ ts, the amplitude is treated

as constant. The interaction time is assumed to be equal to the laser pulse duration (τ).

The measured 3 ω0/2 pulse energy for various pulse length is given by

E3/2 ∼
∫ τ

0

I n2
TPD(t)dt (4.2)

with I = I0τ0/τ where I0 is the intensity at a pulse duration τ0. The plasma wave

’intensity’ appears in Eq. 4.2, which is the amplitude squared. Combining Eqs. 4.1 and

4.2, the following expressions for E3/2 is readily obtained:

(a) without saturation

E3/2(τ) = A
exp[B

√
τ − Cτ ]

B
√

τ − Cτ
(4.3)

(b) with saturation

E3/2(τ) = D

[
1 +

1 − 2 ln(nsat/nth)

B
√

τ − Cτ

]
(4.4)

where A,

B = 6.94 × 10−10

√
I0(W/cm2)τ0(fs)fs

−1/2, (4.5)

C = {4.98 × 10−2
√

TkeV/(Leff(µm)λµ) + 1.8 × 10−4Z/(T
3/2
keVλ2

µ)}fs−1, (4.6)
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and D are fitting parameters and TkeV is the electron temperature in keV. Henceforth, τ0,

Z ≈ 4, Leff, and λµ are treated as given and I0 and TkeV as free parameters. From B the

intensity at nc/4 (I0) is determined for a pulse duration of τ0. This may differ from the

nominal focused laser intensity in vacuum due to nonlinear propagation effects. Leff is an

effective scale length that takes the oblique incidence of the laser beam into account [30].

The thin dashed purple and thick solid brown curves shown in Fig. 4.6 are the result of

respective fits using Eqs. 4.3 and 4.4 to the experimental data. A good agreement between

measurement and theory is obtained in both cases. However, from these curves alone,

it cannot be concluded whether saturation is reached or not. The first part in Eq. 4.1

is responsible for an increasing 3/2-signal with the pulse duration for incident pulses

shorter than 350 fs, while for longer pulses the inhomogeneous and collisional parts lead

to a decreasing signal. Since it is expected that LDI plays a minor role on femtosecond

timescales, linear theory should apply to even higher e-foldings than for long laser pulses

until the instability saturates through, for example wavebreaking. The deduced intensities

using τ0 = 135 fs are without saturation: (3.9 ± 0.5) × 1015 W/cm2, with saturation

assuming 10 e-foldings saturation level (2 ln(nsat/nth) = 10): (2.4 ± 0.1) × 1016 W/cm2,

and 20 e-foldings: (1.05 ± 0.04) × 1017 W/cm2. There are more definite but much more

complicated theories of TPD [30, 67] with slightly different maximum growth rates which

essentially show the same behavior as the model of Ref. [26] and the experimental data.

The collisional absorption of the incident laser pulse was estimated for propagation up

to the nc/4 (Sec. 2.3.3) and found that it is between 5 % and 15 % so it is negligible,

but ionization defocusing discussed in Sec. 2.3.1 in the preplasma is significant for the

fundamental. Refraction of the three-halves harmonic in specular direction (−45◦) by

the laser generated density profile is negligible due to the perpendicular propagation to

the laser direction. Estimates based on the theory of Fill [46] show that the intensity at

nc/4 is reduced by about one to two orders of magnitude due to ionization defocusing and

therefore an intensity of 1015 − 1016 W/cm2 is expected inside the plasma in agreement

with the measurement. The spectral shift of the 3ω0/2 radiation may be attributed to

the ionization blue shift of the fundamental. The electron temperature obtained from the

fit parameter C using Eq. 4.3 is on the order of ∼ 230 eV. It should be stressed that even

with saturation the duration of the exponential growth is in the present experiment at

least 80% of the laser pulse length (see Fig. 4.9), in contrast to ns-laser experiments where

it is approximately 1% [68]. Since most of the interaction time is within an exponential

growth the fits with and without saturation are similar.

In this chapter the first experimental investigation of intense femtosecond laser gener-

ated 3ω0/2 radiation in dense long scale length plasmas was presented. The dominant
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production process for the 3/2-harmonic radiation is the two plasmon decay. The good

agreement of the theoretical models with the experimental data — in particular the oc-

currence of a maximum in the 3/2-yield as a function of τ (Fig. 4.6) provides a clear

experimental verification of the TPD growth rate in an inhomogeneous plasma in the

linear regime – Eq. 4.1.



Chapter 5

Angular distribution measurements

In this chapter detailed angular distribution and spectral measurements of the 3ω0/2

radiation are presented in short scale length plasmas (0.8 - 7 µm) with intensities reach-

ing the relativistic level (1016 - 6 × 1018 W/cm2) [108]. The experimental results are in

very good agreement with theoretical predictions based on two-plasmon decay and stimu-

lated Raman scattering instabilities. New three-halves harmonic generation mechanisms

are identified characteristic of femtosecond laser induced parametric instabilities. These

are the joint interaction of incident and reflected laser beams as well as stimulated Ra-

man scattering. It is shown both experimentally and theoretically that the three-halves

harmonic radiation is a useful preplasma diagnostic tool.

Previously, the angular distribution was measured in the saturation dominated long

laser pulse regime, which cannot be explained with the linear theory of unsaturated insta-

bility [28]. For ultrashort laser pulses, however, the situation is different. The instability

remains in or near the unsaturated regime [103]. Therefore, it is expected that the exper-

imental results are largely in agreement with the predictions of the linear model.

In Sec. 3.6 the theoretical description was outlined based on the theoretical analysis in

the beginning of this work. The experimental setup is described in Sec. 5.1. The signal

dependence and angular distribution results are presented in Sec. 5.2 and Sec. 5.3 and

their detailed discussion is found in Sec. 5.4. The spectral measurements are discussed in

Sec. 5.5.

55
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5.1 Experimental setup

The generation mechanism can be identified with the previous theory by measuring the

angular distribution and the dependencies of this distribution on various parameters.

Now, these experimental observations will be discussed. The Ti:Sapphire laser had a

central wavelength of 800 nm, a bandwidth of 14 nm, a pulse duration of 94 fs ± 5%

(FWHM pulse duration assuming a Gaussian pulse), and p polarization. The energy on

target varied between 155 and 175 mJ with a relative standard deviation of ± 4%. The

pulse compressor was installed in a vacuum chamber to avoid nonlinear effects in the air.

Two approximately 100 fs long prepulses were detected 10 ps and 4 ps before the main

pulse. The intensity contrast with respect to the main pulse was measured to 2 × 10−4

using a third order, high dynamic range autocorrelator (see Fig. 5.1). An additional

prepulse was introduced with the same pulse duration using a prepulse generator [109],

which contained 2% of the energy of the main pulse. The delay of the prepulse was changed

between 0 ps and 350 ps. A regular control of the focal intensity distribution indicated a

FWHM focus diameter of 2.9 µm ± 0.3 µm (containing 43 % of the energy on target) and

independently a Rayleigh range of 21 µm ± 3 µm by measuring the transverse intensity

distribution in front of and after the focus in several positions. An angle of incidence

of 45◦ leading to a slightly increased spot size in one dimension caused a decrease of

the intensity on target. Experiments at different target focal positions, i.e. intensities

were performed. The average intensity within the temporal and spatial FWHM on target

including the previous effects was (6.2 ± 1.2) × 1018 W/cm2 in the focus. The temporal

and spatial peak intensity is 1.72 times higher, that is (1.1 ± 0.2) × 1019 W/cm2. The

average intensity was decreased by moving the target along the optical axis out of the

focus, down to 1016 W/cm2. As compared to decreasing the energy this method has the

advantage that the signal to noise ratio of the detected 3ω0/2 radiation was much larger.

A disadvantage of changing the target position is that the angle of incidence will change

to an angular range instead of a well defined value. It will be shown in this article that

the power and the direction of the emission depends on, amongst other things, the angle

of incidence therefore this angular range must be taken into account.

Aluminum targets on glass substrates were used in the experiments. The horizontal

plane of the geometry is depicted in Fig. 5.2. The direction normal to the target surface

in the horizontal plane is defined as 0◦. The angle of incidence and the specular reflection

angle were 45◦ and −45◦, respectively. The angular range between 10◦ to −93◦ was

scanned. The laser was focussed with an off-axis paraboloid gold mirror and the f/3.4

focusing yielded an angular width of 16◦ in the horizontal direction.
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Figure 5.1: Three independent third har-

monic generation autocorrelation traces

with a dynamic range of better than 4 or-

ders of magnitude. Two 100 fs-prepulses

are detected at 10 and 4 ps.
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Figure 5.2: Geometry of the measure-

ment and the definition of the angles.

X-ray spectral measurements [110] were performed at various intensities to determine

the electron plasma temperature. The obtained spectra were simulated with known pa-

rameters. In the intensity regime used here the best fit yielded an electron temperature

of 1.05 keV at 5 × 1023 cm−3 density. The variation of the temperature with the inten-

sity was less than 15%. Although, the measured plasma density is much higher than the

quarter critical density (4 × 1020 cm−3) a similar temperature is assumed there, because

their spatial distance is approximately 10 µm and the plasma temperature varies more

slowly than the density [111].

5.2 3 ω0/2 signal dependence on the scale length

The 3 ω0/2 signal dependence on the main pulse-prepulse delay, i.e. on the scale length

(L) at the quarter critical density of the preplasma, was measured in order to determine

the maximum 3 ω0/2 yield. The electron density scale lengths for the various main pulse
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prepulse delays in Figure 5.3 were calculated by the 1D MEDUSA code [112]. A program

has been written as a part of this work, which allowed a fast evaluation of the MEDUSA

results and has also been applied to other works [113, 114, 115]. The simulations were

compared to experimental results obtained under similar conditions [116] and the results

indicate that the one-dimensional code simulating the plasma expansion is appropriate.

