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Abstract

The theoretical framework of wave packet dynamics can be applied to describe

many aspects in molecular physics and the interaction of matter and light. In this

thesis wave packet dynamics occurring in various molecular systems have been

investigated. This includes the simulations of nuclear wave packet dynamics in dif-

ferent electronic states of diatomic molecules initiated by femtosecond laser pulses.

With these simulations the theoretical analyses of femtosecond time-resolved four-

wave mixing experiments was possible. Furthermore a theoretical description of

non-resonant multi-photon excitations has been given, which allows to study the

wave packet dynamics initiated by such processes in the time domain. This is es-

sential for the application of non-resonant femtosecond laser pulse excitations to

control and investigate molecular dynamics. A further focus of this thesis is the in-

vestigation of excitation energy transfer in biological pigment complexes. A hybrid

quantum classical approach is applied to describe excitonic wave packet dynamics

in such complex molecular aggregates. This approach was verified within an artifi-

cial test system an then applied to the light harvesting system II of a purple bacteria.

To perform simulations on this system, data from all-atom classical molecular dy-

namics simulations have been used to construct a model system for this complex.

This allowed for the investigation of the excitation energy transfer dynamics which

are an important aspect of the light harvesting process in photosynthesis. For these

systems it was shown that the wave packet approach in combination with classical

molecular dynamics simulations is a powerful tool to describe quantum dynamical

processes in large molecular systems.
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1. Introduction

In the last decades there has been a strong trend in science towards the investi-

gation of ever-smaller structures leading to the ubiquitous field of nano science

aiming to understand the structure and functionality of nature on a molecular scale

[1]. The structure of molecular systems can be exposed with high spatial resolu-

tion using tools like atomic force and scanning tunneling microscopes as well as

X-ray diffraction. Alongside these experiments, the rapid progress made in the de-

velopment of ultra short laser pulses opened the possibility to observe elementary

dynamical processes in molecular systems in real time. With today’s experimental

techniques it is for example possible to monitor the fundamental nuclear motions

in molecules during the absorption of light or within the progress of chemical reac-

tions [2]. Also the atomic structures and quantum dynamical processes occurring

in complex biological molecules optimized for functionality over millions of years

of evolution can be resolved in detail [3, 4].

Although these experiments yield a multitude of detailed information about the

nature of nanoscopic systems they are sometimes not sufficient to understand the

complete course of processes in those systems leading to specific behaviors. Owing

the development of modern computer systems [5, 6] with high processing capac-

ity for complex calculation-intensive tasks over the last years it became feasible to

model and simulate these kind of systems on an molecular level [7]. These simu-

lations provide a new approach for the investigation of the fundamental processes

in molecular systems. Still these simulations are limited and complete quantum

mechanical calculations can only be performed for very small systems containing

only a few atoms. But a complete description is often not necessary since a reduced

model system can be sufficient to reproduce experimental results. The construction

of such model systems is already the first step in understanding a system because

the key properties of the system need to be determined.
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1. Introduction

The work presented here addresses the simulation of two different kinds of ultra-

fast processes in molecular systems. In the first part the nuclear motions in small

molecular systems induced by sequences of ultrashort femtosecond laser pulses are

investigated and compared to experimental results. The second part applies to the

simulation of energy transfer processes in large molecular systems. In both cases

the wave packet formalism [8] is used to simulate the quantum dynamics which

governs their time-dependent characteristics.

The experimental observation of nuclear wave packets in molecules was enabled

by the availability of ultrashort laser pulses and opened a new field in chemical

physics. The field of femtochemistry [2, 9, 10] which enfolds the investigation of

elementary molecular processes using ultrashort laser pulses evolved in the late

90’s initiated by the experiments performed by A. Zewail and co-workers [2, 9].
Today laser pulses can be generated in a spectral range spanning from ultraviolet

to far infra-red. These laser pulses can be used to initiate and monitor the complex

dynamics in molecular systems ranging from diatomic molecules [2] to complex

biological systems [11, 12]. The basic concept of most of these time-resolved fem-

tosecond spectroscopy experiments are pump probe schemes [13] where one laser

pulse is employed to initiate dynamics in the system and a second laser pulse with

a femtosecond time delay is used to probe the system. In contrast to other spec-

troscopic methods based on absorption, emission or scattering of light these time

resolved experiments yield additional information about the chemical dynamics in

the molecules. Femtosecond laser pulses are spectrally very broad so that an in-

teraction with these pulses excites multiple states in the molecule coherently. This

coherent superposition of eigenstates forms a wave packet whose time evolution

can be monitored in the spectroscopic signal in form of quantum beats. Since the

wave packet is the solution for the time-dependent Schrödinger equation [14, 15]

iħh
∂

∂ t
|Ψ(t)〉= H(t) |Ψ(t)〉

of the system, these experiments offer the possibility to visualize a quantum system

evolving in time. In addition to the simple two pulse pump-probe schemes other

non-linear spectroscopic methods have been employed [16]. This work focuses on

the simulation of time-resolved four wave mixing (FWM) experiments. The FWM
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scheme involves the use of three non-linear electric fields interactions to create

a fourth wave which obeys energy conservation and phase matching conditions.

The time-dependent response of the molecule to these pulse sequence is given by

the induced third-order non-linear polarization [16–18]. The FWM spectroscopy

offers many degrees of freedom allowing for a separate analysis of different elec-

tronic states by varying timing, polarization and wavelength of the pulses. Another

advantage is the generation of a strong background free signal due to the phase

matching condition. The FWM scheme can also be combined with an initial pump

pulse to access high-lying electronic states [19].

Already small molecular systems like diatomic molecules show very complex dy-

namics [20, 21]. For these systems the nuclear Schrödinger equation including the

interaction with the laser fields can be solved numerically with an precision that

allows for an exact comparison to experimental results [22]. The simulations pre-

sented in this thesis are motivated by experiments performed in the group of Prof.

A. Materny [23–25]. They used a combination of FWM with an initial pump pulse

to investigate the dynamics in high-lying electronic states including ion-pair states

in molecular bromine and iodine. The measured signals for bromine showed some

interesting features which could be identified using our simulations as contribu-

tions from hot ground states. In the past years there have been a lot of publications

concerning femtosecond spectroscopy of iodine and bromine, experimentally [26–

30] and theoretically [31–33]. But most of this work was objected to ground state

dynamics. Here we extend the investigations to higher lying electronic states using

the pump FWM scheme. Iodine and bromine are well characterized by frequency-

resolved spectroscopy [34–41] so that the excitation energies for the vibronic states

in many electronic states are well known. Using this data it is possible to construct

very accurate potential energy surfaces for the electronic states of these molecules

which are of essential importance for accurate simulations. This fact makes these

molecules excellent model systems for testing new spectroscopic methods. The

exact knowledge of the excitation processes in such simple systems also opens the

way to prepare and probe specific states in the molecule which is an key element for

the development of quantum computers [42] or the control of chemical reactions

[43].

A common approximation in building model system for theoretical spectroscopy is

to truncate the the used state space to only those bound electronic states which are
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1. Introduction

directly involved in the interaction with the laser pulses [8]. But there are of course

an infinite number of unbound electronic states which may also contribute to the

spectra [44]. These states become important for multi-photon processes where the

energy of two or more photons induces transitions which do not involve interme-

diate states to support them [45–47]. This can be a two-photon excitation where

the photon energy is half of the fundamental optical transition or non-resonant Ra-

man processes, where the energy difference of two photons matches an transition

energy in the molecule. Theoretically these non-resonant processes can be treated

conveniently in the frequency domain [16] but that will not allow for the study of

time-resolved experiments. For that reason we investigated methods to simulate

these processes in time domain. The used theory is based on a projection operator

formalism in the framework of a time-local approach and compared to time-non-

local approaches [48, 49]. This formalism also considers a reduced states space of

levels involved in the transitions but additionally contains an effective coupling to

the manifold of off-resonant states. In this work reasonable approximations for the

formulation of the effective coupling are discussed and verified for two and three

photon transitions in a two level model system.

An other application of wave packet simulations which is utilized in the scope of

this thesis is the simulation of excitation energy transfer (EET) in complex bio-

logical systems [50–53]. The usual size of these molecular complexes ranges in

an order of magnitude of several hundred thousand atoms [54]. Therefore a full

quantum simulation of these systems are at present computationally prohibitive.

To simulate these systems multi scale modeling approaches are needed [7]. The

first choice to describe energy changes in such large systems are usually classical

molecular dynamics (MD) simulations [55–57] because they can be performed with

relatively low computational costs. In the MD simulations all the interactions be-

tween the atoms in the system are encoded in force fields which are then employed

to calculated the structural changes using Newton’s classical equations [58]. The

problem with these simulations is that they completely ignore quantum effects and

do not allow for the calculation of optical properties. To circumvent this deficiency

hybrid quantum/classical methods [7] are used because in most cases a full quan-

tum description is only needed for some degrees of freedom of the system. One

way is for example a the time-dependent combination of molecular dynamics (MD)

simulations and quantum chemistry (QC) methods to calculate a time-dependent
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Hamiltonian of the quantum subsystem which can subsequently be used for an

ensemble-averaged wave packet simulation [59, 60]. An other way is to utilize

density matrix calculations based on spectral densities which can also be calcu-

lated from the MD/QC results [48, 61]. Here we focus on wave packet calculations

which employ the time dependent Hamiltonian from the MD simulations directly

and therefore make use of their complete information with out truncating them into

spectral densities. One disadvantage of the wave packet simulations is the fact that

it includes an implicit high-temperature assumption and therefore does not equili-

brate into the correct thermal state. Methods which can resolve this issue will be

discussed and tested in the following on a two level system coupled to a bath.

This thesis is organized as follows:

The subsequent chapter contains an introduction to the basic aspects of the wave

packet formalism for the calculation of spectroscopic signals. Therefore a short in-

troduction to the general aspects of femtosecond time-resolved four wave mixing

spectroscopy is given followed by an elucidation of the details for the numerical so-

lution of the time-dependent Schrödinger equation for nuclear motions in diatomic

molecules and the construction of potential energy surfaces from excitation ener-

gies. The last part of this chapter explains how non-linear spectroscopic signals can

be calculated from the solutions of the time-dependent Schrödinger equation. Per-

turbative and non-perturbative methods are discussed. Furthermore the methodol-

ogy for the incorporation of an initial pump pulse in the FWM scheme is detailed.

In addition a short overview of the setup used in the FWM experiments which were

used for comparison to the simulations is given here.

The application of these methods to the interrogation of vibrational dynamics oc-

curring in high-lying electronic states is detailed in chapter 3 following our publi-

cation [62]. As a first test case for this methods simulations for pump degenerate

four wave mixing (pump-DFWM) experiments on molecular iodine in gas phase

are simulated and compared to experimental results measured in the group of Prof.

A. Materny. Pump-DFWM is a FWM scheme, in which all pulses have the same

wavelength. First an introduction to the spectroscopic properties of iodine is given

followed by a description of a model system for the iodine molecule. The spec-

troscopic pathways which contribute to the FWM signal are detailed in a further

paragraph. The calculated results are then compared to the experimental outcome
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1. Introduction

for a set of different wave lengths and time orderings of the FWM pulses.

In chapter 4 simulations for pump-DFWM experiments on molecular bromine in gas

phase are presented. In the experiments the dynamics in the excited B state were

monitored via transitions to ion pair states and showed different vibrational en-

ergy spacings for different DFWM wavelengths. The simulations were able to show

that these different spacings arise from contributions of hot vibrational states in the

electronic ground state. The experimental signal was dispersed and then recorded

using a CCD camera which allowed for a frequency and time-resolved detection.

The theoretical results were also calculated frequency and time resolved resulting

in 2D spectral maps which were compared to the experimental results. The ex-

planations in this chapter include details of the used model system for bromine, a

comparison of theory and experiment followed by a discussion of the latter [63].

The vibrational dynamics in ion-pair states of molecular bromine are investigated

in chapter 5. Here a similar methodology as in chapter 3 is used and applied to

bromine but were extended to also include frequency and time resolved signals.

Here the simulations are used to identify the contributions of different electronic

states to signal. The theoretical modeling for this case is explained in detail fol-

lowed by a discussion of theoretical and experimental results as published in Ref

[64].

Chapter 6 introduces a time-local formalism for the description of non-resonant

multi photon transitions between the electronic states of a molecular system pub-

lished in Ref. [65]. It is based on a projection operator formalism leading to time-

dependent Schrödinger equations which include effective couplings to manifold of

off-resonant electronic states. To enhance the computational efficiency, the slowly

varying amplitude approximation is invoked and tested. The validity of this approx-

imation is verified numerically for two and three-photon processes.

In chapter 7 the application of wave packet simulation for the investigation of exci-

tation energy transfers in quantum systems coupled to an environment is discussed

in the context of hybrid quantum/classical methods. Therefore an artificial two-

level Hamiltonian is created using statistical algorithms. This Hamiltonian mimics

a two-level system which is coupled to a bath with a specific spectral density. Using

this Hamiltonian, ensemble averaged wave packet simulations are performed, dis-

cussed and compared to dissipative density matrix calculations. As stated before,
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the wave packet calculations comprise an implicit high-temperature assumption so

that the correct thermal equilibrium distribution is not reached in the long time

limit. There exist some attempts to overcome this drawback. Here we investigate a

method proposed by A. Bastida and co-workers [66–68] which modifies the system

bath couplings an a way that the dynamics obey the correct temperature behavior.

This methodology will be explained in detail and applied to the two-level model

system. The results are compared to dissipative density matrix calculations which

exhibit the correct temperature behavior. Finally these calculations are applied to

Hamiltonians calculated from resent MD/QC calculations of the light harvesting

complex II found in the photosynthetic apparatus of purple bacteria [59, 69, 70].

The last chapter summarizes the results of the work presented in this thesis.
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2. Wave-packet simulation of

non-linear femtosecond

spectroscopy

In this chapter the basics of the theoretical description of nonlinear time-resolved

spectroscopy are detailed. For a deeper insight we refer to several textbooks [8, 16–

18] on this subject. Here are those details specified which are essential for the the-

oretical description of four wave mixing spectroscopy of diatomic molecules, which

will be matter of the next chapters. An direct extraction of the excitation processes

from the experimental results is in some cases not possible and the interpretation

of experimental results becomes complicated. Thus, simulations are an important

instrument to investigate the molecular dynamics. To explain the theoretical model

system for these simulations an overview of the experimental methods is given

first.

2.1. Femtosecond time-resolved four-wave mixing

spectroscopy

Four-wave mixing (FWM) spectroscopy involves the interaction of three laser beams

with a medium generating a fourth beam, the FWM signal. The advantages of

FWM spectroscopy are a high signal to noise ratio and a coherent laser like signal

beam, allowing for a sensitive detection of molecular dynamics. Also the various

degrees of freedom offered by this method allow to explore a multitude of aspects

of molecular dynamics by changing the time ordering, wave lengths, polarizations

durations and shapes of the incident pulses. FWM can be realized in different

17



2. Wave-packet simulation of non-linear femtosecond spectroscopy

g

e
Δt

ω2 ω3ω1 ωDFWM

kDFWM

kPu3

kPu2

kPu1

Pump
3

DFWM
SignalPin-hole

Lens

Sample

Lens1 2

Figure 2.1.: left: Energy diagram showing the molecular transition of the DFWM process
in a two level system. middle: BOXCARS beam geometry. The three pulses pass trough the
corners of a box and are the focused by a lens on the sample. The signal emerges spatial
separated from the incident pulses and can be separated with a pinhole due to the phase
matching condition. right: Wave vector diagram for the DFWM experiment.

schemes, as for example coherent anti-Stokes Raman scattering (CARS), photon

echo (PE) and degenerate four-wave mixing (DFWM) [71, 72].

In its time-resolved form FWM is a very powerful tool to prepare, manipulate, and

observe molecular dynamics [16]. To achieve this, three laser pulses of different

wave lengths (CARS) or equal wavelength (DFWM) are used to excite the medium

in a specific time order. The generated fourth beam shows a time variation which

depends on the temporal order of the pulse sequence. By analyzing the detected sig-

nal, informations about the dynamics in ground and excited state can be obtained.

If these experiments are carried out with femtosecond laser pulses the time ordering

can be controlled in fractions of femtoseconds which allows to monitor molecular

vibrations, which happen on such time scale, directly. Since the spectrum of the

pulse is related to the temporal shape by its Fourier transform, femtosecond pulses
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2.1. FWM spectroscopy

are spectrally broad. A 100 fs pulse of wave length 800 nm has, for example a

spectrally width of about 10 nm (20 meV). Since this is in most cases more than the

energy spacing of vibrational states in molecules several modes are excited coher-

ently. The dynamics of these modes are then reflected in the measured signal. As

mentioned above, the FWM refers to a non-linear process of four interacting elec-

tromagnetic waves. The response of the medium to this electromagnetic radiation

is described by the induced polarization. In the case of the non-linear FWM, the

response is characterized by the third-order polarization, which is proportional to

the third power of the field strength and given by

P(3) = χ(3)E1E2E3 , (2.1)

where χ(3) is the third-order non-linear optical susceptibility. The wave vector kS of

the signal fulfills the phase-matching condition

kS =±k1± k2± k3 (2.2)

and also the frequency of the signal is a linear combination of the incident frequen-

cies

ωS =±ω1±ω2±ω3 . (2.3)

This spatial and energetic separation of the signal from the incident laser beams

makes it easy to separate both from each other. The sign of the wave vectors and

frequencies depends on the used beam geometry. The experiments which are object

of the presented theoretical work are DFWM experiments [73, 74] with a folded

BoxCars [75] geometry shown in Fig. 2.1. Therefore the phase matching condition

reads

kS = k1− k2+ k3 . (2.4)

Since the wave lengths of the three incident pulses are of identical frequencies, the

signal frequency is also the same

ωS =ω1 =ω2 =ω3 . (2.5)
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Figure 2.2.: Pump DFWM scheme used for the investigation of the dynamics in higher lying
electronic. The initial pump pulse creates a wave packet in the first excited state, which is
then probed by a DFWM process via higher electronic states. The potential energy surfaces
shown here belong to molecular bromine.

An wave vector and energy diagram are depicted in Fig. 2.1 to illustrate the DFWM

scheme.

2.1.1. Pump-DFWM

In order to access higher lying electronic states, the DFWM process can be combined

with an additional pump pulse. These schemes are referred to as pump-DFWM

[19]. Fig 2.2 shows the pump-DFWM applied to three electronic states in molecu-

lar bromine. In these experiments, a wave packet is excited from the ground state
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2.1. FWM spectroscopy

to the first excited state in a first step called the initial pump. This initial pump

pulse, which is in resonance with a transition from ground to first excited state

is a spectrally broad femtosecond pulse, which creates a superposition of vibra-

tional states, a wave packet, in the first excited state. After a time delay ∆T , a

conventional DFWM process is used to probe the excited state wave packet. In the

experiments under investigation, one of the laser pulses was time delayed relatively

to the other two time coincident laser pulses over a time range of several picosec-

onds, the time zero of the DFWM process, ∆t = 0 ps, was defined by the temporal

overlap of all three pulses. ∆T on the other hand was measured as time delay

between the initial pump and the two time coincident DFWM pulses. Scanning ∆t

yields a time-dependent signal, from which the dynamics of the first excited state

and higher lying electronic states can be obtained. These experiments were per-

formed by A. Scaria and are explained in detail in his PhD thesis [25]. However,

for the purpose of completeness a short summary of the experimental setup is given

below.

2.1.2. Experimental setup

A commercial femtosecond laser system (Clark-MXR Inc., CPA-2010) in combina-

tion with two optical parametric amplifiers (OPAs; TOPAS, Light Conversion) was

used to provide the femtosecond pulses at different wavelengths required for the

experiment. The output of one of the OPAs served as initial pump pulse. In order

to obtain the three four wave-mixing (FWM) beams, the output of the second OPA

was split into three equal parts. The pulses had a temporal width of 150 fs with

an average energy of 1 mJ per pulse. A spatial and at the start of the experiment

also a temporal overlap of the beams in the sample was required for the FWM pro-

cess. The time delay between the pulses was realized with computer-controlled

linear translation stages in Michelson interferometer arrangements. The temporal

overlap of the beams was determined by using the optical Kerr effect [76] for the

ultraviolet beams. The time zero point was defined as the positions of the delay

stages were the beams coincided in time. A three-dimensional forward geometry

(Folded BoxCARS) [75] arrangement was used, which fulfills the phase matching

condition and provides a good spatial separation of the signal. Using a lens, the

four beams were then focused into the cuvette containing iodine. After interaction
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2. Wave-packet simulation of non-linear femtosecond spectroscopy

with the sample, the spatially separated DFWM signal was spatially filtered out by

a pinhole. The collimated signal was then focused onto the entrance slit of a single

monochromator and after dispersion detected using a Peltier-cooled CCD camera.

Since the signal is of the same wavelength as the incoming FWM beams, extreme

care was taken to minimize background due to scattering from the walls of the

cuvette.

2.2. Theory and model

The signals measured in the previously mentioned experiments are primarily gov-

erned by the vibrational dynamics of the investigated molecular system. Traces of

rotational motion are also present in the measured signals but they have in general

a minor influence on the basic features of the experimental outcome in these sys-

tems. Since our aim was to achieve a very accurate simulation of the experimental

results we chose a model system containing only the key properties but focused

on calculating the parameters as accurate as possible. The next sections explain

the methodology of building a model system for the simulation of these diatomic

molecular systems.

2.2.1. Time-dependent Schrödinger equation for nuclear motion

The time evolution of the molecular system is governed by the time-dependent

Schrödinger equation

iħh
∂

∂ t
|Ψ(t)〉= Hmol(t) |Ψ(t)〉 (2.6)

where |Ψ(t)〉 represents the current state of the molecular quantum system includ-

ing nuclei and electrons. The molecular Hamiltonian Hmol(t) which generates the

time evolution of |Ψ(t)〉 consists of the operators for kinetic energies and Coulomb

interactions between nuclei and electrons

Ĥmol = T̂ + V̂

= T̂el + T̂nuc + V̂el−el + V̂nuc−nuc + V̂el−nuc . (2.7)
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2.2. Theory and model

The stationary properties of this molecular system are determined by the solutions

of the time-independent Schrödinger equation

Ĥmol |Ψ〉= ε |Ψ〉 . (2.8)

The solutions of this equation provides the energy spectrum εn with its correspond-

ing eigenvectors |Ψn〉. The systems wave function can be obtained by projecting the

state vector to Cartesian coordinates

Ψ(r,σ,R) = 〈r,σ,R|Ψ〉 , (2.9)

where r and R are the sets of position vectors of all electrons and nuclei and σ

the electrons spin. The probability distribution |Ψ(r,σ,R)|2 of the wave function

comprehends the spatial arrangement of electrons and nuclei.

2.2.2. Born-Oppenheimer separation

For the solution of Eq. 2.6 it is advantageous to separate the system in an electronic

and a nuclear part. This is reasonable due to the fact that the electrons move

much faster than the nuclei because they are three orders of magnitude lighter. In

general, this leads to an instantaneous response of the electrons to a change in the

nuclear configuration, i.e., the electron-nuclei interaction depends adiabatically on

the motion of the nuclei. Thus, the electron wave function can be considered as

a stationary state and it is reasonable to define an electronic Hamiltonian which

depends parametrically on the nuclear coordinates

Hel(R) = Tel + Vel−nuc + Vel−el . (2.10)

The solutions of the time-independent electronic Schrödinger will give the station-

ary electronic wave functions φa(r, R) for a given nuclear configuration

Hel(R)ψa(r, R) = Ea(R)φa(r, R) . (2.11)
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2. Wave-packet simulation of non-linear femtosecond spectroscopy

These solutions define a complete basis in the electronic Hilbert space in which the

molecular wave wave function can be expanded as follows

Ψ(r, R) =
∑

a

χa(R)φa(r, R) . (2.12)

The expansion coefficients χa(R) depend only on the nuclear configuration and can

be interpreted as nuclear wave function. Using this expansion within Eq. 2.8 yields

an equation for the nuclear wave function which reads

Tnucχa(R) +
∑

b

Θabχb(R) = (ε− Ea(R))χa(R) . (2.13)

Here Θab are the so-called nonadiabaticity operators [48] which are responsible

for transitions between individual adiabatic electronic states. Further, an effective

Potential can be introduced to simplify Eq. 2.13. This effective potential consists

of the electron energy for the given electronic state a and the interaction energy

between the nuclei

Ua(R) = Ea(R) + Vnuc−nuc(R) . (2.14)

As long as these potential energy surfaces do not cross, the Born-Oppenheimer

approximation can be applied, i.e., the nonadiabatic coupling terms Θab in Eq.

