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1 Introduction

The notion of empirical causality as predictive ability has a long history in science

and was formalized by Granger (1969). It became very popular among practitioners

due to the simplicity of its implementation in linear dynamic models, where a test

for non-Granger-causality is equivalent to a joint exclusion test of lagged terms of

the candidate variable. A generalization of this concept was later introduced by

Geweke (1982), who noted that causal effects can vary between the different cycles

of time series, where each cyclical component corresponds to a certain frequency

of oscillation. However, the practical application of the test that Geweke’s causality

measure is zero at a certain frequency appeared to be quite difficult until Breitung

and Candelon (2006, henceforth BC) noted that in the framework of a linear VAR

the null hypothesis is equivalent to two linear restrictions that can be tested with a

standard Wald test.

A drawback of the BC test is that the test is formulated in terms of a single

frequency point that has to be specified a priori. In practice, however, many test

statistics are calculated for a range of frequencies to gain insights into the relation-

ship between the variables, although it is well known that the classical test approach

does not allow a rigorous joint interpretation of these set of statistics. Furthermore,

the underlying (economic) theory usually does not provide a hypothesis for only a

single frequency. For example, consider the following implication of the expecta-

tions hypothesis of the term structure as noted by Shiller (1979, p.1190), pointing

out Granger causality of short-term interest rates for long-term rates in a range of

higher frequencies if the theory were failing:1 “excess [short-run] volatility implies

a kind of forecastability for long rates.”

In order to better reflect the hypotheses that come naturally from underlying the-

1His precise definition of volatility is “variance of short-term holding yields on long-term bonds”.
We prefer to substitute the phrase “short-term” with “short-run” to avoid the double meaning of
“term” in this context. This volatility is related to the short-run “percentage change in the long-term
interest rate” (p. 1191) and thus to high-frequency fluctuations of long-term rates, but in a nonlinear
way.
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ory we extend the frequency-specific test for Granger non-causality by formulating

a generalized null hypothesis for a frequency interval. As a side effect of this work

we also present a different representation of the model under the null hypothesis

of non-causality at some frequency, which turns out to be helpful for our present

purpose.

The BC test was used to analyze Granger-causal effects of money on inflation in

a series of papers by Assenmacher-Wesche and Gerlach (Assenmacher-Wesche and

Gerlach, 2008a, 2007, 2008b). They noted some moderate size distortions and ap-

plied the bootstrap as a small-sample correction, but given the lack of other tools at

the time, they were forced to use the point-wise tests even though they analyzed

frequency bands. Another use for output forecasting was shown by Lemmens,

Croux, and Dekimpe (2008), who concluded that the BC approach was the most

efficient test among the ones considered. A more recent application is conducted

by Wei (2015), and a concept which is closely related to frequency-specific Granger

causality is “partial directed coherence”, see Baccalá and Sameshima (2001), where

inference is also carried out point-wise.

2 Setup and notation

Consider a standard vector autoregression (VAR) of order p in the two variables xt

and yt :

A(L)

 xt

yt

= c+

 ux,t

uy,t

 , t = p+1, ...,T (2.1)

where ut = (ux,t ,uy,t)
′ are normally distributed white noise innovations with con-

temporaneous covariance matrix Ψ. We initially assume the polynomial A(L) to be

stable with roots outside the unit circle such that both xt and yt will be stationary.

The extended case of unit roots will also be discussed below. Further deterministic

terms such as linear trends or seasonal dummies could be easily added. Different
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lag lengths across or within the equations could be accommodated by setting some

of the matrix elements to zero.

Let yt be the potential target variable that is Granger-caused by xt under the

alternative. Using some obvious notation we can write the second equation of the

system as follows:

yt = cy +
p

∑
j=1

α jyt− j +
p

∑
k=1

βkxt−k +uy,t (2.2)

BC (2006) showed that the hypothesis of no Granger causality at frequency

ω , or Mx→y(ω) = 0, can be imposed as two linear restrictions R(ω)β = 0, where

β = (β1, ...,βp)
′ and

R(ω) =

 cos(ω) cos(2ω) · · · cos(pω)

sin(ω) sin(2ω) · · · sin(pω)


For a lag order of p = 1 or p = 2 there is only a trivial solution to this restriction,

namely that β1 = β2 = 0. In these two cases therefore the hypothesis of Granger

non-causality at a certain frequency ω ∈ (0, π) automatically implies the standard

case of no Granger causality at any frequency. We therefore require a higher lag

order, p > 2, in order to make a frequency-specific analysis interesting.

In practice the system (2.1) would often be augmented with further variables zt

to avoid spurious findings due to omitted variables, see BC for a discussion. Such

an addition would lead to obvious augmentations of (2.2) with lagged (or in the case

of exogenous variables, possibly contemporaneous and lagged) values zt , but would

not affect our results in any other way. Therefore we focus on the bivariate case for

ease of exposition.
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3 A Beveridge-Nelson-type decomposition for specific

frequencies

For our purposes it is useful to represent the null hypothesis of no Granger causality

at frequency ω in a more convenient manner. Our representation is based on a

decomposition that is similar to the well-known BN decomposition proposed by

Beveridge and Nelson (1981) for the frequency ω = 0. Let us first consider the test

at frequency ω = 0 (long-run causality). In this case the null hypothesis boils down

to ∑
p
j=1 β j = 0. Following Dickey and Fuller (1979) we decompose the polynomial

β (L) as

β (L) = b0
1 +(1−L)γ0(L)

where b0
1 = ∑

p
j=1 β j, γ0(L) = γ0

0 +γ0
1 L+ · · ·+γ0

p−2Lp−2 and γ0
j =−∑

p
i= j+2 βi. Note

that this decomposition is also used to obtain the Beveridge-Nelson decomposition.