For all delays applied the scale length is smaller than 7 µm. The plasma radiation was
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Figure 5.3: Change of the 3ω0/2 signal

with the scale length at I=7×1016 W/cm2

for an observation angle of -15◦.

directed through a vacuum window, spectrally filtered with care and the three-halves har-

monic content was measured with a photodiode in -15◦ observation angle. The intensity

on target was (7 ± 3) × 1016 W/cm2. The result is shown in Fig. 5.3. First, the signal

increases rapidly with delay, reaches a maximum at around 50 ps, and decreases again

after 100 ps. A similar behavior is observed in other directions (−24◦, −67◦). Only in 0◦

direction a deviation is found, here, the rapid increase is followed by a slow growth and

no pronounced maximum is observed (Fig. 5.4). A threshold intensity of 7× 1016 W/cm2

is obtained from Fig. 5.3 at L/λ ∼ 1 − 1.25 normalized scale length.
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Previous investigations have shown that the 3ω0/2 photons are produced in a nonlinear
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interaction between a fundamental laser photon and a plasmon, where the plasmon was

generated by TPD [103], as was suggested originally by Barr [94, 95]. The spatial region

along the density gradient where 3ω0/2 radiation is generated, i.e. the active region, de-

pends on the electron plasma temperature [117]. For the present experimental conditions

a plasma temperature of about 1 keV and an active region from approximately 0.2nc to

0.25nc is estimated. An increasing signal is expected with increasing scale length as the

inhomogeneous part in the growth rate decreases in Eqs. 3.23 and 3.25, but the change

in the measured signal between L/λ = 1 and 2 is more dramatic than predicted by the

exponentiated maximum growth rate multiplied with the pulse duration as the interac-

tion time. Another discrepancy is found by calculating the threshold intensity at a given

short scale length. 7 − 9 × 1015 W/cm2 is obtained from Eq. 3.26. Almost one order

of magnitude smaller than the experimental value so it is concluded that other effects

start to play a more dominant role. The measured signal cannot be explained even if

saturation effects and the start of absorption mechanisms at ultra short scale length are

taken into account. Although, the plasmon propagation reduces the signal at small scale

length more than by longer ones due to the already discussed propagation away from the

large growth rate regions in the k space, so drastic change in the signal as measured is

not expected from this effect.

One possible explanation is based on the fact that no 3ω0/2 radiation is generated as

long as the active region is smaller than the wavelength of the plasmons. The plasmon

wavelength for the present conditions is between 500 nm and 1 µm. This wavelength is

estimated from the length of plasmon wavevector for plasma waves that have a significant

growth rate and can generate 3ω0/2. For the present conditions k ∼ 1 − 2 k0 is found,

where k0 is the wavevector of the incident laser at the quarter critical density. Once

the active region becomes comparable to the wavelength of a plasmon the exponential

growth of the instability leads to a detectable signal level. This supports the well known

experimental observations that the 3ω0/2 light is a sign for a preplasma. Furthermore,

the previous explanation implies that the presence of 3ω0/2 radiation in high intensity

experiments indicates a preplasma with a scale length of about λ or higher. Accordingly,

the three-halves harmonic, which is optically very easily detected by typical laser wave-

lengths, can be used as a simple preplasma diagnostic tool. As the scale length increases

other effects, such as the change of the plasma geometry and saturation of the growth rate,

become important. It will be shown that 3ω0/2 generation involving the incident and the

reflected laser beams has a higher efficiency than that involving only the incident beam.

The decreasing overlap between the incident and reflected laser beams is responsible for

the decrease in the 3 ω0/2 signal with the scale length.
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5.3 3 ω0/2 angular distribution

5.3.1 Experimental results

To measure the angular distribution of the 3ω0/2 radiation the setup shown in Fig. 5.5

was used. The plasma emission was guided out of the vacuum chamber by three 1 mm

thick and 3 m long optical quartz fibers. After proper spectral filtering three photodiodes

measured either the 3 ω0/2 signal, or the second harmonic signal, or the fundamental

light. In the −15◦ direction the different signals from the plasma were measured directly

through a vacuum window.

Fibers to photodiodes
and spectrometer

Laser

Figure 5.5: Setup of the angle distribu-

tion measurement.

The middle fiber was placed in the plane of incidence, its distance from the plasma was

190 mm and it collected light within an angle of 0.3◦. The upper and lower fibers were

placed at an angle of 30◦ ± 3◦ with respect to the horizontal plane. All data points in the

angular distribution measurements were averaged over 10 to 100 laser shots depending on

the measurement series, and the error bars denote the calculated statistical errors.

The measured angular distribution of the reflected fundamental laser light in the plane

of incidence at an intensity of 6 × 1018 W/cm2 is shown in Fig. 5.6. The angular spread

around the peak at −45◦ ± 1◦ is 16◦ ± 1◦ which reflects exactly the divergence of the

focused laser beam. There is an important consequence of the tight focussing as discussed

earlier, that is, if the target is not in focus the angle of incidence is not a well defined

value but varies across the beam in the transverse direction (45◦ ± 8◦). In some cases

this will cause a smearing of the measured features.

A typical 3 ω0/2 angle distribution for an intensity of 7×1016 W/cm2 is shown in Fig. 5.7.

A 20 ps prepulse was applied and the scale length just barely exceeds the threshold. Under
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Figure 5.6: Angular distribution of the

reflected laser pulse with I=6 × 1018

W/cm2 and 50 ps prepulse. Inset: polar

plot with the incident laser direction.

these conditions the 3 ω0/2 emission was very weak and showed high fluctuations which is a

typical feature of the linear regime close to the threshold (exponential growth). The results

show that the signal is peaked around the two angles −28◦± 3◦ and −71◦± 3◦. The error

bars are relatively large due to the large fluctuations close to threshold. Recently, other

groups made similar experimental observations of the double-peaked angular distribution

[118].
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Figure 5.7: 3 ω0/2 angular distribution

with 20 ps prepulse and 7 × 1016 W/cm2

intensity. Inset: polar plot with the inci-

dent laser direction.

At a delay of 50 ps, where the 3ω0/2 yield is maximal, the angle dependent signal is

shown in Fig. 5.8. The intensity was slightly higher, namely 1.3 × 1017 W/cm2. Again

a double-peak distribution is found and the peaks are located at the same values as in

Fig. 5.7. Two independent measurements are plotted in Fig. 5.8 to demonstrate that well

above the threshold the reproducibility was very good. Fitting the data to two Gauss

functions allows to estimate the widths and the relative amplitudes of the two maxima.

The first higher peak is at about −26◦ ± 3◦ and has a FWHM of 30◦ and the second

peak is at −67◦ ± 3◦ with a FWHM of 15◦. The widths have been deconvoluted with

the angular spread of the incident laser beam. The diodes connected to the upper and
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lower fibers recorded similar angle distributions as the center diode, but the characteristic

peaks were not as pronounced.
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Figure 5.8: Two independently measured

3 ω0/2 angle distributions with 50 ps pre-

pulse and 1.3×1017 W/cm2 intensity. The

solid lines are Gaussian fits to the peaks.

Inset: polar plot with the incident laser

direction.

In summary, the 3 ω0/2 spectra at low intensities show a very pronounced double-peaked

structure. The detailed spectral features depend on the prepulse-main pulse delay, i.e.

the scale length. To investigate the previous results in greater detail the intensity and the

scale length, i.e. the size of the inhomogeneous plasma were varied.

5.3.2 Angular distribution as a function of the intensity

Fig. 5.9 shows angular distributions for different intensities at a 50 ps prepulse-main pulse

delay. The intensity was varied by moving the target along the optical axis as depicted on

the right side of Fig. 5.9. Accordingly, the intensity scale has its maximum in the middle

of the axis and decreases in both directions, which corresponds to a target position in front

of or behind the focus. Note that the scale length increases weakly with the intensity. For

the lowest intensities almost no 3ω0/2 emission is detected. At intensities which reach

the relativistic level the observed double-peak structure disappears.
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Figure 5.9: 3 ω0/2 angular distributions

with different intensities and a 50 ps pre-

pulse. The small picture on the right

depicts how was the intensity changed.

Correspondingly the intensity axis has its

maximum in the middle. The double-

peaked structure disappears at the highest

intensity.
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The TPD instability exhibits a threshold intensity at which the growth rate becomes

positive and which was discussed in Eq. 3.26. This condition yields a threshold intensity

of 6 × 1015 W/cm2 [67] (assuming Te = 1 keV and L/λ = 1.6). The measured threshold

intensity in Fig. 5.9 is (2±1)×1016 W/cm2, and therefore, about 2 to 3 times higher than

the calculated value. Comparing this discrepancy with the previous one, it can be seen

that the difference between theory and measurement is smaller at a slightly longer scale

length. This supports the statement that the inhomogeneous growth rate loses its validity

around L/λ � 1. The double-peaked structure is observed above the threshold up to an

intensity of about 2 × 1018 W/cm2. At this intensity the scale length is approximately 6

µm and the structure disappears similar to the results shown in Fig. 5.11.

Measurements of the 2 ω0 angular distribution show that the second harmonic radiation

is also isotropic for scale lengths ∼ 7 µm. The results are shown in Fig. 5.10 for an intensity

of (6 ± 1) × 1018 W/cm2 and a prepulse main pulse delay of 50 ps, 150 ps, and 300 ps,

respectively. The 2 ω0 signal decreases with increasing scale length. For the highest scale

length the second harmonic radiation peaks in the 10◦ ↔ 90◦ range direction very similar

to the 3 ω0/2 results. Therefore, it is assumed that the disappearance of the double-

peak structure is a consequence of spatial effects, for example hole boring that affect all

radiation and are not specific to the 3ω0/2 radiation.
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Figure 5.10: 2 ω0 angel distributions with

an intensity of 6×1018 W/cm2. The curve

with the squares represents the measure-

ment with a 50 ps prepulse, the circles a

150 ps prepulse and the triangles a 300 ps

prepulse.

5.3.3 Angular distribution for various scale lengths

The angular distributions for different scale lengths at a non-relativistic intensity of (1.3±
0.5) × 1017 W/cm2 are depicted in Fig. 5.11. The double-peak structure is observed for

prepulse-main pulse delays smaller than about 100 ps. This corresponds to the range in

Fig. 5.3 where the signal is either growing or constant. At larger delays and consequently

at larger scale lengths the peaks disappear, this starts at L/λ ∼ 5. It is important to
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note that the three-halves harmonic signal decreases significantly with the change of the

angular distribution.
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Figure 5.11: 3 ω0/2 angular distributions

with different main pulse prepulse delays

and 1.3 × 1017 W/cm2 intensity. Increas-

ing signal with double-peaked structure is

observed with delays < 100 ps, while the

double-peaked structure disappears and

the signal decreases for longer delays.

