
Service Level Agreement Mediation,

Negotiation and Evaluation for

Cloud Services in Intercloud Environments

vorgelegt von
M.Sc. Dipl.-Ing. (FH)

Alexander Stanik
geb. in Berlin

von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr.-Ing. Stefan Tai
Gutachter: Prof. Dr. habil. Odej Kao

Prof. Dr.-Ing. Gero Mühl
Prof. Dr. Matthias Hovestadt

Tag der wissenschaftlichen Aussprache: 11. April 2016

Berlin 2016

Acknowledgement

I would like to thank all the people who supported me during my studies and made this PhD

thesis possible. I especially want to thank my advisor Odej Kao for his guidance and inviting

me to work in his group. Thanks for making this job probably the best in my life. Special thanks

also go to the entire working group “Complex and Distributed IT Systems” at TU Berlin for

the awesome past five years. I also thank my former colleague Matthias Hovestadt for his

guidance for finding this topic of my PhD thesis. And also many thanks go to António Cruz,

Gregory Katsaros, Mareike Höger, Andreas Kliem, Marc Körner, Florian Feigenbutz, Fridtjof

Sander, Oliver Wäldrich, Andreas Weiss and Wolfgang Ziegler for insightful discussions about

the research.

A special thanks to my family for their support during all the time. Words cannot express how

grateful I am to my mother Irene and my father Robert for all of the sacrifices that you’ve made

on my behalf. You educated me and have made me to the person who I am today. Thanks for

always offering support and love, moreover, helping me whenever I needed you.

Finally, special thanks goes to my dear wife Jeanette and my kids Maximilian, Charlotte, and

Anastasia for their endless love and patience especially during writing this thesis. You spent

sleepless nights with and unfortunately also sometimes without me. You were always my

support in the moments when there was no one to answer my queries. I married the best person

out there for me. These past several years have not been an easy ride, both academically and

personally, but you and our kids were always there and unconditionally loved me during my

good and bad times. Thanks!

Abstract

The management of today’s service level agreements on the cloud market is often nontrans-

parent and inefficient for the customer and the provider. However, service level agreements

are crucial for establishing trust between all participants, especially for companies whose suc-

cess depends on the purchased cloud service with its appropriated service quality. This thesis

aims to improve the current situation on the cloud market in terms of providing architectural,

methodological, and functional approaches with standard-based protocol specifications for dy-

namic and situational service level agreement management. Therefore, this thesis analyses

and presents current service level agreement standards and existing implementations. Based

on these results, a set of concepts and approaches for agreement and service mediation are

developed and experimentally evaluated.

However, all of these existing approaches either target a specific community or implement

broker services with just a closed product portfolio for services delivered by a small set of

providers. In order to establish a trusted provider overlay network as global marketplace for

cloud services, where all participants can federate by nature, expose their product offer, and

reach a wider customer community, this thesis introduces a novel concept for intercloud agree-

ment mediation. The Agreement-Mediators in this global provider network act as neutral and

autonomous entities in the cloud market and rise trust between independent providers and be-

tween providers and customers. The language and protocol for searching, negotiating, and es-

tablishing service level agreements is specified, developed, and evaluated. The outcomes of this

thesis aim to increase efficiency and effectiveness for discovering cloud services of indepen-

dent providers and the management of service level agreements established for each business

relationship. The experimental results show significant improvements in terms of efficiency,

scalability, and flexibility.

Contents

1. Introduction 1
1.1. Problem Definition . 2

1.2. Contribution . 3

1.3. Outline of the Thesis . 6

2. SLA Fundamentals and Definitions 9
2.1. Disambiguation . 9

2.2. Approaches for Service Level Agreements . 11

2.3. WS-Agreement . 13

2.3.1. WS-Agreement Model . 13

2.3.2. WS-Agreement Protocol . 14

2.3.3. WS-Agreement Factory Service . 15

2.3.4. WS-Agreement Agreement Service 16

2.3.5. WS-Agreement Language . 16

2.4. WS-Agreement Negotiation . 19

2.4.1. WS-Agreement Negotiation Model 20

2.4.2. WS-Agreement Negotiation Protocol 22

2.4.3. WS-Agreement Negotiation Language 23

3. Standards and Implementation Analysis 25
3.1. WS-Agreement Dependency Analysis . 26

3.2. WS-Agreement Applicability Analysis . 27

3.2.1. Participant roles . 27

3.2.2. Protocol Variants . 28

3.2.3. Service Terms . 30

3.3. WSAG4J Framework Analysis . 30

3.4. REST as an alternative to WSRF . 32

3.4.1. History and Motivation . 34

3.4.2. Features . 35

3.4.3. Interoperability . 35

3.4.4. Network Load and Performance . 36

3.4.5. Related Work . 36

3.5. Performance Evaluation . 37

3.5.1. Test Scenarios . 38

3.5.2. Test Infrastructure . 39

3.5.3. Impact of Security Technology . 40

3.5.4. Measurement Results . 41

3.5.5. Conclusion . 43

3.6. Further REST-based Cloud Standards . 45

3.6.1. Cloud Application Management for Platforms 45

3.6.2. Cloud Infrastructure Management Interface 46

3.6.3. Open Cloud Computing Interface . 47

4. Agreement Mediation Approaches 51
4.1. Registry Approach . 53

4.1.1. Service Visibility and Discovery . 54

4.1.2. Complexity and Automation . 55

4.2. Broker Approach . 56

4.2.1. Advertising SLA Temples . 56

4.2.2. Discovering and Comparing service offer 58

4.2.3. Feeding in monitoring data . 59

4.2.4. Getting notified about SLA events . 59

4.3. ESB Approach . 59

4.3.1. Architecture . 60

4.3.2. SLA Engine . 62

4.3.3. On-Boarding Process . 64

4.3.4. SLA Inheritance . 66

4.4. Federation Approach . 67

4.4.1. Architecture . 68

4.4.2. SLA Aggregation . 70

4.4.3. Expected Aggregation Count . 73

4.5. Related Approaches . 74

4.6. Conclusion . 77

5. Intercloud SLA Management 79
5.1. XMPP . 82

5.2. Related Work . 83

5.3. REST with XMPP . 85

5.3.1. Resource Exploration . 87

5.3.2. Resource Access . 93

5.3.3. Implementation Concept . 96

5.3.4. Performance Evaluation . 100

5.4. REST with XMPP Rendering . 104

5.4.1. Classification Rendering . 105

5.4.2. Representation Rendering . 108

5.4.3. Implementation Concept . 109

5.5. Intercloud Agreement-Mediators . 110

5.6. Protocol Extensions . 113

5.6.1. Monitoring Model . 114

5.6.2. Service Level Agreement Model . 121

5.6.3. Event Processing Model . 131

6. Intercloud Prototyping and Evaluation 135
6.1. Implementation . 138

6.1.1. Communication Pattern . 138

6.1.2. Service Discovery . 139

6.1.3. Service Catalog . 141

6.1.4. Complex Event Processing . 142

6.2. Evaluation . 144

6.2.1. Use Case Testing . 146

6.2.2. Load Testing . 150

6.2.3. Conclusion . 151

7. Concluion and Future Work 153

Bibliography 155

A. Appendix 171
A.1. XWADL Schema . 171

A.2. REST-XML Schema . 174

A.3. Classification Schema . 177

A.4. XML-Rendering Schema . 179

A.5. EventLog Schema . 182

A.6. Evaluation Recording . 183

1. Introduction

Contents
1.1. Problem Definition . 2

1.2. Contribution . 3

1.3. Outline of the Thesis . 6

Over the last years a solid technical foundation on cloud computing was developed ranging

from resource allocation on the Infrastructure-as-a-Service (IaaS) layer, job and application

execution on the Platform-as-a-Service (PaaS) layer, to software and service usage on the

Software-as-a-Service (SaaS) layer [1] [2] [3]. This foundation allows the access of resources

according to the pay-as-you-go principle. At this, the resources may be geographically dis-

tributed all around the world and users can access them remotely without the need for any

upfront capital expenses, long-term commitment, or significant provisioning delay. For re-

alizing this cloud concept, an architecture stack consisting of IaaS, PaaS and SaaS has been

developed, where IaaS provides the fundament with provision of virtualized resources that can

be used e.g. by upper layer services [4]. For example, users are able to request virtual machines

which then can be used almost like regular physical computers whereupon the user is free to

install custom operating systems, libraries or applications [5]. Virtualization is the powerful

enabling technology in this space, allowing for flexible and on-demand provisioning of IT re-

sources from the user’s perspective, but also simplifying the management of the data center for

the cloud operator [6].

Clouds are often provided within a data center of a single institution. Here, a cloud middleware

manages the access to virtualized resources through a cloud interface that can be a web service

Application Programming Interface (API) or a more user-friendly web application. Focusing

on the IaaS layer, the resources that are virtualized and sold to the paying customer can be

classified into the following categories: compute, storage and network. All of these resources

appear to be physical, but they are actually virtualized by making use of hypervisors in the

case for virtual machines. While the physical infrastructure and installation rarely changes, the

virtually delivered resources are changing permanently [7].

Because of the novelty of the cloud paradigm, many companies started working on their own

proprietary standards for virtual machine configurations, their associated file formats, the ap-

plication packaging and its deployment through proprietary interfaces [8]. This lack of interop-

erability has been solved by standards like the Open Virtualization Format (OVF) [9], the Open

2 1. Introduction

Cloud Computing Interface (OCCI) [10], and the Topology and Orchestration Specification for

Cloud Applications (TOSCA) [11].

These open standards mentioned above address interoperability and portability issues existing

in the cloud context. However, these standards are used to deploy, orchestrate or in general

enable the access to a single cloud middleware at a time. In particular, if customers would like

to migrate a set of virtual machines or a clustered application, these standards can be used to

take out the individual installation in a standardized packaging format. and is then be able to

This bundle can then be redeploy in another cloud of the customer’s choice. This is not the sole

issue that needs to be improved in terms of migration. The selection of a public cloud provider

that in turn have not only to win the business confidence of the customer, but should also fulfill

the customer’s needs, is much more complicated. In fact, the customers have a wide choice of

cloud services offered with different pricing conditions and different service levels by a variety

of commercial cloud providers that are distributed around the world.

1.1. Problem Definition

The way legal contracts and Service Level Agreements (SLA) between cloud service providers

and cloud service consumers are established and managed is currently far from being ideal from

the customer’s point of view [12]. This topic naturally gains crucial importance for customers

being companies whose success depends (even partially) on the advertised Quality of Service

(QoS) that the service provider delivers. Three facts documented by [13] show exemplarily

the gap in terms of SLAs on the cloud market today: inflexible term and price conditions,

nontransparent verification of advertised service quality, and inflexible expression of SLAs.

Cloud contracts and SLAs can exist in two forms: off-the-shelf and negotiated. Common off-

the-shelf contracts typically over-favor cloud service providers significantly by offering a small

set of guarantees (e.g. availability in percent) with low compensations in case of failure (e.g.

percentage service credit based on the monthly fee) bounded to unlikely conditions (e.g. every

instance has to fail simultaneously) [14] [15] [16] [17] [18] [19] [20]. Negotiated contracts

are reserved for an elite class of customers having enough bargaining power, gained through

potential financial or reputational benefits expected by the provider as a consequence of an

agreement, to force a service provider away from its standard terms [13]. However, such nego-

tiation is performed individually between people and focuses primarily on the price. Although

negotiations bring better price conditions, customers are often unhappy with negotiated con-

tracts, because important terms like liability are often excluded by service providers [13]. In

general, cloud service customers have no chance to express on the provider’s standard interface

which service quality is required and which level of assurance they want.

1.2. Contribution 3

If the parties or rather the customer agrees to the service conditions, the provider should deliver

the service according to the advertised quality. In fact, the customers have to trust the provider

that the service is delivered as agreed on or the customer has to monitor the service quality

by himself. Anyway, the responsibility of monitoring the delivered service quality is on the

customer’s part [14] [15] [16]. This fact conflicts with the general purpose of cloud computing

services, which is to avoid administrative overhead on the consumer’s side [21]. Furthermore,

each service provider has its own requirements and dictates its own protocol, which the service

consumer has to follow in order to report an agreement violation and to receive a compensation

[14] [15] [16] [17] [18].

Last but not least, many service providers cannot give more definitive guarantees for their

services to a wide range of customers as in the current form of expressing cloud contracts. That

is mostly formal language written by lawyers [14] [15] [16] [17] [18] [19] [20] [13], which

neither respects the actual resource utilization of the provider nor leaves room for any approach

to the customer’s requirements. For solving these problems, cloud service providers need an

instrument that gives them the ability to adjust their advertisements instantaneously depending

on their current state and automatically in a machine-readable form. Thus, customized service

offers with corresponding service levels could be delivered to paying customers.

1.2. Contribution

This thesis presents an approach of an autonomous API-based Agreement-Mediator as a third

party in the cloud market that provides a way to source out affairs regarding the management

of SLAs into a neutral zone without taking the consumer’s or the provider’s side. Thus the

Agreement-Mediator adds an additional transitive relationship between customers and providers

without breaking or directly affecting any existing one, like visualized in figure 1.1. The

Agreement-Mediator’s main purposes are (a) advertising services with individual quality levels

and guarantees that a provider is willing and able to deliver; (b) giving consumers the opportu-

nity to discover and to easily compare offered SLAs of providers; (c) registering declarations of

mutual intentions for business relationships in the form of established SLAs; (d) offering ser-

vices to feed in monitoring data of participating parties of an agreement for automatic compli-

ance verification of SLA terms; and (e) notifying participating parties about agreement-related

events like creation, violation or termination. Thus, the overhead for managing SLAs between

consumers and providers is minimized for both and a higher trust is established by media-

tion of an external entity. However, all obligations associated with an agreement including the

collection of data for compliance assessment remain in the responsibilities of consumers and

providers.

4 1. Introduction

Agreement
Mediator

Cloud Service
Provider

Cloud Service
Consumer

Register services with
individual SLA strategies

Discover and compare
services based on SLAs

Get notified about SLA events

Feed in monitoring data

Establish SLAs and
instantiate the service

FIGURE 1.1.: Relationships and actions with the Agreement-Mediator

The Agreement-Mediator presented here has to respect already accepted and widely established

standards for SLA and cloud management protocols. Further requirements include the appli-

cability to broader service domains in order to use this approach also for every cloud-based

service from the IaaS up to the SaaS layer. Similarly to traditional SLAs, agreements should

describe the quality of a service, and what has to be monitored to verify agreement compliance.

In contrast to plain SLAs this Agreement-Mediator approach should follow a normative format.

This enables an automatic comparison of SLAs from different providers or the comparison of

an expected SLA to given provider offers [12]. Thus it is possible to have a self-acting system

to make decisions whether an SLA of a service is acceptable or not.

Additionally, the Agreement-Mediator presented in this thesis tackles the problems described

before in several ways: Firstly, the Agreement-Mediator as a third party has the potential of

representing multiple providers and consumers. If the Agreement-Mediator represents multiple

providers at the same time, it advertises SLAs of different providers in one central place in a

standardized and normative way and thus increases the consumer’s ability of comparing offers

of different providers. That enables consumers to make better decisions about which provider

1.2. Contribution 5

they want to work with. Thus the Agreement-Mediator also has the potential for increasing

the providers’ competition among each other about who offers the best relation between cost

and terms. Secondly, the SLA language and protocol used for the Agreement-Mediator allows

the expression of terms, guarantees and compensations in a way that automating the process of

(formally) verifying contractual compliance of both parties by using external monitoring data

becomes almost trivial. Lastly, the normative way in which agreement offers are expressed

in this approach allows for rapidly changing terms, advertisements, and pricing conditions for

cloud services offered by providers around the world.

Parts of this thesis have been released in the following publications:

• G. Katsaros - Contributors: T. Metsch, J. Kennedy, A. Stanik, W. Ziegler
Open Cloud Computing Interface - Service Level Agreements

Open Cloud Computing Interface (OCCI) Extension Specification (v1.2), Open Grid

Forum (OGF), document reference: GFD-P-R.184, 2015

• A. Stanik, M. Körner, O. Kao
SLA Aggregation for QoS-aware Federated Cloud Networking

IET Networks Journal, The Institution of Engineering and Technology, Online ISSN

2047-4962, vol. 4, iss. 5, pp. 264-269, 2015

• A. Stanik, O. Kao, R. Martins, A. Cruz, D. Tektonidis
MO-BIZZ: Fostering Mobile Business through Enhanced Cloud Solutions

In: Proceedings of the 2014 14th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGrid), IEEE Computer Society, pp. 915-922, 2014

• A. Stanik, F. Sander, O. Kao
Autonomous Agreement-Mediation based on WS-Agreement for improving Cloud SLAs

In: Proceedings of the 2014 6th IEEE International Conference on Cloud Computing

Technology and Science (CloudCom), IEEE Computer Society, pp. 583-590, 2014

• A. Stanik, M. Körner, L. Lymberopoulos
SLA-driven Federated Cloud Networking: Quality of Service for Cloud-based Software

Defined Networks

In: Proceedings of the 2014 9th International Conference on Future Networks and Com-

munications (FNC), Elsevier, vol. 34, pp. 655-660, 2014

• F. Feigenbutz, A. Stanik, A. Kliem
REST as an Alternative to WSRF: A Comparison Based on the WS-Agreement Standard

In: Proceedings of the 2014 15th International Conference on Web Information Systems

Engineering (WISE), Springer International Publishing, vol. 8787, pp. 294-303, 2014

6 1. Introduction

• A. Stanik, M. Cecowski, D. Tektonidis, F. Cleary, C. Bhatt, A. Balasas
MO-BIZZ: Ecosystem for Mobile Cloud Services

Web Publication at: 2014 7th IEEE/ACM International Conference on Utility and Cloud

Computing (UCC), IEEE Computer Society, 2014

• M. Körner, A. Stanik, O. Kao
Applying QoS in Software Defined Networks by Using WS-Agreement

In: Proceedings of the 2014 6th IEEE International Conference on Cloud Computing

Technology and Science (CloudCom), IEEE Computer Society, pp. 893-898, 2014

1.3. Outline of the Thesis

The remainder of this thesis is structured as follows:

Chapter 2: SLA Fundamentals and Definitions

Chapter 2 gives background information and presents SLA basics and approaches

for machine processable SLA languages and protocols. Furthermore, a detailed

explanation of WS-Agreement and WS-Agreement Negotiation is presented that

helps to understand the analysis and the design decisions of further chapters.

Chapter 3: Standards and Implementation Analysis

Chapter 3 analyses standards and specifications belonging to WS-Agreement and

WS-Agreement Negotiation. Moreover, both of these SLA standards and their ref-

erence implementations are analyzed. Additionally, improvements to WS-Agreement

and WS-Agreement Negotiation are presented which aim to apply these standards

to state-of-the-art technologies.

Chapter 4: Agreement Mediation Approaches

Chapter 4 presents Agreement-Mediator approaches and architectures which aim

to solve SLA issues and to improve service offerings of state-of-the-art cloud en-

vironments. In particular, the approaches presented in this chapter implement con-

cepts for neutral and autonomous Agreement-Mediators which mostly make use of

advanced specifications based on WS-Agreement. This chapter not only presents

a set of approach, but furthermore analyses their advantages and disadvantages

which influence the design and the concept for an all-encompassing Agreement-

Mediator presented in chapter 5.

1.3. Outline of the Thesis 7

Chapter 5: Intercloud SLA Management

Chapter 5 is the main chapter of this thesis and describes the architecture and

the most important concepts for the next generation of cloud computing environ-

ments: The IEEE Intercloud Project. Based on the latest achievements and the

current state of the standardization progress in this project, the all-encompassing

Agreement-Mediator approach is presented. This approach addresses issues re-

garding cloud service discovery and SLA-management in terms of: flexibility of

term and price conditions, transparency and verification of advertised service qual-

ity, and flexibility of SLA expressions. This Agreement-Mediator concept creates a

situation that potentially increases the competition among providers by introducing

a global marketplace where customers are able to compare service offers regarding

attractiveness, quality, and pricing conditions. Furthermore, this concept reduces

the overall overhead of SLA-management and increases trust in the business re-

lationship between customers and providers. Thus, the Agreement-Mediator im-

proves interoperability and efficiency of state-of-the-art cloud SLAs.

Chapter 6: Intercloud Prototyping

Chapter 6 presents the experimental developments of the Agreement-Mediator

concept and its evaluation. In particular, chapter 5 not only presents the concept,

but also defines a set of specifications for protocols which are implemented and

evaluated in terms of functionality and performance. The results that are presented

in this chapter illustrate significant improvements and the advantages coming along

with the overall outcome of this thesis.

Chapter 7: Conclusion and Future Work

Chapter 7 concludes the thesis with a summary and an outlook on future work.

8 1. Introduction

2. SLA Fundamentals and Definitions

Contents
2.1. Disambiguation . 9

2.2. Approaches for Service Level Agreements 11

2.3. WS-Agreement . 13

2.3.1. WS-Agreement Model . 13

2.3.2. WS-Agreement Protocol . 14

2.3.3. WS-Agreement Factory Service 15

2.3.4. WS-Agreement Agreement Service 16

2.3.5. WS-Agreement Language . 16

2.4. WS-Agreement Negotiation . 19

2.4.1. WS-Agreement Negotiation Model 20

2.4.2. WS-Agreement Negotiation Protocol 22

2.4.3. WS-Agreement Negotiation Language 23

The goal of this chapter is to explain fundamentals which are required for the overall under-

standing of this work. Section 2.1 not only describes fundamentals, but also introduces defini-

tions and formal descriptions. Section 2.2 presents approaches for Service Level Agreements,

compares these approaches, and discusses their advantages and disadvantages. Based on the

outcome of this discussion, the language and the protocol of WS-Agreement and its extension

WS-Agreement Negotiation are described in sections 2.3 and 2.4.

2.1. Disambiguation

A Service Level Agreement (SLA) is equivalent to a contract between an IT service provider

and a customer. It describes a common understanding about the IT service with its character-

istics and its quality, the necessary properties to use the service, and the responsibilities of all

involved parties. SLAs are supposed to express the Quality of Service (QoS) and its associated

guarantees, like the minimum of performance and the average performance to expect. Ideally,

the level of a service is a measurable and thus a comparable value.

10 2. SLA Fundamentals and Definitions

Such an agreement can be negotiated between parties. If both the customer and the provider

agree to the negotiated conditions, an SLA is created that serves as a formal contract. Here, the

most important declarations which are required to serve as a foundation that can also be used

in court are: Who is involved in this contract? Who is the provider? When was this agreement

created? How was the agreement accepted by the involved parties? These declarations are

specified in the context of an agreement.

Definition 2.1. The context of an agreement denoted as context consists of a provider and

a customer name, a unique signature delivered by and identifying both parties denoted as

signatureprovider and signaturecustomer, an agreement instantiation date, and a validity pe-

riod denoted as period.

context := {provider, signatureprovider, customer, signaturecustomer, date, period}
(2.1)

All other parts of an agreement such as the service description, the service references, the

quality of the service and the associated guarantees, penalties and compensations that are paid

in case of violations, or other business related clauses are expressed as Terms. Therefore, an

SLA is defined as follows:

Definition 2.2. A Service Level Agreement denoted as sla consists of a context and a n-tuple

of terms denoted as set Term.

sla := {context, (Term1, . . . , T ermn)} (2.2)

SLAs are often concerned among others with the following contents: Service Definition, Ser-

vice Performance, Problem Management, Customer Duties, Security, and so on. SLAs have

been initially used by telecom operators who incorporated the agreements for a specific service

level in the customer contracts. However, SLAs are used in various fields today. Except from

telecom and Internet Service Providers (ISP), SLAs are also used for example in E-Commerce

systems, hosting and housing of servers, cloud computing services and outsourcing in gen-

eral.

SLAs are specified in the Information Technology Infrastructure Library (ITIL) as part of a

larger concept called Service Level Management (SLM) [22]. This SLM is a process that con-

sists of five stages: Negotiation, Finalization, Monitoring, Report, Revision. In this process an

SLA is the foundation that is used during the whole service provisioning as depicted in figure

2.1. Service Level Requirements (SLR) are defined previously and are the starting point for

SLM. Here, SLR are designed by one party and are used as basis for the Negotiation stage. As

2.2. Approaches for Service Level Agreements 11

a result an SLA is defined in the Finalization stage whereby a service is instantiated after both

parties agreed on it. This service has to be observed in the Monitoring stage where measure-

ments are delivered and are used for the evaluation of an agreement. Here, the measurements

are required to show that the delivered service complies or does not comply with the SLA in

the Reporting stage. The process terminates after the Revision stage which is followed by a

Service Improvement Process (SIP).

SLA

SLR

SIP

Finalization

Monitoring

Negotiation

Report

Revision

FIGURE 2.1.: Service Level Management process

The ITIL separates SLAs into several structure levels: Customer-based SLA, Service-based

SLA and Multi-Level SLA. These SLA structure levels are defined as the following [22]:

Definition 2.3. A Customer-based SLA is specific to a customer and can include several ser-

vices with different service qualities.

Definition 2.4. A Service-based SLA is specific to a service with a specific service quality and

has to be accepted by the customer as it is advertised.

Definition 2.5. A Multi-Level SLA is specific to a set of services that depend on each other

and are used to specify agreements for various sets of users.

2.2. Approaches for Service Level Agreements

In the beginning of service-orientated computing SLRs and SLAs were only defined in plain

text. In general, the overall SLM process were performed by humans without any automation.

But service providers quickly realized that they need more complex approaches to express

12 2. SLA Fundamentals and Definitions

SLAs, in particular solutions and frameworks to offer, discover, negotiate, create, and monitor

dedicated service level agreements.

SLAng is used to define service level agreements for the provisioning of distributed applica-

tions [23] [24]. Such applications are a combination of components, where end-to-end QoS

constraints for each application are satisfied by certain QoS constraints. This approach is an

XML-based language and describes a service provisioning reference model, consisting of an

application tier, a middle tier and a resource tier. These tiers are build on each other. Start-

ing at the bottom, the resource tier comprises the underlying resources, for example storage

and network resources. The middle tier comprises middleware components like service con-

tainer or web service applications and the application tier comprises the provided application.

SLAng distinguishes between vertical and horizontal SLAs, where vertical SLAs describe con-

tracts between components of different tiers and horizontal SLAs describe contracts between

components of the same layer.

Web Service Level Agreement (WSLA) is an SLA management framework specification cre-

ated by IBM [25] [26]. This specification not only provides the required capabilities for creating

and monitoring SLAs, but is also applicable for any other inter-domain management scenario.

In particular, the WSLA specification defines a flexible and extensible language to enable ser-

vice customers and providers to define SLAs and to specify SLA parameters. The WSLA

specification has subsequently influenced the work on the WS-Agreement specification.

Web Service Offering Language (WSOL) is also an XML-based language definition that en-

ables to offer web-services at different service levels [27]. Such a service offer represents a

single class of services with a specific QoS. Furthermore, each service offer can also comprise

functional and non-functional constraints. The idea of this approach is that the same service

can be offered with different service levels. In particular, applications are able to search a de-

sired service in a registry and are able to find multiple service instances, where each service

instance is offered with a different service quality. Therefore, each service instance is offered

with an associated service level.

WS-Agreement [28] and WS-Agreement Negotiation [29] are standards of the Grid Resource

Allocation and Agreement Protocol Working Group (GRAAP-WG) of the Open Grid Forum

(OGF). While WS-Agreement is the foundation specification, the WS-Agreement Negotiation

specification is an extension of it. Both together define a protocol and a language to dynami-

cally negotiate, renegotiate, create and monitor bi-lateral service level agreements in distributed

systems. WS-Agreement and WS-Agreement Negotiation are the only specifications for SLAs

which are standardized and accepted by a broad community. Therefore, the following subsec-

tions describe both in detail.

2.3. WS-Agreement 13

2.3. WS-Agreement

WS-Agreement is a language and a web service protocol that allows for establishing agree-

ments between service provider and service consumer. It is designed according to the WS-*

Specification family. Similar to traditional SLAs WS-Agreement can be used to describe a ser-

vice with appropriated service qualities, guarantees, and business related definitions. Such an

agreement can also be used to monitor the compliance of the agreement, because service levels

are expressed in these agreements in a machine-readable form.

By using the Extensible Markup Language (XML) [30] for describing agreements and tem-

plates of agreements in WS-Agreement, this protocol enables to discover possible service of-

ferings of independent providers. The specification of WS-Agreement is published by the OGF

and relies on a set of established standards like XML, Simple Object Access Protocol (SOAP)

[31], Web Service Description Language (WSDL) [32], and Web Services Resource Framework

(WSRF) [33]. It consists of three main parts: Two schemas, one for specifying a WS-Agreement

and another for the specification of WS-Agreement templates, additionally it contains opera-

tions and port-types for the lifecycle management. Here, a lifecycle of such an agreement

includes creation, monitoring and termination. WS-Agreements in contrast to traditional SLAs

follow a normative format. This enables the automation of processes for establishing agree-

ments between provider and potential customer.

2.3.1. WS-Agreement Model

WS-Agreement allows service consumers to dynamically explore possible services with their

appropriated service levels. The specification distinguishes between the following two layers

which are also depicted in figure 2.2:

• The service layer focuses on the functionality provided by the service.

• The agreement layer focuses on the quality of the provided service.

In particular, an agreement has to be established on the agreement layer before the service

is provided on the service layer. The monitoring of a delivered service is performed on the

service layer. The information measured during the monitoring is than passed to the agreement

layer. Thus, this information can be used for evaluating the compliance of an agreement on the

agreement layer.

14 2. SLA Fundamentals and Definitions

Agreement Initiator Agreement Responder

Agreement

Factory

Agreement

Create()

Inspect()

Service Consumer Service Provider

Service

Factory

Service Instance
Foo()

Agreement

Layer

Service

Layer

FIGURE 2.2.: Layered service model of WS-Agreement

2.3.2. WS-Agreement Protocol

The protocol of the WS-Agreement specification defines the required services and operations

to create and monitor service level agreements. Therefore, two types of services are defined:

• The agreement factory services are used for creating agreements and instantiating the

associated services according to the agreed QoS.

• The agreement services are used for observing the compliance and the state of agree-

ments.

The specification defines a set of interfaces in the form of WSDL, thus enabling the interaction

with the two core services that are already depicted in figure 2.2. The services are designed

as web service resources according to the WSRF specification. These web service resources

can be addressed via an endpoint reference (EPR), which is specified in the WS-Addressing

specification [34].

2.3. WS-Agreement 15

2.3.3. WS-Agreement Factory Service

An agreement is a contract between a service provider and a customer. On the agreement layer,

if the customer initiates the creation of an agreement, the customer is called agreement initia-

tor and the service provider that creates an agreement instance is called agreement responder.

However, these roles with appropriate responsibilities of each party can vary depending on the

scenario.

The agreement factory service is located at the responder side and is used by the agreement

initiator for SLA establishment. In order to create an agreement the initiator defines its re-

quirements in an agreement offer. This offer comprises all necessary quality constrains for the

service to provide and also additional guarantees that are associated with the service. Since the

content of an agreement depends on the service to provide and can be very complex, a template

mechanism guides the initiator in creating agreement offers. Therefore, the responder publishes

a set of agreement templates that the initiators can use to create new offers. The template itself

is basically a prototype of an agreement offer and specifies the structure and the content of the

offer. In order to create a new agreement, the agreement factory service queries the available

templates to the agreement initiator, as depicted in figure 2.3.

Agreement Initiator Agreement Responder

GetTemplates()

Templates[]

CreateAgreement(Offer)

AgreementEPR / Fault

GetState()

State

Create

Terminate()

Agreement

Factory

Agreement

Choose Template

Create Offer

Supervise

FIGURE 2.3.: Agreement creation process and lifecycle

The customer creates an agreement offer based on an appropriate template that fits the require-

ments and sends it to the service provider. After the transmission of an offer, the customer is

bound to it. The WS-Agreement specification defines two methods for the agreement factory

service for creating agreements:

16 2. SLA Fundamentals and Definitions

• The synchronous createAgreement operation is specified by the AgreementFactory port

type and requires an immediate decision to accept or reject an incoming agreement of-

fer. In the case of acceptance, an endpoint reference is returned to the new agreement

instance.

• The asynchronous createPendingAgreement operation is specified by the PendingAgree-

mentFactory port type and doesn’t need a decision immediately. Although a new agree-

ment instance is created and an endpoint reference is returned, the agreement itself is in a

pending state. Once the responder has made a decision, the agreement instance changes

its state to either observed in case of acceptance or rejected. In both cases the initiator

can be optionally notified about the decision.

2.3.4. WS-Agreement Agreement Service

Once the responder has received an agreement offer, the agreement factory instantiates an

agreement instance in an appropriate state. Each agreement instance has a service interface

for accessing the content of an agreement, for monitoring the agreement at runtime and for

managing its lifecycle. The agreement service is designed as WSRF resource and the prop-

erties of an agreement service instance are WSRF resource properties. Two port types are

specified for an agreement service:

• The Agreement port type defines a set of agreement resource properties (agreement

context, terms, and id) and a method to terminate an agreement.

• The AgreementState port type defines a set of agreement resource properties (state of

the agreement, state of the distinct service terms, and state of the guarantee terms) in

order to observe the agreement compliance.

In order to couple the monitoring of a service with the evaluation of an SLA, the service term

states provide the mechanisms and the relevant information from the service monitoring (e.g.

average response time of a service). Additionally the service term states can include corre-

sponding service deployment information which can also be exposed by the service provider

on this machine-readable way.

2.3.5. WS-Agreement Language

In contrast to the WS-Agreement protocol that defines the services and methods, the WS-

Agreement language defines the data types and the structure of the agreement document, the

agreement template document, and the agreement offer document. This definition is separated

2.3. WS-Agreement 17

in two XML schemas, the agreement schema and the agreement state schema. While the agree-

ment schema defines the core data types, the agreement state schema defines the data types for

the agreement observation such as the agreement states, service term states, and guarantee term

states. An agreement consists of an agreement identifier, an agreement name, an agreement

context, and a term compositor with a detailed description of the service as depicted in the

figure 2.4.

Agreement

Terms Compositor

Context

Service Description Terms

Service References

Service Properties

Guarantee Terms

Name

FIGURE 2.4.: Structure of an agreement

Agreement Context

The agreement context contains information about the parties that are involved. These are the

agreement initiator and the agreement responder. This information can be expressed either

in a domain specific description of each party or as an endpoint reference or a distinguished

name that identifies the party. Furthermore, each role of the participants has to be specified in

the agreement context. In fact, who is the service provider and who is the service consumer.

Additionally, the agreement context may also contain an expiration time, a reference to the

template that was used to create the agreement, and further domain specific data.

Agreement Terms

The agreement terms describe the service to be provided and its associated guarantees. There-

fore terms are split into two groups: Service Terms and Guarantee Terms. While service terms

18 2. SLA Fundamentals and Definitions

describe the different aspects of a service, guarantee terms specify the guarantees that are asso-

ciated with the services with optional compensation methods which came into effect in case of

guarantee fulfillment or violation. Besides an identifier, service terms also have a service name

that can be used to semantically group multiple service terms. In particular, a single service

can be described by multiple service terms where each service term describes a specific aspect

of the service to provide. Service terms are subdivided in Service Description Terms, Service

References, and Service Properties as depicted in figure 2.4.

