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In this paper we show that the double Pareto lognormal (DPLN) parameterization provides an 
excellent fit to the overall US city size distribution, regardless of whether “cities” are 
administratively defined Census places or economically defined area clusters. We then 
consider an economic model that combines scale-independent urban growth (Gibrat’s law) 
with endogenous city creation. City sizes converge to a DPLN distribution in this model, 
which is much better in line with the data than previous urban growth frameworks that predict 
a lognormal or a Pareto city size distribution (Zipf’s law). 
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1. Introduction

What is the most appropriate parameterization for the distribution of city sizes within a coun-
try? This question, which has important bearing for theories of urban growth, has attracted vast
attention ever since the seminal works by Auerbach (1913) and Zipf (1949).

Recently, two major contributions have been published which use different approaches of how
a “city” is defined to begin with. These papers come to divergent conclusions about which dis-
tribution provides an appropriate approximation of the data. Using administrative US “Census
places”, Eeckhout (2004) shows that the lognormal (LN) distribution closely fits the population
sizes of those cities. Rozenfeld et al. (2011), in contrast, use a bottom up approach of constructing
cities as “area clusters” from high resolution data on population density in the US. They find that
the LN poorly fits the size distribution across those cities. At the same time they find that the sizes
of clusters with at least 12,000 inhabitants closely follow a Pareto distribution with tail exponent
equal to minus one. That is, Rozenfeld et al. (2011) emphasize that the famous Zipf’s law holds
in the upper tail, but they do not suggest a parameterization for the overall size distribution across
all clusters. 1

Our aim in this paper is to provide a unifying view. We suggest a parameterization, the so-
called double Pareto lognormal (DPLN) distribution, that provides an excellent data fit to the
overall size distribution for both definitions of “cities”. The DPLN, which was initially developed
by Reed (2002), is characterized by a lognormal body and Paretian power laws in the tails so that
it can encapsulate Zipf’s law as an upper tail feature. Our findings can thus potentially resolve
several issues regarding city size distributions. First, our results are consistent with, but go beyond
those of Rozenfeld et al. (2011): the DPLN is a parameterization for the size distribution across
all area clusters that is fully consistent with the validity of Zipf’s law among the large clusters.
Second, this paper may reconcile a recent debate related to Eeckhout’s (2004, 2009) claim that
the sizes of Census places follow a LN distribution.2 Finally, our results suggest that the precise
definition of a “city” does not crucially affect the fundamentals of the size distribution, because
the data can be robustly approximated by the same functional form.

We then turn to the foundations of the DPLN and clarify the implications of our empirical
findings for theories of urban growth. As is well known from Gabaix (1999) and Eeckhout (2004),
both Zipf’s law and the LN have their origin in Gibrat’s law, which is a growth process where

1The traditional literature on city sizes has consistently found support for Zipf’s law in most countries and time
periods, see Soo (2005) or Nitsch (2004). That literature was, however, constrained to using truncated data sets on
city sizes above a certain threshold (e.g., metropolitan statistical areas in the US). Untruncated settlement size data
became available only recently, which then facilitated the focus on the features of the overall city size distribution.

2Some authors (e.g., Levy 2009; Ioannides and Skouras, 2009; Malevergne et al., 2011) have argued that the
large Census places actually tend to follow a Zipfian power law pattern that is only imperfectly captured by the LN
parameterization, even though the LN fits well outside the upper tail. The features of the DPLN are precisely in line
with that evidence. The debate between Levy (2009) and Eeckhout (2009) may thus be settled by the observation that
the sizes of Census places are best approximated by a DPLN rather than a LN distribution. Indeed, Giesen et al. (2010)
have shown that the DPLN performs significantly better than the LN in fitting the size distribution across Census
places, even after being penalized for having four instead of two parameters. The additional empirical contribution
of this paper is to show that the superior data fit of the DPLN remains robust when defining cities according to the
recently developed area clusters data, where the LN actually delivers a poor fit.
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cities grow randomly irrespective of their current size. In Eeckhout (2004) there is a fixed number
of equally old cities that are hit by random productivity shocks. The “pure” form of Gibrat’s law
holds in his model, and city sizes then converge to a LN distribution. Zipf’s law emerges instead
when an “impurity” is added to Gibrat’s law, and cities are prevented from becoming too small
by an arbitrary lower bound (Gabaix, 1999).3 Evidence shows, however, that neither of these
models is fully in line with the data, since neither the LN nor Zipf’s law provide a robust and close
approximation of the overall US city size distribution.

