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1. Introduction

In this paper, we introduce a new class of parameters called Partial Distributional Policy

Effects (PPEs), which measure the partial (or ceteris paribus) effect of a counterfactual

change in the unconditional distribution of a single component of a vector of explanatory

variables X on some feature of the unconditional distribution of an outcome variable

Y . The parameters are defined in the context of a general nonseparable model (e.g.

Matzkin, 2003), and both fixed and marginal changes in the covariate distribution can

be considered.1 They provide direct answers to a wide range of interesting questions in

applied economic analysis, such as how the quantiles of today’s wage distribution would

respond to a change in workers’ age structure to that in, say, 1985 while holding all other

characteristics of the labor force fixed, or how wage inequality would react to a marginal

increase in the proportion of unionized workers, assuming again that all other features of

the labor market remain constant.

The conceptional difficulties to define unconditional ceteris paribus effects are caused

by the possible nonlinearity of the relationship between the distributions of Y and X =

(W,Z). If we were to consider a simple linear model, and restrict our attention to the

mean of Y , our PPEs would reduce to simple functions of regression coefficients. When

Y = β0 + β1W + β2Z + ε, and we write E(W ) = µW , a change in the distribution of

W to another one with mean µ∗ mechanically increases the expectation of the outcome

variable by (µ∗ − µW )β1, whereas the effect of a marginal increase in the location of W

is easily seen to be equal to ∂E(Y )/∂µW = β1.

Our PPEs generalize these simple ideas in several important direction. Specifically,

they possess three important features, whose joint occurrence distinguishes them from

other concepts proposed in the literature. First, they allow for general changes in the

covariate distribution, and not only for location shifts. Second, they allow for arbitrarily

complex nonlinear relationships between the outcome variable and the covariates, in-

stead of relying on the linear model. And third, they measure the impact on general

distributional features of the outcome distribution, such as its variance, higher moments,

1Throughout the paper, we refer to the marginal distribution of a single component of a random

vector as its “unconditional” distribution. The term “marginal” is used in the sense of “infinitesimal”

only.
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quantiles, quantile differences, or Gini coefficient, and not only on the mean.

We formalize the ambiguous notion of a ceteris paribus change in the distribution

of one covariate by introducing a rank invariance condition. That is, we construct a

counterfactual experiment in such a way that the joint distribution of individuals’ re-

spective covariate ranks remains constant, thus preserving the dependence structure of

individuals’ observable characteristics. This approach is equivalent to holding the copula

of the covariate distribution constant. We show that, under a conditional exogeneity

condition, the unconditional distribution of the outcome variable after such a counterfac-

tual experiment can be obtained by integrating the conditional cumulative distribution

function (CDF) of Y given X with respect to the counterfactual covariate distribution,

and one can thus directly calculate distributional features of interest. Comparing these

features to their counterparts in the original outcome distribution yields our PPEs. We

also discuss both parametric and nonparametric sample analogue estimators based on

this result, which are straightforward to implement.

A complication arises for discrete covariates. In this case, the rank of an individual in

the respective unconditional distribution is not uniquely determined by the data, but only

upper and lower bounds can be obtained. Due to this particular form of interval-censoring,

the corresponding policy parameters are typically only partially identified. That is, the

data generating process reveals some nontrivial information about these effects, but does

not allow for an exact quantification.2 This finding should not be seen as a weakness of

our approach, but points to the difficulties to define unconditional ceteris paribus effects

in general nonlinear models. Following the literature on partially identified parameters

(e.g. Manski, 2003, 2007), we derive bounds on the PPEs in the case of discrete covariates.

We see the class of PPEs as an important complement to other measures that are

commonly used in policy analysis. Their advantage is that they offer a clear distinction

of the effect of a change in the unconditional distribution of a covariate from that of

a change in the composition of subgroups defined by the covariates in the population,

while other methods mix those effects. A simple example is useful to understand this

2The inability to uniquely determine an individual’s rank in the presence of discrete data is also the

source of partial identification of structural functions in triangular systems with discrete endogenous

covariates studied in Chesher (2005) and Jun, Pinkse, and Xu (2011).
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point. Suppose we study a population of workers, our covariates consist of age and an

indicator for union coverage, and our outcome variable is the hourly wage. If the wage

setting function contains interaction effects, unionization can affect the unconditional

distribution of wages in this setting essentially through two channels: i) the mere pro-

portion of unionized workers, and ii) the age composition of unionized and non-unionized

workers. Our definition of a PPE of a change in “union coverage” is via a counterfac-

tual experiment that affects wages through the first channel only. A different approach,

considered e.g. in DiNardo, Fortin, and Lemieux (1996), Altonji, Bharadwaj, and Lange

(2008) or Chernozhukov, Fernandez-Val, and Melly (2009a) would be to change the con-

ditional distribution of unionization given age. This would exert an effect through both

channels, since it both affects the proportion and the age composition of unionized and

non-unionized workers. One could also consider to change the proportion of unionized

workers while holding the conditional distribution of age given unionization constant, as

e.g. in Machado and Mata (2005). In such a thought experiment, the wage distribution

would again be affected through both channels, and additionally through the change in

the distribution of workers’ age. Which of these three different approaches is the most

appropriate one thus depends on the exact research question one is trying to answer. In

our simple example, PPEs should be of interest whenever it is empirically relevant to

distinguish the effect of more workers being covered by unions from the effect of different

workers being covered by unions, holding all other features of the population constant.

This paper contributes to an extensive literature on the analysis of counterfactual

distributions, surveyed in Firpo et al. (2010). The impact of fixed changes in the en-

tire covariate distribution is studied for example by Stock (1989), DiNardo et al. (1996),

Gosling, Machin, and Meghir (2000), Donald, Green, and Paarsch (2000), Barsky, Bound,

Charles, and Lupton (2002), Machado and Mata (2005), Melly (2005), Chernozhukov

et al. (2009a) and Rothe (2010). As pointed out by Firpo et al. (2010), this literature

is closely related to the problem of estimating average treatment effects and missing

data models under unconfoundedness, see e.g. Hahn (1998), Hirano, Imbens, and Ridder

(2003), Firpo (2007) or Chen, Hong, and Tarozzi (2008). As already discussed above, Di-

Nardo et al. (1996) and Altonji et al. (2008) study the effect of a change in the conditional

distribution of a single covariate given the remaining ones, and Machado and Mata (2005)
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consider the effect of a change in the unconditional distribution of one of the covariates

while holding the conditional distribution of the remaining covariates constant. Firpo,

Fortin, and Lemieux (2009) study the impact of marginal location shifts in continuously

distributed covariates, and of marginal changes in the conditional distribution of a binary

covariate given the remaining covariates. While the former parameter is a special case of

our PPEs, the latter is substantially different from the unconditional effects we consider

in this paper. A similar comment applies to the Marginal Policy-Relevant Treatment

Effect studied by Carneiro, Heckman, and Vytlacil (2010), which corresponds to the ef-

fect of a marginal change in the conditional probability of receiving a (binary) treatment

given a vector of instruments. Our PPEs could also be used to construct an extension

of the popular Oaxaca-Blinder procedure (Oaxaca, 1973; Blinder, 1973) to decompose

intra-group differences in means to nonlinear models and general features of the outcome

distribution. Such an approach would have certain advantages over a procedure with a

similar aim described by Firpo et al. (2010), which involves approximating the effect of a

change in the unconditional distribution of a covariate by a linear function of the change

in the mean of the covariate. This approximation might not be accurate for distributional

features of the outcome variable other than the mean.

The remainder of the paper is organized as follows. In the next section, we introduce

our model and the parameters of interest. Section 3 contains the identification analysis,

and Section 4 discusses estimation and inference. In Section 5, we present the results

of a small-scale empirical application. Section 6 concludes. All proofs are collected in

Appendix A. Further details are discussed in Appendix B–D.

2. Model and Parameters of Interest

We observe an outcome variable Y and a d-dimensional vector of covariates X, which are

related through a general nonseparable structural model

Y = m(X, η), (2.1)

where η ∈ Rdη is an unobserved error term. Since we do not impose any restrictions

on neither the dimension of the unobservables nor the way they enter the structural

function m, the model in (2.1) allows for flexible forms of unobserved heterogeneity. In
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the following, we index distribution and quantile functions by the random variables they

refer to, so that FY and QY denote the CDF and the quantile function of the unconditional

distribution of Y , respectively, etc.

Our aim in this paper is to study the effect of a counterfactual (fixed or marginal)

change in the unconditional distribution of one of the covariates on some feature of the

distribution of Y , holding everything else, in particular the dependence structures and

the distribution of the remaining covariates, constant. To formalize the ambiguous notion

of a ceteris paribus change in one of the components of a multivariate distribution, we

partition the covariate vector as X = (W,Z), where W is the one-dimensional random

variable whose unconditional distribution is going to be changed in the counterfactual

experiment, and Z is the (d − 1)-dimensional vector of remaining covariates. We then

write the observed covariates X in terms of their unconditional quantile functions and a

vector U = (U1, . . . , Ud) of standard uniformly distributed latent variables, i.e.

