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Qual VAR Revisited: Good Forecast, Bad Story 

Abstract 

Due to the recent financial crisis, the interest in econometric models that allow to incor-

porate binary variables (such as the occurrence of a crisis) experienced a huge surge. 

This paper evaluates the performance of the Qual VAR, i.e. a VAR model including a 

latent variable that governs the behavior of an observable binary variable. While we find 

that the Qual VAR performs reasonably well in forecasting (outperforming a probit 

benchmark), there are substantial identification problems. Therefore, when the eco-

nomic interpretation of the dynamic behavior of the latent variable and the chain of cau-

sality matter, the Qual VAR is inadvisable. 

Keywords: binary choice model, Gibbs sampling, latent variable, MCMC, method eva-

luation 

JEL Classification: C15, C35, E37 
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Qual VAR: Gute Prognose, schlechte Geschichte 

Zusammenfassung 

Aufgrund der aktuellen Finanzkrise verstärkte sich das Interesse an ökonometrischen 

Modellen, die binäre Variablen (so wie das Auftreten einer Krise) verwenden. Der vor-

liegende Artikel evaluiert die Leistung des Qual VAR, eines vektorautoregressiven Mo-

dells, welches eine latente Variable einbindet, die den Zustand einer binären Variablen 

bestimmt. Es zeigt sich, dass das Qual VAR eine akzeptable Prognosequalität aufweist 

(dabei schlägt es im Vergleich ein Probit-Modell). Allerdings existieren substanzielle 

Identifikationsprobleme. Daraus schließen wir, dass die Verwendung des Qual VAR 

nicht zu empfehlen ist, wenn die ökonomische Interpretation entweder des dynamischen 

Verhaltens der latenten Variable oder der Kausalitätsbeziehungen zwischen verschiede-

nen Variablen von Bedeutung ist. 

Schlagwörter: Binary-Choice-Modelle, Gibbs-Sampling, latente Variable, MCMC, 

Methodenevaluation 

JEL-Klassifikation: C15, C35, E37 

 

 



1 Introduction

Due to the recent financial crisis, the interest in econometric models that allow to incorporate

binary variables (such as the occurrence of a crisis) experienced a huge surge. This has led to

the development of new models employing qualitative (binary) data, such as artificial neural

networks (Fioramanti 2008), binary classification trees (Duttagupta and Cashin 2011) or

GARCH-M models with a qualitative variable driving different parameter regimes (Nyberg

2012). At the same time, some older methods developed after the Asian crisis experienced a

comeback. These include the signals approach, that has originally been applied to currency

and banking crises (Kaminsky and Reinhart 1999). More recent papers use it in an early-

warning system for asset price bubbles (Alessi and Detken 2011) or sovereign debt crises

(Knedlik and von Schweinitz 2012). Other methods are binary choice such as probit or

logit models, developed by Frankel and Rose (1996). They, too, have recently been applied

to a variety of crises (Demirgüç-Kunt and Detragiache 2000; Bussière and Fratzscher 2006;

Barrell et al. 2010). Furthermore, binary choice models have found their way into research

on the dating of business cycle turning points (Rudebusch and Williams 2009; Chauvet

and Potter 2010; Nyberg 2010). Those binary choice models assume that an observable

binary variable is governed by a latent variable. Harding and Pagan (2011) criticize, that

the conventional model cannot capture the time series dependence of the binary variable

inherent in current macroeconomic applications. Therefore, Harding and Pagan recommend

to use other methods incorporating time series dependence such as the Markov Switching

approach. These models have originally been developed for the dating of business cycle

turning points (Hamilton 1989; Paap et al. 2009). Like binary choice models, they can

also be used for crisis prediction (Fratzscher 2003; Hartmann et al. 2012). Because Markov

Switching models estimate the regimes endogeneously, they cannot be applied to predefined

binary variables, such as the NBER recessions, IMF interventions and the like. Essentially,

while being able to incorporate time series dependence in the binary variable, there is no
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clear economic definition of what is really meant by the different regimes (El-Shagi et al.

2012).

Some recent methods may overcome both the Harding and Pagan critique and the identi-

fication problem of Markov Switching models (Kauppi and Saikkonen 2008; Dueker 2005).