Service Description Terms

Service Description Terms are functional and domain specific descriptions of a service to pro-

vide. Therefore, the service description can be any valid XML document that describes a

service completely or partially. Because of the domain independency of WS-Agreement, the

content of a service description term could only be understood by the involved participants

(agreement initiator and agreement responder).

Service References

Service References can be used to refer to existing services with certain service quality con-

strains within an agreement. This service reference can be expressed like a service description

term as an arbitrary XML document.

Service Properties

Service Properties are used to define variables in the context of an agreement, which are later

used to evaluate the guarantees of this agreement. In order to define a variable a name, a metric,

and a location is necessary. The location refers to a distinct element by using an XML query

language like XPath.

Guarantee Terms

Guarantee Terms are used to express service guarantees and consist of four elements: a Service

Scope, a Qualifying Condition, a Service Level Objective, and a Business Value List. Since a

single agreement can comprise a set of different services, the Service Scope specifies the service

that is covered by the guarantee. Because not all guarantees apply during the whole lifetime

of an agreement, the Qualifying Condition specifies preconditions that must be fulfilled before

a guarantee can be evaluated. The Service Level Objective defines an objective that must be

met in order to provide a service with a particular service level. This Service Level Objective

2.4. WS-Agreement Negotiation 19

basically defines how the agreed service levels are related to the actual QoS properties. The

Business Value List defines the penalties and rewards that are associated with a guarantee.

Term Composition

The Term Composition of the WS-Agreement language is a simple grammar to structure terms

in an agreement. This structure is called term tree and represents terms in a tree-like data

structure, where each node is a term. Additionally, the term tree implements the composite

pattern that enables the representation of part-whole hierarchies. The WS-Agreement language

defines three types of term compositors: the All compositor, the OneOrMore compositor, and

the ExactlyOne compositor. These term compositors are equivalent to the logical AND, OR,

and XOR functions.

2.4. WS-Agreement Negotiation

The WS-Agreement protocol enables to compare agreement offers, to create agreements, and

to evaluate agreements automatically [35]. Thus, it is possible to have a self acting system to

make a decision whether an SLA offer is acceptable or not. However, the system is only able

to either agree to all parts of an SLA offer or to refuse it, according the “take-it-or-leave-it”

concept. The negotiation of SLAs is still up to the end user.

In order to change this situation, GRAAP-WG of the OGF published the WS-Agreement Ne-

gotiation specification which is an extension of the WS-Agreement specification. For the nega-

tion of SLAs, the service provider offers its services with advertised service levels via WS-

Agreement templates. A template contains the general description of the service, the guarantees

that can be given, and some options for the customer to choose from.

With WS-Agreement Negotiation the consumer is now able to declare all desired requirements

is a negotiation template before it is send to the provider. The provider checks the requirements

and whether he is able to fulfil or to accept them. If so, he can send back a counter offer with

corresponding price information. If the requirements cannot be fulfilled, the provider can also

send a counter offer with likewise service levels which he is able to fulfil (e.g. less computing

nodes for a longer time frame instead of more computing nodes in a shorter time frame). This

may take several rounds until both parties have come to a final agreement. The same process is

used if an SLA has to be re-negotiated [35].

20 2. SLA Fundamentals and Definitions

2.4.1. WS-Agreement Negotiation Model

The WS-Agreement Negotiation model consists of two parts: the negotiation offer/counter

offer model and the layered architecture model. While the negotiation offer/counter offer model

describes the negotiation process to create a new agreement, the layered architecture model

describes the WS-Agreement Negotiation layer on top of the WS-Agreement layer and the

service layer.

The WS-Agreement Negotiation offer/counter offer model describes the dynamic exchange of

information between the negotiation initiator and the responder. In order to create an agreement

both sides can negotiate an acceptable agreement in multiple rounds. The negotiation process

starts with an initial offer that is based on a negotiation template. This initial offer is send to

the other party, which in turn creates a counter offer for the negotiation offer received. Each

counter offer is always based on a negotiation offer that was previously received and has an

associated state that reflects the acceptability of the party.

Negotiate (t=1)

Offer (OID-1)
CounterOfferTo=T1

Creator=Initiator

State=Advisory

Offer (OID-2)
CounterOfferTo=OID-1

Creator=Responder

State=Advisory

Offer (OID-3)
CounterOfferTo=OID-1

Creator=Responder

State=Advisory

Negotiate (t=2)

Offer (OID-4)
CounterOfferTo=T1

Creator=Initiator

State=Advisory

Offer (OID-5)
CounterOfferTo=OID-4

Creator=Responder

State=Rejected

Negotiate (t=3)

Offer (OID-6)
CounterOfferTo=T1

Creator=Initiator

State=Advisory

Offer (OID-7)
CounterOfferTo=OID-6

Creator=Responder

State=Advisory

Negotiate (t=4)

Offer (OID-8)
CounterOfferTo=OID-7

Creator=Initiator

State=Solicited

Offer (OID-9)
CounterOfferTo=OID-8

Creator=Responder

State=Acceptable

Negotiable

Template (T1)

FIGURE 2.5.: Example negotiation tree of multiple negotiation rounds

2.4. WS-Agreement Negotiation 21

In a multiple round negotiation, each exchanged negotiation offer can be represented in a rooted

tree with a negotiable template as root node. Each child of the root node is an initial offer and

each negotiation offer in this negotiation tree is a counter offer to its parent node. Leaf nodes are

negotiation offers that either are in the acceptable state and can be used to create an agreement

or are in the terminal rejected state.

In the example negotiation tree depicted in figure 2.5, the negotiation initiator creates an initial

negotiation offer with an offer id 1 (OID-1) that is based on a negotiable template from the

responder. This offer is then send to the negotiation responder, where the responder examines

the incoming offer (OID-1) and creates two counter offers with OID-2 and OID-3. If the

negotiation initiator processes returned any counter offer because it decides that both counter

offers do not fulfil its requirements, than the initiator starts a new negotiation branch by creating

a new initial negotiation offer (OID-4) based on template T1. If this offer is in turn unacceptable

for the responder, a counter offer (OID-5) is created in the rejected state. Finally, the negotiation

initiator creates a third negotiation branch, where after several rounds the negotiation responder

returns a counter offer (OID-9) that fulfils the requirements of both sides and is in the acceptable

state. Based on this offer the negotiation initiator creates the new agreement.

The WS-Agreement Negotiation architecture model extends the WS-Agreement model with

an additional negotiation layer. The three layers are depicted in figure 2.6 and have a clear

separation to decouple them from each other:

• The negotiation layer provides a protocol and a language to negotiate agreement offers

and counter offers based on negotiated templates. This offers and counter offers don’t

imply a promise of the agreement responder. In fact, they are rather an instrument that is

used to find an acceptable agreement to subsequently create an agreement.

• The agreement layer is part of the WS-Agreement specification and was already de-

scribed in detail in the sections before. If an acceptable agreement has been negotiated

in multiple rounds, an agreement can be created based on the negotiated offers by calling

either the createAgreement or the createPendingAgreement operation on the agreement

responder’s Agreement Factory port type. Furthermore, the functionality for agreement

evaluations, agreement observations, and all other agreement management tasks in gen-

eral are still provided on this agreement layer.

• The service layer provides the actual service (e.g. a web service, resource provisioning

service, etc.) and is governed by the agreement layer.

22 2. SLA Fundamentals and Definitions

Agreement Initiator Agreement Responder

Agreement

Factory

Agreement

Create()

Inspect()

Negotiation Initiator Negotiation Responder

Negotiation

Factory

Negotiation

Create()

Negotiate()

Service Consumer Service Provider

Service

Factory

Service Instance
Foo()

Negotiation

Layer

Agreement

Layer

Service

Layer

FIGURE 2.6.: Layered service model of WS-Agreement Negotiation

2.4.2. WS-Agreement Negotiation Protocol

The WS-Agreement Negotiation protocol is used to dynamically exchange information in order

to reach a common understanding of a valid agreement offer. The service that is required to

establish a negotiation between two parties is enabled by a negotiation service instance. This

instance is limited in its lifetime or by the maximum negotiation rounds. These limitations

are defined in the negotiation context. Furthermore, the negotiation context defines besides the

expiration time also the roles of the negotiation participators and their obligations.

Moreover, also the nature of the negotiation process is defined in negotiation context. This

specific reference of the negotiation instance can be either a negotiation of a new agreement or

2.4. WS-Agreement Negotiation 23

a renegotiation of an existing agreement. In case of a renegotiation of an existing agreement,

the negotiation type must include an endpoint reference to the responder’s agreement that is the

subject of this renegotiation. Additionally, the element in the negotiation type can also contain

domain specific data that can be used to control the negotiation process in a domain-specific

way.

In general, the WS-Agreement Negotiation specification is an extension of the WS-Agreement

specification and thus extends all core agreement types. This makes it very easy to convert a

negotiation offer into an agreement. In order to create an agreement based on an agreement

offer, the agreement factory on the agreement layer is used. The negotiation layer on top and

the negotiation process itself do not bear any obligations for any negotiating party.

2.4.3. WS-Agreement Negotiation Language

As described before, a negotiation process is initiated by an initial offer based on a negotiation

template. In order to negotiate the service level, the initiator and the responder exchange offer

and counter offer while each counter offer based on a previous offer. The structure of such

an offer is very similar to the structure of an agreement of the WS-Agreement specification.

Additionally to the agreement elements, a negotiation offer contains also a Negotiation Offer

Id, a Negotiation Offer Context, and some Negotiation Constraints. It extends the agreement

schema of the WS-Agreement specification and therefore inherits the agreement name, agree-

ment context, and the agreement terms. The basic structure of a negotiation offer is depicted in

figure 2.7.

Negotiation Offer ID

The Negotiation Offer ID is the identifier of a specific offer and is unique for both parties. In

turn, the name is an optional element that is the name of the agreement and can also be later

set during the agreement creation as described in the WS-Agreement specification. While the

Negotiation Offer ID and the name are additional elements in reference to the basic structure

of an agreement, the term element is inherited from the WS-Agreement core data types. In

the context of a negotiation process, the terms are the content of the negotiation process and

specify both, the structure and the values of the agreement terms.

Negotiation Constraints

The Negotiation Constraints are used to express the requirements of a negotiation participant

and thus to control the negotiation process. Therefore, the constraints define restrictions for

24 2. SLA Fundamentals and Definitions

Negotiation Offer

Terms Compositor

Negotiation Offer Context

Service Description Terms

Service References

Service Properties

Guarantee Terms

Name

Negotiation Offer Id

Negotiation Constraints

FIGURE 2.7.: Structure of a negotiation offer

structure and values of negotiation counter offers. These Negotiation Constraints are not con-

stant and can change during the negotiation process. In particular, if the negotiation initiator

chooses one specific service term from a set of predefined terms, the responder can adopt them

to his preferences by changing the negotiation constraints in a counter offer.

Negotiation Offer Context

The Negotiation Offer Context represents metadata associated with a specific negotiation offer,

e.g. the id of the originating negotiation offer, its expiration time, and its state. Additionally, it

may contain domain specific elements in order to provide negotiation extensions, for example

to realize offers of a binding negotiation or additional compensation methods.

3. Standards and Implementation Analysis

Contents
3.1. WS-Agreement Dependency Analysis 26

3.2. WS-Agreement Applicability Analysis 27

3.2.1. Participant roles . 27

3.2.2. Protocol Variants . 28

3.2.3. Service Terms . 30

3.3. WSAG4J Framework Analysis . 30

3.4. REST as an alternative to WSRF . 32

3.4.1. History and Motivation . 34

3.4.2. Features . 35

3.4.3. Interoperability . 35

3.4.4. Network Load and Performance 36

3.4.5. Related Work . 36

3.5. Performance Evaluation . 37

3.5.1. Test Scenarios . 38

3.5.2. Test Infrastructure . 39

3.5.3. Impact of Security Technology . 40

3.5.4. Measurement Results . 41

3.5.5. Conclusion . 43

3.6. Further REST-based Cloud Standards 45

3.6.1. Cloud Application Management for Platforms 45

3.6.2. Cloud Infrastructure Management Interface 46

3.6.3. Open Cloud Computing Interface 47

The goal of this chapter is to analyse the WS-Agreement and the WS-Agreement Negotia-

tion standards, their dependencies on other standards, and their applicability to an external

Agreement-Mediator as third party. Furthermore, this chapter focuses not only on these stan-

dards, but also on their implementation. Therefore, this chapter is structured as follows: In

section 3.1 the dependency on other standards is analysed and drawbacks are presented. Sec-

tion 3.2 analyzes the fundamentals and the applicability of these standards to an autonomous

Agreement-Mediator that allows for outsourcing SLA management tasks into a neutral zone.

26 3. Standards and Implementation Analysis

The reference implementation WSAG4J is presented in section 3.3 and its applicability to an

external Agreement-Mediator approach is discussed. In section 3.4 an alternative to WSRF is

discussed and a theoretical comparison of both approaches focusing on motivation, features as

well as interoperability and network load is presented. Section 3.5 describes a practical ap-

proach for this comparison, where performance benchmarks have been performed and show

the differences in terms of scalability, availability, and efficiency. Finally, section 3.6 presents

further REST-based standards which are already applied in today’s cloud middlewares.

3.1. WS-Agreement Dependency Analysis

The WS-Agreement specification describes the essential functionality for advertising, estab-

lishing, and monitoring SLAs for distributed and service-oriented environments. This specifi-

cation is based on WSRF and thus also the WS-Agreement Negotiation specification have to be

based on this fundamental standard. WSRF is a set of specifications which define operations

for web services in order to become stateful. Although the WSRF specifies stateful operations

among other things, WS-Agreement makes only use of the GetResourceProperty operation for

reading data. The reason for this is obviously the conceptual separation of resources on the one

hand and their properties on the other. Different operations are defined for both entities. While

resource properties have a wide range of operations such as read, add, replace, delete, or search;

a resource itself can only be deleted [36]. The creation of resource services is not standardized.

Therefore, WS-Agreement defines proprietary operations such as CreateAgreement or Create-

PendingAgreement which produce a new resource as a result. Why WS-Agreement also defines

a specific Terminate operation for the deletion of Agreements (resource services) and do not

make use of the WSRF operation Destroy is highly questionable. Furthermore, the standard-

ized WSRF Destroy operation is explicitly mentioned in the WS-Agreement specification as an

alternative variant for this functionality [28]. Since the Terminate operation of WS-Agreement

can have additional parameters, one reason could be the transmission of a justification for can-

celing an agreement. Another reason for this decision may be the lack of extension points in the

WSRF specification, because the specified Destroy operation by WSRF, like any other WSRF

operation, permits no extension of arguments or additional content.

For the design of WS-Agreement only a standardized way can be used to implement the re-

quired operations. In particular, only other standards can be used to specify another standard

that has to build on already accepted standards. Since conformity and interoperability are the

foundation for wider accepted standards, the use of WSRF in this approach is in general to

be regarded as meaningful. However, the use of WSRF for this purpose is simply oversized,

because WS-Agreement only makes use of a single operation from five specifications of the

heavy WSRF specification family. By the current state of scientific knowledge and technology

maturity the use of WSRF can be considered as impractical, because the only noteworthy Java

3.2. WS-Agreement Applicability Analysis 27

implementations of WSRF are Apache Muse and the Globus Toolkit. Besides the low distri-

bution, the development and support for Apache Muse have been stopped in 2013 [37] and for

WSRF in Globus Toolkit already in 2010 [38].

3.2. WS-Agreement Applicability Analysis

The overall goal of this thesis is the design of an autonomous web service based Agreement-

Mediator as a third party in the cloud market that provides a way to source out affairs re-

garding the management of SLAs into a neutral zone without taking the customer’s or the

provider’s side. Thus, the Agreement-Mediator adds an additional transitive relationship be-

tween a provider and a customer without breaking or directly affecting any existing ones. Here,

the applicability of the two existing standardized SLA protocols (WS-Agreement [28] and WS-

Agreement Negotiation [29]) is analysed. Furthermore, this analysis also proposes changes to

these specifications in order to reach the requirements for the applicability to an autonomous

Agreement-Mediator.

3.2.1. Participant roles

WS-Agreement Negotiation defines a layered architectural model as depicted in figure 2.6 con-

sisting of three layers: the negotiation layer, the agreement layer, and the service layer. These

layers are clearly separated and specify two roles per layer: the negotiation layer is composed

of the negotiation initiator (NI) and the negotiation responder (NR), the agreement layer is

composed of the agreement initiator (AI) and the agreement responder (AR), and the service

layer is composed of the service consumer (SC) and the service provider (SP). The roles of

these parties (who is the provider and who is the consumer) are not specified and have to be

declared during the interaction of these parties. In particular, this separation in roles allows that

both SC and SP could be the AI or the AR as well as the NI or the NR.

The WS-Agreement standard specifies that the AgreementFactory and the PendingAgreement-

Factory port types are always provided by the AR. This means that the Agreement-Mediator is

in any case the AR. In the AgreementContext of an agreement template, two optional elements

can be used to identify the AI and the AR. These elements may be an Uniform Resource Iden-

tifier (URI) [39], an EPR [34], or may identify the parties by a more abstract type of naming

[28]. Additionally, a required element called /wsag:Context/wsag:ServiceProvider identifies

the service provider and can either take the value AgreementInitiator or AgreementRespon-

der. This point in the specification is an obstacle for the applicability of WS-Agreement to a

third party (Agreement-Mediator), because neither the AI nor the AR is the SP in this case.

Therefore, a proposal to solve this limitation could be to keep this required element as part

of the specification, but to change the type of this element to xs:anyType as also specified for

28 3. Standards and Implementation Analysis

/wsag:Context/wsag:AgreementInitiator and /wsag:Context/wsag:AgreementResponder. Thus,

a simple comparison of the /wsag:Context/wsag:ServiceProvider element to the /wsag:Context/

wsag:AgreementInitiator and the /wsag:Context/wsag:AgreementResponder would deliver the

same result. Furthermore, one of the AI or the AR elements would get dispensable in the tradi-

tional applicability of WS-Agreement, because if the /wsag:Context/wsag:AgreementResponder

element is not used, the /wsag:Context/wsag:ServiceProvider is obviously the AR.

On the negotiation layer the WS-Agreement Negotiation standard specifies a similar con-

text type called NegotiationContext. Similar to the WS-Agreement specification, the WS-

Agreement Negotiation also specifies two optional elements, which identify the NI and the NR,

where the NR implements the NegotiationFactory port type. Here, a required element called

/wsag-neg:NegotiationContext/wsag-neg:AgreementResponder identifies the party in the nego-

tiation process that acts on behalf of the agreement responder and can either take the value

NegotiationInitiator or NegotiationResponder [29]. In terms of the Agreement-Mediator ap-

proach, the Agreement-Mediator is the NR, because it is the party that provides the Agree-

mentFactory and the PendingAgreementFactory, which have to be also referred to in the ne-

gotiation context within the AgreementFactoryEPR element. A negotiation offer extends the

wsag:AgreementType and therefore inherits the AgreementName, AgreementContext, and the

agreement terms. Thus, the proposed change of the type to xs:anyType of the /wsag:Context/

wsag:ServiceProvider element would also influence the negotiation layer and does not require

additional changes to the WS-Agreement Negotiation standard.

3.2.2. Protocol Variants

The overall process for establishing agreements can be divided into four steps (1 - 4): The AR

advertises services through templates in which terms are proposed. The AR is able to accept

these terms along with a set of creation constraints that mark formal boundaries for adjusting

terms (step 1). The AI retrieves the advertised templates from the AR, chooses the one that fits

the AI’s requirements best and derives from the template an agreement offer (step 2). The AI

then adjusts the terms of the agreement offer to its needs (according to the creation constraints

of the template) and sends the offer back to the AR (step 3). The AR then checks its ability of

fulfilling the AI’s requirements and responses its decision in form of a newly created agreement

in case of acceptance or a fault message otherwise (step 4). This scenario is illustrated in figure

2.3, where the states of the agreement, the services, and the guarantees are available for retrieval

along with an endpoint reference to terminate the agreement.

The described scenario is only one of six protocol variants which are depicted in figure 3.1

and is called synchronous asymmetric (variant 1), because the AR decides to accept or reject

the agreement offer immediately after retrieving it and also immediately notifies the AI about

his decision within his answer to the AI’s request. In the asynchronous protocol variant this

3.2. WS-Agreement Applicability Analysis 29

Decision

synchronous

Announcement Access

asymmetric

symmetric

asymmetric

asymmetric

symmetric

symmetric

asynchronous

polling

call-back

(1)

(2)

(3)

(4)

(5)

(6)

FIGURE 3.1.: WS-Agreement protocol variants

decision can be deferred, resulting in an agreement that resists in a “pending” state, which

may change to a state representing acceptance or rejection over time. WS-Agreement specifies

two procedures for the AI to get informed about the AR’s decision: polling and call-back.

Polling describes the behavior of the AI to constantly check the agreement states for changes.

In order to follow the call-back variant an AI has to send an EPR to an implementation of the

acceptance port type additionally to his agreement offer in step 3. This port type includes two

methods representing acceptance and rejection and is called respectively by the AR when his

decision is made. Furthermore, these three described types are all asymmetric because only the

AR holds an instance of the actual agreement. If the AI does the same to represent his own view

of the states, both behave in a symmetric way. That results in six variants in total: synchronous

asymmetric (variant 1), synchronous symmetric (variant 2), asynchronous polling asymmetric

(variant 3), asynchronous polling symmetric (variant 4), asynchronous call-back asymmetric

(variant 5), and asynchronous call-back symmetric (variant 6).

Because of the complexity of the WS-Agreement protocol the only suitable protocol variants

for a third party Agreement-Mediator are synchronous asymmetric, asynchronous call-back

asymmetric, and asynchronous polling asymmetric, because only the asymmetric variants do

not require the AI to implement any kind of server functionality that replicates agreement in-

stances on the service consumer side. So, a consumer initiates agreements by calling either the

createAgreement or createPendingAgreement endpoint of a service provider’s factory. Which

of the two endpoints should be exposed and what circumstances lead to acceptance or rejection

of an agreement-offer is entirely defined by the provider.

30 3. Standards and Implementation Analysis

3.2.3. Service Terms

The terms are the main subjects of an agreement. They are a set of service descriptions, refer-

ences to service descriptions, properties of services that may be used to describe the quality of

a service, and guarantees coupled with Service Level Objectives (SLO), which are bounded to

fees and compensations. All these terms may be composed and combined to valid selectable

service entities. In case of a provider offer only certain combinations of services and terms are

possible. For instance, a guarantee may be expressed via the GuaranteeTerm element that ref-

erences to a ServiceDescriptionTerm and contains (among others) a ServiceLevelObjective and

a BusinessValueList element. The ServiceLevelObjective elements advertise the QoS a provider

is willing to commit for a service. These are formulated by any kind of expression, which may

be evaluated true or false. These expressions utilize variables that are defined by the Service-

Properties element. The BusinessValueList element contains any number of compensations in

form of penalties or rewards which can contain a unit in which the compensation is measured

like a currency and its corresponding amount. This normative format allows not only program-

matic inspection and comparison of terms but also programmatic compliance verification.

Other data structures like Templates, AgreementOffer or types used for negotiation inherit from

this agreement type or include one. Only the semantics of the terms differ in distinct types:

In a Template the terms represent an AR’s advertisement or a recommendation for an AI; in

an AgreementOffer the terms represent the demand of an AI; and in an agreement the terms

represent what AR and AI have agreed upon.

Considering that both standards are aiming to be universal standards in a multifarious environ-

ment like distributed service oriented architectures, many parts of the specification are defined

as “domain-specific” and are explicitly left open. One of these parts is, for instance, the dec-

laration of a term language to describe services. Another one is the connection between the

agreement layer, which is described by this section, and the service layer, in which the actual

usage of the service takes place. Because of that, a situation might occur where the actual

instantiation of a service is triggered as a result of an established agreement. Doing so, the

agreements managed by WS-Agreement would become more than SLAs and could be consid-

ered as instruments for managing services in general.

3.3. WSAG4J Framework Analysis

The WS-Agreement for Java (WSAG4J) framework [40] is the most complete and advanced

solution according an evaluation by the GRAAP-WG from 2010 on existing WS-Agreement

and WS-Agreement Negotiation implementations [41]. WSAG4J is written in Java, provides

features for validating offers against creation constraints defined by templates, has a built-in

3.3. WSAG4J Framework Analysis 31

persistence layer for agreements and allows template creation with pure XML without requir-

ing to write Java code. WSAG4J also made several concretizations that were necessary for a

ready to use implementation like the usage of the Java Expression Language (JEXL) as ex-

pression language. Its ability is a very important feature to automatically verify the guarantee

terms of an agreement: WSAG4J evaluates expressions, i.e. a qualifying condition inside the

ServiceLevelObjective element, and consequently triggers events for compensations, that take

place in a customizable accounting system.

WSAG4J also supports multiple agreement factories per host. A WSAG4J factory consists

of an arbitrary number of WSAG4J actions that in turn consist of three strategies providing

control logic for delivering a template, negotiating an offer and creating an agreement based

on an offer. These strategies define domain-specific behavior, i.e. the actual dependency of

the advertised templates on resource availability or how the decision regarding the acceptance

of an agreement offer is made. Since WSAG4J actions are not defined by the standards they

appear transparent to an agreement initiator. In particular, requests for templates, negotiation

or the creation of agreement are received and answered by a WSAG4J factory which delegates

them to their associated actions.

However, WSAG4J actions are statically plugged into a WSAG4J server instance and cannot

be modified at runtime. In order to enable the service provider to modify its service adver-

tisements in an external Agreement-Mediator, several ways are identified and are discussed in

the following text. Fundamentally, all approaches must reach the requirement defined for an

Agreement-Mediator as third party: the effort for SLA management has to be reduced and to

keep the resulting efforts of all participants as low as possible.

The first and most trivial way to provide a customizable advertisement by the Agreement-

Mediator on behalf of a service provider is implied by the way advertisements are represented

in WS-Agreement. By requesting an agreement factory’s GetTemplate endpoint an agreement

initiator basically gets a set of XML documents in return. Providing a way to modify these

XML documents (i.e. some sort of upload) would give the providers comprehensive control

about their advertisements. Despite its simplicity, this approach has two downsides: Firstly,

if a service provider has to upload his templates, this consequently implies that this provider

has in-depth knowledge about the WS-Agreement standard and is responsible for building the

templates by himself. Therefore, this approach violates the main goal of this use case. A con-

ceivable workaround for this problem may consist of a graphical front-end that allows service

providers to design their templates in a more comfortable way than writing XML while manu-

ally complying all specifications by WS-Agreement and all concretizations by the Agreement-

Mediator. Nevertheless, the applicability of this approach is restricted to cases where the only

variable of a provider’s offering-affairs is the exposed advertisement while other parts i.e. the

decision making about the acceptance of a consumer’s offer, remain static and not secret. That

is unlikely to be the case for most of the real-world providers. For example, in this model it

32 3. Standards and Implementation Analysis

is not possible to implement even the most basic constraints of consumers, i.e. only offers by

customers having a valid account at the target provider should be considered potentially accept-

able. Therefore, a more generic approach is needed, in which a provider can define strategies

for template delivery, offer negotiation and offer acceptance.

The main idea of the second approach is to let a provider freely define WSAG4J actions along

with its three strategies for template delivery, offer negotiation and offer acceptance. Obviously

this approach causes major efforts on the provider’s side, but that seems to be an unavoidable

sacrifice for the sake of flexibility. Since WSAG4J action strategies are defined by three Java

classes, a provider needs the ability to provide the underlying logic. Doing so by uploading

Java classes is an unpractical solution for two reasons: Firstly, the Agreement Mediator could

get injected by foreign code causing security issues like possible information leakage. Sec-

ondly, a provider reveals its likely secret strategies. Strategy disclosure can only be prevented

if all decision-making processes remain at the provider’s side, hence a provider must outsource

strategies in a web service. That does not inject foreign code into the mediator and does not

reveal a provider’s strategies, but providing web services for WSAG4J strategies is near equally

elaborate as implementing a WSAG4J instance itself and thus renders to give no benefit regard-

ing the main goal of this proposal whatsoever.

Thinking about possible contents of strategies might lead to a satisfying solution. WSAG4J

strategies have well defined results: Either a template is delivered or not, a counter-offer is sent

or not, or an offer is accepted or rejected. This behavior can be pre-implemented because it

never changes. Which result in particular is rendered depends on certain conditions. So the

third approach proposes that the provider only has to define templates and express conditions

that lead to the described results. This could be comfortably configured from a pre-defined

set of variables in the Mediator’s back-end. For those cases where conditions shall remain

secret or the pre-defined set of possibilities is not sufficient to express a condition, a simple

web service endpoint can be provided by the service provider for evaluation. This seems to

be the best tradeoff between producing the lowest possible effort on the provider’s site, while

keeping most possible flexibility and preventing unavoidable strategy disclosure.

3.4. REST as an alternative to WSRF

Software architects and developers have the fundamental choice between two major approaches

when creating web services: WS-* based or RESTful web services [42]. Both acronyms de-

scribe popular approaches for distributed services: the WS-* family describes a large stack

of specifications based on the Simple Object Access Protocol (SOAP) [31] while Representa-

tional State Transfer (REST) is more an ”architectural style” [43] than a standard that strongly

relies on the Hypertext Transfer Protocol (HTTP) as the application-level protocol [44]. WS-

Agreement, WS-Agreement Negotiation, and the WSRF protocol family belong to the notable

3.4. REST as an alternative to WSRF 33

number of well defined WS-* specifications [45]. Many of these specifications specify in-

terfaces which are usually defined in WSDL documents [32]. The operations defined in a

WSDL document have expected inputs and outputs which also have to be defined by a schema

document according to the XML standard [30]. With the upcoming of Web Application De-

scription Language (WADL) [46] [47] as equivalent to WSDL, such a specification chain can

also be applied to REST. Therefore, this section investigates the possibility for porting the

WS-Agreement and the WS-Agreement Negotiation specification to a RESTful web service

description. The main reason for this purpose is the elimination of the WSRF dependency.

The conceptual development of a RESTful web service description with static interfaces that

converts the specified WS-Agreement functionality has been already proposed in two scien-

tific papers [48] [49]. The authors of [48] described a rough architecture for RESTful web

services extracted from WS-Agreement. They proposed a resource hierarchy, a set of represen-

tation approaches, and some possible HTTP methods with their semantics. Here, the authors

limited their work to the synchronous asymmetric protocol variant of WS-Agreement. The

authors of [49] presented a similar concept for converting WS-Agreement to a RESTful web

service description. Here, also collections had been used for transposing the functionalities

of the AgreementFactory. In contrast to [48], the authors of [49] additionally presented an

AgreementDraft collection which enables the implementation of negotiation processes. This

concept can be considered as an alternative approach for negotiating SLA terms as specified

in WS-Agreement Negotiation. Worth mentioning is also, that in [49] the approach is an im-

plementation of the asynchronous protocol variant which extends the uniform HTTP Interface

with an X-Allow-Deferral header. This header can be used in a POST request to the Agreement

collection resource for expressing the desired protocol variant and is thus establishing a certain

functional parameter. In the same way, also an Acceptance resource (which is called Subscrip-

tion in [49]) can be defined by the link header in order to get notified about decisions in the

asynchronous call-back variant. Thus, the same decision as in WS-Agreement has been made

in [49]: to model functionally rather than at the level of representable information.

Neither in [48] nor in [49] a reference to an implementation of these concepts is announced. In

contrast, in WSAG4J a RESTful web service stack module exists that makes use of the same

WS-Agreement core functionalities as used by the SOAP web service module [50]. This REST-

ful implementation is not documented or conceptionally described, presented or published in

scientific papers [40]. A characteristic feature of this implementation is the attempt to con-

vert the functional model of WS-Agreement to the uniform methods of HTTP. In particular, no

representations of resources are modeled and for data transmission the same input and output

messages are being re-used as in the SOAP web service module, which are also originally de-

fined by WS-Agreement in its WSDL documents. URIs and HTTP methods are designed so

that a combination of URI and method can be assigned to each WSDL message. The follow-

ing subsection opposes WSRF to REST in terms of history, features as well as interoperabil-

ity and network load. These comparisons are making use of the existing implementation of

34 3. Standards and Implementation Analysis

WSAG4J.

3.4.1. History and Motivation

SOAP and REST were both invented to establish specifications for machine communication

and to avoid creation of proprietary solutions for Business-to-Business (B2B) integration. While

SOAP supports a set of different transport protocols [31] the RESTful approach mostly relies

on HTTP and aims to unfold its full power by applying best practices from the World Wide

Web. This includes e.g. usage of HTTP methods and headers to profit from widely deployed

caching mechanisms between communication partners.

Figure 3.2 compares the technology stacks of WSAG4J’s implementations based on WSRF

and REST. These technological footprints underline the claim of the SOAP based WSRF im-

plementation to support a wide range of transport protocols for complex B2B applications by

including protocols such as HTTP(S), SMTP, FTP or JMS. On the other hand it becomes ob-

vious that the RESTful variant of WSAG4J implements its version of WS-Agreement based

on a smaller technology and protocol stack by using XML and HTTP(S) only. Both WSAG4J

implementations provide service descriptions for their clients: The WSRF variant provides a

WSDL document while the RESTful variant supplies a WADL document.

HTTP SMTP
Transport
Protocol

Media
Type

XML

SOAP

Messaging
(WS-
Addr.)

Security
(WS-Sec.)

Metadata
(WSDL)

Resource
(WSRF)

WSAG4J via WSRF

WS-* / REST
Specifications

...

Agreement
Specification

WSAG WSAN

HTTPS HTTP

XML

WSAG4J via REST

WSAG WSAN

HTTPS

WADL

FIGURE 3.2.: Technology stack of WSAG4J via WSRF and via REST

While both variants can be used with HTTP(S), SOAP based WSRF also supports other trans-

port protocols. As most SOAP services are available via HTTP(S), REST profits from a more

3.4. REST as an alternative to WSRF 35

specific implementation exhausting more features of the protocol.

3.4.2. Features

Having grown largely within the last 10+ years the family of WS-* standards offers a very wide

set of features that ranges from reliable messaging over transaction management to machine-

readable service description up to sophisticated security features. While some of these features

are already built into HTTP, others have not yet been standardized for RESTful services al-

though they may be of use.

In terms of service description there are comparable specifications in both worlds: The Web

Application Description Language (WADL) was ported from the WS-* to the RESTful world

based on the concept of the well known Web Services Description Language (WSDL). WADL

basically enables machine-readable specification of web services via XML. It was developed by

SUN Microsystems Inc. and submitted to the W3C in 2009 but has not been standardized [51].

Until today no generic service description format was standardized or has been widely accepted

for RESTful services, because it is difficult to find a single format that matches all kinds of

services. Instead application specific protocols such as OpenSearch [52] or AtomPubProtocol

[53] may be employed depending on the service topic. In other cases linking RESTful resources

via media types such as the Hypertext Application Language (HAL) [54] may be sufficient to

announce a RESTful service’s capabilities.

Consequently, WSRF profits from many good WS-* specifications that may exceed existing

HTTP features for the RESTful world. Examples in the area of security and service description

reveal that REST’s concept as an ”architectural style” hinders the specification of standards that

will apply to every possible application or use case.