In this paper, we therefore consider an economic model of an urban system that is consistent
with the US evidence. The model extends the framework by Eeckhout (2004) and allows for
endogenous city creation, and thus for age heterogeneity across cities. We show that the optimal
number of cities grows at a constant rate in this model, namely the country’s population growth
rate, which in turn implies an exponential age distribution across cities. This together with pure
scale-independent urban growth resulting from random productivity shocks for existing cities leads
to DPLN distributed city sizes, which is what we observe in the data.4 Our main conclusion is,
hence, that the overall US city size distribution can be robustly matched by an urban growth
framework that combines Gibrat’s law with the realistic feature of a growing number of cities.

2. Data and parameterization

We utilize two different definitions of US “cities” in this paper: Census places and area clus-
ters. The former dataset refers to the year 2000 and includes administratively defined settlements
according to legal boundaries (“Census designated places”). It contains 25,359 cities covering
74% of the total US population. The sizes of the places range from one to about 8 million inhabi-
tants (New York City).5 Comparable data sets on the sizes of administratively defined settlements
(not subject to a threshold size) are by now available for many countries. This is a clear advantage.
However, a disadvantage is that the boundaries between those units are sometimes defined quite
arbitrarily. The second dataset has been constructed by (and is explained in detail in) Rozenfeld et
al. (2011). Here, cities are defined as area clusters by using an algorithm on high resolution data
on population densities in the US. We use their benchmark clusters with `=3 km, which leads to
23,499 cities covering about 96% of the US population in 2001 and range from one to about 16
million inhabitants (the New York cluster). The advantage of this data is that cities are defined as
genuine agglomerations ignoring administrative boundaries. A current disadvantage is that such
data is not (yet) available for many countries.

Figure 1 shows kernel density estimates (in logarithmic scale) of the city size distribution for
both definitions. The area clusters data is depicted by the solid, and the Census places by the
dashed black line. As can be seen, the mean size of area clusters is higher than for the Census
places, while the the variance is lower. Furthermore, the size distribution across area clusters

3This growth process considered in Gabaix (1999) also leads to Zipf’s law when the number of cities is growing
over time, as long as the city creation rate is not too large.

4We also consider an alternative assumption on the dynamics of city creation, but we find that the resulting city
size distribution does not come closer to reality than the DPLN (though it still outperforms the LN).

5More details can be found in the Geographic Areas Reference Manual available online under
http://www.census.gov/geo/www/garm.html.
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Figure 1: Kernel density estimates of US city sizes along with fitted distributions

has a thicker upper tail and a thinner lower tail than the size distribution across places. These
distributional features result from the fact that the clustering algorithm by Rozenfeld et al (2011)
tends to connect adjacent places into one agglomeration, i.e., the same area cluster.

The next step is to parameterize these city size distributions. We firstly fit the LN distribution
to the data by using maximum likelihood estimation (see Table 1 for the results). For the Census
places, Figure 1 corroborates Eeckhout’s finding: the LN indeed provides a good fit (see the red
dashed line). However, when using the area clusters (solid red line), the LN plainly fails to match
the data. Turning to Zipf’s law, it can be easily verified that it closely fits the data when focusing
only on large cities (in either definition).6 However, as is clear from Figure 1, a Pareto does
not hold outside the upper tail and, hence, it is not a useful parameterization for the overall city
size distribution. Our suggested functional form for the overall city size distribution is the DPLN
distribution which has the following density function for city sizes S :

f (S ) =
αβ

α + β

[
S β−1e

(
βµ+

β2σ2
2

)
Φc

(
ln(S ) − µ + βσ2

σ

)
+ S −α−1e

(
αµ+ α2σ2

2

)
Φ

(
ln(S ) − µ − ασ2

σ

)]
. (1)

