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While recurring and regular variations of weather conditions are implic-

itly addressed by standard seasonal adjustment procedures of economic time

series, extraordinary weather outcomes are not. We analyze their impact on

German total industrial and construction-sector production and find modest

but significant effects. The estimated effects of weather deviations can be sub-

tracted from the already seasonally adjusted data to obtain seasonally as well

as weather adjusted series. Given the timely availability of the weather data

compared to the publication lag of economic measurements, we also show

how to exploit this contemporaneous impact in real time to help the nowcast-

ing of industrial production.
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1 Introduction

Whenever new datapoints of macroeconomic aggregates such as production or (un-)

employment are published by statistical agencies, it is often heard that some part of

the changes in the respective variables is due to some extraordinary weather effect,

such as a mild winter or an unusually snowy spring. However, a precise magnitude

of this effect is typically not provided. Therefore, the aim of this paper is to fill this

gap by analyzing the impact of unusual weather conditions on several production

indices for Germany.

Impacts of weather phenomena on economic variables are usually associated

with seasonal patterns and therefore treated as regular. Statistical agencies address

this pattern by providing seasonally adjusted series. Nevertheless, one might expect

that deviations of weather conditions from their seasonal average may affect eco-

nomic activities and partly conceal the underlying dynamics. For example, Bloesch

and Gourio (2015, p.2) pointed out that whether the economic slowdown in the

winter 2013/2014 in the U.S. was due to harsher winter weather or instead due to

an underlying economic trend would have had implications for monetary policy. A

slowdown of the U.S. economy due to weather effects rather than a negative eco-

nomic trend might have implied less of a need for adjusting monetary policy.

Depending on the primary objective, controlling for abnormal weather effects

and extracting the real economic trend can be accomplished in two different ways:

Wright (2013) suggested to include, and Boldin and Wright (2015) then included

weather variables in the seasonal adjustment process for U.S. employment and GDP

data, resulting in a weather as well as seasonally adjusted time series. They argue

that abnormal weather effects may influence the seasonal adjustment procedure.

Ouwehand and van Ruth (2014) provided a much differentiated analysis for the

Dutch GDP data on the national and sectoral level. Estimating an ARIMA model
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they concluded that no significant weather effects could be identified for the major-

ity of the sectors. A similar approach was used by the Deutsche Bundesbank for

German GDP data (Deutsche Bundesbank, 2014).

In a second type of approach the seasonally adjusted series is taken as given,

relying on asymptotic orthogonality between the seasonal component and the un-

usual weather effects. Bloesch and Gourio (2015) for example found an overall

weak but significant weather effect on the nonfarm employment growth rate using

a fixed-effects regression model. Also with respect to employment, Hummel, Vos-

seler, Weber, and Weigand (2015) analyzed the effect of several weather variables

like temperature, snowfall, or snow height on a national level, based on 310 repre-

sentative weather stations in Germany. They identified several weather and catch-up

effects in the following months. For instance, a one degree temperature increase in

January raises employment by 14.000 persons on average between 2006 and 2014.

Also for Germany Döhrn and an de Meulen (2015) showed that including weather

variables in a business-cycle oriented forecasting procedure improves the model,

but not in a significant way.

There are also attempts to identify longer-run weather (or climate) effects on

economic outcomes, see Dell, Jones, and Olken (2014), but in this paper we fo-

cus on the shorter-run dynamics of occurrences of abnormal weather. We confirm

and follow Hummel, Vosseler, Weber, and Weigand (2015) in their choice of rel-

evant weather measurements, namely air temperature, snowfall, and snow height.

We focus on economic output instead of labor inputs, however, namely monthly in-

dustrial production. We also provide a separate analysis for the construction sector

since any weather effects will be felt there most. A further difference is that we

stick to a straightforward model framework that is linear in the parameters, includ-

ing non-linearities through interaction effects and thereby modelling heterogeneous

month-specific effects. Finally, we discuss the use of the weather observations for
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forecasting purposes in a (pseudo) real-time setting, when the current production

data as well as their immediate lags would not have been published yet (often called

“nowcasting”).

