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1 Introduction

Important economic issues often center on the shape of distributions. Examples include questions
relating to income inequality, the shape of wage offer distributions, or the riskiness of returns to
financial assets. In various settings, empirical labor economists have been interested in measures
of wage dispersion. More than often, such measures have to be estimated from censored data.
For example, the March Current Population Survey (CPS), which contains survey responses
on weekly earnings top-coded for anonymization purposes, has been used in several studies.
Researchers have frequently dealt with this problem by multiplying top-coded earnings by a
factor of 1.3 to 1.5 (e.g., Katz and Murphy, 1992; Juhn, Murphy, and Pierce, 1993). Other
studies have relied on distributional assumptions to impute censored earnings in their data (e.g.,
Dustmann, Ludsteck, and Schönberg, 2009). Closely related, moments can typically be recovered
if the shape of the distribution and the censoring rule are known. In many settings, however,
the shape of the wage distribution is unknown and possibly itself of interest, and estimation
methods that require parametric assumptions typically yield inconsistent estimates when these
are violated.1 More advanced semiparametric methods have been used for social security earnings
records matched to the CPS, which suffer from a much higher degree of censoring due to a legal
contribution limit (e.g., Chay and Honoré, 1998; Hu, 2002).

We present a measure of group-level dispersion that can be straightforwardly obtained from
quantile regression (QR). Our method does not require parametric assumptions on the error
terms and is as such consistent under heteroskedasticity and non-normality even for censored
data. In addition, by using this simple-to-compute method, which is based on group coeffi-
cient estimates at different quantiles rather than residuals, we can avoid dealing with censored
residuals. Our semiparametric approach allows to estimate differential patterns of dispersion
across occupations. We are thus able to adequately characterize the entire conditional wage
distribution while explicitly incorporating the dispersion effect of covariates.

We then demonstrate the usefulness of the estimation procedure in an application in which
we relate the estimated occupation-specific wage dispersion as a measure of occupation-specific
earnings risk to the risk attitudes of individuals working in these occupations. In order to
estimate the occupation-specific cross-sectional earnings risk, we rely on administrative wage
data from the IAB Employment Sample (IABS) that contains wage information censored at the
statutory limit for social security contributions. The IABS offers great sample size, such that

1For example, the Tobin-Amemiya maximum likelihood estimator (Tobin, 1958; Amemiya, 1973) and the
two-step Heckit approach (Heckman, 1976, 1979) are inconsistent under deviations from homoskedasticity (e.g.,
Maddala and Nelson, 1975; Hurd, 1979; Arabmazar and Schmidt, 1981; Brown and Moffitt, 1983; Donald, 1995)
and normality (e.g., Arabmazar and Schmidt, 1982; Goldberger, 1983; Paarsch, 1984). The biases these authors
derive depend on the exact set-up and the degree of censoring, but can be substantial. While the overall degree of
censoring in our application is not that extreme compared to their settings, it is within certain occupation cells.
The simulation study of Vijverberg (1987) for the case of non-normality shows that the estimated error variance
is often seriously biased, which may trouble our dispersion analysis. Powell (1986b) carries out simulations
for heteroskedasticity as well as non-normality and finds that “failure of the homoskedasticity assumption may
have more serious consequences than failure of normality in censored regression models.” Due to its unbounded
influence function, the Tobit estimator is particularly sensitive to outliers and abnormally long tails (e.g., Chay
and Honoré, 1998; Wilhelm, 2008). Schulhofer-Wohl (2011) estimates a panel Tobit model, in which he allows
heteroskedasticity at the cross-sectional though not longitudinal level. The normality assumption remains crucial,
particularly in light of the high degree of censoring and its volatility over time (“30 to 60 percent of observations
on prime-age male workers are censored in each year”, Schulhofer-Wohl, 2011, p. 931).
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we are able to work with more precise occupation definitions than previous studies and reduce
the effect of aggregation on variation. We then match the estimated wage dispersion measure
of occupations to individuals in the German Socio-Economic Panel Study (SOEP) working in
these occupations. The SOEP provides us with survey information on risk attitudes and other
individual and household characteristics. Consistent with previous studies (e.g., Bonin et al.,
2007; Fouarge, Kriechel, and Dohmen, 2011) that have assessed the relation between occupa-
tional earnings risk and risk preferences, we find evidence of a statistically significant correlation
between our measure of occupational earnings risk and the risk attitudes of individuals working
in a particular occupation: Those who state to be more willing to take risks are more likely to
work in occupations with higher cross-sectional wage dispersion.

Our empirical application is related to a large literature that investigates the relationships
between risk preferences and occupational choice. Early studies (e.g., Bellante and Link, 1981)
have assessed how risk preferences affect the choice between private sector and public sector
employment. The typical finding in this strand of the literature is that higher levels of individual
risk aversion significantly increase the probability of working in the public sector (e.g., Guiso
and Paiella, 2005; Fuchs-Schündeln and Schündeln, 2005; Dohmen and Falk, 2010). A second
class of studies has focused on the relationship between risk preferences and the probability
of self-employment, which is considered to be more risky than dependent employment. Using
data for different countries and employing different measures of risk attitudes, these studies
consistently find that a higher propensity to take risks increases the probability of being self-
employed (e.g., Cramer et al., 2002; Guiso and Paiella, 2005; Ekelund et al., 2005; Caliendo,
Fossen, and Kritikos, 2009; Dohmen et al., 2011; Beauchamp, Cesarini, and Johannesson, 2011).