X = (QW (U1), QZ1(U2), . . . , QZd−1
(Ud)) (2.2)

for some Ui ∼ U [0, 1] and i = 1, . . . , d. We refer to U in the following as the vector

of rank variables, and denote its joint CDF, which is also the copula function of FX ,

by C. If W is continuously distributed, the latent rank variable U1 constitutes a one-

to-one transformation of W , since the quantile function QW is strictly increasing and

thus injective in this case. If W is binary, e.g. an indicator of union membership, the

relationship W = QW (U1) = I{U1 > Pr(W = 0)} can be thought of as a threshold

crossing model. However, it is important to stress that (2.2) is not a “model”, but simply

a representation that can be assumed without loss of generality.

It is evident from (2.2) that the quantile functions only determine the shape of the

marginal distributions of X, whereas the vector of rank variables U determines its depen-

dence structure. It is therefore natural to define the outcome YH of the counterfactual

experiment in which the unconditional distribution of W has been changed to some CDF

H, but everything else has been held constant, as

YH = m(XH , η),

where XH = (H−1(U1), QZ1(U2), . . . , QZd−1
(Ud)) = (H−1(U1), Z) is the corresponding

counterfactual covariate vector, and H−1(τ) = inf{w : H(w) ≥ τ} is the quantile function
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corresponding to H. Depending on the application, H could either be a fixed CDF,

such as the distribution of W in a different population, or part of a sequence of CDFs

{Ht, t ∈ R} that approaches FW from a particular direction (chosen by the analyst) as

t→ 0. Our definition can equivalently be understood as a rank invariance condition, since

the unconditional distribution of W is changed in such a way that the joint distribution

of ranks of X remains unaffected. Note that in contrast to e.g. Chernozhukov and Hansen

(2005) or Torgovitsky (2011), we do not use the notion of rank invariance in the sense of a

restriction on individuals’ behavior to obtain identification, but to define the parameters

of interest in the first place.

Our aim is to learn about various features ν(FH
Y ) of the distribution FH

Y of YH , and to

compare them to the corresponding features ν(FY ) of the distribution of Y . We refer to

any difference between these quantities as a Partial Distributional Policy Effect (PPE).

Here ν : F → R is a functional from the space of all one-dimensional distribution functions

to the real line. One example for such a feature would be the mean of YH , which can

be written as E(YH) = µ(FH
Y ) for µ : F 7→

∫
ydF (y). Other examples are higher-order

centered or uncentered moments, quantiles and related statistics like interquantile ranges

or quantile ratios, and inequality measures such as the Gini coefficient. See Chernozhukov

et al. (2009a) or Rothe (2010) for further examples and an extensive discussion. Our

parameters of interest are formally defined as follows.

Definition 1. (a) Let H be a fixed CDF. Then the Fixed Partial Distributional Policy

Effect (FPPE) is given by

α(ν,W,H) = ν(FH
Y )− ν(FY ).

(b) Let H = Ht be an element of a continuum of CDFs indexed by t ∈ R such that

Ht → FW as t → 0, and denote the CDFs of the corresponding counterfactual outcome

distributions by F t
Y . Then the Marginal Partial Distributional Policy Effect (MPPE) is

given by

β(ν,W,Ht) = lim
t→0

ν(F t
Y )− ν(FY )

t
=
∂ν(F t

Y )

∂t

∣∣∣∣
t=0

provided that the limit exists.
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Following Firpo et al. (2009), we will focus on MPPEs corresponding to either marginal

location shifts Ht(w) = FW (w−t) or marginal perturbations Ht(w) = FW (w)+t(GW (w)−

FW (w)) in some fixed direction GW .

3. Identification

Following the literature on counterfactual distributions, we establish our identification

results assuming a form of conditional exogeneity (e.g. Firpo et al., 2009; Chernozhukov

et al., 2009a; Rothe, 2010). We first obtain two representations of the counterfactual

outcome distribution FH
Y , which are useful for the identification analysis of fixed and

marginal PPEs, respectively.

Lemma 1. Assume that (a) the unobserved heterogeneity η is independent of U1 condi-

tional on Z, i.e. η⊥U1|Z, and (b) the support of H is a subset of the support of W condi-

tional on Z, i.e. supp(H) ⊂ supp(W |Z = z) for all z ∈ supp(Z). Then the counterfactual

outcome distribution FH
Y can be either written as (i) FH

Y (y) = E(FY |X(y|H−1(U1), Z)),

or as (ii) FH
Y (y) =

∫
FY |X(y|w, z)dC(H(w), FZ1(z1), . . . , FZd−1

(zd−1)).

Condition (a) of the Lemma is sufficient but not necessary for conditional exogeneity

of W = QW (U1) if W is discrete, and equivalent to conditional exogeneity if W is con-

tinuously distributed. It is substantially weaker than assuming full exogeneity of X. In

the context of identification in nonseparable models, a similar assumption is employed by

Hoderlein and Mammen (2007). Condition (b) ensures that the support of XH is a subset

of the support of X, and thus that the function FY |X is identified over the area of integra-

tion. Since we treat the structural function m in a nonparametric fashion, extrapolation

outside the range of observed covariates is not possible in our setting.

Lemma 1 shows that identification of our PPEs hinges upon knowledge of the rank

variable U1 or, equivalently, the copula function C. Such knowledge is not available

when W is discrete, and thus there are generally several CDFs that can be written as

F (y) = E(FY |X(y|H−1(Ũ1), Z)) for some Ũ1 ∼ U [0, 1] such that (QW (Ũ1), Z)
d
= (W,Z),

and can thus not be ruled out as possible values of FH
Y from the data. We denote the set

of all such feasible counterfactual outcome distributions by FHY . This set could be defined

equivalently via the copula representation in Lemma 1(ii).
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We remark that our setup implies that there are no issues for learning the conditional

CDF FY |X . This rules out settings where the realizations of the outcome variable are

missing for some individuals, e.g. because we do not observe a wage when someone is

unemployed. In such a case, our approach could be combined with nonseparable sample

selection models that either restore point identification of FY |X under certain conditions,

or establish upper and lower bounds on this CDF (e.g. Blundell, Gosling, Ichimura, and

Meghir, 2007; Arellano and Bonhomme, 2011; Melly and Huber, 2011).

3.1. Fixed Partial Policy Effects. When W is continuously distributed, the quantile

function QW is strictly increasing, and establishes a one-to-one relationship between

W = QW (U1) and the latent rank variable U1. Thus, by Lemma 1 the counterfactual

outcome distribution FH
Y is point identified, as are of course all distributional features of

the form ν(FH
Y ), and thus the FPPE. The next theorem formalizes this result.

Theorem 1. Assume the conditions of Lemma 1 hold. Then we have that FH
Y (y) =

E(FY |X(y|H−1(FW (W )), Z)), and the FPPE α(ν,W,H) is identified for any functional

ν.

When W is not continuously distributed, the quantile function QW is piecewise con-

stant, and it can thus only be deduced from observing W that FW (W−) < U1 ≤ FW (W ),

where the notation f(x−) denotes the left limit of the function f at the point x. Interval-

censoring of covariates is well-known to lead to identification problems in various contexts

(Manski and Tamer, 2002), and prevents point identification of the FPPE in our context.

In order to derive the identified set, we make use of the following lemma.

Lemma 2. For every F ∈ FHY there exists a random variable V called a rank allocator

satisfying the relationship V |W = w ∼ U [0, 1] for all w ∈ supp(W ), such that F (y) =

E(FY |X(y,H−1(F̃W (W,V )), Z)), with F̃W (w, v) = v(FW (w)− FW (w−)) + FW (w−).

The role of the rank allocator, which is allowed to depend on Z, is to assign a unique

rank to each individual in case that FW is not continuous everywhere. The idea behind

this construction is that since we only know that FW (W−) < U1 ≤ FW (W ), all uniform

allocations of ranks within these bounds are observationally equivalent, and thus lead to

a feasible value of the counterfactual outcome distribution.
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Using Lemma 2, we now derive sharp bounds on ν(FH
Y ) for linear functionals ν by

explicitly constructing appropriate rank allocators. For simplicity, we focus on the im-

portant special case that FW and H are supported on {0, 1}. Suppose for the moment

that p1 := Pr(W = 1) > Pr(H−1(U1) = 1) =: p2. Roughly speaking, this means that we

have to “move” a fraction of (p1 − p2)/p1 of the p1 individuals with W = 1 to the group

with W = 0 in the counterfactual experiment. When ν is linear, upper and lower bounds

on ν(FH
Y ) can then be obtained by ranking all individuals with W = 1 according the

individual effect ν(FY |X(·|1, Z)) − ν(FY |X(·|0, Z)) of such a “move”, and selecting those

at the top and the bottom of the ranking, respectively. More specifically, Lemma 2 and

linearity of ν implies that for any F ∈ FHY we have that

ν(F ) = E[ν(FY |X(·|I{V > (p1 − p2)/p1}, Z))|W = 1]p1

+ E[ν(FY |X(·|0, Z))|W = 0](1− p1),
(3.1)

for some rank allocator V .3 The second term on the right-hand side of (3.1) does not

depend on V and can thus be neglected. Depending on the realization of V , the term

ν(FY |X(·|I{V > (p1−p2)/p1}, Z)) is equal to either ν(FY |X(·|1, Z)) or ν(FY |X(·|0, Z)). In

order to maximize the right-hand side of (3.1), the rank allocator must thus be defined

in such a way that conditionally on W = 1 the event V < (p1 − p2)/p1 corresponds to

a realization of Ṽ = ν(FY |X(·|1, Z))− ν(FY |X(·|0, Z)) below its conditional (p1 − p2)/p1-

quantile. This can be achieved by defining V as an appropriately normalized version of

Ṽ . A lower bound on the expression in (3.1) can be constructed by replacing Ṽ by its

negative version and proceeding analogously. In general, we thus first define the random

variable

Ṽν = ν(FY |X(·|H−1(FW (W )), Z))− ν(FY |X(·|H−1(FW (W−)), Z)).