2 Data and empirical approach

The dependent variables that we analyze are the growth rate of German real total

industrial production (IP) and the production in the construction sector. Total out-

put represents an important cyclical indicator, while production in the construction

sector is the part of economic activity which is most likely to depend on weather

conditions. An overview about the different production indices and their hierar-

chial structure is given in Statistisches Bundesamt (2015). Data are taken from the

Bundesbank website. Both indices are calendar and seasonally adjusted.

Weather data for Germany have recently begun to be provided on a daily basis

and are freely available.1 The construction of the weather dataset was inspired by

the approach of Hummel, Vosseler, Weber, and Weigand (2015), that is we aggre-

gated daily weather data of the 251 weather stations available to the federal state

level, then weighing them by the state-level number of employees to obtain aggre-

gated data at the national level. The sample used in this paper is January 1991

through October 2015. We consider three measurable weather aspects, namely air

temperature, snow height in cm, and snow fall per week in cm, all time-averaged

from daily to monthly series. Other weather variables would also be possible in

principle; the Deutsche Bundesbank (2014) for example used the sum of ice-days

in a specific time interval (quarter or month), but that information should not differ

much from the combined content of snow fall and (cumulated) height.

Given that the weather data are published almost immediately – in contrast to

1Original database provided by Deutscher Wetterdienst and freely available at http://www.
dwd.de/.
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the production data that suffer from a publication delay of at least one month –

this allows one to predict or “nowcast” the weather effect on a real-time basis. A

potential disadvantage, however, is that the most recent data are mostly not yet

checked for measurement errors.

What we have in mind as a first approximation is a simple additive framework

that distinguishes between different components that together yield the observed

realization of the economic variable of interest y in period t:

yt = struct +weathert + εt , (1)

where yt will be a seasonally adjusted growth rate of the underlying economic vari-

able, and struct is interpreted as a component which is structural in the sense that

it indicates the underlying tendency attributable to purely economic forces and in-

trinsic dynamics. In contrast, weathert is an irregular component which measures

influences that stem from weather realizations beyond the systematic and regular

seasonal cycles. We allow these components to be dynamic, such that they will in-

clude lags as well. Finally, εt is a purely random error component which should be

(close to) white noise.

We proceed by defining the extent of “abnormal weather” as the deviation of the

specific variable from the respective month-specific average:

x̂t = xt− x̄t,m (2)

where xt is a weather variable measurement (temperature, snow height, snow fall)

in period t which falls in a month m ∈ {Jan,Feb, ...,Dec}, while x̄t,m is the month-

specific average of weather variable xt in period t which happens to be a month m.

From now on, the deviation of a weather variable and the name of a weather variable

are used synonymously. For example, the deviation of temperature (from its month-
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Figure 1: Observed weather deviations

specific average) and temperature are used synonymously, and the absolute level of

a weather variable never enters any estimated model. The (month-specific) average

refers to the sample period including all observations from September 1991 to April

2015. Figure 1 shows the resulting time series.

As the baseline model we fitted an autoregressive model of order 4, including

the three weather variables interacted with seasonal (monthly) dummies, allowing

for month-specific weather effects. Furthermore, four lags of each weather variable

were included to control for possible catching-up effects in the following months.

By catching-up effects we mean a shift of production in point of time; for example

orders and contracts which could not be carried out in February and March due

to a harsh winter might be completed one or two months later. A further concern

in time series analysis might be the existence of some structural break. During

their analyses, Hummel, Vosseler, Weber, and Weigand (2015) found some evidence
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for a structural break in 2006, which prompted them to use a smooth transition

regression model. The advantage of that model is that weather effects can be flexibly

modeled over time. However, the authors assign the structural break in 2006 mainly

to the introduction of seasonal short time work benefits (Saison-Kurzarbeitergeld),

given that they focus on labor market variables. This is not directly relevant for our

focus on industrial production. Nevertheless, testing for a structural break might

be relevant in the context of the financial crisis and the following deep recession in

Germany. Therefore, we tested if a structural break influenced the autoregressive

terms of the endogenous variable by applying a standard Chow Test.

A possible break date was determined exogenously by examining the world

business cycle at the outbreak of the great recession. Looking at the G-20 GDP

growth rate, one observes negative growth rates between the fourth quarter of 2008

and the first quarter of 2009. Hence, we used the beginning of the fourth quarter of

2008 (October of 2008) as the possible break date to be tested.

