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in repeated games with the same opponent. We present a model that explains how 
equilibrium play is affected when players change their choice of strategy when receiving 
additional information from each encounter. We employ a large international panel dataset 
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and specialized computer programs, we find large learning effects. Moreover, as predicted by 
the model, risk-averse players learn substantially faster. 
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1     Introduction 

Imagine two kings at the opposite sides of a battle field, each one in the lead of an army of 

knights and archers. Each king is considering his options: should he attack with the risk of 

losing or should he offer a truce? He knows that if he offers a truce, he signals potential 

weakness and that he would prefer not to engage in a battle, hence, offering a truce could 

encourage the opponent to attack. On the other hand, perhaps both kings prefer a truce but if 

none of them dares to offer it, they will have to take their chances on the battle field. 

However, had the two kings agreed to a truce in the past, they would probably feel a lot less 

uneasy. They would attach a higher probability to the possibility of establishing a new truce, 

which in turn increases the probability that one of the kings will propose it. When such a 

peaceful outcome has occurred several times in the past, the kings will probably reduce the 

size of the army; why keep an expensive reserve when a war is not very likely? In this 

example, the kings have learnt from past encounters, and this new information affects the 

future choice of strategy. Parallels can be drawn to the financial market: When there has been 

a certain amount of transactions between two traders, lenders and borrowers learn that the risk 

of default is not very high, so they are willing to reduce their risk premium. The problems for 

the kings, lenders and borrowers is that if there is some kind of (supply) shock, they will be 

more vulnerable, since they have lower reserves than before the learning process. 1 

 Although these learning processes are important and common, little is known 

about how they work in practice. This is particularly true for rational learning. To address 

this issue, we turn to real chess games, performed by expert chess players. The purpose of the 

present paper is to examine strategic learning in repeated Bayesian games, using a large real 

world field data set. We test whether expert chess players, in repeated chess games with the 

same opponent, obtain additional information which leads to an update of their beliefs 

regarding the opponent‟s degree of risk aversion.  In addition, we show that risk-averse 

players learn and update differently than risk-loving players. Specifically, we test whether 

risk-averse players, when they meet repeatedly, become increasingly likely to end the game in 

a so-called „arranged draw‟, which is an outcome the players can agree upon at any time 

during the early phases of the game while it is still undecided on the board, and where they 

                                                   
1 To give some further examples from economics, consider a union that must decide whether to accept the wage 

offer from the employer or to begin a strike with a risk of losing even more. Should a market-leading company 

let a newcomer enter the market and share the profit or should it start a price war with the risk of having to let 

the competitor in anyway? 
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share the points. Thanks to the tremendous development in the accessibility of chess data over 

the last decade, we exploit the existence of a large panel data set, where the players have an 

almost perfect record of the game history of their opponents, including an evolving measure 

of playing skills of all players.  

It is known from experimental behavioral economics that strategic learning occurs, 

see Camerer (2003) and Young (2004). Recent theories model rational learning in repeated 

Bayesian games, but empirical testing of these models still lags behind, however, and existing 

studies are largely based on small-scale lab data. One reason for this is that it is difficult to 

construct beliefs that reflect genuine uncertainty about the opponent‟s strategies, yet at the 

same time, narrow enough to permit learning and to be able to observe the learning process in 

practice, i.e. it should not require too many repetitions for learning effects to emerge. To find 

field data that comply with these conditions has proven difficult.  

Most empirical research in behavioral game theory is based on lab experiments which 

have been criticized for being too unrealistic, producing results that are valid only for 

particular subgroups in a sterilized setting. The number of observations is usually rather low. 

On the other hand, many lab experimentalists are not satisfied with findings resulting from 

field or observational data as it is typically not possible to control for confounders 

satisfactorily. Theorists often desire a continuous line of vertical logic which is almost 

impossible to achieve in large-scale empirical studies. In short, there is a trade-off between 

having control over the experiment on the one hand and the number of observations and 

population representativity on the other. 2 In this paper we bridge the gap between small-scale 

lab experiments and large-scale imperfect data by employing large-scale field data collected 

from real chess games but in a very controlled setting, where the rules of the game are the 

same all over the world, and where it is possible to control for exact playing skill by 

exploiting the Elo (1978) rating system (see section 2.2). The rules and homogeneity of the 

game of chess offer a setting that is a step towards a controlled lab experiment but at the same 

time supplies a data set reflecting real behavior with 1.5 million observations in a panel data 

structure.  

We contribute to the literature by bringing chess data into the analytical toolbox of 

empirically oriented economists and by showing that rational learning in games occurs in 

large-scale field data. In addition, we present a model that explains how players, in a 

                                                   
2 Levitt and List (2007) discuss the advantages and drawbacks of lab experiments. They argue that having one‟s 

actions scrutinized by others may have an unintended influence on the lab participants. For a discussion in favor 

of lab data, see Falk and Heckman (2009).  
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Bayesian game, change their choice of strategy as they receive additional information about 

the opponent after each encounter. The model also predicts that risk-averse players learn 

faster, which is supported by our empirical findings. Furthermore, we show that the 

likelihood of a risk-averse outcome increases continuously, when two risk-averse players 

meet repeatedly, although they knew the general risk type of the opponent in advance. Our 

findings suggest that equilibria may evolve over time as the learning process proceeds. The 

mere duration of stability may affect the level of risk taken by individuals in the sense that 

there is little need for a margin if the risk of default is very small.  

The fact that elite chess players are considered to be among the most intelligent 

subpopulations, with high levels of cognitive ability, has attracted several researchers within 

the field of economics. Palacios-Huerta and Volij (2009) and Levitt et al. (2009) study chess 

grandmasters to analyze how they use backward induction to solve the centipede game. The 

former study finds that grandmasters do indeed use perfect backward induction, whereas the 

latter finds little support for that. Moul and Nye (2009) find that players from the former 

Soviet Union could improve their result by agreeing to early or pre-arranged draws. Simon 

(1955) contributed to economics with an influential paper, where he modeled the rational 

choice of chess players. These studies have in common that they take advantage of the fact 

that elite chess players constitute an upper boundary of the population, as far as rationality is 

concerned, and thereby serve researchers to establish a benchmark.3 We have chosen to study 

the behavior of expert chess players for the same reason and due to the fact that the game 

setting is orderly and the information set, both for the players and the researchers, is very rich, 

which reduces the potential impact of confounders.  