Next, let V U
ν be a one-to-one transformation of Ṽν normalized to be standard uniformly

distributed conditional on W via the (generalized) distributional transform,4 and define

3The last equality follows from the fact that for p2 < p1 we have that QW (u) = I{u > 1 − p1},

H−1(u) = I{u > 1− p2}, F̃W (0, V ) = V (1− p1) < 1− p2 and F̃W (1, V ) = (1− p1) + V p1.
4A random variable Q is said to be a normalized version of a random variable R conditional on

a random vector S via the generalized distributional transform if Q = G(R,S, T ), where G(r, s, t) =

Pr(R < r|S = s) + tPr(R = r|S = s) and T ∼ U [0, 1] is some random variable independent of (R,S).

See Rüschendorf (2009) for details.
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V L
ν = 1−V U

ν . Then the two CDFs built from the rank allocators V L
ν and V U

ν , respectively,

are those which yield the lowest and highest feasible value of ν(FH
Y ).

Theorem 2. Suppose that the conditions of Theorem 1 hold, that W is binary, and

let ν be a linear functional. Then the FPPE α(ν,W,H) is partially identified: we have

that αL(ν,W,H) ≤ α(ν,W,H) ≤ αU(ν,W,H), where αr(ν,W,H) = ν(F r) − ν(FY ) and

ν(F r) = E(ν(FY |X(·|Srν(W,Z), Z))) with Srν(W,Z) = H−1(F̃W (W,V r
ν )) for r ∈ {U,L}.

In the absence of further information, these bounds are sharp.

When the structural function satisfies a separability condition of the form m(w, z, e) =

mA(w, e) +mB(z, e), the upper and lower bound coincide since ν is linear, and the FPPE

is thus point identified irrespective of whether W is continuously distributed or not.

Hence there are for example no identification issues related to discrete covariates in the

classical Oaxaca-Blinder procedure, which is based on the linear model m(w, z, e) =

α + βw + γ′z + e.

One can show that Theorem 2 continues to hold without modifications if W is not

binary but an arbitrary discrete random variable, as long as the function H−1 takes

at most two values on the interval (FW (w−), FW (w)] for every w ∈ R. Moreover, a

larger number of support points generally implies more narrow bounds, as with more

support points the restriction FW (W−) < U1 ≤ FW (W ) on the value of the rank variable

becomes more informative. Formally, if FW and H are supported on {s1, . . . , sk} such that

supw∈R(FW (w)− FW (w−))→ 0 as k →∞, then clearly F̃W (W,V U
ν )− F̃W (W,V L

ν )
a.s.→ 0,

which in turn implies that αU(ν,W,H) − αL(ν,W,H) → 0 by dominated convergence.

Treating a discrete random variable with many support points as continuous should thus

be a reasonable approximation in many applications.

With the exception of the mean, most distributional features commonly used in em-

pirical applications cannot be written as linear functionals of the underlying CDF. As a

first step to extend the result in Theorem 2, note that for every fixed y ∈ R the mapping

F 7→ F (y) is linear. The value FH
Y (y) can thus be bounded pointwise using the approach

described above, by constructing appropriate rank allocators V L
y and V U

y depending on

y ∈ R. Let GU(y) and GL(y) be the corresponding lower and upper bounds, respectively.
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Then we have that

GU(y) ≤ FH
Y (y) ≤ GL(y) for all y ∈ R. (3.2)

Since the rank allocation schemes V L
y and V U

y depend on the point of evaluation y, the

functions GL and GU are not necessarily feasible counterfactual outcome distributions

themselves, and thus constitute only pointwise but not uniformly sharp bounds. However,

one can show that both are proper distribution functions that constitute best possible

bounds on FH
Y with respect to the partial ordering induced by first-order stochastic dom-

inance. Using results in Stoye (2010), who derives identification regions for a large class

of distributional features when the underlying CDF is restricted by first-order stochastic

dominance bounds, we then obtain bounds on the FPPE if ν is either a D1-parameter (e.g.

mean, median, fixed quantile), a D2-parameter (e.g. variance, Gini coefficient, Theil’s in-

dex, Lorenz share), or a quantile contrast (e.g. interquantile range). To state the bounds,

we also require the notion of compressed and dispersed distributions, which are those

CDFs satisfying (3.2) that allocate as much probability mass as possible to their center

and the tails, respectively. Exact definitions of the just-mentioned concepts are given in

Appendix B.

Theorem 3. Assume the conditions of Theorem 1 hold, that W is binary, and that ν is

either a D1-parameter, D2-parameter, or quantile contrast. Then the FPPE α(ν,W,H)

is partially identified: we have that αL(ν,W,H) ≤ α(ν,W,H) ≤ αU(ν,W,H), where the

upper and lower bounds are given as follows:

(i) For ν a D1-parameter, we have αr(ν,W,H) = ν(Gr)− ν(FY ) for r ∈ {U,L}.

(ii) For ν a D2-parameter, assume that µ(FH
Y ) = µ̄ for some µ̄ ∈ (µLH , µ

U
H), and let GU

µ̄

and GL
µ̄ be the unique compressed and dispersed distributions (relative to GU and GL)

with expectation µ(GL
µ̄) = µ(GU

µ̄ ) = µ̄. Then we have αr(ν,W,H) = ν(Gr
µ̄)− ν(FY )

for r ∈ {U,L}.

(iii) For ν an (α, β)-quantile contrast, choose any γ ∈ (α, β) and m̄ ∈ (GU(γ), GL(γ)),

let GL
m̄ be the compressed distribution with threshold value a = m̄, and GU

γ be the

dispersed distribution with threshold value a = γ. Then we have αL(ν,W,H) =

ν(GL
m̄)− ν(FY ) and αU(ν,W,H) = ν(GU

γ )− ν(FY ).
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Since the functions GL or GU may not be feasible values of FH
Y themselves, the bounds

in Theorem 3 may not be sharp.5 It should in principle be possible to tighten these bounds

by tailoring the construction of the rank allocator to the respective functional of interest.

However, except for the important special case of linear parameters discussed in detail

above, there seems to be no straightforward analytical solution to this problem. Note

that the result in Theorem 3(ii) does not require the mean of FH
Y to be point identified

(which would generally not be the case in our setting). Instead, together with Theorem 2

it establishes a joint identification region for the mean and any D2-parameter, whose

shape is typically not rectangular.

3.2. Marginal Partial Policy Effects. Using the copula representation of the coun-

terfactual outcome distribution in Lemma 1(ii), it is easy to see that for continuously

distributed W the MPPE is identified if the functional ν and the copula function C sat-

isfy appropriate smoothness conditions. The result is analogous to findings in Firpo et al.

(2009), and stated for completeness.

Theorem 4. Suppose that (a) the conditions of Theorem 1 hold with H replaced by Ht for

all t ∈ R sufficiently close to zero, (b) ν is Hadamard differentiable6 at FY with derivative

ν ′, (c) the partial derivative C1 = ∂C/∂u1 of the copula function C exists, and (d) the

unconditional distribution of W is continuous. Then the MPPE β(ν,W,Ht) is identified:

(i) For Ht a marginal perturbation, i.e. Ht(w) = (1− t)FW (w) + tGW (w), we have

β(ν,W,Ht) =

∫
ν ′(FY |X(y|w, z))d(C1(FW (w), FZ(z))(GW (w)− FW (w))).

(ii) For Ht a marginal location shift, i.e. Ht(w) = FW (w − t), we have

β(ν,W,Ht) = ν ′
(
E(∂wFY |X(·|W,Z))

)
.

5Stoye (2010) notes that even if GL and GU are feasible distributions of YH , one could possibly

improve upon the above bounds if there is additional information available about the structural function

m, that e.g. implies that YH is discrete. Such additional information could be easily included in our

analysis at the price of a substantially more involved notation.
6A formal definition of Hadamard differentiability is given in Appendix B.