3.4.3. Interoperability

RESTful services rely on HTTP as the transport protocol and may be used by any client with

access to an HTTP library. The concepts of uniform interface and self-descriptive messages

(also known as HATEOAS: Hypermedia as the engine of application state) [44] [43] enable

a wide range of different clients such as web browsers, mobile apps and business partners to

consume the exact same service using different media types. On the other side SOAP services

are not consumable by web browsers because they offer a specialized service to dedicated

clients. Any website accompanying a SOAP service would therefore require the creation of a

separate interface to serve web browsing users.

These differences reveal perspectives that are also reflected in the way clients are usually im-

plemented. In the WS-* world most services as well as clients are generated by a heavy weight

36 3. Standards and Implementation Analysis

tool chain hiding underlying complexity. In this way WS-* authors don’t need to care about the

underlying transfer protocol and start their development process with a set of generated code

stubs. The world of RESTful services takes another approach: Typically developers rely less

on code generation and try to keep their services available to many kinds of different clients.

While the WS-* approach is quite convenient for developers it comes with two major draw-

backs: First the requirement of a tool chain restricts the amount of development environments

as such tooling may not exist or be incompatible for less common programming languages.

Second the abstraction from underlying transport protocols allows developers to start coding

immediately at the cost of long debugging sessions when problems arise later on (e.g. due to

restrictive firewalls or incompatible schema validators).

3.4.4. Network Load and Performance

Communication is a crucial aspect to performance in distributed systems. Depending on the

underlying network protocol and infrastructure, features such as caching or compression may

speed up network communication. Because RESTful services are strictly tied to HTTP they

can be designed to benefit from HTTP caching either through intermediate middleboxes or on

the client side. Caching features available for WS-* depend on the chosen communication

technology. Most SOAP tools use POST over HTTP with arbitrary data which renders stan-

dard HTTP caching impossible. Although there are approaches to enhance caching for SOAP

communication these approaches mostly ignore caching mechanisms of the specific transport

protocol but implement caching at higher levels.

Furthermore, performance needs to be weighed up against security requirements for the usage

scenario. As an example, using secure communication such as HTTPS makes any caches use-

less as the actual packet payload is no more visible to intermediate routers, caches or proxies. In

the context of the performance comparison presented in section 3.5 the effective response time

of both approaches is measured. To gain a better understanding of communication between

server and clients within the distributed system, the network load for both cases WSAG4J’s

SOAP with WSRF and REST module is logged.

3.4.5. Related Work

The comparison of WS-* respectively SOAP and RESTful web services has already been per-

formed by several scientists [42] [44] [55] [56] [57] and many more. However, the comparison

of stateful approaches with the intention to include WADL in a WS-* standard is still an open

issue. Thus, the following papers either compared both in different contexts or migrated appli-

cations between WS-* and RESTful approaches.

3.5. Performance Evaluation 37

Pautasso et al. [44] compared both WS-* and RESTful web services from a conceptual and

technological perspective and developed advice on when to use which approach. They pre-

sented a general and comprehensive summary to support architectural decisions. In contrast,

the focus of this comparison is on a specific standard that requires stateful web services. Fur-

thermore, in the next section also a performance comparison of both approaches is presented.

Upadhyaya et al. [56] provided a semi-automatic approach to migrate existing SOAP based

services into RESTful services and compared performance measurements of both solutions

showing slightly better performance of REST based services. Compared to their work, this

comparison focuses on one single WS-* standard and compares already existing services rather

than generating them which allows a more detailed inspection of both solutions.

Mulligan and Gračanin [57] developed a middleware component for data transmission offering

both a SOAP and a REST interface. They evaluated their implementations with regard to

performance and scalability requirements. Other than their work, this section compares both

approaches using very specific WS-* standards: WSRF and WS-Agreement.

Kübert et al. [48] and Blumel et al. [49] are the only ones who analyzed the WSRF based

WS-Agreement specification and designed a RESTful service with a feature set close to the

standard. Their work proved that porting a WS-Agreement service to REST is possible in

theory, but their scope ended with the proof of feasibility. This comparison and the perfor-

mance comparison in the next section uses an actual implementation of WS-Agreement and

gain insights about performance gaps between both solutions. Based on their work as well

as the existing RESTful implementation of WSAG4J this section adds an evaluation of both

approaches which has not been shown before.

3.5. Performance Evaluation

This section evaluates the SOAP and the REST based implementation in terms of the perfor-

mance. This comparison is based on the existing REST implementation of WSAG4J [50] [40].

Any WS-Agreement service provided by an autonomous Agreement-Mediator acts as a neutral

component between a service provider and a service consumer for establishing SLAs. As such

it needs to be available to both at any time, which implies hard requirements for availability and

scalability of such a service. Therefore, the expected performance benchmarks indicate whether

the WSRF or the REST based implementation allows to handle more concurrent clients with

given hardware. WSAG4J is designed modularly and consists amongst others of an Engine

Module that implements functionalities for processing agreement offers, creating agreements,

feed in monitoring date, and evaluating agreement guarantees, and two Web Service Modules

(one for WSRF and one for REST) that are the implementation of the web service stack with

the sole function to delegate the calls to the Engine Module. This makes it an ideal candidate

38 3. Standards and Implementation Analysis

for black box testing using the provided client and server distributions of both the WSRF and

the REST variant to compare equivalent operations.

In order to compare both the RESTful and the WSRF variants, it is important to select a real life

usage scenario with significant complexity. A typical use case for WS-Agreement (Negotiation)

is automated SLA negotiation which is already used by research projects in the area of fully

automated SLA processing [50] [58]. Web services handling SLAs as defined as an overall

goal for the Agreement-Mediator approach which acts as neutral notary. These web services

must always be reachable to both agreement parties guaranteeing verification of established

agreements. For this reason, performance, scalability and availability are hard requirements for

any production system. In order to measure the performance of both SOAP and REST based

communication in a black box approach, the WSAG4J framework in version 2.0 was used.

Results of these performance measurements indicate which of both variants allows sufficient

service quality at appropriate operation costs.

3.5.1. Test Scenarios

Based on the use case of automated SLA delivery, three sample tests that reflect the WS-

Agreement usage in the field of cloud computing were selected. Basically every WS-Agreement

(Negotiation) service has to provide at least one Agreement Factory containing one or more

Agreement Templates that describe the provided services and serves as a sample for incoming

Agreement Offers the customer is willing to accept. For the given scenarios both WSRF and

REST services were configured with one Agreement Factory holding three templates.

GetFactories

The first scenario is a very basic step in which an Agreement Initiator requests all Agreement

Factories served by the Agreement Responder. This use case is usually the first step an initiator

has to go through to discover services of an unknown responder.

GetTemplates

The next scenario reflects the follow-up step in service discovery: The initiator needs to gain

knowledge about available Agreement Templates for any factory of interest.

3.5. Performance Evaluation 39

Negotiation Scenario

The third scenario runs a complex negotiation process between the initiator and the responder.

In this case the responder implements the agreement on behalf of the service provider while

the initiator acts on behalf of the service consumer. The offered service computes resources

for certain time frames using negotiable templates. Within the scenario the initiator sends a

first Negotiation Counter Offer to which the responder replies with another counter offer for

less resources at the same time or an equal amount of resources at a later time. The initiator

evaluates given options and sends a third counter offer which is finally accepted leading to a

Negotiated Offer used by the initiator to create the offer.

3.5.2. Test Infrastructure

The load tests use two commodity servers providing four virtual machines as shown in figure

3.3. Each server was equipped with two Intel Xeon E5430 2.66 GHz CPUs (four cores per

CPU) and 32 GB RAM. The nodes were connected via regular Gigabit Ethernet links and

ran Linux (kernel version 3.2.0-57). Both nodes ran KVM virtual machines with two cores.

Inside the virtual machines Ubuntu Linux 12.04 (kernel version 3.2.0-57) and Java 1.6.0.26

(OpenJDK) was used. Tests were coordinated by using the Java based load testing framework

The Grinder in version 3.11 [59].

Physical Host 2

VM2

Physical Host 1

test

coordination

VM1

Apache Tomcat performance test grinder-agent

Test Coordinator

grinder-console

VM3

VM4

wsag4j-rest-webapp

wsag4j-wsrf-webapp

grinder-agent

grinder-agent

FIGURE 3.3.: Physical architecture of test environment

40 3. Standards and Implementation Analysis

Host 1 provides VM1 which ran Apache Tomcat 7.0.50 and serves the WSAG4J web apps with

a maximum of 2 GB heap space. For WSRF based tests the WSRF service is deployed while the

REST based tests ran with the REST web app. In order to allow dedicated usage of the available

heap space only one of both apps is deployed simultaneously. Host 2 provides VM2, VM3,

and VM4 which execute the test runner component of the Grinder framework named grinder-

agent. The three agents are coordinated by another host running the Grinder’s grinder-console

component which handle code distribution, test synchronization and collection of measurement

results. The distributed code contains specific test code for each test scenario as well as the

WSAG4J client for WSRF or REST. This infrastructure allows short network paths avoiding

biased results due to network issues while still being close enough to real life scenarios in which

clients will always be located on other machines than the WSAG service.

3.5.3. Impact of Security Technology

In the context of SLA negotiation security features like non-repudiation form the technological

foundation for general feasibility and acceptance. Since the load tests should handle real life

scenarios the setup has been adjusted in order to ensure a comparable level of trust for both

approaches: WSRF and REST.

WSAG4J’s WSRF based solution utilized WS-Security standards such as BinarySecurityToken

and XML signature [60] [61] by default while the RESTful distribution shipped without ad-

equate replacement. Therefore, the decision has been made to run all tests with HTTPS and

to replace WSRF’s security tokens with TLS Client Certificates which verify the identity of

request senders. Because message payload was neither encrypted within the WSRF nor in the

REST variant by default, TLS is enabled for both variants considering the sensitive nature of

SLAs to protect communication from any kind of eavesdropping.

Table 3.1 shows a comparison of relevant security features. Using TLS and client certificates

provides a similar set of security features for RESTful end-to-end-security. Nevertheless this

setup could not ensure message integrity if any intermediate host would be able to tamper with

the message’s content. Given that intercepting a TLS connection would require substantial

effort this discrepancy is assessed as negligible for test results.

TABLE 3.1.: Comparison of security implementations

Feature WSRF REST

Authentication BinarySecurityToken Client Certificates

(X.509 certificate) (X.509 certificate)

Signature XML Signature —

Encryption TLS (HTTPS) TLS (HTTPS)

3.5. Performance Evaluation 41

3.5.4. Measurement Results

The load tests measured 200 test runs for each test scenario with both WSRF and REST code

bases. Each test scenario was executed with a different number of concurrent clients to evaluate

the scalability of both solutions. All tests started with a single client and increased up to 8

concurrent clients. All JVMs of the Grinder agents as well as Apache Tomcat are restarted

after each run to minimize effects of JVM internal optimizations. The test runners (grinder

agents) are coordinated by a single machine as described in section 3.5.2.

Figures 3.4, 3.5 and 3.6 show response times of all test scenarios. It is important to note that

the scale of each diagram’s response time axis is adapted to fit the measured values. The results

of the load tests reveal that the RESTful code base provides better performance than WSRF

in most cases. More specifically, there are only two results which show better response times

of WSRF: GetFactories with 1 and 2 concurrent users. Starting with 4 concurrent users the

RESTful stack performs better.

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

)!!"

*!!"

+!!"

#!!!"

#" $" &" *"

!
"##
"$
%&
'(

)$
*

&'(&+,,%(-.+$%,$*

,-./"

.0-1"

FIGURE 3.4.: Response times for GetFactories

For GetTemplates and the Negotiation Scenario results reveal lower response time of the REST-

ful approach in all cases. It is important to point out that while running the Negotiation Scenario

an increasing number of test failures appeared with rising numbers of concurrent users. Using

the WSRF stack the first failures appeared with 4 concurrent users and concerned already 80%

of all tests while the RESTful stack showed 59% of failures under the same load. This is

also the reason why figure 3.6 only reveals times up to 4 concurrent users. With more than 4

concurrent users the number of failures increased rapidly leading to unreliable measurement

results.

42 3. Standards and Implementation Analysis

!"

#!!"

$!!"

%!!"

&!!"

'!!!"

'#!!"

'$!!"

'" #" $" &"

!
"##
"$
%&
'(

)$
*

&'(&+,,%(-.+$%,$*

()*+"

*,)-"

FIGURE 3.5.: Response times for GetTemplates

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!"

(!!!"

)!!!"

#" $" &"

!
"##
"$
%&
'(

)$
*

&'(&+,,%(-.+$%,$*

*+,-"

,.+/"

FIGURE 3.6.: Response times for NegotiationScenario

The last figure 3.7 compares response times of all test scenarios proving increased complexity

of the last scenario in terms of computation time.

Due to the modularity of WSAG4J, the implementation of functionalities for processing agree-

ment offers, creating agreements, monitoring the service quality, and evaluating agreement

guarantees is comprised in the SLA Engine Module which is used by both web service stacks:

the WSRF as well as the REST. Therefore, the black box approach is adequately, because

no separation between performance of internal components like the Engine Module and the

3.5. Performance Evaluation 43

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!"

(!!!"

)!!!"

*+,-./,012+3" *+,4+567.,+3" 8+90:.:0;"</+;.120"

!
"##
"$
%&
'(

)$
*

+%$+,$&%(-."'*

=<>-"

>?<4"

FIGURE 3.7.: Response times of all test scenarios with 4 concurrent users

front-end Web Service Modules is applied. The focus of this comparison is on the performance

comparison of WSRF to REST where the overhead for parsing the WS-Agreement language,

for persistence of agreements or for business logic is equal in both cases. Besides measuring

response times, also the amount of network traffic for each solution required during the tests as

announced in section 3.4.4 is evaluated. HTTP request and response in the case of GetFacto-

ries are compared in table 3.2. It shows the request headers as well as the response bodies of

both stacks used to communicate about all available factories offered by the service provider.

From the last line it becomes apparent that in this sample case REST required nearly one-tenth

of WSRF’s network traffic by using the very basic media type text/uri-list instead of a more

complex and verbose XML structure. Both numbers of 3637 and 378 bytes were aggregated

over the relevant payload. In order to compare only payloads required for the specific use case,

security data such as WS-Security headers or client certificates are neglected.

3.5.5. Conclusion

In terms of performance it becomes apparent with an increasing number of concurrent clients

that the RESTful stack of WSAG4J scales better than the WSRF based solution. In the given

test infrastructure the GetFactories scenario with 24 concurrent REST clients without running

into failures while WSRF reported 50% failures with a number of 8 concurrent clients. These

results are likely to be influenced by the amount of required network traffic which is signifi-

cantly larger in the case of WSRF and therefore puts a higher load on the latter’s serialization

engine.

44 3. Standards and Implementation Analysis

TABLE 3.2.: Comparison of HTTP traffic

WSRF REST

POST GET

/services/ /services/factories

AgreementFactoryServiceGroup

content-type: application/soap+xml content-type: application/xml

accept: text/uri-list

user-agent: Axis2 user-agent: Apache CXF 2.6.0

cache-control: no-cache

pragma: no-cache

<?xml version=’1.0’ ...?> https://...

<soapenv:Envelope xmlns:...> /wsag4j-rest-webapp/services

<soapenv:Header xmlns:...> /factories/SAMPLE-INSTANCE-1

<wsse:Security>

...

</wsse:Security >

...

</soapenv:Envelope >

3637 Bytes 378 Bytes

It must be emphasized that web services providing WS-Agreement and WS-Agreement Nego-

tiation act as neutral notaries which must by definition always be reachable to both agreement

parties enabling 24/7 verification of SLAs. Such availability can be achieved by typical mea-

sures such as redundancy and instant provisioning and must scale with an increasing number

of clients. As proved by measurements the RESTful implementation of the WSAG4J frame-

work scales better than the WSRF based solution and can therefore reduce operation costs and

complexity when using WSAG4J for SLA negotiation and monitoring. The second reason for

opting for the REST-based solution is its enhanced interoperability compared with the WSRF

variant. When providing a public Agreement-Mediator service it is advisable to support as

many different clients as possible. Because REST’s technological footprint is lighter than the

one of WSRF, it is open to more development environments possibly attracting a larger number

of users. Therefore, the next section presents further REST-based standards that are consid-

erable for an Agreement-Mediator approach or may be a fastening element to WS-Agreement

and WS-Agreement Negotiation.

3.6. Further REST-based Cloud Standards 45

3.6. Further REST-based Cloud Standards

Many companies started working on their own proprietary specifications for virtual machine

configurations, their associated file formats, the application packaging and its deployment

through proprietary interfaces [8]. This lack of interoperability has been solved by standards

like the Open Virtualization Format (OVF) [9], the Topology and Orchestration Specifica-

tion for Cloud Applications (TOSCA) [11], the Cloud Application Management for Platforms

(CAMP) [62], the Cloud Infrastructure Management Interface (CIMI) [63], and the Open Cloud

Computing Interface (OCCI) [10].

The OVF [9] is a specification that describes an open format for the packaging and the dis-

tribution of software to be executed in virtual machines. This specification was standardized

by the Distributed Management Task Force (DMTF) and enables the packaging of distributed

applications in a secure, vendor and platform independent, efficient, and extensible format.

Applications that are delivered in such a format can be easily migrated from a local cloud to a

public cloud or from one public cloud to another independent of the cloud middleware that is

used by the provider.

TOSCA [11] is a specification that aims to leverage portability of application layer services by

providing a formal description of Service Templates, including their structure, properties, and

behavior. TOSCA is standardized by the Organization for the Advancement of Structured In-

formation Standards (OASIS) and specifies an XML-based language that is used to orchestrate

software components and their relationship as well as their behavior.

These two open standards mentioned above are of high importance, because they build the

foundation for further standards and are widely supported by several cloud middleware imple-

mentations. However, these standards describe the application or virtual machine configuration

and packaging format. They don’t specify any kind of operations which can be used to deploy

or in general enable the access to a cloud middleware. This kind of interface specifications are

specified in the other already mentioned standards, which are described and analysed in the

following subsections.

3.6.1. Cloud Application Management for Platforms

The CAMP [62] standard is a RESTful API specification for PaaS cloud middlewares. It

describes operations for managing the deployment, running, administration, monitoring and

patching of applications in the cloud. CAMP is standardized by the OASIS and specifies ar-

tifacts, formats and APIs which enable interoperability among self-service interfaces of PaaS

clouds. Use cases that are supported by CAMP are [62]: building and packaging an applica-

tion in an application development environment, importing a deployment package or uploading

46 3. Standards and Implementation Analysis

application artifacts into the cloud, as well as run, stop, suspend, snapshot, and patch an appli-

cation.

The CAMP standard is open and defines also support for multiple endpoints, versions, and

extensions that can be used for extending a cloud middleware with additional functionalities.

The basic specification has absolutely no support for any SLA functionalities. Furthermore,

CAMP is designed only for the PaaS layer and is strictly bounded to HTTP. For this reason, the

CAMP standard is not applicable for any Agreement-Mediator approach in general.

3.6.2. Cloud Infrastructure Management Interface

The CIMI [63] is a specification that describes a model and a protocol for management in-

teractions between cloud service consumers and cloud service provider. Originally, the Open

Cloud Standards Incubator initiative developed cloud management use cases, architectures and

interactions which were transitioned to the Cloud Management Working Group (CMWG) that

specified the CIMI.

CIMI specifies a RESTful protocol based on HTTP that enables access to an implementation

of an IaaS cloud middleware. CIMI may also be adopted to higher cloud layers such as PaaS or

SaaS, but is out of scope of this specification. The basic resources for which CIMI is modeled

are virtual machines, storage, and network. The media types that are supported by CIMI are

either application/json or application/xml.

The model of CIMI focuses on a single administrated cloud environment where the customer

has already established a business relationship to the provider. In particular, financial terms

like accounting, billing, or payment are out of the scope of this specification. Furthermore, the

model assumes that the customer has already signed up and has to support provider specific au-

thentication and authorisations implementations which are also out of scope of this standard.

The CIMI model has been inspired by the Entity-Relationship model, because it makes use of a

tabular representation where each entity is modeled as cloud resource and has its relationships

to other entities by using a referential mechanism. The references of this referential mechanism

are unique identifiers which are URIs for HTTP. The model should be self-describing in order

to support extensibility in two different ways. While the first extensibility mechanism defined

by the CIMI model is for consumers, the second is for providers [63]:

Consumers can add additional data to their resources when creating or updating a resource.

For this purpose the specification defines an attribute called property for each resource.

This attribute can store a set of name/value pairs which are stored and returned by the

provider.

3.6. Further REST-based Cloud Standards 47

Providers can define extensions by making use of the ResourceMetadata resource for this

purpose. It allows for advertising additional attributes, operations, and capabilities.

Moreover, constraints can be defined that might need to be understood by customers.

This model enables the discovery of any new extension attributes or operations.

The extension model of CIMI is a well designed approach and makes this specification consid-

erable for the application to an Agreement-Mediator approach. However, the CIMI is designed

for HTTP although the specification explecitly mentioned that “. . . the underlying model is not

specific to HTTP, and it is possible to map it to other protocols as well” [63].

3.6.3. Open Cloud Computing Interface

The OCCI [10] is a set of specifications standardized be the Open Cloud Computing Interface

working group (OCCI-WG) within the Open Grid Forum (OGF). It is a RESTful protocol and

API for management tasks that was originally designed for IaaS services, but in its current

maturity also supports PaaS capabilities. This open standard aims to provide a cloud middle-

ware independent interface to access cloud management functionalities (e.g. instantiation and

configuration of virtual machines, setting up associated networks, etc.).

In contrast to the CAMP or the CIMI standard, the OCCI is a specification family that follows

a layered approach where the Core specification builds the foundation and all others are built

thereon. The current version 1.1 consists of three documents which are described in detail and

analysed in the following sub-sections.

OCCI - Core

This specification is the foundation for all other OCCI specifications and defines the OCCI

core model [64]. This model specifies a representation of instance types which can be accessed

and manipulated through operations defined by higher-level specifications. The main goal of

this model is its extensibility. In particular, customers are able to explore and to discover all

functionalities and extensions at run-time. The extension mechanism that is used here, is based

on the Mixin concept [65].

The core model can be divided into three categories: classification and identification types, base

types, and extensibility types. Three base types are defined in the core model and are depicted

in figure 3.8. Here, an Entity is an abstract type from which Resource type and Link type inherit

from. The resources are modeled according the REST-style as sub-types of the Resource type

which could be a virtual machine, a network or any other entity. The Link type is used to

associate Resource instances to other Resource instances. In order to identify resources and

their classification, each sub-type of Entity has a unique Kind instance.

48 3. Standards and Implementation Analysis

Entity

-id:URI

-title:String

-kind:Kind

-mixins:Set<Mixin>

Resource

-summary:String

Link

M-target:URI
*1 source links

FIGURE 3.8.: OCCI base types of the core model

The fundamental type of the classification and identification system is the Kind type. This

Kind type inherits from the Category type which is also the abstract base type of the Mixin

type and the Action type as depicted in figure 3.9. A Kind instance is an unique identifier

that allows for dynamic discovery of available types. In fact, the Kind type is used to expose

the functionalities that are supported by a particular implementation. Each Kind instance can

expose a set of Actions that can be invoked on a Resource instance that applies to this particular

Kind instance. In order to expose additional capabilities as extensions at run-time, the core

model specifies the Mixin type. An instance of this type can expose higher-level functionalities

which are optional and domain-specific.

Category

-schema:URI

-term:String

-title:String

-attributes:Set<Attribute>

Kind

-entities:Set<Entity>

Action Mixin

M-entities:Set<Entity>

* *

** *0..1 0..1 0..1

parent dependenciesapplies

*

actions actions

FIGURE 3.9.: OCCI classification types of the core model

3.6. Further REST-based Cloud Standards 49

Additionally to the core model types described before, the OCCI core specification also de-

fines Attributes, Templates, and Collections. While Attributes specify parameters and their

properties, Templates are used as mechanisms to provide default values for entity instances. A

Collection is a set of Entity instances associated with the same Kind or Mixin instance. Such

a Collection can be used by clients to navigate through resources. Here, a client can retrieve a

whole Collection, a specific item in a Collection, or a subset of a Collection.

OCCI - HTTP Rendering

The RESTful HTTP rendering specification describes a RESTful API that enables the interac-

tion with the core model [66]. It specifies the general behavior for all interactions and three

content types for the representation of resources: text/plain, text/occi, and text/uri-list. It is

based on HTTP and makes use of its standard operations: Create (POST), Retrieve (GET), Up-

date (POST/PUT), and Delete (DELETE). Besides the specification of behavior and access to

Resource instances, Kind collections, Mixin collections, and also a query interface is specified.

This query interface can be used to determine the capabilities on a specific OCCI implementa-

tion. Additionally, a filtering mechanism is described in order to retrieve selected information

of interest.

OCCI - Infrastructure

The Infrastructure specification is an extension designed for interactions with an IaaS cloud

middleware [67]. It describes three sub-types of the Resource type, which are Compute, Net-

work, and Storage, and two sub-types of the Link type: NetworkInterface and StorageLink. The

following listing 3.1 illustrates an example for creating a compute resource instance.✞ ⊵
> POST /compute/ HTTP/1.1

> [...]

> Content-Type: text/occi

> Category: compute;

scheme="http://schemas.ogf.org/occi/infrastructure#";

class="kind";

>

< HTTP/1.1 200 OK

< [...]

< Content-Type: text/plain

< Location: http://cloud.cit.tu-berlin.de/users/as/compute/vm1

< Server: cit-occi OCCI/1.1

<

< OK✝ ✆
LISTING 3.1: Example request/response for OCCI

50 3. Standards and Implementation Analysis

4. Agreement Mediation Approaches

Contents
4.1. Registry Approach . 53

4.1.1. Service Visibility and Discovery 54

4.1.2. Complexity and Automation . 55

4.2. Broker Approach . 56

4.2.1. Advertising SLA Temples . 56

4.2.2. Discovering and Comparing service offer 58

4.2.3. Feeding in monitoring data . 59

4.2.4. Getting notified about SLA events 59

4.3. ESB Approach . 59

4.3.1. Architecture . 60

4.3.2. SLA Engine . 62

4.3.3. On-Boarding Process . 64

4.3.4. SLA Inheritance . 66

4.4. Federation Approach . 67

4.4.1. Architecture . 68

4.4.2. SLA Aggregation . 70

4.4.3. Expected Aggregation Count . 73

4.5. Related Approaches . 74

4.6. Conclusion . 77

The overall goal of this thesis is the development of an autonomous web service based Agree-

ment-Mediator as a third party that sources out SLA management tasks into a neutral zone

without taking the consumer’s or the provider’s side. Thus, the Agreement-Mediator adds an

additional transitive relationship between service providers and service consumers. Moreover,

the introduction of an Agreement-Mediator as depicted in figure 4.1 facilitates service discovery

mechanisms and allows for comparing services based on their advertised QoS. Furthermore,

customers are able to negotiate individual SLAs before they come into effect. In particular, the

Agreement-Mediator’s main purposes are:

• advertising services with individual quality levels and guarantees that a provider is will-

ing and able to deliver;

52 4. Agreement Mediation Approaches

• giving consumers the opportunity to discover and to easily compare offered services of

different providers;

• registering declarations of mutual intentions for business relationships in form of poten-

tial SLA offers;

• offering services to feed in monitoring data for participating parties of an agreement for

automatic compliance verification of SLA terms;

• notifying participating parties about agreement-related events like creation, violation or

termination;

• reducing the overhead for managing SLAs between consumers and providers; and

• establishing higher trust by transferring mediation affiliation into an external and neutral

entity.

Agreement-Mediator

Service Consumer

Service Repository Agreement Engine Monitoring Engine

Agreement

Evaluation
Service Offer

Event

Notification

Service Provider

Service

Monitoring

Agreement

Persistence

Negotiation

Cloud Middleware In-house Infrastructure

Client

Register

Service with

individual SLA

strategies

Access Service

Feed in

Monitoring

data

Notify about

SLA Events

Compare and

Negotiate SLAs

Service Instance

Service Provisioning System Demand Management System

Discover

services

FIGURE 4.1.: Schematical architecture for an Agreement-Mediator

4.1. Registry Approach 53

The requirement for such an Agreement-Mediator is that this approach has to make use of al-

ready accepted and widely established standards for SLA and cloud management protocols.

Further requirements include the applicability to broader service domains in order to use this

approach also for every cloud-based service form the IaaS up to the SaaS layer. Similarly

to traditional SLAs, agreements should describe the quality of a service, and what has to be

monitored to verify agreement compliance. The Agreement-Mediator should represent multi-

ple providers at the same time, i.e. the Agreement-Mediator advertises SLA offers of different

providers at one central place in a standardized and normative way. This increases the cus-

tomer’s ability to compare these offers of different providers and to negotiate specific terms

and conditions with them in order to find the best fitting service. Thus, consumers are able to

make better decisions about which provider they want to work with and the providers’ compe-

tition among each other regarding offers with the best relation between cost and terms is po-

tentially increased. Furthermore, a normative approach for the expression of agreement offers

allows for rapidly changing terms, advertisements, and pricing conditions for cloud services

offered by provider around the world. Thus, cloud service provider could benefit from this ap-

proach, especially in case of cyclically idle times. In particular, providers are able to increase

the utilization of their data centers by advertising their prices depending on their capacity. For

instance, a virtual machine can be sold for a lower price at night and for a higher price at day.

The following sections of this chapter present different approaches of Agreement-Mediators

which are evaluated in order to find the best solution for the overall goal of this thesis. While

section 4.1, 4.2, 4.3, and 4.4 present the approaches in detail and assess them, section 4.5

presents further related work and approaches. Finally, section 4.6 concludes this chapter and

gives an outlook on the last major chapter of this thesis.

4.1. Registry Approach

Service-orientated architecture (SOA) is a software architecture concept that enables the de-

velopment of loosely coupled, standards-based, distributed, and protocol-independent services

[68]. These services can be provided by autonomous organizations and would build a cross-

organizational service landscape in this way. Each service can be combined with other services

and together construct a higher functionality of a large software application. This paradigm

not only facilitates distributed service-orientated computing environments but also reduces de-

velopment costs because it allows higher flexibility of business processes by reusing existing

services.

In order to discover services in a SOA, a kind of service repository has to provide the function-

ality to retrieve information about the services that are published in a registry. Such information

is the location of a service, additional contact and support items, or financial information (e.g.

license fees). In order to distinguish between registry and repository the following definitions

54 4. Agreement Mediation Approaches

are applied for this thesis: A repository represents the business view and a registry the technical

view of a service. Thus, a repository contains more information and data than a registry. In

particular, while a registry is used primarily to manage the services used at runtime, a repos-

itory also contains additional information for considering a service before use (e.g. pricing

information, auditing, logging, etc.).

A service registry enables service consumers to find a desired service. One existing standard

that specifies the data model and the interfaces for accessing an implementation of a service

registry is the Universal Description, Discovery and Integration (UDDI) [69] standard. This

specification defines a SOAP-based API for retrieving fundamental information such as the

description of a service, a service interface definition, and a description of how to access the

service. When a service consumer has found an adequate service in the registry, the web service

is accessed directly according to the description retrieved from the registry.

As depicted in figure 2.6, WS-Agreement introduces an additional agreement layer that enables

the management of agreements for specific services. In order to discover services with specific

service levels, an agreement management component has to look up available services in a

public registry [70] [50]. If a service with desired quality characteristics was found, the con-

sumer’s agreement management component contacts the agreement management counterpart

on the service provider’s side. This scenario is illustrated in figure 4.2. Here, both components

are able to negotiate the conditions of the service provisioning on the agreement layer. If both

sides agree to the negotiated conditions an SLA is created that serves as formal contract. Af-

terwards, the service provider creates a service instance at the service layer that can be used by

the consumer with the agreed quality.

4.1.1. Service Visibility and Discovery

UDDI registries can have two possible visibilities: private and public. Private registries are

located in an infrastructure of a single organization and are not accessible from the Internet.

Public registries are a collection of peer directories which are available for external customers.

Today, only a few public UDDI registries are still available, because they were mostly small

from the very beginning and have not been widely used by customers. The reason for this

may be the human processes, e.g. the creation of an initial business relationship between cus-

tomer and provider, the negotiation of price and payment terms, and so on, that need to be

performed before the automated processes of service discovery can happen. This fact makes

this approach for applying to an Agreement-Mediator that allows for discovering services of

third-party provider unusable.

However, UDDI is still often used as supporting infrastructure for SOAP web services in a

constrained private environment. The field of application of today’s UDDI registries is to enable

service discovery and to supply additional information missing in WSDL descriptions for web

4.1. Registry Approach 55

Agreement

Management

Agreement Creation

Agreement

Search Advertise

Agreement

Layer

Service

Layer

Service Request

Service Delivery

System

Agreement

Management

Service Instantiation

Service Access

Registry

Service Consumer

FIGURE 4.2.: SLA aware service discovery

services, which are operating inside a single infrastructure and may be only available for a set

of privileged customers. Taking this case for this approach, one of these privileged customers

can browse for a desired service, but cannot compare this service to other equal or similar

services offered by different providers in the same fashion. In order to compare services based

on the advertised service levels, the Agreement Management component of the consumer has

to search in different registries for equal services and to retrieve agreement templates from

all Agreement Management components hosted at provider side. These agreement templates

include the advertisements of each service exposed by the different providers and build the

foundation for the comparison. This makes not only the implementation and the comparison

very complex, but also requires the establishment of business relationships to all providers

which have to be taken into account for this comparison.

4.1.2. Complexity and Automation

UDDI was not widely used for exposing and discovering web services in a public manner,

because of its overambitious complexity, the missing security capabilities, and the difficulty of

managing and collecting micro-payments. Besides the use of UDDI, an implementation of a

registry for web services requires in any case the development of an Agreement Management

component for both, the provider and the customer. These components also have to verify the

56 4. Agreement Mediation Approaches

compliance of an established SLA by monitoring the service during consumption. This fact

does not facilitates the SLA management, does not establish higher trust and especially does

not actually transfers mediation affiliations into a neutral zone.

4.2. Broker Approach

The approach for an Agreement-Mediator acting as a broker between customers and providers

requires an additional extension that is based on WS-Agreement and WS-Agreement Nego-

tiation. This protocol extension introduces a new layer located on top and is needed for ad-

ministration and configuration tasks. Similar to the Agreement Factory and the Negotiation

Factory the Administration layer has to provide a Service Repository that allows the definition,

the creation, and the configuration of Agreement Terms (Service Description Terms, Service

References, Service Properties, Guarantee Terms) and Agreement Strategies (Create Template,

Negotiate Offer, Create Agreement).

This section does not specify the extension itself, but rather identifies the requirements that such

a specification should fulfill. Therefore, this section presents details on the functionality of each

service and in particular how WS-Agreement (Negotiation) and its reference implementation

WSAG4J are exploited in order to provide the necessary services for SLA management.

4.2.1. Advertising SLA Temples

The Agreement-Mediator in this approach advertises provider’s SLA capabilities with WS-

Agreement templates that are delivered by invoking the GetTemplates operation from a Nego-

tiation instance or an Agreement Factory. As described in section 2.3, templates contain guar-

antees and optional compensation methods referenced to services a provider is likely to accept.

Here, a service provider has to use a publicly available term language defined by the Agreement-

Mediator to describe services or to create references to existing descriptions. The actual SLA is

formulated by service properties and guarantees following the standard WS-Agreement format

including concretizations made by WSAG4J like the use of JEXL as expression language.