The paper is organized as follows. The next section provides a chess background, and 

section 3 discusses risk-taking and the measurement of risk aversion in chess. Section 4 

discusses the conceptual framework of learning in repeated games and presents the theoretical 

model. In section 5 we discuss the data and the econometric strategy. Section 6 contains the 

results of the estimations, the sensitivity analyses and a placebo analysis. Section 7 concludes.  

 

                                                   
3 For other references to studies on chess players, see, for instance, Gobet (2005), Roring (2008) and Ross 

(2006).  
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2     A Brief Introduction to Chess
 

This section contains a brief introduction to chess, a discussion of the opening strategies, an 

intuitive description of the Elo (1978) rating system (a formal description is given in the 

Appendix), and ends by discussing the information set of a chess player when preparing for a 

game.   

 

2.1 The Chess Game 

Chess is a sequential game where the players make moves in turn with white and black pieces 

on the chess board with the aim of capturing the opponent‟s king. There are three possible 

outcomes of a chess game: you win, you draw (a tie), or you lose, which scores 1 point, ½ 

point, and 0 points, respectively.  

The fact that there is a third outcome, a draw, and the fact that it can be agreed upon 

by the players at any time during the game, makes chess suitable for studying risk 

preferences.4 The offer is valid and binding until the opponent has made his next move. There 

are no rules regulating the minimum number of moves that have to be played before the 

players can agree upon a draw, except that the game must have started. It is considered 

impolite to offer a draw more than once during a game.  

Most chess games recorded in Chessbase (which is described in sub-section 2.4) are 

played in chess tournaments or in team tournaments. In chess tournaments, it is normal to 

play one game per day, and a tournament may consist of five to thirteen rounds, with ten 

being the norm. Since each player has an allotted time that is not to be exceeded, a game lasts 

at most six to seven hours.5 If your time limit is exceeded, you lose the game (if the opponent 

still has material enough to capture your king, otherwise it is a draw). 

 

2.2 The Opening 

The description of the opening strategy is important for our definition of risk-taking in 

the next section, hence, we devote some time to explaining the opening strategy. 

There are different ways in which a player can affect the course of the game. The most 

obvious way is through the choice of opening. At the beginning of a chess game, both players 

choose an opening strategy (a strategic development scheme for their pieces) that will steer 

the game towards a style of play that best suits them and at the same time makes life less 

                                                   
4 Only the player, whose turn it is to move, may offer a draw. He has to make his move and then make the offer 

of a draw immediately after the move has been made. 
5 A chess clock has two clocks, one for each player.  
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comfortable for the opponent. All expert chess players have a prepared set of opening 

strategies to be used in different situations. One‟s chosen set of openings is called an 

“opening repertoire” (OR). To optimize performance, a considerable effort is dedicated to 

creating an opening repertoire that matches one‟s personality.  In the opening, the player must 

make a decision about the task of each piece, on which square to put it, whether its main 

purpose is to attack or defend, etc.   

When the game starts, it is in a balanced position, signifying that there is no advantage 

for either side. The opening moves are theoretical in the sense that they have been worked out 

beforehand as to maximize the expected score for each side. The theoretical moves are to a 

large extent memorized before the game, and, since no calculation is needed, these moves are 

often played quickly. While the game is still in the theoretical phase, the position remains 

balanced. If the theoretical extent of a certain opening variation lasts for twenty moves, then 

the “real” play and a potential deviation from the saddle point equilibrium does not start until 

the 21st move. 

Chess opening strategies have been analyzed in extreme detail both by chess players 

and by computer programs. All expert chess players nowadays use computer programs and 

chess databases. The chess database reports the relevant statistics for each opening strategy, 

for instance, the mean score for each opening (based on the games stored in the database). 

This means that a player easily can observe how well an opening has scored in the past and 

the distribution of outcomes. Computers have the advantage that they can calculate much 

faster and more accurately than the human brain. For every calculated variation, the computer 

program evaluates the position and expresses it in units of pawns (e.g. +1 usually means that 

the position corresponds to white being one pawn up, materially). When both players play 

optimally, this value is (close to) zero in equilibrium. 

Since there are quite a large number of possible strategies by the opponent for each 

additional move, the opening theory is limited (by cognitive constraints). Most opening 

strategies cover reasonable moves made by the opponent for approximately the first 15 to 20 

moves.6  

 

2.3 The Elo Rating System 

A landmark for establishing chess as an analytical tool was the introduction of the Elo rating 

system (Elo, 1978), which made it possible to compare the strength of chess players on a 

                                                   
6 See de Firmian (2009). 



 7 

metric scale.7 Named after its inventor, Arpad Elo, it has become the benchmark rating in 

chess. 

“[It] provides chess researchers with a valid measurement device unrivalled in other areas of 

expertise research. It is a true gold standard in individual-difference research.” (Charness 

1992, p. 6).  

Thus, with reference to Elo (1978), it has become possible to measure skills on objective 

grounds, there are no “subjective assessments” (Chabris and Glickman 2006, p. 1040).  

The Elo rating scale is constructed in such a way that the Elo difference between two 

players corresponds to an exact expected score (performance). The Elo rating of a player 

increases, when the player scores above the expected score and vice versa. Figure 1 displays 

the scoring probabilities for different relative Elo ratings. In the Appendix we show how the 

Elo rating and scoring probabilities are computed.   

 

Figure 1 Expected scores for varying Elo differences.  

 

 

The expected score between two equally skilled players is .5, i.e. when the Elo difference is 

zero the expected score is 50 %. If a player has an Elo rating of 200 points more than the 

opponent, the expected score is about .75, see Figure 1.  