The baseline model is given as follows:

yt =c0 +α(L)yt−1

+
12

∑
m=1

[
βm(Dt,m× x̂temp

t )+ γm(Dt,m× x̂sheight
t )+δm(Dt,m× x̂s f all

t )
]

+η(L)x̂temp
t−1 +κ(L)x̂sheight

t−1 +λ (L)x̂s f all
t−1 + εt (3)

The lag polynomials α(L), η(L), κ(L), λ (L) are defined according to the pat-

tern α(L) = α1 +α2L+α3L2 +α4L3. Monthly dummies for month m are denoted

by Dt,m, such that we consider potentially heterogeneous month-specific contem-

poraneous weather effects, with coefficient sets βm, γm, δm. For example, a mild

January might be expected to increase economic activity, while the same is proba-

bly not true for a hot July. However, we impose homogeneity across months for the

lagged effects because the number of parameters would otherwise explode relative
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to the available observations.

3 Estimating weather influences

3.1 Total industrial production

For overall German industrial production the Chow test yields some evidence for

a structural break with respect to the tested four lags of the endogenous variable,

with a p-value of 0.08 (see Table 1). Despite the relatively weak evidence these

lags interacted with the break dummy are also included in the estimated equation,

although only the weather-related terms are explicitly reported. An interaction of

the weather variables and the break dummy was not considered, because allowing

shifts in all coefficients would entail very high costs in terms of degrees of freedom

and efficiency. Especially for estimating the month-specific weather effects only 7

or 8 observations (October 2008 to April 2015) would be available after the break.

In a next step, irrelevant weather components are excluded based on the Akaike

Information Criterion (AIC). Our final estimated model consists of four autoregres-

sive terms (and their interaction with the break dummy DOct2008,t) as well as the

temperature deviation (x̂temp
t ) and the snow height deviation (x̂sheight

t ) interacting

with monthly dummies. Furthermore, the four lags of the snow height deviations

are also retained in the model.

yt =c0 +α(L)yt−1 +θ(L)(yt−1×DOct2008,t)+θ5DOct2008,t

+
12

∑
m=1

[
βm(Dt,m× x̂temp

t )+ γm(Dt,m× x̂sheight
t )

]
+κ(L)x̂sheight

t−1 + εt (4)

To account for heteroscedasticity the model was estimated with robust standard
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errors. The final specification yields an adjusted R2 of about 0.24, while without the

weather variables the value would attain only 0.13, dropping by 0.11, which is not

overwhelming but quantitatively important. The deviation of the temperature from

seasonal averages plays an important role especially in January, with the expected

positive sign. A one-degree extraordinary rise in January increases the monthly

(non-annualized) production growth rate by 0.46 percentage points. The tempera-

ture effect for October by itself shows the opposite sign, which probably has to be

interpreted jointly with the negative snow height effect for the same month.

While the positive snow height effect for September appears surprising, this

partial result is driven by an IP growth outlier for September 2010; removing that

outlier makes the September effect disappear (drop to a point estimate of 0.16 which

is no longer significant). The first lag of the snow height deviation is also significant

at a one percent level and does influence the production dynamics in a positive way,

supporting the idea of catching-up effects (Table 1).

We can now report the estimated ̂weathert component by adding together all

terms from (4) containing a weather-related variable, using the estimated parameters

in place of the unknown truth. The result is shown in Figure 2 in the upper panel.

Also in that figure (lower panel) we compare the original with those growth rates

of industrial production adjusted for the weather effects. Of course, most of the

movements in production are not attributable to weather but to other types of shocks,

reflecting the modest R2 of the estimated equation. Furthermore, the coefficients are

estimated with a certain amount of sampling uncertainty, and in Figure 3 we take

the associated standard error of ̂weathert into account, displaying the 95 percent

confidence intervals for the weather-adjusted growth of industrial production. In

many cases the adjustment produces results that are not significantly different from

zero.
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Figure 2: Irregular weather effects on German total industrial production. The upper
panel shows the estimated weather component with respect to the monthly (non-
annualized) growth rate, i.e. ̂weathert . The lower panel compares the observed
growth rate and the result of the weather adjustment, i.e. yt− ̂weathert .
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Table 1: Selected coefficients, total industrial production
Sum of coefficients of lagged endogenous variable 0.608