13



When W is not continuously distributed, a marginal location shift does not satisfy

the support condition in Lemma 1, and hence we only consider marginal perturbations

in this case. While the formula in Theorem 4(i) remains valid, the MPPE is generally

no longer point identified for discrete W , as one is unable to learn the partial derivative

of the copula function in this context. To see this, we focus again on the case that W

is supported on {0, 1}, and consider a perturbation Ht which implies an increase in the

probability of observing W = 1 by t, i.e. Ht(w) = I{0 ≤ w < 1}(FW (0)− t) + I{w ≥ 1}.

Then it follows from direct calculations that

β(ν,W,Ht) =

∫
(ν ′(FY |X(·|1, z))− ν ′(FY |X(·|0, z)))dC1(FW (0), FZ(z)).

By Sklar’s Theorem (Sklar, 1959; Nelsen, 2006, Theorem 2.3.3), the copula C is only

identified on the range of the marginal CDFs of X = (W,Z). When W is binary, the

function C(a, ·) is thus identified for a ∈ {0, FW (0), 1} only. This in turn implies that

the function C1(FW (0), ·) is not point identified, since identification of a derivative at a

fixed point requires knowledge of the function at least in some small neighborhood. In

order to still obtain bounds on the MPPE, we show in the Appendix that the set of

all possible values of the function C1(FW (0), ·) that are compatible with the distribution

of observables is the set of all multivariate distribution functions with support RZ =

{(FZ1(z1), . . . , FZd−1
(zd−1)) : z ∈ Z}, where Z denotes the support of Z. The identified

set of the MPPE is thus the set of all density-weighted averages of the function

gν(z) = ν ′(FY |X(·|1, z))− ν ′(FY |X(·|0, z)),

and sharp upper and lower bounds are thus given by the extrema of this function over

the support of Z.

Theorem 5. Suppose that the conditions (a)–(c) of Theorem 4 hold, and that W is bi-

nary. Then the MPPE β(ν,W,Ht) is partially identified: we have that βL(ν,W,Ht) ≤

β(ν,W,Ht) ≤ βU(ν,W,Ht), where βU(ν,W,Ht) = supz∈Z gν(z) and βL(ν,W,Ht) =

infz∈Z gν(z).

It is an immediate consequence of Theorem 5 that β(ν,W,Ht) is identified if and

only if gν(z) is constant for all z ∈ Z. This would e.g. be the case if ν = µ is the mean

14



functional, which implies that gν(z) = E(Y |W = 1, Z = z)−E(Y |W = 0, Z = z), and the

structural function m satisfies the separability condition m(w, z, e) = mA(w, e)+mB(z, e).

In contrast to the FPPE however, the separability condition alone is not sufficient to

obtain point identification of the MPPE for distributional features other than the mean,

such as e.g. quantiles: if ν(F ) = F−1 we have that gν(z) = −(FY |W,Z(QY (τ)|1, z) −

FY |W,Z(QY (τ)|0, z))/fY (QY (τ)), which generally varies with z.

4. Estimation and Inference

In this section, we discuss both parametric and nonparametric estimation of partial pol-

icy effects. Under point identification, both FPPEs and MPPEs can be estimated by

simple “plug-in” procedures, replacing unknown quantities in the respective expressions

in Theorem 1 and 4 with suitable sample counterparts. Under partial identification, esti-

mates of the identified set can be obtained through “plug-in” estimates of the respective

boundaries for FPPEs, and via the approach in Chernozhukov, Lee, and Rosen (2009b)

for MPPEs.

4.1. Fixed Partial Policy Effects. We assume that the data consist of an i.i.d.

sample of size n, i.e. we observe (Yi,Wi, Zi)
n
i=1 . For many applications, such as Oaxaca-

Blinder-type decompositions, the counterfactual covariate distribution H is not going to

be known exactly, but estimated from a sample (W ∗
i )n

∗
i=1 of size n∗ = n/λ for some λ > 0.

When W is continuously distributed, the identification result in Theorem 1 suggests to

estimate the FPPE α(ν,W,H) by the sample analogue estimator

α̂(ν,W,H) = ν(F̂H
Y )− ν(F̂Y ).

Here F̂H
Y (y) = (1/n)

∑n
i=1 F̂Y |X(y, Ĥ−1(F̂W (Wi)), Zi), where F̂Y , F̂W and Ĥ−1 denote

the empirical CDF and quantile function of Y , W and W ∗, respectively, and F̂Y |X is

an estimate of the conditional CDF of Y given X. The latter can be estimated by

either the parametric methods discussed in Chernozhukov et al. (2009a), e.g. by first

estimating a linear quantile regression model QY |X(τ, x) = x′β(τ), and then inverting the

corresponding conditional quantile function, or by a fully nonparametric CDF estimator,

15



e.g. a kernel estimator as in Rothe (2010).7

Under partial identification, we obtain estimates ÂW (ν) of the identified set of the

FPPE by estimating the respective upper and lower boundaries, i.e. we have that ÂW (ν) =

[α̂L(ν,W,H), α̂U(ν,W,H)], where

α̂r(ν,W,H) =



ν(F̂ r)− ν(F̂Y ) if ν is a linear functional,

ν(Ĝr)− ν(F̂Y ) if ν is a D1 parameter,

ν(Ĝr
µ̄)− ν(F̂Y ) if ν is a D2 parameter,

ν(Ĝr
m̄)− ν(F̂Y ) if ν is a quantile contrast.

for r ∈ {U,L}. When ν is linear, we have ν(F̂ r) = (1/n)
∑n

i=1 ν(F̂Y |X(·, Ŝrν(Wi, Zi), Zi))

for r ∈ {U,L}, where ŜUν (w, z) = Ĥ−1(F̂W (w−) + V̂ U
ν (w, z)(F̂W (w) − F̂W (w−))) and

the estimated rank allocator V̂ U
ν (w, z) is the value of the empirical distribution func-

tion of the variables ˆ̃Vν,i = ν(F̂Y |X(·|Ĥ−1(F̂W (Wi)), Zi))−ν(F̂Y |X(·|Ĥ−1(F̂W (Wi−)), Zi)),

in the group of observations with Wi = w, evaluated at ν(F̂Y |X(·, Ĥ−1(F̂W (w)), z)) −

ν(F̂Y |X(·, Ĥ−1(F̂W (w−)), z)). The function ŜLν (w, z) is defined analogously, and all other

quantities are as given above. For nonlinear functionals ν, estimates of the stochastic

dominance bounds GL and GU are given by Ĝr(y) = (1/n)
∑n

i=1 F̂Y |X(y|Ŝry(W,Z), Zi) for

r ∈ {U,L}, where ŜUy and ŜLy can be obtained in the same way as ŜUν and ŜLν . When

ν is a D2-parameter or a quantile contrast, we compute the respective dispersed and

compressed CDFs in Theorem 3 (ii)–(iii) from the estimates ĜL and ĜU , denoting the

result by ĜL
µ̄ , ĜU

µ̄ , ĜL
m̄ and ĜU

γ , respectively.

In Appendix C, we provide a complete asymptotic theory for our estimators, adapt-

ing arguments used in Chernozhukov et al. (2009a) or Rothe (2010). We show that

under point identification our estimate of the counterfactual outcome CDF converges to

a Gaussian process. Normality of FPPE estimates then follows from the functional delta

method. A similar approach is used to establish joint asymptotic normality of the esti-

7While kernel estimators may lack precision in settings with a large number of covariates due to the

“curse of dimensionality”, they are typically easier to compute than many flexible parametric methods.

For example, the method based on inverting a linear quantile regression requires solving a large number of

optimization problems, whereas a kernel-based estimator can be shown to require only the computation

of certain sample means (see Rothe, 2010, for details).
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mated bounds under partial identification. While we do not present any formal results

concerning efficiency, we conjecture that those could be obtained along the lines of e.g.

Chen et al. (2008). An ordinary bootstrap procedure can be shown to give asymptotically

valid approximations to the various Gaussian limit distribution, allowing to circumvent

direct estimation of their (often complicated) covariance functions. Then standard meth-

ods can be used to construct confidence intervals for the FPPE under point identification.

In case of interval-identified parameters, one can use general results in Imbens and Manski

(2004) and Stoye (2009).

4.2. Marginal Partial Policy Effects. Under point identification, estimates of the

MPPE can be obtained by “plug-in” estimators in a similar fashion as described above.

Since these parameters are very similar to the ones discussed in Firpo et al. (2009), we

omit a detailed discussion. When W is binary, the MPPE falls into the class of partially

identified parameters restricted by intersection bounds, and one can use the methodology

proposed by Chernozhukov et al. (2009b). Their approach consist of adding a precision-

correction term to a suitable estimate z 7→ ĝν(z) of the bound-generating function in

Theorem 5 before applying the supremum and infimum operators in order to obtain

median unbiased estimates. To be specific, the estimate of the identified set is given by

B̂W (ν) = [β̂L(ν,W,Ht), β̂
U(ν,W,Ht)], where

β̂U(ν,W,Ht) = max
z∈ẐU

[ĝν(z)− k1/2s(z)] and β̂L(ν,W,Ht) = min
z∈ẐL

[ĝν(z) + k1/2s(z)].