Most closely related to our empirical application are studies that have related proxies of risk
aversion or direct measures of risk attitudes to occupational earnings risk. Saks and Shore (2005),
for example, use data from the National Postsecondary Student Aid Survey and find that, as
expected under decreasing absolute risk aversion utility, individuals with higher parental wealth
more frequently choose college majors leading into occupations with greater conditional earnings
variation (see also King, 1974), as estimated on data from the Panel Study of Income Dynamics
(PSID) and the Baccalaureate & Beyond survey.2 Bonin et al. (2007) and Fouarge, Kriechel, and
Dohmen (2011) use direct measures of risk attitudes and relate them to an explicit statistic for
the riskiness of occupations, the occupation-specific standard deviation of the residuals from
a Mincer wage regression. They find a significant positive relationship between this cross-
sectional earnings risk measure and individuals’ stated willingness to take risks. While Bonin
et al. carry out all estimation on data from the SOEP, Fouarge, Kriechel, and Dohmen compute
the occupation-specific cross-sectional earnings risk based on administrative wage data from
Statistics Netherlands (CBS) and relate it to the self-reported risk attitudes of respondents to the
ROA School Leavers Survey, which is based on the SOEP questions on willingness to take risks.
Schulhofer-Wohl (2011) uses responses to the question on risky jobs in the Health and Retirement

2There is a related literature on the relationship between risk preferences and educational choice (e.g., Belzil
and Hansen, 2004; Belzil and Leonardi, 2007, 2009; Chen, 2008; Shaw, 1996). Theoretical predictions about the
relationship between risk preferences and educational choice are less clear cut as education may be considered
a risky investment (Levhari and Weiss, 1974), but also shield against unemployment (Mincer, 1991; Nickell and
Bell, 1996).
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Study to relate them to the amount of income risk experienced by individuals, estimated based
on data from matched social security earnings records. Schulhofer-Wohl classifies individuals
into a low and a high risk tolerance group and finds that the latter carry significantly more of
both aggregate and idiosyncratic risk.

Our main contribution to this strand of the literature is the introduction of a robust mea-
sure of occupation-specific earnings risk that does not rely on parametric assumptions for the
error terms and yields consistent estimates for occupation-specific wage dispersion even if ho-
moskedasticity and normality assumptions are violated. Moreover, the earnings risk measure
we propose in the paper can even be estimated in the presence of censored wage information.
This can be of great advantage in empirical work as administrative wage data are often top-
coded. Importantly, Monte Carlo simulations show that our method for the estimation of wage
dispersion is particularly effective compared to conventional approaches.

In our application, we find that individuals with greater stated willingness to take risks
work in occupations with higher cross-sectional wage dispersion. After estimating risk profiles
of occupations on the IABS data, we match them to individuals in the SOEP working in these
occupations. The SOEP provides us with survey information on risk preferences and other
individual and household characteristics. The IABS on the other hand offers great sample size,
such that we are able to work with more precise occupation definitions than previous studies
and reduce the effect of aggregation on variation.

The organization of the paper is as follows. In section 2, we briefly discuss QR and present
our method for estimating dispersion in more detail. In addition, we describe a particularly
useful estimation algorithm for censored data, the 3-step censored quantile regression (CQR)
estimator by Chernozhukov and Hong (2002), which we use in our application on risk preferences
and occupational sorting in section 3. Section 4 concludes.

2 Estimation of group-level dispersion

Our method for the estimation of dispersion is not based on residuals, but rather on the difference
of coefficient estimates at particular quantiles. As such, it is in the spirit of the heteroskedasticity
test of Koenker and Bassett (1982), which carries out a Wald test on the differences of coefficient
estimates at different quantiles. Specifically, we first estimate the entire model by (C)QR at
different quantiles, such as the 10th, 25th, 50th, 75th, and 90th percentile, including dummy
variables for the groups which are to be compared. In our application, for instance, we include
dummies for all occupations. We then consider the differences of the coefficient estimates for
these dummies at two particular quantiles, such as the 10th and 90th percentile (“10-90 spread”),
and compare their values across occupations. Our approach is not only computationally simple,
but it also controls for the dispersion effect of covariates, and thereby filters out the (possibly)
heteroskedastic effect of, for example, education and tenure in our application.

To introduce notation and build intuition, we briefly summarize quantile regression in section
2.1 before introducing our dispersion measure in section 2.2. Section 2.3 discusses a particularly
simple estimator for censored quantile regression used in our application.
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2.1 Quantile regression

Quantile regression (QR), introduced by Koenker and Bassett (1978) as a generalization of
median regression, allows us to parsimoniously describe the entire conditional wage distribution
by estimating conditional quantile functions (CQF) Qτ (Yi|Xi).3 We denote the conditional
τ -quantile of Y given X as

Qτ (Yi|Xi) ≡ qτ (Xi) ≡ F−1Yi|Xi
(τ) = inf

r∈R
{r : FYi|Xi

(r) > τ}. (1)

For a linear quantile model, qτ (Xi) = X ′iβ(τ), and

Yi =X
′
iβ(τ) + ui(τ). (2)

While specifying a parametric model of the conditional quantiles, we are agnostic about the
error distribution in our semiparametric framework. All we rely on is a conditional quantile
restriction, stipulating that the conditional quantile of the error is equal to a constant. We
assume that Xi always includes a constant term for the intercept, which affords us the following
normalization:

Qτ (ui(τ)|Xi) =0. (3)

Estimation typically proceeds by characterizing conditional quantiles as the solution to a
particular expected loss minimization problem, in the context of which it is useful to define the
“check” (or weighted absolute loss) function. For τ ∈ (0, 1),

ρτ (u) ≡ τ1(u ≥ 0)u+ (1− τ)1(u < 0)(−u) (4)

= [τ − 1(u < 0)]u. (5)

In the case of our linear quantile model, qτ (Xi) = X ′iβ(τ),

β(τ) = argmin
b

E[ρτ (Yi −X ′ib)|Xi]. (6)

We can define the QR estimator as its sample equivalent and the optimal predictor minimiz-
ing the realized loss:

β̂(τ) = argmin
b

N∑
i=1

ρτ (Yi −X ′ib). (7)

Asymptotic normality and consistency of the QR estimator can be shown (Bassett and
Koenker, 1978).