Accordingly, a test for causality at frequency ω = 0 is equivalent to testing b0
1 = 0

in the regression

yt = cy +
p

∑
j=1

α jyt− j +b0
1xt−1 +

p−1

∑
k=1

γ
0
k−1∆xt−k +uy,t . (3.1)

In the following a similar approach is suggested for testing causality at frequen-

cies 0 < ω < π . To this end we first present a suitable decomposition of the lag

polynomial.

Lemma 1. Let β (L) = 1+β1L+ · · ·+βp−1Lp−1 with p ≥ 3. Then for 0 < ω < π

there exists a representation of the form

β (L) = bω
1 +bω

2 L+ γ
ω(L)∇ω(L) (3.2)

where ∇ω(L) = 1− 2cos(ω)L+L2 and γω(L) = γω
0 + γω

1 L+ · · ·+ γω
p−3Lp−3. The
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gain function |β
(
eiω) |2 is zero at frequency ω if and only if bω

1 = 0 and bω
2 = 0.

Proof. Comparing the coefficients at different lags yields the system of equations



1

β1

β2

...

βp−1


=



1 0 1 0 0 · · · 0 0 0

0 1 −2cos(ω) 1 0 · · · 0 0 0

0 0 1 −2cos(ω) 1 · · · 0 0 0
... . . . ...

0 0 0 0 0 · · · 1 −2cos(ω) 1





bω
1

bω
2

γω
0
...

γω
p−3


For 0 < ω < π this linear system can be solved to obtain bω

1 , bω
2 and γω

0 , . . . ,γω
p−3.

Since ∇ω

(
eiω)= ∇ω

(
e−iω)= 0, the gain function results as

|β
(
eiω) |2 = β

(
eiω)

β
(
e−iω)

= (bω
1 )

2 +2bω
1 bω

2 cos(ω)+(bω
2 )

2.

It follows that |β
(
eiω) |2 = 0 if and only if bω

1 = bω
2 = 0.

Accordingly, (2.2) can be re-written as

yt = cy +
p

∑
j=1

α jyt− j +bω
1 xt−1 +bω

2 xt−2 +
p−2

∑
k=1

γ
ω
k−1∇ω(L)xt−k +uy,t , (3.3)

for 0 < ω < π . Note that this representation requires a lag order of p ≥ 3. From

Lemma 1 it follows that the transfer function possesses a zero at frequency ω if and

only if bω
1 = 0 and bω

2 = 0. Accordingly, the hypothesis that xt is a Granger cause of

yt at frequency ω is equivalent to the joint null hypothesis H0 : bω
1 = 0 and bω

2 = 0

in the representation (3.3).

The corresponding representation for frequency ω = π is given by ∇π = 1+L

and causality at this frequency can be tested by replacing the difference operator ∆

in (3.1) with ∇π . It is clear from (3.1) that in these two special cases ω = 0 and

ω = π the test has only one degree of freedom.
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It may be worthwhile to point out that it is impossible to impose non-causality

for all frequencies within an interval in the framework of the linear VAR model

(3.3), because a (lag) polynomial can only have a finite number of roots, hence

bω
1 = bω

2 = 0 cannot hold for infinitely many ω . In fact, in order to factor out a

second ∇ω∗∗6=ω∗ polynomial from the γω∗(L) polynomial with another non-causal

frequency ω∗∗, p ≥ 5 would be required, and in general the number of non-causal

frequencies is bounded by (p−1)/2.

4 Testing when the frequency is unknown

In many applications it is reasonable to assume that the frequency for which xt is not

a Granger cause for yt is unknown but it is assumed that the frequency lies within

some prespecified interval ω ∈Ω0 = [ω`,ωu]. Thus the relevant null hypothesis is

Hu
0 : There exists a frequency ω ∈ [ω`,ωu] such that |β (eiω)|2 = 0.

Notice that the actual non-causal frequency can be regarded as a nuisance parameter

which is only present under the null hypothesis. For testing such a null hypothesis

it is natural to employ the minimum of the sequence of (Wald/LR/LM) test statistics

for all test statistics associated with the grid of frequencies

ω ∈Ω
δ
0 = {ω`, ω`+δ , ω`+2δ , . . . , ωu} (4.1)

where δ denotes the frequency increment, say (ωu−ωl)/T . Let λ ω
T denote the BC

test statistic at frequency ω . The next proposition shows that asymptotically the

significance level of the test can be controlled by using the usual critical value of

the χ2
2 -distribution of the test for a known frequency.

Proposition 1. Let λ ω
T denote the Wald/LM/LR test statistic for Granger causality at

frequency ω and λ ∗T = inf{λ ω
T |ω ∈Ωδ

0} with δ inversely proportional to T , e.g. δ =

7



(ωu−ωl)/T . The (1−α) quantile of the χ2 distribution with d degrees of freedom

is denoted by χ2
d,α . Under the null hypothesis that there exists at least one frequency

ω∗ ∈Ω0, with ωl > 0, ωu < π , such that |β (eiω∗)|2 = 0, it holds that

lim
T→∞

P(λ ∗T > χ
2
2,α)≤ α.

Proof. As shown by BC the statistic λ ω∗
T for the simple test at the frequency ω∗

has a χ2 limiting distribution with 2 degrees of freedom. Accordingly we have

limT→∞ P(λ ω∗
T > χ2

2,α) = α . Since ω∗ ∈ lim
δ→0

Ωδ
0 , as T → ∞ we have

λ
∗
T = inf{λ ω`

T ,λ ω`+δ

T ,λ ω`+2δ

T , . . . ,λ ωu
T } ≤ λ

ω∗
T

and, therefore, limT→∞ P(λ ∗T > χ2
2,α)≤ α .