 

 

 

                                                   
7 The history of the Elo rating system is described in Ross (2007). 
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2.4 The Information Set of a Chess Player 

A chess player in a tournament or team tournament typically knows in advance his next 

opponent, including the Elo rating, and will spend a considerable amount of time (from a few 

hours to half a day) preparing for that specific game, studying the opponent‟s style of play, 

opening strategies, etc. In doing so, the player uses books, computer programs, and a database 

of chess games. Chessbase is arguably the most comprehensive and most used of such 

databases, and it contains a total of more than five million chess games. For each game, it 

contains all the moves by the players, the date of the game, the names of the players, their Elo 

rating at the time of the game (or at any point in the past), and the outcome. Hence, when 

confronting a new opponent, a chess player has the possibility to study the playing skill (the 

Elo rating), the opening strategies and playing styles of the opponent, his strengths and 

weaknesses as reflected in his past games. In addition, the players have information about the 

age, nationality and gender of the opponent. The Chessbase database also calculates the score 

of different opening strategies based on real games, and the expected score based on 

computer evaluations of the positions. 

In short, the chess player, when preparing for the next game, has – except for potential 

private information via e.g. friendship - access to exactly the same information set a priori as 

the econometrician who can access the same database.   

 

3     Risk-taking in Chess  

One standard way of defining risk aversion in economics is that a risk-averse agent prefers 

the utility of the expected value rather than the expected utility. Let p, q and r denote the 

probability of a win, draw, and loss, respectively. Then, risk aversion in chess can be formally 

stated as  

       05.105.1 UrUqUprqpU    (1) 

For a risk-loving agent the inequality is reversed.  

The relation between p and r depends on the Elo difference between two given 

players. More precisely,  

    1rp       (2) 

where  (0, 1) is the expected score of the player in focus, that is, 05.1  rqp . If 

two players are equally skilled, ½  and rp  . However, this still leaves the player with a 

choice of risk level, since she can choose between riskier openings that provide a large 
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winning probability (e.g. p=0.4, r=0.4, q=0.2) or a risk-averse opening leading to a smaller 

winning probability (p=0.2, r=0.2, q=0.6).8 

If the Elo difference is positive (the player in focus is superior), then     1  is 

positive and, consequently, p>r, i.e. the probability of a win is greater than that of a loss, and 

vice versa if negative, but the choice of risk strategy remains. Since the sum of the 

probabilities must equal one, we can substitute for r in (2) above and obtain qp ½ . This 

is the player‟s constraint when choosing the opening strategy and the level of risk. Thus, a 

player‟s risk preferences affect the choice of p, and all parameters are pinned down when p is 

chosen. It follows that p [0, ], q [0,  p2 ] and r [ 21p , 1 ]. To increase 

the winning probability, the player must accept an increased probability of a loss.  

To see that a risk-averse player prefers a draw to playing the game, consider two 

equally skilled players and then plug in the extreme values of p. Setting p=.5 and q=0 renders 

either the score 1 (a win) or 0 (a loss) with the expected score .5. Setting p=0 and q=1 renders 

the same expected score ½ with certainty. If both players are risk-loving, they will maximize 

p; if both are risk-averse, they will maximize q. If there is one risk-loving and one risk-averse 

player, then there will usually be an interior allocation of p and q since they are pulling the 

game in opposite directions in terms of riskiness.  

For each additional move that is played in a game, there is a risk of deviation from the 

theoretical opening balance, with a reduced probability of a draw. Hence, if two equally 

skilled players have risk-averse preferences, they could reduce the risk by agreeing to a draw 

at an early stage. If one of two equally skilled players has made a mistake on the board, the 

probability of a draw is lower than when the position is still in the opening balance. Draws 

agreed to while still playing theoretical moves are usually referred to as arranged draws. 

Since the players have not really started to play, arranged draws depend on the players‟ 

preferences, while draws agreed to at a later stage, when the theory has ended, depend 

increasingly on the position on the chess board for each additional move.9 Most opening 

                                                   
8 For a more detailed example, see Appendix.  
9 Regarding the difference between draws in general and arranged draws, Moul and Nye (2009) write: “Hard-

fought games that end in draws are more likely to last longer than collusive or pre-arranged draws. The latter are 

more likely to be agreed to at an earlier stage when the position on the board is still not fully resolved and it is 

not clear that one player should win. At a later stage the likelihood is much greater that the position will clearly 

favor one or the other player.”  (p.14). Risk preferences affect the preference for an arranged draw and may vary 

from game to game, depending on the opposition or other circumstances. Drawing preferences may also vary 

due to temporal variation in health condition, state of alertness/tiredness or if a draw would suffice to obtain a 
particular objective as for instance the win of a tournament. Naturally, a superior player would have lower 

drawing preferences against an inferior opponent, while the inferior player would have higher drawing 

preferences compared to when the players are equal in playing strength. 
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theory in chess lasts for about 15-20 moves and we have chosen to define an arranged draw as 

a draw in less than twenty moves.10  

 

Definition 1. We define an arranged draw (AD) as a game that ended in a draw while the 

position was still in the theoretical phase. We assume that a game that has ended in a draw in 

1-19 moves is an AD. The utility of an arranged draw is denoted  ½U .  

 

Definition 2. Let  jU  be player j’s utility of the expected score  1,0j , where 

05.1  rqp , and let 
jEU  be the expected utility      05.1 UrUqUp  , given 

We define a risk-averse player as having   jj EUU   a risk-neutral player 

  jj EUU   and a risk-loving player   jj EUU  . Furthermore, we say that a player is 

superior if  >½ and inferior if  <½. Finally, a player has a preference for an AD if 

  jj EUU ½ , i.e., the utility of ½ points is greater than the expected utility, given , and we 

say that this player is of Type I. A player prefers to play the game through if the inequality is 

reversed, and we say that this player is of Type II.11  

 

The intuition behind Definition 2 is that a type I player prefers a draw given the expected 

score whereas a type II player prefers to play for a win with the risk of losing given the 

expected score. Hence, the risk preferences are player-specific while the type I/II categories 

are game-specific, i.e., the risk preferences depend only on the individual whereas the type 

depends on the risk preferences and the relative playing skills of the players.   