Especially the Qual VAR proposed by Dueker (2005) is economically appealing. In the Qual

VAR, a latent variable, driving an observable binary variable, and a number of other observ-

ables (jointly) follow a VAR process.1 Estimating a VAR process instead of a single equation,

thereby exploiting more information, leads to efficiency gains in the identification of the la-

tent variable. Moreover, since the latent variable can be interpreted as a risk indicator for

the event desribed by the binary variable, the VAR structure allows to capture the feedback

of the corresponding risk into the economy. The importance of such an interaction between

observable and latent variable can for example be observed in the current European debt

crisis, where the risk of sovereign default strongly affects government bond interest rates and

vice-versa.

A number of recent papers have used the Qual VAR. Bordo et al. (2008) apply the model to

bull and bear periods on the stock market, Dueker and Assenmacher-Wesche (2010) assess

the recursive forecasting performance of the Qual VAR. This performance is also tested in

comparison to other models by Galvão (2006) and Fornari and Lemke (2010). However, the

present literature concentrates exclusively on the forecasting performance of the Qual VAR.

Furthermore, this evaluation is done based on one specific economic example (i.e. forecasting

the 2001 U.S. recession) rather than being performed in a more general framework. It is

therefore unclear whether the results are applicable universally. Additionally, while the

Qual VAR has been developed for forecasting, the estimates have also been interpreted

economically, e.g. by analyzing impulse response functions derived from coefficient estimates

and considering the latent variable as in sample measure of event probability (Dueker 2005).
1Thus, the Qual VAR is essentially an extension of the dynamic ordered probit of Eichengreen et al.

(1985), as observed by Marcellino (2006).
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However, even if the forecasting performance was generally high, this is not sufficient to

allow a structural interpretation of the results.

Our paper aims at closing these gaps in the literature by providing a range of Monte Carlo

studies. This allows a more general examination of the Qual VAR by considering its per-

formance in idealized settings where the data generating process and the latent variable are

known. First, we assess the in-sample estimation of the latent variable. Second, we ana-

lyze whether or not the Qual VAR identifies the true Granger causality between the latent

and other variables. Third, we test the forecasting performance of the estimated system.

All these tests are performed for a variety of VAR-specifications covering different chains of

causality and uncertainty levels.

The remainder of the paper is organized as follows. In Section 2 we present the estimation

technique of the Qual VAR. Section 3 describes the set of Monte Carlo studies used to obtain

our results. In Section 4 we discuss identification issues, Section 5 contains the results of our

tests of the forecasting performance of the Qual VAR. Section 6 concludes.

2 Estimation of a Qual VAR

The Qual VAR (Dueker 2005) has been developed as a method for forecasting qualitative

variables. Originally, it has been applied to the prediction of recessions and business cycle

turning points. It assumes, that the present state in the qualitative (usually binary) variable

yt is the observable manifestation of a latent variable y∗t :

yt =

⎧⎪⎪⎨
⎪⎪⎩
0 , if y∗t ≤ 0

1 , if y∗t > 0.

(1)
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The unobservable variable y∗ and k − 1 other observable variables X are said to follow a

VAR(p) process:

Yt = μ+ Φ(L)Yt−1 + εt, (2)

where Yt =

⎛
⎜⎝ Xt

y∗t

⎞
⎟⎠ , t = 1, . . . , T is the time index, Φ(L) is the lag polynomial with the

VAR-parameters, μ the constant vector and εt the error vector at t. Errors are assumed to be

multivariate-normally distributed with mean zero and covariance matrix Σ. The covariance

matrix, the parameters Φ of the VAR and the unobservable variable y∗ are jointly estimated

using a Gibbs sampler.

The Gibbs sampler is used to simulate the joint distribution of Λ = (Φ,Σ, y∗). In each

iteration (i), a value for each element of Λ is randomly drawn from its distribution conditional

on the last generated values of all other elements. Depending on the ordering of the elements

in the Gibbs sampler, the last generated value can either come from the current or the

previous iteration. In the first iteration, starting values for the latent variable are randomly

generated (based on the knowledge of the binary variable). Φ and Σ can then be estimated

by OLS and used as initial values.