For causal frequencies ω 6= ω∗ in the interval Ω0 (with |β (eiω)|2 > 0) we have

λ ω
T = |Op(T )| (cf. BC). The grid Ωδ

0 must therefore remain dense enough in order

to contain tested frequencies in a
√

T -neighborhood of ω∗, which is ensured by the

convergence rate T of the frequency increment δ .

It follows that the size of the test is controlled by using the minimal test statistic

in the interval [ω`,ωu], effectively applying the test at the associated frequency as

if this frequency were known. By its nature of using always the minimal statistic,

i.e. the one least favorable for the alternative hypothesis, the test is expected to

be conservative in general. This is a common property of tests with a nuisance

parameter under the null.

The following corollary clarifies the extension to the special frequencies 0 and

π where only a single restriction is tested and hence the limiting distribution has

only one degree of freedom. It is again an application of the principle of using the

test configuration least favorable to the alternative hypothesis.

Corollary 1. Let τ0
T and τπ

T denote the corresponding t-statistics for the hypotheses
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b0
1 = 0 in (3.1), and bπ

1 = 0 in (3.1) with ∇π instead of ∆, respectively. We construct

adjusted test statistics as

λ
0
T = (τ0

T )
2
χ

2
2,α/χ

2
1,α

λ
π
T = (τπ

T )
2
χ

2
2,α/χ

2
1,α

The test for the set of frequencies Ω0 that includes either ω = 0 or ω = π can be

performed by letting ωu = 0 or ωl = π in Ωδ
0 with

lim
T→∞

P(inf{λ ω
T |ω ∈Ω

δ
0}> χ

2
2,α) ≤ α

where Ωδ
0 is constructed as in Proposition 1.

Proof. If ω∗ = 0 is the true non-causal frequency, it was already shown in BC that

limT→∞ P
(
(τ0

T )
2 > χ2

1,α

)
= α . Multiplying the inequality through by χ2

2,α/χ2
1,α

yields P
(

λ 0
T > χ2

2,α

)
= P

(
(τ0

T )
2 > χ2

1,α

)
. As plimT→∞ inf{λ ∗T , λ 0

T}= λ 0
T we have

limT→∞ P
(

inf{λ ∗T , λ 0
T}> χ2

2,α

)
= α , and the corollary holds with equality. If

the non-causal frequency is ω∗ > 0, then λ 0
T = |Op(T )|, cf. BC again, and thus

plimT→∞ inf{λ ∗T , λ 0
T} = λ ∗T , referring to the case of Proposition 1. The proof for

the second case ω = π follows by analogy.

Remark 1. Note that even if the null hypothesis band for the present test were to in-

clude all possible frequencies, Ω0 = [0,π], the hypothesis is quite different from the

traditional test of Granger non-causality. The traditional test requires non-causality

at all frequencies under the null, while our test posits non-causality only at some

(possibly unknown) frequency.

So far we have assumed a stable VAR system with all roots outside the unit cir-

cle. Considering the possibility of unit roots at frequency zero (real and positive unit

roots), the analysis is unaffected by this type of non-stationarity if the considered

frequency band under the null does not contain 0, i.e. ωl > 0. The complete analysis
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also extends naturally to the case with I(1) variables that are not cointegrated, by

differencing the corresponding variables and proceeding as before. However, if the

variables are cointegrated, an additional assumption must be made to ensure valid

inference, which is summarized in the following corollary.

Corollary 2. Suppose the VAR (2.1) is not stable but that n− r < n roots of A(L)

are unity, and we assume a maximum integration order of one, such that the system

is I(1) with cointegration rank r > 0, and (1,κ)′ is the normalized cointegration

vector, κ 6= 0, such that xt +κyt = et ∼ I(0).

Under a null hypothesis containing ωl = 0 the test in Corollary 1 for non-

causality of xt with respect to the target yt is valid if the number of unstable roots

of A(L) is not affected by setting b0
1 = 0 in (3.1). A necessary (but in general not

sufficient) condition for this validity is b0
x,1 6= 0 in the analogously re-written first

equation of the system,

xt = cx +
p

∑
j=1

αx, jxt− j +b0
x,1yt−1 +

p−1

∑
k=1

γ
0
x,k−1∆yt−k +ux,t .

Proof. If b0
1 = b0

x,1 = 0, the error-correction terms would be removed from the sys-

tem, contradicting the assumption of cointegration by virtue of the Engle-Granger

representation theorem. More generally, if the long-run properties of the system

hinge on the non-zero value of b0
1, then a test of b0

1 = 0 would amount to a test

under the null of no cointegration, with the associated non-standard features. How-

ever, if cointegration holds for any value b0
1, then the coefficient b0

1 is effectively

attached to the I(0) error term et and inference is standard.

Since a test of no long-run causality between two I(1) variables in both di-

rections would be equivalent to a test of the null of no cointegration, in bivariate

systems it would be invalid to perform two tests along the lines of Corollary 1, first

testing the influence of xt on yt , and then vice versa. In higher-order systems a gen-

eralized necessary condition for the test validity could be formulated in terms of an
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unchanged rank r of the matrix of loading coefficients.

5 Inference on the phase shift

After establishing the existence of causality in a certain frequency band, the natural

next step is to analyze in more detail the timing of the causal effect. In particular it

is interesting to assess the time delay between the cause and effect at some prespec-

ified frequency. To this end we adapt the concept of a phase shift φ(ω) associated

with some frequency ω .

To fix ideas, assume that the input signal is a pure sine wave xt = sin(ωt) and

we are interested in measuring the phase shift a lag polynomial ρ(L) implies to the

input signal, that is,

yt = ρ(L)xt

= |ρ(eωi)|sin[ωt +φρ(ω)]

= |ρ(eωi)|sin[ω(t +φ
∗
ρ (ω))]

where |ρ(eωi)| is the gain of the filter, φρ(ω) is the phase shift involved and φ∗ρ (ω)

is the time delay, that is the phase shift measured in the number of time periods.