2.13 can be neglected. With this approximation and the effective potential the

time-dependent Schrödinger equation for the nuclear motion becomes practically

solvable. The molecular state vector can be written as product of electronic and

nuclear state.

|Ψ(t)〉=
∑

a

|χa(t)〉 |φa〉 (2.15)

The Hamiltonian for the nuclear motion in different electronic states can be defined

using the effective potentials

Ĥmol =
∑

a

|φa〉Ua 〈φa| (2.16)
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and the respectively the time dependent Schrödinger equation for the nuclear mo-

tion in a specific electronic state

iħh
∂

∂ t
〈φa|Ψ(t)〉= iħh

∂

∂ t
|χa(t)〉= 〈φa|Ĥmol |φa〉 |χa(t)〉 (2.17)

The state vector |Ψ(t)〉 contains the probability of the molecular system being in a

specific electronic state |φa〉

Pa(t) =
�

�〈φa|Ψ(t)〉
�

�

2
. (2.18)

Solving the static version of Eq. 2.17 yields the vibronic eigenstates and energies

which can be used to further expand the nuclear wave vector.

〈φa|Ψ(t)〉= χa(t) =
∑

ν

ca
ν(t) |χ

a
ν〉 (2.19)

2.2.3. Potential energy surfaces

To build up an accurate model system for the molecule it is essential to have very

precise potential energy curves. Basically these PESs can be calculated ab initio by

solving the static Schrödinger equation for the electron wave function. If high res-

olution spectroscopic data for the excitation energies of the molecule are available,

it is possible to calculate PESs from this data which are order of magnitudes more

precise then those obtained from ab initio calculations. Especially for diatomic

molecules these surfaces can be calculated very accurately using the Rydberg-Rees-

Klein (RKR) Method [77–80]. The basic idea behind this method is to take the

measured excitation energies and fit them to a function giving the energy for a cer-

tain vibrational quantum number ν. This can be done using the Dunham expansion

where the ν dependence of the vibrational energies Gν and the inertial rotational

constants Bν are represented by a power series

Gν =
∑

l=0

Yl,0

�

ν+
1

2

�l

(2.20)
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2. Wave-packet simulation of non-linear femtosecond spectroscopy

Bν =
∑

l=1

Yl,1

�

ν+
1

2

�l

(2.21)

using the Dunham coefficients Yl,k. These functions are then used to calculate the

Klein integrals which yield the inner and outer turning points of the potential. There

exist two programs written by Robert J. Le Roy from the University of Waterloo. The

first is called RKR1 [81] and computes RKR PESs from given Dunham coefficients

and the second one LEVEL [82], a program to calculate eigenenergies from a given

PES, which was used to cross check the results of the RKR calculation. With the

effective PES for a certain electronic state a given, the molecular Schrödinger equa-

tion now reads

Ha(R)χa(R) =
�

Tnuc + Ua(R)
�

χa(R) = εχa(R) (2.22)

where Ha is the nuclear Hamiltonian for the electronic state |φa〉. So the complete

time dependent Schrödinger equation can be written as

i
∂

∂ t
|Ψ(t)〉=

∑

a

|ψa〉 Ĥa 〈ψa|Ψ(t)〉 . (2.23)

2.2.4. Interaction with electric fields

To include the interaction with a laser field in the nuclear Schrödinger equation an

interaction Hamiltonian Ĥ f ield(t) is added to Eq. 2.6

i
∂

∂ t
|Ψ(t)〉= Ĥmol |Ψ(t)〉+ Ĥ f ield(t) |Ψ(t)〉 . (2.24)

The interaction Hamiltonian contains the coupling between the electric field and

the molecule, to arrive at an equation for this Hamiltonian the dipole approximation

can be used, which gives

H f ield(t) =−µ̂E(t) (2.25)
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for the interaction Hamiltonian. µ̂ is the operator of the electronic dipole moment

which is responsible for the radiative coupling of the molecular states. It is the

key molecular property which mediates its interaction with the light. The dipole

operator consist of the transition dipole moments µab between two electronic states

a and b

µ̂=
∑

a,b

|φa〉 µ̂ab 〈φb| . (2.26)

The transition dipole moment depends on the nuclear coordinates and can be cal-

culated as follows

µab(R) =

∫

dr φa(r, R)

 

∑

i

−eri

!

φb(r, R) . (2.27)

In most cases it is sufficient to approximate the transition dipole moment as a con-

stant. Therefore the nuclear Schrödinger equation for a specific electronic state a

takes the form

i
∂

∂ t
|χa(t)〉= Ĥa |χa(t)〉+

∑

b

µ̂abE(t)χb(t) . (2.28)

In this framework the light induced vibrational dynamics manifest themselves as

motion of the nuclear wave packet χa(t). For the numerical solution of the time-

dependent Schrödinger equation the wave function is, for example, represented on

a spatial grid [83] or expanded in a basis defined by the eigenstates of the system

|Ψ(t)〉=
∑

n

cn(t) |n〉 . (2.29)

The latter approach yields a set of coupled differential equations for the expansion

coefficients

∂

∂ t
cn(t) =−

i

}h

�

Hnncn(t)−
∑

m

〈n|µ̂|m〉 E(t)cm(t)

�

. (2.30)

Since these equations are first-order differential equations, in principle all numer-

ical tools solving these could be applied, such as adaptive Runge-Kutta [84] or
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2. Wave-packet simulation of non-linear femtosecond spectroscopy

predictor-corrector schemes. Over the years however other efficient and meanwhile

widely used methods (e.g. split operator, Chebyshev, Lanczos) have been devel-

oped, an overview is given in Ref [85]. Some of the advantages are that they allow

accurate control over the propagation error, make a balanced overall treatment

possible by using the Fourier representation and usually conserve the constants of

motion. Using these wave packet methods the time evolution of the complete wave

function is calculated. This approach makes it possible to monitor the dynamics

in the molecular system in a very intuitive way. However, even for rather simple

molecules like the diatomic iodine the number of differential equations which need

to be solved can exceed a number of 104 if the rotational and vibrational motions

of the nuclei are considered. As mentioned above the usage of wave packets on

electronic surfaces is restricted by the validity of the adiabatic approximation. For

systems which exhibit phenomena like strong electronic and vibrational couplings,

fast vibrational relaxation or dissipative effects alternative methods are needed

[86]. Also for larger multidimensional systems a complete wave packet calcula-

tion would exceed our computational resources, therefore further approximative

methods like multiconfiguration time-dependent Hartree (MCTDH) [87–89] have

to be used.

2.2.5. Calculation of nonlinear optical response

The fundamental observable in spectroscopy is the molecular polarization which is

induced by the electrical field of the incident laser pulses. This electric field can be

described using the ansatz

E(t) =
∑

n

En fn(t − Tn)
�

e−iωn(t−Tn)+ikn x + eiωn(t−Tn)−ikn x
�

(2.31)

where En is the amplitude, fn(t) the shape, ωn the frequency, kn the wave vec-

tor and Tn the temporal center of laser pulse n. Using this expression in the

time-dependent Schrödinger equation 2.28 allows to calculate the evolution of the

molecular wave function during the excitation process with the FWM pulses. The

molecular polarization is then given as the expectation value of the molecular dipole
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moment[8, 16]

P(t)≡ 〈Ψ(t)|µ̂|Ψ(t)〉 . (2.32)

This is the total polarization field of the molecule containing all powers of the elec-

tric field. As explained before, in FWM spectroscopy a special beam geometry is

used to single out a specific dynamical pathway which makes it necessary to de-

compose the total polarization and single out those terms which contribute to the

specific direction given by three different incident wave vectors. Since the electric

field strength of the laser pulses is weak an perturbative expansion of the polar-

ization in powers of the field strength is sufficient to describe the optical response

of the system. This method will be described in the next paragraph. It is also

possible to calculate the contributions of specific pathways in a non-perturbative

manner directly from the exact solutions of the time dependent Schrödinger equa-

tion [22, 90–94]. This would circumvent the multiple time-integrals appearing in

the perturbative treatment but therefore need many parallel propagations of the

wave function. This method will also be detailed in the following.

Perturbative approach

The expansion of the polarization field in powers of the field strength reads

P(t)≡ 〈Ψ(t)|µ̂|Ψ(t)〉= P(1)(t) + P(2)(t) + P(3)(t) . (2.33)

The signal of the FWM processes is generated by the third-order polarization P(3)(t).
To calculate this, the wave function of the system is expanded in terms of the ap-

plied laser field strength

|Ψ(t)〉= |Ψ(0)(t)〉+
∑

n,m,l

�

|Ψ(1)kn
(t)〉+ |Ψ(2)kn,km

(t)〉+ |Ψ(3)kn,km,kl
(t)〉
�

. (2.34)

Here the kn denotes the different laser pulses. Since there are three different laser

pulses, each successive interaction with the pulses has to be considered. The wave
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functions at each order can be calculated iteratively

|Ψ(n)ki ,k j
(t)〉=−

i

}h

∫ t

0

d t ′e−iĤmol (t−t ′)/}hE j(t)µ̂ |Ψ
(n−1)
ki
(t)〉 , (2.35)

where E j(t) is the electric field of one pulse with wave vector ki. Using this expan-

sion together with Eq. 2.32 results in terms for the expansion of P(t).

P(0)(t) ≡ 〈Ψ(0)(t)|µ̂|Ψ(0)(t)〉

P(1)(t) ≡ 〈Ψ(0)(t)|µ̂|Ψ(1)(t)〉+ c.c.

P(2)(t) ≡ 〈Ψ(0)(t)|µ̂|Ψ(2)(t)〉+ c.c.+ 〈Ψ(1)(t)|µ̂|Ψ(1)(t)〉

P(3)(t) ≡ 〈Ψ(0)(t)|µ̂|Ψ(3)(t)〉+ c.c.+ 〈Ψ(1)(t)|µ̂|Ψ(2)(t)〉+ c.c. (2.36)

The permanent dipole moment P(0)(t) and the second order term P(2)(t) give zero

when averaged over an isotropic media. P(1)(t) is the linear response and P(3)(t)
the third order polarization which is needed to calculate the FWM signals. The

terms P(3)(t) represent overlaps of wave packets moving on different potential en-

ergy surfaces and creating non-vanishing transition dipole moments which interact

with light. Using this expansion and eq. 2.34 the relevant spectroscopic pathways

for the FWM process with the phase-matching condition kS = k1 − k2 + k3 can be

determined.

P(3)(t) =
�

〈Ψ(0)(t)|µ̂|Ψ(3)k1,k2,k3
(t)〉+ 〈Ψ(0)(t)|µ̂|Ψ(3)k2,k1,k3

(t)〉
�

+ c.c.

+
�

〈Ψ(1)k1
(t)|µ̂|Ψ(2)k2,k3

(t)〉+ 〈Ψ(1)k3
(t)|µ̂|Ψ(2)k2,k1

(t)〉
�

+ c.c. . (2.37)

This expression includes all possible time orderings of the interacting pulses. For the

numerical calculation of the third order polarization nine wave functions need to be

propagated using the propagation methods described above. From the polarization

the frequency resolved spectrum can be evaluated by a Fourier integral.

S(ω) =

�

�

�

�

∫

PkS
(t)e−iωt d t

�

�

�

�

2

(2.38)
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This calculation is then performed for different time delays of the laser pulses which

in turn gives the time and frequency resolved FWM signal.

Non-perturbative approach

The polarization calculated from the exact propagated wave function is the total

polarization (Eq. 2.32) of the system. To single out a specific pathways of wave

vectors, which are responsible for a particular signal, further analysis is needed.

This makes the calculation of the polarization from the exact propagated wave

function more complicated but has the advantage of being not restricted to small

laser field strengths. One method to resolve this problem is to compute the total

polarization at different phase angles of the involved fields [22, 90]. This results

in a system of linear equations and the solution yields the desired polarizations. In

this method different sets of phases φk are added to the electric field

E(t) =
∑

n

εn fn(t − Tn)
�

e−iωn(t−Tn+φk)+ikn x + eiωn(t−Tn+φk)−ikn x
�

(2.39)

which allow for a Fourier decomposition of the polarization

P(t) = 2ℜ
M
∑

l,n,m

Pl,n,m(t)e
−i(lk1+mk2+nk3) (2.40)

with Pl,n,m(t) being the polarization filed emitted in the direction kS = lk1 + nk2 +
mk3. For the DFWM scheme that would be lmn = (1,−1, 1) The propagations are

then performed for different phase and wave vector combinations

P(t,φ1,φ2,φ3) = 2ℜ
∑

l,n,m

Pl,n,m(t)e
−i(lφ1+mφ2+nφ3) (2.41)

which yields a linear system of equations to calculate the polarization PkS
in a spe-

cific direction. To resolve the polarization for the DFW process 12 different combi-

nations of phases are needed and thus also 12 wave packet propagations [22].
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3. Vibrational dynamics in higher

electronic excited states of iodine

By using a combination of an initial pump pulse and a degenerate four-wave mix-

ing (DFWM) process, we show that an interrogation of the vibrational dynamics

occurring in high-lying electronic states of molecules is possible. As a test case, ex-

periments applying this technique to iodine where analyzed and discussed using the

results of wave packet simulations. In the experiment an initial pump pulse is used

to populate the B (3Π+u ) state of molecular iodine in the gas phase. By introducing

an internal time delay in the subsequent DFWM process, which is resonant with

the transition between the B state and a higher lying ion-pair state, the vibrational

dynamics of the B state as well as of the ion-pair state could be observed. From

the possible ion-pair states, the states of even symmetry are investigated, which are

accessible by an one-photon transition from the B state. By a proper choice of the

wavelengths used for the pump and DFWM beams, the dynamics of ion-pair states

belonging to two different tiers are monitored. Very good agreement between ex-

perimental and theoretical results are observed in most of the studied wavelength

combinations.
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3.1. Introduction

To access the excited state dynamics, the DFWM process can be combined with an

initial pump pulse. In this scheme, a femtosecond pump pulse is used to initiate

dynamics in the molecular system under investigation. The DFWM process is then

used to probe the resulting dynamics. Motzkus et al. [95] used this pump DFWM

technique to study unimolecular and bimolecular systems in gas phase. In these

experiments, the DFWM process itself was not time-resolved, it was rather used to

replace the probe pulse in a pump-probe scheme. Also excited state dynamics of

complex polyatomic molecules in the condensed phase have been investigated using

this technique [96, 97]. Recently, it was shown that with the application of a fully

time-resolved combination of an initial pump and a DFWM process it is possible to

access the dynamics in ion pair states of molecular iodine [23, 24]. Here, we use

quantum dynamical calculations to analyze results of pump-DFWM experiments

on the I2. Simulations of pump-DFWM for different time orderings of the pulses

and different combinations of pump and DFWM wavelengths are presented and

compared to the experimental findings.

The iodine molecule is well characterized by different spectroscopical techniques

and also a theoretical description of different FWM processes in this system has

been given as mentioned above; additional information can be found, e.g., in

Refs. [20, 33, 98, 99]. Therefore, the iodine molecule presents itself as ideal model

system to investigate the efficiency of experimental techniques because these sys-

tems allow for a complete quantum dynamical description. The ion pair states in

iodine form three clusters each consisting of three pairs of gerade (g) and ungerade

(u) states. In the present study we concentrate on the first and second tier. The first

tier consists of the states D’(2g), β(1g), D (0+u ), E (0+g ), γ(1u), and δ(2u) dissociating

into I−(1S) and I+(3P2) ions. These states lie around 40,000 cm−1 above the ground

state. The second tier lies about 47,000 cm−1 above the ground state. Its states

dissociate into the ions I−(1S) and I+(3P1). Since these states are characterized by

large equilibrium inter-nuclear distances and similar molecular constants they are

not easily accessible because a transitions from the ground state would correspond

to a large Frank-Condon shift. Additionally, the selection rules for optical transi-

tions have to be taken into account. Hence, transitions are only allowed between

states of different symmetries
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g⇔ u

and when the change of the projection of the total angular momentum Ω is

∆Ω= 0,±1

0+⇔ 0+, 0−⇔ 0− .

Therefore, only states of odd symmetry can be accessed from the ground state via

one photon processes. There are different techniques used in the frequency domain

to analyze these ion-pair states and several of these ion-pair states are characterized

experimentally [100]. In most of these studies the excited B state is used as an

intermediate state since it is readily accessible from the ground X state. A multitude

of detailed studies of the ion pair states using frequency domain experiments have

been performed [36–41], but only a few time domain investigations are known

[101, 102]. To access these higher lying states, multi photon processes [101] or

vacuum ultra-violet pulses have to be used [102]. These techniques were successful

in observing ion-pair states belonging to the first tier possessing odd symmetry.

In the following, we discuss experiments where the dynamics of the ion-pair states

have been monitored using a combination of an initial pump laser pulse and subse-

quent time-resolved FWM spectroscopy. In this two-step process, firstly the B state

is populated by the pump pulse. Then, in a second step, the ion-pair states are ac-

cessed with a time-resolved DFWM process. For a more detailed analysis, different

wavelengths are used for both initial pump and DFWM laser pulses. The experi-

mental methodology of this pump-DFWM scheme is depicted in Fig. 3.1. In order

to analyze and verify if the observed dynamics can be assigned to the ion pair states,

quantum dynamical simulations of the pump-DFWM process have been performed.

The model system for the simulations was reduced to contain only the relevant ion

pair states. By comparing the results of these simulations it could be shown, that

the pump-DFWM process is an efficient tool to monitor dynamics of specific higher

lying electronic states.

This chapter is organized as follows: First, the theoretical model for the iodine

molecule is introduced and in a next step, the specific pump-DFWM processes in

this molecule are detailed. In the subsequent section the experimental and theo-

retical results are discussed and compared to each other. The chapter ends with

conclusions.
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Figure 3.1.: Schematic diagram of the time-resolved pump-DFWM experiment performed
on molecular iodine. A initial pump pulse is used to first populate the B state through a
transition from the ground state. The dynamics in the B state and the ion pair states is then
interrogated by a time-resolved DFWM process.

3.2. Model System

The model used for the I2 molecule takes into account three electronic states, the

ground state, the first excited state (here, the B state) and a further excited state,

which corresponds to one of the ion pair states. These electronic states are coupled

by the electric field of the laser pulses. The system Hamiltonian is given by

Ĥ(t) = Ĥmol+ Ĥint(t) . (3.1)

Here, Hmol denotes the Hamiltonian of the unperturbed system, which can be given

in terms of the vibrational eigenstates of the electronic potential energy surfaces

Ĥmol =
∑

a,ν

|aν〉 〈aν|ħhωaν . (3.2)

Here the abbreviation |aν〉 is used for the electronic and vibrational eigenstates

|φa〉 |χa
ν〉. In order to model the system accurately, we used Rydberg-Rees-Klein

(RKR) potentials based on Dunham coefficients from Refs. [37, 40, 103] to calcu-
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late the eigenstates. The coupling of the molecules to the electric field of the laser

pulses E(t) through the dipole operator µ̂ was treated in dipole approximation,

which can be written as

Ĥint =−µ̂E(t) . (3.3)

The dipole matrix elements were calculated from the initial and final vibrational

wave functions




av
�

� µ̂
�

�a′v′
�

= µa,a′ 〈χa
ν(r)|χ

a′

ν′(r)〉 (3.4)

with the electronic part of the dipole matrix element µa,a′ and the Frank-Condon

factor 〈χa
ν(r)|χ

a′

ν′
(r)〉. Furthermore, the laser pulses were assumed to have the form

E(t) =
∑

n

En(t) =
∑

n

ε(t − Tn)e
−iωn(t−Ti)+iknx (3.5)

with Gaussian shaped envelopes ε(t) centered at Tn, frequencies ωn and wave vec-

tors kn. To simulate the DFWM signal, the third-order polarization P(3)(t) was cal-

culated using perturbation theory, which allows to select only those spectroscopic

pathways, which contribute to the polarization in the direction of the DFWM signal

ks = k1− k2+ k3 . (3.6)

Within perturbation theory the third-order polarization induced in the system is

given by

P(3)(t)≡ 〈Ψ(0)(t)|µ̂|Ψ(3)(t)〉+ c.c.+ 〈Ψ(1)(t)|µ̂|Ψ(2)(t)〉+ c.c. (3.7)

where c.c. denotes the complex conjugate. The wave functions in the different

orders can be calculated iteratively [104]

iħh
∂

∂ t
|Ψ(n)(t)〉= Ĥmol |Ψ(n)(t)〉+ Ĥint(t) |Ψ(n−1)(t)〉 . (3.8)
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3. Vibrational dynamics in higher electronic excited states of iodine

These equations were solved in energy representation. In this representation it is

possible to reduce the the system to those vibrational states, which were populated

during the excitation processes. This helped to reduce the time for the numerical

calculations drastically. Furthermore, the characteristics of the vibrational popu-

lation in the different electronic states involved can be tracked easily during the

excitation processes in the simulation. Using only those spectroscopic pathways,

which contribute to the polarization in this direction results in [8]

P(3)(t) =
�

〈Ψ(0)(t)|µ̂|Ψ(3)k1,k2,k3
(t)〉+ 〈Ψ(0)(t)|µ̂|Ψ(3)k2,k1,k3

(t)〉
�

+ c.c.

+
�

〈Ψ(1)k1
(t)|µ̂|Ψ(2)k2,k3

(t)〉+ 〈Ψ(1)k3
(t)|µ̂|Ψ(2)k2,k1

(t)〉
�

+ c.c. . (3.9)

In the simulations this polarization was calculated over a time range of 10 ps and

then Fourier transformed to get the spectra P(ω,∆t), which correspond to the spec-

tra measured in the experiment with the CCD camera. This results in transients at

every detection wavelength. However, for the present molecular system the tran-

sients were found to be rather independent of this wavelength. Therefore, we have

used the integrated signal S(∆t), which was obtained by integrating over all detec-

tion wavelengths, to compare simulations and experiments

S(∆t) =

∫ ∞

−∞
dω|P(ω,∆t)|2 . (3.10)

For this comparison, the Fourier transform of this quantity was calculated.

3.3. Detailed pump-DFWM scheme for the iodine

experiment

In the experiment, a wave packet is excited from the ground state to the B state.

Following the selection rules, only states of even symmetry can be accessed from

the B state. This restricts the states, which can be involved in the pump-DFWM

process to those listed in table 3.1. The ion pair states of iodine have been inves-

tigated earlier using frequency-domain spectroscopy [39, 105]. In our studies, we

aim to explore the dynamic properties of the ion pair states as well as of the B
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3.3. Detailed pump-DFWM scheme for the iodine experiment

Table 3.1.: Molecular constants for the excited iodine B state and the ion pair states relevant
for the present study.

State Te / cm−1 ṽe / cm−1

B(3Π0u+) 15,641 127
β(1g) 40,821 105
E(0+g ) 41,411 101
f(0+g ) 47,025 104
G(1g) 47,559 106

state. The experimental methodology of the pump-DFWM scheme employed in the

experiments is depicted in Fig. 3.1. The initial pump pulse, which is in resonance

with a transition from X to B , excites the molecule from the ground (X ) state to

the first excited state (B ). Since a spectrally broad femtosecond pulse is used, this

excitation process creates a superposition of vibrational states, a wave packet, in

the B state. After a time delay ∆T , the DFWM process is then used to probe the

B state wave packet. The wavelength of DFWM beams was varied to be resonant

with transitions from the B state to the ion pair states of the first (E (0+g )) and sec-

ond tier (f(0+g )). As was mentioned above, DFWM involves the interaction of three

laser beams of the same wavelength with the sample, leading to the generation of

a coherent fourth beam also of the same wavelength. In the experiments, one of

the laser pulses was time delayed relatively to the other two time coincident laser

pulses over a time range from ∆t = −40 ps to ∆t = 40 ps; the time zero of the

DFWM process, ∆t = 0 ps, was defined by the temporal overlap of all three pulses.

∆T on the other hand was measured as time delay between the initial pump and

the two time coincident DFWM pulses. Scanning ∆t yields a time-dependent sig-

nal, from which the dynamics of the B state and the ion pair states can be obtained.