Here, Φ is the cumulative and Φc the complementary-cumulative standard normal distribution.
The genesis of the DPLN is discussed in detail in the next section. For the moment, it suffices to
note some basic properties. It is a four-parameter distribution (α, β, µ and σ) featuring a lognormal
shape in the body and power laws in the tails. More specifically, if S → ∞ then f (S ) ∼ S −α−1, and

6We have verified the result by Rozenfeld et al. (2011). Using only area clusters that are larger than 12,000
inhabitants, a standard rank-size regression yields a highly significant tail exponent of 0.994 with a R2 level of 0.99.
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if S → 0 then f (S ) ∼ S β−1. The parameters α and β are thus the slope parameters of the Pareto
tails, while the parameters µ and σ pertain to the location and scale of the LN body. In logarithmic
scale, the DPLN can be skewed and its kurtosis can have positive or negative excess, i.e., it can be
more peaked (leptokurtic) or more flat (platykurtic) than the LN.

It is straightforward to estimate the parameters of the DPLN as given in (1) by maximum
likelihood (see Table 1 for the estimation results).7 We depict the fitted DPLN distributions in
Figure 1. The green solid line is for the area clusters, and the green dashed line is for the Census
places. As can be seen, the DPLN provides a very close fit to the empirical size distribution in both
cases. Certainly the DPLN does a better job than the LN. For the area clusters this is self-evident by
visual inspection. For the places, the performance difference is less pronounced. Still, the DPLN
fits clearly better than the LN, even when taking into account that there are two more parameters
that need to be estimated.8 Standard statistical specification tests convey the same message: the
LN is rejected much earlier than the DPLN.9 In sum, we thus conclude that regardless of whether
“cities” are defined administratively as Census places or economically as area clusters, the overall
size distribution is very closely matched by the DPLN parameterization.10

Data and estimated parameters

Area clusters Places
N 23,499 25,359
coverage 0.96 0.74
Min 1 1
Max 15,594,627 8,008,278

DPLN LN DPLN LN
α 1.659 - 1.221 -
β 1.830 - 2.821 -
µ 8.370 8.427 6.813 7.277
σ 0.155 0.911 1.514 1.753
AIC 450,996 458,347 469,430 469,550
BIC 451,028 458,363 469,463 469,566
ln(Li

j) 225493.9 229171.3 234711.2 234773.1

7We utilize the log-likelihood function and the corresponding starting values as proposed by Reed (2002).
8The better adjusted performance can be seen from the Akaike (AIC) and the Bayesian information criterion (BIC),

see Table 1. Further model selection tests are presented in Giesen et al. (2010), all of which indicate that the DPLN
outperforms the LN in fitting the size distribution across US Census places. There we also provide consistent evidence
for seven other countries, using comparable data sets on administratively defined settlements.

9We have performed Kolmogorov-Smirnov tests by drawing 1000 random samples of size 1000 from both datasets,
and for the two hypothesized parameterizations. Using the area cluster (places) data we obtain an average p-value of
0.34 (0.41) for the null that the data follows the DPLN. For the null that the data follows the LN we get a p-value
much below 0.001 for both datasets. We hence cannot reject the DPLN, while the LN is strongly rejected.

10Rozenfeld et al. (2011) also provide settlement size data for similarly defined area clusters in Great Britain. We
have worked with that data as well, and obtained the consistent result that the DPLN provides a very good data fit for
the British case while the LN fits poorly. Details are available upon request from the authors.
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Legend: N is the number of data points (cities), coverage is the percentage of the total US population represented
by the data set. Min and Max are the population size of the smallest and the largest settlement. Parameters are
estimated with maximum likelihood. ln(Li

j) is the absolute value for the log-likelihood of distribution j = LN; DPLN
for the respective dataset. The Akaike information criterion for dataset i and distribution j is computed as AICi

j =

2k j − 2ln(Li
j), and the Bayesian information criterion as BICi

j = k j · ln(N i) − 2ln(Li
j), with k j denoting the number of

parameters of distribution j. Both criteria favor the distribution j that yields the lower value.