From the vector autoregressive representation (2.2) we obtain

yt =
β ∗(L)
α(L)

xt−1 + vt (5.1)

= ρ(L)xt + vt (5.2)

where ρ(L)= β ∗(L)L/α(L), α(L)= 1−∑
p
j=1 α jL j = 1−α∗(L) and vt =α(L)−1uy,t .

For convenience the constant is suppressed. In the following lemma we present

some useful results for the phase shift induced by the filter ρ(L) = β (L)/α(L),

where β (L) = ∑
p
j=1 β jL j, such that the correspondence β ∗j = β j+1, j = 0...p− 1,
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holds with β ∗(L) = ∑
p−1
j=0 β ∗j L j.

Lemma 2. Let Fα(ω) and Fβ (ω) denote the Fourier transforms of the filters α(L)=

1−∑
p
j=1 α jL j and β (L) = ∑

p
j=1 β jL j, respectively. Furthermore, define Fρ(ω) =

Fβ (ω)/Fα(ω) = cρ(ω) + i sρ(ω), where cρ(ω) and sρ(ω) are given in the ap-

pendix.

If the gains |Fα(ω)| and |Fβ (ω)| are non-zero at frequency ω ∈ [0,π] the phase

shift is given by

φρ(ω) = arctan∗(sρ(ω)/cρ(ω), sgn[sρ(ω)], sgn[cρ(ω)]), (5.3)

where arctan∗ is the four-quadrant version of the arctan function with a range of

(0; 2π].

Proof. See appendix.

Remark 2. The full circle could also be described with the function range (−π, π]

for another variant of the arctan function, but negative phase shifts are not mean-

ingful in our application of a one-sided (backward-oriented) filter, hence we use

(0, 2π]. Variants of the function arctan∗ are available in some programming lan-

guages, for example the Matlab routine “atan2”.

Remark 3. If at some frequency ω the term sρ(ω) switches its sign while cρ(ω)> 0,

the resulting phase shift function will display a discontinuous jump down from (or

up to) 2π to (or from) a value arbitrarily close to zero. The implied delay function

will have a corresponding jump between 2π/ω and zero. The reason is that the

phase shift in principle is only identified up to adding integer multiples of 2π , but

the standard definition in Lemma 2 maps all phases into the interval (0, 2π]. We

remove these discontinuities in the phase shift function by adding or subtracting

integer multiples of 2π where needed, which is sometimes referred to as “phase

unwrapping”. In the following we denote this adjusted measure as φuw(ω), and the
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corresponding delay measure as φ∗uw(ω) = φuw(ω)/ω . However, the unwrapping

procedure is independent of the estimation of the phase shift or delay, hence it does

not affect our analysis of the sampling uncertainty of the locally identified measures.

Notice that ω = π implies sρ(π) = 0 and, therefore, the phase will be identical

to 2π (i.e. the delay is identical to 2 periods) irrespective of the values of α j or β j.2

Also, the case cρ(ω) = sρ(ω) = 0 is not addressed in Lemma 2 explicitly because

in this case the phase shift is not defined due to vanishing gains.

The following proposition analyzes how the estimation error of the coefficients

α j and β j affects the uncertainty of the estimated time delay.

Proposition 2. If the phase shift exists as given in Lemma 2, then the asymptotic

distribution of the delay estimate φ̂∗ρ (ω) at a frequency ω ∈ (0, π) is given as:

√
T
(

φ̂
∗
ρ (ω)−φ

∗
ρ (ω)

)
d→ N(0, ω

−2Jρ(ω)′VrJρ(ω)), (5.4)

where

Jρ(ω)=

[v′s,p(ω)cβ (ω)−v′c,p(ω)sβ (ω)

|Fβ (ω)|2
,

v′s,p(ω)(1− cα∗(ω))+v′c,p(ω)sα∗(ω)

|Fα(ω)|2

]′
,

and vs,p(ω), vc,p(ω), cβ (ω), sβ (ω), cα∗(ω), and sα∗(ω) are given in the appendix.

The variance-covariance matrix of the consistent estimate of the 2p coefficient vec-

tor r = (β ′, α ′)′ = (β1, ...,βp,α1, ...,αp)
′ is denoted by Vr. In practice, Jρ(ω) and

Vr can be replaced by consistent estimates Ĵρ(ω) and V̂r.

Proof. See appendix.

The limit distribution given in Proposition 2 can be used to construct approxi-

mate and pointwise confidence intervals for the estimated delay at various frequen-

2Again we resolve the global identification deficiency of the phase shift explicitly, by attributing
the case sρ(ω) = 0 to a phase shift φ(ω) = 2π rather than φ(ω) = 0. The reason for this choice is
that the underlying ARDL model is purely backward-oriented without contemporaneous terms.
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cies. In practical applications we recommend to check numerically that |F̂α(w)|2

and |F̂β (w)|2 are bounded away from zero in a neighborhood w≈ ω .

6 Monte Carlo Simulations

First we assess the empirical characteristics of the frequency domain causality tests

by means of Monte Carlo experiments. The regressor is generated by a univariate

exogenous AR(1) process,

xt = α1,xxt−1 +ux,t ,

with two degrees of persistence, α1,x ∈ {0, 0.8}. To analyze the size properties x

does not cause y at a frequency ω ∈ {0, 0.39, π/2} in the model

yt = α1,yyt−1 + γ0

(
(xt−1− xt−2)+

1
2
(xt−2− xt−3)

)
+uy,t for ω

∗ = 0

yt = α1,yyt−1 + γ0(xt−1−2cos(ω∗)xt−2 + xt−3)+uy,t for ω
∗ > 0

where again α1,y ∈ {0, 0.8} and γ0 ∈ {−1, 0.5, 10}. The innovations are uncorre-

lated Gaussian white noise with normalized variance, ut ∼ NID(0, I2).