Here ĝν(z) is an estimate of the bound generating function gν(z), s(z) is the corresponding

pointwise standard error, the critical value k1/2 is an estimate of the median of the

maximum of the stochastic process Zn(z) := (ĝν(z)−gν(z))/s(z), and the sets ẐU and ẐL

are both (random) subsets of the support of Z that contain the points where the maximum

and minimum is achieved with probability tending to one, respectively. The estimator

ĝν can be fully nonparametric or impose parametric restrictions. Its specific form (and

thus the choice of s and kp) depends on the functional ν, and is explicitly described in

Appendix D for the case of the mean and the quantile functional. Chernozhukov et al.

(2009b) show that a similar idea can be used to construct confidence intervals for the

parameter of interest, which is valid uniformly with respect to the location of the MPPE

within the bounds. We discuss the details in Appendix D.
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5. Empirical Application

In this section, we use our methodology for a short empirical application that investigates

the role of composition effects in the polarization of the US labor market observed between

1985 and 2005 (Autor, Katz, and Kearney, 2006; Lemieux, 2008). During this period,

wage inequality has been rising substantially in the top end of the wage distribution,

but has slightly decreased in the bottom end (compare the left panel of Figure 1 below).

We use our FPPEs to quantify to what extent changes in the unconditional distribution

of various observable characteristics of the labor force, such as e.g. the decline in union

coverage from 27% to 15%, or the increase in average age and education, can account for

these observed patterns.

Our data set, extracted from the 1983-1985 and 2003-2005 Outgoing Rotation Group

(ORG) supplements of the Current Population Survey (CPS), is identical to the one

used by Firpo et al. (2010) (see also Lemieux (2006) for details on its construction). It

contains information on 232,784 and 170,693 males, respectively, that were employed in

the relevant periods. The data from 1983-1985 play the role of our (Y,X), whereas data

from 2003-2005 will be used to estimate the direction H of the counterfactual change.

The outcome variable Y is the natural logarithm of the hourly wage in 1985 dollars. The

covariates X include a dummy for union coverage, years of education, years of potential

labor market experience, and dummies for race, marital status, and part-time status.

Using the procedures described in Section 4.1, we estimate the (identified set of the)

FPPE α(ν,W,H) for various functionals ν, with the role of W and W ∗ being taken by

education, experience and union coverage, respectively. Results for other covariates are

not reported for brevity. We treat the former two quantities as continuously distributed,

and derive bounds only for the effect of union coverage. The conditional CDF of Y given

X is estimated by a flexible parametric approach due to Foresi and Peracchi (1995),

modeling the conditional probability of the event (Y ≤ y) separately for each y ∈ R

via a richly parameterized logistic regression.8 For reference, we also estimate the full

8That is, we set FY |X(y, x) = Λ(t(x)′β(y)), where Λ is the Logistic distribution function, t(·) is a

known transformation used to generate quadratic or interaction terms, and β(y) is a finite dimensional

parameter indexed by y ∈ R, that can be estimated by maximum likelihood. In addition to the covariates

mentioned above, we use quadratic terms in education and experience and a full set of interaction terms
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Figure 1: Relative change in τ -quantile of US male wages from 1985–2005 for τ ∈ (.05, .95).

Left panel: Observed change (bold line) and estimated full distributional policy effect calculated

using the method in Chernozhukov et al. (2009a) (dashed line). Right panel: FPPE of changes

in education (bold line); FPPE of changes in experience (dashed line); identified set of FPPE

of change in unionization (shaded area).

distributional policy effect of a change in the joint covariate distribution from that in

1983–1985 to that in 2003–2005 (e.g. Chernozhukov et al., 2009a; Rothe, 2010). Due to

the large sample sizes, the sampling variation in our estimates is mostly negligible.

The left panel of Figure 1 compares estimates of the full distributional policy effect to

the observed change for various quantiles of the (log real) wage distribution. The full effect

can be seen to have contributed to the increase in wage inequality. It has positive impact

on each quantile, with the magnitude of the effect gradually increasing with the quantile

under consideration. Accordingly, Table 1 shows that the full distributional policy effect

to estimate FY |X (37 parameters in total).
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accounts for about two thirds of the increase in the “90-10 gap” (the difference between

the 90% and the 10% quantile). However, it does not explain the U-shape the observed

changes exhibit, which must thus be driven by changes in the structural wage functions.

We now consider the FPPEs of individual covariates. From the right panel of Figure 1,

we see that FPPEs of both education and experience on the quantiles of the (real log)

wage distribution exhibit a similar “inverse U-shape”, which implies a right shift of the

(real log) wage distribution, an increase in lower-end inequality, and a decrease in top-end

inequality. This is confirmed by the results in Table 1, which e.g. show a decrease in

“90-50 gap” and an increase in the “50-10 gap” being associated with both education

and experience.

Since union coverage is measured by a binary indicator, the corresponding FPPE is

not point identified. The estimated identified sets turn out to be wide, which makes a

precise quantification of the role of the decline in unionization difficult. For example,

Table 1 shows that changes in unionization alone can account for anything between

0.003 to 0.064 to the observed change of 0.132 in the “90-10 gap”. On the other hand,

we see that deunionization increased inequality at the top-end of the wage distribution

as measured by the “90-50 gap”, contributing between 0.018 and 0.089 to the totally

observed change of 0.181. Due to the width of the identified set, its role in the evolution

of low-end wage inequality remains unclear. Our estimates suggest that deunionization

alone could have shifted the “50-10” gap by anything between −0.053 and 0.013, thus

allowing for both positive and negative influence.

6. Concluding Remarks

In this paper, we propose a framework to define and to evaluate the effect of a counterfac-

tual change in the unconditional distribution of a single covariate on the unconditional

distribution of an outcome variable of interest. We show that such effects are point

identified under general conditions if the covariate affected by the counterfactual change

is continuously distributed, but typically only partially identified if its distribution is

discrete. For the latter case, we derive informative bounds making use of the available

information.
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A. Proofs of Theorems

Proof of Lemma 1. We only prove part (i). The proof of (ii) is similar. Using the

conditional exogeneity condition in Assumption 1, we find that

FH
Y (y) = Pr(m(XH , η) ≤ y)

=

∫
Pr(m(H−1(u), z, η) ≤ y|U1 = u, Z = z)dFUZ(u, z)

=

∫
Pr(m(w, z, η) ≤ y|Z = z)dFUZ(H(w), z)

=

∫
Pr(m(w, z, η) ≤ y|QW (U1) = w,Z = z)dFUZ(H(w), z)

=

∫
Pr(m(W,Z, η) ≤ y|W = w,Z = z)dFUZ(H(w), z)

=

∫
FY |X(y, w, z)dFUZ(H(w), z)

=

∫
FY |X(y,H−1(u), z)dFUZ(u, z)

= E(FY |X(y,H−1(U1), Z)),

as claimed.

Proof of Theorem 1. Under the conditions of the Theorem, there exists a one-to-

one relationship between W and U1 over the range on which H−1 is not constant. Hence

we have that FH
Y (y) = E(FY |X(y,H−1(FW (W )), Z)). Assumption 1 (ii) ensures that

that FY |X is identified over the area of integration on the right-hand side of the last

equation. Hence FH
Y is identified, and so are of course population parameters of the form

νH = ν(FH
Y ).

Proof of Lemma 2. The set FHY of feasible counterfactual outcome distributions is

defined as the set of all CDFs F which can be written as F (y) = E(FY |X(y,H−1(Ũ1), Z))

for some random variable Ũ1 ∼ U [0, 1] such that (QW (Ũ1), Z)
d
= (W,Z). Let Ũ1 be any

random variable satisfying these two conditions, and let V = Ũ1/(FW (W )−FW (W−))−

FW (W−). Then V is a rank allocator in the sense of the Lemma, since Ũ1|W = w ∼

U [FW (w−), FW (w)]. On the other hand, it is easy to see that F̃W (W,V ) ∼ U [0, 1]

and (QW (F̃W (W,V )), Z)
d
= (W,Z) for any rank allocator V . In particular, the latter

statement follows from the fact that QW is constant on the interval [FW (w−), FW (w)] for

all w ∈ supp(W ).
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Proof of Theorem 2. The proof for the case that both H and the distribution of W

are binary is given in the main text. The proof for the general case is completely analogous

and thus omitted. Sharpness of the bounds follows from the fact that by Lemma 2 every

valid rank allocator corresponds to a feasible counterfactual outcome distribution, and

vice versa.

Proof of Theorem 3. We first show that GL and GU are proper distribution func-

tions, that constitute best possible bounds with respect to first-order stochastic domi-

nance ordering, in the sense that

GU �1 F �1 G
L for all F ∈ FHY , (A.1)

and that there do not exist distribution functions G̃L and G̃U such that GU �1 G̃
U �1 F

or F �1 G̃
L �1 G

L for all F ∈ FHY . From Theorem 2, it follows directly that GU(y) ≤

F (y) ≤ GL(y) for all F ∈ FHY and all y ∈ R, since the functional ν with ν(F ) = F (y) is

linear. This proves the claim in (A.1).