The time of the initial pump pulse was set to ∆T0 = 42 ps to ensure that the B state

is populated for all time delays ∆t. For negative time delays, ∆t < 0, there are two

spectroscopic pathways, which mainly contribute to the signal [32]

P(3) =
D

Ψ(0)B

�

�

� µ̂
�

�

�Ψ(3)k3−k2+k1

E

+
D

Ψ(2)k2−k1

�

�

� µ̂
�

�

�Ψ(1)k3

E

+ c.c. . (3.11)
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3. Vibrational dynamics in higher electronic excited states of iodine

Here, |Ψ0
B(t)〉 denotes the initial state population of the DFWM process; this pop-

ulation being prepared by the initial pump laser via an excitation from the ground

state to the B state. Thus, |Ψ0
B(t)〉 is describing a moving wave packet in the B state

and not a static population like in a ground state FWM experiment. In the simula-

tion, the initial state was calculated by an exact propagation of the wave functions

in the X and B states starting from the thermally (320 K) populated ground state X

, which is coupled to the B state by the electric field of the initial pump pulse. The

first term in Eq. (3.11) corresponds to the process where a wave packet is created

by the excitation with pulse k3 in the ion pair state, which then evolves freely in

time until it is probed by a two photon process with the pulses k2 and k1. The sec-

ond term emerges from the overlap between the wave packet prepared by k3 and

the second-order wave packet created by absorptions by k2 and stimulated emission

from k1. If the DFWM process starts with the preparation of an ion-pair state wave

packet, which is then probed after a delay time ∆t, one would expect to see in

the transients the dynamics of the ion pair states only. However, in the case of the

employed pump-DFWM scheme the initial state |Ψ0
B(t)〉 is already a moving wave

packet in the B state. Thus, the DFWM signal also depends on the timing ∆T +∆t

between the initial pump pulse and the DFWM probe pulse (k3) for negative time

delays ∆t < 0, where it acts as pump pulse of the DFWM process. Hence, the

transients also show the dynamics of the B state vibrational motion. For positive

time delays a further pathway has to be considered, which leads to the expression

[32]

P(3) =
D

Ψ(0)B

�

�

� µ̂
�

�

�Ψ(3)k1−k2+k3

E

+
D

Ψ(2)k2−k1

�

�

� µ̂
�

�

�Ψ(1)k3

E

+
D

Ψ(2)k2−k3

�

�

� µ̂
�

�

�Ψ(1)k1

E

+ c.c. (3.12)

for the third-order polarization. Here, the first two terms correspond to the dy-

namics on the B state since in both cases a B state wave packet is created by a two

photon process involving the pulses k1 and k2, for which the time delay∆T is fixed.

This is then probed after a time delay ∆t with the k3 pulse. Since the third term

also depends on the dynamics on the ion pair state, here, in any case ground and

excited state dynamics contributions will determine the transient.
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Figure 3.2.: Fourier transform spectra calculated from the DFWM transients obtained for
λip = 620 nm at different DFWM wavelengths as stated in the individual panels. In each
panel the upper line shows the FT of the experimental transient and the lower line the sim-
ulated one. The results for positive time delays are shown in the left and for negative time
delays in the right panels.

3.4. Results and Discussion

Different combinations of initial pump and DFWM wavelengths were used to ex-

plore the dynamics on different states. The ion pair states used for the simulation

were chosen according to the total energy of the different combinations of initial

pump and DFWM wavelengths. For energies accessing the first tier of ion pair states

the state E (0+g ) was used while the f(0+g ) state was used for energies accessing the

second tier. Although transitions to the G(1g) and the β(1g) states are possible

these states were neglected in the simulations because∆Ω= 0 transitions are more

than an order of magnitude stronger than those with ∆Ω = 1 [106, 107]. The first
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3. Vibrational dynamics in higher electronic excited states of iodine

combination of wavelengths to explore the E (0+g ) ion pair state consists of an ini-

tial pump wavelength of λip=620 nm and a DFWM wavelength, which was varied

between 390 and 410 nm. The transients were recorded for negative and positive

time delays ∆t. Here, we do not show the measured and calculated transients but

only their Fourier transforms (FTs). The FTs expose all basic features of the tran-

sients and in this way the comparison between experiment and simulation becomes

more evident. Fig. 3.2 shows the FT of the transients for λip=620 nm and for three

different DFWM wavelengths.

The wavenumbers of the 620 nm initial pump and the 390 nm DFWM pulses sum

up to 41,770 cm−1, which is far below the minimum of the potentials belonging to

the second tier ion pair states. Therefore, only transitions to states of the first tier

are possible and only transitions from the B to the E (0+g ) state need to be included

in the simulation as stated above. As listed in table 3.1, for the E (0+g ) state the

vibrational wavenumber is ωe = 101 cm−1 and hence the peaks corresponding to

this have to appear below this value, since the potential is anharmonic with a de-

creasing level spacing for higher vibrational states. The FTs of the transients for the

620/390 nm excitation given in the lower panels of Fig. 3.2 show prominent peaks

at 97 cm−1 for negative as well as for positive time delays, which corresponds to

the spacing of the vibrational states in the E (0+g ) accessed by the 390 nm pulse.

As discussed above, also the dynamics of the B state is expected to show up in the

transients recorded with both positive and negative time delays. The vibrational

levels excited by the initial pump pulse in the B state are in the proximity of v = 9,

which corresponds to a spacings of 109.6 and 108.1 cm−1. Since the initial pump

wavelength is the same and only the DFWM wavelength is changed, peaks arising

from the wave packet in the B state are therefore expected to show up at these

wavenumber positions. The FTs of the transients for 620/390 nm excitation show a

sharp peak at around 109 cm−1, which can be assigned to the B state dynamics. Fur-

thermore, a smaller peak can be seen at lower wavenumbers around 12 cm−1. This

value matches the wavenumber of a beating between the E and B state dynamics.

In a next step the DFWM wavelength was changed to 400 nm and then to 410 nm.

The FTs of the so recorded transients are shown in the four upper panels of Fig. 3.2.

For a DFWM wavelength of 400 nm a sharp peak at 98.3 cm−1 can be seen in the

FT for negative and positive time delays. This peak can clearly be assigned to

the E state dynamics. Compared to the 620/390 nm experiment it is shifted to a
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3.4. Results and Discussion

higher value because now lower vibrational levels are excited, which have a larger

spacing. This can also be seen in the FT of the 620/410 nm experiment where

the E state peak shifts further up to 100 cm−1. Also peaks corresponding to the B

state dynamics can clearly be seen in all these FTs. The FTs of the experimental

and calculated transients for our model system containing only the X , B and E (0+g )

states agree very well. This leads us to the conclusion that the pump-DFWM scheme

gives access to properties of the E (0+g ) state.

To further examine these findings, we have analyzed other initial pump-DFWM

wavelength combinations. For the experiments discussed in the following, the ini-

tial pump wavelength was set to 600 nm and the DFWM wavelength was varied

between 380 and 420 nm. The results are shown in Fig. 3.3. For the chosen initial

pump wavelength vibrational states are accessed in the B state around v = 9 where

the spacing is 104.3 and 106.1 cm−1. For a DFWM wavelength of 380 nm the FTs

of the transients are displayed in the lower panels of Fig. 3.3. These spectra show

a major peak at 92.5 cm−1 for negative as well as for positive time delays. This

peak corresponds to the dynamics on the E state. The contribution of the B state

dynamics can be found as rather weak peak for positive time delays at approxi-

mately 107.5 cm−1. For negative time delays the B state dynamics is seen in the

FT spectrum with much higher intensity. The reason for the stronger B state con-

tribution was already explained above. Since the initial state of the DFWM process

is already a moving wave packet, the DFWM probe pulse for negative time delays

∆t < 0 encounters the population prepared by the initial pump pulse resulting in

a strong contribution of the B state dynamics. On the other hand, for positive time

delays, the DFWM probe pulse probes the wave packet created by the two time

coincident DFWM pump pulses. Since the time delay ∆T between the initial pump

pulse and these two DFWM pump pulses is fixed, the B state contribution for posi-

tive time delays is only attributed to the B state wave packet created by the DFWM

process.

Also for this initial pump wavelength (600 nm), the DFWM wavelength was in-

creased stepwise from 380 to 420 nm. The FTs of the measured and calculated

transients are also presented in Fig. 3.3. In the panels for 380, 390, 400, and

410 nm the shift of the peak corresponding to the E state dynamics is clearly recog-

nizable. The contribution of the B state is different for specific DFWM wavelengths

although the initial pump wavelength was not changed. In the FTs for 380, 390
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3. Vibrational dynamics in higher electronic excited states of iodine
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Figure 3.3.: Same as in Fig. 3.2 but for λip = 600 nm.
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and 400 nm the peaks of the B state dynamics occur at the expected positions,

which correspond to the value of the spacings in the range of the vibrational levels

populated by the initial pump pulse. However, in the FT of the 410 nm DFWM

experiment there are only some closely neighbored peaks around 100 cm−1 and

for 420 nm there is a peak at 95 cm−1 and one at 100 cm−1. The total wavenum-

ber for the 600/410 nm combination (41,060 cm−1) is close to the wavenumber

difference between the vibrational ground state of the X state and the minimum

of the E state potential. The total wavenumber for the 600/420 nm combination

(40,480 cm−1) is even below this value. Thus, only the peak at 100 cm−1 can be

assigned to the spacing between the lowest vibrational states of the E state and the

peak at 95 cm−1 must be assigned to a B state contribution. The strong shift of the

B state contribution can be explained by the contribution of the second-order wave

packet created by the absorption by k2 and stimulated emission from k1 or k3. Since

the excitation energy of the 420 nm pulse is slightly below the vibrational ground

state of the E state only the lowest vibrational states are excited. In the following

stimulated emission the Franck-Condon overlaps to higher vibrational states in the

B state are much stronger so that a wave packet at around v = 15 is created, which

corresponds to the observed spacing of 95 cm−1. This could be verified by analyzing

the population on the vibrational states in the simulation.

To access the ion pair states of the second tier, which lie around 47,000 cm−1, the

initial pump wavelength was finally reduced to 540 nm and the DFWM wavelength

were set to 325 nm and 335 nm. The total wavenumbers of these combinations are

48,369 cm−1 and 49,287 cm−1, respectively, which is in both cases above the mini-

mum of the G(1g) state (see Tab. 3.1). To analyze the transients recorded in these

experiments, the FT was calculated and compared to the simulation. The results

are shown in Fig. 3.4. For the simulation a model system consisting only of the X ,

B , and f(0+g ) states was used. The simulation of the initial pump process showed

that with a 540 nm pulse the vibrational states around v = 27 are populated in

the B state. This corresponds to a spacing of 75.3 and 77.5 cm−1. Peaks at these

values and their second harmonic at around 150 cm−1 can be seen in the FTs of the

transients for 335 nm and 325 nm. From the simulation it became evident, that

the transition from the B state to the f state with a 325 nm pulse is very weak com-

pared to that of the 335 nm pulse. For this reason, the FT of the 325 nm transient

is “nosier” than the 335 nm FT which can also be seen in the FT of the simulated
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3. Vibrational dynamics in higher electronic excited states of iodine
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Figure 3.4.: Same as in Fig. 3.2 but for λip = 540 nm.

transient, i.e., there are many transitions with very low intensity. Nevertheless, a

clear peak at 94.1 cm−1 can be seen in the FT of the transient recorded for positive

time delays, which can be assigned to the dynamics of the f state. For the 335 nm

pulses the intensities of the main peaks in the FT are much larger again. Here,

sharp peaks corresponding to the B and f state dynamics are present. The simula-

tion shows in all cases additional peaks at around 25 cm−1, which fit the difference

between the B state and f state peaks. These peaks are not evident in the exper-

imental FTs due to the strong background. Although the agreement between the

peak intensities in the experimental and theoretical FTs is not very good, the peak

positions do coincide quite well. However, this is not surprising taking into account

the simplifications made within the theoretical model compared to the real experi-

mental situation. Especially, the deviation of the spectral shapes of the pulses from

Gaussian profiles and the slight chirp, which could not be completely avoided in

the experiments have considerable influence on the intensities of the contributions

seen in the FT spectra as was demonstrated earlier [108, 109].
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3.5. Conclusions

In the present chapter we have demonstrated that the combination of time-resolved

degenerate DFWM and an initial pump pulse is a suitable tool for the investigation

of wave packet dynamics on different excited state potential energy surfaces. It

could be shown that it is possible to access high-lying ion pair states in molecular

iodine and gain information on the dynamics in these states. To verify that the

observed dynamics belong to the expected ion pair states, the experimental results

were compared to quantum dynamical calculations in model systems containing

only the relevant states.This could be verified using quantum dynamical calcula-

tions which where needed to identify the contributions if the ion pair states in

the experimental measured signal. The calculations were based on a model sys-

tems containing only the relevant states and did not incorporate rotational degrees

of freedom. Comparing the experimental and theoretical results, good agreement

could be found for the simple system under investigation. This leads to the con-

clusion that the basic features of the transients correspond primary to vibrational

dynamics and that such adjusted model systems are a numerical effective way to

analyze complex molecular dynamics.
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4. Vibrational Dynamics in B state of

molecular Bromine

In this chapter femtosecond pump-degenerate four-wave mixing experiments on

molecular bromine are analysed using wave packet calculations. In these experi-

ments the dynamics in the excited B state were investigated via transitions to ion

pair states. By varying the DFWM wavelength different vibrational energy spacings

of the excited B state were be observed. Using the results of quantum dynamical

calculations for this system, we were able to show that these differences in the

transients arise from a substantial contribution of a hot vibrational state of the elec-

tronic ground state. Furthermore we show that specific Franck-Condon overlaps

between the B and an ion pair state can be used to probe different parts of the

excited state dynamics individually and therefore indirectly the contributions from

different vibrational states in the electronic ground state.

4.1. Introduction

The ultrafast dynamics of wave packets in excited states often shows complex be-

havior, even in diatomic molecules [21]. While the dynamics in iodine, for exam-

ple, was investigated using time-resolved spectroscopy in detail [110] and has even

been proposed as a substance for quantum logic gates [42], bromine is much less

studied. In bromine fractional revivals of the B state wave packet were observed

using pump-probe spectroscopy [29]. Averbukh et al. [30] measured the excited

state dynamics of bromine by using pump-probe spectroscopy based on ion detec-

tion. Their aim was to introduce a general wave packet method for laser isotope

separation rather than to monitor the time evolution of the wave packet inside
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4. Vibrational Dynamics in B state of molecular Bromine

the bound B state. Schmitt et al. [28] employed electronically resonant coherent

anti-Stokes Raman scattering (CARS) spectroscopy to monitor the excited state dy-

namics of bromine. No ground state dynamics was observed since the vibrational

energy spacing of the ground state of bromine is relatively large (≈ 325 cm−1).

Due to the small bandwidth of the employed laser pulses, therefore, vibrational

overtones could not be efficiently excited. Furthermore, also the wave packet dy-

namics of bromine in condensed phase hosts was investigated in different setups

[111, 112].

Recently, pump-degenerate four-wave mixing (DFWM) experiments were performed

on iodine to investigate the vibrational dynamics of higher excited states [23, 24].
Experiments performed with time-coincident DFWM pulses, while temporally vary-

ing the initial pump pulse, yielded exclusive B state dynamics. A scheme employing

a time-resolved DFWM, gave access to dynamics of the B state as well as higher lying

ion-pair states. By employing different wavelengths for the initial pump and DFWM

pulses, dynamics of different excited states were accessed. The investigations are

now extended to bromine, in which features appear that are qualitatively different

from those in iodine. These findings are of significance for time-resolved experi-

ments in general since they show that one can extract molecular details of excited

states using pump-DFWM which are otherwise not easily accessible. The experi-

mental methodology employed for the time-resolved measurements on bromine is

depicted in Fig. 5.2 and detailed below. The experiments were performed with a

constant initial pump wavelength while the DFWM wavelength is varied. Time-

coincident DFWM pump pulses are employed to monitor the B state dynamics ex-

clusively. Since the wave packet is created by the initial pump pulse, which is then

probed by another pulse, a change of wavelength of the probe pulse is not expected

to have a distinct influence on the observed transient. The contributions of vibra-

tional overtones seen in the Fourier transform spectrum of the transients should not

vary considerably for a low pressure gas, where collisions do not play a role on the

time scale considered [113]. Contrary to what is expected from the experiments

with iodine in the previous chapter, these experiments show different dynamics.

The results of these experiments are described and analyzed below. The experi-

mental setup is described in paragraph 2.1.2. The experiments were performed on

isotopically pure 81Br2. Hereafter, the term bromine will refer to this isotope of

bromine, unless otherwise stated.
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Figure 4.1.: Sketch of the time-resolved processes performed on molecular bromine. A pump
pulse at 540 nm invokes a transition from the ground X state to the excited B state. The wave
packet prepared by the initial pump pulse is interrogated by time-coincident DFWM pulses at
310 nm pulse or at 300 nm.

4.2. Theory and Model System

For the calculation of the signals the time-dependent Schrödinger equation for the

nuclear dynamics was solved numerically. To this end a system of the three elec-

tronic states X, B, and E based on accurate Rydberg-Klein-Rees (RKR) potentials

[114] coupled by femtosecond laser pulses was used. With the resulting state

vector |Ψ(t)〉 the total polarization induced in the molecule is given by P(t) =
〈Ψ(t)|µ|Ψ(t)〉 in which µ denotes the dipole moment of the molecule. From this

total polarization the contribution in the direction of the DFWM signal was singled

out in a non-perturbative manner as described in paragraph 2.2.5. This method was

chosen because in these experiments the DFWM process is only used to probe the B

state wave packet with out an internal time delay. Therefore all three DFWM pulses

are coincident. In This case an perturbative description can lead to wrong results

[104]. The calculated polarization field was then Fourier-transformed to calculate

the frequency-resolved DFWM signal. In the present letter rotational effects are

neglected since the investigation is focused on vibrational dynamics.
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Figure 4.2.: Panel A shows the DFWM signal recorded as a function of the delay time, ∆T
between the initial pump (540 nm) and the three time-coincident FWM (310 nm) beams for
molecular bromine. Panel B shows the same for a DFWM wavelength of 300 nm. In panels C
and D the FT spectrum obtained using DFWM beams with 310 nm and 300 nm, respectively,
is displayed. The top solid lines show the experimental results while the lower dashed lines
are the results of the simulations.

4.3. Results and Discussion

Bromine is a molecule lighter than iodine with a broad visible absorption spectrum.

It is a highly volatile liquid at room temperature. The investigations here are per-

formed on bromine in the gas phase. In the frequency domain, the ground X and

excited B states of bromine are well characterized [34, 35]. Here, we attempt to

investigate the vibrational dynamics in bromine using pump-DFWM spectroscopy.

An initial pump pulse at 540 nm, which is resonant with the X to B state transition

initiates the dynamics in the system. The spectrally broad femtosecond pulse cre-

ates a coherent superposition of several vibrational eigenstates in the B state, which

is then probed by the time-coincident DFWM pulses at 300 or 310 nm. In the first

case, the wavelength of the DFWM beams was chosen to be 310 nm, which is reso-
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nant with the transition from the B state to the E state, belonging to the first tier of

ion-pair states [115, 116]. Transients are recorded as a function of delay time, ∆T ,

between the initial pump and the DFWM beams. The DFWM signal is detected us-

ing a CCD camera thereby enabling broadband detection and in this way a time and

wavelength resolved spectrum is obtained. Here only the dynamics at the DFWM

wavelength position (310 nm) are displayed in Fig. 4.2A. The transient consists of

oscillations of the signal for positive delay times and a constant signal for negative

delay times. For ∆T < 0, the initial pump pulse is incident after the DFWM pulses.

Since the DFWM wavelength is not resonant with any transition from the ground

state, the signal observed in this case is the nonresonant signal from the ground

state of bromine. For positive time delays the DFWM pulses arrive after the initial

pump pulses. The oscillation of the signal reflects the motion of the wave packet

in the excited state potential well. The Fourier-Transform (FT) of the transient for

positive delay times is shown as solid line in Fig. 4.2C. The FT spectrum shows a

sharp peak at 83 cm−1 which agrees well with the B state vibrational energy spac-

ing around v′ = 21 that is accessed by the initial pump at 540 nm [35]. In a next

step, the DFWM probe wavelength is changed to 300 nm keeping the initial pump

frequency the same. Transients are recorded as before by temporally varying the

initial pump pulse relative to the DFWM beams. A change in the DFWM wavelength

is not expected to drastically change the period of oscillations. However, contrary

to expectations a different beat period is observed. Fig. 4.2B shows the transient at

300 nm. Beats are observed with an average separation of 510 fs. This can be com-

pared to the average period in the transient in Fig. 4.2A, which is 395 fs, pointing to

a change of wave packet oscillation frequency with a change of DFWM wavelength.

The FT spectrum of the transient is displayed in Fig. 4.2D. A peak is observed at

59 cm−1, which is quite different from the expected 83 cm−1. This result reveals a

different vibrational energy spacing, which does not match with the B state vibra-

tional frequency accessed by the 540 nm laser. In the rather similar iodine molecule

no such peak shift is observed and so this result is rather surprising. Below, several

possibilities are considered in order to explain the observed feature.

The pump-DFWM experiments were repeated for the other pure isotope 79Br2 and

also for the natural mixture (79Br81Br). In these samples the same behavior was

seen as in the case for 81Br2 ruling out any isotope effect. Since the pump energy is

above the A state dissociation limit [117], a A← X absorption would lead to disso-
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4. Vibrational Dynamics in B state of molecular Bromine

ciation not to an oscillating wave packet in the A state, which can be probed after

large delay times of several picoseconds. Therefore, the observed contributions

cannot be attributed to the A state. Possibilities of multiphoton transitions were

dismissed by checking the linearity of the signal with the pump intensity. There-

fore, no contributions from higher excited states are expected. Also the possibility

of a new adiabatic potential energy surface formed by the crossing of the dissociat-

ing C state and the B state (see Fig. 5.2) was investigated. However, an estimation

of the resulting level spacings, which are rather invariant to different values of the

unknown level coupling, led to the conclusion that such a state cannot explain the

observed spacings.

Turning our attention to the quantum dynamical calculations, the distribution of

populations in the different vibrational energy levels in the excited B state was sim-

ulated for a 540 nm initial pump pulse. From these calculations it became evident

that a pump laser pulse at 540 nm deposits a substantial amount of population in

the vibrational levels close to v′ = 26 instead of an expected majority in the levels

near v′ = 21. The levels around v′ = 21 in the excited B state are populated from

the v′′ = 0 level in the ground state. The vibrational levels in the region of v′ = 26

are populated from the hot v′′ = 1 state. The experiments on bromine were per-

formed at room temperature. At this temperature the population in the v′′ = 1

state is much lower than in the v′′ = 0 state. However, the Franck–Condon fac-

tors for the v′′ = 1 level are larger than for the v′′ = 0 state for the transition

to the B state by approximately a factor of 5, which results in substantial amounts

of population in the higher vibrational levels of the B state. For the B state of an

iodine molecule this alone would not lead to the results found in experiment. But

for the B state of bromine, the level spacings around v′ = 26 are rather different

from those around v′ = 21 due to the larger anharmonicity of the potential. These

facts together explain the appearance of peaks around 60 cm−1 in the FT of the

transients.

Having basically two separate wave packets on the B state with contributions around

v′ = 21 and v′ = 26, one would expect a double peak structure rather independent

of the probe wavelength. But now, the question arises, why the 310 nm probes only

the level spacings around 84 cm−1 and 300 nm interrogates only the vibrational

level spacings close to 64 cm−1. This can be explained only by considering the

Franck–Condon factors for the transitions between the states under consideration.
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A more favorable overlap with the E state for the vibrational levels close to v′ = 26

for a 300 nm probe wavelength results in the observation of the 64 cm−1 peak at

this wavelength. For 310 nm the Franck–Condon factors favor transitions from the

vibrational levels near v′ = 21. Therefore, for a probe wavelength of 310 nm, an

energy spacing of 84 cm−1 is observed.

But using quantum dynamical calculations one cannot only calculate the Franck-

Condon factors and populations but also the nonlinear spectra directly. A compar-

ison of the results obtained from the experiments and from the calculations are

shown in Figs. 4.2C and D. In Fig. 4.2C the FT spectrum for an initial pump wave-

length of 540 nm and DFWM wavelength of 310 nm is displayed. A sharp peak

is seen at 83 cm−1. Fig. 4.2D depicts the FT spectrum for a DFWM wavelength of

300 nm with the same initial pump wavelength. The experimental spectrum shows

a sharp peak at 59 and 63 cm−1 while the calculated spectrum shows a major peak

at 64 cm−1. Comparing the experimental and theoretical spectra the general agree-

ment with regard to the line positions is rather good. Here, it should be noted that

rotational effects are not taken into account in these calculations. A better agree-

ment with the experimental data is expected when rotations are included. Also the

calculations were performed for transform-limited pulses, while in the experiments

the pulse was not perfectly transform limited (approx. 120 fs pulse length instead

of slightly less than 100 fs expected for a completely compressed pulse) since it

was rather difficult to efficiently compress the UV pulses. This chirp may result in

a change of relative intensities of the lines seen in the FT [99, 118]. Considering

these aspects the agreement seen between experimental and calculated values is ex-

cellent. The calculations clearly show that a DFWM wavelength of 300 nm probes

higher vibrational levels in the region of v′ = 26.