Temperature×January 0.0046**
Temperature×October -0.0045***
Snow height×February -0.0018***

Snow height×September 0.4371**
Snow height×October -0.1243***

Snow height (t−1) 0.0013***
Snow height (t−2) 0.0006*
Snow height (t−3) 0.0009**

Observations 292
Chow test F(5,256), p-value 1.99, 0.083

R2 0.329
Adjusted R2 0.237

Notes: Dependent variable yt is German total industrial production (growth of an
index number, seasonally adjusted). Of each weather component the most
significant and largest coefficients in magnitudes are shown. Robust standard
errors are used. Symbols: *: p < 0.10, **: p < 0.05, ***: p < 0.01.
For the Snow height×September coefficient see the text.
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Figure 3: Estimation uncertainty of weather-adjusted industrial production.
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3.2 Construction sector

We also analyzed the relationship for the construction sector, which should plausi-

bly be more affected by the weather. The Chow test on the four endogenous lags of

production (growth) this time rejects the null hypothesis at an even more borderline

p-value of 0.102 (Table 2). As for the total production variant, weather variables

interacting with the break dummy were not considered. In a next step further in-

significant weather components were excluded and the model simplification was

checked by the information criteria. As a result, the lags of snow fall were ex-

cluded. The final estimated model includes two weather variables (x̂temp
t , x̂sheight

t )

interacted with a monthly dummy (Dt,m), the four lags of the temperature deviation

(η(L)x̂temp
t−1 ) and the snow height (λ (L)x̂sheight

t−1 ) as well as the four autoregressive

terms of the independent variables (α(L)yt−1).

yt =c0 +α(L)yt−1

+
12

∑
m=1

[
βm(Dt,m× x̂temp

t )+ γm(Dt,m× x̂sheight
t )

]
+η(L)x̂temp

t−1 +λ (L)x̂sheight
t−1 + εt (5)

Compared to total industrial production, more weather variables play a role for

the construction sector. Again heteroscedasticity-robust standard errors were used.

This estimate yields an R̄2 of roughly 0.57, of which 0.44 can be attributed to the

weather influences, which is of course a much larger share than for total production.

Moreover, all significant weather effects are related to the winter. Consequently,

a really hot summer for instance does not affect the dynamics of the construction

sector. Comparing the magnitude to the total industrial production, a one degree

increase in January raises the monthly construction growth rate by 2.5 percentage

points, affecting the construction sector much more than the total industrial pro-
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duction growth rate (Table 2). The lags of the temperature deviation also show the

expected negative signs, supporting the hypothesis of catching-up effects. A mild

winter would therefore shift the production to some extent into the first months of

the year, changing the point in time of production.

Table 2: Selected coefficients, construction sector production
Sum of coefficients, lagged endogenous variable -0.7830

Temperature× January 0.0252***
Temperature× February 0.0119**
Snow height× February -0.0076***

Snow height×March -0.0150***
Temperature (t−2) -0.0030**
Temperature (t−4) -0.0031*
Snow height (t−1) 0.0009***

Observations 292
Chow test F(5,252), p-value 1.50, 0.189

R2 0.623
Adjusted R2 0.566

Notes: Dependent variable yt is production in the German construction sector
(growth of an index number, seasonally adjusted). Of each weather com-
ponent the most significant and largest coefficients in magnitudes are shown.
Robust standard errors are used. Symbols: *: p < 0.10, **: p < 0.05, ***:
p < 0.01.

Again we report the resulting time series of the estimated weather component

and the implied adjusted production series, in the upper and lower panels of Figure

4. And as in the case of the total industrial production index, we display the adjusted

series together with its estimation uncertainty stemming from the estimated param-

eters of the irregular weather components, see Figure 5. This estimation uncertainty

is relatively less important in the construction sector given the overall higher vari-

ability of this sector-specific production and its weather dependence.
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Figure 4: Irregular weather effects on German production in the construction sec-
tor. The upper panel shows the estimated weather component with respect to the
monthly (non-annualized) growth rate, i.e. ̂weathert . The lower panel compares the
observed growth rate and the result of the weather adjustment, i.e. yt− ̂weathert .
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4 Improving nowcasting of production measures

In the previous section we performed a historical adjustment of German production

time series by estimating the dynamic influences of irregular or abnormal weather

conditions. In this section we want to exploit the fact that observations of the

weather measures are available much more quickly than the first publications of

production values by statistical agencies – in Germany the publication delay for the

first and tentative official figures on industrial production is around 38 days, more

than one month. Given that we found some significant contemporaneous impact of

the weather (deviations), it is natural to take these effects into account when the aim

is to produce a short-term forecast of economic activity.