In table 1 we report the frequency bands that are considered as null hypotheses

for the simulation of the size of the test. For the grid of tested frequencies we evenly

distribute T points from 0 to π and test at all points that lie inside the null band. For

the analysis of the power of the test we confine ourselves to situations where x

is still non-causal at some frequency, but this frequency now lies outside the null

band. In addition one could specify a true DGP without any non-causality. In the

third column of table 1 we report the analyzed frequency bands for the simulated

power of the test.

In table 2 we have collected the simulation results. It is apparent that the test is

quite conservative in general and the empirical rejection frequencies under the null

do not attain the nominal significance level of 5% for the considered sample sizes

14



Table 1: Specified frequency bands for the simulation of size and power

True non-causal frequency ω∗ Bands for Hu
0 (size) Bands for Hu

0 (power)

0 [0, 0.2] [0.2, 0.79], [0.79, π]

0.39 [0.2, 0.79] [0, 0.2], [0.79, π]

π/2 [0.79, π] [0, 0.2], [0.2, 0.79]

Notes: The frequency 0.39 corresponds to approximately 16 periods wavelength,
i.e. 4 years for quarterly data, frequency 0.20 means approximately 32 periods
(8 years), and frequency 0.79 translates into 8 periods (2 years).

of T = 200 and T = 5000, except when the true non-causal frequency is 0. On the

other hand the size distortions are not dramatic, with the empirical size remaining

above 1% in all cases. This is also reflected in the satisfactory power characteristics

of the test. The only problem occurs when the null hypothesis band is specified as

[0, 0.2] while the true non-causal frequency is close by at 0.39, the data are noisy

(α1,x = α1,y = 0), and the impact is limited (|γ0| ≤ 1). In this quite extreme case the

power may drop below 10% for a sample size of 200, and converges towards unity

only slowly. All in all, however, the performance of the test is good.

7 Empirical Illustration

7.1 Assessing the Greenhouse effect

First we consider an empirical example from environmental science. Specifically

we apply the Granger causality test to the annual time series of greenhouse gas

emissions and US temperature from 1895 to 2013. The temperature data are from

the US National Climatic Data Center (Climate at a Glance), while the CO2 emis-

sions data are the “Total” series from Boden, Marland, and Andres (2014) ranging

from 1751 to 2010. The jointly available sample is thus 1895-2010 (T = 116) and

15



Table 2: Simulation results
T = 200

α1,x = α1,y = 0 α1,x = α1,y = 0.8
Frequency band

under H0

γ0 =

−1
γ0 =

0.5
γ0 =

10
γ0 =

−1
γ0 =

0.5
γ0 =

10

True frequency ω∗ = 0
[0, 0.2] .058 .047 .049 .060 .062 .054

[0.2, 0.79] 1 1 1 1 1 1
[0.79, π] 1 .953 1 .994 .705 1

True frequency ω∗ = 0.39
[0.2, 0.79] .015 .025 .017 .013 .020 .018

[0, 0.2] .088 .044 1 .519 .162 1
[0.79, π] .959 .469 1 1 .980 1

True frequency ω∗ = π/2
[0.79, π] .015 .014 .023 .013 .013 .023

[0, 0.2] 1 1 1 1 1 1
[0.2, 0.79] 1 1 1 1 1 1

T = 5000
α1,x = α1,y = 0 α1,x = α1,y = 0.8

Frequency band
under H0

γ0 =

−1
γ0 =

0.5
γ0 =

10
γ0 =

−1
γ0 =

0.5
γ0 =

10

True frequency ω∗ = 0
[0, 0.2] .051 .049 .053 .051 .052 .050

[0.2, 0.79] 1 1 1 1 1 1
[0.79, π] 1 1 1 1 1 1

True frequency ω∗ = 0.39
[0.2, 0.79] .013 .015 .014 .012 .014 .014

[0, 0.2] .977 .486 1 1 .999 1
[0.79, π] 1 1 1 1 1 1

True frequency ω∗ = π/2
[0.79, π] .013 .015 .013 .013 .018 .017

[0, 0.2] 1 1 1 1 1 1
[0.2, 0.79] 1 1 1 1 1 1

Notes: Empirical rejection frequencies, nominal significance level 0.05, 5000 repli-
cations. The value “1” means unity up to a precision of six decimal digits.
Power is raw (not size-adjusted). Number of frequencies in the respective
grid is (excluding special cases 0 and π) ωu−ωl

π
T . The case ω∗ = 0 is created

as γ0(1−0.5L−0.5L2) = γ0(1−L+0.5(L−L2)), see the text.
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Figure 7.1: Time series of US continental (48 states) temperatures (log degrees
Fahrenheit) and total CO2 emissions (log millions of metric tons).

we use log transforms.

First we determine the lag order of the bivariate VAR in log-levels. The Akaike

information criterion suggests just two lags, but the third lag is also significant at

the 10% level, and as explained above at least three lags are needed in order to

distinguish causality at different frequencies. Hence we choose p = 3. In principle

it would be possible to consider a more complicated lag structure, restricting some

of the intermediate lag coefficients in certain equations to zero, but we do not pursue

this strategy in this illustration.

For these data it is natural to suspect cointegration so we run the Johansen test,

with an unrestricted constant to deal with the trending data. The highest eigenvalue

is 0.16 and the p-value of the trace test of no cointegration yields 0.0098, such that

there is evidence for cointegration at the nominal 1% significance level. Notice

that the error correction term is insignificant in the emissions equation (p-value of

0.12), hence emissions do not seem to be caused by temperatures at frequency zero.