Next, we show that GL and GU are CDFs. It is immediate by construction that both

functions are right-continuous and tend to zero and one as the point of evaluation tends

to −∞ and +∞, respectively. It thus remains to be shown that they are nondecreasing.

To see this, note that by the sharpness result in Theorem 2, for any ȳ ∈ R there exists

a feasible counterfactual outcome distribution F̄ȳ ∈ FHY such that F̄ȳ(y) = GU(y) for

y = ȳ. Now suppose GU was not everywhere nondecreasing, i.e. GU(y′) < GU(y) for

some y′ > y. This would imply that GU(y) > F̄y′(y
′) ≥ F̄y′(y) since F̄y′ is a proper CDF,

which violates the fact that GU(y) ≤ F (y) for all F ∈ FHY and all y ∈ R. Hence GU must

be nondecreasing. An analogous argument applies to GL.

Finally, we show that GL and GU are best possible bounds with respect to the (partial)

ordering induced by stochastic dominance. Suppose there exists a function G̃U such

that G̃U(y) ≥ GU(y) for all y ∈ R, and G̃U(ȳ) > GU(ȳ) for some ȳ ∈ R. Then by

Theorem 2, there exists a feasible counterfactual outcome distribution F ∈ FHY such that

GU(ȳ) = F (ȳ). Hence it cannot be the case that G̃U(y) ≤ F (y) for all F ∈ FHY and all

y ∈ R. An analogous argument applies to GL.

With these arguments, the statement of the Theorem follows directly from Theorem

1 and 2 in Stoye (2010).
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Proof of Theorem 4. We only prove statement (i), as the proof of statement (ii) is

analogous. For notational simplicity, we assume that d = 2. First, it follows from the

differentiability of the copula function and the functional form of Ht that

∂t C(Ht(w), FZ(z))|t=0 = C1(H(w), FZ(z))∂t Ht(w)|t=0

= C1(H(w), FZ(z))(GW (u)− FW (w)).

Second, using the previous result and the continuous mapping theorem, we obtain that

lim
t→0

F t
Y (y)− FY (y)

t
=

∫
FY |X(y|w, x)d (∂t C(Ht(w), FZ(z))|t=0)

=

∫
FY |X(y|w, x)d (C1(H(w), FZ(z))(GW (u)− FW (w))) .

Finally, Hadamard differentiability of ν implies that

lim
t→0

ν(F t
Y )− ν(FY )

t
= ν ′

(∫
FY |X(y|w, x)d (C1(H(w), FZ(z))(GW (u)− FW (w)))

)
=

∫
ν ′(FY |X(y|w, x))d (C1(H(w), FZ(z))(GW (u)− FW (w)))

where the last equality follows from the linearity of ν ′.

Proof of Theorem 5. First, note that whenever the distribution of W is not degen-

erate, i.e. FW (0) ∈ (0, 1), we have that C1(FW (0), ·) ∈ S, where S is the set of all mul-

tivariate distribution functions with support RZ = {(FZ1(z1), . . . , FZd−1
(zd−1)) : z ∈ Z},

where Z denotes the support of X. For the case that the dimension of (W,Z) is equal

to two, i.e. d = 2, this follows from Theorem 2.2.7 in Nelsen (2006). The extension of his

result to the general multivariate case is immediate.

Next, let T = {T : T (z) = s(FZ1(z1), . . . , FZd−1
(zd−1)), s ∈ S}. Note that it follows

from the properties of S that T is the set of all distribution functions with support Z.

It then follows directly that

inf
z∈Z

gν(z) ≤ sup
T∈T

∫
gν(z)dT (z) ≤ sup

z∈Z
gν(z).

Since T is the set of all distribution functions with support Z, these bounds are sharp.
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B. Additional Definitions

In this section, we give the precise definition of three important concepts, which are

omitted from the main body of the paper for brevity: the distributional features covered

by Theorem 3, the notion of a compressed and dispersed distribution necessary to state

the bounds in Theorem 3(ii)–(iii), and that of Hadamard differentiability.

Definition 2 (Distributional Features (Stoye, 2010)). Consider a functional ν : F → R.

i) ν is a D1-parameter if it increases with first-order stochastic dominance, i.e F �1 G

implies that ν(F ) ≥ ν(G).

ii) ν is a D2-parameter if it increases with second-order stochastic dominance for any

two distributions that have the same mean, i.e. µ(F ) = µ(G) and F �2 G implies

ν(F ) ≥ ν(G).

iii) ν is an (α, β)-quantile contrast if ν(F ) = g(F−1(α), F−1(β)) for α ≤ β and a known

function g : R2 → R that is non-increasing in the first and non-decreasing in the

second argument.

Definition 3 (Compressed and Dispersed Distributions (Stoye, 2010)). The distribution

function FC(·) = FC(·|a, FU , FL) is called compressed relative to two other distribution

FL and FU with threshold value a ∈ R if

FC(y) =

F
U(y), y < a

FL(y), y ≥ a.

The distribution function FD(·) = FD(·|a, FU , FL) is called dispersed relative to two other

distributions FL and FU with threshold value a ∈ [0, 1] if

FD(y) =


FL(y), y < QL(a)

a, QL(a) ≤ y < QU(a)

FU(y), y ≥ QU(a).

Definition 4 (Hadamard Differentiability (Van der Vaart, 2000)). The functional ν :

F → R is called Hadamard differentiable at F if there exists a continuous map ν ′F : F →
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R such that ∣∣∣∣ν(F + tht)− ν(F )

t
− ν ′F (h)

∣∣∣∣→ 0

as t → 0, for every ht → h such that F + tht is contained in the domain of ν for all

values of t sufficiently close to zero.

C. Asymptotic Theory for Fixed Partial Policy Effect

Estimators

In this section, we investigate the asymptotic properties of the estimators proposed in

Section 4.1. For our asymptotic analysis, we adapt arguments used in Chernozhukov et al.

(2009a) or Rothe (2010) for estimators of distributional policy effects corresponding to

changes in the entire covariate distribution. We show that under point identification our

estimate of the counterfactual outcome CDF converges to a Gaussian process. Normal-

ity of sufficiently smooth population parameters then follows from the functional delta

method. A similar approach is used to establish joint asymptotic normality for the es-

timates of the upper and lower bounds of the various identified sets. Such results can

be used to construct asymptotically valid confidence regions for the objects of interest.

In order to account for both nonparametric and parametric estimates of the conditional

CDF FY |X , we conduct our analysis under general “high-level” assumptions, that can be

verified for a wide range of estimation procedures under standard regularity conditions.

The assumptions are stated in such a way that the respective theorems follow by straight-

forward arguments, using the Donsker Theorem, the Functional Delta Method and the

Continuous Mapping Theorem (Van der Vaart, 2000). We thus omit all proofs.

A word on notation: we denote the support of Y , W , Z, X and W ∗ by Y , W , Z, X

and W∗, respectively. The space `∞(A) is the space of all uniformly bounded functions

mapping from A to R, equipped with the metric induced by the supremum norm. We

also write “
d→” to denote convergence in distribution of a sequence of random variables,

and “⇒” to denote weak convergence of a sequence of random functions.

C.1. Estimators under Point Identification. To avoid notational complications,

we assume that both FW and H are continuous and strictly increasing. We derive our
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results under the following high-level conditions.

Assumption 1. (i) Let GH
Y (y) =

∫
FY |X(y,H−1(FW (w)), z)dFX(w, z), where we write

FY |X(y, w, z) =
√
n(F̂Y |X(y, w, z) − FY |X(y, w, z)), and define the processes FY (y) =

√
n(F̂Y (y) − FY (y)), FX(w, z) =

√
n(F̂X(w, z) − FX(w, z)), FW (w) =

√
n(F̂W (w) −

FW (w)), and Q∗W (τ) =
√
n(Ĥ−1(τ)−H−1(τ)). Then

(GH
Y ,FY ,FX ,FW ,Q

∗
W )⇒ (GH

Y ,FY ,FX ,FW ,
√
λQ∗W )

in the space `∞(Y)× `∞(Y)× `∞(X )× `∞(W)× `∞([0, 1]), where the right hand side is a

mean zero Gaussian process. (ii) The function class {(w, z) 7→ FY |X(y,H−1(FW (w)), z), y ∈

R} is FX-Donsker. (iii) The partial derivative ∂wFY |X(y, w, z) exists for all (y, w, x) ∈

Y×W×X and is uniformly bounded. (iv) sup(y,w,x) |∂wF̂Y |X(y, w, z)−∂wFY |X(y, w, z)| =

op(1).

The first part of Assumption 1 can e.g. be verified using results in Chernozhukov et al.