As depicted in figure 4.3, each service provider which cooperates with the Agreement-Mediator

has one assigned Service Repository, one Negotiation Factory, and one Agreement Factory.

This gives the ability to create, configure, and delete its actions by using an interface of the

Agreement-Mediator. This interface provides a comfortable way to design templates without

the requirement to be familiar with the WS-Agreement standard. If a provider is familiar with

the WS-Agreement standard though, he can modify the templates directly. Additionally, the

Agreement-Mediator interface allows inserting placeholders for whole templates or parts of

them that are linked to endpoint references of web services. These web services are then

4.2. Broker Approach 57

Agreement-Mediator

(Agreement Responder & Negotiation Responder)

Service Provider

Service Repository

ConfigureAction()

Create

Negotiation Engine

Agreement Engine

Agreement
Agreement

Template

Template

Factory

Negotiation

Factory

Get / Validate

Get / Validate

Create

Create

Agreement
Agreement

Negotiation

CreateTemplate(Name)

ConfigureTemplate()

Agreement

Factory

Agreement
Agreement

Agreement UpdateServiceState(State)

Notify(GuaranteeStates)

Service

Provisioning

System

Negotiate Negotiation

Action

Instantiate Agreement

Action

FIGURE 4.3.: Provider’s architecture for administration

used by the Agreement-Mediator to resolve the placeholders when the template needs to be

delivered. As described before a WSAG4J factory action consists not only of a template but

also of all decision-making processes that lead to template delivery, negotiation and agreement

creation. These strategies can also be freely customized by manipulating them directly or by

creating a delegation to an own endpoint reference that serves with the required functionality.

Thus, a provider can freely configure the connection between his state of available resources

and his advertisements, which is a key requirement for a provider in order to offer the most

attractive terms to customers at any time.

58 4. Agreement Mediation Approaches

4.2.2. Discovering and Comparing service offer

Agreement offers are advertised to and initiated by customers, so in terms of WS-Agreement

the customer takes the role of an Agreement Initiator and the Agreement-Mediator, which is the

advertising party that later holds agreements for supervision, takes the role of the Agreement

Responder. Therefore, a customer gets a set of provider’s templates by calling the GetTem-

plate endpoint of the provider’s Agreement Factory as illustrated in figure 4.4. All templates

delivered by the Agreement-Mediator follow a standardized format that is publicly available

and is partially defined by WS-Agreement and partially by the Agreement-Mediator that fills

the definition gaps explicitly left open by WS-Agreement. Thus, the customer knows exactly

how a template is structured and therefore how to (programmatically) compare two templates

even from different providers. This enables the customer to rapidly find a provider’s offer that

matches his requirements best.

Agreement-Mediator

(Agreement Responder & Negotiation Responder)

Negotiation Engine

Agreement Engine

Negotiation

Factory

Create

Create

Service consumer

(Agreement Initiator)

Agreement
Agreement

Negotiation
GetTemplates()

NegotiationOfferTemplates[]

Agreement

Factory

GetTemplates()

Templates[]

UpdateServiceState(State)

Agreement
Agreement

Agreement
Notify(GuaranteeStates)

FIGURE 4.4.: Customer’s interaction with the Agreement-Mediator

If a customer has browsed a desired service and prefers for a service offer of a selected provider,

the customer is able to start a negotiation process in order to advance a service offer for his

requirements before an agreement is created. Therefore, the customer creates a Negotiation

instance for a specific provider and performs the negotiation according to the WS-Agreement

Negotiation standard.

4.3. ESB Approach 59

4.2.3. Feeding in monitoring data

SLOs are formulated by expressions that utilize variables that represent service properties (e.g.

availability). The values of these variables need to be determined and set by the participating

parties. For that reason the Agreement-Mediator provides two endpoints per defined variable of

an agreement for both the consumer and the provider to feed in their view of the situation. But

the example of a variable representing availability illustrates that in some cases it is impracti-

cable that agreement participants directly determine a variable’s value: To calculate a service’s

availability, one has to constantly check a service’s status, store this data and continuously

calculate the overall availability. For that reason the Agreement-Mediator allows it to express

the values of variables as calculations by constructing mathematical formulas using other vari-

ables. The agreement participants can then set the variables of these calculations. Doing so,

the Agreement-Mediator does not take the responsibility for monitoring the services from the

agreement participants, but supports them to reduce their overhead.

4.2.4. Getting notified about SLA events

Possible agreement events are instantiation, termination and change of state. The defined end-

points of WS-Agreement allows for inspecting all of these events, so users can use them at any

time. But since this is very inefficient, because it requires to constantly poll states and compare

them to older ones in order to detect changes, the Agreement-Mediator offers users the pos-

sibility to register an endpoint reference that is used to get informed about agreement events.

Beyond WS-Agreement the Agreement-Mediator also offers the possibility to inspect the data,

that lead to a certain event or state. That way customers for example not only get informed

about an agreement violation, but also get data at hand that might be necessary to request a

compensation from a service provider.

4.3. ESB Approach

MO-BIZZ is an ecosystem that provides infrastructure, application, and API services of au-

tonomous organizations. This ecosystem is build for business services, where companies are

part of a larger ecosystem and have symbiotic relationships with customers, suppliers and com-

petitors. The applications and services offered by MO-BIZZ are available through a market-

place, which is a web application that is accessible by a web browser. In the MO-BIZZ con-

text, it is essential that specific services are provided according to predefined service levels, e.g.

compliance with maximum transaction times or service availability, because a service may be

consuming other services offered in this ecosystem. Therefore, the MO-BIZZ system enables

60 4. Agreement Mediation Approaches

service providers to define service level agreements containing all expectations and obligations

of the business relationship.

The four solutions which act together in order to build the MO-BIZZ ecosystem are: the Mar-
ketplace, the Service Delivery Broker (SDB) [71], the Ontologies Based Enterprise Ap-
plication Integration (ONAR) framework [72], and the SLA Engine which is based on the

Web Service Agreement for Java (WSAG4J) framework [40] customized for MO-BIZZ. The

core of this ecosystem is an Enterprise Service Bus (ESB) that provides an integrated solu-

tion for enterprises which aims to move their business applications to the cloud. Thus, the

platform enables both the access to infrastructure and the access to platform services, in order

to develop cloud-based applications. Since this ecosystem provides appropriated mechanisms

for SLA management like the definition of transparent SLOs with corresponding guarantees,

this MO-BIZZ ecosystem also has to ensure the fulfillment of promised QoS characteristics

(e.g. availability, throughput, downtime, bandwidth, response time, etc.). Therefore, SLAs are

established, services are monitored, and their compliance is evaluated. Thus, MO-BIZZ is a

service platform where cloud services can be discovered, appropriated SLAs are managed, and

their compliance is monitored by a third-party entity.

4.3.1. Architecture

The MO-BIZZ architecture joins multiple components as illustrated in figure 4.5. On the bot-

tom, services are provided as registered API services or as external cloud services. Directly

above, the following core components of MO-BIZZ are depicted:

• Marketplace allows customers to browse for a desired service, to compare this service

to other equal or similar services based on SLAs, and to select an appropriated service

for consumption according to the advertised SLAs [73].

• Service Delivery Broker (SDB) provides an Identity Gateway for bridging between

identity consumers and identity providers, a Backoffice for API lifecycle management

and configuration, and an API Gateway for processing API requests [71].

• ONAR enables semantic conceptualization of cloud-based enterprise applications by us-

ing domain ontologies [72].

• SLA Engine provides SLA functionalities for defining customized agreement templates,

creation of agreements, and evaluation of established SLAs [40].

The SDB API Gateway [71] is not only a core component of MO-BIZZ that exposes funda-

mental provider services, but is the essential component that strikes together several powerful

technologies to this MO-BIZZ platform. In particular, it provides mediation between service

4.3. ESB Approach 61

MO-BIZZ Platform

Marketplace

SDB Connect

SDB API Gateway

ONAR SLA EngineSDB Backoffice

API Services Application ServicesInfrastructure Services

Identity Gateway

Token Manager

Service Registration

Design and Development

Service Ontology

Semantic UDDI

SLA Management

SLA Evaluation

API Service Instances (BC, BI, CRM, ERP, SMS, etc.) External Cloud Services (VM, Storage, Network, etc.)

Service Monitoring Service Management Interface

FIGURE 4.5.: MO-BIZZ layered architecture

enablers and their consumers (applications or other service enablers) providing a loosely cou-

pled, highly distributed integration network platform, with enterprise-strength performance,

scalability and manageability. Combining messaging exchange, data transformation, intelli-

gent routing and several transversal functionalities, to reliably connect and coordinate service

enablers according to the service management decisions.

The SDB Connect is a bridge between identity consumers (e.g. web apps) and identity providers

(e.g. Google, LinkedIn, LDAP). Front-channel user authentication is handled by the SDB Iden-

tity Gateway, which mediates and manages connections to external identity sources, supporting

multiple identity providers, interaction protocols and security token formats. The Identity Gate-

way relies on several authentication-related support services, which it accesses via SDB API

Gateway.

The SDB Backoffice is the system administration application, enabling API life cycle manage-

ment and configuration of the different SDB components. It is a private web application, built

on top of the SDB API Gateway and Support Services. The SDB Support Services are a set of

SOA services that support most of the product logic and therefore can be replaced or extended

by other SOA services that implement the interface or easily integrate the SDB with other appli-

cations. In fact, this SDB Support Services are the interface between the Marketplace, the SDB

Backoffice and the SDB Gateway, which makes the MO-BIZZ ecosystem a web service based

ESB that can be considered as an approach for an autonomous Agreement-Mediator. The APIs

exposed on the SDB can be made available as products with different business models. On the

Marketplace developers can purchase access to APIs and manage their product usages.

62 4. Agreement Mediation Approaches

4.3.2. SLA Engine

The SLA Engine of MO-BIZZ provides a set of basic SLA templates for a partner (service

provider). This SLA templates are either infrastructure, API, or application specific and guide

the service provider through the process of describing an appropriated agreement offer. Here,

the provider has to define the SLOs that the services are aiming to achieve. Additionally, the

partner can specify compensations methods that come into account if guarantees are violated.

As illustrated in figure 4.6, the Marketplace allows customers to browse for a desired service,

to compare this service to other equal or similar services based on SLAs and to select an appro-

priated service for consumption. After a service consumer has selected an appropriated service,

this service is delivered either through the SDB in case of an API service or as external cloud

service referenced by the SDB.

Marketplace

SLA Engine

SDB
SDB Backoffice

Configure/
Instantiate

Complex Event
Processor (CEP)

SDB API Gateway

Agreement Factory

Agreement Evaluator

Configure/
Create

Report/
Notify

Service
Provider
(Partner)

Provide
Service

Offer and
Purchase
Service

Consume
Service

Service
Consumer
(Customer)

Search,
Compare and
Buy Service

Customer-based SLAs Service-based SLAs

Marketplace

FIGURE 4.6.: SLA Management of MO-BIZZ

4.3. ESB Approach 63

The MO-BIZZ platform exposes services that are provided by autonomous organizations, there-

fore appropriate mechanisms to manage agreements, to define responsibilities, and to advertise

SLOs, are required. In order to ensure the fulfillment of QoS guarantees (e.g. availability higher

than 99.5%, response time lower than 1.345ms, etc.) SLAs are established for each service that

is exposed on the MO-BIZZ marketplace. This SLA serves as a formal contract between the

service provider (partner) and the MO-BIZZ platform. Additionally, for each service that is

purchased through the Marketplace, SLA metrics are created and are used for an individual

evaluation of the established SLA.

The monitoring of a service depends on its nature. In particular, when processing API requests,

the SDB Gateway uses internally the SDB Service Monitoring which is a Complex Event Pro-

cessor (CEP) based on Esper CEP [74] technology to aggregate, count and query event streams

resulting from API consumption. Each time an agreement is instantiated metric thresholds,

alarms and notifications are configured automatically and are based on the defined SLOs in

an agreement offer, which corresponds to the selected KPIs in an agreement template. This

enables to process metrics and to create specific SLA events.

In addition to the internal service monitoring of traffic through the SDB Gateway, there is a

Service Management Interface (SMI) [75] that has to be supported by each product offer pub-

lished on the Marketplace. This SMI is especially used for monitoring external cloud services

like infrastructure and application services. These external cloud services are directly related to

the Infrastructure and Application SLA templates. In general, the SMI has two purposes: It is

used for monitoring in order to collect health and performance measurements from instantiated

services and secondly to manage the service life cycle of third-party services (e.g. instantiation

of a new service or its termination after use).

The SLA Engine that provides the SLA capabilities in MO-BIZZ is based on the WSAG4J

[40] framework. It has been customized and integrated as external components in MO-BIZZ.

In contrast to the traditional applicability of WSAG4J, the SLA framework acts as an exter-

nal entity and exposes an interface at the SDB. This interface consists of standardized oper-

ations according to the WS-Agreement and the WS-Agreement Negotiation specification and

some additional operations for service registration, agreement management, and monitoring

functionalities. Considering the SLA Engine as a single component outside the MO-BIZZ

ecosystem, then this SLA Engine corresponds to the broker approach of the previous section.

However, as SLA Engine inside MO-BIZZ the protocol extension for administration and con-

figuration is of course designed for this particular solution and therefore much more specific.

After the service provider had specified the service offer, integrated the service in the SDB,

and checked the functionality, the service offer can be published in the marketplace. With this

action an SLA is instantiated and is mandatory for the provider. In particular, the actual formal

instance of the SLA is represented as a resource in the WSAG4J-based SLA Engine. Thus, the

SLA Engine is able to evaluate agreements with the help of events and measurements coming

64 4. Agreement Mediation Approaches

from the SDB. Based on this evaluation, the states of SLAs can be requested by the SDB

Backoffice and are displayed transparently to the customer and the provider. In case of an SLA

violation, an event is triggered at the SDB that notifies the provider about irregularity behaviors.

Furthermore, the service provider and the service consumer are able to access historical data

about former SLA events in order to clarify conflicts and to initiate compensation requests.

4.3.3. On-Boarding Process

As depicted in figure 4.6, MO-BIZZ differentiates between two SLA structure levels: service-

based SLAs and customer-based SLAs. These structure levels have been already defined in

section 2.1 as the following:

• A customer-based SLA is specific to a customer and can include several services with

different service qualities.

• A service-based SLA is specific to a service with a specific service quality and has to be

accepted by the customer as it is advertised.

Based on these definitions, SLAs are customer-based between the MO-BIZZ platform and the

service provider (partner), and service-based between the MO-BIZZ platform and the service

consumer (customer). In order to establish such an SLA chain, SLOs and guarantees need to

be contracted during the on-boarding process. This on-boarding process for customers to get

a service partner is illustrated in the workflow diagram 4.7. Here, the partners have to accept

the partner terms of use as basic partnership contract with MO-BIZZ. Within this contract,

the service provider has to supply all the required information (e.g.: company name, address,

zip code, VAT number, contact email and contact phone number) in order to become verified

and consequently accepted as MO-BIZZ partner. Then the service provider has to describe the

service offer (e.g.: name, commercial description, technical documentation, required business

model and its costs) and all associated services and APIs. In this step, the service provider has

to chose an SLA template for the product offer and to select a set of KPIs that the service aims

to provide.

After submitting this service offer, the offer is validated and checked for completeness. If this

is the case, the service is registered and configured in the SDB. Additionally, the provider is

now able to define SLOs for the service and compensation methods that he is willing to pay if

guarantees are not fulfilled. In particular, an agreement offer is created based on the selected

template with all the information from the previous steps. This agreement offer defines the

target SLOs and guarantees of the service provider and is stored until the service offer goes into

the certification phase. Here, the functionality is checked, the availability of the management

interface, the performance of the service, and whether identity and access management works

as expected, according to the integration guidelines. Furthermore, the measurements of the

4.3. ESB Approach 65

Accept Partner

Terms of Use

Reject Offer

 Validate the

Offer

Describe the

Service Offer

Sign-In as

Partner

Register and

Configure

Service

 Validate the

Service

Create

Agreement
Publish Offer

Valid

Valid

Invalid

Invalid

Accept Offer
publishwithdraw

Select SLA

Template and

KPIs

Define Service

Level Objectives

FIGURE 4.7.: MO-BIZZ on-boarding process

performance checks are used to check initially the service quality, which were defined for the

agreement offer in the previous step.

If the service is completely configured, ready to offer, and guarantees and SLOs are still ful-

filled, the provider is able to withdraw or to publish the product offer. If the partner decides

to publish the offer, an SLA is created and the service is published on the marketplace with

66 4. Agreement Mediation Approaches

the contracted SLA. Based on this SLA, customers can compare this service to other similar or

equal services and choose the best fitting service that advertises the most suitable service levels

and pricing conditions.

If the customer decides for a service, a service-based SLA (which is a service specific subset

of the customer-based SLA) between the MO-BIZZ platform and the customer comes into

effect. This SLA is established without any amendments according to the “take-it-or-leave-it”

principle.

4.3.4. SLA Inheritance

In the MO-BIZZ ecosystem a service may be consuming other services of third-party partners.

Hence, SLA compliance of a single service may rely on SLA compliance of other services.

These interdependencies are not visible to the customer, who agreed to an SLA with a match-

ing service quality. The provider that defines the content of an SLA offer has to respect terms

and conditions defined in SLAs of services that are being used by this newly composed service.

In fact, the new SLA inherits service terms from SLAs defined for its particular third-party ser-

vices. For example, the availability of an API service can never be higher than the availability of

the infrastructure on which the software for this API is deployed. Therefore, advertised SLAs

of a single service can be divided into two classes of SLAs which are defined as follows:

Definition 4.1. A Parent Service Level Agreement denoted as slaparent is established between

a customer and a provider, where the provider delivers services that are solely owned and

executed by the provider itself.

Definition 4.2. A Child Service Level Agreement denoted as slachild is established between a

customer and a provider, where the provider delivers services that are based on other services

and whose behavior may be influenced by external occurrences.

Depending on the formal definitions presented in section 2.1, SLAs in MO-BIZZ consist of

terms that are the main subjects of an agreement and an agreement offer. These terms can

be a set of service descriptions, references to service descriptions, and/or guarantee terms that

define SLOs coupled with qualifying conditions that must be met. Thus, terms are defined as

follows:

Definition 4.3. A service term denoted as term with a service identifier i consists of a Service

Level Objective denoted as slo, a guaranteed service level threshold denoted as slt, a service

property denoted as sp and a qualifying condition denoted as qc.

Termi := {slo, slt, qc(slt, sp)|slo, slt, sp ∈ R, qc ∈ QCS} (4.1)

4.4. Federation Approach 67

The qualifying condition is an operation that is used to evaluate an SLA and to express a

guarantee.

QCS := {<,≤,=,≥, >} (4.2)

In order to inherit terms of a parent-SLA, the following inheritance operations OPS are de-

fined:

OPS := {min,max, sum, avg} (4.3)

With the help of these inheritance operations OPS a child-SLA offer can be calculated as

follow:

slachild = {(op(slo1, . . . , slon), op(slt1, . . . , sltn))|

(slo1, . . . , slon), (slt1, . . . , sltn) ∈ sla1 × . . .× slan, op ∈ OPS} (4.4)

However, this calculation of a proper SLA for a particular product offer is only recommended

in MO-BIZZ. In fact, the partner is responsible for the provided service and thus, has to decide

which KPIs with associated SLOs and guarantees he is willing to advertise and to accept.

4.4. Federation Approach

Network virtualization is a key technology for deploying next generation networks and appli-

cations [76, 77, 78, 79]. Virtual networks can be deployed over a shared network infrastructure,

while ensuring isolation of the traffic among concurrent virtual networks. This technology al-

lows companies to specify customized virtual topologies according to their requirements. Soft-

ware Defined Networking (SDN) complements the network virtualization approach by offering

programmability features to the owners of virtual networks [80]. Thus, network functionalities

(e.g. routing, firewalls, etc.) which were traditionally implemented by vendors within the hard-

ware, can now be realized in software. This provides a great degree of programmability, since

data center providers may develop their own network functions and thus control their virtual

networks according to their needs. However, the full range of SDN capabilities is not utilized in

today’s cloud middlewares. In particular, SDN is used to facilitate future data center networks,

but the benefits are often not passed to the paying customer.

68 4. Agreement Mediation Approaches

Since QoS characteristics can be enforced to the virtual environment of deployed virtual ma-

chines [81], a federated provisioning system for autonomous networks fits best for this purpose.

Consequently, a provider of virtual networks can apply guarantees in dynamically negotiated

and established SLAs to its users. Thus, customers are able to configure the virtual network

according to their requirements, which results in an SLA that not only describes the service lev-

els, the objectives, and the prices but can also be used to monitor the fulfillment or violations

of advertised guarantees. To achieve this goal a federated Agreement-Mediator is introduced

that allows for negotiating quality levels for network services that makes use of a provider spe-

cific SDN driver to enforce QoS characteristics to the network when all parties have agreed

on an SLA. This Agreement-Mediator approach is designed not only for managing the net-

working resources of a single provider, but also for managing the resources within federations

of providers, where the end to end user services may involve resources drawn from multiple

service providers in a transparent way.

The establishment of a QoS-aware route between two cloud providers involves several inde-

pendent network providers. Thus an SLA chain has to be discovered, negotiated step by step,

and instantiated if all parties come to a common agreement. Here, the customer can define a set

of Service Level Requirements (SLR) and would have no additional obligations in this process.

In order to facilitate the understanding and to include all information in a single agreement that

is presented to the customer, an SLA aggregation for network services is required.

4.4.1. Architecture

The OpenFlow protocol [82] [83] and derivatives enable an innovative mechanism to control

extremely large and high performance networks, as often used in cloud service provider fa-

cilities [84]. Moreover, OpenFlow provides the opportunity to create a wide range of new

applications and the corresponding use cases based on providing the network and the related

capacity itself as a service. Configuration and behavior of SDN can be controlled by one entity

and changed on demand. The properties of the underlying network and its connected servers

can therefore be treated as a resource.

SLAs are established and managed between cloud service provider and consumers and are an

instrument to describe a service and its quality. On-demand negotiated and established SLAs

in a programmatic fashion for network services do not exist in today’s cloud landscape. The

architecture described in the following would enhances IaaS middlewares with mechanisms

for automated negotiation and creation of SLAs for network services that deliver QoS guar-

antees (a) between VMs in a single data-center cloud, (b) to external cloud services located

anywhere on the Internet, and (c) for interconnections between several heterogeneous cloud

environments.

4.4. Federation Approach 69

To negotiate, create, and evaluate SLAs in a machine-readable form, a Service Provisioning

System of a single provider is used. The requirement for interacting with this provider is that

the customer already has an established business relationship with the provider. Thus, cus-

tomers are able to define their requirement and to request services dynamically from trusted

providers, which are delivered by an independent service provider. The approach presented in

this subsection demonstrates new capabilities based on a shared virtual Ethernet circuit overlay.

The basic idea is to enable customers to query and book available network routes between local

and external hosts including guaranteed network characteristics. To achieve this goal, a layered

architecture has been designed that is depicted in figure 4.8.

Service Customer

Service Provider

Cloud Middleware

Negotiate and create,

SLA, pay-per-use

Service Instance

Service Provisioning System

SLA Manager

Network Manager

SDN/OpenFlow Driver

Service Provider

Cloud Middleware

Service Instance

Service Provisioning System

SLA Manager

Network Manager

SDN/OpenFlow Driver

Network Provider

SLA Manager

Network Manager

SDN/OpenFlow Driver

Established business relationship,

 pay-per-use

FIGURE 4.8.: Architecture of a federated Agreement-Mediator

The middleware software stack of this federated approach is accessible through the Service Pro-

visioning System. It can be in the shape of a graphical user interface that allows customers the

access in a user-friendly way or a web services-based interface that enables to specify network

requirements, configure network topologies and to negotiate SLOs in order to create an SLA

and establish an appropriate network environment. Furthermore, this component also provides

observation functionalities for detecting SLA violations which occur when network resources

have an inadequate behavior and guarantees are not fulfilled. The Service Provisioning System,

however, is not managing any network resources directly, it just manages aspects regarding

the establishment of network services based on SLAs. All properties related to network re-

70 4. Agreement Mediation Approaches

sources are delegated to the SLA Manager, which collects information about the underlying

network from the Network Manager. Based on this information the SLA Manager provides

functionalities to negotiate and create aggregated SLAs and then appropriately establish QoS-

based network environments in a single data-center and to external services. Furthermore, this

SLA Manager enables federated networking between several autonomous clouds with hetero-

geneous infrastructures.

The key components to manage the local and global available network capabilities and its par-

ticular QoS allocation is the Network Manager. This component builds the backbone of the

entire architecture. This architecture addresses mechanisms based on the centralized control

plan in SDN substrates and the opportunity to enforce QoS in data-centre as well as compre-

hensive SDN networks. For pure SDN substrates this architecture considers all opportunities

for QoS enforcements based on OpenFlow capabilities (e.g. meter tables) of the latest Open-

Flow standards like OF 1.3 and beyond [83].

In contrast to a Network Manager installation in a cloud environment, the Network Manager in

a network provider’s infrastructure is an abstraction for the particular external carrier or Inter-

net Exchange Point (IXP) related network and directly exposes the relevant QoS capabilities as

external service through the provider’s SLA Manager. Besides exposing SLA-based network-

ing capabilities to the outside world, the SLA Manager checks routes by discovering external

SLA Managers. To provide a reasonable solution, this approach also has to consider solutions

based on direct circuits for cloud data-centres through provider networks or directly connected

IXPs.

4.4.2. SLA Aggregation

From a business perspective it is essential that specific services are provided according to prede-

fined service levels (e.g. compliance with minimum bandwidth or service availability). There-

fore, this architecture gives providers the opportunity to negotiate SLAs among each other in

order to provide a single SLA to the customer. This single SLA contains all expectations and

obligations for this particular service provisioning.

Each cloud provider has a relationship and basic contracts with the network provider who is

providing the network connectivity to the next IXP and the networks in between. This rela-

tionship which is known by both sides is based on a fundamental contract. This contract is for

instance also formulating network resources that can be requested by the customer through a

provider’s Service Provisioning System. With this information the SLA Manager can be con-

figured in order to provide federated networking.

In the simplest case of a single cloud infrastructure, the SLA Manager is waiting for requests

from customers and negotiates the conditions for the local network environment. The Network

4.4. Federation Approach 71

Manager again provides information about the local network utilization and available capacities

to the SLA Manager. If both the customer and the provider agree to the negotiated conditions,

an SLA is created that serves as a formal contract. Afterwards, the network connection is

established between the VMs according to the conditions of the agreement and is monitored in

order to detect violations. In this scenario, an SLA in a single cloud infrastructure is established

between the cloud provider and the customer.

In the complex case of federated networks, an SLA needs to be established for a network

service that combines the local network capabilities provided by a local Network Manager

with network services of an external network provider. In particular, the SLA compliance of a

single service may rely on the SLA compliance of other services. Therefore, delivered SLAs

of a single provider can be divided into two classes of SLAs which are defined as follows:

Definition 4.4. A Local Service Level Agreement denoted as slalocal is established between a

customer and a provider, where the provider delivers services that are solely under the control

and only owned by the provider itself.

Definition 4.5. An Extended Service Level Agreement denoted as slaextended is established

between a customer and a provider, where the provider delivers services that are partially

under the control of the provider and depending on third-party services of an external provider.

Interdependencies of extended-SLAs are not visible to the customer, who negotiated an SLA

with its service provider only. Hence, the customer defines the SLRs for a network environ-

ment between several VMs. Depending on the entry point, which is in fact the location of the

Service Provisioning System and its corresponding SLA Manager, the provider has to discover

all possible routes between specified endpoints. For example, if a customer requests a route

between two VMs in different cloud infrastructures, the customer can inquire an offer from

both cloud providers or from an external network provider. Thus, the requested provider’s SLA

Manager is responsible for creating a service offer. This SLA Manager has knowledge about

all SLA Managers that are directly connected and responsible for the network connected to the

provider’s infrastructure.

Figure 4.9 illustrates a situation where the left-hand side provider’s data-center is connected

with two network providers. Here, two approaches can be applied to discover appropriated

routes: First, an directed acyclic graph (DAG) is build consisting of all SLA Managers that can

be used to establish the requested route. Secondary, the SLA Manager requests both federated

SLA Manager that in turn requests recursively route information from further federated SLA

Managers. In the first case, the entry point or root SLA Manager is responsible for negotiating

route characteristics, prices, and all other conditions for agreement offers for each path through

72 4. Agreement Mediation Approaches

SLA
Manager

SLA
Manager

SLA
Manager

SLA
Manager

SLA
Manager

SLA
Manager

Cloud Provider

SLA Manager

Network Manager

SDN
Connector

Cloud Provider

SLA Manager

Network Manager

SDN
Connector

FIGURE 4.9.: Example cloud federation network overlay

the DAG and with each provider of a network on these routes. Moreover, after finding an

appropriated route with agreed quality characteristics, an SLA needs to be instantiated and

the promised route has to be established. Thus, the SLA Manager is also responsible in case

of SLA violations and therefore has to monitor the route, to pay penalties and should try to

switch to alternative routes if the promised guarantees of an SLA cannot be fulfilled. This

is very difficult, because monitoring of external networks and above is impossible in terms of

detecting the responsible party on the route. Therefore, the second approach is better and easier

for discovering routes over third party provider networks. Here, the SLA Manager evaluates a

particular SLA with the help of measurements provided by the underlying Network Manager.

In general, only network providers which have an SLA Manager instance up and running can

be used to discover a route to an external VM. Furthermore, also the cloud provider on the right

hand side has to support this approach in order to establish the last part of that chain between

the network edge and the target VM.

If all requirements are met and a set of routes were discovered, the SLA negotiation process

can be instantiated. Therefore, the requested SLA Manager aggregates its local-SLA offers

with the external-SLA offers of both federated network providers. These external-SLA offers

are delivered from independent providers, but may use similar or identical network pathes

delivered by the same ISPs as illustrated in figure 4.10.

Terms of an SLA are already defined in the previous section 4.3.4. In order to aggregate such

terms of a local-SLA offer with an extended-SLA offer, service descriptions or references of

third-party provider’s SLAs are not relevant for the aggregation in this approach. On the other

hand, the number of SLA aggregations is of high importance. This number of aggregations

that need to be performed to aggregate all local-SLA offers to a single extended-SLA offer is

4.4. Federation Approach 73

Cloud Provider Cloud Provider

Cloud Provider

SLA
Manager

Cloud Provider

SLA
Manager

SLA
Manager

SLA
Manager

SLA
Manager

SLA
Manager

SLA
Manager

SLA
Manager

L-SLA L-SLA L-SLA L-SLAL-SLA 1 2 3 4 5

FIGURE 4.10.: Example network SLA aggregation chain

equal to the number of hops of each route. Depending on the kind of service, the aggregation

operation has to be applied statically and allows to aggregate all agreement offers recursively

by requesting all federated SLA Managers. Thus, the aggregation function for each aggregation

step is defined as follows:

slaextended = {(op(slolocal, sloexternal), op(sltlocal, sltexternal))|

(slolocal, sloexternal), (sltlocal, sltexternal)

∈ slalocal × slaexternal, op ∈ OPS} (4.5)

Each agreement offer has an ExpirationTime element specified in the Context element of each

local-SLA. This expiration time is an absolute date at which this agreement offer is no longer

valid and the resources are no longer reserved. Thus, the customer gets a specific time frame

in which a decision has to be made.

4.4.3. Expected Aggregation Count

In order to forecast an expected aggregation count for this approach, an expectation about the

distribution of SLA instantiations is presented in the following. Because of the theoretical

nature of this approach, the Monte Carlo Simulation was selected as an ideal candidate. In

general, the Monte Carlo Simulation is a stochastic method, which performs many random

74 4. Agreement Mediation Approaches

experiments where the results build the foundation for decision-making. Thereby, it uses the

probability theory in order to solve numerical and analytical consumption problems. The goal

is to identify the importance of this approach for ISPs in relation to cloud providers.

As already mentioned in the previous section, the number of network hops is not equivalent

to the number of the overlay SLA Manager hops. However, the calculation of SLA Manager

hops depends on the network hops that are provided by ISPs. As notable research work, the

authors in [85] collected hop-count data with a small program that is based on the traceroute

utility. This program makes use of the time-to-live (TTL) that is set in the packet header. For

the Monte Carlo Simulation a maximum hop-count was set to 255, because the TTL in the

packet header is an eight binary digit field.

In another research work [86], the authors measured also the hop-count on the Internet but

additionally calculated the mean and variance for the total sample. Here, the result is an average

hop-count of 16.51 with the variance of 14.96. Based on these results the normal distribution

can be applied with these values.

While both measurements present the number of network hops, this approach has just to respect

the number of overlay hops. Therefore, the number of network hops resulting from the normal

distribution are divided by a random number between one and five, because the average number

of hops inside the infrastructure of a single provider is in most cases three [86].

However, the number of hops depends on the position and the target position, therefore an

appropriated probability distribution also has to respect not only the geographical position but

also the intention of the customer. This intention is mapped in this simulation via a lower

bound mapping. In particular, all negative values of the Gaussian distribution are set to zero,

thus representing the intention to use the QoS-based networking capabilities just for virtual

machines inside a single data center.

The zero for number of aggregations means that no aggregation is performed and just a local-

SLA is created for network services of a single provider. Figure 4.11 illustrates the results of

1000 runs. Here, it is very well cognizable that most of the customers would probably use

this approach for establishing QoS characteristics in networks of a single cloud environment.

Another peak is located at 4.8 aggregations that display the average overlay hop-count of the

SLA Managers for connections between two data-centers.

4.5. Related Approaches

4CaaSt is a project funded by the European Commission [87]. It aims to develop a PaaS cloud

platform that enables the creation of a business ecosystem like MO-BIZZ. Here, applications

from different providers can be customized, API services composed, and services traded as

4.5. Related Approaches 75

0

50

100

150

200

250

300

0
,
0

0

1
,
2

2

2
,
4

4

3
,
6

6

4
,
8

8

6
,
1

1

7
,
3

3

8
,
5

5

9
,
7

7

1
0
,
9
9

1
2
,
2
1

1
3
,
4
3

1
4
,
6
5

1
5
,
8
8

1
7
,
1
0

1
8
,
3
2

1
9
,
5
4

2
0
,
7
6

2
1
,
9
8

2
3
,
2
0

2
4
,
4
2

2
5
,
6
5

2
6
,
8
7

2
8
,
0
9

2
9
,
3
1

3
0
,
5
3

3
1
,
7
5

3
2
,
9
7

3
4
,
1
9

3
5
,
4
2

N
u

m
b

e
r

o

f

s
o

l
d

s
e

r
v
i
c

e
s

Number of Aggregations

FIGURE 4.11.: Expected probability distribution of SLA aggregations

bundles. This project has developed an eMarketplace as well, where different providers can

trade any type of cloud service [88]. The main focus of this marketplace is on SLA support

for defining agreement templates, supporting agreement negotiation regarding business and

pricing aspects, and SLA enforcement in terms of elasticity management. However, in contrast

to 4CaaSt, MO-BIZZ is ready for market launch. Furthermore, MO-BIZZ is not designed

only for PaaS offerings, but supports all kinds of cloud services and the monitoring of them as

well.