As in standard ML estimation, the coefficients Φ are assumed to be multivariate-normally

distributed and the inverse of the covariance matrix of errors Σ−1 is assumed to be Wishart

distributed. Each y∗t is drawn from a truncated normal distribution, where the truncation is

determined by the observable binary variable yt.

The order of drawings we use (following Dueker) is Φ → Σ → y∗. That is, we draw(
Φ(i+1)|Y (i),Σ(i)

)
and

(
(Σ−1)(i+1)|Φ(i+1), Y (i)

)
. The vector y∗ is sampled element by element,

where the distribution of the respective element is conditional on the past of the time series

in the current iteration and the future of the time series in the last iteration; i.e., we draw(
y
∗(i+1)
t |Φ(i+1), {y∗(i+1)

k }k<t, {y∗(i)k }k>t, Xt,Σ
(i+1)

)
. If p < t < T − p, y∗(i+1)

t is drawn from the

exact conditional distribution.2 It is not feasible to compute these for t ≤ p and t ≥ T−p. We
2p is, again, the lag order of the VAR.
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follow Dueker (2005), who proposes a Metropolis-Hastings algorithm for the first p periods.

For the last p periods, we use simple VAR forecasts to compute the mean of the distribution

of y∗(i+1)
T−p+1 and subsequently draw errors from a truncated normal satisfying the conditions

imposed by the observable binary variable. Based on y
∗(i+1)
T−p+1, we can compute the value of

the next period accordingly.

Dueker originally proposed to run the Gibbs sampler once with 10,000 iterations and discard

the first 5,000. In contrast, we only use every fifth of the remaining 5,000 iterations to

avoid artifacts caused by the dependencies between consecutive iterations in the sampled

distributions (Casella and George 1992).3 From the resulting sample of 1,000 iterations, we

calculate median variables Λmed, confidence bands and a set of Fry-Pagan estimate variables

ΛFP . Median and confidence bands are calculated for every element in Φ and Σ and y∗

separately. However, in the spirit of the Fry-Pagan critique,4 the set of Fry-Pagan estimates

is a consistent set of elements of Λ. Therefore, we select the iteration with the highest joint log

likelihood as the Fry-Pagan estimate. The likelihoods are computed assuming multivariate

normal distributions for Φ and normal distributions for each element of y∗, where mean and

variance are drawn from the distribution obtained from the Gibbs sampler.5

3 MCMC setup

Our Monte Carlo study aims to test the capability of Qual VAR to identify the latent

variable, to capture the correct chain of causality and to forecast the event driven by the

latent variable. To robustly do so, we must test a range of setups, covering the most im-

portant features of the data-generating process (DGP) that might affect these issues. The
3We deviate from this rule in our forecasting tests as described in Table 2, thereby reducing otherwise

exploding runtimes. Estimations show no great difference compared to the other tests.
4Fry and Pagan (2007) criticize the use of the pointwise median to construct impulse response functions

in SVAR. They argue that while the median is usually the most likely outcome at any point in time, the
sequence obtained from the pointwise median values is not itself necessarily a consistent impulse response.

5We only use Φ and y for this calculation as the variance of the error of the latent variable is always set
to one, making the calculation of a density of the inverse Wishart distribution for Σ impossible.
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first important feature of the DGP is the variance of the error term in the equations gov-

erning the behavior of the observable variable(s).6 The variance strongly affects the degree

of determination in the system and, thereby, both identification and potential forecasting

performances. The second feature of the DGP that we account for is the chain of causality

between observable(s) and the latent variable. While this is obviously essential to answer the

question whether different chains of causality can be distinguished by Qual VAR estimation,

it may also affect identification. Because identification in the Qual VAR exploits both lags

and leads, a causality running both directions potentially simplifies correct identification of

the latent variable.

We aim to cover all of these aspects in the simplest framework possible. Therefore, the true

DGP in all of our simulations uses one observable and the latent variable (k = 2) and one lag

(p = 1). This strongly reduces multicollinearity issues that arise in more complex systems

of interacting variables, which may cause trouble in identification. At the same time, such a

simple DGP is still capable of capturing a range of potential chains of causality and different

degrees of uncertainty. To avoid confusing a lack of power with model uncertainty, the “true”

DGP in our simulations exactly mirrors the assumptions of the Qual VAR. That is the event

occurs if and only if the latent variable is greater than zero.