3. Implications for theories of urban growth

In this section we suggest a random urban growth model that (asymptotically) implies DPLN
distributed city sizes. The model is along the lines of Eeckhout (2004) and Gabaix (1999), yet
with one important difference: It combines the pure Gibrat’s law with age heterogeneity across
cities, which results because cities are created at different points in time.

3.1. Background
Let S (i, t) be the population size of some city i where t indexes time, and let Ṡ (i, t)/S (i, t) =

ε(i, t), where Ṡ (i, t) refers to the time derivative. Here, ε(i, t) is the population growth rate of that
city between t and t + dt. Gibrat’s law states that the growth rate of a city is independent of its
current size. This is satisfied when ε(i, t) follows a geometric Brownian motion:

ε(i, t) = γ · dt + ς · dB(i, t), (2)

where γ > 0 is the drift and ς > 0 is the variability of this stochastic growth process.
Let T denote the city’s age, i.e., the time that has elapsed since that city was created. Assuming

that the initial size (in logarithmic scale) at the time of birth, ln S (i, 0), is drawn from a normal
distribution with mean s0 and variance σ2

0, it follows from the central limit theorem and standard
Itô calculus that the probability distribution for the (log) size of a city with age T is given by:

ln S (i,T ) ∼ N
(
s0 + µt(T ), σ2

0 + σ2
t (T )

)
, (3)

with
µt(T ) =

(
(γ − ς2/2) · T

)
and σ2

t (T ) = ς2 · T. (4)

Assuming that γ > ς2/2, expressions (3) and (4) thus show that older cities are larger on average,
since they had longer time to grow.

Turning to the country’s overall city size distribution in a given point in time, this is simply
a mixture of the size probability distributions of all cities that exist at that time. Suppose for the
moment that all cities have the same age T = T̄ and the same initial size s0. In that case, it is easy
to see from (3) and (4) that all city-specific size probability distributions are LN with the same
parameters s0 + µt(T̄ ) and σ2

t (T̄ ). The overall city size distribution that results from a mixture of
these identical distributions is then itself also LN with parameters s0 +µt(T̄ ) and σ2

t (T̄ ). In general,
however, the overall city size distribution is not a LN but a mixture of different city-specific LNs
with parameters dependent on the city’s age. Put differently, an urban system where the pure
Gibrat’s law holds only converges to a LN city size distribution if all cities have the same age.
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To account for age heterogeneity, assume that the mixing parameter T is exponentially dis-
tributed across cities with shape parameter λ. Under this assumption, the resulting city size distri-
bution f (S ) at a given point in time is the Riemann-Stieltjes integral of the LN with respect to the
exponential distribution:

f (S ) =

∫
LN

(
S ; µt(T ), σ2

t (T )
)

d exp(T ; λ). (5)

As is shown by Reed (2002, 2003), the DPLN as given in (1) is the closed form solution for this
density function (see the appendix for more details).

The foundation of the DPLN is, hence, a model with random (scale-independent) urban growth
and an exponential age distribution across cities. Such an age distribution, in which there are more
young than old cities, arises dynamically if the mass (the “number”) of cities is increasing at a
constant rate λ over time. Initial city sizes are drawn from a common LN distribution, and after its
creation, each city then grows stochastically according to (2). It can be shown (see the appendix)
that the slope parameters of the DPLN (α and β) are increasing in λ, so that the city size distribution
has fatter tails the lower λ is. Intuitively, if λ is very low, the upper tail of the size distribution is
dominated by some very old cities which tend to be very large. Vice versa, the higher λ is, the
thinner is the upper tail of the DPLN since the age heterogeneity is lower and there are more young
cities. In the limit with λ→ ∞, all cities have the same age and the DPLN degenerates to a LN.11

It is also possible to consider alternative assumptions on the dynamics of city creation and,
hence, on the age distribution across cities. Suppose, for example, that the number of cities is
growing over time but at a decreasing rate. In that case, there are more old than young cities. In the
appendix, we show the resulting approximate city size distribution for this alternative assumption
on the distribution of the mixing parameter T . As it turns out, that distribution performs better than
the LN but worse than the DPLN when fitted to US data (both for places and area clusters). In other
words, the worst empirical performance is delivered by a random urban growth model without age
heterogeneity across cities (the LN). Models that allow for city creation and age heterogeneity
perform better, and the DPLN is not outperformed by the alternative model.12

3.2. An economic model of random urban growth and endogenous city creation
Our aim in this subsection is to describe an economic model that introduces endogenous

city creation and age heterogeneity across cities into an urban growth framework where the pure
Gibrat’s law holds. The model is an extension of Eeckhout (2004) and is analyzed in further detail
in Giesen (2012). In this short paper we focus on the main economic mechanisms and results.