Cloud4SOA provides an interoperable framework for PaaS developer [89]. In this project a

REST-based API for any platform access has been developed that builds the foundation layer

for three main functionalities: negotiation of SLAs, enforcement of SLAs, and recovery from

SLA violations. Furthermore, this project credits oneself by developing a RESTful implemen-

tation of WS-Agreement. Besides the overall good results, the actual achievements in this

project are the unified monitoring interface and associated definitions for unified platform-

independent metrics. In particular, the consortium identified a set of unified metrics for moni-

toring which are both: application-level and infrastructure-level metrics. The following metrics

and corresponding APIs have been developed: response time, application status, memory us-

age, and CPU usage. Such functionalities are provided in MO-BIZZ by the SMI standard.

While the SMI standard is KPI independent, no unified operations for PaaS monitoring are

required in MO-BIZZ.

76 4. Agreement Mediation Approaches

SLA@SOI is an European research project that aims to deliver a SLA Management Framework

for supporting SLOs on multiple layers [90]. A reference architecture has been implemented

into a SLA management software framework that enables an open, dynamic, SLA-aware mar-

ket for European service providers [91]. In particular, this SLA management framework is

a solution that enables service providers to negotiate SLAs with customers in an automated

fashion. SLA(T) is the service description model developed in SLA@SOI. This model follows

a hierarchical approach and is language and technology independent. The outcomes regard-

ing SLA negotiation influenced the WS-Agreement Negotiation specification [29]. Besides

SLA@SOI, the work on the WS-Agreement Negotiation specification was also supported by

the following European and German projects: CoreGRID [92], SmartLM [93], OPTIMIS [94],

DGSI, and SLA4D-Grid [95].

The Cloud-TM project developed a data-centric PaaS layer that allows for reducing develop-

ment and operational costs [96]. The developments of this project are based on the SLA@SOI

framework [97]. Besides Cloud-TM, the CONTRAIL project is based on the SLA@SOI frame-

work as well. In particular, it extends the SLA model of SLA@SOI with an OVF descriptor for

specifying virtual machine configurations [98]. While SLA@SOI was designed for interoper-

ability between different clouds, CONTRAIL focuses on cloud federations. The main purpose

of the CONTRAIL federated approach is to offer elastic PaaS services over federated IaaS

cloud resources [99]. In fact, CONTRAIL implements cloud federations, but its architecture is

comparable to the broker approach presented in this thesis.

Another project that was also funded by the European Commission was AssessGrid [100]. This

project addressed the risk awareness and consideration in SLA negotiation, self-organizing

fault-tolerant actions, and capacity planning in the context of Grid computing [101]. Assess-

Grid’s architecture is similar to the broker architecture in this thesis, but only makes use of the

WS-Agreement standard. However, AssessGrid like CoreGrid [92], or SmartLM [93] is not

actually comparable to the approaches presented before, because their concepts were designed

for the Grid domain.

ETICS developed new network control and management services in order to enforce end-to-

end QoS characteristics across network service providers [102] [103]. It follows a federated

approach with the same purpose as presented in section 4.4. In ETICS static SLAs are estab-

lished on the atomic service layer between end-user and network provider as well as between

two network providers. In contrast to the static SLAs, dynamic SLAs are established for intra-

domain network services offered by each of the network providers. The delivered SLA for

a particular end-to-end inter-carrier network service is a result of an aggregation of the static

SLA and the dynamic SLAs negotiated for each interconnection [104]. The SLA aggrega-

tion of ETICS distinguishes from the SLA aggregation presented in this work only in terms

of the hierarchical arrangement in which SLA templates are ordered for composite network

services.

4.6. Conclusion 77

The first large project that not only used WS-Agreement, but also the standardized WS-Agree-

ment Negotiation is OPTIMIS. The goal of the OPTIMIS project is to suspend the limitation

of static QoS offerings of CSPs [94]. Thus, a toolkit was developed that supports infrastructure

providers by defining QoS offering within SLA templates, deployment and operation, monitor-

ing of delivered services, and cost and legal issues. Additionally, a multi-cloud broker service

was developed for exposing service offerings, negotiation of SLAs, and establishing federated

deployments in multiple cloud environments [12]. In fact, OPTIMIS is based on the WSAG4J

framework and is definitely the closest solution to the broker approach. However, the essen-

tial difference of OPTIMIS is its target service domain which is limited to IaaS offerings. The

OPTIMIS approach also introduces a neutral entity that tries to minimize the overhead for man-

aging SLAs between consumers and providers and to raise the trust by mediation of an external

entity.

Besides the presented projects above, many more national and international projects (like

CloudScale [105], CumuloNumbo [106], GEYSERS [107], Helix Nebula [108], MCN [109],

MODACloud [110], mPlane [111], PrestoPRIME [112], SERSCIS [113], or VISION Cloud

[114]) aim to design architectures, to specify protocols, and to develop solutions which try

to source out SLA affairs in a neutral entity that is realized according one of the Agreement-

Mediation approaches presented in this section. Not only projects and industries have such a

Agreement-Mediation approach in their scope of research, but also many academic scientists

are working on this topic in order to find a proper solution [115]. For instance, [116] [117]

[118] [119] follow a similar approach as presented in section 4.2, [120] [121] follow a similar

approach as presented in 4.3, and [122] [123] follow a similar approach as presented in 4.4.

4.6. Conclusion

The sections before presented the most relevant concepts for a neutral and autonomous Agree-

ment-Mediator that addresses issues regarding SLA-management, i.e. inflexible term and price

conditions, nontransparent verification of advertised service quality, and inflexible expression

of SLAs. Furthermore, the biggest challenge in today’s cloud market is the discovery of avail-

able cloud services and the comparison of them in order to find a desired service with the best

relation between service quality and price. Such an Agreement-Mediator could create a sit-

uation that potentially increases the competition among providers about who offers the most

attractive terms to customers, secondly reduces the overall overhead of SLA-management and

allows a better binding between a provider’s resource state and its offers. Thus, an Agreement-

Mediator would increase the effectiveness and the efficiency of today’s cloud SLAs and service

offerings. Furthermore, such an Agreement-Mediator would not only establish trust in terms

of monitoring (does the provider actually deliver the service as promised) but also trust in the

overall service offering of provider where no business relationship has been existed before.

78 4. Agreement Mediation Approaches

However, each of the presented Agreement-Mediator approaches requires an entity that pro-

vides the mediation services. In fact, if the provider of an Agreement-Mediator solution has a

business relationship with a third-party service provider: Does this situation prove that the me-

diation provider is still autonomous? Furthermore, this mediator only has the knowledge about

the registered services offered by providers which have established a business relationship with

the provider of the Agreement-Mediator. The fact that different projects work on different so-

lutions for these service discovery, service mediation, and SLA management issues shows that

the cloud broker/mediation market goes into the same direction as the development of cloud

middlewares years before. What is, however, missing is a global intercloud overlay network

that interconnects mediators and broker for cloud services around the world. Hence, such an in-

terconnection of cloud service brokers requires a comprehensive understanding between these

heterogeneous solutions, a novel intercloud standard is necessary that specifies architectures,

protocols, data schemata, and their behavior.

5. Intercloud SLA Management

Contents
5.1. XMPP . 82

5.2. Related Work . 83

5.3. REST with XMPP . 85

5.3.1. Resource Exploration . 87

5.3.2. Resource Access . 93

5.3.3. Implementation Concept . 96

5.3.4. Performance Evaluation . 100

5.4. REST with XMPP Rendering . 104

5.4.1. Classification Rendering . 105

5.4.2. Representation Rendering . 108

5.4.3. Implementation Concept . 109

5.5. Intercloud Agreement-Mediators . 110

5.6. Protocol Extensions . 113

5.6.1. Monitoring Model . 114

5.6.2. Service Level Agreement Model 121

5.6.3. Event Processing Model . 131

Since the cloud paradigm appeared, a lot of research and implementation effort has been in-

vested in order to federate cloud middleware solutions. The main issues in this context are

related to resource management, identity management, portability, service discovery, and in-

teroperability in general. Most solutions focus on federations between a private and a public

cloud. Thus companies can run a private cloud in their own data center and make use of ad-

ditional external cloud resources when all local resources are in use. Load peaks can thus be

cushioned in order to ensure high quality levels of provided services within the cloud environ-

ment. However, most federations are built for a set of public clouds and implicate a vendor

lock-in for a particular federation.

Some years ago, the Intercloud project emerged with the goal to overcome the vendor lock-

in by building a global federation network of clouds. The vision of this intercloud network

is to facilitate interconnections between cloud providers around the world. These providers

should be verified and classified for trust in order to establish a global confidentiality cloud

80 5. Intercloud SLA Management

overlay network. For this reason, the IEEE Cloud Computing Initiative [124], the IEEE Cloud

Computing Standards Committee, and the IEEE Standards Association [125] established two

work groups (WG) and an associated testbed project:

• the IEEE P2301 work group develop a Guide for Cloud Portability and Interoperability

Profiles (CPIP) [126],

• the IEEE P2302 work group develop a Standard for Intercloud Interoperability and

Federation (SIIF) [127], and

• the IEEE Intercloud Testbed Project [128] is a global lab to prove and improve the

Intercloud technology according to the development of the standardization initiatives.

These initiatives have the goal to develop standards and a testbed for a world wide cloud

provider overlay network. Such an intercloud network would achieve better QoS, higher relia-

bility, increasing flexibility and scalability, and allows for discovering specific cloud resources

with individual prices offered by participating providers at a distributed marketplace. The archi-

tecture developed in this intercloud context is based on the Extensible Messaging and Presence

Protocol (XMPP) [129] [130] and comprises three fundamental service elements as illustrated

in figure 5.1.

XMPP Overlay Network

Gateway Exchange

Root

Gateway

Gateway

Internet

Public
Cloud

Public
Cloud

Client

Access
Service

Gateway

FIGURE 5.1.: Intercloud architecture

The intercloud service elements are governed by autonomous organizations. An Intercloud

Root element provides “root” services like naming authority, trust authority, directory services,

and so forth. It acts as a broker in the intercloud overlay network and hosts a global cloud

81

resource catalog which can be explored in order to discover desired cloud services. Assuming

that such Intercloud Roots are distributed around the world which continuously synchronize

each other and are permanently updated with current cloud service product offerings advertised

by cloud providers, these Root elements provide a global distributed marketplace for cloud

services.

An Intercloud Exchange provides negotiation and collaboration capabilities among heteroge-

neous and autonomous cloud environments. Each Intercloud Exchange is affiliated with a

particular Intercloud Root element and hosts second-tier services. Therefore, such Intercloud

Exchange can be seen as independent notary in the intercloud network. In the approach realized

in this thesis, the Intercloud Exchange is designed as Agreement-Mediator where individual

SLAs for cloud service provisions are negotiated, established and evaluated.

The last intercloud element is the Gateway. Such an Intercloud Gateway represent an interface

between a particular cloud and the intercloud network. Gateways translate intercloud requests

and responses to the individual and customized protocol used by providers internally. Users of

a particular cloud provider are able to access the intercloud network as users from the particular

cloud provider’s domain. When the user found a desired cloud service at another cloud, the ac-

cess to the service is granted in the traditional way. In particular, the discovery and management

of cloud resources are performed through the trusted XMPP overlay network, but the access

after provisioning is performed over HTTP, SSH or any other protocol outside the intercloud

overlay network.

The establishment of trust, the billing and associated business models as well as the federated

identity management of this intercloud initiative are out of scope of this thesis. However, it

is considerable to assign these responsibilities to the accountability of each particular cloud

provider which participates in the global intercloud network. The rest of this chapter is orga-

nized as follows: Section 5.1 explains XMPP fundamentals which are required for the overall

understanding of the second part of this thesis. Section 5.2 discusses related work. In partic-

ular, this section presents the current P2302 specification and the latest achievements of the

intercloud initiatives. Section 5.3 introduces a novel protocol that addresses the requirements

of the P2302 to design a service framework that provides similar capabilities as HTTP-based

SOAP or REST web services. Section 5.4 presents data models and methods to apply the OCCI

Core Model to the Intercloud concept and the newly introduced REST with XMPP protocol.

Then the achieved architecture of an autonomous Agreement-Mediator that builds the major

goal of this work is presented in section 5.5. Last, a set of protocol extensions are defined in

section 5.6. They are required in order to realize the presented architecture.

82 5. Intercloud SLA Management

5.1. XMPP

The Extensible Messaging and Presence Protocol (XMPP) [130] was developed by the XMPP

Standard Foundation [129]. It is a message-oriented communication protocol that is based on

XML and TCP. Even though XMPP is located in the ISO Open Systems Interconnection model

on the same layer as HTTP, XMPP also supports extensions to provide HTTP transport over

XMPP [131]. In particular, while the XMPP core specification defines protocol methods such

as setup and teardown of XML streams, channel encryption, authentication, error handling,

communication primitives for messaging, network availability, and request-response interac-

tions, a set of additional XMPP Extensions (XEP) specify protocol add-ons.

XMPP enables the near-real-time exchange of small pieces of structured data which are called

“XML stanzas”. XMPP specifies three types of XML stanzas: message, presence, and IQ

(short for Info/Query). Message stanzas are used to exchange messages among two entities

over the XMPP overlay network. Presence stanzas are used to expose the availability of an

entity in the XMPP overlay network and IQ stanzas allow for exchange request and response

XML stanza. All these stanza types have a kind of header in common. In particular, besides

stanza specific attributes the XML root elements (<message/ >, <presence/ >, and

<iq/ >) must also have addressing attributes such as a from and a to attribute. The value

of these attributes has to be either a “bare JID” (e.g. localpart@domainpart) or a “full JID”

(e.g. localpart@domainpart/resourcepart). Thus, individual addressing is possible and enables

a secure, standardized, and fast exchange of XML stanzas over the network.

Additionally to the two addressing attributes an IQ stanza also has a required type and a

required id attribute. While the id attribute has the purpose of associating a response to a

request, the type attribute identifies the kind of the IQ. Four types are specified: get, set,

result, and error. The IQ types get and set are operations of a request IQ stanza and

return a response IQ stanza of type result in case of a successful request processing. If a

failure occurs in the request processing, an IQ stanza of type error is returned. Examples of

IQ stanza processing are presented in the subsequent sections.

XMPP-based services may be distributed at different locations on the Internet. In order to dis-

cover desired services within a provider’s domain, the XMPP Standard Foundation has speci-

fied an XMPP Extension called XEP-0030: Service Discovery [132]. This protocol extension

enables to discover information about other XMPP entities. It defines two kinds of information

that can be discovered:

• disco#info allows for retrieving information about the identity of an entity, the protocols,

and the features that this entity supports

• disco#item allows for retrieving items associated with an entity, such as the list of com-

ponents connected to a XMPP server instance.

5.2. Related Work 83

This section presents only the required fundamentals of XMPP and important extension in

order to understand the following concepts and definitions. For further information about how

trust, security, or XML streams are established, it is recommended to read the XMPP core

specification [130].

5.2. Related Work

The vision of the intercloud project emerged in 2009, but due to the reason that the issues

related to this project are very complex and the standardization process has to respect differ-

ent cloud services, several cloud concepts, existing protocols, interoperability architectures,

provider and customer requirements, and related standardization efforts, the current intercloud

protocol development is still in its infancy [133].

The first publications regarding the intercloud project were co-authored by David Bernstein

who is the founder and chief architect of the IEEE Intercloud Testbed [7] [134]. In these sci-

entific papers the authors introduced the vision, the basic possible protocols, some use cases,

and the challenges that go with it. In [135] David Bernstein and Deepak Vij, who is the P2302

working group chair, introduced the intercloud topology components: Intercloud Root, Inter-

cloud Exchange, and Intercloud Gateway. Furthermore, the authors presented the need for a

conceptual description and modeling of information similar to the Semantic Web [136] with

the help of the Resource Description Framework (RDF) [137].

In [138] the authors propose an approach for a scalable exchange of descriptions about het-

erogeneous resources. They define an initial ontology for intercloud resources which may be

adopted to the resource catalog that should be provided by an Intercloud Root. Their idea

is to discover available service offerings with corresponding characteristics through SPARQL

queries. Such a SPARQL query is able to deliver product offerings and could allow an au-

tomatic comparison of these offerings based on further defined object properties. In order to

define ontologies, to import or to enhance existing ontologies, and to allow the use of ontologies

for resource life-cycle management the authors of [139] propose the Federated Infrastructure

Description and Discovery Language (FIDDLE) for this purpose.

Besides the related work above, the authors of [140], [135], [141], [142], [143], [144], and

[145] proposed, adopted, and presented solutions which partially influenced the current ver-

sion of the P2302 specification or are results already specified in there. Thus, the most relevant

work in the context of the IEEE Intercloud initiative is of course the latest P2302 specification

[146] itself. This specification defines the responsibilities of the intercloud topology compo-

nents and the protocol basis (i.e. XMPP) as described before. Here, it also specifies that the

supported encryption mechanisms (i.e. Transport Layer Security (TLS) and Simple Authenti-

cation and Security Layer (SASL) [130]) are used to restrict the access and the communication

84 5. Intercloud SLA Management

between XMPP server-to-server and client-to-server connections. Based on this, the specifica-

tion defines that a service framework layer has to be introduced which will be able to support

SOAP or REST services analogous to the HTTP-based ones. However, the specification also

explicitly says:

“. . . the intrinsically synchronous HTTP protocol is unsuitable for time-consuming

operations, like computationally demanding database lookups or calculations, and server

timeouts are common obstacles.

. . .

XMPP based services, on the other hand, are capable of asynchronous communication. This

implies that clients do not have to poll repetitively for status, but the service sends the results

back to the client upon completion. As an alternative to RESTful or SOAP service interfaces,

XMPP based services are ideal for lightweight service scenarios.” [146]

To address the issue, the P2302 specification aims to develop a series of XMPP extensions

(XEP) and proposes one extension as a candidate: XEP-0244 IO Data [147]. This exten-

sion was prototypically implemented in the XMPP Web Services for Java (XWS4J) framework

[148] and is primarily used for long time consuming jobs in bioinformatics [149]. It allows for

discovering specific commands that can be executed. These commands have generic input and

out types which are in fact XML documents. The schemata for the input and output documents

can be discovered as well and retrieved on-demand. This enables to automatically build client

stub codes. However, the IO Data extension was designed for a closed system which may fit

the requirements in the domain of bioinformatics [149], but has the following drawbacks that

keep it from being the foundation XEP in the intercloud project:

• The entity that intends to invoke a remote method has to know on which entity the method

is available.

• The entity that intends to invoke a remote method has to know which method is provided

and how this method is named.

• The generated client stub code has to be compiled and linked at runtime in order to use

the generated client.

• The extension supports “Schema Discovery” but not service/operation discovery.

• No existing cloud computing standard (see section 3.6) can be applied to this protocol

extension.

5.3. REST with XMPP 85

The requirement to support time-consuming operations that are not effected by HTTP time-

outs is basically fulfilled by the fundamental characteristic of XMPP. However, most of the

tasks and operations for managing cloud computing services are not very time-consuming. For

example, time consuming tasks may be virtual machine image uploads or migrations. Not

time-consuming operations are the pre-defined virtual machine instantiation, termination, re-

configuration and so on. Of course, the processes in background may consume a longer time

than the triggering of the process, but this is dissembled in the provider’s specific cloud mid-

dleware implementation behind a Intercloud Gateway anyway.

Beside an ontology-based resource catalog hosted on Intercloud Root services that will be gov-

erned by organizations such as the Internet Society (ISOC) [150] or Internet Corporation for

Assigned Names and Numbers (ICANN) [151] and an appropriated trust model, the P2302

specification also describes an approach for SLA management. Here, the authors of the SLA

related part of the specification identified the need for machine-processable SLA terms, their

deployment, and their automated evaluation. However, this SLA management approach mixes

the purpose of SLAs in general with automated provisioning capabilities of particular cloud

services. Furthermore, this initial SLA management approach enforced additional functionali-

ties that a partner has to provide. These requirements were domain-specific and may discourage

potential customers and providers to get a partner within this intercloud network:

“. . . focusing on intercloud-specific SLA . . . assumes (1) all intercloud services are defined in

terms of their APIs, (2) all cloud service implementation and management details are not

exposed to the service consumers, and (3) all cloud services support policy-based

auto-scaling.” [146]

The initial approach in this specification completely leaves open where and which SLA and

monitoring services are provided. Moreover, the specification provides no details about SLA

management workflows, life-cycles, interfaces and how to access them as well as how this

initial approach was fit into the overall intercloud concept. This thesis solves all these issues

and is entirely cloud service and provider’s domain-independent.

5.3. REST with XMPP

As presented in section 3.4 and 3.5, REST is an architectural style that aims at simplifying com-

ponent implementations, reducing the complexity of distributed software elements, improving

the performance, and increasing the scalability. In relation to the definition of an RESTful ap-

plication programming interface (API) the uniform interface constraint is of high importance.

It simplifies and decouples the architecture and makes REST components independent. The

86 5. Intercloud SLA Management

constraints for a uniform interface can be reduced to: the identification of resources, the self-

descriptive representation of resources, and the self-descriptive manipulation of resources.

REST systems typically communicate over HTTP and are gaining large acceptance due to

their growing support and their simplicity for implementation. In this context RESTful web

services are a simpler and efficient alternative to SOAP and WSDL-based web services which

are specified for the use with XMPP in XEP-0072: SOAP Over XMPP [152] and also a more

powerful alternative to XML-RPC [153] which is specified as XMPP extension in XEP-0009:

Jabber-RPC [154]. Since all existing cloud computing standards (see section 3.6) are based on

REST, an REST-based protocol extension for XMPP is needed. This extension has to address

the requirements of P2302 to introduce a service framework that provides similar capabilities

as HTTP-based SOAP or REST web services. However, no XMPP extension for REST with

XMPP exists until now. Therefore, this section defines how the REST architectural style can

be applied to pure XMPP entities. It specifies an XMPP protocol extension for accessing

resources and transporting resource metadata and XML-REST encoded requests and responses

between two XMPP entities. This protocol extension has the purpose to be the intercloud XEP

foundation and thus close the lack of a missing service framework.

The XEP-0332: HTTP over XMPP transport [131] protocol extension allows for designing

REST services in the context of XMPP, but requires an implementation of both protocols:

XMPP and HTTP. Furthermore, HTTP was selected in the past because of its degree of popu-

larity, but has some drawbacks like the lack of discovery for services. The REST with XMPP

extension defined in this section is a powerful protocol for cloud services that has several ad-

vantages in contrast to the traditional HTTP-based REST approach:

• services are discoverable and explorable,

• dynamic generation of clients stubs on the fly

• the state-oriented programming paradigm is applied to resources [155], and

• multiple input and output types definitions are possible.

The REST with XMPP protocol makes use of the IQ stanza in order to enable access, to create,

to delete, or to modify resources of an XMPP entity. Furthermore, this protocol also allows to

define individual actions that can be invoked on a resource. For this purpose this specification

defines two XML Schema files: one for exploring the capabilities of a resource and one for

transfering representations to a method or performing actions on a resource. In order to achieve

these goals, this specification has been designed with the following requirements in mind:

5.3. REST with XMPP 87

• REST with XMPP should be easy to implement such as it is with REST over HTTP.

• This specification should apply the REST architectural style to XMPP and should elimi-

nate limitations of HTTP.

• Resources should be linkable in terms of static connections as well as link targets used

for resource access and modifications.

• The number of parameters of an action and the number of supported media-types of a

method should be unbounded.

• The number of operations should be unlimited as in contrast to HTTP’s GET, POST,

PUT, DELETE methods.

• Methods and actions should be dynamically available for invocations according to the

state-oriented programming model [155].

5.3.1. Resource Exploration

In order to explore the capabilities of a resource, the IQ stanza type get has to be used. The re-

turned IQ stanza is either of type error or result. If it is of type result, the returned con-

tent has to comply with the XMPP Web Application Description Language (XWADL) schema

of this specification. The XWADL schema has been designed for providing a machine process-

able description of a resource. It was inspired by the WADL standard and can be found in the

appendix A.1.

An IQ stanza of type get returns an IQ stanza of type result that describes all methods and

actions which the requesting party can perform. The following example in listing 5.1 shows

an exploration request for a cloud provider’s REST based interface that manages compute ser-

vices.✞ ⊵
<iq type=’get’

from=’requester@company−b.com/rest−client’
to=’company−a.com/openstack’
id=’rest1’>

<resource_type xmlns=”urn:xmpp:rest−xwadl” path=”/compute” />

</iq>✝ ✆
LISTING 5.1: Exploration of an interface for managing compute services

In order to explore a resource, only the path to a resource is required. The counter party has to

answer such a request with a response that exposes all possible methods and actions which can

be performed on the resource located at the specified path. The following example shown in

listing 5.2 illustrates a response that exposes all methods for this resource.

88 5. Intercloud SLA Management

✞ ⊵
<iq type=”result”

from=”company−a.com/openstack”
to=”requester@company−b.com/rest−client”
id=”rest1”>

<resource_type xmlns=”urn:xmpp:rest−xwadl” path=”/compute”>
<documentation title=”Summary”>

This resource allows for managing compute instances, e.g.

creating virtual machines.

</documentation>

<method type=”POST”>
<request mediaType=”text/occi”>
...

</request>

<response mediaType=”text/uri” />

</method>

<method type=”GET”>
<response mediaType=”text/uri−list” />

</method>

</resource_type>

</iq>✝ ✆
LISTING 5.2: Result of an exploration for handling compute services

This response exposes two methods that can be performed on the resource located at en-

tity company-a.com/openstack at resource path /compute. The first method of type

POST can be used to create virtual machines. This method expects a representation of media-

type xml/occi and returns a representation of media-type text/url. A detailed example of how

to access this method is illustrated later in the Resource Access subsection. Based on this

overview, the following subsections describe each element of the designed XWADL schema

and its assigning documents in detail.

Resource Type

The resource type element forms the root element of an XWADL document and may com-

prise one or more of the following sub-elements: documentation, grammars, action,

and method. This REST with XMPP specification distinguishes between two kinds of oper-

ations: actions and methods. Methods are used to transfer state representations according to

predefined media types among two entities. Actions in turn are used to perform operations on

a resource in order to retrieve primitive values or to change the state of a resource. In fact,

while methods are used to transfer representations, actions are used to invoke operations on an

existing resource with primitive data type as parameters or return value similar to XML-RPC.

Figure 5.2 depicts the possible elements of an XWADL document schematically.

5.3. REST with XMPP 89

XWADL

Documentation

Path

Grammars

Mathod
Mathod
Method

Action
Action
Action

FIGURE 5.2.: Structure of an XWADL document

Documentation

Each XWADL element down to the request and the response elements can have one child

documentation element that can be used to append a human-readable explanation of that

element. The documentation element has a title attribute which is a short plain text

description of the element being documented. The documentation element itself can have

string represented content and may contain text, HTML, zero, or more child elements.

Grammars

The grammars element acts as a container for definitions of the format of data exchanged

during execution of the protocol described by the XWADL document. It should be loosely

based on the XML Schema definition and specify data structures used for data exchange. The

following listing 5.3 illustrates an example of a grammars element.

90 5. Intercloud SLA Management

✞ ⊵
...

<resource_type xmlns=”urn:xmpp:rest−xwadl”
xmlns:xs=”http://www.w3.org/2001/XMLSchema” path=”/address−book”>

<grammars>

<documentation title=”Person List”/>
<xs:element name=”PersonList” type=”MyStructType”/>
<xs:complexType name=”MyStructType”>

<xs:sequence>

<xs:element name=”Person” type=”MyPersonType”
maxOccurs=”unbounded”/>

</xs:sequence>

</xs:complexType>

<xs:complexType name=”MyPersonType”>
<xs:sequence>

<xs:element name=”name” type=”xs:string”/>
<xs:element name=”age” type=”xs:integer”/>

</xs:sequence>

</xs:complexType>

</grammars>

...✝ ✆
LISTING 5.3: Example XWADL document with a grammars element

Method

A method element describes a specific operation that can be performed on a resource targeted

by the path attribute of the resource type element. A method element is a child of a

resource type element and has a type attribute that identifies the kind of such a method.

In order to achieve simplicity for implementation and having uniform interface constraints,

methods are of a specific type. The types defined for a method are GET, POST, PUT, and

DELETE like the CRUD methods of HTTP. This has the purpose to gain a feeling of familiarity

for the developer and increases his intention to use. Additionally, each method can have one

request and one response element which can be empty or be used to expose optional

templates for representations expected by this method.

Request and Response

The request and the response elements of a method describe the input and output rep-

resentation data to be transferred among an entity and a resource of another entity. While a

request describes the input to the method, a response describes the output from the method.

5.3. REST with XMPP 91

Both elements have a required mediaType attribute that specifies the media type of the rep-

resentation expected by the method. A request element in contrast to a response element

can also define a set of representation templates as illustrated in listing 5.4.✞ ⊵
...

<request mediaType=”xml/occi”>
<template>

<Category xmlns=”urn:xmpp:occi−representation”>
<Kind>

<term>compute</term>

<schema>http://schema.ogf.org/occi/infrastructure#</schema>

<title>Compute Resource</title>

<attribute name=”occi.compute.memory”>
<DOUBLE>4.0</DOUBLE>

</attribute>

<attribute name=”occi.compute.cores”>
<INTEGER>2</INTEGER>

</attribute>

</Kind>

</Category>

</template>

<template>

<Category xmlns=”urn:xmpp:occi−representation”>
<Kind>

<term>compute</term>

<schema>http://schema.ogf.org/occi/infrastructure#</schema>

<title>Compute Resource</title>

<attribute name=”occi.compute.memory”>
<DOUBLE>8.0</DOUBLE>

</attribute>

<attribute name=”occi.compute.cores”>
<INTEGER>4</INTEGER>

</attribute>

</Kind>

</Category>

</template>

</request>

...✝ ✆
LISTING 5.4: Templates for creating a virtual machine

In the example above, the XWADL document of a resource offers two flavor types for the

creation of a virtual machine. It is the representation template list expected by the POSTmethod

shown in listing 5.2. The schema used for the xml/occi media type is presented later in

section 5.4.

92 5. Intercloud SLA Management

Action

An action element describes a specific action operation that can be performed on a resource

targeted by the path attribute of the resource type element. An action element is a child

of a resource type element and has a name attribute that identifies a specific invokable

operation of a resource. The number of actions and the amount of parameters of an action

is unlimited. This eliminates limitations of HTTP and allows for defining APIs similar to

SOAP and XML-RPC. In combination with detailed descriptions of each individual element,

this achieves self-descriptive, efficient, and fractional resource capabilities for self-descriptive

manipulation of resources as illustrated in listing 5.5.

✞ ⊵
...

<resource_type xmlns=”urn:xmpp:rest−xwadl” path=”/compute/vm1”>
...

<action name=”stop”>
<documentation title=”Stop this virtual machine”/>
<parameter name=”method” type=”STRING”>

<documentation title=”The method used for stopping this vm”>
Accepted values are: graceful, acpioff, or poweroff

</documentation>

</parameter>

<result type=”BOOLEAN”>
<documentation title=”Returns true if the vm has been stopped successfully”/>

</result>

</action>

</resource_type>

...✝ ✆
LISTING 5.5: Result of an exploration for controlling a virtual machine

Each action can have one result and zero or more parameter elements which specify

the types of expected parameters and the return value. A parameter element describes a

parameterized value and can be identified by its name attribute. Additionally, it must have a

required type attribute that declares the type of this parameter. The schema defines a static set

of possible primitive data types: STRING, INTEGER, DOUBLE, BOOLEAN, and LINK. These

primitive data types are also required to specify the return value in the result element as

illustrated in listing 5.6. A parameter element can also have an optional default attribute

that exposes a default value which is applied if this parameter is not stated. Therefore, if this

attribute is specified, the overall parameter element is optional when accessing a resource.

5.3. REST with XMPP 93

✞ ⊵
...

<resource_type xmlns=”urn:xmpp:rest−xwadl” path=”/compute/vm1”>
...

<action name=”start”>
<documentation title=”Start this virtual machine”/>
<result type=”BOOLEAN”>

<documentation title=”Returns true if the vm has been started successfully”/>
</result>

</action>

</resource_type>

...✝ ✆
LISTING 5.6: Result of an exploration for controlling a virtual machine

When retrieving an XWADL document for a specific resource, this XWADL document com-

prises all methods and actions that are available for this particular resource at a specific moment

in time. It is like a snapshot of capabilities and the state of this resource. In fact, the actions

illustrated in listing 5.5 and 5.6 are never available at the same time and thus can never be found

in the same XWADL document. This methodology enables state machine implementations for

resources thus eliminating further limitations of HTTP-based REST.

5.3.2. Resource Access

In order to access a resource, the IQ stanza type set has to be used. The returned IQ stanza

is either of type error or result. If it is of type result, the returned content has to be

in compliance with the XML-REST schema that can be found in appendix A.2. The XML-

REST schema has been designed for providing an XML-REST encoded payload for accessing

a resource. An IQ stanza must contain either one method element or one action element with

an individual request and response media-type or a corresponding sequence of parameters. The

following example in listing 5.7 illustrates how the POST method of the previous example

is requested. Here, the client creates a VM which is configured according to a previously

advertised flavor.

✞ ⊵
<iq type=”set”

from=”requester@company−b.com/rest−client”
to=”company−a.com/openstack”
id=”rest2”>

<resource xmlns=”urn:xmpp:xml−rest” path=”/compute”>
<method type=”POST”>
<request mediaType=”xml/occi”>

94 5. Intercloud SLA Management

<Category xmlns=”urn:xmpp:occi−representation”>
<Kind>

<term>compute</term>

<schema>http://schema.ogf.org/occi/infrastructure#</schema>

<title>Compute Resource</title>

<attribute name=”occi.compute.memory”>
<DOUBLE>4.0</DOUBLE>

</attribute>

<attribute name=”occi.compute.cores”>
<INTEGER>2</INTEGER>

</attribute>

</Kind>

</Category>

</request>

<response mediaType=”text/uri” />

</method>

</resource>

</iq>✝ ✆
LISTING 5.7: Access of an interface to create a virtual machnine

In order to make sure that both parties have a common understanding, the requester speci-

fies also the expected responds type which has been exposed during the exploration step. The

counter party has to answer such a request with no request element and an extended comple-

ment of the response element as illustrated in the example in listing 5.8. The identification of a

response to an associated request is accomplished by the id of the IQ stanza.

✞ ⊵
<iq type=”result”

from=”company−a.com/openstack”
to=”requester@company−b.com/rest−client”
id=”rest2”>

<resource xmlns=”urn:xmpp:xml−rest” path=”/compute”>
<method type=”POST”>
<response mediaType=”text/uri”>

<representation>

xmpp://company-a.com/openstack#/compute/vm1

</representation>

</response>

</method>

</resource>

</iq>✝ ✆
LISTING 5.8: Result of a state transfer to create a virtual machnine

5.3. REST with XMPP 95

The resource element forms the root of an XML-REST document and must comprise only a

single method or action as sub-element. In contrast to the XWADL description, no further

documentation or grammars are allowed in order to keep the number of bytes as low as possible.

In order to specify the resource to access, the path attribute is required identical to XWADL.

The method element can have one request element and/or one response element. Additionally,

the type attribute is required in order to identify the operation that has to be performed on the

resource. The request and the response elements of a method are in the XML-REST

schema similar to the definition in XWADL. Both have a mediaType attribute in order to

define the input and output data of the method. The request attribute in XML-REST has no

templates in contrast to XWADL. Here only XML with namespace definitions are allowed or

the predefined representation element for plain text can be used as child element.