5.4 Discussion of the angular distribution

To calculate the 3ω0/2 scattering angle a k space analysis, introduced in the theory

section, was performed. As mentioned above, the most probable 3ω0/2 generation process

is the coupling of a laser photon to a plasmon and the electron plasma wave is generated

by the TPD. In Fig. 5.12 and Fig. 5.13 the kx-axis is parallel to the direction of the density

gradient as earlier.

For a given electron plasma temperature and electron density the tip of the plasmon

wavevector generated by TPD is located on a circle, Eq. 3.33. The radius of the TPD circle

depends strongly on the electron density and the wavevectors of plasma waves generated

through TPD lie on the larger red dashed circle in Fig. 5.12 at approximately 0.2nc (at

1 keV), on the middle dashed-dotted circle at 0.23nc and on the smaller red solid circle

at slightly less than 0.25nc. The 3 ω0/2 photon is born on the green ’radiation circle’,

which is described by Eq. 3.35. The ’radiation circle’ hardly changes in the considered

electron density range. There are two intersections between the ’radiation circle’ and the

TPD circle for densities between 0.2nc and 0.25nc which actually determine the emission

directions of the 3 ω0/2 photons (see the 0.23nc curve in Fig. 5.12). These wavevectors

belong to plasmons that can generate 3ω0/2 without propagation. The thin dotted lines

are the axes of the new coordinate system at the quarter critical density for an angle

of incidence of 45◦ in which the light wave vector has only one component (x’). This

is the natural coordinate system of the 3ω0/2 generation process. At an intensity of

1017 W/cm2 the Landau damping (Eq. 3.39) is equal to the maximum of the homogeneous
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growth rate (kovosc/4) on the thin clover-leaf-shaped curve. Electron plasma waves with

wavevectors outside of this curve have negative growth rate, i.e. are not amplified by the

instability. Inside the curve the Landau damping rate decreases rapidly, so it is negligible

there. Consequently, Landau damping is not important for the present conditions. The

rough estimation of Landau damping at 1 keV temperature gives a criterion for undamped

plasma waves k̃e < 3.4 in good agreement with the previous curve. The collisional damping

estimated from Eq. 3.38 is much smaller than the homogeneous growth rate, so it will be

neglected. This analysis has shown that three-halves harmonic can be generated by TPD

plasmons without propagation in the 0.2nc - 0.25nc density range. However, 3 ω0/2 will

not be generated everywhere in the k space where it is predicted by the previous analysis,

because the analysis does not deliver information about the growth rate and hence the

amplitude of the plasma waves.
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Figure 5.12: k space analysis of the instabilities. The thin dotted axes are the axes of a new

coordinate system at the quarter critical adapted for the case of 45◦ incidence angle. Note that

due to refraction the laser wave vector at nc/4 (k0) is inclined by an angle of 55◦ with respect

to the kx-axis, which is parallel with the electron density gradient. The Landau damping is

equal to the homogeneous growth rate on the thin clover-leaf-shaped curve at 1017 W/cm2.

Plasma waves with wave vectors on the thick green ’radiation circle’ can generate 3 ω0/2 with

the incident laser. The thick red curves are TPD circles for three electron densities. The small

solid circle is for an electron density of about 0.25nc, the middle dashed-dotted circle for 0.23nc

while the larger dashed circle about 0.2nc at 1 keV. The light blue curves are SRS generated

plasma waves at 0.245nc (smaller) and 0.2nc (larger).
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To account for the plasma wave amplitude and to complete theoretical description the

growth rate is included. In Fig. 5.13 two ’radiation circles’ are shown. While on the green

solid circle a 3 ω0/2 photon is generated by coupling an incident photon and a plasmon, on

the dashed circle a photon reflected from the half critical density is coupled to a plasmon.

A large reflection is estimated, therefore the reflected light will contribute substantially

to the 3 ω0/2 production. A significant amplitude of the plasma wave is expected in the

k space, where the temporal growth rate is maximal. The red curves are the calculated

maximum growth rate hyperbolas Eq. 3.37. The 3 ω0/2 radiation is predominately emitted

into the directions given by the intersections of the maximum growth rate hyperbolas and

the ’radiation circles’. The black intersections yield a maximum between −20◦ and −37◦

where refraction has been taken into account. The dark yellow intersection indicates

a maximum between 55◦ and 71◦. Both predictions agree very well with the observed

angular dependence (see Fig. 5.7, 5.8, 5.9, and 5.11). The 3 ω0/2 is directly generated with

two incident photons at the lower black intersection point (kxc/ω0 = −1.8; kyc/ω0 = 0),

while it is indirectly generated with an incident and a reflected photon at the upper black

intersection (−0.7; 0.1) and at the dark yellow intersection (0.2 − 1.2; 0.6 − 0.7). The

gray intersections generate back reflected light but no measurement was performed in

this direction.

SRS may in principle also generate 3ω0/2 radiation. SRS can generate plasmons at

the quarter critical density and these plasmons have about the same wave vector as

the incident photons. After coupling to an incident laser photon the wavevector of the

generated radiation is 2k0, but the 3 ω0/2 has a wavevector of
√

8/3k0 ≈ 1.63k0 at this

density, Fig. 5.14 (a,b). Under these conditions the coupling process is not possible.

However, coupling is possible in oblique incidence (45◦ as in the experiment) between

the plasmon and a reflected photon as shown in Fig. 5.14 (c,d). The generated 3 ω0/2

photon will have a wavevector perpendicular to the density gradient and will leave the

plasma at −71◦ due to refraction which is the direction of the second measured peak.

The results of a more detailed analysis, leading to Eq. 3.34, are shown in Fig. 5.12 and

5.13. The smaller light blue ’circle’ denotes plasmons generated by SRS at 0.245nc and

the larger light blue dashed curve at 0.2nc. The smaller curve indicates indirect, while

the larger one direct and indirect 3ω0/2 generation. The SRS growth rate reaches its

maximum at a density around the quarter critical density Eq. 3.29. Taking the TPD

and SRS maximal homogeneous growth rates as a measure of the generated plasma wave

amplitudes. Near to the nc/4 both of them reach a value of about k0vosc/4. Thus, it is

not possible to decide whether TPD or SRS is responsible for 3ω0/2 production. The

momentum conservation is the reason why 3ω0/2 was always created by TPD plasma

waves in the long pulse experiments. An angle of incidence of 45◦ and a very short scale
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Figure 5.13: k space analysis of the 3ω0/2 generation. The thin dotted axes are the axes of the

new coordinate system at the quarter critical in the case of 45◦ incidence angle. The green thick

solid circle is the ’radiation circle’ for the coupling of an incident laser photon with a plasmon,

while the green thick dashed circle is for the coupling of a laser photon reflected from nc/2 with a

plasmon. Along the red thick hyperbola is the growth rate maximal for a homogeneous plasma.

The arcs are the intersections between the ’radiation circles’ and the hyperbola, representing

plasma waves that dominates in the 3 ω0/2 production. The light blue curves are SRS generated

plasma waves at 0.245nc (smaller) and 0.2nc (larger).

length are required to use SRS plasmons for 3ω0/2 production, which is not the case for

long pulses. A possible alternative experiment to generate three-halves harmonic by SRS

is a cylindrical or spherical plasma with a maximal density lower than nc and two laser

pulses from different directions with an angle of 70◦ between them. Although it remains

a challenge to distinguish between SRS and TPD generated light. This distinction may

be accomplished for example by scanning the plasmon k space with Thomson scattering

or by spectral measurements.

(c) (d)

(b)(a)

n
�

e

n
�

e

ke

ke

k3/2
k3/2

ke

ke

n
4

c

n
4

c

k
0

k
0

k
0

k
0

Figure 5.14: Coupling geometry of a SRS

generated plasmon (wave vector ke) and

a fundamental laser photon (wave vector

k0) to form a 3ω0/2-photon. In (a,b) a

collinear coupling is shown, while in (c,d)

ke and k0 are inclined by a certain angle.
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Several factors will modify the previous discussion, such as (1) the plasma inhomogene-

ity, (2) the high plasma temperature, (3) the validity of plasma wave dispersion relation,

(4) the high intensity, (5) the saturation of the instability, and (6) the plasmon propaga-

tion.

(1) In an inhomogeneous plasma the maximum growth rate is along the hyperbolas as

indicated in Fig. 5.13, but the value is decreased corresponding to Eq. 3.25. Therefore,

the TPD does not grow if the plasmon’s wavevector is located directly near the axis of

the adapted coordinate system (dotted lines in Fig. 5.12 and Fig. 5.13) which is parallel

to k0. However, propagation compensates for that effect.

(2) The higher the plasma temperature the larger is the density range where TPD takes

place, and the approximation that the decay takes place exactly at the quarter critical

becomes void [117]. The weight of the k2 term in the plasma wave dispersion relation

grows, which leads to the next point, its validity.

(3) It should be noted that the TPD can occur with a reduced gain nonresonantly if

only the energy and momentum conservation is fulfilled but not the dispersion relation

[117]. That is, TPD can generate plasmons at a given density and temperature whose

wavevectors are not located on the TPD circle in our analysis. This effect modifies the

calculated spectrum of the three-halves harmonic radiation also along the ’radiation cir-

cles’, which is estimated from this analysis. Nevertheless, the maximal growth is expected

along the hyperbolas shown in Fig. 5.13.

(4) Above 1016 W/cm2 the dispersion relation is not always satisfied and at relativistic

intensities above 1018 W/cm2 new nonlinear processes start to play a more and more

dominant role [80, 81]. Second order stimulated Raman harmonic generation at the

quarter critical leads directly to 3ω0/2 and plasmon production. Two laser photons

are simultaneously absorbed and a 3ω0/2 photon and a plasmon are generated. Third

order stimulated electromagnetic harmonic generation may create two 3ω0/2 photons

from three absorbed laser photons. These nonlinear processes are not important in our

measurements, as the intensity was mostly under 1018 W/cm2, but above this intensity

they could contribute to the signal.

(5) Areas in k space with maximal growth determine the emission direction of the 3ω0/2

generation. It is expected that this is slightly modified by saturation because areas with

smaller growth rates generate proportionally more 3ω0/2 with than without saturation.