In the above discussion, we have presented the FT plots at a particular wavelength

position concerning the FT of the delay time. For a more general understanding

it would be interesting to see the line positions observed at different wavelengths

as displayed in Fig. 4.3. The experimental FT spectrum for a center wavelength

of 310 nm is displayed in Fig. 4.3A. The x-axis displays the wavelengths, the y-

axis the line positions, while the intensity is shown using a color code. Fig. 4.3D

shows the theoretical spectrum for the same center wavelength. The agreement

observed is remarkable. For a center wavelength of 300 nm, Figs. 4.3B and E show

the experimental and theoretical spectra, respectively. Considering the neglect of
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4. Vibrational Dynamics in B state of molecular Bromine

Figure 4.3.: Panels A and B show the experimentally obtained FT spectrum for a DFWM
wavelength of 310 nm and 300 nm, respectively. Panels D and E display the respective FT
spectrum obtained from calculations. The intensity of the lines are indicated by the logarith-
mic color code. Panels C and F show the integrated FT spectrum obtained experimentally and
theoretically, respectively.

the rotations in the simulations and a possible chirp in the experiment as discussed

above, the agreement observed is very good. The integrated spectra as a function

of the Fourier-transformed delay time are shown in Figs. 4.3C and F for experiment

and theory, respectively. This is the spectrum that is often obtained while using a

photomultiplier tube as detector. Also here the experimental and theoretical values

are in good agreement. Thus, the calculations support the experimental observation

of different energy spacings for different DFWM (probe) wavelengths.

4.4. Conclusions

The vibrational dynamics of the excited B state in bromine were investigated using

pump-DFWM spectroscopy. A different B state vibrational energy spacing was ob-

served for different DFWM wavelengths of 310 nm and 300 nm with a fixed initial

pump wavelength of 540 nm in both cases. For a DFWM wavelength of 310 nm, the

vibrational energy spacing observed agreed well with the frequency domain data.

However, for a DFWM wavelength of 300 nm, a smaller vibrational energy spacing

was found. The theoretical analysis showed that the different spacings observed

are attributed to the contribution of the first hot vibrational state in the electronic
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ground state. The Franck–Condon factor for the transition to the B state is approx-

imately five times bigger than that for the vibrational ground state, leading to a

significant amount of population in the higher vibrational levels of B state. A favor-

able Franck–Condon overlap for these higher levels in the B state with the E state

at a wavelength of 300 nm causes the observation of a smaller energy spacing for a

DFWM (probe) wavelength of 300 nm. On the other hand 310 nm probes the lower

vibrational levels and therefore gives the values “expected”, which are in agreement

with the frequency domain data and which also have been observed in iodine for

similar experiments [110].

While in frequency-resolved spectroscopy the contribution of the hot vibrational

state of Bromine was already observed, its importance for the time domain experi-

ments, up to our knowledge, never has been taken into consideration. Furthermore

it is very interesting that the contributions from the different vibrational states be-

longing to the electronic ground state can be probed separately varying the DFWM

wavelength. This is a special feature of bromine caused by the anharmonicity of

the B state and the Franck-Condon overlaps between the B and E states. Similar

scenarios might apply to many other molecules as well. Before assigning the ob-

served deviations from the expected dynamics to an additional excitation channel

starting from a hot state, various models had been considered in detail. The results

presented in this contribution demonstrate that extreme care has to be taken when

interpreting data from time resolved pump-probe experiments. Even at relatively

low temperatures hot vibrational modes may have a dominant contribution due

to favorable Franck-Condon overlaps. Interpretations of femtosecond dynamics in

practically all cases at room temperature is based on the assumption that the vi-

brational ground state in the electronic ground state is the starting point of every

pump step. However, always when low energy vibrations like e.g. phonons in solids

exist, efficient transitions also from hot states have to be taken into account. With

the present method, the pump-DFWM scheme, these contributions can be resolved

in the excited state dynamics individually for certain molecules, i.e. molecules with

a rather anharmonic B state. Since an interpretation of the results using only spec-

troscopic properties is not easily possible, quantum dynamical calculations prove to

be very powerful for a detailed understanding.
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5. Vibrational dynamics in higher

electronic excited states of

Bromine

In this chapter the studies on molecular Bromine are extended to a time-resolved

DFWM scheme. In the previous investigation the DFWM was only used as probe

process, here a time delay in the DFWM process is introduces. This allows to gain

also information about the dynamics in the ion pair states similar to the studies on

iodine in chapter 3. Since the previous analysis of the bromine experiments showed

that frequency and time-resolved spectra contains additional information we also

analyzed these results here. Applying this technique the vibrational dynamics oc-

curring in the E ion-pair state of molecular bromine was investigated. The initial

pump pulse is used to excite the B state, from which the E ion-pair state can be

accessed in a subsequent DFWM process. By introducing an internal time delay in

the DFWM process the vibrational dynamics of the E and B states can be probed. In

most cases the signals of the E and B state dynamics are overlapping which makes

it difficult to identify the contributions of the respective states. To this end it is

shown that it is possible to extract the contributions of the E state by a spectral

decompostion of the DFWM signal.

5.1. Introduction

Here we analyze fully time- and frequency-resolved pump-degenerate four-wave

mixing (pump-DFWM) experiments to monitor the ultra-fast dynamics of higher

excited states in molecular bromine. Even though bromine is a diatomic molecule
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Figure 5.1.: Sketch of the time-resolved processes performed on molecular bromine. A pump
pulse at 540 nm invokes a transition from the ground X state to the excited B state. The wave
packet prepared by the initial pump pulse is then interrogated by a time-resolved DFWM
process with wavelengths of 310 nm or 300 nm.

the vibrational dynamics shows complex behavior due to the strong anharmonicity

of the excited state potentials which can be qualitatively different from that of io-

dine [63]. Extensive work has been performed to characterize the electronic states

in the frequency domain [116, 119, 120]. These experiments provide very accurate

data of the electronic structure of the bromine molecule, which can be used as a

basis for quantum dynamical simulations of the pump-DFWM experiments. This

makes the bromine molecule an ideal model system to study and test this experi-

mental technique.

So far there are only a few experiments which investigated the vibrational dynamics

in bromine. In the group of Stolow fractional revivals of a B state wave packet

were observed [29]. The same group also measured an calculated the excited state

dynamics using ion-detection based pump-probe spectroscopy [30]. Schmitt et al.

employed electronically resonant CARS spectroscopy to investigate the excited state

dynamics in bromine [28].

Here we investigate the vibrational dynamics occurring in the E ion-pair state of

molecular bromine. Therefore an initial pump pulse is applied to excite the B state
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of bromine, from which the E ion-pair can be accessed in a subsequent DFWM

process which is resonant with the E to B transition. By introducing an internal

time delay in the DFWM process the vibrational dynamics of the E and B state can

be observed time- and frequency-resolved. This pump-DFWM scheme is depicted in

Fig 5.1. Simulations of the pump-DFWM process are used to verify the assignment

of the measured dynamics to the E ion-pair state.

5.2. Theory

The model system applied to simulate the DFWM signal for the bromine molecule

is composed of the vibrational Hamiltonians belonging to three electronic states

Ĥmol = |X 〉HX 〈X |+ |B〉HB 〈B|+ |E〉HE 〈E| . (5.1)

Here, HX ,HB and HE denote the vibrational Hamiltonians of the ground X , the first

excited B and the E ion pair-state. To model these Hamiltonians Born-Oppenheimer

potential energy surfaces consisting Rydberg-Rees-Klein (RKR) potentials calculated

from Dunham coefficients given in Refs. [116, 119, 120] are used. Furthermore

the coupling of the molecule to the electric field of the laser pulses E(t) through the

dipole operator µ̂ is treated in the dipole approximation

Ĥ(t) = Ĥmol− µ̂E(t) (5.2)

using the dipole operator

µ̂= µ
�

|ΨX 〉 〈ΨB|+ |ΨB〉 〈ΨE|
�

+ c.c. (5.3)

with a constant dipole strength µ. The electric fields of the laser pulses are assumed

to have the form

E(t) =
∑

n

En(t) =
∑

n

ε(t − Tn)e
−iωn(t−Ti)+iknx (5.4)

with Gaussian shaped envelopes ε(t) centered at times Tn with frequencies ωn and

wave vectors kn. The polarization field was calculated in the same way as described
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5. Vibrational dynamics in higher electronic excited states of Bromine

for the iodine experiment in chapter 3. In the simulations the polarization was cal-

culated over a time range of 10 ps and then Fourier transformed to get the spectra

which correspond to the spectra measured in the experiment using a CCD cam-

era. This results in transients at every detection wavelength. The different terms in

Eq. 3.12 are corresponding to different spectroscopic pathways exhibiting dynamics

of the B and the E state as detailed in section 3.3. The third term in Eq. 3.12 com-

prehends only the dynamics of the E state, therefore this part of the polarization

can be used to determine the contribution on the E state dynamics included in the

complete transient as measured in the experiments.

5.3. Results and Discussion

The ground X and excited B states of bromine have been well characterized in fre-

quency domain experiments [119, 120]. Also the ion pair states have been investi-

gated in detail [116]. Since these states are well characterized in these frequency

domain experiments it is possible to connect the measured vibrational dynamics in

the present experiments with the properties of the molecule. As mentioned above,

an initial pump pulse at 540 nm, which is resonant with the X to B state transition,

is used to initiate the dynamics in the system. This spectrally broad femtosecond

pulse creates a coherent superposition of several vibrational eigenstates in the B

state, which is then probed by the time-resolved DFWM process.

Since the B state potential energy surface is highly anharmonic, the pump process

creates a wave packet on the B state which strongly depends on the population of

hot vibrational states in the ground X state. This was investigated in the previous

chapter in detail using a pump-DFWM scheme with time-coincident pulses [63].
Here we extend these experiments to a time-resolved DFWM scheme to investigate

also the E state dynamics. By using two different sets of DFWM wavelengths dif-

ferent vibrational modes of the E state can be accessed. This should be reflected in

different contributions of the E state in the recorded transients.

Figure 5.2 shows the transient for a DFWM wavelength of 310 nm. The transient

shows a complex superposition of oscillations of different frequencies which can

be determined by performing a Fourier transformation of the transient signal. The
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Figure 5.2.: Panel A shows the DFWM signal recorded as a function of the delay time, ∆t,
within the DFWM beams of 310 nm for molecular bromine. Panel B shows the FT of the
experimental and calculated transients. The red line denotes the FT of the experimental
signal while the blue line shows the FT of the calculated transient. The FT of the simulation
including only the excited state dynamics is shown as green line.
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Figure 5.3.: Same as Fig. 5.2 but for a DFWM wavelength of 300 nm.
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result is shown in panel B of Fig. 5.2. This FT shows a broad double peak struc-

ture between 50 cm−1 and 100 cm−1. The peak around 84 cm−1 corresponds to

the level spacing of vibrational levels around ν′ = 21 of the B state, which is the

expected excitation region corresponding to the 540 nm pump pulse. The peak

around 60 cm−1 arises from a wave packet created by a transition from the first

vibrational state ν′′ = 1 of the ground state, which leads to an excitation to ν′ = 26

where the level spacing is around 60 cm−1. This can also be seen in the FT of

the simulated transient. An additional peak structure is noticeable at wavenumbers

above 120 cm−1. These peaks could be attributed to either the second harmonics of

the B state dynamics or to dynamics on the E state. Since they overlap it is difficult

to identify the contribution of the E state from the experimental signal. But with the

help of the simulations where it is possible to include only those pathways which

contain the E state dynamics it is possible to assign the peak at 143.3 cm−1 to the

E state dynamics. This separate contribution is also shown in Fig. 5.2

In a next step the DFWM wavelength was changed to 300 nm. The transient is

shown in Fig. 5.3 along with its FT in panel B. For this case the strongest vibrational

peaks are at 60 cm−1. Due to particular Franck-Condon overlaps between the B and

the E states only that part of the B state wave packet created from the hot vibration

ground state is probed by the 300 nm DFWM process. Comparing simulations and

experiment the E state dynamics can be assigned to the peak at 135.7 cm−1. This is

at a lower wavenumber than the peak for the 310 nm DFWM experiment. This can

easily be rationalized because the 300 nm pulses excite higher vibrational levels in

the E state which have a lower level spacing.

The transients shown in Figs. 5.2 and 5.3 are the integrated transients over the

complete detection wavelength range and are basically the same as for an exper-

iment using a photomultiplier as detector. In order to examine the experimental

DFWM signal in more detail it was recorded frequency-resolved using a CCD cam-

era as detector. The FTs of the transients at different detection wavelengths are

shown as color maps in Figs. 5.4 and 5.5. The experimental FT spectrum for

a center wavelength of 310 nm is displayed in Fig. 5.4A. The x-axis displays the

wavelengths, the y-axis the line positions while the intensity is shown using a color

code. Fig. 5.4B shows the theoretical spectrum for the same center wavelength.

For a center wavelength of 300 nm, Figs. 5.5A and B show the experimental and

theoretical spectra, respectively. It is obvious that for the two DFWM wavelengths
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5. Vibrational dynamics in higher electronic excited states of Bromine

Figure 5.4.: Panel A shows the experimentally obtained FT spectrum for a DFWM wavelength
of 310 nm. Panels B displays the respective FT spectrum obtained from calculations. The
intensity of the lines are indicated by the logarithmic color code.
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Figure 5.5.: Same as fig. 5.4 but for a DFWM wavelength of 300 nm.
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5. Vibrational dynamics in higher electronic excited states of Bromine

the FTs at specific detection wavelength differ considerable. The intensity of the

contributions from the B state and the E state vary strongly at different detection

wavelengths. Therefore it is possible to find certain positions where the E state con-

tribution is much more distinct than in the integrated DFWM transients (Figs. 5.2

and 5.3). This fact allows for a more detailed investigation of the E state dynamics

since it can be extracted from the overall transient behaviour. The experimentally

recorded data and the simulations show the same structure of vertical lines and dif-

ferent peak positions, although the employed model for the calculations is reduced

to contain only the vibrational degrees of freedom neglecting the rotations. It can

be reasoned that such a model system is adequate to simulate the basic features of

these complex spectra.

In order to track the dynamics of the E ion-pair state exclusively the relevant data

can be extracted from the frequency-resolved FT maps by choosing particular line

positions. These line positions where chosen by comparing the experimental map

plots (Figs. 5.4 and 5.5) with the simulations which were reduced to contain only

the excited state dynamics. Figures 5.6 and 5.7 show the FTs taken at particular

line positions, which shows a stronger E state contribution than the transient of

the integrated transient. For the case of the 310 nm excitation the FT of a selected

transient is shown in Fig. 5.6 together with the simulated FT at the same line

position. The peak is not much stronger than in Fig. 5.2 but it only shows the

143.3 cm peak which corresponds to the E state dynamics, the second harmonics

of the B state dynamics are absent. The FT for a DFWM of 300 nm is shown in Fig.

5.7. Here it was possible to find positions where the E state dynamics dominate the

transient and thus shows the strongest peak in the FT.

For the 310 nm DFWM experiment the E state peak is located at 143.3 cm−1. Com-

paring this value to the frequency-domain data indicates that it corresponds to the

excitation of vibrational levels in vicinity of ν′ = 7. The minimum of the E state PES

lies at an energy of 49778 cm−1 and the ν′ = 7 level at 50896 cm−1. This energy

is comparable to the total energy of the 540 nm initial pump pulse and the 310 nm

DFWM pulses which is 50777 cm−1 . For a DFWM wavelength of 300 nm, the E

state peak appears at 135.7 cm−1 which correspond to the level spacing found at

around ν′ = 16. The energy position of this level is at 52130 cm−1 and the energy

of the 540 nm and 300 nm pulse combination is 51852 cm−1 . So the observed dy-

namics can clearly be assigned to the E ion pair state. For the case of bromine these
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values were known from frequency-domain experiments but it shows the sensitivity

of the method to obtain information about high-lying excited states of the probed

molecule.
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Figure 5.6.: Here a selected FT of the 310 nm DFWM experiment at a detection wave length
of 310.148 nm is shown (experiment in red, simulation in blue). For comparison also the FT
of the simulation including only excited state dynamics is shown as green line.

5.4. Conclusion

It could be shown that the pump DFWM technique is a well suited tool to gain

information about the wave packet dynamics occurring in higher lying electronic

states of molecules. Here we used molecular bromine as a test system. Although

this is a simple two atomic molecule, it exhibits complex wave packet dynamics

due to its highly anharmonic excited state potentials. Using a DFWM setup with a
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5. Vibrational dynamics in higher electronic excited states of Bromine

frequency-resolved signal detection it was possible to examine the ion-pair state dy-

namics in detail by considering only transients at particular detection wavelengths.

It was possible to verify the experimental findings by quantum dynamical simula-

tion reproducing all the basic features of the measured transients. Two different

wave packets could be measured by using two different DFWM wavelengths. Fur-

thermore, the observed dynamics of these wave packets are in good agreement

with simulations based on a model system using PES calculated from frequency do-

main experiment data. These simulations are important to understand the complex

dynamics measured in the experiments, especially to asign specific features of the

transients to properties of the molecular systems.
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Figure 5.7.: Here a selected FT of the 300 nm DFWM experiment at a detection wave length
of 299.914 nm is shown (experiment in red, simulation in blue). For comparison also the FT
of the simulation including only excited state dynamics is shown as green line.
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6. Non-resonant multi photon

transition

Non-resonant multiphoton transitions between three electronic states of a molec-

ular system are studied. Based on a projection operator formalism which is for-

mulated in the framework of the so-called time-local as well as the time-nonlocal

approach, time-dependent Schrödinger equations are obtained which include ef-

fective couplings to the laser field. For both procedures a slowly varying amplitude

approximation can be invoked. The resulting time-local equations can be computed

numerically in a much more efficient way than the original effective Schrödinger

equations. The validity of these approximations is verified numerically for a 2-

photon process. Furthermore, the effective Schrödinger equations are specified to

sequences of 2-photon and 3-photon transitions. The derived equations are applied

to a molecular system consisting of three electronic states with Morse-type poten-

tial energy curves. Using different laser pulse scenarios the conditions are discussed

under which a sequence of 2-photon and 3-photon transitions can take place. The

work presented here was developed in cooperation with Dr. habil. Volkhard May

and published in Ref. [65].

6.1. Introduction

In many cases multiphoton transitions may proceed without resonant intermedi-

ate states. These so–called non-resonant multiphoton transitions (NMTs) represent

processes in which transitions between, for example, electronic energy levels of a

molecular system can only take place if the energy of two or more photons induces

a transition that does not involve intermediate states which support it. Therefore,
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whenever the external frequency is below half of the fundamental optical transi-

tion, NMTs can come into effect. Because the non-existence of intermediate states

the couplings to higher lying off–resonant states play an important role for NMTs.

Theoretically NMT processes can be treated either in the frequency or in the time

domain. The treatment in the frequency domain is well established [45, 121–124]
while less studies have been performed in the time domain to explain, for example,

femtosecond spectroscopical experiments [46, 47, 125, 126]. The purpose of this

paper is to extend preliminary considerations by one of the authors [44, 127, 128]
to sequences of ultrafast NMTs in a three–electronic level molecule.

NMT process in the time domain can be simulated directly by solving the time-

dependent Schrödinger equation. In such studies a state expansion should of course

be avoided since otherwise one would have to treat also the high lying off–resonant

states which induce the electronic coupling. So, for example, grid-based calcula-

tions would be possible but have to be performed with a sufficiently high precision

and then any type of light–induced transitions including NMTs can be accounted

for. This approach to study NMTs has been shown to work in different cases either

using the Born-Oppenheimer approximation [129, 130] or avoiding it [131, 132].
But the systems which could be treated in this manner were small systems as atoms,

diatomic molecules or 1d model systems.

In order to be able to treat larger systems one has to invoke perturbation theory

or approximations in one way or the other. The perturbation theory is normally

applied in the laser-matter interaction term −µ̂E(t) with the molecular dipole op-

erator µ̂ and the field–strength of the laser pulse E(t) [45, 121–124]. As a reminder

and to show the importance of the non-resonant states we calculate in Appendix A

the transition probability of a non–resonant two–photon process in using second–

order perturbation theory. The used perturbational treatment of the coupling to

the radiation field, however, restricts the whole description to the low–field regime.

Furthermore, the perturbative treatment includes multiple time integrals which are

computationally challenging.

An alternative approach is the development of an effective Schrödinger equation

where NMT processes are accounted for by effective couplings [44, 45, 127, 128].
In this formalism the electronic states are split into two categories. Those states

representing the initial and final states within the NMT process will then be named
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primary states. The rest of the states with energy levels far above the initial and final

states of the NMT process are described in a way independent of the solution of the

time–dependent Schrödinger equation and called non–resonant secondary states.

These secondary states are not treated explicitly, i.e. there will be no Schrödinger

equations for these states, but they enter the theory only via effective NMT coupling

matrix elements D. The general approach of deriving effective coupling expressions

to the radiation field is known (see, for example, [44, 45, 47]) and is based on

projection operator techniques as detailed below.

It is common to use effective coupling expressions to the radiation field [133, 134]
and it is also known how to derive such couplings [44, 45, 47]. But, so far, such

approaches have never been directly applied to femtosecond spectroscopy. Previ-

ously it has been shown [127, 128] how NMT processes can be incorporated into a

theory which only accounts for a very selected set of states (previously introduced

here as the primary states). This way one can derive an effective time-dependent

Schrödinger equation with effective couplings to the radiation field including powers

of the field-strength and effective transition dipole operators. Here we will extend

this theory to include sequences of two and three-photon NMT processes.

It is the particular aim of this paper to apply two different variants of the projection

operator formalism which are called the time-nonlocal (TNL) and the time-local

(TL) approaches. These variants are well-known from the field of dissipative quan-

tum dynamics (for references in this field, see for example [48, 49]). The TNL the-

ory is based on the Nakajima-Zwanzig identity [135, 136] and is also called chrono-

logical time ordering prescription [137], time convolution approach [138] or Mori

formalism [139]. Historically the TL approach goes back to work by Fuliński and

Kramarczyk [140, 141] and Shibata et al. [142, 143] and is also known as par-

tial time ordering prescription [137], time-convolutionless formalism[138], and

Tokuyama-Mori approach [144]. Both, the TL and the TNL formalism use the exact

contributions up to second order in the small parameter but do different partial re-

summations of higher-order terms. To have a clear comparison of both approaches

we will remind on some formulas already given in [127, 128].

The paper is organized as follows: In the next section the model system is intro-

duced before in Section III we derive the effective Schrödinger equations both in the

TNL and in the TL fashion. The weak field assumption is used in Section IV while
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in Section V the rotating wave (RWA) and the slowly varying amplitude (SVA) ap-

proximation are employed. Numerical results are given in Section VI and the paper

ends with some conclusions in Section VII.

6.2. The Model and Some Basic Relations

The total Hamiltonian governing NMT processes in a molecular system can be split

into the molecular part Hmol and the laser field part Hfield(t)

H(t) = Hmol+Hfield(t) . (6.1)

Using the adiabatic electronic states |ϕα〉 the molecular part has the form

Hmol =
∑

α

Hα(q) |ϕα〉 〈ϕα| . (6.2)

Here the Hα(q) are vibrational Hamiltonians with q representing the set of vibra-

tional coordinates. To remain at a sufficient simple form of Hmol nonadiabatic cou-

plings between the states are neglected throughout the whole paper (see also the

remark below).

The eigenfunctions of the vibrational Hamiltonian are denoted as φαM(q), and the

electronic-vibrational states |ΨαM〉 = |φαM〉 |ϕα〉 form a complete basis with ener-

gies εαM = εα +ωαM . Here, the εα describe the electronic energies, i.e. the mini-

mum of the PES plus vibrational zero–point energy, and theωαM are the vibrational

eigenenergies.

As mentioned in the introduction, the whole state space will be split into the part

of primary states and off–resonant secondary states. Therefore the set of electronic

quantum numbers α is separated into the set x belonging to the state space of sec-

ondary states and a remaining set a related to the primary state space (cf. Fig. 6.1).

In the following the latter comprises the electronic ground–state with a = g, the

first excited state with a = e and one higher excited state with a = f . In gen-

eral, of course further states as well as nonadiabatic couplings can be included if

necessary (the latter introduce additional deactivation channels among the excited
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Figure 6.1.: Energy level scheme considered in the framework of NMT processes. Left panel:
Vibrational levels εgM , εeN and ε f K referring to the ground and two excited electronic states,
all connected by NMTs. The set of energy levels εxK form the manifold of off–resonant levels.
Right panel: Separation of the complete level scheme into the primary and into the secondary
system of levels being off–resonant with respect to the non–resonant multiphoton transitions.

states in the primary state space). To ease the description of the secondary states

we introduce their density of states (DOS)

%(Ω) =
∑

x ,K

δ(Ω− εxK) , (6.3)

which, if necessary, can be reduced to a pure electronic one. Nonadiabatic cou-

plings may enter by replacing the εxK by the true energy eigenvalues following

from a diagonalization of the secondary states Hamiltonian. (The rough way the

DOS finally enters the effective time–dependent Schrödinger equations including

NMT processes let become the effect of nonadiabatic couplings of less importance

here.)