Actions are encoded appropriated. An action element can have one result element and

one or more parameter elements. In contrast to XWADL, both have no type attributes. The

type is encoded as child element with an assigned XML type definition. Thus types are able to

verify by validating an XML-REST document with its appropriated XML-REST schema.

A link targets at a single location locally or remotely within an XMPP network overlay. A link

is expressed according RFC 2396 [156] that specifies the syntactic constraints of an URI string,

e.g. xmpp://company-a.com/openstack#/compute/vm1. Here, the authority and

path elements constitute the JID and the fragment element is the Path of the resource at that

entity identified by its JID. This enables a multi-dimensional resource placement. The examples

listed in table 5.1 show how different resources can be placed within a single server entity. Each

of these links points to another resource.

TABLE 5.1.: Multi-Dimensional Resource Placement

JID Path

company-a.com /

company-a.com/resource /

responder@company-a.com /

responder@company-a.com/resource /

company-a.com /resource

company-a.com/resource /resource

responder@company-a.com /resource

responder@company-a.com/resource /resource

96 5. Intercloud SLA Management

Service Discovery

If an entity supports the REST with XMPP protocol, it should advertise that fact in response to

XEP-0030: Service Discovery [132] information (diso#info) requests by returning an identity

of automation/rest and the features urn:xmpp:rest:xwadl and urn:xmpp:rest:xml.

The listing 5.9 illustrates the corresponding response.✞ ⊵
<iq type=’result’

to=’requester@company−b.com/rest−client’
from=’responder@company−a.com/rest−server’
id=’disco1’>

<query xmlns=’http://jabber.org/protocol/disco#info’>
<identity category=’automation’ type=’rest’/>
<feature var=’urn:xmpp:rest−xwadl’/>
<feature var=’urn:xmpp:xml−rest’/>

</query>

</iq>✝ ✆
LISTING 5.9: A disco#info query for REST with XMPP

5.3.3. Implementation Concept

The implementation concept for REST with XMPP provides a portable API for developing,

exposing and accessing resources designed and implemented in compliance with the specifica-

tion defined in this section. The API of this implementation concept is designed similar to the

JAX-RS API that is part of the Java Enterprise Edition (JavaEE). This gives the developer the

feeling of familiarity and rises the overall acceptance of this concept.

There are three ways to develop XMPP applications in order to make them available within an

XMPP overlay network:

• User Service: A service provided by a regular user that is logged in. This service starts

after log in and is only available until the user is present.

• XMPP Server Plug-in: An XMPP server specific plug-in is part of the server itself.

Such a plug-in is mostly a package (like a jar file) that has to be linked to the server’s

plug-in architecture. The disadvantage of this approach is that this plug-in is XMPP

server specific and may not be portable across to other servers.

• XMPP Component: An XMPP component is a stand-alone server instance that provides

a service within a subdomain of the XMPP server to which this component is connected.

The protocol between the XMPP server and the external component is standardized in

5.3. REST with XMPP 97

XEP-0114: Jabber Component Protocol [157] and makes such components implementa-

tion XMPP server independent and thus portable across to other servers.

Resources are deployed inside a Resource Container in order to be available for exploration

and access. Therefore, the implementation concept makes use of the container pattern, which

is also applied to JavaEE applications. This pattern has several advantages: resources can be

added and removed from the container during run-time, developers of resources only have to

care about business logic and functionality inside the resource. All other required interfaces

to other resources and container functionalities are provided by the container. The Resource

Container itself in turn is part of an XMPP External Component in order to make this imple-

mentation server independent. However, the Resource Container design is also applicable to

all other XMPP application deployments as well. Additionally, a Marshaller that implements

fundamental functionalities for service discovery and processing of IQ stanza complements the

architecture of this implementation concept that is depicted in figure 5.3.

XMPP External Component

Marshaller

XMPP Server

TCP
Resource Container

stanza routing

XMPP over TCP

disco#info

handleIQGet

handleIQSet

handleIQResult

handleIQError

resource
resource

resource

resource
resource

resource

resource
resource

resource

FIGURE 5.3.: Architecture of the implementation concept

The resources in the Resource Container are stored in a tree data structure. Each node of this

tree in turn has a thread-safe HashMap that stores its child nodes as values and the sub-path of

each node as key. Thus, collisions are prevented and this data structure provides an averaged

time cost of O(1) for the basic operations. Also taking the tree structure into account, the

complexity for finding resources is O(p) while p is the number of path elements.

A resource in this implementation concept has to inherit from ResourceInstance which imple-

ments functionalities of a tree node. These functionalities comprise methods for requesting

its path, sub-path, and parent node and adding, removing, and getting child resources. These

98 5. Intercloud SLA Management

functionalities are used by the container for instantiation, exploration, and resource methods

invocation. There are two ways for deploying resources within the container: with a static

sub-path or a dynamically generated UUID as sub-path. For this purpose two annotations are

defined which are applicable to resources classes as illustrated in listing 5.10.

✞ ⊵
@Path("/compute")

public class ComputeManager extends ResourceInstance {

...

}

@PathID

public class VirtualMachine extends ResourceInstance {

...

}✝ ✆
LISTING 5.10: Resource class annotations

Classes annotated with @Path specify a static sub-path to which this resource is deployed.

In contrast, classes annotated with @PathID are deployed under a sub-path consisting of a

generated UUID. JAX-RS allows to specify path annotations also for methods and several path

elements per annotation. The implementation concept applied here follows the approach that

each resource is present only under a specific path. The reason for this is that these resources

can have XMPP over REST methods and actions implemented for different representations or

type sets. All these definitions belong to only a single resource and are separated in that way.

Furthermore, a state machine can be applied to each resource instance which could affect the

visibility and behavior of methods if they would have a similar path annotation as in JAX-RS.

XMPP resource methods are defined with the @XmppMethod annotation. The kind of this

method is passed as parameter like illustrated in figure 5.11. Additionally, the input and output

of this method have to be defined by the @Consumes and the @Produces annotation. Both

annotations require definitions of which media types is consumed or produced by this method.

Optionally a serializer can be defined that has to implement a default constructor and is used

to serialize the representation passed to or from the method. A serializer allows for defining

representation templates that are passed into XWADL documents and to provide additional

functionalities by objects assigned to the method by the Marshaller.

5.3. REST with XMPP 99

✞ ⊵
@Path("/compute")

public class ComputeManager extends ResourceInstance {

@XmppMethod(XmppMethod.POST)

@Consumes(value = OcciXml.MEDIA_TYPE, serializer =

FlavorMixin.class)

@Produces(value = UriText.MEDIA_TYPE, serializer = UriText.class)

public UriText createVM(FlavorMixin flavor) {

VirtualMachine vm = new VirtualMachine(flavor);

String path = this.addResource(vm);

return new UriText(path);

}

}✝ ✆
LISTING 5.11: Resource method annotations

Equivalent to XMPP resource methods, also annotations for XMPP resource actions are devel-

oped. An action has to be annotated with @XmppAction and an assigned action name. While

the action name is obligated, the documentation can be assigned optionally as it is the same

case for @XmppMethod. The primitive data types for the result element and the parameters

are identified automatically by the Marshaller. However, only the following Java data types

are permitted in this implementation: java.lang.String, java.lang.Integer, java.lang.Double,

java.lang.Boolean, and java.net.URI. Moreover, for each parameter an unique name has to be

defined as illustrated in listing 5.12. This allows for having different names among the REST

with XMPP representation and its implementation.✞ ⊵
@PathID

public class VirtualMachine extends ResourceInstance {

@XmppAction(value = "stop", documentation = "Stop this virtual

machine")

@Result(documentation = "Returns true if the vm has been stopped

successfully")

public Boolean stop(@Parameter(value = method, documentation =

"The method used for stopping this vm") String meth) {

...

}

}✝ ✆
LISTING 5.12: Resource action annotations

The state-oriented programming model can be applied to a resource instance in two ways:

Either the resource instance has to inherit from the StateOrientedResourceInstance

100 5. Intercloud SLA Management

class or via an annotation. While the inherited variant allows to retrieve state information on-

demand from a remote instance (e.g. a cloud middleware) the annotated variant defines its state

in a field attribute. Here, the field has to be annotated with @State as depicted in listing 5.13.

In order to define which methods are available at which state, the @Condition annotation

has to be declared for a method or action. If a method is not annotated with @Condition this

operation is visible and accessible at any time.✞ ⊵
public class VirtualMachine extends ResourceInstance {

public enum state { Running, Suspended }

@State

State state;

@Condition("Running")

public Boolean stop(String method) { ... }

@Condition("Suspended")

public Boolean start() { ... }

}✝ ✆
LISTING 5.13: State-oriented programming annotations

The Marshaller is the key component in this implementation concept. It translates incoming

and outgoing IQ stanza into XWADL or REST-XML documents. This is only possible via well

annotated methods as presented before.

5.3.4. Performance Evaluation

The specified REST with XMPP extension is a promising approach as alternative to HTTP-

based RESTful web services. Therefore, this section compares the performance between these

two approaches. For this purpose the test workflow depicted in figure 5.4 has been designed

and is performed for this comparison. This workflow comprises different methods which are

GET, POST, and DELETE. The workflow depicted in figure 5.4 illustrates the HTTP test case

on the left hand side in the graphic and the REST with XMPP calls on the right hand side.

The flavors that are available for creating a virtual machine are retrieved in the first step of the

test workflow. The first flavor of these possible virtual machine configurations is selected and

transferred in the second step. Here a virtual machine resource is created that serves the virtual

machine representation. In fact, no actual virtual machine in the backend is created, because

that would mean an ambiguous overhead which would distort the measurements. After the

virtual machine resource has been created, the URI to the new virtual machine is returned.

This URI is then used in the third step, where the virtual machine is destroyed.

5.3. REST with XMPP 101

Delete virtual machineDelete virtual machine

HTTP DELETE (uri)
XMPP IQ Get (uri) - Build
XMPP IQ Set (DELETE)

Create virtual machineCreate virtual machine

HTTP POST (/compute flavor) XMPP IQ Set (POST flavor)

Retrieve templatesRetrieve templates

HTTP GET (/flavor) XMPP IQ Get (/compute) - Build

FIGURE 5.4.: Workflow of the performance test

The load tests measured 50 test runs for each test step of the workflow with both HTTP and

REST with XMPP code bases. After each test run of the overall workflow, the number of

resources is increased in order to measure the transversal scalability as a function of the amount

of available resources.

Mac Mini Server

(cit-mac1.cit.tu-berlin.de)

Tomcat

Openfire

http-webapp

Mac Mini Server

(cit-mac2.cit.tu-berlin.de)

HTTP over TCP
http-client

TCP socket

XMPP Component

xmpp-client
XMPP over TCP

xmpp-resources

FIGURE 5.5.: Experimental setup for the performance test

102 5. Intercloud SLA Management

The performance tests used two Mac Mini servers as shown in figure 5.5. Each server is

equipped with one Intel Core 2 Duo 2.66 GHz CPU and 4 GB DDR3 SDRAM. The nodes

are connected via regular Gigabit Ethernet links and run Mac OS X Yosemite version 10.10.3

(Darwin kernel version 14.3.0). Both nodes run Java version 1.8.0 40 (Oracle Java SE Devel-

opment Kit 8u40). The HTTP web application is deployed as war file in an Apache Tomcat

installation in version 8.0.23. The XMPP server used for the performance tests is an Openfire

in version 3.10.0. Both are installed on the same physical host. Additionally, the XMPP Exter-

nal Component that hosts the Resource Container is executed on the same host as well. This

component is connected to the Openfire server via a local TCP socket.

Figures 5.6, 5.7, and 5.8 show response times of all test cases. It is important to note that the

scale of each diagram’s response time axis is adapted to fit the measured values.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

0 10 20 30 40 50 60 70 80 90

R
e

tr
ie

v
e

 t
im

e
 i

n
 n

a
n

o
s

e
c

o
n

d
s

Number of resource instances

HTTP XMPP XMPP incl. client build

FIGURE 5.6.: Performance of retrieving a flavor template

Figure 5.6 illustrates the performance for the first step of the test workflow. Here the REST

with XMPP approach performs better in any case. While for the HTTP test case only one curve

(blue) is depicted, for the XMPP test case two curves (red and green) are displayed. The green

curve illustrates the measured response time for retrieving the XWADL document that already

includes all acceptable templates for the second step of the test workflow. The red curve shows

the retrieve time for getting the flavors from the client that has been build dynamically based on

the XWADL document. Because of the fact that the pure retrieve of flavors from a local client

instance is executed in the same JVM and does not require any additional network transmission,

the retrieve time tends to zero.

5.3. REST with XMPP 103

Figure 5.7 illustrates the performance for creating a virtual machine resource. Here in both

code bases, the REST with XMPP and the HTTP, a POST method with the same complexity

is invoked. This equivalent method invocations clearly show the differences in achievement

levels.

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

6000000

6500000

7000000

0 10 20 30 40 50 60 70 80 90

R
e

s
p

o
n

s
e
 t

im
e
 i

n
 n

a
n

o
s
e
c
o

n
d

s

Number of resource instances

HTTP XMPP

FIGURE 5.7.: Performance of creating a compute resource

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

6000000

6500000

0 10 20 30 40 50 60 70 80 90

R
e
s
p

o
n

s
e
 t

im
e
 i

n
 n

a
n

o
s
e
c
o

n
d

s

Number of resource instances

HTTP XMPP XMPP incl. client build

FIGURE 5.8.: Performance of deleting a compute resource

104 5. Intercloud SLA Management

Figure 5.8 compares response times for deleting the virtual machine that has been created in

the previous step. This figure has three curves similar to the first step, but in this scenario the

green curve depicts the entire process time for requesting the resource’s XWADL document,

creating the client based on that XWADL, and invoking the DELETE method that terminates

the virtual machine resource at the given URI. The red curve in contrast only shows the method

invocation, i.e. only two network transmissions: one for the request and one for the response.

The performance measurements show significant improvements. Depending on the implemen-

tation and the scenarios the REST with XMPP API is designed for, this approach is not only an

alternative to HTTP but rather a serious competitor.

5.4. REST with XMPP Rendering

As described in section 3.6 the OCCI standard consists of three specifications: The OCCI-Core

[64], the OCCI-HTTP Rendering [66], and the OCCI-Infrastructure [67]. Since May 2015 the

OCCI working group published the new version 1.2 for public comments. This version is not

standardized until today, but will be in this form or with less modifications in the near future.

The proposed version 1.2 consists of eight specifications built on each other. This new specifi-

cation family is quite a bit more modular than the standardized version 1.1. For example, the

OCCI-HTTP Rendering v1.1 has been split into Text Rendering v1.2, JSON Rendering v1.2,

and HTTP Protocol v1.2. Additionally three further OCCI extensions have been introduced to

become a part of this specification family: The OCCI Platform Model, the OCCI SLA Model,

and the OCCI Monitoring Model. The following table 5.2 shows a comparison of required

implementations between these two versions:

TABLE 5.2.: Comparison of required OCCI specification implementations

Specification OCCI v1.1 OCCI v1.2

Core Model MUST MUST

Text Rendering MUST MUST

JSON Rendering MAY MUST

HTTP Protocol MUST MUST

Infrastructure Model SHOULD SHOULD

Platform Model — MAY

SLA Model — MAY

Monitoring Model — MAY

5.4. REST with XMPP Rendering 105

Both OCCI specification families in version 1.1 and in version 1.2 define the fundamental

OCCI Core Model that is renderable and applicable for the REST architecture style. How-

ever, only the applicability to HTTP is defined. Though version 1.2 specifies renderings for

application/occi+json, text/uri-list, text/plain, and text/occi media

types which can also be used for this approach, the REST with XMPP protocol provides more

capabilities to express the classification and identification model. Moreover, XMPP is XML-

based and an XML rendering would not only fit better in the XMPP concept but also cloud

increase the performance, because stanzas are transmitted as XML streams and are also inter-

preted in that way. For these reasons the application of the REST with XMPP protocol and

an XML rendering for the OCCI Core Model is presented in the following. In particular, the

classification model is expressed in XWADL documents and two novel media types for XML

rendered representations, namely xmpp/occi and xmpp/occi-list are introduced.

5.4.1. Classification Rendering

The OCCI-HTTP Rendering specification defines a query interface located at the path /-/ of

the root of the OCCI implementation [66]. This query interface has the purpose to expose types

and capabilities of an OCCI implementation. Here, all defined types including Kinds, Mixins,

Attributes, Links, and Actions are exposed. These definitions are extended with a location

attribute that advertises the location for which the type can be applied to. A filter mechanism is

also defined and must be supported by an implementation, because the amount of data for such

a query interface can be quite quickly become very huge.

The classification rendering for REST with XMPP follows another approach. As specified

before, an XWADL document advertises just the capabilities of a specific resource instance

at a specific path. Thus not all types must be retrieved but just the types which belong to

this particular resource. Furthermore, the location attribute is not required, because resources

are discovered and explored by the nature of the REST with XMPP protocol. In contrast to

the HTTP rendering, the REST with XMPP rendering also exposes all methods which are

available for a particular resource. Moreover, Actions are exposed and its parameterization

is explorable in the same fashion. The Kind of a resource instance with its related Mixins,

Links, and Attributes are defined in the grammars section of XWADL documents as illustrated

in listing 5.14.

106 5. Intercloud SLA Management

✞ ⊵
...

<resource_type path=”/compute” xmlns=”urn:xmpp:rest−xwadl”>
<documentation title=”Summary”>This resource allows for managing

compute instances, e.g. creating virtual machines.

</documentation>

<grammars>

<urn1:Classification xmlns:urn1=”urn:xmpp:occi−classification”>
<urn1:KindType> ... </urn1:KindType>

<urn1:MixinType> ... </urn1:MixinType>

<urn1:LinkType> ... </urn1:LinkType>

</urn1:Classification>

</grammars>

...✝ ✆
LISTING 5.14: Example grammars element for classification rendering

The classification of a resource exposed in the grammars section of an XWADL document has

to be in compliance with the classification schema that can be found in appendix A.3. Here,

the Classification element forms the root element of a classification document and may

comprise exactly one Kind classification and an unbounded set of Mixin and Link classifications

as sub-elements.

Category Classification

The CategoryClassification type is the base type of all other classification types:

KindType, MixinType, and LinkType. This CategoryClassification type spec-

ifies the schema, the term, the title, and a set of attributeClassification of any

inherited category type. This classification enables an unique assignment of representations and

types according the OCCI Core Model. While the schema and the term element specifies the

assignment, the attributeClassification defines the attributes that are able to apply

to this particular category. The sub-elements of an attributeClassification are the

same as specified in the OCCI Core Model and are exemplarily depicted in listing 5.15.

Each attributeClassification must have one name, one type, one mutable, one

required, zero or one default, and zero or one description element. These sub-

elements specify a particular attribute exactly, its type, and how this attribute is handled. The

schema defines a static set of possible types that can be assigned to an attribute which are:

STRING, ENUM, INTEGER, FLOAT, DOUBLE, BOOLEAN, URI, SIGNATURE, KEY,

DATETIME, DURATION, LIST, and MAP.

5.4. REST with XMPP Rendering 107

✞ ⊵
<KindType>

<term>compute</term>

<schema>http://schema.ogf.org/occi/infrastructure#</schema>

<title>Compute Resource</title>

<attributeClassification>

<name>occi.compute.cores<name>

<type>INTEGER</type>

<mutable>true</mutable>

<required>false</required>

<default>1</default>

<description>Number of virtual CPU cores assigned to the

instance</description>

</attributeClassification>

...

</KindType>✝ ✆
LISTING 5.15: Example kind and attribute classification rendering

Mixin and Link Assignment

In contrast to the KindType, the MixinType and the LinkType extend the Category

Classification type each with one required additional sub-element as illustrated in listing

5.16. The LinkType has a child element called relation that defines the classification type

which this link can point to. And the MixinType has a child element called applies that

defines the classification type which this mixin can applied to. While all these category types

are listed flat, a mixin could be applied to a listed kind, to a listed link, to another listed mixin, or

to the basis category schema. If a mixin applies to the http://schema.ogf.org/occi/

core#category type, then this mixin can be applied to any other kind or link.✞ ⊵
...

<MixinType>

<term>ipnetworkinterface</term>

<schema>http://schema.ogf.org/occi/infrastructure/networkinterface#

</schema>

...

<applies>http://schema.ogf.org/occi/infrastructure#networkinterface

</applies>

</MixinType>

<LinkType>

<term>networkinterface</term>

<schema>http://schema.ogf.org/occi/infrastructure#</schema>

...

<relation>http://schema.ogf.org/occi/infrastructure#network

108 5. Intercloud SLA Management

</relation>

</LinkType>

...✝ ✆
LISTING 5.16: Example mixin and link classification rendering

5.4.2. Representation Rendering

The representation of a resource has to be in compliance with the classification expressed in a

XWADL document’s grammar section and with the representation schema that can be found in

appendix A.4. While a classification document has a Classification element as its root

and a KindType element, a set of MixinType elements, and a set of LinkType elements

as child elements, a representation document has a Category element as its root and a Kind

element, a set of Mixin elements, and a set of Link elements as child elements. Hence, the

Kind, the Mixin, and the Link elements still have a schema and a term element in order

to identify their classification, no additional declarations of attributes, relations, and possible

applications are included in a representation. An attribute is identified by its name and has

a particular sub-element that can be validated against the schema and has to be analogous to

the classification declarations as illustrated in listing 5.17. This allows to transmit values in a

representation which are string-based but are parsed in a specific number encoding.✞ ⊵
...

<request mediaType=”xml/occi”>
<Category xmlns=”urn:xmpp:occi−representation”>

<Kind>

<term>compute</term>

<schema>http://schema.ogf.org/occi/infrastructure#</schema>

<title>Compute Resource</title>

<attribute name=”occi.compute.memory”>
<DOUBLE>4.0</DOUBLE>

</attribute>

<attribute name=”occi.compute.cores”>
<INTEGER>2</INTEGER>

</attribute>

</Kind>

...

</Category>

</request>

...✝ ✆
LISTING 5.17: Example representation of a kind

5.4. REST with XMPP Rendering 109

While the classification of kinds, mixins, and links is flat, the representation of them is sorted.

In particular, mixins which are defined and applied to a kind are listed as a set of elements

under the Category element and mixins which are defined and applied to a link are listed as

child elements of that Link which they are applied to.

5.4.3. Implementation Concept

Annotations are ideal to add metadata to classes, fields, and methods. Therefore, the imple-

mentation concept for the OCCI rendering makes also use of annotations similar to the im-

plementation concept for REST with XMPP. Since the data model of a representation and its

classification have to be assigned to Java classes, two base classes are introduced: Category

and LinkCategory. Four additional annotations are defined which allow to assign classifi-

cation metedata to classes and fields: Kind, Mixin, Link, and Attribute. Listing 5.18

illustrates how these annotations are used. Here, the ComputeKind is defined.

✞ ⊵
@Kind(schema = "http://schema.ogf.org/occi/infrastructure#",

term = "compute")

public class ComputeKind extends Category {

@Attribute(name = "occi.compute.cores",

type = AttributeType.INTEGER,

mutable = true,

required = false,

value = "1",

description = "Number of virtual CPU cores assigned

to the instance")

public Integer cores = 1;

...

}✝ ✆
LISTING 5.18: Compute Kind declaration

The annotations which can be assigned to a class (i.e. Kind, Mixin, Link) require a defi-

nition of a schema and a term that identifies that particular classification type. In contrast to

the Kind annotation, the Mixin and the Link annotation need more information for their

definition as illustrated in listing 5.19. The Link annotation has a relation field that de-

fines the classification type which this link can point to. And the Mixin annotation has a

applies field that defines the classification type which this mixin can be applied to. How-

ever, both fields have the http://schema.ogf.org/occi/core#category defini-

tion as default value which makes the fields optional.

110 5. Intercloud SLA Management

✞ ⊵
@Link(schema = "http://schema.ogf.org/occi/infrastructure#",

term = "networkinterface")

relation =

"http://schema.ogf.org/occi/infrastructure#network")

public class NetworkInterfaceLink extends LinkCategory {

...

}

@Mixin(schema =

"http://schema.ogf.org/occi/infrastructure/networkinterface#",

term = "ipnetworkinterface",

applies =

"http://schema.ogf.org/occi/infrastructure#networkinterface")

public class IpNetworkInterfaceMixin extends Category {

...

}✝ ✆
LISTING 5.19: Network interface Link and Mixin declaration

Additionally, three base classes are introduced: Collection, Resource, and Link. These

base classes provide basic functionalities according to the OCCI Core Model specification. The

sub-classes which inherit from one of these base classes have to be annotated with an optional

summary that explains the purpose of this resource and a Classification annotation that

specifies the Kind, Mixins, and Links that are assigned to this resource. Listing 5.20 illustrates

their use by the example of a virtual machine which is used in the previous sections as well.

✞ ⊵
@Summary("This resource allows for managing a particular virtual

machine.")

@Classification(kind = ComputeKind.class,

mixins = {IpNetworkInterfaceMixin.class},

links = {NetworkInterfaceLink.class})

public class VirtualMachine extends Resource {

...

}✝ ✆
LISTING 5.20: Compute resource classification annotation

5.5. Intercloud Agreement-Mediators

This thesis aims to develop an autonomous web service based Agreement-Mediator as a third

party that sources out SLA management tasks into a neutral zone without taking the consumer’s

5.5. Intercloud Agreement-Mediators 111

or the provider’s side. Thus, the Agreement-Mediator adds an additional transitive relationship

between service providers and service consumers. Figure 5.9 depicts the developed architecture

and service distribution in the intercloud overlay network. This architecture facilitates service

discovery mechanisms and allows for comparing services based on their advertised QoS. Fur-

thermore, customers are able to negotiate individual SLAs before they come into effect. In

particular, the goals achieved with this approach are:

• services are advertised with individual quality levels and guarantees that a provider is

willing and able to deliver;

• consumers are able to discover and to easily compare service offerings of different

providers;

• providers are able to publish service offerings of mutual intentions for business relation-

ships in the form of SLA offers;

• monitoring services are supported in order to feed in monitoring measurements for auto-

matic compliance verification of SLA terms;

• participating parties are notified about agreement-related events like creation, violation

or termination;

• the overhead for managing SLAs between consumers and providers is minimized by

intercloud developed ready-to-use solutions; and

• higher trust is established by transferring mediation affiliation into an external and neutral

entity.

The Intercloud Agreement-Mediator is basically provided by the Intercloud Exchange. How-

ever, services from all intercloud topology elements are used to provide the promised func-

tionalities as depicted in figure 5.9. For instance, the Intercloud Root hosts a global service

repository which dynamically changes, based on advertisements that provider published in the

service catalog all along. This service catalog is a global marketplace to which all participating

organizations have access to. The Intercloud Exchange hosts a service catalog as well. This lo-

cal service repository hosts in its service catalog only the service offering of the provider which

this Intercloud Exchange belongs to. The customers are not allowed to access the global ser-

vice repository directly, but have to browse for a desired service in the local service repository

of its provider. Thus, providers are able to decide which product offering they pass on to their

customers. One reason for this design decision is its facilitation for providers to apply filter

mechanisms on product offer which they want to pass on to their customer. Another reason

is a business related aspect that providers would like to sell their services first. After all their

resources are in use further third-party service are offered. Of course, if the providers do not

112 5. Intercloud SLA Management

Exchange

Organization B

Exchange

Organization A

Root

Organization X

Global Service Repository (Service Catalog)

Agreement Engine

Agreement

Evaluation

Publish service offering

Access Service

Negotiate SLAs

Discover and

Compare

services

Customer of Organization A

Organization C

Gateway

Organization B

Cloud Middleware

Organization B

In-house Infrastructure

Client

Demand Management System

 Service MonitoringService Instance

Service Provisioning System

Domain-specific Service

Management

Local Service Repository

Service Offer

Negotiation

Agreement

Local Service Repository

Create SLAs

Event Notification

Service Monitoring

FIGURE 5.9.: Architecture of the Intercloud Agreement-Mediator

have a desired service or any services at all, the provider plays the role of a broker and sup-

ports the user with advanced functionalities to find, compare, and use a service of a third-party

provider. In general, if a provider has its own local service repository and appropriated access

to the global service repository, each provider is able to design his own customized marketplace

available over HTTP.

When a customer has found a potential product that is considerable for purchase, the customer

can buy the service as advertised or can start a negotiation. However, not all service offerings

in a service repository are negotiable. Whether a service offer is negotiable or not depends on

the provider who offered that service. If the customer buys a service without any negotiation,

an agreement is created at the Intercloud Exchange of the provider that enables its customer

5.6. Protocol Extensions 113

the access to the intercloud network. Thus, this provider is an autonomous notary in this case.

If the service offer is negotiable, a negotiation instance is created at the Intercloud Exchange

of the provider that offers the service. If both parties agree to conditions negotiated in multiple

rounds, an agreement is created as in the case of no negotiation. Thus, the agreement instance

is always fully under the control of an independent party. Hence, providers can also offer

their own services to customers, the agreement is created at the Intercloud Exchange of the

same provider. This would obviously destruct the impartiality of the Intercloud Agreement-

Mediator.

If an agreement is established, this agreement serves as formal contract between the customer

and the provider of the service. The content of this agreement reflects the business relationship

and the service reference, conditions, and guarantees that are related to this particular transac-

tion. If the customer buys more than one service or adds additional services to this business

relationship with the same provider later on, the established agreement is updated and no addi-

tional agreements are created. In fact, each customer has a single agreement with a particular

provider to which a business relationship exists. Each service with appropriated guarantees and

further declarations is expressed as a link, i.e. ServiceDescriptionTerm, ServiceReference, or

GuaranteeTerm.

The evaluation of an agreement is based on monitoring measurements that have to be pro-

vided either by the provider of the service or by the customer. These measurements have to be

passed to an event stream provided by the Intercloud Exchange where the agreement instance

is located. The data model used to transmit measurements has to be in compliance with the

XEP-0337: Event Logging over XMPP protocol extension [158]. Thus, any kind of informa-

tion can be reported and evaluated. If an agreement violation is detected or any other event

occurs which is well worth to inform, the basic capabilities of XMPP are used. In particular, a

message stanza is sent to the provider of the service as well as to the customer who is affected

by this event.

5.6. Protocol Extensions

The previous section described the Intercloud Agreement-Mediator solution. However, such

an architecture requires a set of protocol extensions and adjustments which are not specified

in the OCCI specification family. Therefore, this section presents and specifies the missing

extensions in order to establish such an Intercloud Agreement-Mediator with its capabilities

and behavior.

114 5. Intercloud SLA Management

5.6.1. Monitoring Model

The OCCI Monitoring Model specification based fully on the OCCI Core Model version 1.1.

The purpose of this specification is to define a standardized interface that enables users to re-

quest the creation of a distinct cloud monitoring infrastructure, to configure this infrastructure

according to pre-defined requirements, and to access quantitative measurements of the perfor-

mance collected by this infrastructure for a specific set of provisioned cloud services. The

OCCI Monitoring Model introduces two new entity types which are: the Sensor and the Col-

lector. The Collector type represents a link that defines timings used for the measurement. The

Sensor type represents a resource that defines how to process measurement results.

However, this specification is still under development and contains some bugs (e.g. a reference

to further OCCI extensions like OCCI Notification Extension which do not exist, duplicated

attributes in the Collector link and the Sensor resource, etc.). Therefore, an advanced and ide-

alized specification for the Monitoring Model is presented in this subsection. This model also

has a Sensor and a Collector type, but with different attributes, different behavior, and in gen-

eral a different intended purpose. The model described in the following distinguishes between

two natures of sensors: an active sensor and a passive sensor. A passive sensor is defined as an

instrument that receives data and measures a provisioned service without sampling or polling

information from a process. In contrast, an active sensor has to continuously sample the perfor-

mance of a service and has to actively poll measurements from a process. The nature of these

sensors is schematically depicted in figure 5.10.

Passive Sensor

Active Sensor

sample

measurand

measurand

measurement
Collector

measurement
Collector

Aggregatorvalue

key

performance

indicator

FIGURE 5.10.: Schematical monitoring infrastructure

Figure 5.10 illustrates a schematical composition of instruments of a measurement chain. Here,

a passive and an active sensor collect raw information of the performance, e.g. a service is

available or not (true/false). This raw information is processed as measurement with a specific

unit (e.g. Bolean) to a collector. The collector gathers the measurements for a specific time

period and calculates a value based on pre-defined metrics, e.g. an availability of 99% in the

last 24 hours. This value can then simply be processed as it is or aggregated with other values,

e.g. to calculate the availability for a set of services. The result is a Key Performance Indicator

(KPI) for a particular monitoring infrastructure.

5.6. Protocol Extensions 115

In order to support a similar measurement chain with this monitoring model, three types are

introduced: the Sensor and the Meter, and the Collector type. Figure 5.11 gives an overview

of these key types involved in this specification.

Sensor

-subject:String

-lastMeasurand:Float

-unit:String

-state:Enum{active, error, inactive}

Resource

-summary:String

Link

M-target:URI
*1 source links

Collector

-lastMeasurement:Float

-unit:String

-state:Enum{up-to-date, obsolete}

Meter

-value:Float

-unit:String

-state:Enum{valid, invalid}

FIGURE 5.11.: Overview diagram of monitoring model types

The monitoring types inherit the OCCI Core Model Resource and Link base type and all their

attributes. Table 5.3 describes the Mixin instances defined for each of the monitoring Resource

or Link sub-types. The base URL http://schemas.cit.tu-berlin.de/occi has been replaced with

<schema> in this table for better readability. These types can be extended according to the

OCCI Core Model [64].

TABLE 5.3.: Mixin instances defined for the monitoring sub-types.

Term Scheme Title Parent Kind

sensor <schema>/monitoring# Sensor Resource <schema>/core#resource

meter <schema>/monitoring# Meter Resource <schema>/core#resource

collector <schema>/monitoring# Collector Link <schema>/core#link

The following subsections describe the Sensor, Meter and Collector types in detail. Further-

more the Attributes, Actions and states definition for each of them, including type-specific

mixins, are specified.

Sensor

The Sensor type represents a generic sensor resource, e.g. an error scanner or a reachability

sampler like ping. The Sensor inherits the Resource base type defined in OCCI Core Model

[64]. It is assigned to the Mixin instance http://schemas.cit.tu-berlin.de/occi/monitoring#sensor

which has to be exposed by each instance of Sensor.

116 5. Intercloud SLA Management

TABLE 5.4.: Attributes defined for the Sensor type.

Attribute Type Multi-
plicity

Mutability Description

occi.sensor.subject String 0. . . 1 Immutable A unique identifier
that specifies the
subject under test.

occi.sensor.lastmeasurand Float 0. . . 1 Immutable Current measurand
of the last sample.

occi.sensor.unit String 0. . . 1 Immutable The unit of the mea-
surand.

occi.sensor.state Enum {active,
inactive, error}

1 Immutable Current state of the
instance.

Table 5.4 describes the attributes defined by the Sensor through its Mixin instance. These

attributes should be exposed by an instance of the Sensor type depending on the “Multiplicity”

column in the aforementioned table.