 

Proposition 1. Assuming that j is distributed such that E[ j ]=½, i.e. on average a player 

is as often superior as inferior, then a risk-averse player is more likely to prefer an AD (being 

of Type 1 than a risk-loving player, and vice versa.   

 

Proof. The definition of risk aversion is        05.1 UrUqUpU  . Substituting for 

p and q, we obtain         )0((½)12112 UrUrUrU    Taking the 

                                                   
10 Although this definition may seem somewhat arbitrary, it does not affect the results more than marginally. A 

sensitivity analysis is carried out with the definition 1-15 and 1-23 with similar results. 
11 For a player to prefer an AD, the following inequality most hold, 

    
  


 0

½122
½ U

UU

rr  
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expected value of both sides, we have that 

        )0((½)12112 UErUrEUrEEU   , which is the same as 

  EU       )0((½))(1211)(2 UrUErUEr   . Since E[ ]=½, we know 

that       (½)21)0(1½ UrUrUrU   which is equivalent to     )0(½1½½ UUU  . 

The last expression is the very definition of risk aversion, whereas the left-hand side of the 

inequality is the definition of the utility of an AD.■ 

 

3.1 Measuring Risk-taking: The Openings Classification System  

As we have already argued, risk preferences are reflected in the preferences for certain 

outcomes. The opening strategies are means to increase the probability of a certain outcome 

occurring.  

There exists a standardized classification of 500 chess opening strategies, which are 

mutually exclusive and exhaustive, called the ECO classification. To create a risk measure, 

we have categorized each of these 500 openings as either risk-loving, risk-neutral or risk-

averse. To obtain such a categorization for each opening (and for each color, white and 

black), we consulted eight chess experts of different skills with Elo ratings ranging from 2000 

to 2600, five men and three women, and asked them to give their characterization of each of 

the 500 ECO codes.12 They were instructed to define each opening as risky, neutral or safe. 

We then compared the opinions of the experts and subsequently we define an opening to be 

risk-loving, risk-neutral or risk-averse if at least six out of eight experts agreed.13 In cases 

when there were five or fewer votes for either risk-loving or risk-averse, the opening was 

considered to be risk-neutral. As a result of our experts‟ assessments, there are two labels for 

each game, one for each player. We will refer to this risk measure as the OR risk preference 

measure. We will also calculate the ratio of risk-averse (-loving) opening strategies divided 

by all games played by a player.  

In addition, we create a ratio of the number of arranged draws relative to the number 

of all games played by a player. We refer to this as the AD risk preference measure. The OR 

and AD risk measures are highly correlated as regards risk preferences.  

                                                   
12 According to the International Chess Federation (FIDE), a player is regarded as an expert if he/she has an Elo 

rating of 2000 or more. The lowest level required to obtain a Master title is a rating of 2300. A Grandmaster title 

usually implies an Elo rating of over 2500. In the year 1999 Garry Kasparov reached an Elo rating of 2851, the 

highest Elo rating ever obtained by a human player. 
13 The reason for using only 3 categorical values rather than, say, 10, is that the classification requires a very 

high level of expertise from those doing the categorization. Each of these players needed several hours to 

complete the survey on the 500 opening codes. 
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4     Conceptual Framework 

4.1 Theoretical Model 

There is a first-mover disadvantage in chess when proposing an arranged draw. This follows 

as offering a draw signals potential weakness. The opponent can then choose a strategy that is 

more efficient. There is also an increased psychological pressure on the player that has 

revealed potential weakness. For these reasons, players do not want to offer a draw if it is 

likely that the opponent will reject the offer. Therefore, a player can benefit from learning 

about the drawing preferences of the opponent before offering an arranged draw. In the 

present paper, strategic learning is measured by analysing whether the probability of an 

arranged draw between two players in earlier periods (lagged dependent variables) increases 

the probability of a future arranged draw. The hypothesis is that when players have agreed to 

earlier arranged draws, there is less uncertainty and thereby less risk that your opponent will 

take advantage of you signalling potential weakness. Hence, a risk-averse player has a larger 

preference for an arranged draw, but at the same time there is a risk involved in trying to 

avoid risk by offering an arranged draw.  

In this game, player 1‟s strategy set is offering a draw or passing (not offering a draw) 

whereas player 2‟s strategy set is accepting or rejecting given that an offer has been made. If 

player 1 passes, player 2 “becomes” player 1 and the game continues. Moreover, when a 

player has had a draw offer rejected, the game ends (though the chess game continues).  

Figure 2 displays the game which starts with nature selecting a type for each player, 

either type I where   11 ½ EUU  , or type II where   11 ½ EUU  . Since the players have 

perfect information about the game history of the opponents, they also know the general type 

of the opponent. If nature picks type II for player 1, then the game stops since a player that 

prefers to play for a win with the risk of losing rather than taking half a point with certainty 

will not consider offering a draw as a draw offer is binding. For simplicity, we leave this 

scenario (nature selecting type II for player 1) out of the game since the choices are then 

trivial. Note that the game is asymmetric in the sense that a type II player will never act as 

player 1. As we will see below, this asymmetry affects the optimal play differently for risk-

averse and risk-loving players.   

 When nature has selected type I for player 1, the game in Figure 2 starts. Nature also 

picks a type for player 2, but the type in this specific game is private information for player 2, 
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that is, player 1 cannot observe the type of player 2 (symbolized by the dashed line at player 

1‟s information set). Nevertheless, player 1 has a belief about the opponent‟s utility of a draw. 

If player 1 chooses to offer a draw, then player 2 can choose either to accept or to reject the 

offer. If player 2 is of type 1, she will be better off by accepting the offer but should reject if 

she is of type II. If no offer is made, the payoff is simply the expected utility. If player 1 is of 

type I and chooses to offer a draw when player 2 is of type II and rejects the offer, a cost , 

where we assume that  ii  ,0 , falls upon player 1 for giving away private information 

(potential weakness) whereas player 2 receives the reward.  