The coupling Hfield(t) to the laser field in Eq. 6.1 is treated in dipole approximation

and given by

Hfield(t) =−E(t)µ̂≡−E(t)
∑

α6=β

dαβ |ϕα〉 〈ϕβ|+ h.c. , (6.4)

where µ̂ is the molecular dipole operator and E(t) the electric field strength. It will

75
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be written as

E(t) = nE(t)e−iωt + c.c. , (6.5)

with the unit vector n of (linear) polarization, the field envelope E(t) and carrier

frequency ω.

The time-dependent Schrödinger equation defined be the complete Hamiltonian,

Eq. 6.1 reads

iħh
∂

∂ t
|Ψ(t)〉= H(t) |Ψ(t)〉 . (6.6)

For further use in the subsequent derivations we note its formal solution

|Ψ(t)〉= Umol(t − t0)S(t, t0;E) |Ψ(t0)〉 (6.7)

is written here in using the standard separation of the complete time-evolution

operator U(t, t0;E) into the molecular part

Umol(t − t0) = exp
�

−
i

ħh
Hmol(t − t0)

�

, (6.8)

and into the S-operator of the coupling to the radiation field:

S(t, t0;E) = T̂ exp−
i

ħh

t
∫

t0

dτ U+mol(τ− t0)Hfield(τ)Umol(τ− t0) . (6.9)

6.3. Effective Schrödinger Equation for NMT

Processes

In what follows we describe a systematic way to derive an effective NMT–Hamiltonian.

It will define an effective Schrödinger equation exclusively defined in the space of

the primary states. We start in presenting the derivation of the TNL–version (see

also [127, 128]). Afterwards, it is confronted with TL–version of an effective NMT

Schrödinger equation not given in literature so far.
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The approaches use standard projection operator techniques and are based on the

projector into the space of primary states

P̂ =
∑

a

|ϕa〉 〈ϕa| , (6.10)

Its orthogonal complement is denoted by

1− P̂ ≡ Q̂ =
∑

x

|ϕx〉 〈ϕx | . (6.11)

According to the introduction of P̂ and Q̂ we obtain primary and secondary states

as

|Ψ1(t)〉= P̂ |Ψ(t)〉 , (6.12)

and as

|Ψ2(t)〉= Q̂ |Ψ(t)〉 , (6.13)

respectively, where Ψ(t) is an arbitrary state defined in the complete Hilbert space.

In the same way we may introduce reduced Hamiltonians

H1(t) = H(mol)
1 +H(1)field(t) = P̂H(t)P̂ , (6.14)

and

H2(t) = H(mol)
2 +H(2)field(t) = Q̂H(t)Q̂ , (6.15)

with the first exclusively defined in the primary state space and the latter in the

Hilbert space of secondary states.

Since it is the aim of the following derivation to get an effective time-dependent

Schrödinger equation which is valid only in the primary state space we introduce

a separation of the original time–dependent Schrödinger equation 6.6. The part

projected onto primary states reads

iħh
∂

∂ t
|Ψ1(t)〉= H1(t) |Ψ1(t)〉+ P̂Hfield(t)Q̂ |Ψ2(t)〉 , (6.16)
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and that projected onto off–resonant secondary states follows as

iħh
∂

∂ t
|Ψ2(t)〉= Q̂Hfield(t)P̂ |Ψ1(t)〉+H2(t) |Ψ2(t)〉 . (6.17)

Here we took into account that P̂HmolQ̂ = Q̂Hmol P̂ = 0.

6.3.1. Time-nonlocal version

The TNL–version of an effective NMT Schrödinger equation is obtained by a direct

solution of Eq. 6.17 (note the initial condition |Ψ2(t0)〉= 0):

|Ψ2(t)〉=−
i

ħh

t
∫

t0

d t̄ U2(t, t̄;E)Q̂Hfield( t̄)P̂ |Ψ1( t̄)〉 . (6.18)

The newly appearing time–evolution operator U2(t, t̄;E) is that defined by H2(t). In

the following it will be separated into U (mol)
2 (t− t̄) defined in analogy to Eq. 6.8 but

with H(mol)
2 instead of Hmol and into S2(t, t̄;E). This S–operator is defined similar to

Eq. 6.9 but with Umol and Hfield replaced by U (mol)
2 and H(2)field(t), respectively.

If we insert the expression for |Ψ2(t)〉, Eq. 6.17 into Eq. 6.16 for |Ψ1(t)〉 we obtain

a closed equation for the latter state

iħh
∂

∂ t
|Ψ1(t)〉= H1(t) |Ψ1(t)〉+

t
∫

t0

d t̄ Kfield(t, t̄) |Ψ1( t̄)〉 . (6.19)

The time–integral kernel takes the form

Kfield(t, t̄) =−
i

ħh
P̂Hfield(t)Q̂U (mol)

2 (t − t̄)S2(t, t̄;E)Q̂Hfield( t̄)P̂ . (6.20)

It accounts for all NMT processes realized by the coupling to the manifold of off–

resonant states. Since the latter have been projected out, of course, the resulting

equation of motion is time non–local and shows a certain memory effect.

Let us expand Eq. 6.19 with respect to the primary electronic states. As a result a

78



6.3. Effective Schrödinger Equation for NMT Processes

set of coupled equations of motions for the vibrational wave functions χa(q, t) =
〈ϕa |Ψ1(t)〉 follow:

iħh
∂

∂ t
χa(t) = Ha(t)χa(t)− E(t)

∑

b

dabχb(t) +
∑

b

t
∫

t0

d t̄ Kab(t, t̄)χb( t̄) . (6.21)

Note the introduction of

Kab(t, t̄) = 〈ϕa|Kfield(t, t̄) |ϕb〉 . (6.22)

6.3.2. Time-local version

In analogy to the time-convolutionless projection operator formalism proposed by

Shibata and coworkers [143, 145] we derive the TL–version of an effective NMT

Schrödinger equation. For this one replaces |Ψ1( t̄)〉 in Eq. (6.18) by

|Ψ1( t̄)〉 ≡ P̂ |Ψ( t̄)〉= P̂U( t̄, t)(P̂ + Q̂) |Ψ(t)〉 . (6.23)

Introducing the operator

Σ̂(t) =−
i

ħh

t
∫

t0

d t̄ U2(t, t̄;E)Q̂Hfield( t̄)P̂U( t̄, t;E) , (6.24)

Eq. (6.18) is written as

|Ψ2(t)〉= Σ̂(t)P̂ |Ψ1(t)〉+ Σ̂(t)Q̂ |Ψ2(t)〉 . (6.25)

From this relation one can deduce that

|Ψ2(t)〉= (1− Σ̂(t))−1Σ̂(t)P̂ |Ψ1(t)〉 , (6.26)

and Eq. (6.16) takes the form

iħh
∂

∂ t
|Ψ1(t)〉= H1(t) |Ψ1(t)〉+ P̂Hfield(t)Q̂(1− Σ̂(t))−1Σ̂(t)P̂ |Ψ1(t)〉 . (6.27)
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In contrast to Eq. 6.19 this equation is local in time. As for the TNL version it can

also be expanded by the primary electronic states.

80



6.4. Weak Field NMT Processes

6.4. Weak Field NMT Processes

Since Eqs. 6.19 and 6.27 have been derived without any approximation its exact

solutions Ψ1(t) should be identical with Ψ(t) of Eq. 6.7 projected into the space of

primary states. If a particular approximation for Kfield or the operator [1− Σ̂(t)]−1

is taken, however, the quality of the result can be hardly judged. Such a problem

arises since, for example, the kernel Kfield, Eq. 6.20, already includes a complete

summation with respect to E. It is covered via S2 which has to be approximated

when carrying out concrete computations. Once such an approximation K (approx)
field

has been introduced it remains rather undefined if the determination of Ψ1 by a

direct solution of Eq. 6.19 describes the main features of the dynamics. At least this

has to be checked separately.

6.4.1. Time-nonlocal version

Nevertheless, we will proceed in this manner in the following and set

Kfield(t, t̄) = K (2)field(t, t̄) + K (3)field(t, t̄) + ... , (6.28)

where, K (2)field and K (3)field are of second and third power in the field–strength, respec-

tively. By setting S2(t, t̄;E)≈ 1 in Eq. 6.20 we obtain

K (2)field(t, t̄) =−
i

ħh
P̂Hfield(t)Q̂U (mol)

2 (t − t̄)Q̂Hfield( t̄)P̂ . (6.29)

One may expect that it describes two–photon transitions. However, there is not any

distinct criteria telling us up to which field–strengths E the time–evolution of the

state vector Ψ1(t) computed in using K (2)field is correct. We can only conclude that a

reduction to such a field–strength region may lead to acceptable results where the

excited state population Pe depends on the fourth–order of E, i. e. Pe ∼ E4. Since

this dependence corresponds to a second–order perturbation theory with respect

to the molecule radiation field coupling (see also Appendix A.1) it indicates the

correctness of the solution of the time–dependent Schrödinger equation.

The third–order contribution with respect to the field–strength follows if the linear
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expansion term of S2(t, t̄;E) is take. We obtain

K (3)field(t, t̄) = −
1

ħh2

t
∫

t̄

d t1 P̂Hfield(t)Q̂

×U (mol)
2 (t − t1)Q̂Hfield(t1)Q̂U (mol)

2 (t1− t̄)Q̂Hfield( t̄)P̂ . (6.30)

Respective primary system electronic matrix elements read

K (2)ab (t, t̄) = −
i

ħh
〈ϕa| µ̂Q̂U (mol)

2 (t − t̄)Q̂µ̂ |ϕb〉E(t)E( t̄)

≡−D(2)ab (t − t̄)E(t)E( t̄) , (6.31)

and

K (3)ab (t, t̄) = −
1

ħh2

t
∫

t̄

d t1 〈ϕa| µ̂Q̂U (mol)
2 (t − t1)Q̂µ̂Q̂U (mol)

2 (t1− t̄)Q̂µ̂ |ϕb〉

×E(t)E(t1)E( t̄)

≡−

t
∫

t̄

d t1D(3)ab (t − t1, t1− t̄)E(t)E(t1)E( t̄) . (6.32)

The coupled equations of motion for the vibrational wave functions may be written

as

iħh
∂

∂ t
χa(t) = Ha(t)χa(t)− E(t)

∑

b

dabχb(t)

−
∑

b

t
∫

t0

d t̄ D(2)ab (t − t̄)E(t)E( t̄)χb( t̄)

−
∑

b

t
∫

t0

d t̄

t
∫

t̄

d t1 D(3)ab (t − t1, t1− t̄)E(t)E(t1)E( t̄)χb( t̄) .

(6.33)
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For further use we give somewhat more explicit expressions for the NMT–coupling

functions. Introducing an expansion with respect to secondary electronic states it

follows

D(2)ab (τ) =
i

ħh

∑

x

dax e−iHxτ/ħhdx b , (6.34)

and

D(3)ab (τ, τ̄) =
1

ħh2

∑

x ,y

dax e−iHxτ/ħhdx y e−iH y τ̄/ħhdy b . (6.35)

We neglect vibrational contributions and introduce the DOS of the secondary states

D(2)ab (τ) =
i

ħh

∫

dΩ %(Ω)d(a,Ω)e−iΩτd(Ω, b) , (6.36)

and

D(3)ab (τ, τ̄) =
1

ħh2

∫

dΩdΩ̄ %(Ω)%(Ω̄)

×d(a,Ω)e−iΩτd(Ω, Ω̄)e−iΩ̄τ̄d(Ω̄, b) . (6.37)

To estimate the time–dependence of both NMT coupling functions we assume a

structureless DOS and a weak Ω and Ω̄ dependence of the transition dipole ma-

trix elements. Then, the time–dependence of D(2)ab (τ) is mainly determined by

−i/(τ − iε) (ε → +0), i.e. it is localized at τ = 0. For D(3)ab (τ, τ̄) one finds a

similar behavior with a localization at τ = 0 and τ̄ = 0. The δ–function like time

localization (of the real part) of D(2)ab and D(3)ab is weakened if the concrete frequency

dependence of the DOS and the transition dipole moments is taken into account.

Since the energy spectrum of polyatomic molecules is dense we get strongly local-

ized coupling functions D(2)ab and D(3)ab at least in a time interval of some fs (given by

the inverse frequency interval which mainly contributes to the integrations).
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6.4.2. Time-local version

Eq. (6.27) is an exact TL equation for the primary system. Unfortunately the com-

putation of the inverse operator [1− Σ̂(t)] is impossible for all non-trivial cases of

interest. The standard way to find a convenient approximation is the perturbative

expansion of the time-dependent generator. We start with

Ĝ(t) = P̂Hfield(t)Q̂(1− Σ̂(t))−1Σ̂(t)P̂ ≡ P̂Hfield(t)Q̂
∞
∑

m=1

Σ̂m(t)P̂ , (6.38)

which is not the desired perturbative expansion since Σ̂ depends on all orders of

the laser–matter coupling. Therefore, a respective expansion of Σ̂ becomes nec-

essary first. We note the separation of U2(t, t̄;E) into U (mol)
2 (t − t̄) and S2(t, t̄;E)

(cf. Section 6.3.1) as well as the similar separation of the complete time evolution

operator U( t̄, t;E). Now, an expansion with respect to the laser–matter coupling

becomes possible by expanding the respective S–operators, i.e. S2 ≈ 1+ S(1)2 and

S ≈ 1+ S(1) resulting in

Σ̂(1)(t) =−
i

ħh

t
∫

t0

d t̄ U (mol)
2 (t − t̄)Q̂Hfield( t̄)P̂U (mol)( t̄ − t) , (6.39)

and in

Σ̂(2)(t) = −
1

ħh2

∫ t

t0

d t̄

∫ t

t̄

d t1 U (mol)
2 (t − t1)Q̂Hfield(t1)Q̂U (mol)

2 (t1− t̄) (6.40)

×Q̂Hfield( t̄)P̂U (mol)( t̄ − t) + U (mol)
2 (t − t̄)Q̂Hfield( t̄)P̂

×U (mol)
1 ( t̄ − t1)P̂Hfield(t1)P̂U (mol)(t1− t) .

The expansion of the generator up to the third order reads

Ĝ(t)≈ Ĝ(2)(t) + Ĝ(3)(t) , (6.41)

with

Ĝ(2)(t) = P̂Hfield(t)Q̂Σ̂
(1)(t) (6.42)
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and with

Ĝ(3)(t) = P̂Hfield(t)Q̂
�

Σ̂(2)(t) + Σ̂(1)(t)Σ̂(1)(t)
�

= P̂Hfield(t)Q̂Σ̂
(2)(t) . (6.43)

For G(2)(t) which is responsible for two-photon transitions we explicitly obtain

Ĝ(2)(t) =−
i

ħh

∫ t

t0

d t̄ P̂Hfield(t)Q̂U (mol)
2 (t − t̄)Q̂Hfield( t̄)P̂U (mol)( t̄ − t) . (6.44)

The three-photon term is given by

Ĝ(3)(t) = −
1

ħh2

∫ t

t0

d t̄

∫ t

t̄

d t1

�

P̂Hfield(t)Q̂U (mol)
2 (t − t1)Q̂Hfield(t1)Q̂ (6.45)

×U (mol)
2 (t1− t̄)Q̂Hfield( t̄)P̂U (mol)( t̄ − t) + U (mol)

2 (t − t̄)

×Q̂Hfield( t̄)P̂U (mol)
1 ( t̄ − t1)P̂Hfield(t1)P̂U (mol)(t1− t)

�

.

We can extract the two and three photon coupling operators by expanding the

corresponding terms in the primary electronic states. Noting the definition of D(2)ab ,

Eq.(6.36), and D(3)ab , Eq.(6.37), we may write

D̃(2)ab (t − t̄) = D(2)ab (t − t̄)e−iHb( t̄−t)/ħh , (6.46)

D̃(3)ab (t, t̄, t1) = D(3)ab (t − t1, t1− t̄)e−iHb( t̄−t)/ħh . (6.47)
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With these coupling operators the effective vibrational Schrödinger equation in the

TL approach is given by

iħh
∂

∂ t
χa(t) = Ha(t)χa(t)− E(t)

∑

b

dabχb(t)

−
∑

b

t
∫

t0

d t1 D̃(2)ab (t − t̄)E(t)E( t̄)χb(t)

−
∑

b

t
∫

t0

d t̄

t
∫

t̄

d t1 D̃(3)ab (t, t̄, t1)E(t)E( t̄)E(t1)χb(t) .

(6.48)

In contrast to Eq. 6.33 the vibrational functions χb(t) do not depend on the inte-

gration variables which is an advantage of the TL approach.

6.5. Some Specifications

The two versions of effective NMT Schrödinger equations are specified next. First,

in using the RWA we introduce an approximation scheme that leads to TL Schrödinger

equations also when starting with the TNL projection operator formalism. Then, the

NMT Schrödinger equation obtained by the TL projection operator formalism is ex-

panded with respect to vibrational eigenstates to arrive at the equations used in the

numerics.

6.5.1. Time-nonlocal version

In order to arrive at the RWA we expand the molecular wave function with respect

to powers of the basic oscillation ∼ exp(−iωt) of the applied pulse. Accordingly,

the vibrational part of the complete molecular state vector reads

χa(t) =
∑

n

e−inωtχa(n; t) , (6.49)
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with n running over all integers (and finally with a = g, e, f ). This expansion

is used to transform the coupled time–dependent Schrödinger equations for the

χa(t) into those for the expansion coefficients χa(n; t). It follows an equation of

type
∑

n e−inωt f (n; t) = 0 where the f (n; t) are determined by the original time–

dependent Schrödinger equations. Then, respective time–dependent Schrödinger

equations for the χa(n; t) may be derived by setting f (n; t) = 0. Since the field

envelope and the expansion coefficients χa(n; t) depend on time, however, this pro-

cedure is only of an approximate character (it assumes that the different expansion

terms in Eq. 6.49 are linearly independent from each other). We obtain

iħh
∂

∂ t
χa(n; t) =

�

Ha − nħhω)χa(n; t)

−
∑

b

dab
�

E(t)χb(n− 1; t) + E∗(t)χb(n+ 1; t)
�

+Γ(2)a (n; t) + Γ(3)a (n; t) .

(6.50)

Here, Γ(2)a denotes the term, Eq. A.9 responsible for two–photon transitions and Γ(3)a

describes three–photon transitions according to Eq. A.12 (for details see Appendix

A.2). Both contributions are non–local in time and include the wave function ex-

pansion coefficients as well as the field envelopes at earlier times than t. Since

these quantities change only weakly on the time–interval D(2)ab (τ) and D(3)ab (τ− τ̄, τ̄)
approach zero, we may take them at the actual time. This application of the SVA is

justified by the time localization of D(2)ab and D(3)ab in a region of about 1 fs (cf. the

discussion at the end of Section 6.4.1), whereas the laser pulse envelope changes

on a 100 fs interval what is also valid for vibrational wave functions (see the wave

packet dynamics given below).

The remaining time integrals with respect to D(2) and D(3) have been estimated

in Ref. [128]. Here, we only present the results. For the two–photon coupling

follows

d(2)ab =

∞
∫

0

dτ eiνωτD(2)ab (τ)≈
%̄

ħh
d2

eff = d(2) , (6.51)

where %̄ denotes a representative mean value of the DOS, Eq. 6.3 and deff is an
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6. Non-resonant multi photon transition

mean transition matrix element form a primary state into the manifold of secondary

states. In the same manner we obtain:

d(3)ab =

∞
∫

0

dτ

τ
∫

0

dτ̄ D(3)ab (τ− τ̄, τ̄)eiµωτ+iνωτ̄ ≈
%̄2

ħh2 d3
eff = d(3) . (6.52)

Of course, a more detailed computation would result in a primary state dependence

of %̄ and deff. However, this is outside the scope of the present studies.

We first specify Eq. 6.50 from the TNL case for the case that two photons of the

applied field pulse are resonant to the transition from the ground to the first ex-

cited state, and three photons for the transition from this first excited state to the

higher excited state (the reverse sequence is detailed in Appendix C). To neglect

any contribution oscillating with multiples of exp(iωt) we concentrate on χg(0; t),
χe(2; t), and χ f (5; t). This corresponds to the RWA of Eq. 6.50. It is obtained if

all those expansion coefficients are eliminated which include in their Schrödinger

equations expressions Ha − nħhω positioned in an energy range of multiples of ħhω.

Such a neglect guarantees the absence of any oscillation with multiples of ω in

the remaining expansion coefficients. Moreover any single photon transition is ne-

glected. To simplify the notation below we write χg(0; t) = χg(t), χe(2; t) = χe(t),
and χ f (5; t) = χ f (t).

We obtain for the ground–state vibrational wave function (note n= 0)

iħh
∂

∂ t
χg(t) =

�

Hg − 2d(2)|E(t)|2
�

χg(t)− d(2)E∗2(t)χe(t) (6.53)

The equation of motion for the excited state wave function reads

iħh
∂

∂ t
χe(t) =

�

He − 2ħhω− 2d(2)|E(t)|2
�

χe(t)

−d(2)E2(t)χg(t)− d(3)E∗3(t)χ f (t) . (6.54)
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Finally, the wave function belonging to the further excited state obeys

iħh
∂

∂ t
χ f (t) =

�

H f − 5ħhω
�

χ f (t)− d(3)E3(t)χe(t) . (6.55)

As already indicated in Ref. [127] the two–photon transition from the ground

to the first excited state also includes a renormalization of the ground as well as

excited state Hamiltonian (ac Stark–effect). A similar contribution is absent when

discussing three–photon transitions.

6.5.2. Time-local version

Here, we present an expansion of the time–dependent vibrational wave functions

with respect to the eigenstates belonging to the Morse–like PESs which will be

specified in Section 6.6:

χa(t) =
∑

n

ca
n(t)φ

a
n . (6.56)

The matrix elements of the photon coupling operator ~D are then given by

D̃ab
nm(t, t̄) =

i

ħh
dab

nm

∫

dΩρ(Ω) d(a,Ω)d(Ω, b)e−iΩ(t− t̄)eiεb
m(t− t̄) (6.57)

with the matrix elements of the dipole operator

dab
nm = 〈φ

a
n |µ |φ

b
m〉 . (6.58)

With these definitions the equation for the expansion coefficients reads

i
∂

∂ t
ca

n(t) = ε
a
nca

n(t)−
∑

m,b

Γ(2)ab,nm(t)c
b
m(t)−

∑

m,b

Γ(3)ab,nm(t)c
b
m(t) (6.59)
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where Γ(2)ab,nm and Γ(3)ab,nm denoting the two-photon and the three-photon coupling

terms, respectively. The two-photon term is given by

Γ(2)ab,nm(t) =

∫ t−t0

0

dτ E(t)D̃ab
nm(τ)E(t −τ)

= E(t)

∫ t−t0

0

dτ E∗(t −τ)eiωτD̃ab
nm(τ)

+E∗(t)

∫ t−t0

0

dτ E(t −τ)e−iωτD̃ab
nm(τ)

+E(t)e−i2ωt

∫ t−t0

0

dτ E(t −τ)e−iωτD̃ab
nm(τ)

+E∗(t)ei2ωt

∫ t−t0

0

dτ E∗(t −τ)eiωτD̃ab
nm(τ) (6.60)

where the definition of the electric field 6.5 was used. Because the field envelope is

slowly varying in time we replace E(t−τ) by E(t). Setting t0 to −∞ the remaining

integral can approximated as

∫ ∞

0

dτ e±iωτD̃ab
nm(τ) =−

1

ħh
dab

nm

∫

dΩ
ρ(Ω)d(a,Ω)d(Ω, b)

E b
m±ω−Ω− iε

. (6.61)

Because the energy rangeΩ of the secondary states is much higher than the energies

of the vibronic states E b
m and the electric field ω we can write

−
1

ħh
dab

nm

∫

dΩ
ρ(Ω)d(a,Ω)d(Ω, b)

E b
m±ω−Ω− iε

=
1

ħh
dab

nm

∫

dΩ
d2

effρ(Ω)

Ω
= dab

nmd2
eff

ρ̄

ħh
(6.62)

Here we assumed that the effective constant deff is the same as in the TNL case

although the averaging procedure differs slightly. With this, Eq. (6.60) can be sim-

plified to yield

Γ(2)ab,nm(t) = E2(t)dab
nmd2

eff

ρ̄

ħh
= E2(t)dab

nmd(2). (6.63)

Similar approximations can be performed for the three-photon term

Γ(3)ab,nm(t) = E3(t)dab
nmd3

eff

ρ̄2

ħh2 = E3(t)dab
nmd(3). (6.64)
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The complete equation for the time evolution of the expansion coefficients reads

iħh
∂

∂ t
ca

n(t) = ε
a
nca

n(t)−E2(t)d(2)
∑

m,b

dab
nm cb

m(t)−E3(t)d(3)
∑

m,b

dab
nm cb

m(t) . (6.65)

At this point one can go back to a representation independent formulation

iħh
∂

∂ t
χa(t) = Haχa(t)− E2(t)d(2)

∑

b

χb(t)− E3(t)d(3)
∑

b

χb(t) . (6.66)

This equation can be applied in a straightforward manner leading to differential

equations for χg(t), χe(t), and χ f (t). Different from the equations for the TNL case

6.53 to 6.55 all processes are still included and one does not have to distinguish

beforehand if one wants to treat a sequence of 2-photon and 3-photon processes or

vice versa. Nevertheless one can derive Eqs. 6.53 to 6.55 which are based on the

TNL projection operator formalism by performing the RWA, i.e. replacing Ha by the

respective Ha− nħhω and replacing the field E(t) by its envelope E(t). Furthermore

all terms far outside the energy range of the 2-photon and 3-photon processes have

to be neglected. The numerical results in the next Section have been achieved using

Eq. 6.66 but using Eqs. 6.53 to 6.55 including the RWA does not lead to any visible

deviations since the requirements for the RWA are fulfilled in those examples.