(2009a), who establish convergence in distribution of F̂Y |X to a Gaussian process for a

variety of different CDF estimators involving certain parametric restrictions. The condi-

tion then follows directly from the continuous mapping theorem, and the fact that the

2nd–5th component of the process are just empirical CDFs and quantile functions in our

case. Assumption 1(i) can also be verified by direct arguments if F̂Y |X is a nonparametric

estimator converging at a rate slower than n−1/2 to a limit process which is not tight.

For example, Rothe (2010) proves such a condition for a kernel-based estimator of the

conditional CDF, using the theory of U-processes. We conjecture that the assumption

could also be verified for other nonparametric estimators, such as e.g. those based on

sieves or orthogonal series. Assumption 1(ii) is a weak regularity condition fulfilled by

various classes of functions (e.g. Van der Vaart, 2000, Chapter 19). Finally, Assump-

tion 1(iii)-(iv) are weak smoothness conditions on the estimated CDF and its population

counterpart.

Theorem 6. Suppose that Assumption 1 holds. Then the process FH
Y =

√
n(F̂H

Y − FH
Y )

converges weakly to the following mean zero Gaussian process:

FH
Y ⇒ FHY,A + FHY,B + FHY,C =: FHY
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where

FHY,A(y) =

∫
FY |X(y,H−1(FW (w)), z)dFX(w, z),

FHY,B(y) =

∫
FY |X(y,H−1(FW (w)), z)dFX(w, z),

FHY,C(y) =

∫
∂wFY |X(y,H−1(FW (u)), z)

×
(
∂τH

−1(FW (u))FW (u) +
√
λQ∗W (FW (u))

)
dFX(u, z),

and the convergence is in `∞(Y).

Corollary 1. Suppose that the conditions of Theorem 6 hold, and that the functional ν :

F → G is Hadamard differentiable at FH
Y and FY with derivative ν ′H and ν ′, respectively.

Then

√
n(α̂(ν,W,H)− α(ν,W,H))

d→ ν ′H(FHY )− ν ′(FY ),

where the right-hand side is a Normal distribution with mean zero.

C.2. Bounds on Linear Functionals. In this subsection, we assume that both W

and W ∗ are discretely distributed, ruling out the mixed discrete-continuous case to avoid

notational complications. We make the following assumptions.

Assumption 2. (i) Using the notation introduced in Assumption 1, and defining GH
Y,s =∫

FY |X(y, Ssν(w, z), z)dFX(w, z) for s ∈ {U,L}, we have that

(GH
Y,U ,G

H
Y,L,FY ,FX)⇒ (GH

Y,U ,GH
Y,L,FY ,FX)

in the space `∞(Y)× `∞(Y)× `∞(Y)× `∞(X ), and the right hand side is given by a mean

zero Gaussian process. (ii) The function class {(w, z) 7→ FY |X(y, Ssν(w, z), z), y ∈ R, s ∈

{U,L}} is FX-Donsker. (iii) Pr(Ŝsν(W,Z) = Ssν(W,Z))→ 1 as n→∞ for s ∈ {U,L}.

Assumption 2 (i)–(ii) is similar to Assumption 1 (i)–(ii) but otherwise analogous, and

hence the same comments apply. Assumption 2 (iii) naturally holds in our setting, since

W ∗ is discrete and the rank allocator variables are estimated consistently. To see this,

note that for the empirical quantile function of a discrete random variable it holds that

Pr(Q̂∗W (τ) = Q∗W (τ))→ 1 as n→∞ for all τ except those in a set of measure zero.
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Theorem 7. Suppose that Assumption 2 holds, and that ν is linear. Then the terms

Ns =
√
n(α̂s(ν,W,H) − αs(ν,W,H)), s ∈ {U,L}, jointly converge in distribution to a

Normal distribution with mean zero:

√
n(NL,NU)

d→ (ν(FL − FY ), ν(FU − FY ))

where Fs = FsA + FsB, s ∈ {U,L} is a mean zero Gaussian process with

FsA(y) =

∫
FY |X(y, Ssν(w, z), z)dFX(w, z),

FsB(y) =

∫
FY |X(y, Ssν(w, z), z)dFX(w, z),

and the convergence is in `∞(Y).

C.3. Bounds on Smooth Functionals. To obtain asymptotic properties for the

estimated boundaries of the identified set based on the result in Theorem 3, we maintain

the assumption that W and W ∗ are discretely distributed. We also maintain the first

part of Assumption 2, modifying the remainder as follows.

Assumption 3. (i) Using the notation introduced in Assumption 1, and defining GH
Y,s =∫

FY |X(y, Ssy(w, z), z)dFX(w, z) for s ∈ {U,L}, we have that

(GH
Y,U ,G

H
Y,L,FY ,FX)⇒ (GH

Y,U ,GH
Y,L,FY ,FX)

in the space `∞(Y)× `∞(Y)× `∞(Y)× `∞(X ), and the right hand side is given by a mean

zero Gaussian process. (ii) The function class {(w, z) 7→ FY |X(y, Ssy(w, z), z), y ∈ R, s ∈

{U,L}} is FX-Donsker. (iii) Pr(Ŝsy(W,Z) = Ssy(W,Z) for all y ∈ Y)→ 1 as n→∞ for

s ∈ {U,L}.

Assumption 3 only constitutes a minor modification of Assumption 2, adjusting for

the fact that the rank allocator variable used to construct the upper and lower bounding

functions varies with the point of evaluation.

Theorem 8. Suppose that Assumption 3 holds. Then the processes Gs =
√
n(Ĝs − Gs)

converge weakly to mean zero Gaussian processes, jointly over s ∈ {U,L}:

Gs ⇒ Gs
A + Gs

B =: Gs, s ∈ {U,L},
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where

Gs
A(y) =

∫
FY |X(y, Ssy(w, z), z)dFX(w, z)

Gs
B(y) =

∫
FY |X(y, Ssy(w, z), z)dFX(w, z)

and the convergence is in `∞(Y).

To use this result to derive asymptotic properties of the estimated boundaries of the

identified set, we introduce the following assumption concerning the smoothness of the

population parameter of interest with respect to the underlying distribution.

Assumption 4. (i) The functional ν : F → R is Hadamard differentiable at FH
Y and

FY with derivative ν ′H and ν ′, respectively. (ii) Let a∗C = a∗C(µ̄, GU , GL) and a∗D =

a∗D(µ̄, GU , GL) be threshold values yielding a compressed or dispersed distribution rela-

tive to GU and GL with mean µ̄, respectively. That is,∫
ydFC(y|a∗C , GU , GL) = µ̄ and

∫
ydFD(y|a∗D, GU , GL) = µ̄.

Then the map (F1, F2) 7→ T sµ̄(F1, F2) = ν(F s(·|a∗s(µ̄, F1, F2), F1, F2)) is Hadamard differ-

entiable at (GL, GU) with derivative T sµ̄
′(F1, F2) for s ∈ {C,D}.

Assumption 4(i) can be verified for most common distributional features of inter-

est under standard regularity condition, e.g. moments, quantiles, or the Gini coefficient

(Rothe, 2010). Assumption 4(ii) is necessary to analyze the estimated bounds on D2-

parameters, since e.g. the mapping that transforms two CDFs into a compressed distri-

bution with a particular mean is not Hadamard differentiable due to the discontinuity at

the threshold value. A sufficient condition for Assumption 4(ii) is that Assumption 4(i)

holds, that GU and GL are continuous, and that for a compressed or dispersed dis-

tribution F the parameter ν(F ) does not depend on the value of F at the threshold

value. Using the notation that SC(y|a, f1, f2) = f1(y)I{y < a} + f2(y)I{y ≥ a} and

SD(y|a, f1, f2) = f2(y)I{y < f−1
2 (a)} + aI{f−1

2 (a) ≤ y < f−1
1 (a)} + f1(y)I{y ≥ f−1

1 (a)},

we can now state the final corollary, which follows directly from Theorem 8 and the

Functional Delta Method.

Corollary 2. Suppose that Assumption 4(i) and the conditions of Theorem 8 hold. Then

the terms Ns =
√
n(α̂s(ν,W,H)− αs(ν,W,H)), s ∈ {U,L}, jointly converge in distribu-

tion to a Normal distribution with mean zero:
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i) If ν is a D1-parameter, then

√
n(NL,NU)

d→ (ν ′H(GL)− ν ′(FY ), ν ′H(GU)− ν ′(FY )).

ii) If ν is a quantile contrast, then

√
n(NL,NU)

d→ (ν ′H(SC(·|m̄,GU ,GL))− ν ′(FY ), ν ′H(SD(·|γ,GU ,GL))− ν ′(FY )).

iii) If ν is a D2-parameter and Assumption 4(ii) holds, then

√
n(NL,NU)

d→ (TCµ̄
′
(GU ,GL)− ν ′(FY ), TDµ̄

′
(GU ,GL)− ν ′(FY )).

In each case, the right-hand side is a bivariate Normal distribution with mean zero.