 

Figure 2 – The game of arranged draws in extensive form.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since it is costly for player 1 to signal that she has preferences for a draw although she does 

not, player 2 knows with certainty the preferences of player 1 so player 2 simply accepts the 

offer if she is of type 1 and rejects if she is of type II. Player 1‟s choice, however, depends on 

her belief about player 2‟s type. She will be indifferent between the two strategies when they 
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should offer a draw if her belief 








EUU draw
, and not offer a draw if the inequality is 

reversed.  

The basic idea of the model is that the more information a player receives about the 

opponent, the better the possibility to determine her utility of a draw. We assume that each 

player has a certain utility of a draw in a particular game and that a player tries to infer the 

opponent‟s utility by interpreting signals. With new information the player updates her beliefs 

before the next meeting. A player who receives no signals will infer the expected draw

jU  of the 

opponent j to be 
i (i.e., the stronger is player i, the higher the drawing preferences of 

opponent j). Each time two players agree to an arranged draw, they receive the signal t

i  

about opponent i at time t, where   ,, IIIt

i  and I=accepted draw offer, II=rejected draw 

offer, and Θ=empty set of signals, i.e., no draw offer has been made. Since the game history 

of all players is common knowledge, the distribution by nature between the two types is also 

common knowledge. As the number of signals increases, it pulls the posterior beliefs away 

from the prior mean toward the true value. When the number of signals approaches infinity, 

the player can infer the drawU  of the opponent perfectly.  

        Let 1

i be player i:s initial belief that the opponent is of type I at time t=1. The prior 1

i  

is a function of the opponent‟s game history, i.e.  01

ji  , where  1,0t

i  is the game history 

until time t.  

The first time two players meet they use the game history of the opponent to infer the 

type. Thus, their initial belief is 1

j  =  1

iE   =  01 |Pr ii I   . After each subsequent meeting 

the players update their beliefs so 2

j  =  2

iE   =  102 ,|Pr iii I   . More generally, this can 

be expressed as;  

 t

j  =  t

iE   =     (3) 

 

where n is the number of previous meetings (in the empirical section we set n≤4 for practical 

reasons).  

 

Proposition 2. Given that not all signals are empty (all priors are too low), two risk-averse 

players receive more non-empty signals on average than one risk-averse and one risk-loving 

player. Moreover, one risk-averse and one risk-loving player receive more non-empty signals 

  nt

i

t

i

t

ii

t

i I   ,...,,,|Pr 210
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on average than two risk-loving players. Hence, in general, risk-averse players update their 

beliefs more frequently than risk-loving players.   

 

Proof. For a signal to be non-empty, a draw offer has to be made which is only made by type 

I players, hence,  always equals zero. Since the initial belief of a 

player is a function of the game history of the opponent, i.e. , a player sets a lower 

initial belief for a type II opponent than for a type I opponent. Given that not all priors are too 

low, it follows that  >  >  

 = 0.■ 

 

4.2 Hypotheses and Implications of the Model 

The way the game is constructed implies that the payoffs and equilibrium of the game are 

asymmetric for the two types. As has been discussed above, the best reply for a type II player 

is to avoid arranged draws. It follows that a type II player is never the first player to act and, 

consequently, this player is playing the best reply from the beginning. Hence, a type II player 

is not expected to update the beliefs and, therefore, there will be no learning for a type II 

player. Note that a risk-loving player will not always be a type II player so we still expect a 

risk-loving player to learn.    

Our hypotheses in this paper are that; i) Chess players learn about their opponent‟s 

utility in repeated meetings and adapt their future strategies accordingly, ii) Risk-averse 

players learn faster than non-risk-averse players.  

Let  denote the learning effect (the updating of beliefs) for player i at time t, 

where . Given that at least some priors are sufficiently high, we have five 

cases;  

a)  > 0 [type I players learn and update their beliefs upwards] 

b)  = 0  [type II players do not update] 

c)  = 0   [no update without new information] 

d)  < 0  [type I players learn and update their beliefs downwards] 

e)  [not possible,  no signal without a type I player]  

 

 IIII ji   ,|Pr

 01

ji 

 II ji   ,|Pr  III ji   ,|Pr

 IIII ji   ,|Pr

i

t

i

t

ii   1
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In this paper we cannot distinguish between rejected draw offers and no draw offer, so we 

compare accepted draw offers to rejected or no draw offers (lumped together). Hence, we 

investigate empirically whether  is greater than .14  

If the prior , the corresponding player will never offer a draw 

(under ceteris paribus conditions). This implies that if the prior is sufficiently high, there will 

be a change of equilibrium and a divergence between the risk-averse and risk-loving 

equilibrium. However, if the prior is too low, there will be no change of equilibrium.15 

Following from propositions 1 and 2, the model also predicts that more risk-averse players 

will learn more than risk-loving players as they update their beliefs more frequently.  

 Due to the simplicity and transparency of the game, the intelligence and cognitive 

ability of the players, together with the high level of information (game history and Elo 

rating), we find it reasonable to assume that the players, given their beliefs, are able to choose 

the optimal strategy. As the relative skill is known in every game, the players only have to 

know whether they prefer an arranged draw or not and evaluate whether they are willing to 

take the risk of offering a draw.16 Even if they were to fail playing best reply at every 

moment, they will probably be very close to optimal behavior.17  

 

5    Data and Econometric Model  
 

5.1 Data  

The data in this study were obtained from ChessBase 10, a database collection with more than 

1.5 million chess games played in high-level international chess events by expert chess 

players (Chessbase 10 has more than 5 million games in total) . The resulting data set 

contains about 30,000 players from 140 countries. Two levels of data are available, player-

specific information and game-specific information. The name, year of birth, nationality and 

gender of a player are available. For every game there are data on the names and Elo ratings 

                                                   
14 Here, players are supposed to take into account their chess-related payoff and their risk preferences but not, 

for instance, friendship or other kind of social preferences. If two friends, siblings or a couple play against each 

other, they may receive a higher utility from accepting an arranged draw although they are far superior. 

However, in this paper we want to exclude such effects and focus on genuine learning effects. Such potential 

confounders are discussed in section 6.2.   