Our models are simulated for 200 periods, a sample size that is typically found in macroe-

conometric time series applications (such as in the original Qual VAR paper by Dueker

2005).7 The typical economic event that is modeled by the Qual VAR, such as crises, re-

cessions, and business cycle turning points, is rather rare but occurs sufficiently often in the

sample period to obtain a certain idea of the underlying dynamics. That is, for our Monte

Carlo study, the binary process is required to have multiple (blocks of) events while having
6As the scaling of the latent variable is arbitrary, the error variance in its equation is conventionally scaled

to one in estimation. Therefore, we do the same in the true process in all of our MCMC experiments.
7At the same time, this is a good compromise between short samples that might cause additional small

sample problems in the estimation and large samples that rapidly increase computational requirements.
We add a swing in phase of 100 periods to each simulation that is dropped before estimation, thereby
guaranteeing independence from the starting values.
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an overall event probability clearly below 50%. Pretests show that an event probability of

20% satisfies these criteria for all coefficient matrices Φ and covariance matrices of the error

terms Σ considered in this paper.

For simplicity, we set the constant term in the observable equation to zero and assume

diagonal covariance matrices. Therefore, as the variance of the error term in the latent

variable equation, σ2
l , is held constant at one, the volatility of the system is primarily driven

by the variance of the error term in the observable variable equation, σ2
o . Thus, we can scale

this volatility through a single parameter of the MCMC setup. In this context, volatility

may have different implications. In forecasting, volatility is a main driver of uncertainty.

However, if the observable Granger causes the latent variable, a high σo implies that a large

share of the volatility of the latent variable can be attributed to changes in the observable

variable. This can greatly facilitate the identification of the latent variable. If, on the other

hand, the chain of causality implies that the Qual VAR identifies the latent variable mostly

through future values of the observable variable (a backward identification), a large σo may

be an obstacle. To test the influence of σo on the identification and forecasting performance

of the Qual VAR, we use three different specifications of σo: a low volatility specification

with σo = 0.1 (labeled low in the remainder of the paper), an equal variance specification

with σo = σl = 1 (eq), and a high variance specification where σo = 10 (high).

We test all three variance specifications in DPGs covering all potential causality chains;

i.e., (1) the observable Granger causes the latent variable (labeled ol in the remainder of

the paper), (2) the latent variable Granger causes the observable variable (lo), and (3) the

observable and the latent variables mutually Grange cause each other (olo). For all model

structures covered by our analysis, the matrix Φ is given in Table 1.8 To construct examples

with strong causality chains, the parameter on the off-diagonal is set to 0.7 whenever Granger

causality exists. To ensure strong intertemporal dependence and stationarity of the processes
8We do not investigate the possibility that the observable and latent variables are independent (with

possible autocorrelation).
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Table 1: Coefficient matrix Φ for the different causality chains.
observable → latent
no yes

la
te

nt
→

ob
se

rv
ab

le no –
(

0.9 0.7
0 0.2

)

yes
(

0.2 0
0.7 0.9

) (
0.2 0.7
0.7 0.2

)

at the same time, the sum of the off-diagonal parameter and the autocorrelation term in the

same column is restricted to 0.9.

Given Φ and Σ, the probability of an event, i.e., P (y∗ > 0), is driven by the constant term in

the latent variable equation. Assuming that the number of events in the sampled process is

binomially distributed, we develop an acceptance-rejection algorithm where a VAR simulated

with given parameters, covariance matrix and constants is only accepted if the simulated

event probability is not statistically different from the 20%. Otherwise, the constant of the

latent variable is adjusted and the process is resimulated.

In total, we consider nine different settings of the VAR that differ along two dimensions. In

the following, we assess the quality of the in-sample estimation and the forecasting perfor-

mance of the Qual VAR for all settings. Due to the different requirements of the tests, the

number of iterations of the Monte Carlo study and of the Gibbs sampler (applied in each

Monte Carlo iteration) is set individually, as outlined in Table 2. For convenience, the Table

also lists the specifications of the Gibbs sampler as described in Section 2.