TABLE 5.5.: Actions defined for the Sensor type

Action Term Target state Attributes

start active –

stop inactive –

Table 5.5 describes the Actions defined for Sensor by its Resource instance. These Actions must

be exposed by an instance of the Sensor type of the monitoring model implementation. Figure

5.12 illustrates the state diagram for a Sensor instance.

active

inactive

Error

start stop

FIGURE 5.12.: State diagram for a Sensor instance

A sensor is in the “inactive” state after creation. In this state the sensor does not sample the

performance of a service and does not accept any changes to the last measurand. The user

or the provider have to deliberately change the state to “active” by invoking the start action.

5.6. Protocol Extensions 117

The purpose for this design is justified by the influence of a monitoring overhead that may have

impact on the performance of the subject under test. The user or the provider can stop sampling

processes by invoking the stop action that changes the state of a sensor to “inactive”. If an error

occurs, the sensor should be in the “error” state. The state of a sensor has direct impact on

all other instances of Collector links and Meter resources in a measurement chain that has a

particular sensor as a source.

ActiveSensor Mixin

An ActiveSensor mixin introduces an attribute which is required for configuring instances of

an active sensor resource. An active sensor in contrast to a passive sensor actively samples

periodically the performance of a service to be monitored. The ActiveSensor mixin is assigned

the schema http://schemas.cit.tu-berlin.de/occi/monitoring/sensor# and the “term” value ac-

tivesensor.

TABLE 5.6.: Attributes defined by the ActiveSensor mixin

Attribute Type Multi-
plicity

Mutability Description

occi.sensor.samplerate Time
(ISO8601)

1 Mutable Sampling rate with
which the sensor
scans a subject
periodically.

Table 5.6 defines the attribute introduced by the ActiveSensor mixin. This mixin must be re-

lated to the Sensor mixin by setting the applies attribute to http://schemas.cit.tu-berlin.de/occi/

monitoring#sensor.

Figure 5.13 illustrates an example UML object diagram where a Sensor is associated with an

ActiveSensor mixin when both are instantiated. It shows an example for an active sensor that

checks the availability of a virtual machine every 5 minutes if the virtual machine was reachable

at the last sample.

PassiveSensor Mixin

A PassiveSensor mixin introduces an attribute which is required for configuring instances of

a passive sensor resource. A passive sensor in contrast to an active sensor does not samples peri-

odically, but is event driven. The PassiveSensor mixin is assigned the schema http://schemas.cit.tu-

berlin.de/occi/monitoring/sensor# and the “term” value passivesensor.

118 5. Intercloud SLA Management

AvailabilityChecker : Sensor

occi.sensor.lastmeasurand = true

occi.sensor.unit = Boolean

occi.sensor.state = active

occi.sensor.samplerate = PT5M

ActiveSensor : Mixin

term = activesensor

schema = http://schema.ogf.org/occi/monitoring/sensor#

title = An Active Sensor Mixin

FIGURE 5.13.: Example of a Sensor instance associated with an ActiveSen-
sor mixin

TABLE 5.7.: Attributes defined by the PassiveSensor mixin

Attribute Type Multi-
plicity

Mutability Description

occi.sensor.lastoccurrence Time
(ISO8601)

1 Immutable Timestamp of the
last occurrence of a
sampling event.

Table 5.7 defines the attribute introduced by the PassiveSensor mixin. This mixin must be

related to the Sensor mixin by setting the applies attribute to http://schemas.cit.tu-berlin.de/

occi/monitoring#sensor.

VirtualMachineCrashesLogger : Sensor

occi.sensor.lastmeasurand = 0011223344556677-vm01...

occi.sensor.unit = UUID

occi.sensor.state = active

occi.sensor.lastoccurrence = 2015-05-20T19:25:39+02:00

PassiveSensor : Mixin

term = passivesensor

schema = http://schema.ogf.org/occi/monitoring/sensor#

title = An Passive Sensor Mixin

FIGURE 5.14.: Example of a Sensor instance associated with a PassiveSen-
sor mixin

Figure 5.14 illustrates an example UML object diagram where a Sensor is associated with a

5.6. Protocol Extensions 119

PassiveSensor mixin when both are instantiated. It shows an example for a passive sensor that

logs virtual machine crashes. In the example, the last virtual machine that had been crashed

and logged by this sensor was the machine with UUID “. . . vm01 . . . ”. This event occurred on

May 20, 2015, 07:25:39 pm, Central European Time (CET).

Meter

The Meter type represents a generic meter resource, e.g. a service availability meter or a

network traffic meter like nload or iftop. The measurements provided by such a meter can

be collected individually or sampled by a Sensor resource instance, gathered by Collector

link instances and processed within the Meter resource instance. The Meter inherits the Re-

source base type defined in OCCI Core Model [64]. It is assigned to the Mixin instance

http://schemas.cit.tu-berlin.de/occi/monitoring#meter which has to be exposed by each instance

of Meter.

TABLE 5.8.: Attributes defined for the Meter type

Attribute Type Multi-
plicity

Mutability Description

occi.meter.value Float 0. . . 1 Immutable Current value of
the service perfor-
mance.

occi.meter.unit String 0. . . 1 Immutable The unit of the
value.

occi.meter.state Enum {valid,
invalid}

1 Immutable Current state of the
instance.

Table 5.8 describes the attributes defined by the Meter through its Mixin instance. These at-

tributes should be exposed by an instance of the Meter type depending on the “Multiplicity”

column in the aforementioned table.

The Meter type has no Actions, but a state that indicates whether the value is “valid” or “in-

valid”. These states must be exposed by an instance of the Meter type of the monitoring model

implementation. Figure 5.15 illustrates the state diagram for a Meter instance.

A meter is in the “invalid” state after creation. The meter persists in this state until a valid

value is exposed via the “occi.meter.value” attribute. When a valid value is exposed, the meter

changes its state to “valid”. If an instance of the Meter type receives its measurements from

an instance of a Collector link type, the state of the collector has direct impact on the state of

this meter. In fact, if the collector provides obsoleted measurements, the value of the meter is

invalid and should advertise this state through the “invalid” state of the meter instance.

120 5. Intercloud SLA Management

valid

invalid

FIGURE 5.15.: State diagram for a Meter instance

Collector

The Collector type is responsible for gathering measurements from a sensor and to calculate a

value based on an applied metric. The Collector inherits the Link base type defined in OCCI

Core Model [64]. It is assigned to the Link instance http://schemas.cit.tu-berlin.de/occi/mon

itoring#collector which has to be exposed by each instance of Collector.

TABLE 5.9.: Attributes defined for the Collector type

Attribute Type Multi-
plicity

Mutability Description

occi.collector.measurement Float 0. . . 1 Immutable Current measure-
ment based on a
calculated aggrega-
tion of samples.

occi.collector.unit String 0. . . 1 Immutable The unit of the mea-
surement.

occi.collector.state Enum {up-to-
date, obsolete}

1 Immutable Current state of the
instance.

Table 5.9 describes the attributes defined by the Collector through its Link instance. These at-

tributes should be exposed by an instance of the Collector type depending on the “Multiplicity”

column in the aforementioned table.

The state of a Collector instance indicates whether the value is “up-to-date” or “obsolete”.

These states must be exposed by an instance of a Collector type of the monitoring model

implementation. Figure 5.16 illustrates the state diagram for a Collector instance.

Whether a measurement is up-to-date or not depends on the source of the Link instance. A Link

instance has to be in the state “pending” after instantiation. The collector has to persist in this

state until a calculation with minimum one measurement is possible. Afterwards the state of a

5.6. Protocol Extensions 121

up-to-date

pending obsolete

FIGURE 5.16.: State diagram for a Collector instance

Collector instance has to be switched into the state “up-to-date” or “obsolete”. During its life

time, a Collector instance can switch between “up-to-date” and “obsolete”. In fact, the state of

a collector depends on the up-to-dateness of the measurement that it exposes. If no calculation

can be performed in an exposed time period, the state of a collector should be in the “obsoleted”

state.

5.6.2. Service Level Agreement Model

The OCCI SLA Model specification is based on the OCCI Core Model version 1.2. The goal

of this specification is to define a standardized SLA interface that enables users to create and

manage SLA related resources. In particular, these SLA related resources realize agreements

between an OCCI-enabled cloud service provider and potential consumers. The OCCI SLA

Model introduces two new entity types which are: the Agreement and the AgreementLink.

The Agreement type represents a resource that defines an agreement. This agreement resource

is used for negotiation, service instantiation, and evaluation during the whole life-cycle of a

particular business relationship. The AgreementLink type represents links of an agreement

resource to provisioned service resources after both parties have agreed to an particular agree-

ment.

However, this specification is defined for an interface of a single cloud installation. Thus,

resources cannot be distributed among different systems which is the case in the intercloud

architecture and a requirement in order to transfer mediation affiliations to an external neutral

entity. Therefore, an advanced and comprehensive specification for the SLA Model is presented

in this subsection. This model also has an Agreement and an AgreementLink type, but with dif-

ferent attributes, different behavior, and in general a different intended purpose. Additionally,

an Offer and a Negotiation resource is introduced as well as a NegotiationLink, a ServiceRef-

erence link, a ServiceDescriptionTerm link, and a GuaranteeTerm link. This extended SLA

Model allows for distributing SLA and monitoring resources over different entities as depicted

in figure 5.17.

122 5. Intercloud SLA Management

Exchange

Organization B

Root

Organization X

Global Service Repository (Service Catalog)

(3) Observe SLA

states

(2) Negotiate Terms

and Conditions

(1) Discover

and Compare

services
Negotiation Collection

Service Offer

Negotiation Instance

Create SLAs

Service Offer

Service Offer

Service Terms

Service Terms

Service Terms Negotiation Link

Agreement Link

Exchange

Organization A

Agreement Collection

Agreement Instance

ServiceReference Link

Customer of

Organization A

Organization C

FIGURE 5.17.: Schematical architecture of the SLA model

Figure 5.17 illustrates a possible distribution of resources. In this scenario (1) a customer

searches a desired service and retrieves potential offers from the global service repository

hosted at an Intercloud Root. The representations retrieved from the service catalog include

pre-defined terms expressed as links but without a target definition. Additionally, one Ne-

gotiationLink is part of the representation and points to a Negotiation collection hosted at an

Intercloud Exchange. If the user initiates a negotiation, the customer has to create a Negotiation

instance with the offer representation retrieved before. After a Negotiation instance has been

created, (2) the customer is able to negotiate specific terms and conditions in multiple rounds.

If both parties achieve a common agreement, an Agreement instance is created at a third-party

Intercloud Exchange. The provider of the third-party Intercloud Exchange is independent in

this transaction. This Intercloud Exchange hosts the agreement instance for its whole life-time.

5.6. Protocol Extensions 123

When the agreement has been created successfully and all links are instantiated and configured,

the SLA is evaluated continuously. (3) The customer and the provider are able to observe the

state of the established agreement. Furthermore, if an unexpected event occurs, all parties are

informed by a basic XMPP message stanza. Figure 5.18 gives an overview of these key types

involved in this specification.

Offer

-provider:String

-description:String

Resource

-summary:String

Link

M-target:URI
*

1 source

links

ServiceDescriptionTerm

-termlist:Map<attribute, value>

-assessmentinterval:Integer

-state:Enum{undefined,

violated, fulfilled}

Negotiation

-expirationDate:Datetime

-doer:Enum{provider, customer}

-state:Enum{advisory, acceptable,

accepted, rejected}

Agreement

-agreedAt:Datetime

-provider:String

-customer:String

-providerSignature:String

-customerSignature:String

-effectiveFrom:Datetime

-effectiveUntil:Datetime

-state:Enum{pending, observed,

suspended}

GuaranteeTerm

-sensor:String

-slo:String

-relationaloperator:Enum{

<, , =, , , >}

-state:Enum{undefined,

violated, fulfilled}

AgreementLink

NegotiationLink

ServiceReference

FIGURE 5.18.: Overview of SLA types

Offer

The Offer type represents a generic service offer resource that may be exposed in a local ser-

vice repository or in the global service catalog. The Offer inherits the Resource base type

defined in OCCI Core Model [64]. It is assigned to the Kind instance http://schemas.cit.tu-

berlin.de/occi/sla#offer which has to be exposed by each instance of Offer. Table 5.10 describes

the attributes defined by the Offer through its Kind instance.

124 5. Intercloud SLA Management

TABLE 5.10.: Attributes defined for the Offer type

Attribute Type Multi-
plicity

Mutability Description

occi.offer.provider String 0. . . 1 Immutable The domain that identifies
the provider.

occi.offer.description String 0. . . 1 Immutable A textual description of the
service.

Negotiation

The Negotiation type represents a generic negotiation resource that is used to negotiate an

SLA based on an exposed Offer instance. The Negotiation inherits the Resource base type

defined in OCCI Core Model [64]. It is assigned to the Kind instance http://schemas.cit.tu-

berlin.de/occi/sla#negotiation which has to be exposed by each instance of Negotiation.

TABLE 5.11.: Attributes defined for the Negotiation type

Attribute Type Multi-
plicity

Mutability Description

occi.negotiation
.expirationdate

Time
(ISO8601)

1 Immutable The date time at
which this negotia-
tion expires.

occi.negotiation
.doer

Enum
{provider,
customer}

1 Immutable The party of this
negotiation who
have to carries out
the next negotiation
step.

occi.negotiation
.state

Enum
{advisory,
acceptable,
accepted,
rejected}

1 Immutable The current state of
the negotiation in-
stance.

Table 5.11 describes the attributes defined by the Negotiation through its Kind instance. Table

5.12 describes the Actions defined for Negotiation by its Resource instance. These Actions must

be exposed by an instance of the Negotiation type of an SLA model implementation.

The state of a Negotiation instance indicates the progress of the negotiation are either “advi-

sory”, “acceptable”, “accepted”, or “rejected”. These states must be exposed by an instance of

a Negotiation type of the SLA model implementation. Figure 5.19 illustrates the state diagram

for a Negotiation instance.

5.6. Protocol Extensions 125

TABLE 5.12.: Actions defined for the Negotiation type

Action Term Target state Attributes

agree acceptable Customer’s Signature

reject rejected –

sign accepted Provider’s Signature

acceptable

advisory

rejected

accepted

sign

agree

reject

FIGURE 5.19.: State diagram for a Negotiation instance

A Negotiation instance has to be in the state “advisory” after instantiation. The Negotiation

instance has to persist in this state during the whole negotiation process. If the service provider

offers an acceptable counter-offer, the customer is able to accept this offer by invoking the

“agree” Action. Thus, this Negotiation instance changes its state to “acceptable”. If the doer

in this negotiation step is the customer and no acceptable counter-offers has been delivered by

the provider in the past, the customer is able to submit a final counter-offer and to invoke the

“agree” Action. In particular, if the doer is the provider and the state of a Negotiation instance

is “acceptable”, the provider has to decide to accept this agreement offer or to reject it. This

allows to force a faster decision if both parties fail to agree. If the Negotiation instance is in the

“acceptable” state, the customer as well as the provider are able to invoke the “reject” Action.

This will abort the negotiation process. If the customer has agreed and the Negotiation instance

is in the “acceptable” state, the provider is able to agree, too. Therefore, the provider has to

invoke the “sign” Action which changes the state of the Negotiation instance to “accepted”.

With this step an obligated Agreement instance is created which an AgreementLink points to.

The Negotiation instance is in any case or any state only available until expiration date.

126 5. Intercloud SLA Management

Agreement

The Agreement type represents a generic agreement resource that has either been negotiated

with an instance of Negotiation or is based on an exposed Offer instance. The Agreement

inherits the Resource base type defined in OCCI Core Model [64]. It is assigned to the Kind

instance http://schemas.cit.tu-berlin.de/occi/sla#agreement which has to be exposed by each

instance of Agreement.

TABLE 5.13.: Attributes defined for the Agreement type

Attribute Type Multi-
plicity

Mutability Description

occi.agreement
.provider

String 0. . . 1 Mutable The domain that identi-
fies the provider.

occi.agreement
.customer

String 0. . . 1 Mutable The JID that identifies
the customer.

occi.agreement
.customersignature

Signature 0. . . 1 Mutable The customer’s signa-
ture.

occi.agreement
.providersignature

Signature 0. . . 1 Mutable The provider’s signa-
ture.

occi.agreement
.agreedat

Time
(ISO8601)

0. . . 1 Mutable The date time at which
the provider and the
customer agreed.

occi.agreement
.agreedfrom

Time
(ISO8601)

0. . . 1 Mutable The date time when the
agreement starts to be
effective.

occi.agreement
.agreeduntil

Time
(ISO8601)

0. . . 1 Mutable The date time when the
agreement seizes to be
effective.

occi.agreement
.state

Enum
{pending,
observed,
suspended}

1 Immutable Current state of the
agreement instance.

Table 5.13 describes the attributes defined by the Agreement through its Kind instance and

should be exposed by an instance of Agreement. The state of an Agreement instance indicates

whether the SLA is “observed” or “suspended”. These states must be exposed by an instance of

an Agreement type of the SLA model implementation. Figure 5.20 illustrates the state diagram

for an Agreement instance.

An Agreement instance has to be in the state “pending” after instantiation. The agreement

has to persist in this state until the first service is instantiated and the first term Link instance

is configured with a valid target. In general, an instance of Offer or Negotiation may have

5.6. Protocol Extensions 127

observed

pending

suspended

FIGURE 5.20.: State diagram for an Agreement instance

several ServiceReference, ServiceDescriptionTerm, and GuaranteeTerm links, but all of them

do not point to a specific target. The term Link instances are not configured before they are

instantiated in an Agreement instance and the appropriated service is up and running. If one

term Link instances points to an actual service, the agreement is activated and changes its state

to “observed”. If all service instances are canceled and no term Link instances are longer

available, the Agreement instance has to switch into the state “suspended”. During its life time,

an Agreement instance can only switch between these two states.

NegotiationLink

In order to associate an Offer instance with a Negotiation collection that the customer can use

to instantiate a Negotiation instance related to a particular Offer instance. The Negotiation-

Link inherits the Link base type defined in OCCI Core Model [64] and points to a Negotiation

collection hosted at the exchange of the provider of the service offering. It is assigned to the

Link instance http://schemas.cit.tu-berlin.de/occi/sla#negotiationlink which has to be exposed

by each instance of NegotiationLink.

AgreementLink

In order to associate a successfully finished Negotiation instance with an Agreement instance

that has been created after both parties have agreed on the terms and conditions, the Agree-

mentLink link is introduced. The AgreementLink inherits the Link base type defined in OCCI

Core Model [64] and points to an existing Agreement instance in order to provide both parties

with a link to the instantiated agreement. It is assigned to the Link instance http://schemas.cit.tu-

berlin.de/occi/sla#agreementlink which has to be exposed by each instance of AgreementLink.

128 5. Intercloud SLA Management

ServiceDescriptionTerm Link

The ServiceDescriptionTerm type allows to express a set of service terms and evaluates their

compliance. The ServiceDescriptionTerm inherits the Link base type defined in OCCI Core

Model [64] and points to a service that is evaluated. Furthermore, it not only links to and

describes the service, but it also evaluates the target in an assessment interval based on the

attributes that describes the service within this link. It is assigned to the Link instance http://sche

mas.cit.tu-berlin.de/occi/sla#servicedescriptionterm which has to be exposed by each instance

of ServiceDescription.

TABLE 5.14.: Attributes defined by the ServiceDescriptionTerm link

Attribute Type Multi-
plicity

Mutability Description

occi.servicedescriptionterm
.termlist

Map<attribute,
value>

0. . . 1 Immutable Service Descrip-
tion Terms that
the instance target
have to fulfill.

occi.servicedescriptionterm
.assessmentinterval

Integer 1 Immutable Assessment inter-
val to check the
SDT compliance in
seconds.

occi.servicedescriptionterm
.state

Enum
{undefined,
violated,
fulfilled}

1 Immutable The current state of
the term.

Table 5.14 describes the attributes defined by the ServiceDescriptionTerm through its Link in-

stance and should be exposed by an instance of the ServiceDescriptionTerm. The state of a

ServiceDescriptionTerm instance indicates whether the service terms are “fulfilled” or “vio-

lated”. These states must be exposed by an instance of a ServiceDescriptionTerm type of the

SLA model implementation. Figure 5.21 illustrates the state diagram for a ServiceDescription-

Term instance.

A ServiceDescriptionTerm Link instance has to be in the state “undefined” after instantiation.

The service term has to persist in this state until the first assessment has been performed. Af-

terwards the state of the ServiceDescriptionTerm instance has to be switched into the state “ful-

filled” or “violated”. During its life time, a ServiceDescriptionTerm instance can only switch

between these two states.

5.6. Protocol Extensions 129

fulfilled

undefined

violated

FIGURE 5.21.: State diagram for a ServiceDescriptionTerm link

GuaranteeTerm Link

The GuaranteeTerm type allows to express a guarantee term and evaluates its compliance. The

GuaranteeTerm inherits the Link base type defined in OCCI Core Model [64] and points to

a service that is evaluated. Furthermore, it not only links to and describes the service, but it

also evaluates the target based on the attributes that describes the service within this link. It is

assigned to the Link instance http://schemas.cit.tu-berlin.de/occi/sla#guaranteeterm which has

to be exposed by each instance of GuaranteeTerm.

TABLE 5.15.: Attributes defined by the GuaranteeTerm link

Attribute Type Multi-
plicity

Mutability Description

occi.guaranteeterm
.sensor

String 1 Immutable The sensor from which
the link retrieves its
measurements, i.e. the
object.

occi.guaranteeterm
.slo

String 1 Immutable The service level ob-
jective.

occi.guaranteeterm
.state

Enum
{undefined,
violated,
fulfilled}

1 Immutable The current state of the
term.

occi.guaranteeterm
.relationaloperator

Enum
{LESS THAN,
LESS THAN OR EQUAL TO,
EQUAL TO,
NOT EQUAL TO,
GREATER THAN OR EQUAL TO,
GREATER THAN}

1 Immutable The relational operator
to describe the guaran-
tee.

130 5. Intercloud SLA Management

Table 5.15 describes the attributes defined by the GuaranteeTerm through its Link instance and

should be exposed by an instance of the GuaranteeTerm. The state of a GuaranteeTerm instance

indicates whether the guarantee is “fulfilled” or “violated”. These states must be exposed by

an instance of a GuaranteeTerm type of the SLA model implementation. Figure 5.22 illustrates

the state diagram for a GuaranteeTerm instance.

fulfilled

undefined

violated

FIGURE 5.22.: State diagram for an GuaranteeTerm link

A GuaranteeTerm Link instance has to be in the state “undefined” after instantiation. The

guarantee term has to persist in this state until the first assessment is possible. Afterwards the

state of a GuaranteeTerm instance has to be switched into the state “fulfilled” or “violated”.

During its life time, a GuaranteeTerm instance can only switch between these two states.

ServiceReference Link

In order to associate an Agreement instance with an existing service resource instance, the Ser-

viceReference link is introduced. The ServiceReference inherits the Link base type defined in

OCCI Core Model [64] and points to a service in order to link instantiated services with appro-

priated agreements. It is assigned to the Link instance http://schemas.cit.tu-berlin.de/occi/sla

#servicereference which has to be exposed by each instance of ServiceReference.

BusinessValue Mixin

A BusinessValue mixin introduces attributes listed in table 5.16 which are required for describ-

ing the price of a service or a penalty that has to be paid in case of agreement violations. This

BusinessValue mixin is assigned the schema http://schemas.cit.tu-berlin.de/occi/sla# and the

“term” value businessvalue.

This mixin can be related to any other kind, mixin, or link and thus applies to http://schemas

.ogf.org/occi#category.

5.6. Protocol Extensions 131

TABLE 5.16.: Attributes defined by the BusinessValue mixin

Attribute Type Multi-
plicity

Mutability Description

occi.businessvalue
.type

Enum {Reward,
Penalty}

1 Mutable The type of the business
value.

occi.businessvalue
.price

Double 1 Mutable The price for the busi-
ness value.

occi.businessvalue
.currency

String 1 Mutable The currency of the
price.

occi.businessvalue
.billingincrements

String 1 Mutable The billing increments
of the price, e.g. per GB,
per hour, per second, etc.

5.6.3. Event Processing Model

While the previous sections defined kinds, mixins, and links for monitoring and SLA manage-

ment, this sub-section defines mixins which can be applied to any resource or link definition

and complements their application. These mixins can be related to any other kind, mixin, or

link and thus applies to http://schemas.ogf.org/occi#category.

EventLog Mixin

If monitored measurements are transferred between many independent entities, the EventLog

mixin is used to identify a category of events. The EventLog mixin introduces an attribute

listed in table 5.17 that is required for separating event streams sent according to the XEP-

0337: Event Logging over XMPP protocol extension [158]. This EventLog mixin is assigned

the schema http://schemas.cit.tu-berlin.de/occi/cep# and the “term” value eventlog.

TABLE 5.17.: Attributes defined by the EventLog mixin

Attribute Type Multi-
plicity

Mutability Description

occi.eventlog.eventid String 1 Immutable The event id for
this particular event
stream.

Aggregation Mixin

An Aggregation mixin introduces an attribute listed in table 5.18 which is required to expose

an aggregation operation. This operation should have to be applied in order to aggregate mea-

132 5. Intercloud SLA Management

surements of a single source or from different sources. The Aggregation mixin is assigned the

schema http://schemas.cit. tu-berlin.de/occi/cep# and the “term” value aggregation.

TABLE 5.18.: Attributes defined by the Aggregation mixin

Attribute Type Multi-
plicity

Mutability Description

occi.aggregation.operation Enum {min,
max, sum, avg}

1 Immutable The aggregation
operator to specify
how measurements
are aggregated.

LengthWindowMetric Mixin

A LengthWindowMetric mixin introduces attributes listed in table 5.19 which are required for

describing a metric where the calculation of measurements is based on the number of events.

This LengthWindowMetric mixin is assigned the schema http://schemas.cit.tu-berlin.de/occi/

cep# and the “term” value lengthwindowmetric.

TABLE 5.19.: Attributes defined by the LengthWindowMetric mixin

Attribute Type Multi-
plicity

Mutability Description

occi.metric.windowtype Enum
{SlidingWindow,
BatchWindow}

1 Mutable The type of the
window, i.e. either
a periodically
assessed window
(BatchWindow)
or a continuously
assessed window
(SlidingWindow).

occi.metric.windowlength Integer 1 Mutable The length of the
window, i.e. the
number of events
that this window
assesses.

5.6. Protocol Extensions 133

TimeWindowMetric Mixin

A TimeWindowMetric mixin introduces attributes listed in table 5.20 which are required for

describing a metric where the calculation of measurements is based on a time window in which

events occur. This TimeWindowMetric mixin is assigned the schema http://schemas.cit.tu-

berlin.de/occi/cep# and the “term” value timewindowmetric.

TABLE 5.20.: Attributes defined by the TimeWindowMetric mixin

Attribute Type Multi-
plicity

Mutability Description

occi.metric.windowtype Enum
{SlidingWindow,
BatchWindow}

1 Mutable The type of the
window, i.e. either
a periodically
assessed window
(BatchWindow)
or a continuously
assessed window
(SlidingWindow).

occi.metric.windowduration Integer 1 Mutable The time length of
the window, i.e. the
duration that this
window assesses.

occi.metric.durationunit Enum {years,
months, weeks,
days, hours,
minutes, sec-
onds, millisec-
onds}

1 Mutable The unit in which
time length of the
window is speci-
fied.

134 5. Intercloud SLA Management

6. Intercloud Prototyping and Evaluation

Contents
6.1. Implementation . 138

6.1.1. Communication Pattern . 138

6.1.2. Service Discovery . 139

6.1.3. Service Catalog . 141

6.1.4. Complex Event Processing . 142

6.2. Evaluation . 144

6.2.1. Use Case Testing . 146

6.2.2. Load Testing . 150

6.2.3. Conclusion . 151

This chapter describes the prototypical implementation of the features described in the chapter

before and its evaluation in terms of efficiency and scalability. The requirements that such

a software architecture should fulfill are: efficiency, scalability, flexibility, and reusability. In

order to achieve these sustainability requirements, a modularly architecture has been developed

as depicted in the dependencies tree diagram illustrated in figure 6.1. The modules depicted in

this figure 6.1 provide the following functionalities:

xmpp-rest: The xmpp-rest module implements the functionality described in section 5.3.

xmpp-occi: The xmpp-occi module implements the functionality described in section 5.4.

smack: Smack is an open source XMPP client library developed by the Igniterealtime open

source community [159].

xmpp-core: The xmpp-core module is the basis module for all components. It is a fork of

Whack [160] that implements the XEP-0114: Jabber Component Protocol extension.

xmpp-component: The xmpp-component module combines the xmpp-core functionalities

with the xmpp-rest and the xmpp-occi resource deployment. It implements the request/

response model of containers and the particular marshaller for resource access.

136 6. Intercloud Prototyping and Evaluation

 XMPP Layer

xmpp-client

Intercloud Layer

xmpp-component

intercloud-sla

Application Layer

webapp root exchange gateway

intercloud-client intercloud-component

xmpp-cep

xmpp-occi

xmpp-rest xmpp-coresmack

FIGURE 6.1.: Module dependencies of the intercloud prototype

xmpp-client: The xmpp-client module implements functionalities for xmpp-rest and xmpp-

occi IQ translation based on the Smack communication model. Additionally, the client

stub generation is supported in this module which do not require any recompilation of

the client’s code base.

xmpp-cep: The xmpp-cep module implements the complex event processor used for mon-

itoring and SLA evaluation. It defines a set of predefined event types and mixins as

decribed in section 5.6.1 and 5.6.3. It is based on the Esper open source event stream

analysis and event correlation engine.

intercloud-sla: The intercloud-sla module implements the intercloud SLA-Engine described

in section 5.5 and 5.6.2.

intercloud-client: The intercloud-client module provides intercloud specific fuctionalities

for clients.

intercloud-component: The intercloud-component module provides intercloud specific fuc-

tionalities for the intercloud topology elements including discovery and so on.

root: The root module implements the Intercloud Root topology component as an executable

jar archive.

137

exchange: The exchange module implements the Intercloud Exchange topology component

as an executable jar archive.

gateway: The gateway module implements the Intercloud Gateway topology component as

an executable jar archive. The current version available at github supports OpenStack’s

API model.

webapp: The web application module is based on Apache Wicket [161] and Bootstrap [162].

It is a HTTP-based web application that renders the Intercloud REST with XMPP and

OCCI XML Rendering specification in order to provide users a human-friendly access

and management platform for the intercloud network. Furthermore, it prints each request

and responds with syntax highlighting building thus a well-designed debugging tool as

well.

The modules described above and specified in the previous chapter build the protocol stack

depicted in figure 6.2. Here, the XMPP Core specification is the foundation. Its basic func-

tionalities are extended with the XEP-0030 and the XEP-0114 XMPP extension. Build on that,

the REST with XMPP specification is added on top. Then the OCCI rendering is applied and

allows for applying all existing OCCI Extension Models as well as novel extensions specified

in this thesis and future extensions which will be specified in the intercloud initiative.

XMPP

Core
XEP-0030: Service

Discovery

XEP-0114: Jabber

Component Protocol

REST with XMPP

XWADL REST-XML

OCCI Core Model

Classification Rendering OCCI XML Rendering

OCCI – Intercloud Extensions

Infrastructure Platform SLA

FIGURE 6.2.: Protocol stack of the intercloud prototype

138 6. Intercloud Prototyping and Evaluation

6.1. Implementation

This section presents the four essential design concepts which are not specified or described in

the previous sections but are implemented in the intercloud prototype. However, these design

concepts are partially reflected in the specifications in the previous chapter, but are not further

explained in detail. Thus, this section not only presents the developed implementation concepts,

but also illustrates use cases to which the extension specifications can be applied.

6.1.1. Communication Pattern

The communication pattern implemented for an XMPP component is package-driven accord-

ing to the event-driven programming paradigm. Here, the flow of the program is determined

by received packages that are sent from any entity to the particular XMPP component. For

this purpose, the XMPP component implements a thread executor with a thread pool and a

task queue that makes use of the java.util.concurrent.ThreadPoolExecutor.

Each package that is received by a component is wrapped in a PacketProcessor task and

processed by the thread executor. When a package has to be processed, this package is an-

alyzed and handled according to its nature: <message/ >, <presence/ >, and <iq/

>. While message and presence stanzas are connection-independent, IQ stanzas follow a struc-

tured request-response mechanism. The REST with XMPP protocol extension presented in

section 5.3 uses IQ stanza for exchanging XWADL and REST-XML documents. Thus, all IQ

stanzas of type get or set require an appropriated response of type result or error.

This pattern is ideal in cases where no further interaction with other intercloud topology ele-

ments is required. However, in the approach presented before interactions between Intercloud

Gateways, Intercloud Exchanges, and Intercloud Roots are necessary. Therefore, an additional

socket-based communication pattern has been developed. This socket-based communication

model allows any resource instance to create a socket which can be used to send messages,

to transfer LogEvents, or to request XWADL documents and to invoke appropriated remote

methods. The sockets cannot be created without any relationship to the XMPP component

communication, therefore, a singleton socket manager has to be used to create a socket and

provide the required mapping for IQ requests and responses. While the package-driven nature

of XMPP components expect IQ stanza of type get or set, the Marshaller identifies response

packages via the IQ stanza type result or error. This packages are passed to the socket

manager that maps response IQ stanza to sockets by their IQ-IDs.

The socket supports two types of methods: synchronous and asynchronous package processing.

Presence and message related methods are always processed asynchronously, but IQ related

methods are not. The IQ related methods such as requestXWADL or invokeRestXML are

synchronous and block the resource instance thread until the IQ response has been received.

6.1. Implementation 139

However, a result listener can be used in order to invoke a REST-XML method asynchronously.

This connection pattern concept not only allow to process packages extremely loosely cou-

pled and well distributed, but also enables sequentially controlled processes between intercloud

topology components.

6.1.2. Service Discovery

When a new intercloud component joins the intercloud network, the new component may syn-

chronize its data sets with other intercloud components. For this purpose, the component has

to discover other existing intercloud components in order to interact with them. Furthermore,

if an Intercloud Exchange wants to publish a service offering in the service catalog hosted at an

Intercloud Root, the component needs its JID in order to create a socket for this communica-

tion. For this discovery mechanism the XEP-0030: Service Discovery [132] protocol extension

is used. This extension defines two types of discovery: disco#info and disco#item. While

the disco#item discovery allows for retrieving information about a target entity’s identity, the

disco#info discovery allows for retrieving the features offered and protocols supported by the

target entity.

Exchange Openfire Root

connect

get disco#info

result disco#info

connect

get disco#info

result disco#info

get disco#items
result disco#items

get disco#info

result disco#info

FIGURE 6.3.: Root discovery by an Intercloud Exchange

In the following, the discovery of intercloud topology components is presented. Figure 6.3 de-

picts a sequence diagram of the discovery mechanism for components which are connected to

the same XMPP server instance. Here, a disco#item is requested that lists all connected XMPP

components and services. The prototypical implementation identifies intercloud topology ele-

ments by their names which are:

140 6. Intercloud Prototyping and Evaluation

• RootComponentName = ’Intercloud Root’

• ExchangeComponentName = ’Intercloud Exchange’

• GatewayComponentName = ’Intercloud Gateway’

If the Intercloud Root component is hosted by an external XMPP server in another domain,

a static root server whitelist is used as a basis to find the JID of a corresponding Intercloud

Root. The last step of the discovery process (i.e. disco#info for retrieving the features) is then

executed in any case in order to check the protocol compliance.