An increase in the width of both peaks in the angular distribution is observed with higher

laser intensity (Figs. 5.7, 5.8, 5.9), which may originate from saturation.

(6) The propagation did not play an important role in the long pulse regime, because
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collisional damping of plasma waves made the propagation length and thus the change

in wavevector negligible. On the other hand, a short propagation distance leads to a

large density and wavevector change in the short scale length experiments. Hence, the

propagation of plasma waves is an important issue that may influence significantly the

plasmon amplitude in the k space. The propagation in the k space is a translation of the

plasmon wavevector opposite to the direction of the density gradient (in -x direction).

During the pulse duration the change in the x component of the normalized wavevector is

between 1 and 2 depending on the scale length (L/λ ∼ 5.5 - 2 ) starting from an original

wavevector of 1, Eq. 3.36. This effect will elongate the maximum growth region into the

-x direction in the k space. Even if the instability growth rate at the lower arc of the

black circle in Fig. 5.13 is very low 3 ω0/2 generation may be possible due to plasmon

propagation. At the other arm of the hyperbola the propagation mixes the TPD and SRS

generated plasma waves. An originally by TPD produced wave will be amplified as it

propagates and as its wavevector approaches k0 SRS will be the dominant amplification

process. Due to the 45◦ angle of incidence the plasma waves propagate on one arm of the

hyperbola and are exposed to the maximal growth continuously during the laser pulse.

These effects will not change the predicted angular distribution but they will affect the

relative amplitudes and the spectral characteristics as a function of the observation angle.

The possibility that the reflected fundamental will drive an instability is not discussed

above, but again this will not change the angular distribution. The 3ω0/2 generated in

this way will propagate in the direction of the previous peaks 1.

Some effects will change the plasma geometry. These are (1) the hole boring, (2) other

ponderomotive effects, and (3) the horizontal focus shift.

(1) The light pressure at the turning point pushes the inhomogeneous plasma towards

the higher density region. This hole boring effect can lead to ultrahigh plasma acceleration

[119, 120] and change the angular distribution of the fundamental [42, 121], which affects

the distribution of the measured harmonics. The depth of the hole and the subsequent

defocusing are estimated and the results indicate that both mechanisms have no mea-

surable effect on the angular distribution of reflected fundamental light due to the short

pulse duration [50, 121]. For the highest intensities, the angular broadening reaches the

angular width caused by diffraction at the end of the laser pulse. This is supported by the

angular distribution measurement of the fundamental with an intensity of 6×1018 W/cm2

plotted in Fig. 5.6, where the horizontal angular width is determined by the focusing.

1Furthermore, it should be noted that resonance absorption is maximal for three-halves harmonic

radiation propagating at an angle of 20◦ into the target. Therefore the TPD induced by the reflected

light that generates 3ω0/2 in this direction, can be neglected.
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(2) The ponderomotive force changes the electron density not only at the reflection

point but also below that density due to the generated standing wave. This in turn

influences the scale length at the quarter critical density [122]. The radial ponderomotive

force leads to channel formation by pushing electrons away from the middle of the beam.

The developed space charge pulls on the ions. These effects are connected to ion motions

and require a much longer time scale than the applied 100 fs or need a much longer plasma

than the generated one in the experiments.

(3) The incident and reflected beams do not always spatially overlap at the quarter

critical density. A horizontal focus shift due to the oblique incidence prevents the beams

from overlapping (Fig. 5.15). Here, an exponential plasma density profile is assumed

(n0 × exp(−x/L)) with a scale length L and a beam diameter D. The horizontal focus

shift is approximately 3.5 × L. The Rayleigh range is larger than the path length in the

plasma from nc/4 to nc/2 and back so a constant beam diameter was used. The two

peaks in the 3 ω0/2 angular distribution are originating from regions in the k space, where

incident and reflected beams coincide, i.e. along the dashed circle in Fig. 5.13. This

overlap and the dashed circle in Fig. 5.13 and so the direct 3 ω0/2 generation is prevented

in a ’long’ scale length, which is achieved in the experiments (Fig. 5.9 and 5.11). The

horizontal shift might also explain why for scale lengths longer than 4 λ the 3 ω0/2-yield

is decreasing and the angular characteristic completely changes.
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D

Figure 5.15: Horizontal focus shift in the

case of 45◦ incidence angle and an expo-

nential plasma density profile with scale

length L and beam diameter D.

The −25◦ peak is larger than the other peak in −70◦ direction. There are two reasons

for this. First, both direct and indirect 3ω0/2 generation mechanisms are important

in −25◦ and only indirect process takes place in −70◦. Second, the reflected light has

smaller intensity due to resonance absorption, which decreases the efficiency of the indirect

process.

The observed decrease in the 2 ω0 signal with growing scale length can be explained

assuming that the second harmonic is produced at the critical density. The laser light

tunnels from the reflection point at nc/2 to nc, where the 2 ω0 is generated. The tun-

neling distance between nc/2 and nc increases with the scale length and therefore the

fundamental and the 2 ω0 intensity are decreasing.
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5.5 Spectral measurements

Very detailed spectral measurements were performed. It is very difficult to calculate

the spectrum for a given geometry, but it looks realistic to compare the main features as

carrier wavelength and bandwidth as a function of the scattering angle with the theoretical

predictions. Therefore the spectra of the fundamental and the three-halves harmonic

radiation were measured in various directions.

5.5.1 Experimental results

Fig. 5.16 shows the spectrum of the incident fundamental (thin red curve) and the spec-

trum of the reflected laser light measured at an intensity of 7 × 1016 W/cm2 and a 50 ps

prepulse in −12◦ direction. The spectrum measured through the fiber and averaged over

25 shots (thick black line) is slightly blue shifted by 2 nm, which was the typical error

by the spectral measurements, and the bandwidth is 16 nm. The spectrum through the

window and averaged over 5 shots (dashed thin blue line) is almost identical with a blue

shift of 2 nm and a bandwidth of 19 nm, indicating that nonlinear effects in the fiber

are negligible. The results show that the laser spectrum does not change drastically upon

reflection, that is, the spectrum is neither wavelength shifted nor substantially broadened.

Thus, the 3 ω0/2 spectrum is generated from the original laser spectrum and not a shifted

or broadened one, at least for intensities up to about 1017 W/cm2. Similar observations

were made in −45◦ and −70◦ directions. In −45◦ a much higher signal was detected, as

expected from the angular distribution.
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Figure 5.16: The spectrum of the incident and

in the -12◦ reflected laser light for a laser inten-

sity of 7 × 1016 W/cm2. The thin red curve is

the incident spectrum, the thick black curve

is the reflected spectrum measured through a

glass fiber, averaged over 25 shots and the

dashed thin blue curve is the reflected spec-

trum when the scattered light propagated only

through a 1 cm glass window, averaged over 5

shots.

The 3 ω0/2 spectra were averaged over at least 200 shots. The results at an intensity

of 7 × 1016 W/cm2 and a 50 ps prepulse are shown in Fig. 5.17 as a function of the

scattering angle. The spectrum in the −12◦ direction is blue shifted by approximately
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12 nm and has an unexpectedly large 40 nm bandwidth. In −45◦ and −70◦ directions

a smaller bandwidth of 18 nm is recorded and the spectra are red shifted by 2 nm and

5 nm, respectively. Obviously, the red shift increases with the observation angle.
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Figure 5.17: The spectrum of the three-halves

harmonic radiation with a laser intensity of

7×1016 W/cm2 in -12◦ (thick solid black line),

in -45◦ (thin solid red line) and in -70◦ (thin

dashed blue line). The dashed vertical line

marks the exact 3 ω0/2 wavelength. All curves

are normalized to its maximum value for better

comparison. The strongest emission was found

to be in -12◦ in agreement with the previous

measurements.

At higher intensities, i.e. 4×1017 W/cm2, but otherwise identical conditions the 3ω0/2

spectra are shown in Fig. 5.18. Similar to lower intensities the red shift increases with

the observation angle, i.e. the shifts are −11 nm, −1 nm, and 15 nm in −12◦, −45◦,

and −70◦ directions, respectively. However, for all angles the bandwidth is broadened to

(46 ± 1) nm.
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Figure 5.18: The spectrum of the three-halves

harmonic radiation with a laser intensity of

4×1017 W/cm2 in -12◦ (thick solid black line),

in -45◦ (thin solid red line) and in -70◦ (thick

dashed blue line). The dashed vertical line

marks the exact 3 ω0/2 wavelength. All curves

are normalized.

In Fig. 5.19 the measured wavelength shifts are plotted as a function of the angle for

different intensities and prepulse main pulse delays. The black straight line is a guide

to the eye. Practically no intensity dependence of the wavelength shift was observed

and the measured shifts depend weakly on the scale length. The FWHM spectral band-

width of the 3 ω0/2 radiation is shown in Fig. 5.20. Here, a clear intensity dependence is

observable. Broader spectra are recorded at higher intensities which indicated a highly

saturated instability for long pulses [104, 123] in all directions. A summary of the spectral

measurements is shown in Fig. 5.21.
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Figure 5.19: Spectral shift of the three-

halves harmonic radiation with different laser

intensities and a 50 ps prepulse (and 300 ps

prepulse with 4×1017 W/cm2 intensity). The

black straight line is a guide to the eyes. The

estimated wavelength shifts along the ’radia-

tion circles’ with 45◦ angle of incidence and

1 keV electron temperature are also plotted

(details are in the text).
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Figure 5.20: FWHM bandwidth of the

three-halves harmonic spectrum with differ-

ent laser intensities and a 50 ps prepulse (and

300 ps prepulse with 4 × 1017 W/cm2 inten-

sity).
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Figure 5.21: Summary of the three-halves

harmonic spectral measurements with differ-

ent laser intensities and scale lengths. The

middle wavelength and the FWHM range is

plotted for the measured spectra.

5.5.2 Discussion

The observed emissions from the plasma with increasing intensity and 800 nm wavelength

can be explained qualitatively. Only second harmonic blue light is generated bellow

the threshold of the instabilities. When the intensity reaches the TPD threshold more
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and more green 3 ω0/2 light is produced. This threshold was ∼ 1016 W/cm2 in the

experiments. Just above the threshold green is observed in specific directions, while in

others the plasma emits blue light. This picture changes with growing intensity or a large

preplasma and green becomes the dominant radiation from the laser-plasma interaction.