Consider an economy with a total population size of S (t) infinitely lived agents that is growing
at the exogenous rate gS > 0. The economy consists of a continuum of N(t) locations/cities at
time t. Firms produce a perfectly tradeable commodity using labor only, and operate under perfect
competition. The wage w(i, t) is equal to the marginal product of labor in location i and time t
and depends positively on the city’s overall productivity A(i, t) and population size S (i, t). With

11The model by Eeckhout (2004) corresponds to this knife-edge case since all cities have the same age.
12One could consider yet other distributions of T , but closed form solutions for the resulting density function of

city sizes are then often not attainable.
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respect to productivity, we assume a Brownian motion Ȧ(i, t)/A(i, t) = εA(i, t) where εA(i, t) =

gA · dt + ςA · dB(i, t). That is, locations are hit by idiosyncratic and permanent i.i.d. shocks
with positive drift gA ≥ 0 and variability ςA, so that A(i, t) reflects the history of productivity
shocks in city i up to time t. The positive effect of S (i, t) on w(i, t) represents a positive localized
externality: The wage is higher in larger cities because of agglomeration effects such as knowledge
spillovers. Finally, within each city, agents consume land and have to commute to work, thereby
losing effective working time. This represents a competing negative localized externality: land
prices are higher and more time is lost for commuting in larger cities.

Overall, it is assumed that the utility of a city resident in city i at time t, V(i, t), is decreasing in
S (i, t) because the negative external effect dominates the positive one. Considering the particular
functional forms for the localized externalities as used by Eeckhout (2004), indirect utility can be
written as V(i, t) = Φ

(
A(i, t) · S (i, t)−Θ

)α
, where {α,Θ,Φ} are parameters that are the same across

cities and time.13 Workers are freely mobile so that indirect utility is equalized across cities. Using
the property that V(i, t) = V( j, t) for all cities i and j and at each point in time, it can be shown that
the indirect utility level in the spatial equilibrium satisfies (see Giesen, 2012):

V∗(t) = Φ
(
A(t) · S (t)−Θ

)α
, where A(t) =

(∫ N(t)

i=0
A(i, t)1/Θ

)Θ

di (6)

The equilibrium size of a single city then reflects its relative productivity level, S (i, t)∗/S (t) =

(A(i, t)/A(t))1/Θ, and it immediately follows from this relationship that Gibrat’s law holds since
A(i, t) evolves randomly around the common trend gA. Furthermore, it follows from (6) that V(t)∗

is decreasing in S (t). If more workers have to be fitted into a fixed set of cities, city sizes would
rise proportionally and all individuals end up worse off because of the prevalent negative localized
externality. In other words, since the population grows at the rate gS > 0 welfare would decrease
over time, ceteris paribus. Vice versa, V(t)∗ is increasing in A(t). Expected productivity growth gA

thus raises welfare over time, ceteris paribus, since it increases wages everywhere.
Now consider the creation of new cities. In particular, we assume that there is a large amount of

featureless land where cities can be formed by a social planner.14 Let x(t) denote the mass of newly
created cities between t and t+dt, so that N(t̄) =

∫ t̄

t=0
x(t)dt is the total mass of cities existing at time

t̄. The formation of every new city imposes sunk resource costs F for developing infrastructure, the
housing stock, and so on, that are borne by the currently alive population. Whenever the planner
creates a new city, its initial productivity is drawn from a common LN distribution with mean A0

and variance σ2
A0.15 Afterwards, productivity in those new cities evolves just as in any other city,

i.e., according to the Brownian motion with positive drift described above.