 
15 Such implications are common, see for instance Young (2004) and Fudenberg et al. (2004). 
16 Recall that Moul and Nye (2009) found that the Soviet players were able to improve their tournament score by 

agreeing to arranged draws at the correct moment.     
17 We suggest that the players play in accordance with the concept of self-confirming equilibrium. This 

equilibrium concept was defined by Fudenberg et al. (2004). This equilibrium concept has similarities with the 

Nash equilibrium, but here the player is not expected to know what has not yet been learnt.  

 It

i

t

i   |1 t

i







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of the two players, year of the game, number of moves and score. The years included in this 

study range from 1997 to 2007 and the minimum Elo rating required is 2000, above which 

players are considered to be experts. As regards the information on a player‟s nationality, we 

have grouped the countries in regions based on geographic lines and chess popularity. The 

regions with the highest number of chess players are Western Europe, Eastern Europe and the 

former Soviet Union. These three regions account for about 90 percent of the expert chess 

players in the world. Western Europe alone accounts for 53 percent, Eastern Europe for 24 

percent and the former Soviet Union for about 13 percent. Latin America, North America 18, 

Africa and Asia account for less than 10 percent.  

 

5.2 Econometric Model   

The unit of observation in the econometric model is the game. The dependent variable, Y, 

takes on the value 1 in the case of an arranged draw, and 0 otherwise.  

We condition on a set of information for each player. This set of information is the 

same as that of the players, available from the database, as discussed in section 2.3. 

Information about the two individuals participating in a game is used to construct our 

explanatory variables. For each game, we have two sets of characteristics, one for white, X w, 

and one for black, Xb. Elo rating (playing skill), gender, nationality, age polynomials, number 

of games, OR risk preferences, regional and year dummies are included as control variables. 

Included in X are also player-specific history variables, such as the tendency for each player 

to play safe and risky openings with the relevant color (the fraction of games with a given 

color against players above 2000 where the player played safe, or risky), the tendency for 

each player to end a game in arranged draws, the total number of past games, etc. Thus, we 

control explicitly for the historical risk profile, the opening preferences, and the ability of 

each player. 

In addition, we include information on how often two players have met before with a 

set of indicators for the order of the game. Furthermore, we construct a set of „lagged‟ 

dependent variables, taking the value 1 if there was an arranged draw in the previous game 

(and for 2, 3 and 4 time lags) between two players, 0 otherwise (i.e. including wins, losses 

and normal draws).  

Thus, regressing the dependent variable, an indicator for an arranged draw, on the 

lagged dependent variable, a positive coefficient implies an increasing probability of the 

                                                   
18 As the U.S. Chess Federation applies a different rating of the playing strength many American players are 

missing in the data.   
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occurrence of an arranged draw with repeated meetings in general. Conditioning as well on 

all the information in the database, we argue that the parameters on the lagged dependent 

variables can be given a causal – learning – interpretation. Interacting the lagged dependent 

variables with the risk profile of each player, as measured by the fraction of previous games 

ended in arranged draws will show whether risk-averse players learn faster or not.  

Each game is treated like an independent observation, except that we calculate robust 

standard errors that are cluster at the player level. As regards the lagged variables, the current 

encounter is the dependent variable, whereas the first, second, third and fourth previous 

encounters correspond to the four lagged dependent variables. In cases where two players 

meet more than five times, the fourth lag is 1, lending it an interpretation of all learning 

taking place at the fifth game and later. The model is estimated using a linear probability 

model (OLS).  

 

6     Results 

6.1 Empirical Results 

The main results from the estimations are presented in Table 1. Due to the complexity to 

overview the results, we present the learning effect coefficients in Figure 3 which also 

displays how the learning effects vary across risk level.  

From Table 1 we see that the „Opening Repertoire (OR) risk-averse‟ coefficients are 

as expected, i.e. they are positive and the probability of an arranged draw increases even more 

if both players are OR risk-averse. We also see that players of opposite sex have a smaller 

probability of an arranged draw. Being of the same gender has a positive impact on the 

probability of an arranged draw. Moreover, the coefficient for having the same nationality is 

positive. It is possible that players of the same gender or nationality have a higher prior belief 

which would lead to faster learning. This may also capture part of a friendship effect, see 

section 6.2.  

Due to the complexity of the model, especially with respect to the marginal effect of 

past games on the likelihood of the present outcome, we present the marginal learning effect 

of past games in Figure 3 
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Table 1. Estimation results for the main regression (LPM estimated with OLS).    
 Dep var: AD  

   

Opening Repertoire (OR) risk-averse, white .0111   (.0009)***      

OR risk-averse, black .0192   (.0011)***      

Both OR risk-averse .0141   (.0014)***       

Female, white -.0040    (.0018)**      

Female, black -.0078    (.0015)***      

Both female .0162   (.0026)***       

Same nationality .0229   (.0008)***      

   

Learning effects   

Arranged draw (AD) 1 lag  .0582    (.0128)***       

AD 2 lags .0510   (.0186)***       
AD 3 lags  -.0272   (.0228)      

AD 4 lags .0970    (.0281)***       

AD 1 & 2 lags  .0363   (.0141)***       

AD 1, 2 & 3 lags .06270   (.0273)**       

AD 1, 2, 3 & 4 lags  .0221   (.0345)       

AD 1 lag * AD risk (white) .3184   (.0820)***       

AD 2 lag * AD risk (white) .1760   (.1217)       

AD 3 lag * AD risk (white) .8851   (.1572)       

AD 4 lag * AD risk (white) -.2521   (.1719)      

AD 1 lag * AD risk (black) .2313   (.0758)***       

AD 2 lag * AD risk (black) .1764   (.1242)       

AD 3 lag * AD risk (black) .4421   (.1582)***       

AD 4 lag * AD risk (black) -.1499   (.1919)      

AD 1 lag * AD risk (white & black) -.0345   (.4326)      

AD 2 lag * AD risk (white & black) -.4551   (.6719)      

AD 3 lag * AD risk (white & black) -3.8259   (.9164)***      

AD 4 lag * AD risk (white & black) 1.6205   (1.0094)       

   

Normal draw 1 lag (≥20 moves) .0262   (.0020)***      

Normal draw 2 lags (≥20 moves) .0178   (.0035)***       

Normal draw 1 & 2 lags -.0075   (.0056)      