As the laser intensity increases the bandwidth of the 3 ω0/2 radiation broadens and at

around 4 × 1017 W/cm2 and above it appears to be white. This is the reason for the

different colors from the plasma with different intensities, which certainly depends on the

laser wavelength.

Spectral changes may be estimated quantitatively from the k-space analysis. In the case

of resonant instabilities the energy of a TPD plasmon as a function of the wavevector can

be calculated and so the carrier wavelength of the 3ω0/2 spectrum is simply obtained.

The spectral shift of the 3 ω0/2 radiation originating from the TPD plasmon shift as a

function of the plasmon wavevector,

∆λ = 3.9 × 10−3TkeVλ3/2(
k0c

ω0

kc

ω0

− 3

8
) (5.1)

where k0 is the wavevector of the laser at nc/4, TkeV is the electron temperature in

keV, and λ3/2 is the unshifted 3 ω0/2-wavelength. Expressing the plasmon wavevector

as a function of the scattering angle of the three-halves harmonic radiation the expected

spectral shift from the most simple model (unsaturated, resonant TPD instability ne-

glecting plasmon propagation) can be determined. The spectral shift from this analysis

(see Fig. 5.19) is a decreasing red shift with increasing angle reaching a blue shift in the

−70◦ direction in contrast to the measurements. In Fig. 5.19 the thin black solid line

represents the calculated wavelength shift for the lower part of the ’radiation circle’ with

an incident photon (green solid line in Fig. 5.13) and the thin red solid line for the upper

part of the ’radiation circle’. The green and blue lines are calculated for the the other

’radiation circle’ (dashed green line in Fig. 5.13) where a 3 ω0/2 photon is generated by a

reflected laser photon and a plasmon. Completing this model with plasmon propagation

yields a small (2− 3 nm) extension of the spectra in the blue, which can also not explain

the results. The maximal Doppler shift, was estimated above, is much smaller than the

observed shifts and bandwidths. Obviously, the theoretical predictions with TPD, plas-

mon propagation and Doppler shift cannot explain the observed spectral shifts and it is

concluded that other wavelength shifting mechanisms are dominant, such as saturation

(which influenced the spectra essentially in the long pulse regime) or the validity of the

dispersion relation (nonresonant process). Similar broad, intensity dependent spectral

bandwidth was noticed already in SRS reflectivity measurements without interpretation
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[33], others attributed this feature to strongly coupled SRS [32], which means that the

temporal growth rate exceeds the plasma frequency. Although strong coupling cannot take

place in the described experiments due to the high plasma density at which three-halves

harmonic is produced. The spectrum in −70◦ with 7× 1016 W/cm2 and 4× 1017 W/cm2

and 50 ps prepulse is almost only red shifted as expected from SRS. In the other cases in

−70◦ the focus shift diminish the SRS generated 3 ω0/2 signal.
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Figure 5.22: Growth rate obtained by

solving Eq. 3.16 with 1 keV temperature,

7 × 1016 W/cm2 perpendicular incidence

and ne/nc = 0.24 plasma density for the

innermost, 0.17 for the middle and 0.1 for

the outermost curve. The red dashed cir-

cles are the TPD circles calculated using

Eq. 3.33 and the green solid circles are the

exact TPD circles.

To account for the nonresonant process the TPD instability dispersion relation (Eq. 3.16)

must be solved for the complex ω. This equation is valid in homogeneous plasmas, there-

fore a simplified geometry with perpendicular incidence can be used. The effect of in-

homogeneity is negligible much above threshold, which was the case during the spectral

measurements. There are various parameters as the laser intensity, the plasma tempera-

ture, the plasmon wavevector and the plasma density in this equation. The homogeneous

growth rate is plotted in Fig. 5.22 obtained from Eq. 3.16 using 1 keV temperature, 7×1016

W/cm2 intensity and three different electron density values (ne/nc = 0.24; 0.17; 0.1). The

conservation laws for TPD prescribe a circle for the plasmon wavevector at a given elec-

tron density (red dashed circles in Fig. 5.22 calculated from Eq. 3.33) as was discussed

in Sec. 3.6. The width is in this case determined by the laser bandwidth. The green

solid curves are the exact TPD circles. It can be seen in Fig. 5.22 that the growth rate

is maximal along these circles, but does not vanish in their vicinity where the instability

takes place nonresonantly (the plasmons do not satisfy their dispersion relation). The

growth rate as a function of the plasmon frequency from this model is shown in Fig. 5.23

for 2 × 1016 W/cm2 (left) and 1018 W/cm2 (right) intensities, 1 keV temperature and

four different electron densities, although the dispersion relation and therefore this TPD
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model looses its validity at low densities so the ne/nc = 0.1 curves are only for the sake

of completeness. The aim of this TPD model is to explain the three-halves harmonic
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Figure 5.23: The TPD growth rate at an intensity of 2 × 1016 W/cm2 (left) and 1018 W/cm2

(right), 1 keV temperature and an electron density of ne/nc = 0.1 red thick dashed line, 0.17

purple dashed-dotted thick line, 0.2 blue solid thick line and 0.245 green solid thin line.

spectrum in -25◦ direction. The intensity, plasma density and temperature are constant

in the calculations, and the plasmon wavevector is running along the maximum growth

rate hyperbola from the origin to the lower thick black arc in Fig. 5.13. This corresponds

to the plasmon propagation similarly to the experiment. The abrupt cutoff is caused by

the limit in the plasmon wavevector as it starts in the origin and runs in the negative

direction. Temporal effects will smooth it. The measured 3ω0/2 corresponds to the cal-

culated curves between 0.2 and 0.25nc and therefore has a spectra from 0.488 to 0.498 at

2×1016 W/cm2 intensity and from 0.484 to 0.498 at 1018 W/cm2. Important consequences

from this calculation are that the growth rate grows with the root of the intensity, the

growth decreases strongly with the density and the bandwidth of the radiation changes

weakly with the intensity.

Nonresonant SRS could explain the spectra in -70◦ direction, therefore calculations were

made using Eq. 3.28 with only the down shifted D1− part and 1 keV temperature. The

coupling of TPD and SRS is not included in these calculations. The results are plotted

in Fig. 5.24 applying 2 × 1016 W/cm2 (left) and 1018 W/cm2 (right) intensity and four

different electron densities. Here k runs parallel with the laser wavevector during the

calculations. There are typically two curves at a given density. The larger corresponds

to back and the smaller to forward scattering. In the vicinity of the quarter critical

density the two curves become connected and the growth rate for forward and back

scattering becomes comparable. Only at about nc/4 can produces SRS plasmons that

can generate 3 ω0/2. The plasmons are red shifted and the width of the normalized

growth rate curve equals approximately the maximum of the normalized growth rate (see

Fig. 5.24), ∆ωe ≈ γ0. The growth rate increases as the root of the intensity, but also does
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Figure 5.24: The SRS growth rate at an intensity of 2 × 1016 W/cm2 (left) and 1018 W/cm2

(right) for an electron density of ne/nc = 0.01 red thick dashed line, 0.1 purple dashed-dotted

thick line, 0.17 blue solid thick line and 0.245 green solid thin line.

the bandwidth of the plasmons, which is a substantial difference to the TPD results.

The main conclusion of the nonsaturated instability growth rate calculations is that

TPD generates plasmons with an intensity independent bandwidth in contrary to SRS,

which generates strongly intensity dependent plasmon bandwidth. The bandwidth and

the shifts of 3 ω0/2 radiation are only in qualitative agreement with the measured results.

The inclusion of the saturation mechanism is expected to account more accurately for

the spectral results. The shifts and bandwidth from SRS are reasonable for example: a

bandwidth of ∆λ3/2 � 14 nm, 33 nm and 60 nm is obtained at an intensity of 7 × 1016

W/cm2, 4 × 1017 W/cm2 and 1.4 × 1018 W/cm2 neglecting the laser bandwidth.

These results confirm qualitatively that SRS is responsible for 3 ω0/2 radiation in -70◦

direction (up to approx. -45◦) and TPD for the -25◦ direction.



Chapter 6

Polarization and growth rate of 3 ω0/2

In this chapter experimental results about various properties of the 3 ω0/2 radiation is

presented. Steep plasmas were used in the measurements similar to those used in the pre-

vious chapter. The measured properties complete the picture about instabilities obtained

in the last chapter. The temporal characterization of the three-halves harmonic radiation

is in the center of the investigations. Two independent measurement series were performed

yielding similar experimental observations. The large amount of glass in the path of the

harmonic beam influenced slightly the first results, therefore a control measurement was

made with carefully chosen conditions.

The generation mechanisms are identified in Chap. 5, but there is almost no information

about the saturation mechanism and whether the saturation is reached or not. It is

expected that saturation appears in these experiments, but there is no clear evidence for

it. Another open question is the importance of instabilities generated by the reflected

laser pulse. It was neglected in the previous analysis without direct evidence. The results

of this chapter try to answer these questions based on mainly experimental observations

and not theoretical models, because there is no theory on this field and the long pulse

models are not applicable.

There are several temporal investigations of the three-halves harmonic radiation in the

long pulse regime. Although, the temporal resolution (20-40 ps) is generally not enough to

resolve the short linear regime (10 ps) [69, 73, 91]. Therefore, in these measurements only

the saturation regime was observed, which is completely different from the saturation

in the femtosecond range. Meyer and Houtman used a 2 ns CO2 laser and measured

temporally the exponential growth with a streak camera having 2 ps resolution. They

observed the growth rate as a function of the plasmon wavevector and got an astonishingly

good fit with Simon’s theory [67].

78
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Experimental observations as the reflectivity of the aluminum plasma at the funda-

mental wavelength, the polarization properties and intensity dependence of the 3ω0/2

will be reviewed at first. Then follows the presentation of the detailed pulse duration

measurements. A short discussion closes this chapter.

6.1 Setup and plasma reflectivity

The applied laser parameters in the present experiments are the same as in Chap. 5 de-

scribed in Sec. 5.1, therefore only the differences will be discussed here. An expansion of

the beam diameter in the laser allowed a better focusability leading to a focal FWHM

diameter of 2.3 µm and a Rayleigh range of about 15 µm during the second measurement.