13Our parameter Θ > 0 refers to |Θ| in Eeckhout (2004), and our Φ > 0 refers to ααHβ(1 − α − β)(1−α−β), where α
and β are parameters of the utility function.

14If there were decentralized city creation by the workers, this would lead to the well-known coordination failures
analyzed by Henderson (1974). Those externalities are not the focus of our paper. We therefore consider a social
planner who chooses the efficient number of cities. Since workers are identical and freely mobile across space, the
resulting spatial equilibrium allocation is also efficient.

15We could allow this distribution of initial productivity draws to be time-varying without affecting our main result
that cities are created at a constant rate.
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At the time of creation, a new city is initially empty and, hence, offers very high utility. There is
inflow of population from the other cities until a new spatial equilibrium is reached. This induced
inflow is stronger, the higher is the realization of Ai,0. That is, the initial city size S i,0 reflects
the initial productivity draw. The country’s normed productivity A(t) and equilibrium utility V(t)
increase, since a new productive site has opened up and the population can spread across more
cities. Specifically, using (6) equilibrium utility can be rewritten as V(t)∗ = Φ ·Ω(t)αΘ where

Ω(t) =

∫ N(t)

i=0
A(i, t)1/Θdi

S (t)
. (7)

This state variable evolves according to

Ω̇(t) =

(
(1 + gA)1/Θ

1 + gS
− 1

)
Ω(t) +

x(t) · A1/Θ
0

S (t)
. (8)

The first term in (8) entails the exogenous growth rate of the (transformed) equilibrium utility for
a fixed set of cities, which is increasing in gA and decreasing in gS . The (positive) second term is
the expected benefit from developing new cities.

The planner chooses the time-path of city creation x(t) in order to maximize overall welfare,
taking into account the real resource costs of city creation. The present-value Hamiltonian of this
dynamic problem can be written as follows,

max H(t) = e−(ρ−gS )·t
(
V(t)∗ −

x(t) · χF
S (t)

)
+ λ(t) · Ω̇(t), (9)

where ρ > gS > 0 is the time discount rate, χ is the marginal utility of income that is assumed
fixed, and λ(t) is the costate variable. The planner maximizes (9) subject to the transition equation
(8) and x(t) ≥ 0. This is a standard optimal control problem reminiscent of problems where a
social planner invests into a stock of public capital. It can be shown that the planner chooses the
time path of city creation so as to smooth utility over time. It becomes V∗ = Φ ·Ω∗ α φ1 , where

Ω∗ =

αΘΦ · A1/Θ
0

χF
·

1 + gS

(1 + ρ − gS )(1 + gS ) − (1 + gA)1/Θ


1

1−αΘ

(10)

The time path of city creation is then given by

x∗(t) = egS ·t ·

(1 − (1 + gA)1/Θ

1 + gS

)
·

S 0

A1/Θ
0

 ·Ω∗ (11)

The condition x(t) ≥ 0 requires that (1 + gA)1/Θ < (1 + gS ), i.e., population growth must be
sufficiently strong relative to exogenous productivity growth. It then follows from (10) and (11)
that the mass of created cities is higher at every point in time the higher is gA and the lower is
F. Most importantly, it follows from (11) that x̂ = ẋ(t)/x(t) = gS . In other words, the mass
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of newly created cities increases at a constant rate over time, namely the population growth rate.
Productivity growth gA positively affects the level of city creation, but not its growth rate.

When the mass of new born cities increases at a constant rate, so does the total number of cities.
Specifically, we have N̂ = Ṅ(t)/N(t) = x(t)/N(t) which becomes N̂ = egS t

egS t−1 · gS and thus (quickly)
converges to gS . With this, we thus have a framework where: i) the number of cities grows at a
constant rate over time, ii) initial sizes of newly born cities follow a LN distribution, reflecting
the initial productivities of those new cities, and iii) growth among existing cities obeys the pure
Gibrat’s law as they are hit by idiosyncratic productivity shocks. As described in the previous sub-
section, the overall city size distribution thus asymptotically follows the DPLN parameterization,
as it is a mixture of city-specific LN size probability distributions where the mixing parameter T
(the city age) is exponentially distributed.