3An excellent non-technical introduction with illustrative examples and an overview of applications can be
found in Koenker and Hallock (2001). Buchinsky (1998) summarizes a range of points relevant to the empirical
researcher.
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2.2 Differences of quantile coefficients

2.2.1 Location-scale model

To build intuition on the meaning of our dispersion measure, we begin with the illustrative yet
likely simplistic special case of a location-scale model. Suppose Xi includes a constant, such
that Xi1 = 1, as well as additional covariates. Yi is dependent on Xi in mean and through a
re-scaling of variances (the disturbances ui are iid):4

Yi = X ′iβ + σ(Xi)ui (8)

qτ (Xi) = X ′iβ + σ(Xi)F
−1(τ). (9)

Suppose σ(· ) is linear with σ(Xi) = X ′iζ. Then, β(τ) = β + F−1(τ)ζ, and the quantiles
have both a location effect through F−1(τ)ζ1 and a scale effect through F−1(τ)ζj 6=1. To strike
the link to our application, suppose that in addition to a vector X̃i ∈ Rp of a constant and
p − 1 covariates, Xi contains a vector Ẋi ∈ Rm−1 of dummies for m − 1 occupation groups
such that Xi = (X̃ ′i, Ẋ

′
i)
′; in this case, ζp+k−1 = σ̇k denotes the occupation-specific scale effect

of occupation group k ∈ {2, . . . ,m} relative to the reference occupation group.5 Then, for
consistent estimators β̂(τ1) and β̂(τ2), β̂p+k−1(τ1) − β̂p+k−1(τ2)

p−→ σ̇k[F
−1(τ1) − F−1(τ2)] by

Slutsky’s theorem. Hence, we can consistently estimate σ̇k up to scale.
Chamberlain (1994, p. 186) discusses comparable normal-location models, but considers

them inadequate for characterizing the conditional wage distribution. In particular, they imply
constant covariate slopes across the quantiles, which are at odds with the quantile patterns of
industry wage effects he finds. Moreover, and closest to our application, Chamberlain presents
differential patterns across industries and relates these to industry-specific residual dispersion.
Close inspection of the industry coefficients in Chamberlain (1994, table 5.4) at different quan-
tiles reveals that even the location-scale model may be too restrictive. A statistical test of
the location-scale hypothesis can be based on a Khmaladze transformation, but is only avail-
able for uncensored data. Applying a human capital model including occupation dummies to
self-reported earnings in the SOEP, the Khmaladze test (Koenker and Xiao, 2002) rejects the
location-scale hypothesis at the 1% level.

2.2.2 General (separable) dispersion model

We turn now to a more general model which we believe to more adequately characterize the Ger-
man wage distribution. The above location-scale model allows some flexibility with respect to
heteroskedasticity, but it still imposes a great deal of homogeneity on the shape of the error dis-
tribution. In particular, β̂p+k−1(τ1)−β̂p+k−1(τ2)

β̂p+l−1(τ1)−β̂p+l−1(τ2)

p−→ σ̇k
σ̇l

for any τ1, τ2 ∈ (0, 1) and k, l ∈ {2, . . . ,m}.
For instance, differential asymmetry and tail behavior are precluded.

Consider therefore a more general linear model in which each occupation k ∈ {1, . . . ,m}
has its own conditional distribution function, such that ui ∼ Fk(· ;Xi) if individual i works in
occupation k. Suppose further that for each k and at every quantile τ , F−1k (· ;Xi) is linearly

4For instance, the data may be conditionally normal with variance depending on the covariates.
5We omit occupation 1 and assume that its effect is subsumed in the general constant.
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separable into a general component ξ(X̃i; τ) linear in X̃i and an occupation-specific component
ηk(τ) = Ẋi

′
η(τ).6 The CQF is then given by:

qτ (Xi) = X ′iβ + ξ(X̃i; τ) + ηk(τ) (10)

= X ′iβ + X̃i
′
λ(τ) + Ẋi

′
η(τ). (11)

As a result, β(τ) = β + (λ(τ)′, η(τ)′)′, and hence, for consistent estimators β̂(τ1) and β̂(τ2),
β̂(τ1)− β̂(τ2)

p−→ (λ(τ1)
′ − λ(τ2)′, η(τ1)′ − η(τ2)′)′. In this way, we can measure the effect of our

set of occupation groups on all different quantiles while controlling for the dispersion effect of
the additional covariates. This gives us a measure of the conditional dispersion effect of each
occupation. While the linear specification of the conditional quantiles may appear restrictive, a
linear quantile model is frequently only intended as a reduced-form approximation, such as for
the minimum distance (MD) estimators in Buchinsky (1994, p. 409) and Chamberlain (1994, p.
181).7

To evaluate the practical merits of the approach, we carry out a set of Monte Carlo sim-
ulations (section B in the appendix). We find that compared to conventional approaches, our
method is particularly effective for the estimation of dispersion in the presence of interaction
effects in variance. For a moderate degree of censoring of 10%, very similar to that in our
application, the 10-90 spread obtained from CQR does just as well as when we leave the data
uncensored.