The energy on target was slightly less approx. 100-110 mJ so the average intensity was

6× 1018 W/cm2 also. The experimental setup is shown in Fig. 6.1. An incidence angle of

45◦ and -25◦ angle of observation were used for the three-halves harmonic measurements.

The plasma radiation was collected with a second off-axis parabola mirror to avoid the

Diagnostics

Vacuum Chamber

Off-Axis 1

Off-Axis 2

Dichroitic Mirror

Filter Figure 6.1: Setup of the autocorrelation

measurements.

stretching in the lens and lead through a 3 mm / 1 mm thick BK7 window to the diag-

nostics (first / second experimental series). The fundamental and the second harmonic

radiations must be filtered very accurately for the autocorrelation measurements, which

was accomplished by 4 dichroic mirrors and a thin color filter in the first experimental

series and with 6 dichroic mirrors in the second series. Applied diagnostics were linear

polarizer with photodiodes, absolutely calibrated diodes or an SHG autocorrelator.

To clear the role of the reflected fundamental beam in the experiments the reflectivity

of the plasma was measured. First the incidence laser energy in front of the target was

obtained and than the reflected energy from the target as a function of the target focal

position using 45◦ angle of incidence. The energy detector directed to the target provided
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wrong values if directly exposed to Debris. To avoid this influence it was covered by a

foil in the reflected energy measurements. To avoid undoubtedly the effect of Debris a

reference measurement was made by inserting a second off-axis parabola mirror in the

chamber and leading the light behind the target to the energy meter. The reflectivity

defined as the reflected energy divided by the incident energy is shown as a function of

the intensity in Fig. 6.2. As the reference curve does not deviate significantly from the
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Figure 6.2: Reflectivity of Al plasma gen-

erated with and without a 100 ps prepulse

as a function of the intensity. A shielded

energy detector was placed in front of the

target to measure the reflected laser en-

ergy. A reference measurement was made

using a second off-axis parabola mirror

and the energy detector placed behind the

target. The light blue line is a guide to the

eyes.

normal curve it is concluded that the influence of Debris is negligible with the shielded

energy meter. The reflectivity determined without the prepulse is also similar to the

results with a 100 ps prepulse showing a relative small effect of the larger preplasma in

the absorption. The reflectivity is 35–40% at 1016 W/cm2, 15–20% at 1017 W/cm2 and

only 10% at around 1018 W/cm2 intensity. The most absorption is expected to take place

at the reflection point therefore the intensity is so low at the quarter critical density that

the generation of instabilities can be neglected near the incident beam. This justifies the

assumption in the previous chapter that the reflected light produces negligible plasma

wave amplitude.

6.2 Intensity dependence of the three-halves harmonic

radiation

The first determined property of the three-halves harmonic radiation is the polarization

degree. It was obtained by placing a linear polarizer foil in the path of the carefully filtered

beam and measuring the transmitted signal with a photodiode. Although, the intensity

suppression ratio of these polarizer films is only 10−2 it is sufficient for the presented

experiments. A test measurement was made with a linearly polarized He-Ne laser as
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shown in Fig. 6.3. The polarization degree (P ) is defined as
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Figure 6.3: Polarization degree of a He-

Ne laser. The measured signal through a

linear polarizer as a function of the polar-

izer position. The red line is a fit yielding

a polarization degree of 0.99+0.01−0.02.

P =
Imax − Imin

Imax + Imin

(6.1)

where Imax and Imin are the maximal and minimal photodiode signals behind the po-

larizer as the polarizer is rotated by 180◦. A completely linear polarized light has a

polarization degree of 1 and an un- or circularly polarized has 0. Fitting a sine function

with background onto the signal vs. polarizer position curve a polarization degree of

0.99 + 0.01 − 0.02 is obtained for the He-Ne laser as expected. This provides 1–2% error

of the method.

The 3 ω0/2 signal behind a polarizer as a function of the polarizer position is in Fig.6.4.

The two independent curves indicate a partially polarized radiation 1. The polarization

degree is 0.29 ± 0.07 for the blue squares and 0.36 ± 0.03 for the red circles, i.e. 1/3

in average. In Fig. 6.4 the right picture is a polarplot of the results and the direction

of the partial polarization is approximately perpendicular to the laser polarization (the

green arrow in the figure). The partial polarization of the 3ω0/2 radiation excludes the

generation process involving only longitudinal plasma waves, i.e. three plasmon coupling

[95]. Further work is needed for a better understanding this polarization degree.

In the following the 3ω0/2 dependence on the laser intensity is in the center of the

investigations to obtain information about the saturation behavior. The intensity was

changed by two different methods (a) by varying the energy of the laser and (b) by

changing the focal position of the target. In Fig. 6.5 the 3 ω0/2 energy is plotted as a

function of the intensity from the second measurement series. The intensity was changed

by controlling the incident laser energy. Small intensity steps have been used close to

1Although, this light can also be elliptically polarized taking into account the generation mechanism

partial polarization is much more probable.
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Figure 6.4: (left) Two independent measurements of the polarization degree of the 3 ω0/2

radiation. The measured signal through a linear polarizer as a function of the polarizer position.

The solid lines are fits yielding a polarization degree of 0.29 ± 0.07 for the blue squares and

0.36±0.03 for the red circles. (right) The results in a polar coordinate system. The green arrow

shows the direction of the laser polarization.

threshold to explore the linear regime and the beginning of saturation. The signals were

taken in three directions using a 100 ps prepulse and three photodiodes and compared

in one point with an absolute calibrated photodiode. The blue curve is a guide to the

eyes. There is no significant difference between the directions. All show a rapid increase
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Figure 6.5: 3 ω0/2 energy as a function

of the laser intensity with a 100 ps pre-

pulse in different directions. The intensity

was changed by varying the laser energy in

front of the compressor as shown on the

upper scale. The blue curve is a guide to

the eyes.

of the three-halves harmonic and after that a saturated regime with practically constant

signal. The next figure (Fig. 6.6) is a logarithmic plot of the previous results showing

an exponential growth in the beginning and a constant later. In this figure new result

are also presented taken without introduced prepulse. Nevertheless, ’internal’ prepulses

are present (Fig. 5.1). Laser characteristics such as the ’internal’ prepulse structure has

changed slightly from experiment to experiment and the beam diameter was improved,
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therefore care must be taken by comparing the results with them in the previous chapter.

It is expected that these ’internal’ prepulses generate a preplasma with a scale length

reaching the value of λ. As expected the signals without prepulse starts to grow at higher

laser intensities. The signals in -47◦ direction have a larger background due to the reflected

laser radiation. Although the beginning of the exponential growth is not measured, it can

be seen that the amplification is minimum a factor of 300, i.e. an e-folding of 6 before

saturation is reached.
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Figure 6.6: Logarithm of the 3ω0/2 en-

ergy as a function of the laser intensity

with and without a 100 ps prepulse in

different directions. The intensity was

changed by varying the laser energy.

In Fig. 6.7 the 3 ω0/2 and the x-ray signals are plotted as a function of the focal

position taken in the first experimental series. The x-ray signal, which was taken with

a GaAsP Schottky diode sensitive around 1 keV energy, is an increasing function of the

laser intensity [124]. Therefore, the peak in the x-ray yield marks the position of the

focus. As can be seen the 3 ω0/2 yield has a maximum and then decreases again as the

target is shifted into the focus. An important consequence is that the target should not

be in the focus for an optimal signal.
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Figure 6.7: 3 ω0/2 and x-ray signals as a

function of the focal position.

Similar behavior was observed during the second series. The three-halves harmonic

signal as function of the laser intensity changed by shifting the target focal position is
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in Fig. 6.8. First an increase of the signal and later a decrease is obtained at about
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Figure 6.8: 3 ω0/2 signal as a function of

the intensity with a 100 ps prepulse. The

intensity was changed by varying the focal

position.

3×1017 W/cm2 intensity. This property is in agreement with the previous results (3ω0/2

vs. laser energy), because at a given intensity the signal per unit area becomes constant

and a better focusing results in a smaller focus, consequently smaller signal.

6.3 Autocorrelation measurements on 3 ω0/2

The temporal characterization of the three-halves harmonic radiation will be discussed

now. The difficulties are (1) the expected short pulse duration (approx. 100 fs), which

makes linear measurement with an ultrafast photodiode invalid and therefore a nonlinear

detection must be applied, (2) the large bandwidth (approx. 40 nm), which makes great

demands upon the thickness of transmitting optical components and the nonlinear optical

crystal, (3) the low pulse energy (approx. 100 nJ), which requires extreme sensitivity of

the device, and (4) the large shot-to-shot fluctuation, which is more dramatic in the non-

linear signal used for the pulse duration measurement requiring a large number of points

to average over or a discriminator to select incident pulses in a specific energy range.

Considering these facts a specially designed multishot intensity SHG autocorrelator (AC)

[125, 126] was prepared to measure the 3 ω0/2 pulse duration, shown in Fig. 6.9 2. The

AC can support beams with almost 2 cm width and is equipped with a photomultiplier

tube (PMT) to detect the second harmonic signal from the crystal. Therefore the energy

sensitivity is very high. The thin BBO crystal and beam splitter support a large band-

width. An off-axis parabola is used for the focusing to reach a smaller focus spot size

2Although, a cross correlation between the three-halves harmonic and the laser pulse delivers a signal

linearly proportional to the harmonic signal, but the resolution is limited by the laser pulse duration.

As the three-halves harmonic pulse can be shorter than the fundamental these type of investigations are

limited in resolution.
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Figure 6.9: Multishot SHG autocorrela-

tor (AC) used in the measurements. Spe-

cial properties are the large supported

beam diameter, the discriminator diode,

the high sensitivity due to the photomulti-

plier tube (PMT) and the large supported

bandwidth due to the thin beam splitter

and BBO and to the focusing with off-axis

parabola mirror.

and so further increase the sensitivity and to avoid material to propagate through. A

reference signal can be used for discrimination to decrease the effect of fluctuation. The

detector signals were read by a computer with the help of a sample and hold box. The

delay stage was computer controlled and so the AC was completely automated to fasten

the correlation measurements.