3.3. Discussion
The key difference between the baseline model by Eeckhout (2004) and the above extension

is that the number of cities grows at a constant rate in our approach, while Eeckhout considers a
fixed number of equally old cities. Empirical evidence on the evolution of the number of cities in
a country is still scant, particularly when small settlements ought to be included in the analysis.
However, it seems fair to say that city creation is a realistic assumption at least over the longer
course of history. Henderson and Wang (2007) report, for example, that the worldwide number
of cities with more than 100,000 inhabitants increased from 1220 to 2684 between the years 1960
and 2000. Another well-known dataset that traces cities over a very long time period is due to
Bairoch (1988), who shows that the number of European cities (except Russia) with more than
20,000 inhabitants increased from 39 to 130 between the years 1000 and 1760. These datasets are
not perfectly suited for our purpose, because they only include cities that are larger than a certain
threshold. We therefore do not know the cities’ actual creation date, but only when they have
crossed the threshold. Still, those datasets clearly suggest that the number of cities is not fixed but
growing over time, which in turn implies that cities in reality differ by age. As for the universe of
US settlements, there is consistent evidence that their number has increased. Gonzáles-Val (2010)
reports that the number of US Census places has risen from slightly more than 10,000 in the year
1900 to about 20,000 in the year 2000.

If evidence suggests that the number of cities has indeed increased, what still might seem
empirically implausible is the constant growth rate over time. In the model presented above, the
planner chooses constant growth in the number of cities in order to smooth utility in the light
of constant growth of population and productivity. With a bit more informal approach, it is also
possible to consider different dynamics of city creation without crucially affecting our main results
for the resulting city size distribution. First, we may consider a scenario where the number of cities
first grows exponentially in an early phase of history (say, for t < T̂ ), but city creation then stops
at t = T̂ and the number of cities stays fixed afterwards. Such a scenario may roughly match
the experience of some mature European countries where settlement creation activity was strong
in former times but rather low recently. The city age distribution in that modified model is still
a (shifted) exponential, however, and the previously described mixing of the city-specific size
probability distributions works analogously as in the baseline case. City sizes thus still converge
to a DPLN distribution. Second, as discussed above, we may also consider entirely different
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dynamics, e.g., a case where the number of cities is growing at a decreasing rate over time (see
appendix). The implied city size distribution is still closer to the US data than the LN, but there is
no evidence that this alternative model leads to an improved data fit relative to the DPLN.

Finally, notice that many other urban models also consider exponential growth in the number
of cities. For example, Gabaix (1999) analyzes an extension of his framework where cities are
exogenously created at a constant rate and then grow according to the “impure” Gibrat’s law
subject to a lower bound. City sizes adhere to Zipf’s law in that case, and Gabaix shows that the
upper tail of the size distribution is dominated by old cities. Our model is similar in that respect.
We, however, explicitly consider endogenous city creation and we do not impose a lower bound for
city sizes. This then leads to DPLN distributed city sizes, which is fully consistent with a Zipfian
Pareto shape for the sizes of the large cities. Another important urban model with endogenous city
creation is due to Rossi-Hansberg and Wright (2007). In their model, cities specialize in particular
industries and productivity shocks are industry- rather than city-specific. They allow for both city
creation and destruction, and show that this adjustment at the extensive margin allows reconciling
increasing returns at the local level with constant returns (balanced growth) at the aggregate level.
In contrast to our approach, they also focus on the upper tail of the size distribution and on the
Zipfian power law among large cities.

4. Conclusions

In this paper we have shown that the DPLN distribution provides an excellent fit to the US city
size distribution, regardless of whether cities are economically or administratively defined. The
key feature of the DPLN is age heterogeneity across cities resulting from the fact that cities are
created at different points in time. Once this feature is taken into account, the DPLN is the natural
outcome of an otherwise standard scale-independent urban growth process.