2.3 Censored quantile regression

A particular feature of conditional quantiles not shared by conditional expectations is equivari-
ance to monotone transformations. For any non-decreasing function g(· ),

Qτ [g(Yi)|Xi] =g[Qτ (Yi|Xi)]. (12)

As a result, QR is particularly suited for censoring problems. In addition, it does not require the
restrictive assumptions of parametric censored estimators. In the case of top-coding, we observe
Yi = min(Ci, Y

∗
i ), where Y

∗
i is the latent true value of the process of interest and Ci is some

upper limit, of which we assume Y ∗i to be conditionally independent. Since for any Ci ∈ R,
min(Ci, · ) is a non-decreasing function, we have (Powell, 1986a):

Qτ (Y
∗
i |Xi) = X ′iβ(τ)⇒ Qτ (Yi|Xi) =min[Ci, X

′
iβ(τ)]. (13)

The censored quantile regression (CQR) estimator follows trivially as the minimizing argu-
6This does not state that ηk(τ) is indeed the τ -quantile of the occupation effect; rather, it is the occupation

effect at the τ -quantile. Therefore, ηk(τ) need not be increasing; rather, an occupation l may experience lower
variance than the reference occupation, in which case ηl(τ) is decreasing.

7Formally, Chamberlain (1994, p. 181) recognized that the QR estimator provides a linear approximation
to the CQF, albeit of a less “transparent” nature than in the OLS and MD case. Angrist, Chernozhukov, and
Fernández-Val (2006) show that QR minimizes a weighted mean-squared error loss function for specification
error, implicitly providing a weighted MD approximation to the true nonlinear CQF. Applying the framework to
wage regressions with a focus on the education variable, they find QR to provide a useful approximation to the
conditional wage distribution.
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ment of the Powell objective function (Powell, 1986a):

β̂CQR(τ) = argmin
b

N∑
i=1

ρτ [Yi −min(Ci, X
′
ib)]. (14)

As in the uncensored case, the QR-based estimator is consistent under general non-normal
distributions and heteroskedasticity (Powell, 1984, 1986a). Buchinsky (1994) gives a well-known
application to changes in the US wage structure. For estimation, he presents his iterative linear
programming algorithm (ILPA), which iteratively performs QR on observations with predictions
in the uncensored region, based on the previous iteration. Convergence is achieved if two subse-
quent sets of observations are the same; while this need not occur, convergence guarantees local
optimality. Another alternative, the BRCENS algorithm, is proposed in Fitzenberger (1997).
Unfortunately, both algorithms have less than reliable convergence properties with respect to
the Powell estimator (14), particularly in large samples and for high dimensionality, as in our
application.

Chernozhukov and Hong (2002) present the three-step CQR method, which avoids a great
deal of problems by selecting a more “benign” sample based on an initial regression of the
probability of censoring, and subsequently works with standard QR.8,9

Step 1. Let κi = 1(Yi 6= Ci); that is, κi is an indicator of non-censoring (with censoring
point Ci). We consider a parametric (e.g., probit or logit) model for the probability of
non-censoring:

κi =p(X
′
iγ) + εi. (15)

In general, model (15) will be misspecified and therefore inconsistent for the true propensity
score h(Xi, Ci). However, it is only used as an auxiliary regression to select an initial sample
J0 with propensity score h(Xi, Ci) > τ , necessary for consistent estimation of quantile τ .10 To
ensure this, we do not base our selection on the condition that p(X ′iγ̂) > τ , but rather that
p(X ′iγ̂) > τ + k, where k is a trimming constant strictly between 0 and 1− τ . Since we do not
necessarily have to select the largest subset J0, there is some freedom in choosing k. For this,
we write J0 as a function of k, J0(k) = {i : p(X ′iγ) > τ +k}. The approach taken here, following
Chernozhukov and Hong, is to choose the trimming constant k such that

#J0(k)/#J0(0) =90%. (16)

This means that we discard 10% of those observations with a probability estimate higher
than τ . The authors provide the sufficient condition that p(X ′iγ0) − k (for γ0 = plim γ̂) be a
lower bound on h(Xi, Ci).

8Applications include Melly (2005) on wage inequality, Kowalski (2009) on medical expenditure, and Schmillen
and Möller (2012) on lifetime unemployment.

9The estimators of Buchinsky and Hahn (1998) and Khan and Powell (2001) similarly carry out a first-stage
selection, but are impractical for high dimensionality and large data sets.

10Note the deviation from Chernozhukov and Hong, who select a sample with propensity score h(Xi, Ci) >
1− τ . This is an important difference between left- and right-censoring.
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Step 2. We obtain the initial (inefficient) estimator β̂0(τ) by standard QR on the sample J0:

β̂0(τ) = argmin
b

∑
i∈J0(k)

ρτ (Yi −X ′ib). (17)

Next, we select J1 = {i : X ′iβ̂0(τ) < Ci − δN}, where δN is a small number such that as the
sample size N →∞,

√
N · δN →∞ and δN ↘ 0. We choose δN similarly to k, but with a lower

percentage of discarded observations of 3%. The aim of this step is to include all observations
{Xi : X

′
iβ(τ) < Ci} to build up the efficiency of the next step.

Step 3. We obtain the three-step estimator β̂1(τ) by running (17) with J1 instead of J0.