Numerous nonlinear processes take place to obtain an AC signal with the three-halves

harmonic radiation. A schematic illustration of these processes and their dependencies

can be seen in Fig. 6.10.
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Figure 6.10: A schematic representation

of the involved nonlinearities in the three-

halves harmonic pulse duration measure-

ments and their dependencies.

The energy sensitivity and the supported bandwidth of the AC were carefully tested

with calibrated sources. Fig. 6.11 shows the signal of the AC as a function of the incident

laser energy with a 514 nm source. The useful energy range of the device is approximately

1–10 nJ. At lower energies the PMT signal is suppressed by the background noise and at

higher energies the PMT saturates. Between these limits the output signal in a log-log

plot is fitted with a linear function. The fit delivers a slope of 1.97±0.04 corresponding to

the second harmonic generation in the AC. The PMT was operated with 800 V providing

a large amplification.

The test of the bandwidth was performed with a 1 kHz broad bandwidth Vitesse os-

cillator (∆λ ≈ 31 nm at 800 nm central wavelength). The crystal and the beam splitter

were correspondingly aligned and changed for this wavelength. One representative AC

trace in logarithmic scale is in Fig. 6.12. The fit assuming a Sech2 pulse delivers 92 fs

FWHM pulse duration, while a commercially available AC measured (86±1) fs duration.
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Figure 6.11: Measurement of the use-

ful incident energy range of the multishot

SHG autocorrelator at 800 V PMT volt-

age. The black horizontal line is the back-

ground (1.6 mV) and the red curve is a fit

with a slope of 1.97± 0.04. Typical errors

are indicated.

As the pulses were far from transform limited the effect of the 1 mm thick beam splitter

and compensation plate can be estimated easily. Measurements introducing extra glass

in the beam path and then extrapolation of the effect of the beam splitter yielded a pulse

duration of 86–87 fs in perfect agrement with the reference.
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Figure 6.12: Test of the AC supported

bandwidth using a Vitesse oscillator.

The test of the discriminator and the sensitivity is in Fig. 6.13. A dye laser with 514 nm

wavelength was used for these investigations. A reference AC without discriminator pro-

vided more noisy traces with similar pulse duration (typically 593 fs). The measured

pulse duration with the discriminator is 586 fs and the autocorrelation trace is unusu-

ally smooth from a dye laser. Consequently the correlator works satisfactorily with the

discriminator.

The previous tests justify that the AC meets the requirements for measuring the du-

ration of the three-halves harmonic radiation. In both measurement series several AC

traces were taken at -20◦ direction with different conditions. Two of them are shown

in Fig. 6.14 using a laser pulse duration of 286 fs. The laser pulse duration and the

focal position of the target was changed (typically the target was far from the focus)

in both series. The traces are promising taking into account the previous difficulties in
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Figure 6.13: Test of the AC discrimina-

tor and sensitivity using 514 nm dye laser

pulses with 7.7 nJ energy.
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Figure 6.14: 3 ω0/2 autocorrelation traces taken without discriminator (left) and with discrim-

inator (right). The incident laser pulse duration is 286 fs. The pulse durations are obtained

assuming Gaussian pulseforms.

these experiments. Further analyzing the results it can be noticed that the pulse dura-

tions obtained with discriminator are generally shorter than without discriminator (also

in Fig. 6.14). Therefore, at first the results without discriminator are presented. The first

series 3 ω0/2 durations as a function of the incident laser length is shown in Fig. 6.15 and

the second series in Fig. 6.16, where the red points are an average over all measurements

with a given incident pulse duration and the error represents the standard error. In these

figures all points represent an AC measurement. In both experiments the three-halves

harmonic pulse duration depends weakly on the incident laser pulse duration, which is an

important conclusion. The main difference between the two measurements is the unam-

biguously longer pulses in the first series. Taking into account the bandwidth of 3ω0/2,

the inserted materials into the beam from the target to the BBO crystal in the AC and

the group velocity dispersion (GVD) of the materials a pulse elongation of about 100 fs,
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25 fs can be calculated [127] for the first, second series, respectively 3. Correcting for
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Figure 6.16: Summary of the 3ω0/2 pulse
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measurement series. The red points are

an average over all measurements with a
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represents the standard error. The plotted

results are made without discriminator.

these GVD effects the two investigation series have similar results.

Results taken with discriminator in the first experiment are plotted in Fig. 6.17. The

incident laser pulse duration was 286 fs and the intensity is about 5 × 1016 W/cm2. The

horizontal error bars represent the applied discrimination range, while the vertical errors

originate from the Gaussian fit. Two measurements made without discriminator are sep-

arated by a thin black vertical line. The signal was very stable and very well reproducible

during this measurement. One trace without discriminator was measured in the begin-

ning and the other at the end of this investigation showing almost the same duration. At

around 22 mV discriminator signal also two measurements certify the extraordinary re-

producible results. In Fig. 6.17 a clear correlation between the 3ω0/2 duration and 3ω0/2

energy can be observed. It must be noted that all laser parameter were kept constant.

3The 3ω0/2 pulses are not transform limited, which would mean a sub-30-fs length. Assuming a simply

chirped pulse, i.e. only quadratic phase modulation, the elongation is not pulse duration dependent.
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Therefore the longer the pulse duration, i.e. the time of the growth, the higher the energy.

Based on the knowledge about instabilities and the results in this figure an exponential

dependency is expected. In Fig. 6.18 the 3 ω0/2 intensity, i.e. the discriminator signal
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Figure 6.17: 3 ω0/2 pulse duration mea-

surements with discriminator plotted as a

function of the energy of the three-halves

harmonic radiation. The horizontal error

bars represent the applied discrimination

range, while the vertical errors originate

from the Gaussian fit. The thin black

vertical line separates two measurements

made without discriminator.

divided by the length of the pulse, is plotted as a function of the pulse duration. An

exponential fit is also shown in the figure with an obtained growth time [tg = (2γ)−1] of

(22± 2) fs. Assuming linear regime, the growth rate can be calculated from Eq. 3.25 and

yields tg =33 fs at an intensity of 1016 W/cm2, and 5 fs at 1017 W/cm2 using Te=1 keV and

L/λ=2. In the second series similar observations were made with discriminator, although
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Figure 6.18: Intensity of the 3ω0/2 ra-

diation (the discriminator signal divided

by the pulse duration) as a function of its

pulse duration from Fig. 6.17. An expo-

nential fit is also shown with 22 fs growth

time. The vertical error bars represent the

applied discrimination range, while the

horizontal errors originate from the Gaus-

sian fit.

the results were not as reproducible as the previous ones.

It should be noted that the 3 ω0/2 radiation is generated in a time interval when the

laser intensity is higher than the threshold intensity for the instability. This interaction

time can be much longer than the laser pulse duration, depending on the laser intensity.

The observed results are a good basic for a novel model of saturation. Two main observed

properties from various results are an exponential growth and a strong saturation that

stops the rapid growth. As can be seen from Fig. 6.5 the energy of the 3 ω0/2 signal stays
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approximately constant after saturation takes place. This can be explained when the

signal grows exponentially until saturation and then simply disappears due to a saturation

mechanism, which is shown in Fig. 6.19. The model predicts a similar temporal structure

t

nTPD

0 	ts

0

nsat

nth

I

Figure 6.19: Suggested model of plasma

wave saturation. The electron plasma

wave amplitude (nTPD) and the laser in-

tensity (I) as a function of time. The time

ts marks the point where saturation (nsat)

is reached from the initial thermal noise

(nth) and τ is the pulse duration.

for the three-halves harmonic signal as for the plasma wave with a pulse duration (t3/2)

proportional to (2γ)−1. Therefore the three-halves harmonic pulse duration will slightly

increase with the incident laser length (τ) according to t3/2 ∼ τ 1/2, as observed in the

experiments (Fig. 6.16). The 3 ω0/2 energy in the linear regime will increase exponentially

as the intensity increases independently whether the intensity is changed by the laser

energy or by the focusing.

This saturation behavior implies a decrease in the 3 ω0/2 signal vs. target focal position

(Fig. 6.7) as already discussed due to the decrease of the spot size. It needs further

experimental and numerical investigations to estimate the role of ponderomotive force

that compresses the plasma and decreases the scale length, and whether this saturation

can be the wavebreaking process.

The pulse duration with discriminator is generally shorter than without discriminator.

It can be expected with exponentially growing signals. There are 3ω0/2 pulses with longer

duration and much larger energy according to Fig. 6.17. The difference in the second har-

monic signal of the autocorrelator is even larger due to the nonlinearity. Therefore the

average of the second harmonic over many shots is dominated by the largest pulses with

slightly longer duration, similarly to statistics with an exponential distribution function.

As the correlation without discriminator contains every shot, the duration of these inten-

sive pulses is generally obtained. The application of the discriminator avoids this problem

and the measurement gives the duration of the smaller pulses with shorter pulse duration.



Chapter 7

Summary

In this thesis, the first detailed investigations have been made on three-halves harmonic

radiation generated in femtosecond-laser-produced plasmas. Several important properties

of the parametric instabilities stimulated Raman scattering (SRS) and two-plasmon decay

(TPD) in this regime have been deduced from the results with the help of theoretical

models.

In the interaction of ultrahigh intensity Titanium:sapphire femtosecond laser with solid

targets, a strong green light emission is regularly observed. This radiation is generally

attributed to collective plasma effects and in particular to an emission at three-halves

harmonic of the fundamental frequency (3ω0/2), which has previously been investigated

only with nanosecond lasers. The purpose of this work is to systematically study the 3ω0/2

emission from femtosecond-laser-produced plasmas, with the ultimate aim of identifying

possible applications of this radiation source.

To this end, the work has been organised into 3 parts, each broadly representing a

separate experimental campaign.

The first experiment was performed in long scale length plasmas similar to those occur-

ing in the inertial confinement fusion context. An interferometric measurement revealed

an electron density scale length of about 100 µm and suggested that ionization defocusing

played an important role. It was confirmed with spectral measurements that the ob-

served green light from the plasma was indeed 3 ω0/2 radiation. The energy-dependence

of the three-halves harmonic emission on the laser pulse duration was then determined,

and interpreted with the help of a model, which included the TPD instability and the

coupling between a TPD plasmon and a laser photon. Very good agreement was found

between the model and the measurements, from which one could infer two things: i) that
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the laser intensity was about 1016 W/cm2 in the plasma and ii) that the instability was

dominated by the exponential growth, in complete contrast to the saturation-dominated

ns laser regime.