   

OR risk-averse share, white player  -.0068    (.0028)**      
OR risk-loving share, player  -.0077   (.0035)**      

AD risk, player .4398   (.0078)***      

Number of historic games, player -.00004   (.000004)***     

OR risk-averse share opponent  -.0200   (.0024)***      

OR risk-loving share opponent  -.0165   (.0030)***      

AD risk, opponent .4089   (.0061)***      

Number of historic games, opponent .000003   (.000004)       

   

2nd encounter .0052   (.0013)***       

3rd encounter .0014    (.0025)       

4th encounter -.0051   (.0035)      

5th encounter -.0216   (.0032)***      

   

Elo, (white & black) Yes    

Age, Age-2 (white & black)  Yes   

Regional dum. (white & black) Yes  

Year dummies (date of game) Yes  

Constant  -.1821   (.0104)***     

Number of games/players 744,307 / 32.093  

Notes: Western Europe is used as a reference group for the regional dummies. Robust standard errors in 

parentheses, clustered at player level. * significant at 10%; ** significant at 5%; *** significant at 1%. AD is 

short for Arranged Draw, and OR is short for Opening Repertoire. „White‟ refers to the player holding the white 

pieces, „black‟ refers to the player holding the black pieces. 
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Figure 3 also displays how the learning effect varies across risk preferences, where the 10th 

percentile is the 10th percentile in the distribution of the variable measuring the faction of past 

games for a given player that ended in an arranged draw. The 10th percentile thus represents 

the risk-loving chess players, while the 90th percentile represents those that are most risk-

averse. Figure 3 shows that in general, learning about each other‟s preferences occurs, 

reflected in the positive marginal effect of past arranged draws on the probability of another 

arranged draw. Moreover, as predicted by the theoretical model, there is more (and faster) 

learning for more risk-averse players. For the 90th percentile we find that the probability of an 

arranged draw is 55 percentage points greater when the four previous meetings ended in 

arranged draws than when no arranged draw has been agreed to in the past. For the 10th 

percentile this effect is 30 percentage points.19  

     

Figure 3. The learning effects for 1-4 earlier AD:s for different levels of risk preferences, 

where the 10th percentile is the most risk-loving and the 90th the most risk-averse group.    

    
 

Figure 4 displays the results for amateurs and professionals, and same-nationality, different-

nationality games, separately. The purpose is to see if the pattern remains for professional 

players, especially when of different nationalities. It is less likely that friendship has an 

                                                   
19 The effect on the probability of arranged draws from having played normal draws (twenty moves or more) in 

earlier encounters, see Table 1, is much smaller than the effect from having played earlier arranged draws. The 

effect is about 2 to 3 percentage points. Having played normal draws in earlier meetings might increase the 

probability of an arranged draw as it may suggest that a draw is the most probable outcome in any case. There is, 

however, limited evidence for this type of learning.   
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important impact on the probability of arranged draws among professional players and should 

also be less common across nationalities.20  

  

Figure 4 – learning effects for different subgroups, amateurs with same and different 

nationality, respectively, and professionals with same and different nationalities, respectively.  

 

Note: The marginal effects are evaluated at the median of the AD risk aversion distribution. 

 

The fact that the learning effect also appears for professional players and for players of 

different nationalities reduces the probability of friendship driving the results. There is no 

significant difference between same and different nationality subgroups. There is, however, 

some difference in the size of the effect between amateurs and professionals. This may be due 

to the fact that professional players typically have more a priori information about the 

opponents than the amateurs have.  

As a placebo analysis, Figure 5 shows the results from a regression, where arranged 

draws, defined as draws in fewer than twenty moves, are replaced as the outcome variable by 

draws in 30-49 moves. As is seen in Figure 5, the effect from the placebo „treatment‟ is close 

to zero (actually slightly negative). 

 

                                                   
20 Note that the findings by Moul and Nye (2009) that the Soviet players tended to collude, relate to the absolute 
world elite, and hold only in countries where there was a strong political pressure on the players to perform. 

Players at lower levels or in countries with greater political freedom are not very likely to „sacrifice‟ themselves 

for the nation in individual tournaments.   
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Figure 5 - Placebo (draw in 30-49 moves) and real learning effects (draw in 1-19 moves).   

 

Note: The marginal effects are evaluated at the median of the AD risk aversion distribution. 

 

Figure 6 presents the results when the difference in playing skill, the Elo difference, is smaller 

than 50 Elo points and larger than 200 Elo points. If a player is substantially more skilled than 

the opponent, her belief about the opponent‟s drawing preferences will be close to one while 

the corresponding belief of the opponent will be close to zero. For this reason, when the 

difference in playing skill is large between two players, the learning is expected to develop 

slower since the superior player‟s belief cannot increase (much) more and the inferior player 

will suspect that the opponent‟s preference for an arranged draw in the past was temporary.  

 

Figure 6 – learning effects when the Elo difference is < 50, and > 200 points, respectively.  
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Note: The marginal effects are evaluated at the median of the AD risk aversion distribution. 

As predicted by the theoretical model, Figure 6 shows faster learning when the Elo difference 

is small.21 

 

6.2 Potential Confounders 

One possible confounder in this context is the existence of friendship (friends, siblings or 

similar) between two players, which could increase the non-economic payoff from an 

arranged draw. In general, it is extremely difficult to obtain information about such payoffs 

but we can control implicitly for several factors which makes it less likely that the results are 

driven by friendship.  

First, the effects found in this paper are large and monotonically increasing. If these 

effects are driven by friendship, there would have to be a substantial, monotonic increase in 

friendship from one game to another. It seems more plausible that the effects are due to 

updating of the beliefs. Second, we find that risk-averse players learn about twice as fast 

which, if the results are driven by friendship rather than real learning effects, would indicate 

that risk-averse players have a more developed friendship. Although possible, there is no 

consensus pointing in this direction. Third, we find learning effects also for professional 

players. It seems less likely that people playing chess for a living should let friendship 

interfere with “business”. Fourth, we find no learning effects when replacing arranged draws 

with the “placebo” outcome, i.e., draws in 30-49 moves. Since draws, regardless of the 

number of moves that have been played when agreed to, give half a point, friendship should 

affect the outcome also in the placebo regression.22 Fifth, we also find that the learning effects 

are lower when the Elo difference is larger. This is in line with the learning effects predicted 

by the theoretical model but cannot be considered to be a typical pattern if driven by 

friendship. If anything, the pattern should be the reversed as rivalry usually increases when 

players are more equal in skills.  