However, our present aim is merely to check whether this is a promising route

for future research, and hence we employ some shortcuts. First we do not work

with a full real-time dataset but instead continue to use our dataset on industrial

and construction-sector production which effectively contains only a single vintage

(from 2015). We therefore do not take into account the data revisions occurring

after the respective first publications. Secondly, in order to gauge the value added of

the weather effects for forecasting, in principle one would have to use a full-fledged

forecasting model as the starting point. Instead we will here restrict the non-weather

predictive variables to be the lagged endogenous variables available on a pseudo

real-time basis. Both the real-time aspect and the use of other predictive variables

can be found in Proaño and Theobald (2014) or in Schreiber and Soldatenkova

(2016), but only for total industrial production.

The present pseudo real-time exercise for nowcasting thus effectively boils down

to removing the first two lags of the dependent variable from the predictive mod-

els, because the realizations of industrial (or construction-sector) production of the

immediately preceding two months are not yet known when the nowcast would be
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made. To this end we define the shorter lag polynomials α∗(L) = α3 +α4L and

θ ∗(L) = θ3 + θ4L which are applied starting at the third lag, such that for total

industrial production we obtain the following estimated nowcasting equation:

yt =c0 +α
∗(L)yt−3 +θ

∗(L)(yt−3×DOct2008,t)+θ5DOct2008,t

+
12

∑
m=1

[
βm(Dt,m× x̂temp

t )+ γm(Dt,m× x̂sheight
t )

]
+κ(L)x̂sheight

t−1 + εt

In Table 3 the important estimated coefficients are reported. By removing the

first two lags of the endogenous variable (along with the break interaction terms)

the adjusted R2 drops from 24 to 16 per cent. Here 12 percentage points are due

to the weather effects which can be estimated without suffering from a publication

delay. The signs of the partial temperature effects for October and December are

negative and thus not immediately plausible. In a structural sense there could now

be some omitted-variable effects at work in this restricted specification, although

for predictive purposes this would be less of a concern.

Instead of reporting the estimation uncertainty for all observations simultane-

ously, as we did before in Figure 3 for a different specification, we now focus on

the situation at the margin of the sample in 2015. The estimates for the weather

effects along with the corresponding confidence intervals are given in Table 4. For

example while the estimated weather effect in August is quite large and negative

with an impact of roughly -0.4 percent, this estimate is not significantly different

from zero, with the confidence interval stretching over 2.8 percentage points (from

-1.8 to 1.0 percent). In contrast, for October the effect of irregular weather was

estimated as positive at 0.3 percent. At the same time, this estimate is much more

precise such that the length of the associated confidence interval shrinks to just over

0.3 percentage points (from 0.2 to 0.5 percent), rendering the estimate significantly

17



Table 3: Nowcasting total industrial production
Sum of coefficients, lagged endogenous variable 0.36

Temperature×January 0.0042
Temperature×October -0.0053***

Temperature×December -0.0022*
Snow height×February -0.0023***

Snow height×May -0.1496*
Snow height×October -0.1251***

Snow height (t−1) 0.0018***
Snow height (t−3) 0.001**

Observations 292
Chow test F(3,260), p-value 0.19, 0.900

R2 0.250
Adjusted R2 0.161

Notes: Dependent variable yt is total industrial production in Germany (growth of
an index number, seasonally adjusted). Of each weather component the most
significant and largest coefficients in magnitudes are shown. Robust standard
errors are used. Symbols: *: p < 0.10, **: p < 0.05, ***: p < 0.01.

positive.

Obviously we can apply the same nowcasting idea to the construction sector.