Step 4. (optional). Step 3 may be repeated a finite number of times on a sample Jl = {i :
X ′iβ̂

l−1(τ) < Ci − δN}, yielding estimates β̂l(τ) for l ∈ {2, . . . }.

The remaining conditions discussed in Powell (1984, pp. 310-12) and Chernozhukov and Hong
(2002, p. 876), most notably independence of observations and the conditional quantile restric-
tion (3), ensure consistency and asymptotic normality. Due to distributional equivalence with
the Powell estimator, the estimator inherits its efficiency properties. In contrast to the iid case,
the variance-covariance matrix now depends on the error density at the τ -quantile, which may
vary across the heteroskedastic observations.

One may wonder how much more restrictive three-step CQR is in comparison with Powell’s
canonical CQR model. For instance, does the parametric first-step classification model invoke
additional assumptions which are at odds with, for example, the heteroskedasticity in our wage
data? Since the initial model only provides an incorrect lower bound for the true propensity
score, no such assumptions are required; neither a particular distribution nor conditional ho-
moskedasticity nor a location-scale submodel are imposed.

In practice, Chernozhukov and Hong report good finite-sample properties in a variety of
situations. Their results are rather insensitive to the choice of probability model in step 1; we
therefore use a probit model in our application. Additional iterations in step 4 are akin to
Buchinsky’s ILPA method. Their usefulness at least partially depends on the dimensionality
of the regression. When estimating a human capital model on the IABS data including only
standard controls — years of education, a cubic experience term, and a quadratic tenure term,
but no occupation dummies — step 4 generally does not bring about large improvements in
terms of the Powell objective function (14). However, in our main specification, we include
dummies to account for the effects of 130 different occupations. In this case, step 4 still turns
out to yield substantial improvements. Additional iterations generally lead to only quite small
or minuscule improvements, or even an increase in the objective function. In our application, we
therefore allow for three additional iterations in step 4, and select the estimates corresponding
to the lowest value of the Powell function.
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3 The relationship between risk attitudes and occupational earn-
ings risk

3.1 SOEP and IABS data

The German Socio-Economic Panel Study (SOEP) (Wagner, Frick, and Schupp, 2007) contains
detailed information on household and individual characteristics, in particular on occupation and
risk preferences. We estimate the earnings risk of occupations using a large administrative data
set, the IAB Employment Sample (IABS), that contains information on wages and human capital
variables collected for social insurance purposes. We restrict the sample to West German men in
full-time employment between 25 and 54 years of age. Following Bonin et al. (2007), we discard
observations for individuals with wages in the bottom and top percentile of the unconditional
wage distribution from the SOEP sample. Since our primary interest lies in occupational choice
within dependent employment, we do not consider the self-employed. As the IABS does not
include tenured civil servants, we omit them from the SOEP sample as well. We exclude part-
time workers, apprentices, and workers in retirement, as well as those employed in military
service or alternative civilian service. Occupation identifiers are based on the German KldB
coding.11

3.1.1 Risk attitudes

Recent waves of the SOEP contain self-reported measures of risk aversion in general and in
specific contexts. In particular, individuals were asked to state their willingness to take risks
on an eleven-point scale. The general risk question was included in 2004, 2006, 2008, and
2009.12 Dohmen et al. (2011) confirm the validity of the general risk question by analyzing its
predictive power for decisions in a lottery choice experiment with real money at stake, which
they administer on a separate sample. In addition, all of the survey measures explain a variety of
risky behaviors, including holding stocks, smoking, and participation in active sports. However,
measurement error appears to be substantial; we expect to improve on the measurement of risk
preferences by utilizing the responses from multiple waves. For each individual, we therefore
compute an unweighted average of all available responses, the number of which varies between
one and four.

11Both SOEP and IABS report occupations using the German Klassifizierung der Berufe (“Classification of
occupations”), albeit in different versions: While the SOEP employs the 1992 version (KldB 92), the coding in
the IABS is based on the earlier 1988 version (KldB 88). Specifically, the IABS uses the 3-digit level of the KldB
88 (Berufsbezeichnungen) identifying 328 different occupations; in our IABS R04 file, these are aggregated to
130 different occupations for anonymity purposes (Drews, 2008, pp. 79-86). In the SOEP, occupations are coded
according to the 4-digit level of the KldB 92. To match occupations in the SOEP to those in the IABS, we use
a cross walk file from the Federal Statistical Office.

12The exact wording (translated from German) is as follows: “How do you see yourself: are you generally a
person who is fully prepared to take risks or do you try to avoid taking risks? Please tick a box on the scale,
where the value 0 means: ‘not at all willing to take risks’ and the value 10 means: ‘very willing to take risks’.”
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3.1.2 Riskiness of occupations

The IABS, an anonymized sample from a large administrative data set,13 includes (gross) wage
information as well as other employee characteristics reported by the employer for social security
contribution purposes. Since misreporting of wages is subject to severe penalties, measurement
error is likely to be minimal. The reporting precision of some of the independent variables in
our human capital model may be considerably lower, since they are only collected and reported
for statistical purposes, but with no pertinence to social security. The education variable in
particular is sometimes missing or inconsistent for different employment spells of one individual.
Since measurement error may affect our analysis by introducing possibly systematic noise to
our dispersion estimates, we apply an imputation-based correction described in Fitzenberger,
Osikominu, and Völter (2006). Tenure with an employer, on the other hand, can be computed
with great precision due to the spell nature of the data.