Finally, we should point out that we find some support for players of similar gender or 

nationality showing faster learning effects, see Table 1. One can argue that friendship is likely 

to be stronger within the same gender or nationality than otherwise. This argument would 

give some support to friendship being the driving factor behind the results. However, we 

                                                   
21 When comparing male and female players, there is, although not significantly different from each other, a 

small tendency for female players to learn faster than male players. This is in line with the consensus that 
women are more risk-averse than men.  
22 The effects from including normal draws (twenty moves or more) as explanatory variables are very small 

compared to arranged draws.  



 24 

propose an alternative interpretation. It is possible, and perhaps also likely, that the initial 

prior is higher when the players have the same nationality or gender, i.e., it may be easier to 

interpret pre-game signals when having a similar cultural background.23  

 

7     Conclusions 

We conclude that there is rational learning involved in repeated chess games between two 

chess players. Past outcomes between two players affect the beliefs about the opponent‟s 

preferences in future games, although the general type of the opponent is known in advance. 

The magnitude of the effects is large with roughly an additional 10 percentage points higher 

probability for each additional previous arranged draw. The theoretical model we develop for 

this setting, predicts that risk-averse players learn faster than risk-loving players, as they 

receive more signals. We find strong support for this being the case. The learning effect is 

about twice as large for the most risk-averse players (at the 90th risk percentile) compared to 

the learning effects for the most risk-loving players (at the 10th risk percentile). The fact that 

risk-averse players learn faster depends on the construction of this particular game. The 

conclusion from this is rather that people, although they have the same intellectual and 

cognitive ability, may learn differently depending on their preferences, in this case risk 

preferences.    

The learning effects survive several sensitivity tests. We carry out a “placebo 

treatment” which, as predicted, shows no learning effects at all. Furthermore, large rational 

learning is found both for professionals and amateurs and we also find that the learning 

effects decrease when the difference in playing skill increases. The fact that the results are 

insensitive to such tests strengthens the liability of the findings, as it is less likely that they are 

driven by friendship or other “social” preferences.  

Studying intelligent and productive expert chess players with high cognitive capacity 

that are well equipped with adequate data and specialized computer programs is important 

when analyzing rational learning. By considering such an extreme group, we may obtain a 

boundary result as regards rational learning. Although not representative for the society as a 

whole the findings resulting from analyses on this subgroup may supply researchers with an 

upper bound which can be used as a benchmark in future research on these topics.    

                                                   
23 Such arguments have been suggested by, for instance, Cornell and Welch (1996) and Lang (1986).  
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Ultimately, with this study we hope to demonstrate how useful large-scale chess data 

from international expert chess games can be for economic research. As a chess game 

constitutes a highly controlled environment with homogenous rules across countries, it can be 

seen as one of the largest registered field experiments on economic behavior.  
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Appendix 

The Elo Rating System24 

The following description aims to show how winning probabilities are calculated and how 

Elo rates of chess players are subsequently updated. 

In the late 1950s, Arpad Elo, a physicist and a devoted chess player, introduced a new system 

of classifying the strength of chess players. By observing results from chess tournaments, he 

noted that the distribution of individual performances in chess resembled a normal 

distribution. On the basis of his observations, he introduced a point scale, where he 

determined the standard deviation to be 200. The distribution relates to the difference in 

ability between two players. Defining μ as the difference in Elo strength between two players, 

this gives us the following probability density function (pdf), i.e. the marginal probability of 

winning: 
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As there are two participants, each of them with an assumed performance deviation of 200 

Elo points, the standard deviation used in (1) can be rewritten as follows: 
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24 The following section is to some extent drawn from Ross (2007). 

http://www.chessbase.com/newsdetail.asp?newsid=4326
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For example, this is saying that the probability of winning is 76 [24] percent if one player has 

200 Elo points more [less] than his/her opponent. When two players are equally strong (i.e. an 

Elo difference equal to zero), the most likely outcome is a draw. 

Elo ratings: A sequential estimate of strength 

The probability of winning as shown in equation (3) is used to update a player‟s Elo rating. 

The algorithm for this reads as follows:   

Elo_new = Elo_old + (Score-Prob(winning))*k  (4) 

Here Elo_old is the Elo rating before the game starts, whereas Elo_new is the updated rating. 

The Score indicates the actual outcome of a game, where a win [loss] is valued as 1 [0], and a 

draw counts as .5 point. The coefficient k is a weighting factor that determines how much the 

outcome of a game counts for a player‟s Elo rating. It is determined by the number of games 

played, i.e. the less experienced a player is, the higher the k.  

 

 

Example: Let us hypothesize that there are two players with an Elo difference of 100 Elo 

points. This corresponds to an expected score of approximately 62.5% (or 5/8) for the 

superior player and 37.5 (or 3/8) for the inferior player. The players will then choose the set 

of probability parameters (p and q) as to maximize their utility. For instance, the inferior 

player could choose between two different parameter combinations, in the first p=2/8 and 

q=2/8 whereas in the second p=1/8 and q=4/8. Both strategy choices render the same 

expected score, 3/8. A more risk-averse choice is      0½1
8
4

8
2

8
2 UUU  while 

     0½1
8
3

8
4

8
1 UUU   is more risk-loving. Since    25.625.375.1    or 

8
2

8
5

8
3  , we have 25. rp , i.e. the probability of a win is lower than the probability of a 

loss due to the fact that the player is inferior by 100 Elo points. In this example,  
8
3,0p , 

 
8
6,0q  and  

8
5

8
2 ,r . The second strategy is more risk-averse since it leads to a higher 

probability of a draw.  

 