We obtain the following specification, where the important coefficients are reported

in Table 5.

yt = c0 +α
∗(L)yt +

12

∑
m=1

βm(Dt,m× x̂temp
t )

+
12

∑
m=1

γm(Dt,m× x̂sheight
t )+η(L)x̂temp

t

+κ(L)x̂sheight
t + εt

Again the effects are concentrated on the winter months. The signs are as ex-

pected, with the exception of the temperature effect for November. The omission of

the first two lags of the left hand side variable just induces a surprisingly small drop

18



Table 4: Weather effects in 2015, total production nowcast
Date Weather effect

point estimate
Upper bound Lower bound

Oct. 2015 0.00339 0.00504 0.00174
Sept. 2015 -0.00165 0.00137 -0.00468
Aug. 2015 -0.00388 0.00980 -0.01756
July 2015 -0.00241 0.00247 -0.00729

Notes: The upper and lower bounds refer to 95% confidence intervals. For the
precise implementation of the nowcast exercise see the text.

of the adjusted R2 from 56 to 51 percent. Removing the weather variables would

induce a drop of the R̄2 by a whopping 50 percentage points, hence the weather

adjustment appears particularly promising for the construction sector. On the other

hand, the high variation partly stems from a number of peaks in the series as could

be seen in Figure 4 (lower panel), but that have appeared less frequently in recent

years. This implies that the estimates for less extreme observations are not as pre-

cise as might be expected. In Table 6 we again focus on the situation at the current

margin of the sample. The point estimates of the weather effect are not significantly

different from zero for October and August 2015. For September, however, the con-

fidence interval ranges from -1.5 to -0.3 percent and thus does not cover zero. A

large and significant weather effect could also be observed in February 2015 which

is included in Table 6 for comparison.

5 Conclusion

We conclude that abnormal weather conditions in Germany affect the construction

sector and aggregate production. Generally and not surprisingly, estimated coeffi-

cients are larger for the construction sector than for total industrial production. Con-

trolling for measurable weather effects using freely available datasets thus helps to
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Table 5: Nowcasting construction-sector production
Sum of coefficients, lagged endogenous variable -0.17

Temperature×January 0.0235***
Temperature×February 0.0107**

Temperature×November -0.0099**
Snow height×February -0.0087***
Snow height×March -0.0155***
Temperature (t−2) -0.0034**
Snow height (t−1) 0.0129***

Observations 292
Chow test F(3,256), p-value 0.541, 0.77

R2 0.563
Adjusted R2 0.509

Notes: Dependent variable yt is production in the German construction sector
(growth of an index number, seasonally adjusted). Of each weather com-
ponent the most significant and largest coefficients in magnitudes are shown.
Robust standard errors are used. Symbols: *: p < 0.10, **: p < 0.05, ***:
p < 0.01.

Table 6: Weather effects in 2015, construction-sector production nowcast
Date Weather effect

point estimate
Upper bound Lower bound

Oct. 2015 0.00266 0.00597 -0.01128
Sept. 2015 -0.00920 -0.00321 -0.01519
Aug. 2015 -0.0112 0.00346 -0.02582
Feb. 2015 -0.03570 -0.02458 -0.04682

Notes: The upper and lower bounds refer to 95% confidence intervals. For the
precise implementation of the nowcast exercise see the text.
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determine the underlying economic dynamics and should lead to a more accurate

assessment of the business cycle, ultimately also implying more appropriate stabi-

lization policy advice.

By relying on the (approximate) orthogonality between regular seasonal effects

and irregular random weather outcomes we were able to keep the econometric meth-

ods simple, using straightforward regression models that are linear in parameters.

Within this framework we found it important to allow the effects of the weather vari-

ables such as air temperature or snow height (in deviations from seasonal averages)

to be month-specific. The specification also had to account for serially correlated

production and its dynamic reactions.

Finally we provided initial evidence that the weather effects could also be in-

corporated to improve the “nowcasting” of production realizations that are still un-

known because of the publication delay of such macroeconomic data. This lat-

ter part of the analysis used the simplifying shortcut of a pseudo real-time setup,

whereas a refined fully real-time estimation would work with a different data vin-

tage for each datapoint. Also, the marginal value added of the weather variables as

predictors would have to be assessed relative to a broader information set. Never-

theless, this first set of results was encouraging especially in the case of the con-

struction sector. Also we expect that such irregular weather effects apply to most

other economies as well, not only to Germany.
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