4 Identification Problems

In this section, we analyze whether the Qual VAR is able to correctly identify the latent

variable, the parameters and the covariance matrix of the VAR. As described above, the
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Table 2: Monte Carlo and Gibbs Sampler setup.
Identification Forecasting

Section 4 5

MCMC Simulations per model 1’000 10’000

G
ib

bs
Sa

m
pl

er Total iterations 10’000 4’000
Swing in iterations 5’000 2’000
Spacing 5 2
Final iterations 1’000 1’000

Note: A spacing of m means that every mth iteration of the Gibbs sampling is used to compute the final
distributions after discarding the first swing in iterations. Final iterations refers to the number of
iterations chosen in that way.

Gibbs sampler produces a distribution of the elements of Λ that we use to calculate the

median results and Fry-Pagan estimates (Λmed,ΛFP ). Three tests are performed on the

estimations of the Qual VAR. First, we determine whether the estimates of the latent variable

fit the true latent. A low level of accordance would imply that conclusions drawn from the

estimated values of the latent variable must be treated cautiously. We test for unbiasedness

using a method from the forecasting evaluation literature (Holden and Peel 1990). However,

while a perfect fit is a desirable property, economic conclusions from level differences in the

latent variable can be derived if the dynamics are correctly reproduced. Therefore, in our

second series of tests, we focus on the explanatory power of the test equation rather than

on the coefficient estimates that are usually considered. Because the Gibbs sampler enforces

the correct sign of the latent variable, it produces some correlation between the estimated

and the true latent variable by construction, even if the economic story behind the latent

variable is not correctly captured by the model. Therefore, both tests are performed using

non-event periods (i.e., roughly 80% of the sample). The results of those tests are reported

in subsection 4.1.

Because our model features considerable persistence, our previous tests may indicate that

we correctly capture the dynamics of the system, although the turning points of the latent
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time series are shifted. In this case, the economic interpretation of the estimated model

does not replicate the true data generating process. Therefore, in subsection 4.2, we run a

series of Granger causality tests to assess whether the chain of causality implied by the true

parameter matrix is correctly identified.9 A correct estimation of the direction of causality

may be enough for a qualitative, although not quantitative, economic interpretation of the

results obtained by the Qual VAR.

4.1 Correct estimation of the latent variable

To test if the estimated latent variable is an unbiased estimate of the true latent variable,

we regress the two variables.

y∗ = α + βy∗true + ε, 10 (3)

where y∗ can be both the median latent variable y∗med or the Fry-Pagan latent y∗FP . In Table

3, we show the estimates of regression (3) as well as the test results for the hypotheses

α = 0 and β = 1. As the Monte Carlo simulation is run 1,000 times with different true

processes, we present the mean estimate of (α; β) and the share of simulations, where t-tests

(individually) and F-tests (jointly) reject the two hypotheses.

We find that the hypotheses are rejected in the vast majority of cases in all settings. We

generally find α < 0 and β < 1 for both the median and the Fry-Pagan estimate of the

bootstrapped distribution. Both estimates are equally unable to reproduce the true latent

variable. The small difference in rejection rates can be explained by the fact that the median

latent variable essentially is a smoothed version of the Fry-Pagan estimate. The additional

noise in y∗FP causes wider confidence bounds around the parameter estimates, which, in turn,
9Strictly speaking, our test is more restrictive than a traditional Granger causality test, as our tests

require the correct sign of the parameter.
10Contrary to the convention in the forecasting literature, our test equation has the true variable as the

explanatory variable. This increases readability of the test results. A positive constant now implies a positive
bias of the estimates, etc.
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lower the rejection rates.