This is plausible, but it also means that we cannot test the restriction of no long-run

causality running in the other direction –from emissions on temperatures– without

17



affecting the cointegration property of the system, as discussed above. Therefore

the causality at frequency zero is already established, and our interpretation focuses

on non-zero frequencies. Figure 7.2 shows the frequency-wise test results.

For any frequency band up to roughly 0.2, corresponding to wavelengths down

to roughly 31 periods (years) the minimal test statistics would exceed the critical

value, and hence for those frequency bands we would reject the null hypothesis that

there exists a frequency without Granger causality. In the plot we have included

a null hypothesis band that extends down to a wavelength of 40 (years); given the

inverse relationship between frequency and wavelength small variations of the fre-

quency mean relatively large absolute changes of the implied cycle lengths. Of

course the frequency band below 0.2 is very close to zero, and with this effective

sample of T = 113 it is very difficult to distinguish cycles of 30 periods from even

lower frequencies. Hence some leakage from the zero frequency is expected. For

any frequency bands containing higher frequencies (shorter wavelengths) we would

not be able to reject the corresponding null hypothesis. As an example we have

included a second possible null hypothesis band, covering the frequencies that cor-

respond to 5 to 10 years of oscillation. The overall conclusion is thus that Granger

causality from emissions to temperatures varies across frequencies.

7.2 The leading indicator properties of new orders

The next empirical example that we consider are the Granger-causal effects on Ger-

man industrial production growth gIPt originating in (growth of) new orders re-

ceived by German firms from abroad, gAAt . The monthly time index of these series

refers to the real-time date of actual publication.3 The sample runs from 1995m10

to 2012m12 (T = 207), and we fit an ARDL(4,4) model to these data (t-ratios below
3For example, gIPt has a publication lag of one month, so refers to activity in period t−1. This

aspect is not important for the present analysis, however, which deals only with predictive content
of the available information in real time.
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Figure 7.2: Frequency-wise causality test from log total emissions on log US conti-
nental temperatures. System with 3 lags. The horizontal line is the critical value of
the χ2 distribution with two degrees of freedom at the 5% level. The lowest tested
frequency here is 0.01, see the text for the zero frequency.

point estimates):

gIPt = −0.0017
−1.44

+(0.12
3.72

L+0.13
3.80

L2 +0.17
4.81

L3 +0.13
3.86

L4)gAAt +

(−0.25
−3.33

L− 0.19
−2.44

L2− 0.07
−0.92

L3− 0.16
−2.35

L4)gIPt + ût

R̄2 = 0.15 DW = 2.02

As a preliminary step we establish that there actually exists G-causality at some

frequencies, with the clearcut result shown in Figure 7.3. However, the fact of weak

causality roughly between frequencies 1.5 and 2.2 means that any results about the

lead-lag relationship in that band should be interpreted with caution.

Next we proceed to the point estimates of the frequency-specific time delays in

Figure 7.4, calculated from the estimated polynomials α̂(L) and β̂ (L). The delay of

industrial production (or lead of foreign orders) is almost two months at the long-

run frequencies and is rising to roughly three months around frequency π/2 (wave-

length four months). At higher frequencies the delay measures are even somewhat
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Figure 7.3: Sequence of BC tests on (growth of) German industrial production (tar-
get) and new foreign orders (cause), without including the endpoints 0 and π . The
critical value refers to two degrees of freedom and is appropriate for the interior
case ω ∈ (0, π), cf. section 4.

higher, at least after the unwrapping procedure described in section 5.

As we discussed in section 5, the phase is not well-defined everywhere and

the squared gain of the involved filters should be checked numerically whether or

where it vanishes. This is done for the present example in Figure 7.5. It can be

seen that roughly up to frequency 1.3 both sequences of squared absolute values are

reasonably far away from zero. Also, we already saw in Figure 7.3 that in the range

of roughly 1.5 to 2.2 the BC test statistics are below the critical value. This finding

is directly reflected in the gain function |F̂β (ω)|2 which is extremely small in this

range. Therefore we expect the delta method to become problematic for frequencies

higher than perhaps 1.3, and to break down completely between 1.5 and 2.2 in this

case. Given that ω = 1.3 corresponds to a wavelength of roughly five months, the

frequency ranges most interesting for business-cycle analysts are not affected by

these problems here.

Our results for the sequence of confidence intervals constructed with the delta

method are reported in Figure 7.6. For illustrative purposes we calculate the un-
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Figure 7.4: Time delay point estimates for the effect of gAAt on gIPt . Delays
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i.e. avoiding discontinuities of the delay curve. This corresponds to φ∗uw(ω) in Re-
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Figure 7.5: Numerical check of whether |F̂α(ω)|2 = 0 and/or |F̂β (ω)|2 = 0. (Here
“|F_b*|^2” refers to |F̂α(ω)|2 and “|F_a|^2” corresponds to |F̂β (ω)|2.)
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Figure 7.6: Delta-method confidence intervals for the time delay (pointwise, nom-
inal 95% coverage). Y-axis in months. All frequencies ω ∈ (0,π) are shown, but
see the text for regions of near-nonexistence.

certainty measures for all frequencies, bearing in mind our previous checks that

suggested problems of near nonexistence for 1.3 < ω < 2.2. The point estimates

are the same as in Figure 7.4. The time delays are significantly larger than one

month throughout. The width of the (pointwise) confidence intervals does in fact

not depend much on the frequencies down to a wavelength of roughly six months

(ω ≈ 1). In contrast, for the problematic frequency range in the neighborhood of

1.7 the mechanically calculated sampling uncertainty almost explodes, highlighting

the importance of the numerical pre-checks.