C.4. Inference. Our results in the previous subsections imply that under general

conditions our objects of interest are asymptotically normal. Under point identification,

this insight can be used to construct confidence intervals for identified features in the

usual fashion. Under partial identification, our results imply that confidence regions for

the various identified sets can be formed by computing one-sided confidence regions for its

upper and lower boundaries. This can be done in the same way as in the point identified

case. If the interest is in obtaining a confidence region for the population parameter of

interest, as opposed to the identified set, this can be accomplished by using the general

results on inference for interval-identified parameters in Imbens and Manski (2004) and

Stoye (2009).

In both cases, the major complication is that the covariance function of the limiting

Gaussian distributions can be quite complicated to compute directly. However, it fol-

lows from results in Chernozhukov et al. (2009a) or Rothe (2010) that under both point

identification and partial identification an ordinary bootstrap procedure can be used to

approximate the various limiting distributions of the previous subsection in finite samples.

This result can be shown to hold for parametric and nonparametric estimation procedures

of the conditional CDF FY |X , and thus provides a straightforward and tractable way to

conduct inference in empirical applications.

We also remark that our results in the previous subsections immediately generalize to

function-valued population parameters, allowing researchers to conduct uniform inference
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on the counterfactual outcome distribution under essentially the same conditions. That

is, it is not only possible to compute confidence intervals for a real-valued population

parameter, but also to compute uniform confidence regions for function valued parame-

ters, such as the CDF itself, or the corresponding quantile process. This is an important

feature of our results, as it allows applied researchers to test hypotheses that cannot be

adequately addressed by considering only a fixed number of isolated points. An example

would be an hypothesis such as “The change in the marginal distribution of W to that

of W ∗ did not affect the outcome distribution”.

D. Asymptotic Theory for Marginal Partial Policy Effect

Estimators

In this section, we describe some of the details about how to construct estimates of our

Marginal Partial Policy Effects, and how to derive their theoretical properties. We focus

on the partially identified case of a binary covariate, since under point identification

such results follow from standard arguments. In particular, when W is continuous a

nonparametric sample analogue estimator based on the identification result in Theorem 4

would be very similar to an average derivative estimator, which can e.g. be analyzed using

results in Newey (1994). See also Firpo et al. (2009) for a similar analysis.

As one can see from Theorem 5, the identified set of the MPPE in case of a binary

covariate is restricted by the extrema of the “bound generating function” z 7→ gν(z). The

problem thus falls into the general class of models with partially identified parameters

restricted by intersection bounds. A general theory for estimation and inference in this

setting is provided by Chernozhukov et al. (2009b), henceforth abbreviated CLR. Our

paper does not contain new insights on this issue. In the following, we simply show how

to apply their main results to our context.

The basic idea of CLR is to add suitable precision-correction terms to a standard

estimate of the bound generating function gν before applying the maximum or minimum

operator. To explain this in detail, we first have to introduce some notation.9 For any

9Note that our notation slightly differs from the one in CLR since in their paper the upper bound

of the identified set is given by the infimum of the bound generating function, whereas in our case it

is given by its supremum. One could simply transfer our notation back into theirs by considering the
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p ∈ (0, 1), we define

β̂U(ν,W,Ht; p) = max
z∈ẐU

[ĝν(z)− kps(z)] and β̂L(ν,W,Ht; p) = min
z∈ẐL

[ĝν(z) + kps(z)].

Here ĝν(x) is an estimate of the bound generating function gν(x), which can be fully

nonparametric or impose parametric restrictions, s(x) is the corresponding standard error,

the critical value kp is an estimate of the p-quantile of the maximum of the stochastic

process

Zn(z) :=

(
ĝν(z)− gν(z)

s(z)

)
,

and the sets ẐU and ẐL are both (random) subsets of the support of Z that contain the

points where the maximum and minimum is achieved with probability tending to one,

respectively. Specifically, CLR recommend to set

ẐU = {z ∈ Z : ĝν(z) ≥ max
z∈Z

ĝν(z)− 2
√

log(n) sup
z∈Z

s(z)}

ẐL = {z ∈ Z : ĝν(z) ≤ min
z∈Z

ĝν(z) + 2
√

log(n) sup
z∈Z

s(z)}.

The specific choices of ĝν , s and kp (and thus also those of ẐU and ẐL) depend on the

Hadamard derivative of the functional ν, and are explicitly described below for the case

of the mean and the quantile functional. Finally, define the interval B̂W (ν, p) as

B̂W (ν, p) = [β̂L(ν,W,Ht; p), β̂
U(ν,W,Ht; p)].

With this notation, the estimate of the identified set of the FPPE is then given by

B̂W (ν; 1/2). In particular, using the choices described below, Theorem 1 in CLR implies

that β̂UW (ν; 1/2) is a consistent and asymptotically median unbiased estimate of the upper

bound βU(ν,W,Ht) of the identified set, in the sense that

Pr(βU(ν,W,Ht) ≤ β̂U(ν,W,Ht; 1/2) = 1/2 + o(1).

An analogous result applies for the lower bound. It is furthermore possible to con-

struct two-sided confidence intervals for the true parameter value as follows: Let ∆+
n =

negative version of the bound generating function
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∆nI{∆n > 0}, where ∆n = β̂UW (ν; 1/2) − β̂LW (ν; 1/2), and p̂n = Φ(τn∆+
n )c, where Φ(·) is

the standard normal CDF and

τn = log(n)/max[β̂U(ν,W,Ht; 3/4)−β̂U(ν,W,Ht; 1/4), β̂L(ν,W,Ht; 3/4)−β̂L(ν,W,Ht; 1/4)].

Then B̂W (ν; p̂n) provides an asymptotic 1 − c confidence interval for the parameter of

interest, such that

inf
β∈BW (ν)

Pr(β ∈ B̂W (ν; p̂n)) ≥ 1− c+ o(1).

These confidence intervals are thus valid uniformly with respect to the location of the

true parameter value β(ν,W,Ht) within the bounds. This follows from Theorem 3 in

CLR.

We now illustrate the choice of ĝν and s for the case that the functional ν maps a

CDF into either its mean or one of its quantiles. Given these choices, CLR describe how

to obtain the critical value kp via simulation methods or an analytical formula. We refer

to their Appendix C for a detailed description of the practical implementation.

We start by considering the case where the functional of interest is the mean functional

µ : F 7→
∫
ydF (y). Since µ is linear, it is also Hadamard differentiable, with the derivative

being equal to µ itself. It follows that the function gµ is given by

gµ(z) = E(Y |W = 1, Z = z)− E(Y |W = 0, Z = z).

This is simply the difference between two conditional expectations, which, depending

on the application, can be estimated by a variety of parametric, semiparametric and

nonparametric methods. The calculation of standard errors is also straightforward in

this case.

We now consider the case where the functional of interest is the quantile functional

νQ,τ : F 7→ inf{y ∈ R : F (y) ≥ τ} := Q(τ), which maps a CDF into the corresponding

τ -quantile. If FY is continuously differentiable in some open neighborhood of QY (τ), and

its derivative fY is strictly positive, it follows from Lemma 21.4 in Van der Vaart (2000)

that νQ,τ is Hadamard differentiable with derivative

ν ′Q,τ : φ 7→ −
(
φ

fY

)
◦QY .

34



In this case, the bound generating function gν simplifies to

gν(z) = −
FY |X(QY (τ)|1, z)− FY |X(QY (τ)|0, z)

fY (QY (τ))
,

which can be estimated by substituting sample analogues for all unknown quantities:

ĝν(z) = −
F̂Y |X(Q̂Y (τ)|1, z)− F̂Y |X(Q̂Y (τ)|0, z)

f̂Y (Q̂Y (τ))
.

Here Q̂Y is the empirical sample quantile function of the observed outcomes, and f̂Y is a

nonparametric kernel density estimator given by

f̂Y (y) =
1

n

n∑
i=1

Kh(Yi − y),

where Kh(·) = K(·/h)/h, K is a standard symmetric kernel function that integrates to

one, and h = h(n) is the bandwidth chosen such that as h→ 0 we have nh→∞. Finally,

the conditional distribution function FY |X can be estimated by either of the parametric

methods discussed in Chernozhukov et al. (2009a), e.g. by first estimating a linear quantile

regression model QY |X(τ, x) = x′β(τ), and then inverting the corresponding conditional

quantile function, or by a fully nonparametric CDF estimator, e.g. a kernel estimator as

in Rothe (2010).

The construction of appropriate standard errors depends on the choice of conditional

CDF estimator. When FY |X is estimated by fully nonparametric methods, its rate of

convergence is typically going to be slower than that of either Q̂Y and f̂Y , and hence the

sampling variation in the latter two quantities can be ignored. When FY |X is estimated

by parametric methods, such as the ones described in Chernozhukov et al. (2009a), it

converges at the same
√
n-rate as the quantile function Q̂Y , which is faster than the one-

dimensional nonparametric rate of the density estimator f̂Y . From an asymptotic point

of view, it would thus be valid to compute standard errors that only account for the

sampling variation in f̂Y . In practice, it can still be advisable to include “higher-order”

components into the standard errors, which account for the uncertainty in Q̂Y and FY |X .

Those can be obtained via the usual Delta method, and shown to satisfy the conditions

in CLR.
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