While the dynamics are not completely captured, the mean of the true latent variable in

non-event periods is close to the mean of the estimates. Because we exclusively consider

negative values of the (true and estimated) latent, β < 1 implies an upward shift that is

compensated by the downward shift implied by α < 0. However, although we reject β = 1

throughout almost all simulations, we often find that β > 0. In all cases except ol,low, β is

significantly greater than zero in every bootstrap iteration. That is, the Qual VAR captures

at least some of the dynamics of the latent variable in most settings. This is partly reflected

by the results of our second test series. However, only in four out of nine cases are the

results convincing with an R2 greater than 0.9. While some more settings (ol,eq, lo,eq and

olo,eq) produce at least moderate results with 0.6 < R2 < 0.8, it should be considered that

the testing environment is rather favorable for the Qual VAR as the true structure of the

model (i.e., the selection of variables and the lag order) is known and we consider particularly

simple models.

When explaining the Fry-Pagan estimate of the latent with the true latent, R2 values are

even lower (see Figure 1). Again, the reason is the lower degree of noise in the median

estimate (compared to the Fry-Pagan estimate). Thus, the difference in R2 is mostly due to

differences in the variance that must be explained, rather than the variance that is explained

by the true latent variable.

Whether the Qual VAR captures the dynamics of the latent variable (as described by the

R2) strongly depends on the variance of shocks in the observable equation. If the observable

Granger causes the latent variable, estimation is simplified by a high σo. If, however, the

latent Granger causes the observable variable, a high σo strongly decreases the R2 of our

test equation. The reason is that in both cases, the latent variable is mostly identified

using information from the observable variable. In the first case (ol), the latent variable is

strongly correlated to past values of the observable variable. Because the entire variation

of the observable variable affects the latent variable, more variance represents information

12
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Note: The reported results are the average of 100 MCMC iterations (instead of the normal 1,000). The
reduction was necessary to reduce runtime to a tolerable level.

Figure 1: R2 of estimation (3) for σo between 0.1 and 10, logarithmic equally spaced.

that can be exploited in the estimation. On the contrary, in the second case (lo), the

latent variable is correlated to future values of the observable variable. However, only the

predetermined part of the observable variable contains information on the latent variable. A

high σo obfuscates the view on the predetermined part of the observable, thus impeding the

estimation of y. This difficulty is slightly alleviated (compared to the case ol) by the high

autocorrelation of the latent variable.

Figure 1 (a) and (b) show the corresponding results for a larger set of different levels of

σo based on MCMC simulations with fewer iterations (100 instead of 1,000). In the olo

settings (see Figure 1 (c)), we find a non-monotonic impact of σo on R2. In this case, we can

draw information on the latent variable from both past and future values of the observable

variable. Initially, when σo increases, the loss of information drawn from the future outweighs

the gains of information from the past. However, when the variance increases further, the

benefit of more information from past observations dominates the impact of σo. In our

case, with symmetric mutual causality between the latent and the observable variables, the

turning point coincides with the equal variance setting (olo,eq).

13



4.2 Correct identification of Granger causality

When testing the correct identification of Granger causality, we report two results. First, for

each parameter in Φ, we report the share of iterations where causality is correctly identified

(see Table 4). To allow sound economic interpretation, the Qual VAR must capture existing

causalities while avoiding the erroneous identification of causalities where none exist. There-

fore, if positive true parameters are considered, we report the share of Monte Carlo iterations

producing significantly positive estimates of the respective parameter. If parameters that are

set to zero are considered, we report the share of iterations producing insignificant results.

Second, as a summary of those results, we report the share of iterations where each of the

four entries of Φ indicates the correct causality.

We find a substantial share of iterations, where at least one parameter produces an incorrect

estimate. Even in the setting where the Qual VAR performs best in this respect, the correct

chain of causality is merely identified in less than 70% of the MCMC iterations (see Gr(all)

in Table 4). The most frequent reason to reject the joint test is the inability of the Qual

VAR to identify weak autoregressive behavior in the latent variable (Φ2,2 = 0.2). In three

additional settings, there are severe identification problems concerning causality (Φ1,2 and

Φ2,1).