For the entire sample period, a statutory limit was in place on the amount of monthly income
subject to social security contributions, leading to top-coding of wages. This ceiling is a matter
of federal legislation and is adjusted on an annual basis; for the main year of our analysis,
2004, it was EUR 61,800 in annual income. The degree of censoring remains fairly constant
over the sample period at around 10%, but varies considerably by groups of age, education, and
occupation.14

3.2 Mincerian human capital model

We choose a log-linear wage specification including years of education, a cubic polynomial for
(potential) experience, and a quadratic polynomial for tenure. The inclusion of occupation
dummies serves two purposes: First of all, it captures occupation-specific effects such as com-
pensating wage differentials. More central to our analysis, the estimation of occupation effects at
different quantiles is useful to evaluate wage dispersion at the occupation level. Since we do not
intend to estimate returns to schooling or find any associated causal link, but rather the earnings
variation observable to an individual, we neglect endogeneity bias arising from self-selection into
different education streams and unobserved heterogeneity.

We estimate the model using (1) a Tobit ML approach, and (2)-(6) the three-step CQR
estimator15 at the 10th, 25th, 50th, 75th, and 90th percentile (table 1). We construct 95% con-
fidence intervals using the direct percentile method with 100 bootstrap replications. Controlling
for occupation, most of the variables have a fairly constant effect across quantiles; heterogeneous
returns to education are likely mainly realized through occupational sorting. While we observe
the familiar concave effect of experience, there is no clear-cut evidence that variation follows
any particular experience pattern. Interestingly, variation is decreasing in tenure; we would in-
stead expect that as employers acquire more knowledge about their workers, variation increases.

13In this paper, we use the IABS R04 version, which is a 2% sample of the German social security records for
the period from January 1, 1975, to December 31, 2004. From this, we draw a cross section for June 30 for each
year considered in our analyses.

14Overall, 10.5% of the observations in our sample have their wage information censored from above. The
figure is 55.5% for university graduates aged 45 to 54, but as low as 0.4% for 25 to 34 year-olds without any
degree.

15We use an extended version of the user-written Stata command cqiv (Chernozhukov et al., 2011).

11



However, the difference is rather small.
Under normality and homoskedasticity, the Tobit estimates should be very close to the CQR

estimates at the 50th percentile. However, most of the estimates in column (1) and (4) are many
standard errors apart, suggesting that these assumptions are not valid and the Tobit estimates
biased. We further perform outer-product-of-the-gradient conditional moment tests (Skeels and
Vella, 1999); the test statistics for the null hypotheses of normality and homoskedasticity follow
χ2(r) distributions with r = 2 and r = 273, respectively. The test statistic for normality, 4,099.3,
is far larger than the theoretical 1% critical value of 9.2, and the same goes for homoskedasticity
with a test statistic of 14,768.0 against a 1% critical value of 290.6. We thus reject the hypotheses
of both normality and homoskedasticity.

3.3 Estimates for risk aversion and dispersion

We regress the wage dispersion within an individual’s occupation, departing from a specification
using the 10-90 spread, on stated willingness to take risks and a number of controls (table 2).
We estimate a positive effect of willingness to take risks in all specifications, significant at either
the 5% or the 10% level; the effect is larger for average risk attitudes, likely due to greater
measurement precision: For the single-year and average measure of risk tolerance, we estimate
an effect size of .0009 and .0018 standard deviations, respectively, per point increase on the 11-
point risk scale (assuming normality for purely expositional purposes). Of the control variables,
only marital status, education, and median wage16 are significant.

Surprisingly, median wage enters negatively; it seems unlikely that this is entirely due to wage
compression in the top regions of occupations with high median wage. Instead, observations
in high-wage occupations are naturally more likely to be censored. If censoring leads to an
underestimation of dispersion, this will be picked up by the coefficient on median wage. The
effect of median wage is clearly the most pronounced at the 90th percentile (table 3), which
is affected most by censoring; in fact, the unconditional 90th percentile is censored. As long
as there is sufficient within-occupation heterogeneity that each of them will contain a number
of individuals with uncensored conditional 90th percentile, this will not be a problem given
correct specification of the model. Since median wage has a standard deviation of around .3,
the magnitude of the distortion is not that large in principle; however, it is a lot larger than
the effect of risk attitudes. Reassuringly, their effect is very similar when considering the 25-75
spread instead.

Turning our attention to individual median differences, the results in table 3 do not show
any difference between the lower and the upper part of the wage distribution; all quantiles are
similarly correlated with risk attitudes. Also here, we find a larger coefficient estimate on the
average measure of risk tolerance. The significance of the second-stage estimates just presented
is sensitive to the number of iterations used in step 4 of the 3-step CQR routine and thus the
precision of our wage regressions; stopping at step 3, the results are slightly less clear.