An upgraded laser with shorter pulse duration and better focusability, i.e. higher inten-

sity up to 6×1018 W/cm2 was then used in a second series of experiments. Suppression of

the prepulses led to a much shorter and controllable scale length in the λ–10λ range. An-

gularly and spectrally resolved measurements were made to identify the 3ω0/2-generation

process within this high-intensity regime. In a certain parameter range, a characteristic

double-peaked angular distribution was obtained using 45◦ incidence angle. A detailed

k-space analysis shows that the first peak at 25◦ is generated by the coupling of a TPD

produced plasmon with a laser photon. A SRS-based plasma wave amplification is re-

sponsible for the second peak at 70◦ direction, although TPD also contributes to the

amplification process. These results suggest that three-halves harmonic radiation was ob-

tained from SRS the first time in this experiment, a feat only made possible with fs lasers

and steep density profiles. Detailed spectral measurements supported the picture with

the two generation mechanisms. Although the instability presumably reached saturation,

these results could also be explained well with the linear theory. A simple argument was

used to show that a longer laser pulse duration leads to a more dominant saturation. Fur-

thermore, it was experimentally shown and explained that the 3ω0/2 can be generated

only in an inhomogeneous plasma with scale length of about 1 µm or longer. Therefore the

readily observed three-halves harmonic radiation can be exploited as a reliable pre-plasma

diagnostic.

In a third series of measurements, the saturation mechanism of the parametric instabil-

ity was investigated. In particular, the variation of the 3ω0/2 signal on the laser intensity

was determined by varying the laser energy or the target focal position. These results

indicate two distinct regimes in the development of the signal. The first regime is an

exponential growth of the signal with the laser intensity. Above a given intensity the

second regime is reached, which exhibits a constant or even decreasing 3ω0/2 signal with

increasing laser intensity. The explanation requires a new model for the plasma wave

saturation. Careful and detailed pulse duration measurements were performed on the

three-halves harmonic radiation. A special autocorrelator was built and tested for these

investigations. The results indicate a weak 3ω0/2 pulse duration dependence on the laser

pulse duration and an exponential growth. A new model is suggested for the temporal

development and saturation of the three-halves harmonic emission in the fs regime that

accounts for the measured properties, although further investigation is needed to identify

the saturation mechanism.
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Zusammenfassung

Lasererzeugte Plasmen, die in der Wechselwirkung von ultrahochintensiven Laserpulsen

mit Festkörpertargets entstehen, haben viele Anwendungsgebiete wie Teilchenbeschleuni-

gung, Erzeugung elektromagnetischer Strahlung bei ungewöhnlicher Wellenlänge bis hin

zur Trägheitsfusion. Die meisten dieser Anwendungen sind durch parametrische Instabi-

litäten in Plasmen beeinflusst, deshalb wurden sie mit langen Laserpulsen (> 100 ps)

detailliert untersucht. Relevante Instabilitäten sind die stimulierte Raman- / Brillouin-

Streuung, wobei die Laserstrahlung in eine Elektronenplasmawelle / ionakustische Welle

und in eine gestreute elektromagnetische Welle zerfällt. Der Zwei-Plasmonen-Zerfall, die

dritte relevante Instabilität, erzeugt zwei Elektronenplasmawellen – auch Plasmonen ge-

nannt. Mit der Einführung der chirped pulse amplification Technik ist es möglich gewor-

den, ultrahochintensive Laserpulse mit Pulsdauer im femtosekunden Bereich zu generie-

ren. Weil die stimulierte Raman-Streuung die Elektronenbeschleunigung in Plasmen be-

einflusst, wurde sie in diesem Zeitbereich erneut untersucht. Der Zwei-Plasmonen-Zerfall

trat dabei in den Hintergrund, obwohl er in den meisten Experimenten als helles aus dem

Plasma austretendes Licht in Erscheinung tritt. Bei der Verwendung eines Titan:Saphir

Lasers bei einer Wellenlänge von 800 nm und niedrigeren Intensitäten entsteht in dem

Plasma blaues Licht – die zweite Harmonische der Fundamentalen. Dagegen bei höheren

Intensitäten wird die Emission grün und bei maximalen Intensitäten wird weißes Licht

erzeugt. Diese Strahlung - so wird angenommen - besitzt die 1,5 fache Frequenz der Fun-

damentalen (3 ω0/2) und entsteht durch Plasmainstabilitäten.

In dieser Arbeit wurde erstmalig die 3 ω0/2 Strahlung, die aus femtosekunden laserer-

zeugten Plasmen emittiert wird, systematisch untersucht. Das Ziel dieser Arbeit war die

Erzeugung, Charakterisierung und Beschreibung der 3ω0/2 Strahlung. Weiterhin sollten

daraus Informationen über parametrischen Instabilitäten gewonnen werden und mögliche

Anwendungen dieser Strahlung gesucht werden. Die Experimente wurden mit dem Jenaer

12 TW Titan:Saphir Laser gemacht, wobei nur eine Leistung von 3 TW benutzt wurde.

In dem ersten Teil der Arbeit wurden Plasmen mit langen Skalenlängen zur Erzeugung

von 3 ω0/2 benutzt. Eine Skalenlänge von ca. 100 µm wurde aus interferometrischen Mes-

sungen erhalten. Ionisations-Defokussierung limitierte die Laserintensität im Plasma auf

ca. 1016 W/cm2. Spektrale Messungen bewiesen, dass das vom Plasma emittierte sichtbare

Licht hauptsächlich aus 3 ω0/2 Strahlung besteht. Die Energie dieser Emission als Funkti-

on der Laserpulsdauer wurde gemessen. Ein Modell, das den Zwei-Plasmonen-Zerfall und

die Kopplung der aus dem Zerfall entstandenen Plasmonen mit den Laserphotonen bein-



haltet, wurde zur Interpretation der Ergebnisse benutzt. Dabei zeigte sich eine sehr gute

Übereinstimmung zwischen dem Experiment und dem Modell. Das Modell zeigte, dass

sich die Instabilität im linearen Regime befand, d.h. während der Wechselwirkung stieg

die Plasmonenamplitude exponentiell an. Bei nanosekunden Laser Experimenten verhält

sich die Instabilität ganz anders.

Im zweiten Teil der Arbeit wurde ein weiterentwickelter Laser und Intensitäten bis zu

6× 1018 W/cm2 verwendet. Die Unterdrückung der Vorpulse führte zu deutlich kleineren

und kontrollierbaren Skalenlängen zwischen λ und 10 λ. Um den Erzeugungsmachanis-

mus für die 3 ω0/2 Strahlung bei den neuen Laser- und Plasmaparameter identifizieren

zu können, wurden winkel- und spektralaufgelöste Messungen durchgeführt. Die Messung

ergab zwei Maxima in der Winkelverteilung in einem bestimmten Parameterbereich. Ei-

ne detailierte k-Raum Analyse zeigte, dass das erste Maximum in 25◦ Richtung durch

Zwei-Plasmonen-Zerfall erzeugte Plasmonen entsteht, analog zu den früheren Ergebnis-

sen. Für den zweiten Peak in 70◦ Richtung ist eine Plasmawellenverstärkung basierend auf

stimulierte Raman-Streuung verantwortlich. 3ω0/2 Licht wurde zum ersten Mal durch sti-

mulierter Raman-Streuung erzeugt. Dies ist nur mit femtosekunden Laser in steilen Elek-

tronendichteprofilen möglich. Detaillierte spektrale Messungen unterstützen das Modell

mit zwei Erzeugungsmechanismen. Eine qualitative Erklärung für die breiten Spektren

wurde erhalten. Obwohl Sättigung bei diesem Experiment vermutlich auftrat, lassen sich

die Ergebnisse gut mit der linearen Theorie verstehen. Mit einfacher Argumentation wurde

gezeigt, dass die Sättigung deutlich dominanter bei nanosekunden als bei femtosekunden

Laser ist.

Es wurde experimentell und theoretisch gezeigt, dass 3 ω0/2 Strahlung nur in inhomo-

genen Plasmen mit einer Skalenlänge von ca. 1 µm oder länger erzeugt werden kann.

Aufgrund dieser Eigenschaft kann die 3 ω0/2 Emission als eine einfache Plasmadiagnostik

benutzt werden.

Im dritten Teil der Arbeit wurde der Sättigungsmechanismus der parametrischen In-

stabilitäten untersucht. Unter anderen wurde die Abhängigkeit der 3 ω0/2 Energie von

der Laserintensität bestimmt. Die Intensität wurde durch die Laserenergie und die fokale

Position des Targets variiert. Diese Ergebnisse zeigen zwei getrennte Bereiche in der Sig-

nalentwicklung. In dem ersten Bereich wächst das Signal exponentiell mit der Intensität

an. Ab einer bestimmten Laserintensität (zweiter Bereich) bleibt das Signal konstant

oder nimmt sogar ab. Nur unter Verwendung eines neuen Modells können diese Beob-

achtungen erklärt werden. Genaue und sorgfältige Messungen der Pulsdauer der 3 ω0/2

Strahlung wurden durchgeführt. Für diesen Zweck wurde ein spezieller Autokorrelator

aufgebaut und gründlich getestet. Die Ergebnisse zeigen eine schwache Abhängigkeit der



3 ω0/2 Pulsdauer von der Laserpulsdauer und ein exponentielles Anwachsen der 3ω0/2

Energie als Funktion der 3 ω0/2 Pulsdauer. Ein neues Modell bezüglich der Sättigung, ba-

sierend auf den oben genannten Beobachtungen, wurde vorgeschlagen. Mit diesem Modell

können die experimentellen Ergebnisse erklärt werden, aber weitere Untersuchungen sind

erforderlich, um den Sättigungsmechanismus genauer identifizieren zu können.
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: laszlo.veisz@tuwien.ac.at

: ungarisch

: ledig

: als wissenschaftlicher Mitarbeiter am Institut für Photonik

TU Wien, Gusshausstr. 27/387, 1040 Wien, Österreich
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