First, if the observable Granger causes the latent variable and σo is low (ol,low), the Qual

VAR does not capture this causality in approximately 50% of all iterations. Second, a

similarly high rejection rate is found for the opposite case lo,high, where we are unable to

detect the causality from the latent to the observable. This corresponds to the two settings

where the identification of the latent variable is most difficult. Third, with causality running

from the latent to the observable variable with low σo (lo,low), the Qual VAR incorrectly

finds a significant effect from the observable on the latent variable in roughly 40% of the

Monte Carlo iterations. This is because the actual correlation between past and future

values of the observable is much higher in this setting than indicated by the autoregressive

14
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parameter of the observable (φ1,1 = 0.2). The high persistence of the observable variable

is mostly due to the high persistence of the latent variable (φ2,2 = 0.9) that is the main

driving force of the observable (φ2,1 = 0.7 combined with σo = 0.1). Therefore, y∗ and

correspondingly the observable occurrence of the modeled event (y) is correlated to both

past and future values of the observable variable. Accordingly, the autoregressive coefficient

of the observable variable is overestimated, as implicit autocorrelation (via the latent) is

mistaken for true autoregressive behavior. The autoregressive behavior of the latent variable

is underestimated. This is reflected in the parameter estimates. To a lesser extent, the same

problem is found with higher values of σo for the same causality setting.11

5 Forecasting Performance

To assess the forecasting performance of the Qual VAR, we focus on the event probabilities

implied by out-of-sample density forecasts of the latent variable of forecast horizons ranging

from one to ten periods.

We start with a descriptive analysis of the forecasted probability of the binary event P (ŷ∗T+h >

0) in periods where the binary event occurs at the forecast horizon h (i.e. yT+h = 1), com-

pared to situations with no event at the forecast horizon (i.e. yT+h = 0). This allows us to

obtain an impression of the magnitude of absolute forecast errors and their origin. However,

this approach has two caveats. First, the occurrence of the binary event in the “far” future

is highly uncertain, even when the true data generating process is known. Second, our first

test does not compare the performance of the Qual VAR to a reasonably powerful bench-

mark but merely asks whether the prediction contains any information. Therefore, we run

a second series of tests matching Qual VAR forecasts of the conditional probability against

(direct) probit forecasts and the unconditional event probability by means of the root mean
11As reference, Table 4 also lists the parameter estimates and the share of iterations where the true param-

eter values are within the estimated confidence bounds. However, the high shares we find for most parameters
are often due to extremely broad confidence bounds around the parameters. These broad confidence bounds
are caused by the uncertainty concerning the latent variable that is usually poorly identified.

16



squared error (RMSE). For our application, the RMSE is computed as the difference between

the conditional probability implied by the respective model and the conditional probability

obtained from the true data generating process for every forecast horizon. Being conditional

on information at T , our benchmark accounts for the fact that a certain fraction of the

event probability in T + h is actually unforeseeable in T . Because the second test series is

concerned with whether the Qual VAR fully exploits available information (rather than its

absolute performance), this benchmark is more appropriate than the binary event itself.

Table 5 summarizes the result of our forecast performance evaluation.

5.1 Event prediction

Although we do not formally test against the true probabilities, we report the event proba-

bilities for event and non-event periods derived from the true model as a reference point.12

In all cases except ol,low (where conditional probabilities are always close the unconditional

probability of approximately 0.2), the one period ahead conditional probability in event

(non-event) periods is above (below) 40% (10%).

In all cases where the true model contains substantial information about the risk of an event

in the future, a large share of this is captured by the estimates. Generally, we find that the

estimated probabilities are much closer to the probabilities implied by the true model than

they are to the unconditional probability. That is, more than half of the risk explained by

the true model is also explained by the Qual VAR estimates.

5.2 Forecast comparison

Commonly, RMSEs are computed as the difference between the forecast and the true real-

ization of the variable of interest. Thus, they usually increase over the forecast horizon. On
12The number of MCMC iterations performed is sufficient that the difference between event probabilities

in event and non-event periods that exists by construction given our AR processes is significantly different
from zero.
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the contrary, this is not necessarily true for our application, where the RMSE is defined as

the root mean squared difference between the forecasted probability and the true conditional

probability of an event. Therefore, there are two opposing effects on the magnitude of the

RMSE when the forecast horizon increases. First, the forecast uncertainty increases (as with

the standard definition of the RMSE). Second, both the true conditional probability and the

forecasted probability converge to the unconditional probability. This causes a reduction of

the RMSE over the forecast horizon. The dominant effect varies both between different fore-

cast horizons and between settings. Therefore, we find n-shaped, u-shaped and decreasing

developments of the RMSE when the forecast horizon increases from one to ten.