Due to the nature of our data, which does not measure individuals’ risk attitudes before
16For a few occupations (electrical engineers, managers/executives, doctors and pharmacists), median earnings

are above the censoring threshold, and hence, median wage is censored. Omitting these occupations does not
affect the results for overall dispersion and the upper regions, but slightly reduces the significance of the estimates
at the lower quantiles.
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they make their occupational choice, we cannot establish a causal impact of risk attitudes on
occupational sorting. Any causal sorting interpretation of our results rests on some sort of
stability assumption with respect to risk attitudes. In particular, systematic differences in risk
attitudes of individuals working in different occupations should not entirely result from exposure
to occupational risk over the working life.17 Evidence indicating that risk preferences are rather
stable is accumulating. Sahm (2008), for example, shows that risk preferences change only
gradually with age but are rank-order stable. Changes in macroeconomic conditions have an
impact on measured risk tolerance, but changes in income, wealth or other major events that
reduce expected lifetime wealth, such as job displacement or a deterioration in health, do not
affect individuals’ willingness to take risk. Dohmen et al. (2007) analyze the stability of responses
to the general risk question in the SOEP. For two subject pools, one a subset of the SOEP, the
other a separate one, they find a test-retest correlation of 0.62 and 0.60, respectively, over a
six-week horizon. It is plausible to assume that risk preferences do not change dramatically
over such a short time period so that the variation in answers in the test-retest samples can be
attributed to measurement error. The correlation between the 2004 and 2006 waves of the SOEP,
in comparison, is 0.50, which is not too far below the six-week benchmark; this suggests that
risk attitudes constitute an inherent and stable trait. Beauchamp, Cesarini, and Johannesson
(2011) support this interpretation, as they find very similar results for Swedish data using the
same risk measure as is used in the SOEP.

In our setting, a sorting interpretation also requires that the ranking of occupations with
respect to their occupational earnings risk has remained stable. Otherwise, the risk profile es-
timated on the 2004 cross section may not have been relevant at the time when individuals
chose their occupation. In an extreme case, risk attitudes might not have been related to differ-
ences in occupation-specific earnings risk when individuals sorted into an occupation. Instead,
a wage setting mechanism in which preferences of incumbents shape the occupational earnings
risk might be a potential channel through which a correlation between risk preferences and wage
dispersion can arise. To address the question whether there have been considerable changes in
occupation-specific wage dispersion, we estimate wage dispersion measures for the years 1979,
1984, 1989, 1994, and 1999, and compute Pearson correlation coefficients with occupations as
cross-sectional unit (table 4). The correlation coefficient is decreasing in the time span consid-
ered, but remains positive and high; it is larger than .65 for any pair of years. This suggests
that the relative wage dispersion of occupations has been rather stable in West Germany in the
period from 1979 to 2004, and that the risk profiles we estimate from a cross section for 2004
are quite close to those relevant at the point of labor market entry for most of the individuals
in the SOEP.

Finally, we cannot rule out that the correlation between risk attitudes and wage dispersion
is driven by cognitive abilities rather than risk preferences: There is evidence for a negative
relationship between risk aversion and cognitive abilities (e.g., Dohmen et al., 2010), and at the
same time, dispersion may be particularly attractive for high-ability individuals.

17Fouarge, Kriechel, and Dohmen (2011) elicited risk attitudes among school leavers and graduates around
the time that they entered the labor market, reducing the potential for endogeneity problems resulting from
exposure to occupation characteristics. They find a significant correlation between occupational earnings risk
and risk attitudes.
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4 Conclusion

We discuss a particular method to estimate group-level wage dispersion, which is based on
semiparametric methods. Specifically, we estimate a human capital model, including dummy
variables for each of the groups of interest, at a number of different quantiles; we then take the
differences of the dummy coefficients at different quantiles as a measure of dispersion within
each group. The method is particularly useful when working with data which is either censored
or top-coded, such as administrative data and some survey data, since it is more robust to
deviations from homoskedasticity and distributional assumptions than parametric estimators.
In addition, it controls for the dispersion effect of covariates, and allows us to estimate the
entire conditional wage distribution and its differences across groups. In an application which
connects a large German administrative data set, the IAB Employment Sample (IABS), which is
subject to censoring due to a legislative contribution limit, and a household survey, we find that
individuals with greater willingness to take risks work in occupations with higher cross-sectional
wage dispersion.
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A Results

Table 1: Human capital model
Dependent variable: log of censored daily wage

(1) (2) (3) (4) (5) (6)

Experience 0.064*** 0.058*** 0.060*** 0.058*** 0.057*** 0.050***
(0.002) (0.006) (0.005) (0.003) (0.004) (0.005)

Experience2/100 -0.236*** -0.228*** -0.224*** -0.211*** -0.202*** -0.170***
(0.008) (0.031) (0.024) (0.016) (0.020) (0.027)

Experience3/1000 0.029*** 0.029*** 0.028*** 0.026*** 0.024*** 0.020***
(0.001) (0.005) (0.004) (0.003) (0.003) (0.004)

Tenure 0.025*** 0.039*** 0.027*** 0.020*** 0.018*** 0.016***
(0.000) (0.001) (0.001) (0.001) (0.001) (0.001)

Tenure2/100 -0.057*** -0.091*** -0.061*** -0.043*** -0.038*** -0.035***
(0.001) (0.005) (0.003) (0.003) (0.003) (0.005)

Years of Education 0.056*** 0.049*** 0.050*** 0.052*** 0.052*** 0.049***
(0.000) (0.002) (0.002) (0.001) (0.002) (0.003)

Constant 3.305*** 3.004*** 3.203*** 3.419*** 3.666*** 3.952***
(0.012) (0.050) (0.037) (0.026) (0.036) (0.068)

Occupation dummies Yes Yes Yes Yes Yes Yes
Observations 168,863 168,863 168,863 168,863 168,863 168,863

Human capital model estimated using (1) Tobit ML approach, and (2)-(6) the three-step CQR es-
timator at the 10th, 25th, 50th, 75th, and 90th percentile. Standard errors of coefficient estimates,
computed using direct percentile (bootstrap) method with 100 replications and asymptotic normality,
in parentheses; ***/**/* indicate significance at 1%/5%/10% level. Dependent variable is the log of
censored daily wage. Occupation dummies based on IABS KldB 88 coding.
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Table 2: IABS risk profiles
Dependent variable: 10-90 spread of occupation effects