Finally we want to assess whether the method from Proposition 2 performs well

in terms of the empirical coverage of the constructed confidence intervals. To this

end we run a small simulation study based on the current illustration. That is, we

assume a DGP that is essentially based on the estimated ARDL(4,4) model, holding

the gAAt variables fixed as exogenous.4 The estimated residual variance is also

directly used to complete the DGP specification, and we assume the innovations to

4The only change with respect to the estimated model is that the DGP equation does not contain
a constant term, since that was insignificant.
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be Gaussian white noise. We then draw many times randomly from this assumed

distribution of innovations and simulate the dynamic ARDL equation forward each

time. In each simulation run we re-estimate the equation on the simulated data

(including a constant) and use the result from Proposition 2 to construct confidence

intervals as described above. Each time we record whether the confidence intervals

cover the true delays implied by the DGP. The results are shown in Figure 7.7. Again

it can be verified that the method is problematic in the neighborhood of frequencies

where the numerical pre-checks fail, i.e. where any of the functions shown in Figure

7.5 is close to zero such that the phase shift is close to being non-existent. This

also applies to the neighborhood of the frequency π; first of all it turned out that

|F̂β (ω ≈ π)|2≈ 0, and secondly we had mentioned that at ω = π the estimated phase

will necessarily have a degenerate distribution and be identical to 2π . However,

in the interesting frequency range (roughly below 1.3) the coverage is close to its

nominal value of 95%.

We conclude that this method of measuring the sampling uncertainty of the time

delay estimates can be recommended for applied work, provided the caveat is borne

in mind that the confidence bands may not exist everywhere, and thus the described

pre-checks should be viewed as an integral part of any application.

8 Conclusion

In this paper we have shown that tests of Granger non-causality can also be specified

in terms of frequency bands or intervals instead of single frequency points. We pro-

pose a rigorous framework enabling standard inference that circumvents the ad-hoc

procedures of joint testing with unknown statistical properties. The implementation

is easy because in practice the relevant test statistic is just the minimum over a pre-

specified frequency band, apart from a special but straightforward treatment of the

frequencies 0 and π . In a simulation study the test performed satisfactorily albeit
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Figure 7.7: Simulation of the coverage of the confidence intervals based on the delta
method (nominal coverage 95%). Fraction of 1000 simulation runs. All frequencies
ω ∈ (0,π) are shown, but see the text for regions of near-nonexistence.

slightly conservatively.

Given that strict non-causality over a range of frequencies is impossible in this

(linear) framework except if there is no causality at all, accepting the null hypothesis

still means that some causality exists in the band of the null hypothesis. For prac-

tical purposes it may therefore be advisable to keep the specified frequency band

reasonably short.

As a complementary piece of information concerning the frequencies with non-

vanishing causality we have proposed additional tools to analyze the time delay of

the target variable relative to the cause, based on the standard cross-spectral phase

shift analysis. In particular we used our parametric framework to construct con-

fidence intervals for the estimated delay measures with the delta method. These

asymptotic confidence intervals may not be well-defined for a certain (finite) num-

ber of frequency points, depending on the coefficients of the underlying model. In

a finite-sample setting the neighborhood of these frequency points is likely to be

affected as well, resulting in a lower quality of the confidence bands (in terms of ac-

tual coverage probabilities). However, in practice it is straightforward to check for
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and find the location of these neuralgic regions prior to constructing the confidence

intervals in the remaining frequency regions.

Our first empirical application with long time series of CO2 emissions and earth

surface temperatures demonstrated that varying degrees of Granger causality in the

frequency domain are of practical relevance. In another application we demon-

strated the sampling uncertainty of the delays of German industrial production

growth with respect to the foreign orders indicator, across frequencies. In the intro-

duction we already mentioned the case of the term structure of interest rates where

such varying connections are also expected. In addition, according to the economic

hypothesis of consumption smoothing a similar result about differing impacts of

short- versus long-term fluctuations might hold between income and consumption.

We believe that many more potential applications in economics and perhaps other

disciplines are likely to exist.
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A Proofs

For easier readability in this appendix we suppress the dependence of the various

functions on the frequency ω , which should be clear from the definitions in the main

text.

A.1 Proof of Lemma 2

Lemma 2 mainly translates various results from established signal processing anal-

ysis to our setting. The causal recursive filter implied by the ARDL model (5.1) is
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nothing else than the following rational polynomial in the lag operator:

ρ(L) =
β (L)

1−α∗(L)
=

∑
p
j=1 β jL j

1−∑
p
j=1 α jL j (A.1)

The frequency-specific response function is given by the division of the Fourier

transforms of the component filters:

Fρ =
Fβ

1−Fα∗
=

∑
p
j=1 β jeiω j

1−∑
p
j=1 α jeiω j , (A.2)

Note that we can also write this with α(L) = 1−α∗(L), so α0 = 1 and α j>0 =

−α∗j , and correspondingly Fρ = Fβ/Fα . With Euler’s formula (eiθ = cosθ + i sinθ )

we have Fβ = |Fβ |
(
cos(φβ )+ i sin(φβ )

)
, or alternatively

Fβ =
p

∑
j=1

β j cos(ω j)+ i
p

∑
j=1

β j sin(ω j)≡ cβ + i sβ ,

such that it also holds that cβ = |Fβ | cos
(
φβ

)
and sβ = |Fβ | sin

(
φβ

)
.

We can represent the denominator filter part in an analogous way:

Fα = 1−
n

∑
j=1

α j cos(ω j)− i
n

∑
j=1

α j sin(ω j)≡ 1− cα∗− i sα∗

And generically: Fα = |Fα |(cos(φα)+ i sin(φα)). So we have:

|Fα |cos(φα) = 1− cα∗

|Fα |sin(φα) = −sα∗

For Fρ at each frequency we can therefore write

cβ + i sβ

1− cα∗− i sα∗
,
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provided the denominator does not vanish. The complex-number division yields:

Fρ = |Fα |−2(cρ + i sρ), (A.3)

where cρ ≡ cβ (1− cα∗)− sβ sα∗ and sρ ≡ sβ (1− cα∗)+ cβ sα∗ .