6.6. Numerical Results

As already indicated, our numerical computations will focus on an electronic three–

level system defined versus a single vibrational coordinate. To stay sufficient simple

we chose Morse type PES:

V (R) = ED(1− e−β(R−R0)2) + E0 . (6.67)

All three PES are shown in Fig. 6.2 (the parameters are given below). They resem-

ble those PES typical for alkali dimers like NaK (see [146] and references therein)

as well as the one–dimensional PES used to describe NMT processes in a metal or-

ganic compound in Refs. [127, 128]. The concrete mutual energetic position has

been taken to allow for a sequence of two–photon and three–photon transitions
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Figure 6.2.: Potential energy surfaces in an electronic three-level system. The energy of the
laser pulse can lead to a 2-photon transition between the ground and first excited state and a
3-photon transition between the first and second excited state.

(this would be also possible in the metal organic compound used in [127, 128]).

Moreover, the shape of the PES was chosen such that wave packet dynamics pro-

ceed roughly in the 100 fs region. (If the curvature of the PES would be more flat

the wave packet dynamics would enter the 1 ps region being of less interest for the

demonstration of ultrafast NMT processes.) First, we focus on a two–level version

of our system, to study afterwards different laser pulse excitation schemes in the

full three–level system.

6.6.1. Comparison of different approaches

Aim of this subsection is to compare the different approaches for a model system in

which a 2-photon transition takes place. The test system consists of two electronic

surfaces of Morse type (similar to two of the three PES shown in Fig. 6.2)

The parameter ED is 1.36 eV for both PES while the upper surface is shifted by

E0 = 2.72 eV in energy. The minimum of the PES R0 is at 2.56 Å for both PES

and β is 1 a−1
0 for the ground state and 0.8 a−1

0 for the excited state PES. The

system parameters de f f and ρ̄ are chosen to be 1 D and 36.75 eV−1, respectively.

As density of states ρ(Ω) a step function was assumed so that ρ(Ω) = 0 for Ω <
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Figure 6.3.: Comparison of the population dynamics during a 2-photon process transition
using the TL approach without and with SVA.

Ωmin and Ω > Ωmax and 36.75 eV−1 elsewhere. With this, the value of ρ̄ equals

36.75 eV × log(Ωmax/Ωmin). For the present example, Ωmin was set to 27.2 eV and

Ωmax to 81.6 eV. The envelope of the applied laser pulse (see Eq. 6.5) has Gaussian

shape E(t) = Aexp
�

−(t − T )2/(2σ2)
�

with T = 1000 fs, σ = 42.5 fs (FWHM =
100 fs). The prefactor A is determined by the fluence F =

∫∞

0
|E(t)|2d t which is

chosen to 104 [GV/m]2fs. To induce a 2-photon process the carrier frequency ω

has the value 1.36 eV, i.e. half of the energetic difference between the two PES. The

lowest vibrational state of the electronic ground state is chosen as the initial wave

function.

One formalism to be compared is the TL theory without further approximations

as given in Eq. 6.48. The second and third approaches are the TNL formalism

including RWA and SVA and the TL approach with SVA. Fig. 6.3 compares these

different approximation in showing the temporal evolution of the electronic level

populations

Pa(t) =
∑

n

|ca
n(t)|

2 . (6.68)

As discussed above the TNL approach with RWA and SVA and the TL formalism

with SVA lead to very similar equations. Therefore it is no surprise that they result
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6. Non-resonant multi photon transition

in the same values for the population dynamics and are shown only as one result

in Fig. 6.3. So the question is how accurate do agree the results obtained without

using the SVA (computed in the TL formalism) with the approximated values. As

can be seen in Fig. 6.3 for the population dynamics of the ground and excited state

the agreement is very good. Since the computational effort to determine the values

without the SVA are much larger due to the calculation of the time integrals at every

time step, this result is very important for further calculations of NMT processes.

Since already for 2-photon processes the numerical effort without SVA is large, it

is even much higher when going to 3-photon processes for which a double-time

integral has to be calculated at every moment in time (see Eq. 6.48). Below all

results are obtained in the TL formalism including the SVA allowing for an efficient

calculation of NMT processes.

6.6.2. Sequence of a 2-photon and a 3-photon processes

In this subsection three different pulses are applied to a system of three electronic

levels as depicted in Fig. 6.2. The minima R0 of the PES are located at 2.65 Å, 2.91

Å, and 3.33 Å for the ground (g), first excited (e), and second excited ( f ) PES,

respectively. The parameters ED have the values 1.36 eV, 1.09 eV, and 0.82 eV and

the parameters β the values 1 a−1
0 , 0.8 a−1

0 , and 0.5 a−1
0 , respectively for the g, e

and f PES. In addition there is an energetic shift between ground and first excites

state of 2.72 eV and of 7.5 eV between the ground and second excited states. The

system parameters de f f and ρ̄ are chosen to be 1 D and 36.75 eV−1, respectively.

The three different pulses schemes are shown in Fig. 6.4. The fluence in all three

schemes is restricted to 5.4×104 [GV/m]2fs. In the first single–pulse scenarios

the pulses are centered around 1000 fs and have a FWHM of 100 fs an 250 fs,

respectively. The third pulse scenario consists of two sub–pulses with FWHM of

100 fs centered at 700 fs and 1360 fs. To induce a 2-photon process between

the ground and first excited state the carrier frequency ω was chosen to be 1.5

eV. This is not exactly twice the energetic difference between these two PES since

they are also shifted in coordinate space. Again the lowest vibrational state of the

electronic ground state is chosen as initial wave packet. Therefore the 2-photon

process does not take place between the lowest vibrational states of the ground and
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Figure 6.4.: Three different pulse scenarios to create a sequence of 2- and 3-photon transi-
tions in a three-level system.

first excited PES but between the lowest vibrational states of the ground PES and

higher vibrational states of the first excited PES. Due to the limited length of the

pulse it has a non-negligible width in frequency space and can excite more than one

vibrational state.

The electronic population dynamics for the 100 fs long single pulse is shown in

Fig. 6.5. Initially all population is in the ground state. During the action of the

laser pulse, population is transfered from the ground to the first excited state, here

between the vibrational ground state of the lower PES to the 16th vibrational state

of the upper one.

Wave packet dynamics on the first excited state is shown in Fig. 6.6 by drawing the

vibrational coordinate probability distribution in a particular electronic state

Pa(R, t) = |χa(R, t)|2 ≡ |
∑

n

ca
n(t)φ

a
n(R)|

2 (6.69)

versus time. One can clearly see that the wave packet shows an oscillatory move-

ment. During the pulse action the energetics is unfavorable for a transfer between

the first and the second excited state. This can be already be envisioned from the

sketch in Fig. 6.2. The difference between the minima of the first and second ex-

cited state would allow for a 3-photon processes but since the PES are shifted with
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Figure 6.5.: Population dynamics in the three-level system under the influence of a 100 fs
pulse.

respect to each the Franck-Condon overlap for the energetically accessible states is

vanishing.

This changes when a longer pulse, for example, a 250 fs pulse is applied. The

corresponding population and wave packet dynamics are shown in Figs. 6.7 and

6.8, respectively. First, population is transfered from the ground to the first excited

state. However, the laser pulse is still acting when the wave packet in the first

excited state enters the Franck-Condon window of the transition into the higher

excited state. Therefore, a considerable amount of population is transfered via a

3-photon processes to the second excited state. The absolute value of this popula-

tion transfer, of course, is small since in total the transfer from the ground to the

second excited state corresponds to a process which is of 5th-order in the laser-field

strength. This is mainly originated by the need to work in a field–strength region

which can be also reached by multiphoton transition perturbation theory (cf. the

discussion in Section 6.4). Comparing the present field–strength region of 1 GV/m
with the 10 to 30 GV/m region of Ref. [128] (the used molecular parameters are

similar) the limit of the validity of perturbation theory is not exceeded (in [128] a

dependence of the excited state population ∼ E4 and ∼ E6 has been confirmed).

A third pulse scenario was shown in Fig. 6.4, a sequence of two 100 fs pulses

96



6.6. Numerical Results

Figure 6.6.: Wave packet dynamics in the three-level system under the influence of a 100
fs pulse. The lower panel shows PeR, t, Eq. 6.69 (probability distribution in the first excited
state) while the upper panel displays Pf R, t (probability distribution in the second excited
state, note the different scales of the color coding).
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Figure 6.7.: Same as in Fig. 6.5 but using a 250 fs pulse.
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Figure 6.8.: Same as in Fig. 6.6 but using a 250 fs pulse. Note the change in the scale of the
color coding.

separate by 660 fs. The corresponding population and wave packet dynamics are

shown in Figs. 6.9 and 6.10, respectively. The first pulse stimulates a 2-photon

process from the ground to the first excited state. No transfer to the second excited

state can take place because the wave packet is outside the Franck-Condon overlap

region for the energetically accessible states. This changes with the second 100 fs

pulse. The effect of this pulse is twofold. On one side it further transfers population

from the ground to the first excited state. But on the other side due to the selected

temporal separation between the two pulses, the wave packet on the first excited

state created by the first pulse moved into the Franck-Condon overlap region and a

3-photon transfer from the first to the second excited state can take place.

Above we have concentrated ourself on a model system in which a 2-photon and

then a 3-photon transition can take place. In Section 5 the formulas were also given

for schemes in which first a 3-photon and then a 2-photon transition is possible. For

such a system setup equivalent results can be achieved.
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Figure 6.9.: Same as in Fig. 6.5 but using the scenario with two separate 100 fs pulses.

Figure 6.10.: Same as in Fig. 6.6 but using the scenario with two separate 100 fs pulses.
Note the change in the scale of the color coding.
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6.7. Conclusions

Projection operator theories have been applied to study NMT processes in molecu-

lar systems. Effective time-dependent Schrödinger equations were derived starting

from a time-local as well as a time-nonlocal formalism. These effective Schrödinger

equations were further simplified by invoking either the SVA alone or the RWA and

SVA, respectively. The validity of these approximations was numerically verified

which was only possible due to the equations derived from the TL approach. In

addition a perturbative description of non-resonant 2-photon transitions has been

given in the appendix to further clarify the summation over the non-resonant states

(the secondary states in the projection operator approaches).

Other than in previous publications [44, 127, 128] in which the effective Schrödinger

equations were only derived from the time-nonlocal formalism and in which the ad-

ditional approximation could not be tested, here we applied the approach to a se-

quence of 2-photon and 3-photon transitions. It was shown that for such a sequence

of events certain prerequisites of the pulse have to be fulfilled.

Also for sequences of ultrafast NMTs one can imagine to apply optimal control

theory as has been done for single NMTs [127, 128]. The numerical effort for using

the TL formalism without further approximations would be rather high but using

either the TL form with the SVA or the TNL theory with RWA and SVA would make

these control calculations numerically tractable. As was shown above these extra

approximations work very accurately and do not lead to large deviations from the

TL formalism without further approximations.
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7. Excitation energy transfer in

biological pigment complexes

7.1. Introduction

In the preceding chapters 3,4 and 5 it was shown that quantum dynamical simu-

lations are a powerful tool to investigate molecular dynamics and help to analyze

and understand experimental findings. This was demonstrated for simple isolated

molecules. The subsequent part of the thesis aims at the extension of this methodol-

ogy to complex biological systems. In nature there exist a vast multitude of molec-

ular complexes which where structurally optimized to accomplish special functions

in biological systems. Two prominent examples are the DNA which stores the ge-

netic instructions in all known living organisms and the photosynthetic apparatus

which produces organic compounds using the energy from sunlight[147].

The theoretical description of energy transfer processes in such systems is an im-

portant element in understanding the relation between their structure and function.

To gain a complete theoretical picture a full quantum dynamical description would

be necessary. Since the development of realistic theoretical models in such com-

plex systems is not feasible, numerical simulations emerged as an excellent tool

to study these processes. However, time-dependent ab initio calculations for sys-

tems with hundreds of thousand atoms are computational too expensive. On the

contrary, classical MD simulations are capable to simulate the structural changes in

such large systems, but they ignore quantum effects which are important for energy

and charge transfer processes and optical properties [48]. One way to overcome

this problem is to use MD for the nuclear degrees of freedom and perform simulta-

neous electronic structure calculations. One prominent example of these ab initio
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Figure 7.1.: left: Simulation scheme of the mixed quantum-classical approach. right: Model
system for the mixed quantum-classical approach

MD is the Car-Parinello method [148] which can be used to describe systems of a

few hundred atoms. For larger system other approximative methods have to be ap-

plied. In many cases it is not necessary to describe all degrees of freedom quantum

mechanically but it is sufficient to use classical MD for the main part of the system

and treat only those degrees of freedom quantum mechanically which are relevant

for the process under investigation. The complete system is divided in a classical

and a quantum part which influence each other trough couplings. Fig. 7.1 de-

picts this schematically. There exist several approaches to accomplish this, e.g. the

Ehrenfest method [149] and surface hopping [150–152]. In the Ehrenfest method

the quantum subsystem is described by wave packet propagation which allow to

include electronic transition. The forces acting on the classical subsystem in turn

are calculated by averaging over the time-dependent wave function of the quantum

subsystem.

In the following part, the application of wave packet simulations for the description
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of excitation energy transfer in large biological systems is investigated. Applica-

tions would be for example the excitation energy transfer in light-harvesting (LH)

systems which are an essential part of the photosynthetic apparatus found in plants

and some bacteria. They absorb light and transfer the excitation energy to the pho-

tosynthetic reaction center. These systems are very large and a reasonable model

system would contain up to 105 atoms. They consist of pigment molecules em-

bedded in a protein structure. The pigments are the optical active components of

the LH complexes and are responsible for the absorption and transfer of the exci-

tation energy. The protein environment has also a strong influence on the tranfer

dynamics and need to be included in the description. Due to the size of these

systems approaches which include the influence of the quantum system on the clas-

sical system are still computationally too expensive. A further approximation is to

neglect this influence. This assumption can be justified by the fact that the pig-

ments are small compared to the protein environment and that an excitation in

one of these pigments would not change the structure of the whole complex con-

siderably. Therefore the classical system can be described by a parametrized force

field which enables for MD simulation of systems with more then 105 atoms. The

pigments are then described as a quantum subsystem. A possible methodology of

such a simulation is depicted in Fig. 7.1. Based on the trajectory from the MD sim-

ulation the Hamiltonian for the pigments is determined by performing electronic

structure calculations for certain time steps of the MD trajectory. These calculations

result in time-dependent excitation energies for the individual pigments and cou-

pling factors between them. These can then be used to build a model Hamiltonian

for ensemble averaged wave packet calculations, i.e., the numerical integration

of the Schrödinger equation [50, 51]. This approach has the advantage of utiliz-

ing directly the full time dependence of couplings, transition dipole moments and

other quantities obtained from the MD/QC approach. Disadvantageous is that the

wave-packet based approach includes an implicit high-temperature assumption and

therefore does not yield the correct thermal state in the long time limit. Another

possibility is to calculate a spectral density out of the excitation energy fluctuations

for a density and use density matrix theories to determine population dynamics

and spectra. The disadvantage of this technique is that it involves several averaging

procedures to obtain a time-independent Hamiltonian coupled to an environment

which causes loss of information during the averaging processes.
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In the following a method proposed by A. Bastida and co-workers [66–68] is dis-

cussed which modifies the wave packet approach in such a way that it conserves

the correct temperature behaviour. This methodology will be explained in detail

and applied to the two-level model system. The results are compared to dissipative

density matrix calculations which exhibit the correct temperature behaviour. Finally

these calculations are applied to Hamiltonians calculated from resent MD/QC cal-

culations of the light harvesting complex II found in the photosynthetic apparatus

of purple bacteria [59, 69, 70].

7.2. Theory

As stated above and depicted in Fig. 7.1 the system Hamiltonian is split in a quan-

tum part, HQ, and a classical part, HC . HQ is the relevant part for the quantum

calculation representing the optical active pigment molecules. HC describes the

nuclear dynamics in the complex. Thus the complete system Hamiltonian reads

H(r,R) = HQ(r) +HC(R) +HQC(r,R) . (7.1)

Here R represents the set of nuclear coordinates, i.e. the degrees of freedom which

are treated in a classical approximation and r the electronic degrees of freedom

treated quantum dynamically. Both subsystems are coupled via the coupling opera-

tor HQC(r,R). For the modeling of the excitation energy transfer only the electronic

excitation of the pigments is treated quantum mechanically. Thus HQ corresponds

to the excitation Hamiltonian of the pigment system. The derivation of this exci-

tation Hamiltonian from the electronic Hamiltonian of the complex will be shown

in the following. The electronic Hamiltonian of the complex H el(R(t)) depends

parametrically on the nuclear coordinates. The nuclear coordinates are determined

classically using Newton’s equations

MνR̈ν =−5ν 〈Ψ(r,R)|H(r,R)|Ψ(r,R)〉 (7.2)

for the position Rν of the νth nuclei and its related mass Mν. The force depends on

the wave function Ψ(r,R) of the system and is therefore coupled to the quantum

system. The electronic wave functions evolves according to the time-dependent
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Schrödinger equation

iħh
∂

∂ t
Ψ(r, R(t)) = H el(R(t))Ψ(r, R(t)) . (7.3)

As discussed above the influence of the quantum system on the classical system can

be neglected here. Therefore the potential 〈Ψ|H|Ψ〉 appearing in Eq. 7.2 can be

replaced by a ground state potential which defines the force field used in the MD

simulations.

7.2.1. Exciton Hamiltonian

The electronic Hamiltonian of the pigment system can be constructed from the elec-

tronic Hamiltonians of the individual pigments labeled by m and the intermolecular

Coulomb interactions Vmn(r) between them. Therewith the electronic Hamiltonian

reads

H el(R) =
∑

m

H el
m(R) +

∑

mn

Vmn(r) . (7.4)

To classify the transfer process the electronic part is expanded in terms of the adi-

abatic electronic states of the single molecules |ψma〉. The label a counts the elec-

tronic state of molecule m. These states are defined by the stationary Schrödinger

equation for a single molecule

H el
m(R)φam(r,R) = εam(R)φma(r,R) . (7.5)

H el
m(R) is basically identical to the electronic Hamiltonian in Eq. 2.10 defined in

paragraph 2.2.2. The only difference is that here R represents all nuclear coordi-

nates of the complete system and not only these of the single pigment molecule.

In a next step we assume that there is no overlap between the electronic wave

functions

〈φma|φnb〉= δma,nb (7.6)

which is reasonable since the wave functions decrease exponentially with inter-

molecular distance. Usually the distance between the pigments is larger than 1 nm
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7. Excitation energy transfer in biological pigment complexes

so that these intermolecular interactions can be neglected. With this relation, a

Hartree product ansatz can be used to construct a complete basis for the electronic

wave function

Φ{a}(r{m},R) =
M
∏

m

φma(rm,R) . (7.7)

The electronic Hamiltonian acting in the state space spanned by these states can

now be written in terms of the electronic wave functions φma, which reads

H el =
∑

m

∑

ab

Hab
m |φma〉 〈φmb|+

∑

mn

∑

abcd

V abcd
mn |φmaφnb〉 〈φncφmd | (7.8)

with the matrix elements

Hab
m = 〈φma|H el

m |φma〉 . (7.9)

The off diagonal elements correspond to nonadiabatic couplings which will be ne-

glected. The matrix elements of the Coulomb interaction read

V abcd
nm = 〈φmaφnb|Vnm|φncφmd〉 . (7.10)

In the following the description is restricted to incorporate only the ground and

first excited state of the different molecules. This two-level approximation can be

applied if initially only one molecule is excited and the transition energy in all

molecules is similar. Therefore the index a in the above equation takes only the

values g and e for ground and excited state, respectively. In this approximation

only coupling terms V egeg
mn ≡ Vmn have considerable contribution. This results in

H el =
∑

m

∑

a=g,e

εma |φma〉 〈φma|+
∑

mn

Vnm |φmeφmg〉 〈φmeφmg | . (7.11)

The studies presented here investigate the case of a single excitation in the complex,

i.e. only one molecule m is in the excited state and all others are in the ground state

|m〉= |φme〉
∏

n6=m

|φmg〉 (7.12)
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and the electronic single excitation Hamiltonian is given by

H(1)el =
∑

m

(E0+ εme − εmg) |m〉 〈m|+
∑

nm

Vnm |n〉 〈m| . (7.13)

This single excitation Hamiltonian will be used to describe the excitation transfer

process in the complex and will be referred to as quantum system.

HQ = H(1)el . (7.14)

The ground state energy is not important and can be set to zero. Additionally we

introduce the excitation energy εm = εme − εmg of molecule m which yields

HQ =
∑

m

εm |m〉 〈m|+
∑

nm

Vnm |n〉 〈m| . (7.15)

Further the eigenvalue equation for this Hamiltonian

HQ |α〉= Eα |α〉 (7.16)

can be solved. Therefore the eigenstate |α〉 is expanded in the basis of the singly

excited states

|α〉=
∑

m

cm
α |m〉 . (7.17)

These states will be referred to as excitonic states of the pigment system. Using

this expansion and the obtained excitonic energies the quantum Hamiltonian can

be written as

HQ = Eα |α〉 〈α| . (7.18)

7.2.2. QM/MM modeling

As stated above the nuclear dynamics of the complex are treated classically using

MD simulations with static forcefields. The result of these simulations are trajec-

tories of the nuclear coordinates of the complex. With these coordinates the static

electronic Schrödinger equation for the individual pigment molecules can be solved
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to get the the excitation energies and Coulomb couplings. This can be accomplished

with electronic structure methods, like CIS [153], TDDFT[154], or semi-empirical

methods like ZINDO/S [155, 156]. The details of this methodology can be found

in recent publications from our group [69, 70, 157]. This procedure results in a

time-dependent Hamiltonian for the quantum system

H(t) =
∑

m

εm(t) |m〉 〈m|+
∑

nm

Vnm(t) |n〉 〈m| (7.19)

were εm(t) and Vnm(t) are the time dependent excitation energies and Coulomb

couplings calculated for every time step of the MD trajectory. To gain the Hamilto-

nian HQ (Eq 7.15) for the isolated quantum system we assume that the time average

of the time-dependent Hamiltonian 7.19 corresponds to the electronic structure of

the equilibrium configuration of the nuclear coordinates

〈H(t,R(t))〉 ≡ HQ . (7.20)

The effect of the classical part onto the quantum part can now be considered as

fluctuations which are added to the excitation energies and couplings due to the

displacement of the nuclei from the equilibrium configuration. These fluctuations

define the the action of the classical system on the quantum system degrees of

freedom.

HQC = 〈ΨQ|HQC |ΨQ〉= (H(t,R(t))− 〈H(t,R(t))〉) (7.21)

Since we neglect any influence from the quantum system on the classical system

〈ΨC |HQC |ΨC〉 = 0 this is the total interaction Hamiltonian HQC . It can be given in

terms of the single excited pigment states

HQC(t) =
∑

m

∆εm(t) |m〉 〈m|+
∑

m 6=n

∆Vmn(t) |m〉 〈n| . (7.22)

Here the ∆εm(t) and ∆Vmn(t) are the fluctuations of the excitation energies and

the couplings with respect to the average Hamiltonian. If we now combine Eqs.