The DPLN is useful as it can settle several controversies on city size distributions. First,
there is a discussion how a “city” should be defined. Our results suggest that this may be a
second-order problem, at least when it comes to the size distribution, because the same functional
form closely approximates the data both for Census places and area clusters. Second, even if one
agrees on a particular definition, there is still a lively debate about the parameterization of the
city size distribution, and especially about the relationship of Zipf’s law and the LN distribution.
In particular, several authors have noticed that the sizes of large cities follow a distinctive power
law pattern that is not too well captured by the LN. Outside the upper tail, however, Zipf’s law
breaks down and the LN starts to fit well (see, e.g., Levy 2009). With the DPLN parameterization
this controversy can be resolved, because it combines a lognormal body with a power law (Zipf’s
law) in the upper tail. Third, the DPLN is not an ad-hoc functional form that is chosen purely
on the basis of data fit, but it has an explicit theoretical foundation. While the LN follows under
the “pure” Gibrat’s law with a fixed number of cities, and Zipf’s law under an “impure” version
with a lower bound on city sizes , the DPLN follows when the “pure” Gibrat’s law is combined
with a growing number of cities. We have shown that this growing number of cities is the natural
outcome of a model where a growing population allocates over an endogenously determined set
of locations.
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Appendix A: Genesis of the DPLN
Instead of directly deriving the density function of the DPLN by solving the Riemann-Stieltjes
integral given in (5), one can make use of the respective moment generating function (mgf). Reed
(2002) shows the mgf of a city with distribution according to equation (3) and age T is given by

Mlog(S T )(θ) = exp
(
s0θ + σ2

0θ
2 +

((
γ −

ς2

2

)
θ +

θ2ς2

2

)
· T

)
(12)

and the corresponding mgf of the overall distribution, under which T is also a random variable, is

Mlog(S )(θ) = exp
(
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σ2
0θ

2

)
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2
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2

)
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Under the assumption that T follows an exponential distribution, the mgf of time becomes MT (θ) =
λ
λ−θ

and therefore

Mlog(S )(θ) =

exp
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(
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(
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)
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2 θ
2
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which can be simplified by using a partial decomposition (see Appendix B) to

Mlog(S )(θ) = exp
(
s0θ +

σ2
0θ

2

2

)
·

αβ

(α − θ)(β + θ)
. (15)

This shows that the distribution of log(S ) is the convolution of a normal distribution with an
asymmetric Laplace distribution, since exp

(
s0θ +

ς2θ2

2

)
is the mgf of a normal distribution and

αβ

(α−θ)(β+θ) is the mgf of an asymmetric Laplace distribution. The respective distribution of S , as
represented in equation (1), is then obtained by transforming log city sizes to levels.

Appendix B: Specifics of α and β
The parameters α and β are time constant collections of the parameters γ, ς and λ, which govern
the growth process. They are determined in the above partial decomposition of the mgf of the
DPLN, which reduces equation (14) to (15). Therein, the parameters α and −β are the roots of the
characteristic equation (

γ −
σ2

2

)
θ +

σ2

2
θ2 − λ = 0

given by

α =
−2γ + ς2 +

√
(−2γ + ς2)2 + 8ς2λ

2ς2 and β =
2γ − ς2 +

√
(−2γ + ς2)2 + 8ς2λ

2ς2 .

As can be seen, α and β are increasing in λ. Therefore, in the limit where λ → ∞ this translates
into α → ∞ and β → ∞ and the DPLN turns to a LN, as the mgf of the DPLN in equation (15)
converges to the mgf of a normal distribution.
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Appendix C: Decreasing growth in the number of cities
Now consider the alternative specification, where cities are created at a decreasing rate over time.
Here, the mixing parameter is distributed according to g(T ) = −ρeρT , and Reed (2003) shows that
the density of log(S ) is the convolution of a normal distribution with a distribution with density
f (S ) =

αβ

(α−β) (exp(βS ) − exp(αS )) where 0 < exp(S ) < 1. In this case, the resulting density of S
is approximately given by:

αβ

(α − β)

(
S β−1e

(
β2σ2

2 −βµ
)
Φ

(
µ − βσ2 − log(S )

σ

)
− S α−1e

(
α2σ2

2 −αµ
)
Φ

(
µ − ασ2 − log(S )

σ

))
This density function can be estimated using maximum likelihood. The respective Mathematica
file is available upon request.
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