The imaginary part of this frequency response function is |Fα |−2sρ , and the real

part |Fα |−2cρ . The phase shift is given by the angle of this complex number in polar-

coordinate form, thus tanφρ = sρ/cρ for cρ 6= 0. The four-quadrant refined arctan∗

function provides the necessary information: For example, if cρ < 0 the number

cρ + i sρ lies in the upper-left or lower-left quadrants and therefore the phase shift

would be between π

2 and 3
2π . Accordingly the correct arctan∗ value in these cases

would be obtained as arctan(sρ/cρ)+ π . If instead cρ > 0 together with sρ ≤ 0,

then the lower-right quadrant is concerned with φρ ∈ (3
2π, 2π], and we obtain the

shift value as arctan(sρ/cρ)+ 2π . In the upper-right quadrant with sρ > 0, cρ > 0

the standard calculation by arctan(sρ/cρ) ∈ (0, π

2 ) remains unchanged. In addition,

when cρ = 0 one could define the phase shift as π

2 or 3π

2 (depending on the sign of

sρ ) to close the gap in the domain of the arctan function. Figure A.1 displays the

resulting function graph. It can be seen that whenever the phase is wrapped from 0

to 2π , i.e. when sρ(ω) = 0 together with cρ(ω)> 0, the phase shift function is not

continuous and therefore not differentiable per se. However, after unwrapping the

phase this discontinuity vanishes, and since the slope of the function is implicitly

given by the derivative of the standard arctan function at point 0, the gradient of the

unwrapped phase is finite and continuous.
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Figure A.1: Phase shift as a function of the terms sρ(ω) (“N axis”) and cρ(ω) (“D
axis”), without “unwrapping”.

A.2 Proof of Proposition 2

For any integer z we define

vs,z = (sin(ω), ...,sin(zω))′

vc,z = (cos(ω), ...,cos(zω))′,

We have the 2p coefficient vector r = (β ′,α ′)′ such that β = (I,0)r and α =

(0,I)r, where the zero matrix 0 is of dimension p× p and I = Ip.5 The estimate r̂

comes with a (consistently estimated) variance-covariance matrix Vr.

Assuming an interior solution the arctan∗ function behaves like the standard

arctan function, therefore the variance of the estimate φ̂ρ can be inferred from Vr

with the delta method by using the derivative ∂ arctan(sρ/cρ)/∂r′ as the relevant

Jacobian Jρ . It turns out that cρ = 0 is automatically accommodated, such that as

5In a generalized case with differing lag lengths px and py for the x- and y-terms the dimensions
can be easily adjusted.
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a formal workaround for the non-existence of arctan(sρ/cρ) in that case we can

instead take the limit Jρ = limε→0 ∂ arctan(sρ/(cρ + ε))/∂r′.

Differentiating arctan(sρ/cρ) yields:

Jρ =

(
1+

s2
ρ

c2
ρ

)−1

c−2
ρ

(
cρ

∂ sρ

∂r
− sρ

∂cρ

∂r

)
,

with

∂ sρ

∂r′
= (I,0)′vs,p(1− cα∗)− sβ (0,I)′vc,n +(I,0)′vc,psα∗+ cβ (0,I)′vs,p

= (I,0)′ (vs,p(1− cα∗)+vc,psα∗)+(0,I)′
(
vs,pcβ −vc,psβ

)
,

∂cρ

∂r′
= (I,0)′vc,p(1− cα∗)− cβ ∗(0,I)′vc,p−

(
(I,0)′vs,psα∗+ sβ (0,I)′vs,p

)
= (I,0)′ (vc,p(1− cα∗)−vs,psα∗)− (0,I)′

(
vc,pcβ +vs,psβ

)
.

Thus:

Jρ =
1

c2
ρ + s2

ρ

×

{(I,0)′
(
(vs,pcρ −vc,psρ)(1− cα∗)+(vc,pcρ +vs,psρ)sα∗

)
+ (A.4)

(0,I)′
(
(vs,pcβ −vc,psβ )cρ +(vc,pcβ +vs,psβ )sρ

)
}

Notice that c2
ρ + s2

ρ > 0 is guaranteed by the assumption that the frequency re-

sponses Fα and Fβ do not vanish. Further manipulation yields:
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Jρ =
[
(s2

β
+ c2

β
)
(
(1− cα∗)

2 + s2
α∗
)]−1

×

{(I,0)′
(
vs,p(cρ(1− cα∗)+ sρsα∗)+vc,p(cρsα∗− sρ(1− cα∗)

)
+

(0,I)′
(
vs,p(cρcβ + sρsβ )+vc,p(sρcβ − cρsβ )

)
}

=
[
(s2

β
+ c2

β
)
(
s2

α∗+(1− cα∗)
2)]−1

×

{(I,0)′
(
vs,pcβ −vc,psβ

)(
s2

α∗+(1− cα∗)
2)+

(0,I)′ (vs,p(1− cα∗)+vc,psα∗)
(

s2
β
+ c2

β

)
}

= (I,0)′
vs,pcβ −vc,psβ

s2
β
+ c2

β

+(0,I)′
vs,p(1− cα∗)+vc,psα∗

s2
α∗+(1− cα∗)2

=

[v′s,pcβ −v′c,psβ

|Fβ |2
,

v′s,p(1− cα∗)+v′c,psα∗

|Fα |2

]′
(A.5)

The (asymptotic) variance of the time delay φ∗ = φ/ω is accordingly given by

V
(

φ̂
∗
ρ

)
= ω

−2J′ρVrJρ , (A.6)

at all frequencies where Jρ exists. Asymptotic normality follows from standard

central limit theorems.
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