7.1, 7.15 and 7.22 we can arrange the time dependent Schrödinger equation for
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the quantum system

iħh
∂

∂ t
|ΨQ(t)〉= (HQ + 〈ΨQ|HQC(t)|ΨQ〉) |ΨQ〉 . (7.23)

If the wave function of the quantum system is expanded in terms of the excitonic

states |α〉 (Eq. 7.17) of the pigment system

|ΨQ(t)〉=
∑

α

cα(t) |α〉 (7.24)

coupled equations for the expansion coefficients can be obtained

iħh
∂

∂ t
cα(t) = Eα+

∑

αβ

Jαβ(t)cβ(t) (7.25)

with the matrix elements of the coupling Hamiltonian

Jαβ(t) = 〈α|HQC(t)|β〉=
∑

m,n

cαmcβn 〈m|HQC(t)|n〉 . (7.26)

The population of the excitonic states, i.e., the probability to find the pigment sys-

tem in that state is given by Pα(t) =
�

�cα(t)
�

�

2
. Also the probability to find an indi-

vidual pigment in the excited state can be obtained

Pm(t) =
�

�〈m|ΨQ〉
�

�

2
=
∑

α

cαmcα(t) (7.27)

Using these equations the electronic time-dependent Schrödinger equation for the

pigment system can be solved numerically. The wave function describes a pure state

of the system. To reproduce the true physical ensemble the wave packet propaga-

tion has to be performed on sufficient number of trajectories and averaged.

7.2.3. Temperature correction

As discussed above the wave packet description of the pigment system has the dis-

advantage that it does not include temperature effects but implies a high temper-

ature assumption. Therefore the populations will reach an equal distribution in

the long time limit. However, the correct equilibrium distribution is given by the

109



7. Excitation energy transfer in biological pigment complexes

Boltzmann distribution

|ceq
α |

2 =
e−Eα/kB T

∑

α e−Eα/kB T
(7.28)

To correct the temperature behavior we follow a method proposed by Bastida and

co-workers [66–68]. In this method the couplings between quantum system and

classical system are modified by a temperature-dependent quantum correction fac-

tor

J tc
αβ =

�

2

1+ e−ħhωαβ/kB T

�1/2

Jαβ . (7.29)

This factor ensures that the correct equilibrium distribution is reached. Since the

use of this factor destroys the symmetry of the coupling matrix J tc
αβ 6= J tc

βα. In order

to keep it, symmetrical, quantum corrected couplings are introduced as follows

J stc
αβ = J stc

βα = |cβ|J
tc
αβ− |cα|J

tc
βα , α> β .

J stc
αβ = Jαβ . (7.30)

This corrected coupling matrix is real and symmetric and thus the norm and the

total energy of the wave function will be conserved. The non diagonal matrix

elements vanish when the populations reach equilibrium, this can be proven by

Eqs. 7.28,7.29 and 7.30.

7.3. Two-state model system

As a first test for the above described method a molecular heterodimer is used. This

system consists of two monomers with different excitation energies ε1 and ε2 and

the coupling V12 = V . According to Eq. 7.22 the coupling to the environment is

introduced by adding fluctuations to the excitation energies the influence on the

110



7.3. Two-state model system

coupling is neglected. Thus the Hamiltonians for this system are

HQ =
2
∑

m=1

εm |m〉 〈m|+ V (|1〉 〈2|+ |2〉 〈1|) , (7.31)

HQC =
2
∑

m=1

∆εm(t) |m〉 〈m| . (7.32)

The system Hamiltonian can be diagonalized to get the excitonic states |α〉, en-

ergies Eα and expansion coefficients cαm. For a two level system this can be done

analytically. The solution can be found in textbooks [8, 48], here just the excitonic

energies are given

Eα=± =
ε1+ ε2

2
±

1

2

p

(ε1+ ε2)2+ 4|V |2 . (7.33)

With that the time-dependent Schrödinger equation for the system including the

coupling to the classical system can be written as

i
∂

∂ t
|ΨQ(t)〉= (HQ +HQC(t)) |ΨQ(t)〉

=





∑

α

Eα |α〉 〈α|+
∑

αβ

Jαβ |α〉 〈β|



 |ΨQ(t)〉 . (7.34)

This can be solved numerically using the expansion given in Eq. 7.25. The quan-

tum correction for the temperature can be introduced by replacing the coupling

matrix elements Jαβ with the temperature-dependent coupling factors J stc
αβ given in

Eq. 7.30.

As reference for this calculation results obtained by the reduced density matrix

approach will be used. In this approach the system is split in a relevant system

(here the electronic excitations) and a bath containing all other degrees of free-

dom. The key quantity is the reduced density matrix (RDM) which is the partial

average of the total density matrix over the baths degrees of freedom. This method

reproduces the correct temperature behavior and is therefore suited to check the

functionality of the quantum correction for the wave packet (WP) description. In

this method the coupling to the bath is characterized by the spectral density. To

compare both approaches we need to calculate time trajectories of excitation en-
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ergy fluctuations which correspond to a specific spectral density. The spectral den-

sity can be calculated from the autocorrelation function of the excitation energies

Em(t) = εm+∆εm(t)

Cm(t) = 〈∆εm(t)∆εm(0)〉 . (7.35)

With that the spectral density can be introduced as [153]

J(ω) =
2

πħh
tanh

�ħhωβ
2

�
∫ ∞

0

d t cos(ωt)C(t) . (7.36)

For the RDM calculations performed here as comparison a Drude spectral density

was used

J(ω) =
2λ

π

γω

γ2+ω2 . (7.37)

Using the high temperature approximation β = 1/kB T � 1 the autocorrelation

function has to have the form

C(t) =
2λ

β
e−γt (7.38)

With the dissipation energy λ and the autocorrelation time 1/γ. To gain a trajectory

for the excitation energy fluctuations ∆εm(t) a random generator which produces

random numbers with a given autocorrelation can be used.

7.3.1. Results and discussion

For the model system energy difference between the two excitation energies was

set to ε2 − ε2 = 100cm−1and the coupling to V = 100cm−1. For generating the

fluctuations a correlation time of 1/γ = 100fs was used. The calculations were

performed for two different reorganization of λ = 50cm−1 and λ = 100cm−1. The

wave function was calculated for 105 realizations and averaged. To find the suffi-

cient number of realization a check for convergence was performed. The excitonic

wave function was calculated by solving the differential equations 7.25. From the

wave function the populations of single excited states were calculated according to
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Figure 7.2.: Excitation dynamics calculated with wave packet approach (WP), WP with tem-
perature correction (WPqc) and reduced density matrix (RDM) for reorganization energy of
λ= 50cm−1

Eq. 7.27. Figs. 7.2 and 7.4 show the time evolution of the population. Here, only

the population of the monomer with the higher excitation energy is shown. The

population of the other monomer is P2(t) = 1− P1(t) since the wave function is

normalized. As can be seen from both plots, the populations obtained from the

wave function and the RDM show the same oscillations also the dephasing time is

equal. The only difference is that the populations obtained from the RDM converge

to the thermal equilibrium, which is indicated by the dotted line in the figures. This

is due to the reorganization energy which is removed from the system. The WP

calculations do not include any energy dissipation and conserve the system energy

over time. Therefore they imply a high temperature limit which leads to equal

populated states in the long time limit, which is P eq
m = 0.5 for the two-state sys-

tem. The dephasing is determined by the correlation time 1/γ and equal in both

methods. By increasing the reorganization energy, the system is expected to show

a stronger damping, i.e., it reaches the equilibrium population faster, that can be

seen in RDM calculations. The oscillations are due to the intermolecular coupling

V and therefore reproduced equal in both methods. If now the quantum correction

is introduced to the WP calculations the populations are expected to also reach the

equilibrium distribution. This is the case for the long time limit as can be seen in

Figs. 7.3 and 7.5. Also the damping increases with higher reorganization energies.

However, the time scale of the damping is different by a factor of approximately 10.
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Figure 7.3.: Same as Fig. 7.2 but for a larger time scale. It can be seen, that using the
temperature correction the correct thermal equilibrium population is reached in the long
time limit.
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Figure 7.4.: Excitation dynamics calculated with wave packet approach (WP), WP with tem-
perature correction (WPqc) and reduced density matrix (RDM) for reorganization energy of
λ= 100cm−1
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Figure 7.5.: Same as Fig. 7.2 but for a larger timescale. It can be seen, that using the
temperature correction the correct thermal equilibrium populatian is reached in the long
time limit.

The equilibrium is not reached exactly and after much longer time as in the RDM

calculations. Another point is, that the peaks of the oscillations are shifted so that

the oscillation frequency is lowered. Since the correction factor only changes the

system-bath coupling and not the intermolecular coupling, this result is surprising.

When the difference of the excitation energies is set to zero ε1 = ε2 the equilibrium

distribution correspond to the high temperature limit and therefore WP and RDM

calculations should give the same results. This is the case as can be seen in Fig. 7.6.

The temperature-corrected WP calculations deviate also in this case from the other

calculations. The quantum correction factor in Eq. 7.29 is equal to one when the

excitation energies are equal (ωαβ = 0) an therefore the coupling factors are not

changed. The only difference to the standard WP calculation is the symmetrization

Eq. 7.30. This symmetrization changes the magnitude of the coupling factor and

therefore the oscillation frequency.

Finally it can be concluded, that the ensemble averaged WP calculations and the

RDM approach show excellent agreement in terms of the quantum coherent oscil-

lations and their dephasing. The only disadvantage is that the correct thermal equi-

librium is not achieved. In cases where the energy splitting in the system is low,

e.g. (εn − εm) � kB T the results differ only marginal from the RDM results. The

attempt to correct the WP calculations with a temperature dependent factor was

not overall satisfying. On the one side the correct thermal equilibrium is reached
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Figure 7.6.: Excitation dynamics calculated with wave packet approach (WP), WP with tem-
perature correction (WPqc) and reduced density matrix (RDM) for reorganization energy of
λ= 50cm−1 and equal excitation energies.

but the time scale for this relaxation process is not reproduced correctly. Another

disadvantage is the frequency of the coherent quantum oscillations is influenced by

the symmetrization procedure. Therefore the application of this correction method

to the here investigated system has to be put into question. It my be useful to

check how temperature influences affect the system dynamics but it is not capable

to describe them correctly. However the wave packet calculations are valuable tool

for the hybrid quantum classical description of energy transfer processes in large

molecular systems. The advantage over the other methods like RDM calculations

is that the time-dependent Hamiltonian can be used directly. In the RDM approach

all quantities of the classical system have to be included in the spectral density.

This is in most cases related to averaging processes which may lead to the loss of

information. For simple systems like the here investigated two-level system this is

no drawback but for the combination with MD simulations of complex systems the

wave packet method is easier to apply. Also the influence of the environment on

the intermolecular coupling is straight forward to include by using time-dependet

couplings gained from the MD simulations. Although the WP calculations have to

be performed for a sufficient number of trajectories to achieve the correct ensemble

average they are computationally cheap. This is because only a small system of

coupled linear differential equations has to be solved.
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7.4. Excitation energy transfer in LH2 of purple bacteria

Figure 7.7.: Left: LH2 complex of Rs. molischianum, top view. The protein structure is blue
colored and the BChls are shown in green. Right: Model system of the LH2 complex. The
complex contains two rings of bacterio chlorophyl embedded in a protein matrix. The B850
ring contains 16 and the B800 ring 8 pigments. The model system consists of 24 two level
systems (green) coupled by Coulomb interaction (light green). This system is coupled to a
classical environment representing the protein matrix (blue).

7.4. Excitation energy transfer in LH2 of purple

bacteria

In this part the hybrid quantum classical approach described above is applied to the

light harvesting system II (LH2) of the purple bacterium Rhodospirillum (Rs.) molis-

chianum. This LH complex, as depicted in Fig. 7.7, consists of two rings with 16 and

8 pigment molecules named bacteriochlorophyll a (BChl a). These two rings with

eightfold symmetry are named B850 and B800 based on their respective absorption

maxima at 850 nm and 800 nm. The model for this complex is depicted in the right

hand side of Fig. 7.7. It consists of 24 coupled excitation states representing the

BChls. The influence of the protein environment on the excitation energies and the

couplings was included via a coupling operator containing the fluctuations of these

values. The time-dependent Hamiltonian for this system was determined from MD

simulations based on the crystal structure of Rs. molishianum (PDB:1LGH) [158].
From the MD trajectories the excitation energies and electronic couplings where
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calculated with the ZINDO/S approach [155, 156, 159] and the method of transi-

tion charges from electrostatic potentials (TrEsp) [160, 161], respectively. Details

on these calculations and the determined values of the time-dependent Hamiltonian

can be found in our publication [59] which is attached in appendix B. Using this

Hamiltonian the time-dependent Schrödinger equation for this system was solved

numerically according to equation 7.25. From these results the time-dependent

populations, i.e., the probability of excitation for the individual BChls were deter-

mined by Eq 7.27. The averaging over the fluctuations was achieved by propagating

the wave function for multiple starting points along the MD trajectory and a subse-

quent averaging. The time-dependent Hamiltonian had a total length of 180 ps and

the excitonic wave function was calculated for a time range of 250 fs. By shifting

the starting time in steps of 100 fs 1800 realizations could be averaged to achieve

a proper ensemble average. The shift of 100 fs was used because after a time of

approximately 50 fs the temporal correlations of the excitation energies are negli-

gible. Initially, one BChl was excited and the decay of its population was tracked.

This calculation was repeated for every BChl in the complex. The results are shown

in Fig. 7.8. The decay rates of the excitation differs strongly between the BChls

belonging to the B850 and the B800 ring respectively. This is due to the weaker

intermolecular coupling between the BChls in the B800 ring. In the B850 ring 50%

of the excitation remains localized on BChl for about 20 fs while for the B800 ring

this process takes between 50 fs and 200 fs. In both rings there are two BChls

which exhibit a slower decay as the average. These BChls have an average excita-

tion energy which is slightly higher than the average excitation energy of the BChls

in the respective ring. In the longtime limit the population converges to an equal

distribution over all BChls which is P eq = 1/24 = 0.042. The excitation probability

for the next neighboring BChls of the initial excited is shown in Fig. 7.9. Here also

the difference between the both rings is obvious. In the B850 ring the excitation dy-

namics show a coherent wave-like behavior which is not destroyed by the ensemble

averaging. The complete dephasing of these oscillations occurs at around 100 fs. In

the B800 ring these oscillations are not present due to the weaker coupling between

the BChls.
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Figure 7.8.: Excitation dynamics of the BChls in LH2. Shown is the population decay from
the respective initially excited BChl.
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Figure 7.9.: Excitation dynamics of the BChls in LH2. Shown is the population of BChl next
to the initially excited BChl.
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8. Summary

In this thesis wave packet dynamics occurring in various molecular systems were

investigated. This included the simulations of nuclear wave packet dynamics in dif-

ferent electronic states of diatomic molecules initiated by femtosecond laser pulses.

A theoretical description of non-resonant multi-photon excitations has been given,

which allows to study the wave packet dynamics initiated by such processes in the

time domain. Furthermore the excitation energy transfer in pigment complexes

was investigated by a hybrid quantum classical approach. Therefore the electronic

excitations were described by a excitonic wave packet propagating in a quantum

system coupled to an classical environment.

In the first part, simulations of fully time-resolved pump degenerate four-wave

mixing (pump-DFWM) experiments, which enable the investigation of molecular

dynamics in high-lying electronic states, were performed. These experiments were

carried out on well investigated diatomic molecules. The potential energy sur-

faces for these molecules could be calculated from high resolution spectroscopic

data using the Rydberg-Rees-Klein method. With these potential energy surfaces

model systems containing the relevant electronic states were constructed. To simu-

late the excitation process which involved the non-linear interaction of three laser

pulses the time-dependent Schrödinger equation for the nuclear motion was solved

numerically. This was done using perturbation theory for full time-resolved pump-

DFWM experiments on iodine and exactly for time coincident DFWM experiments

on molecular Bromine. From the resulting wave function time and frequency-

resolved spectra were calculated and compared to the experiments. This allowed

for a detailed analysis of the experimental spectra.

For the iodine molecule a model system containing the ground, first excited state,

and one ion-pair state was used. The experiments intended to investigate the

molecular dynamics in ion-pair states belonging to two different tiers. To check
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8. Summary

whether it is possible to monitor dynamics of a specific ion pair state by carefully

selecting the right wavelength for the DFWM beams, simulations were performed

which included only this specific ion pair state. Comparing the experimental and

theoretical results, good agreement could be found. The contributions of the ion-

pair state in the measured signals could be identified. Which confirmed that time-

resolved pump-DFWM spectroscopy is suitable tool for the investigation of molecu-

lar dynamics in high-lying electronic states.

As a further system molecular bromine was investigated. For this molecule also

high resolution spectroscopic data was available which allowed for the calculation

of exact potential energy surfaces. The first experiment which was analyzed by per-

forming a simulation was a pump-DFWM experiment with coincident laser pulses

where the dynamics of the excited B state were monitored. Different vibrational

energy spacing were observed for different DFWM wavelengths of 310 nm and

300 nm with a fixed initial pump wavelength of 540 nm in both cases. For a DFWM

wavelength of 310 nm, the observed spacings agreed well with the frequency do-

main data. However, for a DFWM wavelength of 300 nm, a smaller vibrational

energy spacing was found. The theoretical analysis showed that the different spac-

ings observed are attributed to the contribution of the first hot vibrational state in

the electronic ground state. Here the DFWM signal was calculated from an exact

propagation of the nuclear wave function. The experimental and theoretical signals

were recorded time and frequency-resolved resulting in spectroscopic maps show-

ing the dynamics for different detection wave lengths. The agreement between the

experiment and the theoretical results showed good agreement.

The investigations on bromine were extended to a fully time-resolved pump-DFWM

scheme similar to the iodine experiments. The spectroscopic signals were calcu-

lated using perturbation theory and compared to the experiments. Also here the

signals were recorded time and frequency-resolved. It was possible to examine the

ion-pair state dynamics in detail by considering only transients at particular de-

tection wavelengths. By comparing experiment and simulation the features in the

experimentally measured spectra could be assigned to excited state and ion-pair

state contributions.

Femtosecond spectroscopy can also be performed using non-resonant transitions

like non-resonant multi-photon (NMT) excitation. To gain information about dy-
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namical processes occurring during such excitations a theoretical description in the

time-domain is necessary. Therefore projection operator theories have been applied

to study NMT processes in molecular systems. These allowed for the formulation of

effective time-dependent Schrödinger equations. The effective Schrödinger equa-

tions were further simplified by invoking the slowly varying envelope approxima-

tions and rotating wave approximations. The validity of these approximations was

numerically verified which was only possible due to the equations derived from a

time local approach. The derived formalism was applied to a sequence of 2-photon

and 3-photon transitions. It was shown that for such a sequence of events certain

prerequisites of the pulse have to be fulfilled.

In the last part an ensemble averaged wave packet approach for the simulation of

excitation energy transfer (EET) in complex biological systems was investigated.

Therefore, a mixed quantum classical description was used. First a model system

for the electronic excitation Hamiltonian for pigment systems coupled to a classical

environment was deduced. The approach was tested on an artificial model sys-

tem of a molecular heterodimer and compared to reduced density matrix (RDM)

calculations. It could be shown that the wave packet dynamics (WP), which are

the ensemble average of pure state dynamics, give the same results as the RDM

calculations based on the statistical operator. Only the relaxation to the correct

thermal equilibrium is not reproduced by the WP calculation. The application of

a quantum correction for the proper temperature behaviour, proposed by Bastida

and co-workers [67] was tested. With this correction the WP calculation equilibrate

to the correct thermal distribution but the time scale of the relaxation process was

not reproduced correctly. Also the intermolecular couplings were influenced by this

correction which resulted in an deviation of the coherent quantum oscillations and

their dephasing. This leads to the conclusion that the temperature correction in this

form is improper for the description of EET processes and needs further modifica-

tions.

The ensemble averaged WP description of excitons was then used to model the EET

in light harvesting system II (LH2) of purple bacteria. This complex contains two

rings of pigments named B850 and B800 after their main absorption wave length.

The B850 and B800 rings contain 16 and 8 pigments respectively. As model system

a time-dependent Hamiltonian obtained by electronic structure calculations from

classical molecular dynamics (MD) simulations was used. The temporal energy
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8. Summary

fluctuations in this Hamiltonian were used to model the influence of the protein

environment on the EET process in the pigment system of this complex. The energy

transfer dynamics for individual pigments (bacteriochlorophyls) in this complex

were calculated and analyzed. For the B850 ring where the pigments are stronger

coupled coherent wave-like excitation dynamics could be observed. These oscilla-

tions dephased after 100 fs. In the B800 ring such beaviour could not be found due

to the weaker electronic coupling of the pigments.
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A. Non-resonant multi photon

transition

A.1. Perturbational Description of Non–Resonant

Transitions

To have a reference case at hand we shortly recall the perturbative description of a

non–resonant two–photon transition. It should proceed from the electronic ground-

state ϕg to some electronic excited state ϕe without intermediate states. In order

to account for such transitions, we have to solve the respective time-dependent

Schrödinger equation 6.6 with the initial condition |Ψ0〉= |ϕg〉 |χ(0)g 〉 (in most cases

we have in mind χ(0)g = χgM=0). The expansion of the state vector in Eq. 6.6 with

respect to the electron–vibrational basis introduced in Section 6.2 reads

|Ψ(t)〉=
∑

a,M

CaM(t) |ΨaM〉 . (A.1)

Those expansion coefficients which refer to the excited electron–vibrational states

ΨeM , i.e. the quantities

CeM(t) = e−iωeM (t−t0) 〈ΨeM |S(t, t0;E) |Ψg0〉 , (A.2)

should display whether or not the non–resonant two–photon transition led to an ex-

cited state population. And, the time–dependence of the coefficients should display

the vibrational wave packet dynamics induced by this transition.

As is well known the second-order contribution from the S-matrix expansion de-

scribes two-photon transitions. The respective matrix elements read (note the re-

125



A. Non-resonant multi photon transition

placement of the initial vibrational state χg0 by the more general one χgN leading to

ΨgN , and the the use of the interaction representation for the dipole operators)

〈ΨeM |S(2)(t, t0;E) |ΨgN〉 = −
1

ħh2

t
∫

t0

dτ1

τ1
∫

t0

dτ2

×〈ΨeM | [E(τ1)µ̂(τ1)][E(τ2)µ̂(τ2)] |ΨgN〉 .(A.3)

Let us calculate this expression for the case of a cw-excitation, i.e. in the frequency

domain. Of course, the field-strength has to be weak enough to guarantee the

validity of the used approximation, i.e. | CeM(t) |2� 1 should be fulfilled for all

considered times. In the limit t0 → −∞ one obtains for the expansion coefficients

of the excited electronic state (note the replacement of E(t) by the resonant contri-

bution ∼ exp(−iωt))

CeM(t) = −e−iωeM (t−t0)−i2ωt0
E2

ħh2

∑

xK

d(eM , xK)d(xK , gN)
ωxK −ωgN −ω

×
� 1

ωeM −ωgN − 2ω+ iε
−

1

ωeM −ωxK −ω+ iε

�

.

(A.4)

E denotes the constant field envelope. The unity vector n of field polarization has

been multiplied with the dipole operator to give scalar dipole transition matrix

elements d(aM , bN) = 〈ΨaM |nµ̂ |ΨbN 〉. The states ϕx used for the expansion are

understood to be positioned energetically far away from the excited state ϕe.

In order to achieve a proper understanding of both terms in Eq. A.4 let us assume

for a moment that all levels ϕx are condensed into a single one denoted by ϕi (with

energy ħhωi) and positioned in between the ground and the excited state. Then, the

second term in Eq. A.4 is easily identified as describing the stepwise transition from

ϕg to ϕi, and afterwards from ϕi to ϕe, both steps in a single photon absorption

process. In contrast, the first term in Eq. A.4 is responsible for a direct transi-

tion from ϕg to ϕe without intermediate states, and gives a resonant contribution

independent on the position of ϕi in relation to ϕg and ϕe.
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Let us move ϕi energetically far above ϕe. Then the first term of Eq. A.4 decreases

in 1/ωi and the second in 1/ω2
i . Hence, the first term strongly dominates over the

second one, which will be neglected in the following.