In all cases, the median forecast has a lower RMSE than the unconditional probability. The

Fry-Pagan estimate performs similarly well, outperforming the unconditional probability in

all settings except ol,low. In this setting, the noise included in the Fry-Pagan estimate makes

it impossible to outperform the unconditional probability, which is – in this case – a quite

accurate approximation of the true event probability.

However, the more appropriate benchmark is given by a simple probit model, i.e., a model

that exploits the observable information also used in the Qual VAR. Contrary to the probit,

the Qual VAR replicates the system dynamics, which are particularly important with respect

to forecasting over a long horizon. Therefore, the medium estimate significantly outperforms

the probit estimate over the five to ten period horizons in all settings. Again, the Fry-Pagan

estimate performs only slightly worse. Whenever the latent variable affects the observable

variable (i.e., all lo and olo settings), these results also hold for the shorter forecast horizons.

Only in the ol setting with high variance in the observable equation can the probit play its

strengths and significantly outperform the Qual VAR over short forecast horizons. In ol,eq,

this holds for a two period ahead forecast because the benefit of explicitly modeling the time

series behavior of the latent variable (as accomplished by the Qual VAR) is very limited in

the ol settings. The latent variable (and thus the event probability) in t+1 depends mostly

on the observable in t and – to a lesser extent – on the latent variable in t. However, the
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impact of lt on lt+1 is strongly reflected in the correlation between ot and lt+1 as both ot

and lt are primarily driven by ot−1. Because the correlation exploited in the probit captures

most of the impact of the lagged latent, the value added of the Qual VAR is generally small.

If this is combined with situations where the importance of the lagged observable variable

(that is included in the probit) is particularly high (e.g. if σo is high), the uncertainty carried

into the model by trying to identify the dynamic behavior over time overcompensates for

the benefits of the identification. This argument is visualized in Figure 5.2 (a).

On the contrary, the probit forecast performs extraordinarily poorly in the lo settings. In

lo,high, probit cannot even outperform an unconditional forecast. Because a causal link

between the lagged observable and the contemporary latent – as modeled by the probit –

does not even exist in this case, the probit must entirely rely on the correlation between ot

and lt caused by a common origin (lt−1) (see Figure 5.2 (b)). Especially if σo is high, the

correlation between ot and lt is low, thereby further obfuscating the dynamics.

Finally, in the olo cases, there once again is a direct relation between ot and lt+1 (Figure 5.2

(c)). However, as lt−1 is only weakly related to lt (and similarly ot is only weakly affected

by ot−1), the correlation between ot and lt is small irrespective of their common sources.

Therefore, compared to ol, it is more difficult for probit to partly capture the effect of the

autoregressive dynamics of the latent variable through the correlation between ot and lt+1.

This explains why Qual VAR can, again, outperform probit regardless of the strong link

between the observable and the latent variables.

6 Conclusions

Our results on the performance on the Qual VAR are mixed. The forecasting performance

is fairly good. Most notably, compared to a standard procedure in binary forecasting such

as a probit, the Qual VAR generally adds substantially. Especially if the dynamic behavior

of the latent variable is relevant, the Qual VAR is strong. Even in situations where the Qual
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VAR cannot play its strength (such as in short horizon forecasts in our ol settings), the loss

compared to the probit benchmark is moderate and the absolute forecast errors are minimal.

However, Qual VAR has severe problems in the identification of the economic story. Although

the Qual VAR is only confronted with rather simple models in our MCMC framework, it

produces substantial errors when estimating the dynamics of the latent variable. Moreover

– and at least as problematic from an economic perspective – is the Qual VAR’s failure

to capture the correct Granger causality in approximately 50% of our simulations. As the

Granger causality essentially tells which setting prevails, it is difficult to identify the true

setting (i.e., the general economic story). Because the quality of the identification of the

latent variable strongly depends on the setting, it is basically impossible to determine whether

the Qual VAR results are reliable.

Thus, while providing a good forecasting tool, using the Qual VAR is unadvisable with

respect to economic analysis.
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