(1) (2) (3) (4) (5) (6)

General Risk Attitude 0.003** 0.002* 0.003*
(0.002) (0.001) (0.002)

General Risk Attitude (av.) 0.005** 0.005** 0.005**
(0.002) (0.002) (0.002)

Experience 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Tenure -0.000 0.000 -0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Years of Education 0.002 0.010** 0.002 0.010**
(0.004) (0.004) (0.004) (0.004)

Married and living together -0.017** -0.016** -0.017** -0.017**
(0.007) (0.007) (0.007) (0.007)

Body height 0.000 0.001 0.000 0.001
(0.000) (0.000) (0.000) (0.000)

Public Sector Employment -0.015 -0.017 -0.014 -0.016
(0.026) (0.026) (0.026) (0.026)

Median wage (occ.) -0.122* -0.122*
(0.068) (0.068)

Constant -0.188*** -0.206** 0.164 -0.198*** -0.221** 0.150
(0.014) (0.087) (0.264) (0.014) (0.086) (0.261)

Observations 2,815 2,740 2,740 2,822 2,747 2,747
R-squared 0.002 0.009 0.051 0.004 0.011 0.054

OLS estimates. Robust standard errors of coefficient estimates, allowing for clustering at the IABS
KldB 88 occupation level, in parentheses; ***/**/* indicate significance at 1%/5%/10% level. Depen-
dent variable is the 10-90 spread of occupation dummy estimates from QR, on IABS KldB 88 level.
“General Risk Attitude” is the response to the 2004 general risk question, “General Risk Attitude
(av.)” is the corresponding average over the 2004, 2006, 2008, and 2009 responses.
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Table 4: Temporal stability of risk profiles
1979 1984 1989 1994 1999 2004

1979 1.000
1984 0.818 1.000
1989 0.768 0.902 1.000
1994 0.781 0.854 0.874 1.000
1999 0.654 0.778 0.810 0.899 1.000
2004 0.655 0.694 0.753 0.896 0.922 1.000

Pearson correlation coefficients of 10-90 spread per occupation across years.
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B Monte Carlo evidence on estimation of dispersion

In this section, we review the performance of the estimation method described in section 2.2 for
both censored and uncensored data and compare it to a residual-based method. For uncensored
and censored data, we use the difference between the coefficient estimates of the group dummies
at the 90th and 10th percentile from (C)QR. For uncensored data only, we estimate a conven-
tional OLS regression including group dummies and compute the standard deviation of residuals
per group. After each of 1,000 simulations, we compute the correlation of an occupation-specific
scale σk and the three statistics. The models investigated are stylized versions of the wage
distribution setting in our empirical analysis; specifically, we first consider a model with only
group-specific scale, and then turn to location-scale models in which a regressor has a het-
eroskedastic effect. The censored data is derived directly from the uncensored data through
right-censoring at the 90th percentile such that in each case, 10% of the data are censored,
which is intended to resemble the degree of censoring in the IABS data used in our application.

B.1 Group-specific scale model

The DGP has the following linear representation:

Yik = βXi + ck + σkεi (18)

for i ∈ {1, . . . , N} and k ∈ {1, . . . ,m}, ck
iid∼ N (0, σ2), εi

iid∼ N (0, 1).
In our simulation, we set N = 1, 000, Xi

iid∼ U(0, 1), β = 2, σ = .2, and σk = .1 + .2Uk,
where Uk

iid∼ U(0, 1). Individuals are randomly assigned to one of m = 10 groups according to a
uniform distribution.

Table 5 shows a very similar performance for all three statistics, with a correlation close to
unity in each case.

Table 5: Group-specific scale model
Mean Std. Dev. Min. Max.

10-90 spread 0.975 0.021 0.794 0.999
10-90 spread (cens.) 0.968 0.026 0.729 0.999
Resid. std. dev. 0.984 0.013 0.881 0.999

Correlation of risk measures with true dispersion.

B.2 Linear location-scale model

Leaving all else the same,

Yik = βXi + ck + (γXi + σk)εi (19)

with γ = .5. Hence, the independent variable X now exerts a heteroskedastic effect.
Already, the 10-90 spread does slightly better (table 6) for the uncensored data. Notably, it

also works just as well when only censored data is available.
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Table 6: Linear location-scale model
Mean Std. Dev. Min. Max.

10-90 spread 0.899 0.072 0.228 0.993
10-90 spread (cens.) 0.891 0.076 0.198 0.994
Resid. std. dev. 0.852 0.107 0.159 0.988

Correlation of risk measures with true dispersion.

B.3 Nonlinear location-scale model

We adapt the DGP such that the scale effect of the independent variable X is now negatively
related to the occupation variance:

Yik = βXi + ck + [(1− δσk)Xi + σk]εi. (20)

For δ = 1,

Yik = βXi + ck + [Xi + (1−Xi)σk]εi. (21)

As reported in table 7, the statistics based on QR are a lot more robust in this case, since
the scale effect of X at the different quantiles is explicitly controlled for. The discrepancy will
likely be even larger for more irregular distributions. Also, our method for dispersion estimation
works equally well for censored data.

Table 7: Nonlinear location-scale model
Mean Std. Dev. Min. Max.

10-90 spread 0.819 0.112 0.217 0.991
10-90 spread (cens.) 0.837 0.105 0.262 0.992
Resid. std. dev. 0.682 0.191 -0.347 0.973

Correlation of risk measures with true dispersion.
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