If the single state ϕi is replaced by the manifold of electron-vibrational states be-

longing to the off-resonant electronic states ϕx , then there is a chance that the

smallness of the expansion coefficients, Eq. A.4 can be compensated for by a sum-

mation with respect to the off-resonant state-manifold. In order to see this we

assume that the non-resonant states form a dense continuum characterized by the

density of states

%(Ω) =
∑

x ,K

δ(Ω−ωxK) . (A.5)

With it, the expansion coefficients (note the neglect of the second term of Eq. A.4)

yields

CeM(t) =−
e−iωeM (t−t0)−i2ωt0

ωeM −ωgN − 2ω+ iε

E2

ħh2

∫

dΩ %(Ω)
d(eM ,Ω)d(Ω, gN)
Ω−ωgN −ω

, (A.6)

where d(eM ,Ω) and d(Ω, gN) denote frequency dependent (transition) dipole op-

erator matrix elements. The expression indicates that the efficiency of the non-

resonant two-photon transition (that is, the population | CeM(t) |2 of the excited

electron-vibrational state) is essentially determined by the Ω-integral. It represents

a summation with respect to all off–resonant single photon transitions from the

initial state with energy ħhωgN into the non–resonant states with energy ħhΩ. Only

the complete summation of all these non–resonant contributions may lead to a suf-

ficiently large two–photon transition amplitude. As is obvious from Eq. A.6 the

Ω–integral can be seen as an effective two–photon transition matrix element cou-

pling to the square of the field strength.

A.2. Time Non–Local Terms and the RWA

Based on the expansion, Eq. 6.49 of the vibrational wave functions and the total

time–dependent Schrödinger equation we present in the following a possible sim-

127



A. Non-resonant multi photon transition

plification of the two–photon and three–photon term in Eq. 6.33 what will be done

separately for both contributions. Afterwards the RWA is introduced

A.2.1. The Two–Photon Term

We consider the time non–local term of Eq. 6.33 being proportional to D(2)ab . Noting

Eq. 6.5 for the field–strength and the expansion Eq. 6.49, as well as D(2)ab = D(2)ab nn

we introduce

−
∑

b

t
∫

t0

d t̄ D(2)ab (t − t̄)E(t)E( t̄)χb( t̄) =−
∑

n

e−inωt Γ̃(2)a (n; t) , (A.7)

with

Γ̃(2)a (n; t) =−
∑

b

t
∫

t0

d t̄ D(2)ab (t − t̄)einωt

×[E(t)e−iωt + E∗(t)eiωt][E( t̄)e−iω t̄ + E∗( t̄)eiω t̄]e−inω t̄χb(n; t̄) (A.8)

Note also the introduction of factors oscillating with exp(±inωt). Then, all terms

are arranged in such a way that they have the common prefactor exp(−inωt). This

requires to move in part from χb(n; t̄) to χb(n± 2; t̄). The newly arranged terms

are collected now by Γ(2)a instead of Γ̃(2)a . The introduction of the difference time

τ= t − t̄ finally yields

Γ(2)a (n; t) =−
∑

b

t−t0
∫

0

dτ D(2)ab (τ)
�

E(t)E(t −τ)ei(n−1)ωτχb(n− 2; t −τ)

+E(t)E∗(t −τ)ei(n−1)ωτχb(n; t −τ) + E∗(t)E(t −τ)ei(n+1)ωτχb(n; t −τ)

+E∗(t)E∗(t −τ)ei(n+1)ωτχb(n+ 2; t −τ)
�

. (A.9)
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A.2.2. The Three–Photon Term

The three–photon term of Eq. 6.33 is reformulated in the same way as the two–

photon one in the foregoing section We introduce D(3)ab = D(3)ab nnn and may write in

a first step

−
∑

b

t
∫

t0

d t̄

t
∫

t̄

d t1 D(3)ab (t, t1, t̄)E(t)E(t1)E( t̄)χb( t̄) =−
∑

n

e−inωt Γ̃(3)a (n; t) ,

(A.10)

with

Γ̃(3)a (n; t) =−
∑

b

t
∫

t0

d t̄

t
∫

t̄

d t1 D(3)ab (t, t1, t̄)einωt[E(t)e−iωt + E∗(t)eiωt]

×[E(t1)e
−iωt1 + E∗(t1)e

iωt1][E( t̄)e−iω t̄ + E∗( t̄)eiω t̄]e−inω t̄χb(n; t̄) . (A.11)

We change to new time–arguments t− t̄ = τ and t1− t̄ = τ̄ and also change the in-

dex n to have for all terms a common prefactor exp(−inωt) (note the replacement

of Γ̃(3)a by Γ(3)a ). It results in

Γ(3)a (n; t) =−
∑

b

t−t0
∫

0

dτ

τ
∫

0

dτ̄ D(3)ab (τ− τ̄, τ̄)

×[E(t)E(t − (τ− τ̄))E(t −τ)e−iωτ̄+i(n−1)ωτχb(n− 3; t −τ)

+E(t)E∗(t − (τ− τ̄))E(t −τ)eiωτ̄+i(n−1)ωτχb(n− 1; t −τ)

+E∗(t)E(t − (τ− τ̄))E(t −τ)e−iωτ̄+i(n+1)ωτχb(n− 1; t −τ)

+E∗(t)E∗(t − (τ− τ̄))E(t −τ)eiωτ̄+i(n+1)ωτχb(n+ 1; t −τ)

+E(t)E(t − (τ− τ̄))E∗(t −τ)e−iωτ̄+i(n−1)ωτχb(n− 1; t −τ)

+E(t)E∗(t − (τ− τ̄))E∗(t −τ)eiωτ̄+i(n−1)ωτχb(n+ 1; t −τ)

+E∗(t)E(t − (τ− τ̄))E∗(t −τ)e−iωτ̄+i(n+1)ωτχb(n+ 1; t −τ)

+E∗(t)E∗(t − (τ− τ̄))E∗(t −τ)eiωτ̄+i(n+1)ωτχb(n+ 3; t −τ)] . (A.12)

129



A. Non-resonant multi photon transition

A.3. Sequence of Three–Photon and Two–Photon

Transitions

Next the reverse sequence of processes compared with that of the preceding section

are considered, i.e. a three–photon transition into the first excited state followed

by a two–photon transition into the higher excited state. Therefore, beside χg(t)
we have to consider χe(t), and χ f (t). The coupled Schrödinger equations read:

iħh
∂

∂ t
χg(t) = Hgχg(t)− d(3)E∗3(t)χe(t) , (A.13)

iħh
∂

∂ t
χe(t) =

�

He − 3ħhω− 2d(2)|E(t)|2
�

χe(t)

−d(3)E3(t)χg(t)− d(2)E∗2(t)χ f (t) , (A.14)

and

iħh
∂

∂ t
χ f (t) =

�

H f − 5ħhω− 2d(2)|E(t)|2
�

χ f (t)

−d(2)E2(t)χe(t) . (A.15)
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School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany

Received 9 July 2010, revised 1 September 2010, accepted 4 September 2010

Published online 3 November 2010

Keywords absorption, combined classical–quantum simulation, light-harvesting

* Corresponding author: e-mail u.kleinekathoefer@jacobs-university.de, Phone: þ49-421-200-3523, Fax: þ49-421-200-493523

The photosynthetic light-harvesting system II (LH2) of

Rhodospirillum molischianum is investigated using a time-

dependent combination of molecular dynamics simulations and

semiempirical ZINDO/S electronic structure calculations. The

classical simulations are performed on the available crystal

structure of the LH2 complex. Snapshots of the atomic

fluctuations along this 12 ps long trajectory serve as input for

the calculation of the excitation energies of the individual

bacteriochlorophylls embedded in the LH2 complex. Further-

more, the couplings between the bacteriochlorophylls are

computed using the method of transition charges from electro-

static potentials and for comparison also using the point-dipole

approximation. With these quantities the excitonic energies of

the complete system as well as the linear absorption spectra are

calculated and compared to experimental findings.

� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction Since photosynthesis is one of the
most important biological processes on earth, it has been at
the focus of many investigations. Many details of the
molecular properties have been unraveled by a combination
of experimental and theoretical studies [1–5]. Optical spectra
have been investigated in experiment and theory especially
also for the light-harvesting (LH) systems of purple bacteria
[2, 6, 7]. In the last decades several high resolution crystal
structures became available and opened the opportunity to
study the structure–function relationship in atomic detail [6,
8–15]. Here, the light-harvesting system II (LH2) system of
Rhodospirillum (Rs.)molischianum is in the focus of interest.
This LH complex, as depicted in Fig. 1, consists of two rings
with 16 and 8 bacteriochlorophyll a (BChl a) molecules,
respectively. These two rings with eightfold symmetry are
named B850 and B800 based on their respective absorption
maxima at 850 and 800 nm. The difference in the absorption
profile of the two rings is on the one hand caused by the
strong coupling of the BChls in the B850 ring [35] and on the
other hand by unlike environments around the chromo-
phores. For the B800 ring its surrounding is hydrophilic
while for the B850 ring it is rather hydrophobic [17]. In
addition to the 24 BChls eight light-absorbing carotenoids
are embedded into the protein matrix of the LH complex.

Classical molecular dynamics (MD) simulations provide
an insight into the ground state properties of molecular
complexes especially into their conformational changes. In
order to describe optical properties one needs to apply
quantum calculations providing the site energies of the
system. Because of the size of the BChls these are often
treated on a semiempirical level using, e.g., the ZINDO/S
approach [18–20]. Over the last years this technique
became rather popular and was applied to LH complexes
[10–12, 15, 21–26] and other systems as well, e.g.,
Refs. [27–29]. Due to its low computational costs compared
to ab initio methods, the semiempirical ZINDO/S method is
quite suitable for performing excited state calculations along
MD trajectories [24, 28, 29]. This in turn allows to determine
the so-called spectral density. This spectral density can be
used to calculate optical spectra, excitation energy transfer
(EET) dynamics, and similar properties [9, 15, 24].

Another quantity which is necessary to describe
electronic properties of the LH system are the electronic
couplings between the individual sites (see, e.g., the review
in Ref. [30]). Often it is assumed that for EET the coupling is
dominated by the Coulomb interaction. A quite commonly
used approach to that is the point-dipole approximation
(PDA) which is known to be problematic at short distances
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[27, 31–33]. Alternatively, one can calculate the interaction
energy by a supermolecule approach of two chromophores
[10, 25]. Another accurate but numerically expensive
techniques which calculates the Coulomb interaction in an
ab initio manner is the transition density cube method [34].
Renger and co-workers developed the method of transition
charges from electrostatic potentials (TrEsp) [32, 35]. In this
approach, atomic centered partial transition charges are fitted
to the electrostatic potential of the transition density
belonging to the corresponding molecule. A simplification
of that method is the so-called extended dipole method
[27, 32]. In this case two charges, representing the dipole, are
fitted to reproduce the transition charge density distribution.
To account for a solvent screening effect on the couplings
one can either use a constant factor [35] or, in an alternative
approach, a distance-dependent correction developed by
Scholes and co-workers [33, 36]. In a subsequent step, one
can combine the obtained energies and couplings to
construct a time-dependent Hamiltonian. This Hamiltonian
can be used to evaluate optical properties and transfer rates
from wave packet calculation directly [37–40] or using
alternative approaches [15].

The present contribution starts with a description of the
MD simulations before a semiempirical electronic structure
methods for the ground and excited state energy calculations
is detailed. A comparison is furthermore performed for the
electronic couplings between the individual pigments.
Preceding the conclusions, a time-dependent Hamiltonian
is constructed to determine the time evolution of the
electronic states and dipole strengths as well as the average
linear absorption spectrum of the LH2 system under
investigation.

2 Molecular dynamics simulations The MD simu-
lations are based on the crystal structure of Rs. molishianum

(PDB:1LGH) [17]. After adding the missing hydrogen
atoms, the pigment–protein complex was embedded into a
POPC lipid bilayer with about 30 Å of water on both sides.
To neutralize the system, 16 Cl� ions were added to the bulk
water. In total the system contained about 114,000 atoms
with a dimension of 115� 115� 96 Å3. The simulations
were carried out using the NAMD program package [41]
with the CHARMM27 force field parameter for lipids,
protein and the TIP3P water model. The same parameters as
reported in [9] were employed for BChls and lycopenes.

Subsequent to an energy minimization the system was
equilibrated in several steps at room temperature (300 K) and
normal pressure (1 atm) in a NpT ensemble using periodic
boundary conditions, the particle mesh Ewald method and a
2 fs time step using the SHAKE algorithm. In a first step, only
the lipid tails were equilibrated for 2 ns while everything else
was kept fixed. In the next step the constraints were limited to
the LH2 complex for another 4 ns followed by a 2 ns
equilibration without constrains. Finally a 12 ps production
run with a time step of 1 fs was carried out. The atomic
coordinates were recorded at every time step, resulting in
12,000 snapshots which were subsequently used in the QM
calculations.

3 Quantum chemistry calculations Based on the
MD simulations, we used the ORCA code (University Bonn,
Germany) [42] in order to calculate the site energies for all 24
BChls in the complex at each of the 12,000 snapshots. So in
total 288,000 single-point calculations were performed. Due
to the large number of calculations to be performed and
because the optical properties of BChls are determined by
the cyclic conjugated p-electron system, we restricted the
quantum system to a truncated structure of the BChl molecule.
Each terminal CH3 and CH2CH3 group as well as the pythyl
tail were replaced by H atoms. Such truncation schemes have
been employed previously [21, 24, 43]. Because of its
accuracy [44] and the low computational cost we used the
semiempirical ZINDO/S-CIS(10,10) method using the 10
highest occupied and the 10 lowest unoccupied states. This
technique was also used in Refs. [24, 28, 29] for similar
systems. To account for the effect of the surrounding
environment, point charges from the MD simulations, from
within a cutoff radius of 20 Å around the truncated BChl
molecule, were included in the ZINDO/S-CIS calculations.
The energy gap between the ground and the first excited, i.e.,
the Qy, state and the corresponding density of state (DOS) is
shown in Fig. 2 for several individual BChls. In this figure, the
coupling between the BChls is neglected. Clearly a fluctuation
of the energy gap around an average value is visible.

4 Electronic coupling In order to be able to construct
the time-dependent Hamiltonian, one needs the coupling
between the individual BChls in addition to the site energies.
As already mentioned in Section 1, there exists several
approaches to calculate the EET coupling. For purple
bacteria a wide range of values were reported and a recent
overview is, for example, given in Ref. [2].
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Figure 1 (online color at: www.pss-b.com) Panel A: LH2 complex
ofRs. molishianum. In gray, the protein structure is shown while the
carotenoids are depicted in light yellow. Furthermore, the BChl
molecules are represented as green squares with the central Mg atom
as a sphere. Panel B: A green square as used in panel A overlaying a
single BChl a molecule. (Figure rendered using VMD [16].)
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In the Förster approach to exciton dynamics the coupling
is assumed to be dominated by the Coulomb interaction and
calculated using the PDA. Including a screening factor f
which will be detailed below, the PDA is given by

Vnm ¼ f

4pe0

dmdn

R3
mn

�3
ðdmRmnÞ ðdnRmnÞ

R5
mn

� �
; (1)

where the vector dm denotes the optical transition dipole
moments, which were rescaled by 0.558 to match the
experimental measured value of 6.3 D [45] on average. Rmn

connects the center of the BChls m and n and Rmn denotes
the corresponding distance. The PDA has been applied in
many studies, e.g., Refs. [27, 31–33], for reasons of
simplicity although its problematic behavior for short
distances is well known.

To get an improved description of the spatial arrange-
ment of the charges, Renger and co-workers developed the
TrEsp method [32, 35]. In this approach, the transition
density of pigment m is described using atomic transition
charges qTI that are localized at the respective pigment, i.e.,
rðrÞ ¼

P
I q

T
I dðr�RI

mÞwhereRI
m denotes the coordinates of

the Ith atom of BChl m. The coupling between two pigment
molecules is then given by

Vnm ¼ f

4pe0

X
I;J

qTI � qTJ
jRI

m�RJ
nj
: (2)

In Ref. [32] these charges were calculated on the level of
HF-CIS and TDDFT/B3LYP. In the following, the corre-
sponding couplings will be denoted as TrEsp(HF) and
TrEsp(DFT), respectively.

In addition, to include solvent effects to the couplings,
the results for the PDA and TrEsp need to be scaled. To this
end, two approaches are commonly used: while in the Förster
theory the screening factor is given by fF ¼ 1/n2, in the
Onsager theory cavities around the dipole are assumed and

the factors is determined to be fO ¼ 3=ð2n2 þ 1Þ. In these
expressions n denotes the refractive index. After a detailed
analysis on protein environments, Scholes et al. [36] fitted a
distance-dependent screening factor to their results

f ðRmnÞ ¼ Aexpð�BRmnÞ þ fO; (3)

with A¼ 2.68, B¼ 0.27 1/Å, and fO ¼ 0.54. At large
distances (Rmn> 20 Å) this function reaches the value
f¼ 0.54 which lies in between the values used in Förster
theory fF and the Onsager value fO for n2¼ 2, i.e., a protein
environment. In the following calculations, this distance-
dependent solvent-screening factor f is applied to all results,
i.e., to the PDA, TrEsp(HF), as well as TrEsp(DFT)
approaches.

The probability densities to find certain coupling values
in the B850 ring along the MD trajectory are shown Fig. 3 for
the three different methods detailed above. In comparison,
the PDA method yields larger average coupling values of
0.035 eV (282 cm�1) and the broadest distribution. Also the
distribution does not show any splitting into intra- and inter-
dimer couplings.

When using the TrEsp methods a splitting into couplings
between the BChls within the heterodimer and couplings
between the heterodimers can be observed. The charges used
in the TrEsp method resulting from the TDDFT and the HF/
CIS calculations are rather similar after rescaling them in
order to obtain realistic transition dipole moments. The
observed variations result from different treatments of
electron interaction in the two electronic structure theories.
The couplings within and between the dimers calculated
using TrEsp(HF) are on average 0.024 eV (195 cm�1) and
0.021 eV (166 cm�1), respectively. The average values for
TrEsp(DFT) are 0.021 eV (172 cm�1) and for the intra-dimer
couplings 0.017 eV (138 cm�1). Furthermore, the couplings
between the individual BChls within the B800 ring are much
lower than those in the B850 ring due to their average
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distance of about 22.25 Å. For the PDA, we get an average
value of �1.00� 10�3 eV (�8.06 cm�1). The average
coupling strength for TrEsp(HF) and TrEsp(DFT) are
�1.07� 10�3 eV (�8.63 cm�1) and �1.17 10�3 eV
(�9.43 cm�1), respectively.

5 Excitonic states and linear absorption The
excitonic states of the complete system can be determined
from the site energies and the electronic couplings gained
from the quantum chemical calculations. To achieve this, a
Hamiltonian for the LH2 composed of the two BChl rings is
constructed. This Hamiltonian includes the excitation
energies of the sites and the couplings Vnm(t) between them

HðtÞ ¼
X
n

jnienðtÞhnj þ
X
n;m

jniVnmðtÞhmj: (4)

Here the states jni represent the singly excited BChl
states and the energies enðtÞ correspond to the energy
difference between the ground and excited state of BChl n.
The indices n and m run over all 24 sites. In addition, the site
energies of the eight BChls belonging to the B800 ring where
shifted by an energy of 44 meV. This was necessary since the
absolute value of the individual site energies is not
reproduced exactly by the ZINDO approach. In order to
calculate the energies of the excitonic states the system
Hamiltonian needs to be diagonalized. Since the values of the
site energies and the couplings vary along the MD trajectory
this diagonalization has to be carried out at every time step
resulting in time-dependent exciton energies. The upper
panel of Fig. 4 shows the time evolution of these excitonic
state energies. The energies lie within a range of 1.4–2 eV. It
is evident that the energies of the higher exciton states
oscillate notably stronger then those belonging to the low
energy states. This becomes more obvious in the DOS of the
individual states which is shown in the middle panel of Fig. 4.
As can be seen there, the width of the distribution increases
for increasing energies. The lower panel of Fig. 4 depicts the
average excitonic energies over the 12 ps long MD trajectory
with error bars corresponding to the variance of the DOS of
the individual states.

The spectrum of linear absorbance is calculated to be
able to compare the simulated results with experiments. To
compute this experimentally accessible observable the
excitonic transition dipole moments are needed in addition
to the excitonic energies. They can be calculated from the
expansion coefficients Cn

n of the excitonic states in the site
representation and the transition dipole moments dn from the
ZINDO/S calculations

dn ¼
X
n

Cn
ndn: (5)

The dipole strength for an excitonic state n can then be
given as

Dn ¼ jdnj2 ¼
X
n

X
m

Cn
nC

�m
n � ðdndmÞ : (6)
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Shown in Fig. 5 are the obtained values. The upper panel
displays the time evolution of the dipole strength for each
excitonic state. The distribution of the individual dipole
strengths within the MD trajectory is shown in the middle
panel and the average dipole strength with corresponding
variance of the distribution in the lower one.

If a d-like absorption line shape is assumed, the linear
absorption spectrum is comparable to the sum over all DOSs
of the individual excitonic levels weighted by their dipole
strengths. To estimate the spectrum the frequency axis is
divided into an equidistant grid with spacing Dv (binning).
The value of the spectrum at grid pointvj is then evaluated by
adding up all dipole strengths of those excitonic levels which
lie in the energy range of vj � 1

2
Dv [24, 39, 46]. The

absorption spectrum for the three different calculated
couplings is shown in Fig. 6 together with an experimentally
obtained spectrum [47]. All three employed methods
produce spectra which show the same basic features as the
experimental one. Using the PDA the absorption peak of the
B850 ring lies at a notably lower frequency than the peaks in
the spectra obtained from TrEsp couplings. Both TrEsp
couplings produce spectra with a good agreement to the
experiment.

6 Conclusions Based on the trajectory of the MD
simulation the energy gap fluctuations between ground and
excited state were calculated on the semiempirical ZINDO/S
level. From the absorption spectrum it can be deferred that a
good agreement of the site energies and the experimental
data were obtained. Only the energies for the B800 ring had
to be slightly shifted (44 meV) due to an insufficient red shift
in the ZINDO calculations. An important quantity beside the
site energies is the coupling. To this end the commonly used
PDA was compared to the TrEsp method using two different
sets of transition charges from either HF-CIS or TDDFT/
B3LYP calculations. In addition a distance-dependent

solvent screening factor was used. We were able to show
that the TrEsp methods show an obvious splitting of
couplings due to the eightfold symmetry of the system.
The TrEsp approach yields rather accurate coupling values
due to the more realistic representation of the transition
densities of the whole molecules. Especially for short
distances this is certainly superior to the PDA. The site
energies together with the couplings were used in a time-
depend Hamiltonian approach for the complete system of the
B850 and B800 rings. Especially the obtained excitonic
energies of the higher levels show strong fluctuations.
Opposite to this, the dipole strengths of the lower excitonic
levels have a broad distribution. The first four levels on
average carry the largest dipole strengths leading to a peak of
the B850 ring in the absorption spectra. The dipole strength
for the excitonic level with energy around the B800 peak
(1.55 eV) is rather low. This might be the reason for the
smaller absorption strength of the B800 ring in the
simulations compared to experiment. This discrepancy
might also be caused by an insufficient sampling of the
relevant energies and dipole strengths. The three different
kinds of couplings, PDA and TrEsp(HF) and TrEsp(DFT),
do not have a large influence on the peak position of the B800
ring due to the low coupling between the BChls in all three
cases. The larger couplings of the PDA compared to TrEsp
approaches for the BChls in the B850 ring lead to a red shift
of the calculated B850 peak and a larger splitting between the
two peaks of the complex. Due to the quite similar average
coupling values of TrEsp(DFT) and TrEsp(HF) methods for
the BChls within the B850 ring the spectra does but differ
remarkable. The spectra are in good agreement with the
experimental one.

In the present contribution the time-dependent
Hamiltonian was analyzed in terms of the time dependence
of the excitonic states and the resulting absorption. In
Ref. [15] it is shown how the data can be used to obtain the
so-called spectral density. This function is a key ingredient
in the theory of open quantum systems and can also be
used to determine exciton dynamics and optical properties
[48–51].

Acknowledgements Financial support by the Deutsche
Forschungsgemeinschaft is gratefully acknowledged.

References

[1] X. Hu, T. Ritz, A. Damjanović, F. Autenrieth, and K.
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Schulten, Phys. Rev. E 65, 031919 (2002).

[10] S. Tretiak, C. Middleton, V. Chernyak, and S. Mukamel, J.
Phys. Chem. B 104, 4519–4528 (2000).

[11] S. Tretiak, C. Middleton, V. Chernyak, and S. Mukamel, J.
Phys. Chem. B 104, 9540–9553 (2000).
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[141] A. Fuliński and W. J. Kramarczyk: Physica 39 (1968) 575

[142] N. Hashitsume, F. Shibata and M. Shingu: J. Stat. Phys. 17 (1977) 155

147



Bibliography

[143] F. Shibata, Y. Takahashi and N. Hashitsume: J. Stat. Phys. 17 (1977) 171
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