Gateway Openfire Exchange

connect

get disco#info

result disco#info

get disco#items
result disco#items

get disco#info

result disco#info

presence subscribe

presence subscribed

presence subscribe

presence subscribedo
p

ti
o

n
a
l

FIGURE 6.4.: Exchange discovery by an Intercloud Gateway

If an Intercloud Gateway hosts monitoring services as described in section 5.6.1 and 5.6.3,

these Intercloud Gateway’s sensor resources have individual link configurations which specify

the JID of Intercloud Exchanges to which the monitoring measurements should be sent. In this

case the sensor resource instance that wants to create a socket for this purpose does not have

to discover the JID of this Intercloud Exchange but has to discover the features provided by

the counter-party. However, assuming that the Intercloud Gateway starts-up the first time and

want to advertise its service supply to other Intercloud Exchanges of the same domain in order

to enable service life-cycle management, the Intercloud Gateway has to discover all available

Intercloud Exchanges and to advertise its availability. This discover procedure is depicted in

figure 6.4. Here, the use of presence subscription is considerable in order to exchange presence

information between Intercloud Gateways and Intercloud Exchanges.

6.1. Implementation 141

6.1.3. Service Catalog

The service catalog is a structured set of service offerings. Depending on the location of the ser-

vice catalog, this service catalog is either a local service repository hosted at an Intercloud Ex-

change of a particular provider or a global service repository hosted at Intercloud Roots around

the world. While the service repository of an Intercloud Exchange has to follow provider

specific requirements, the service repository hosted on Intercloud Roots has to be extremely

decoupled, distributed, efficient, and scalable. Therefore, the service catalog is partitioned sim-

ilar to the Domain Name System (DNS) partitioning. Thus, each Intercloud Root provides

a subset of the global service repository and links to other Intercloud Roots for resolving a

query. In particular, the service catalog is structured as depicted in figure 6.5. The hierarchy

is built in the first line according to the categories and in the second line according to the geo-

graphical location. The hierarchical structure follows the ISO 3166-2 country and subdivision

encoding.

Storage

Container

Root

PaaS

API

IaaS

Network

Compute

DE

DE-NI

DE-MV

DE-BE

Service Offer

Service Offer

Service Offer

Service Offer

Resource

Collection

Link

Legend:

CN
US

FIGURE 6.5.: Root’s service catalog hierarchy

142 6. Intercloud Prototyping and Evaluation

Search queries and look-ups are resolved similar to DNS as well: iterative, recursive, and au-

thoritative. Here, the resolver is the Intercloud Exchange component of a particular provider’s

domain which the requester belongs to. This proves a scalable, fail safe, and flexible architec-

ture, because caching mechanisms with time to live (TTL) tags can be applied. Of course, this

may implicate data inconsistency but is negligible, because the service is at least provisioned

based on an agreement that has to be created with the authoritative Intercloud Exchange.

Considering a unique service catalog structure as illustrated in figure 6.5, the publication of

service offerings is straightforward. In fact, when a new service offer resource instance is

created in the local service repository of an Intercloud Exchange, this component just has to

synchronize its hierarchically structured data set with the Intercloud Root which this Intercloud

Exchange belongs to. Since all the functionalities and behavior described in this section are

approaches which are completely or partially provided by the prototypical implementation,

but are still not defined in the IEEE Intercloud P2302 specification [146], the techniques and

methods may change before the document will be standardized.

6.1.4. Complex Event Processing

The Complex Event Processor (CEP) used in this prototypical implementation is based on

the Esper open source event stream analysis and event correlation engine [74]. It enables to

detect situations in event series when event specific conditions occur. These conditions are

formulated as statements that are built with expressions according to the Event Processing

Language (EPL). The EPL allows to express filtering, aggregation, complex causality checks,

and joins of multiple event series which are processed for pre-defined length-based and time-

based batching and sliding windows. The event representation supported by the CEP of the

prototypical implementation is either one of the implemented LogEvent types (i.e. Plain Old

Java Objects) or XML documents according to the XEP-0337: Event Logging over XMPP

protocol extension schema [158]. While the implemented LogEvent types enable to aggregate

numerical data (e.g. Double, Integer, etc.) the XML-based events representation only allows to

apply String-based filters.

The CEP of this concept can only be applied to the Intercloud Exchange or the Intercloud

Gateway. It is used to process monitoring measurements, to aggregate the measurements in a

Collector resource instance, and to filter the measurements at an Intercloud Gateway. On the

other hand the CEP is used to aggregate, to filter, and to evaluate guarantee terms of an SLA at

an Intercloud Exchange. An example of how event streams are processed, filtered, aggregated,

and passed over the XMPP network is illustrated in figure 6.6.

6.1. Implementation 143

Exchange

Exchange

Gateway

Message Stanza

XEP-0337:

Event Logging

over XMPP

Sensor

C
o

lle
c

to
r

XMPP Socket

Complex Event Processor

Sensor

Sensor

Sensor

C
o

lle
c

to
r

XMPP Socket

C
o

lle
c

to
r

XMPP Socket

Complex Event Processor

Complex Event Processor

G
u

a
ra

n
te

e
T

e
rm

G
u

a
ra

n
te

e
T

e
rm

G
u

a
ra

n
te

e
T

e
rm

Agreement

FIGURE 6.6.: Intercloud’s complex event processing

144 6. Intercloud Prototyping and Evaluation

Figure 6.6 illustrates an Intercloud Gateway where four Sensor resources are instantiated. All

these sensors continuously add their measurements as events to the CEP. Three Collector link

instances aggregate measurements based on a statement configured through the mixins as de-

scribed in section 5.6.1 and 5.6.3. The targets of the Collector links are in this example two

Intercloud Exchanges. The values are transferred from Collector instances to the remote CEP

at Intercloud Exchanges as EventLogs in a message stanza. On the other side, one Agreement

resource instance is available. This Agreement instance has three GuaranteeTerm links which

evaluate their guarantee terms based on statements configured through the mixins as described

in section 5.6. In contrast to the aggregation or filter statement of a Collector link, a Guaran-

teeTerm link has two statements: One for fulfilled guarantee term states and one for violated

guarantee term states.

The number of event streams established in a CEP depends on the number of different event

representation types. The reason for having a staged event processing is firstly the number of

events that are transferred over the network and secondly the amount of events that have to be

kept in memory for processing. Therefore, this staged approach aims at reaching a uniform

distribution of computation and memory usage over the intercloud topology elements.

6.2. Evaluation

This section evaluates the presented intercloud approaches and their implementation. The goal

of this evaluation is to present the scalability of this implementation and the functionality of the

specified protocols. Furthermore, this evaluation also tests the behavior of the system depend-

ing on the traffic, the number of providers and customers, the benefits of the staged approach,

and the maximum number of SLA evaluations for a specific hardware and test configuration.

For this purpose two tests were performed: a Use Case Testing and a Load Testing. While the

first test assesses hypothesis defined on experience, the second test is to identify the maximum

operating capacity for a specific hardware and test configuration.

Both tests follow the same basic test procedure:

1. The system is idle for one minute after start-up.

2. After one minute idle, the test client creates a new sensor every ten seconds.

3. The sensors created in this use case implements an ActiveSensor mixin instance that

samples the availability of a simulated virtual machine every second.

4. Each sensor created in this use case has a simulated Collector link instance that performs

no aggregations of events, thus each second an event occurs the Collector link instance

passes this event to the Interclud Exchange which it points to.

6.2. Evaluation 145

5. The sensors created in this use case do not start before a new GuaranteeTerm link in-

stance is created. Therefore, the test client creates a new GuaranteeTerm link instance in

the same interval as a Sensor is instantiated (i.e. every ten seconds).

6. The guarantee terms created in this use case are configured with the same SLO that

defines an availability greater than or equal to 50%.

7. A TimeWindowMetric mixin is applied to each GuaranteeTerm link instance which de-

fines a sliding time window of 15 minutes.

8. An Aggregation mixin is applied to each GuaranteeTerm link instance as well and defines

to calculate the average of measurements by its aggregation operation.

This test configuration implicates two guarantee term evaluations per sensor per second. Fur-

thermore, the number of LogEvents to transfer and the total packet payload per second is in-

creased every ten seconds. In order to create an appropriated test plan, an expected load calcu-

lation has been performed and is depicted in figure 6.7. While the number of events to transfer,

the number of LogEvents to evaluate, and the number of guarantee term evaluations are con-

stantly increased with the same amount, the total package payload varies over time. The reason

for this behavior is the creation of GuaranteeTerm link instances which are taken into account

and occur every ten seconds.

1

10

100

1000

10000

100000

1000000

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900 4200 4500 4800

V
a
lu

e
 p

e
r

s
e
c
o

n
d

Test progress in seconds

Number of events to transfer

Total packet payload in bytes

Number of LogEvents to evaluate

Number of guarantee term evaluations

Sliding time window of 15 minutes

FIGURE 6.7.: Load calculation for test planning

146 6. Intercloud Prototyping and Evaluation

The performance tests used one Mac Mini server and up to ten wally nodes as shown in figure

6.8. The Mac Mini server is equipped with one Intel Core 2 Duo 2.66 GHz CPU and 4 GB

DDR3 SDRAM. The nodes are connected via regular Gigabit Ethernet link to the next switch

and a TU Berlin internal 10 Gigabit optical fiber in between. The Mac Mini runs Mac OS

X El Capitan version 10.11 (Darwin kernel version 15.0.0). The Mac Mini node run Java

version 1.8.0 40 (Oracle Java SE Development Kit 8u40). The XMPP server used for the

performance tests is an Openfire in version 3.10.0. Both, the Openfire and the XMPP External

Component are installed on the same physical host. The wally nodes are equipped with a

Quadcore Intel Xeon E3-1230 V2 3.30GHz CPU and 16 GB DDR3 SDRAM. The nodes run

CentOS with kernel version 3.10.0-229.11.1.el7.x86 64 and Java version 1.8.0 51 (Oracle Java

SE Development Kit 8u51).

Wally Server

(wally080-wally089)

Wally Server

(wally080-wally089)

Mac Mini Server

(cit-mac1.cit.tu-berlin.de)

Openfire

Wally Server

(wally080-wally089)

TCP socket

Exchange

XMPP over TCP

TestAgreement

Gateway

xmpp-test-client

TestSensor

TestSensor

TestSensor

G
u
a
ra
n
te
e
T
e
rm

G
u
a
ra
n
te
e
T
e
rm

G
u
a
ra
n
te
e
T
e
rm

G
u
a
ra
n
te
e
T
e
rm

G
u
a
ra
n
te
e
T
e
rm

FIGURE 6.8.: Experimental setup for the evaluation

6.2.1. Use Case Testing

The purpose of this evaluation is to prove hypotheses defined by experience as follows:

Hypothesis 1. If XMPP entities transfer stanzas to a particular intercloud topology element

implemented as component, the scalability depends on the XMPP server in between that routes

the packages to the particular component.

Hypothesis 2. If multiple XMPP entities located on different servers transfer stanzas to a

particular intercloud topology element implemented as component, the traffic and throughput

is the same as in the case when a single XMPP entity would transfer the same amount of

stanzas.

6.2. Evaluation 147

Hypothesis 3. If multiple XMPP entities located on different servers with different JIDs invoke

REST with XMPP operations on a particular intercloud topology element implemented as com-

ponent, the performance is the same as in the case when a single XMPP entity would invoke

the same amount of operations.

In order to prove the hypotheses defined before, this evaluation compares a distributed execu-

tion of the test procedure with an end-to-end execution. While in the end-to-end evaluation

the whole test procedure is executed on a single host (wally080), ten wally nodes (wally080

- wally089) executing a single step for a particular time frame in the distributed evaluation.

In particular, wally080 instantiates its Sensor instance and the appropriated GuaranteeTerm

link after one minute, wally081 instantiates its Sensor instance and the appropriated Guaran-

teeTerm link after two minutes, and so on. Though the Use Case Testing basically follows the

test procedure described before, the interval in which the test clients create Sensor instances

and appropriated GuaranteeTerm links is one minute. Thus, the overall test duration of a single

evaluation is 11 minutes.

0

2

4

6

8

10

12

14

16

0 60 120 180 240 300 360 420 480 540 600 660

C
PU

 u
til

iz
at

io
n

in
 p

er
ce

nt

Test progress in seconds

SystemCPU

JvmCPU

FIGURE 6.9.: CPU load of the distributed test with ten hosts

Figure 6.9 depicts the CPU utilization of the Intercloud Exchange to which ten distributed hosts

transfer their sensor events. Figure 6.10 depicts the CPU utilization of the Intercloud Exchange

148 6. Intercloud Prototyping and Evaluation

to which a single host transfers the same amount of sensor events. In both figures, the creation

of GuaraneteeTerm links is well visible through the load peaks every minute.

0

2

4

6

8

10

12

14

16

0 60 120 180 240 300 360 420 480 540 600 660

C
PU

 u
til

iz
at

io
n

in
 p

er
ce

nt

Test progress in seconds

SystemCPU

JvmCPU

FIGURE 6.10.: CPU load of the end-to-end test with one host

The Openfire reports statistics in an averaged minute scale. Here, the number of packets

per minute are the same for the distributed and the end-to-end evaluation. Furthermore, in

both evaluations the number of waiting tasks in the queue of the component’s ThreadPool

Executor is on average zero and the average number of executing threads is equal as well.

This is very well illustrated by the behavior of the curves in figure 6.11. This figure 6.11 depicts

the average CPU utilization per minute and compares the CPU behavior of both evaluations.

Besides a not notable difference of 1.1% after 5 minutes test execution, the curves have the

same behavior and are correlated.

The payload recording of this evaluation is illustrated in appendix A.6. Figure 6.12 depicts the

memory usage of the JVM during test execution. Here, the memory usage of both evaluations

are compared. The distributed evaluation allocates after two minutes of test execution more

memory as compared to the end-to-end evaluation test run. However, both curves are correlat-

ing after eight minutes test execution. Thus, the CPU load and the memory usage behaviors

can be considered as correlated. Consequently, hypothesis 2 and 3 are proved.

6.2. Evaluation 149

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6 7 8 9 10 11

A
v
e
ra

g
e
 C

P
U

 u
ti

li
z
a
ti

o
n

 i
n

 p
e
rc

e
n

t

Test progress in minutes

Distributed evaluation End-to-end evaluation

FIGURE 6.11.: Averaged CPU load comparison of both tests

3350

3400

3450

3500

3550

3600

0 60 120 180 240 300 360 420 480 540 600 660

M
e
m

o
ry

 u
s
a
g

e
 i
n

 m
e
g

a
b

y
te

s

Test progress in seconds

Distributed evaluation End-to-end evaluation

FIGURE 6.12.: Physical memory usage comparison of both tests

While hypothesis 2 and 3 are proved by this evaluation, hypothesis 1 is tried to be proven by

the following load testing.

150 6. Intercloud Prototyping and Evaluation

6.2.2. Load Testing

The purpose of this load testing is to generate a growing load in order to identify the maximum

operation capacity for a particular hardware and test configuration. The wally nodes obviously

provide much more memory and more computing power as the Mac Mini on which the XMPP

server and Intercloud Exchange component is executed. However, the goal of this evaluation is

not to show how many SLA evaluations can be performed on a fat node or on a cluster of high-

performance nodes, but to identify the limits that are resulting from the configuration and the

dimensioning of evaluation metrics applied to GuaranteeTerm link instances at an Intercloud

Exchange.

The Load Testing follow the basic test procedure described before in the test plan. The re-

sults of the previous Use Case Testing show that the performance of a particular intercloud

topology element implemented as component is independent from the number and from their

distribution. The performance depends on the number of stanzas to process, thus a single host

(wally080) executes the test client for this evaluation.

0

20

40

60

80

100

120

140

160

180

200

0

1
2
0

2
4
0

3
6
0

4
8
0

6
0
0

7
2
0

8
4
0

9
6
0

1
0
8
0

1
2
0
0

1
3
2
0

1
4
4
0

1
5
6
0

1
6
8
0

1
8
0
0

1
9
2
0

2
0
4
0

2
1
6
0

2
2
8
0

2
4
0
0

2
5
2
0

2
6
4
0

2
7
6
0

2
8
8
0

3
0
0
0

3
1
2
0

3
2
4
0

3
3
6
0

3
4
8
0

3
6
0
0

3
7
2
0

3
8
4
0

3
9
6
0

C
P

U
 u

ti
li

z
a
ti

o
n

 i
n

 p
e
rc

e
n

t

Test progress in seconds

SystemCPU

JvmCPU

3391

FIGURE 6.13.: CPU load of the load test

Figure 6.13 depicts the CPU utilization for this load test. Here, the maximum CPU load is

200%, because the Mac Mini is equipped with two CPU cores. While the CPU load is relatively

constant during the first 30 minutes, the CPU load after this point of time shows a periodic

sawtooth wave behavior. In general, the minimum CPU load increases linear over the test

6.2. Evaluation 151

progress until second 3391. At this point of time, the system is no longer working stable and

properly.

3,2E+09

3,4E+09

3,6E+09

3,8E+09

4E+09

4,2E+09

4,4E+09
0

1
2
0

2
4
0

3
6
0

4
8
0

6
0
0

7
2
0

8
4
0

9
6
0

1
0
8
0

1
2
0
0

1
3
2
0

1
4
4
0

1
5
6
0

1
6
8
0

1
8
0
0

1
9
2
0

2
0
4
0

2
1
6
0

2
2
8
0

2
4
0
0

2
5
2
0

2
6
4
0

2
7
6
0

2
8
8
0

3
0
0
0

3
1
2
0

3
2
4
0

3
3
6
0

3
4
8
0

3
6
0
0

3
7
2
0

3
8
4
0

3
9
6
0

M
e
m

o
ry

 i
n

 b
y
te

s

Test progress in seconds

Total physical memory

Used physical memory

3391

FIGURE 6.14.: Physical memory usage of the load test

Figure 6.14 depicts the memory utilization for this load test. Here, the blue curve illustrates the

total physical memory of this Mac Mini. The red curve illustrates the physical memory that is

in use. At second 3155 the maximum memory utilization is reached. Here, 99.21% of the total

physical memory is in use. At this point of time, the threads at the Intercloud Exchange com-

ponent cannot allocate memory fast enough in order to complete their tasks. From this point in

time on the number of waiting tasks in the queue of the component’s ThreadPoolExecutor

increases rapidly. At second 3391, all tasks of the thread pool are in use and the full capacity

of the task queue is reached. From this point in time on, no PacketProcessor tasks are

created and an exception is thrown for each XMPP packet that is received.

6.2.3. Conclusion

The evaluations present that the specified protocols work and are well applied. Considering the

performance of the prototypical implementation at second 3155, where the maximum memory

utilization was reached, the Intercloud Exchange adds 315 new LogEvents per second to the

CEP, processes 486630 LogEvents per second in 315 event streams, and evaluates 630 guar-

152 6. Intercloud Prototyping and Evaluation

antee terms per second. This shows an excellent performance of the prototypical Intercloud

Exchange implementation that is executed on a simple Mac Mini.

The limitation of the maximum number of SLA evaluations is connected to the number of

events in the streams. This number of events to process is reflected in the memory usage,

because all events in the streams are stored in memory. Thus, the memory of a system on

which an Intercloud Exchange is executed should be dimensioned appropriately. In the Load

Testing evaluation, the CEP used around one Gigabyte (exactly 943,665,152 Bytes) of memory

for a time window of 15 minutes. Therefore, the staged CEP approach is introduced in section

6.1.4. This approach allows to transmit already aggregated measurements of a Collector link

instance to an Intercloud Exchange and is thus relieving the CEP for SLA evaluations. If this

is the case, Agreement instances could not only have plenty of terms, but also allow to define

very large window sizes for GuaranteeTerm link instances.

7. Concluion and Future Work

This thesis analysed existing solutions for Agreement-Mediators on the cloud market and devel-

oped an actual autonomous web service based Agreement-Mediator for the intercloud project

that sources out SLA management tasks into a neutral zone without taking the consumer’s or

the provider’s side. Furthermore, an architecture is introduced that facilitates service discovery

mechanisms and allows for comparing services based on their advertised QoS. The solutions

in terms of agreement mediation, negotiation, establishment, and evaluation achieved in this

thesis can be summarized as follows: individual service offerings can be advertised with indi-

vidual service levels and guarantees that a provider is willing and able to deliver; consumers

are able to discover and to easily compare service offerings of different providers; providers

are able to publish service offerings of mutual intentions for business relationships in the form

of SLA offers; monitoring services are supported in order to feed in monitoring measurements

for automatic compliance verification of SLA terms; participating parties are notified about

agreement-related events like creation, violation or termination; the overhead for managing

SLAs between consumers and providers is minimized by Intercloud developed ready-to-use

solutions; and higher trust is established by transferring mediation affiliations into an external

and neutral entity.

Besides the achievements in terms of business related goals, this thesis introduces a novel

protocol that allows to use the REST architectural style in XMPP-based solutions. Based on

this protocol, the application of the OCCI Core Model to intercloud architectures is presented

and appropriated protocol extensions that provide the SLA related capabilities are specified.

These achievements close the lack of a missing service framework for the intercloud initiatives.

Furthermore, a prototypical implementation with the functionalities and protocols presented

in this work has been developed and is an ideal candidate for the initial setup of the IEEE

Intercloud Testbed Project.

Finally, the protocols, the extensions, and the overall concept is evaluated. Here, the perfor-

mance of this implementation and the functionality of the specified protocols is proved. Fur-

thermore, the behavior of the system under extreme load, the benefits of a staged aggregation

with distributed CEPs, and the maximum number of SLA evaluations for a specific hardware

and test configuration is evaluated.

154 7. Concluion and Future Work

This thesis presents a foundation on which further Intercloud methodologies, protocol exten-

sions, and related developments can be established. In particular, the following functionalities

are considerable to extend the achievements presented in this thesis:

• A protocol extension to transfer huge files, e.g. a virtual machine image or snapshot.

• A protocol extension to transfer rapidly changing data sets, e.g. the memory pages of a

running virtual machine that is going to live migrate.

• Business related protocol extensions for accounting, billing, and so on.

Another functional enhancement is related to the identity management which is out of scope

of this thesis. In fact, the prototypical implementation of the Marshaller does not restricts the

access to resources. An appropriated identity management would ensure that only privileged

users are permitted to access resources which they own.

Further functional enhancements may cover a facilitated service life-cycle management, which

allows non-technical employees to design product offerings with appropriated provisioning

and SLA configurations. Furthermore, a service life-cycle management with corresponding

business processes is considerable. Here, the nature of XMPP could be fully exploited, thus

employees from different business divisions can be involved in such a business process and do

an assigned work in this process that has to be accomplished by people.

Bibliography

[1] P. Mell and T. Grance, “The nist definition of cloud computing (draft),” National Institute

of Standards and Technology, Tech. Rep., 2011.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud

computing,” Commun. ACM, vol. 53, pp. 50–58, Apr. 2010. [Online]. Available:

http://doi.acm.org/10.1145/1721654.1721672

[3] A. Stanik, M. Hovestadt, and O. Kao, “Hardware as a service (haas): The completion of

the cloud stack,” in Proceedings of the 3rd Intl. Conference on Next Generation Infor-

mation Technology (ICNIT), ser. ICNIT 2012, vol. 2. IEEE publishers, April 2012, pp.

830–836.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,

G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the

clouds: A berkeley view of cloud computing,” EECS Department, University of

California, Berkeley, Tech. Rep. UCB/EECS-2009-28, Feb 2009. [Online]. Available:

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

[5] A. Stanik, M. Hovestadt, and O. Kao, “Hardware as a service (haas): Physical and virtual

hardware on demand,” in Proceedings of the 2012 IEEE 4th International Conference

on Cloud Computing Technology and Science (CloudCom), ser. CLOUDCOM ’12.

Washington, DC, USA: IEEE Computer Society, 2012, pp. 149–154. [Online].

Available: http://dx.doi.org/10.1109/CloudCom.2012.6427579

[6] G. Wang, “The impact of virtualization on network performance of amazon ec2 data

center,” in INFOCOM, 2010 Proceedings IEEE, march 2010, pp. 1–9.

[7] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow, “Blueprint for the

intercloud - protocols and formats for cloud computing interoperability,” in Internet and

Web Applications and Services, 2009. ICIW ’09. Fourth International Conference on,

May 2009, pp. 328–336.

[8] F. Galán, A. Sampaio, L. Rodero-Merino, I. Loy, V. Gil, and L. M. Vaquero,

“Service specification in cloud environments based on extensions to open standards,” in

Proceedings of the Fourth International ICST Conference on COMmunication System

http://doi.acm.org/10.1145/1721654.1721672
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://dx.doi.org/10.1109/CloudCom.2012.6427579

156 Bibliography

softWAre and middlewaRE, ser. COMSWARE ’09. New York, NY, USA: ACM, 2009,

pp. 19:1–19:12. [Online]. Available: http://doi.acm.org/10.1145/1621890.1621915

[9] L. Lamers, et. all., “Open virtualization format specification,” Distributed Management

Task Force Inc. (DMTF), December 2013, latest version: 2.1.0, document number:

DSP0243. [Online]. Available: http://www.dmtf.org/standards/vman

[10] Open Grid Forum (OGF), Open Cloud Computing Interface (OCCI) working group,

“Open cloud computing interface - about,” 2015, (accessed January 2015). [Online].

Available: http://occi-wg.org/about/

[11] P. Lipton, S. Moser, D. Palma, and T. Spatzier, “Topology and orchestration

specification for cloud applications version 1.0,” Organization for the Advancement

of Structured Information Standards (OASIS), November 2013, oASIS Standard,

TOSCA-v1.0. [Online]. Available: http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/

TOSCA-v1.0-os.html

[12] H. Rasheed, A. Rumpl, O. Wäldrich, and W. Ziegler, “A standards-based approach for

negotiating service qos with cloud infrastructure providers,” eChallenges e-2012 Con-

ference Proceedings, 2012.

[13] W. K. Hon, C. Millard, and I. Walden, “Negotiating cloud contracts: Looking at clouds

from both sides now.” Stanford Technology Law Review, vol. 16, no. 1, pp. 79–129,

2013, fall 2012. [Online]. Available: http://stlr.stanford.edu/pdf/cloudcontracts.pdf

[14] “Amazon ec2 service level agreement,” Amazon Web Services, Inc. or its affiliates.,

June 1 2013. [Online]. Available: http://aws.amazon.com/ec2/sla/

[15] “Amazon s3 sla,” Amazon Web Services, Inc. or its affiliates., June 1 2013. [Online].

Available: http://aws.amazon.com/s3/sla/

[16] “Amazon rds service level agreement,” Amazon Web Services, Inc. or its affiliates.,

June 1 2013. [Online]. Available: http://aws.amazon.com/rds/sla/

[17] “Google apps service level agreement,” Google Inc., accessed February 2014. [Online].

Available: http://www.google.com/apps/intl/en/terms/sla.html

[18] “Google cloud storage, google prediction api, and google bigquery sla,” Google Inc.,

accessed February 2014. [Online]. Available: https://developers.google.com/storage/sla

[19] “Windows azure support - technical and billing support: Service level agreements,”

Microsoft, January 2014. [Online]. Available: http://www.windowsazure.com/en-us/

support/legal/sla/

[20] “Legal information: Cloud big data platform sla,” Rackspace US, Inc., January 2014.

[Online]. Available: http://www.rackspace.com/information/legal/cloud/sla

http://doi.acm.org/10.1145/1621890.1621915
http://www.dmtf.org/standards/vman
http://occi-wg.org/about/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://stlr.stanford.edu/pdf/cloudcontracts.pdf
http://aws.amazon.com/ec2/sla/
http://aws.amazon.com/s3/sla/
http://aws.amazon.com/rds/sla/
http://www.google.com/apps/intl/en/terms/sla.html
https://developers.google.com/storage/sla
http://www.windowsazure.com/en-us/support/legal/sla/
http://www.windowsazure.com/en-us/support/legal/sla/
http://www.rackspace.com/information/legal/cloud/sla

Bibliography 157

[21] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in the clouds:

Towards a cloud definition,” SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, pp.

50–55, Dec. 2008. [Online]. Available: http://doi.acm.org/10.1145/1496091.1496100

[22] “Best management practice portfolio: common glossary of terms and definitions,”

AXELOS Limited, October 2012, version 1. [Online]. Available: http://www.axelos.

com/gempdf/Axelos Common Glossary 2013.pdf

[23] D. D. Lamanna, J. Skene, and W. Emmerich, “Slang: a language for defining service

level agreements,” in Distributed Computing Systems, 2003. FTDCS 2003. Proceedings.

The Ninth IEEE Workshop on Future Trends of, May 2003, pp. 100–106.

[24] J. Skene, D. D. Lamanna, and W. Emmerich, “Precise service level agreements,” in

Proceedings of the 26th International Conference on Software Engineering, ser. ICSE

’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 179–188. [Online].

Available: http://dl.acm.org/citation.cfm?id=998675.999422

[25] A. Keller and H. Ludwig, “The wsla framework: Specifying and monitoring

service level agreements for web services,” Journal of Network and Systems

Management, vol. 11, no. 1, pp. 57–81, 2003. [Online]. Available: http:

//dx.doi.org/10.1023/A%3A1022445108617

[26] H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck, “Web service level agreement

(wsla) language specification,” IBM Corporation, pp. 815–824, 2003.

[27] V. Tosic, K. Patel, and B. Pagurek, “Wsol - web service offerings language,” in

Web Services, E-Business, and the Semantic Web, ser. Lecture Notes in Computer

Science, C. Bussler, R. Hull, S. McIlraith, M. Orlowska, B. Pernici, and J. Yang,

Eds. Springer Berlin Heidelberg, 2002, vol. 2512, pp. 57–67. [Online]. Available:

http://dx.doi.org/10.1007/3-540-36189-8 5

[28] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata,

J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu, “Web services agreement specification

(ws-agreement),” Open Grid Forum (OGF), Grid Resource Allocation Agreement

Protocol (GRAAP) WG, 03 2007, updated version 2011. [Online]. Available:

http://www.ogf.org/documents/GFD.192.pdf

[29] O. Wäldrich, D. Battre, F. Brazier, K. Clark, M. Oey, A. Papaspyrou, P. Wieder, and

W. Ziegler, “Ws-agreement negotiation version 1.0,” Open Grid Forum (OGF), Grid

Resource Allocation Agreement Protocol (GRAAP) WG, 03 2011. [Online]. Available:

http://www.ogf.org/documents/GFD.193.pdf

http://doi.acm.org/10.1145/1496091.1496100
http://www.axelos.com/gempdf/Axelos_Common_Glossary_2013.pdf
http://www.axelos.com/gempdf/Axelos_Common_Glossary_2013.pdf
http://dl.acm.org/citation.cfm?id=998675.999422
http://dx.doi.org/10.1023/A%3A1022445108617
http://dx.doi.org/10.1023/A%3A1022445108617
http://dx.doi.org/10.1007/3-540-36189-8_5
http://www.ogf.org/documents/GFD.192.pdf
http://www.ogf.org/documents/GFD.193.pdf

158 Bibliography

[30] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, “Extensible

markup language (xml),” World Wide Web Journal, vol. 2, no. 4, pp. 27–66, 1997.

[Online]. Available: http://www.w3pdf.com/W3cSpec/XML/2/REC-xml11-20060816.

pdf

[31] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, A. Karmarkar,

and Y. Lafon, “Simple object access protocol (soap) 1.2,” 2002. [Online]. Available:

http://www.w3.org/TR/soap/

[32] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, et al., “Web services

description language (wsdl) 1.1,” 2001. [Online]. Available: http://www.w3.org/TR/

wsdl

[33] “Web services resource 1.2 (ws-resource),” OASIS, 04 2006. [Online]. Available:

http://docs.oasis-open.org/wsrf/wsrf-ws resource-1.2-spec-os.pdf

[34] D. Box, E. Christensen, F. Curbera, D. Ferguson, J. Frey, M. Hadley, C. Kaler, D. Lang-

worthy, F. Leymann, B. Lovering, et al., “Web services addressing (ws-addressing),”

2004.

[35] B. D., F. Brazier, K. Clark, M. Oey, A. Papaspyrou, O. Waäldrich, P. Wieder, and

W. Ziegler, “A proposal for ws-agreement negotiation,” in Grid Computing (GRID),

2010 11th IEEE/ACM International Conference on, Oct 2010, pp. 233–241.

[36] L. Srinivasan and T. Banks, “Web services resource lifetime 1.2 (ws-resourcelifetime)

oasis standard,” April 2006. [Online]. Available: http://docs.oasis-open.org/wsrf/

wsrf-ws resource lifetime-1.2-spec-os.pdf

[37] Apache Software Foundation. (2013, January) Apache ws muse. Version 2.2.0, Project

Website, (accessed January 2015). [Online]. Available: http://attic.apache.org/projects/

muse.html

[38] Globus Alliance. (2009) Gt 5.0.0 release notes. Version 5 (GT5), Project Website,

(accessed January 2015). [Online]. Available: http://toolkit.globus.org/toolkit/docs/5.0/

5.0.0/rn/

[39] T. Berners-Lee, R. Fielding, and L. Masinter, “Rfc 3986: Uniform resource identifier

(uri): Generic syntax,” The Internet Society, 2005.

[40] O. Wäldrich et al. Wsag4j: Web service agreement for java. Version 2.0, Project

Website. [Online]. Available: http://wsag4j.sourceforge.net

[41] D. Battre, P. Wieder, and W. Ziegler, “Ws-agreement specification version 1.0

experience document,” Open Grid Forum, March 2010. [Online]. Available:

https://www.ogf.org/documents/GFD.167.pdf

http://www.w3pdf.com/W3cSpec/XML/2/REC-xml11-20060816.pdf
http://www.w3pdf.com/W3cSpec/XML/2/REC-xml11-20060816.pdf
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-os.pdf
http://attic.apache.org/projects/muse.html
http://attic.apache.org/projects/muse.html
http://toolkit.globus.org/toolkit/docs/5.0/5.0.0/rn/
http://toolkit.globus.org/toolkit/docs/5.0/5.0.0/rn/
http://wsag4j.sourceforge.net
https://www.ogf.org/documents/GFD.167.pdf

Bibliography 159

[42] D. Guinard, I. Ion, and S. Mayer, “In search of an internet of things service architecture:

Rest or ws-*? a developers’ perspective,” in Mobile and Ubiquitous Systems:

Computing, Networking, and Services, ser. Lecture Notes of the Institute for Computer

Sciences, Social Informatics and Telecommunications Engineering, A. Puiatti and

T. Gu, Eds. Springer Berlin Heidelberg, 2012, vol. 104, pp. 326–337. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-30973-1 32

[43] R. T. Fielding, “Architectural styles and the design of network-based software architec-

tures,” Ph.D. dissertation, University of California, 2000, AAI9980887.

[44] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services vs.

”big”’ web services: Making the right architectural decision,” in Proceedings

of the 17th International Conference on World Wide Web, ser. WWW ’08.

New York, NY, USA: ACM, 2008, pp. 805–814. [Online]. Available: http:

//doi.acm.org/10.1145/1367497.1367606

[45] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana, “Unraveling

the web services web: an introduction to soap, wsdl, and uddi,” Internet Computing,

IEEE, vol. 6, no. 2, pp. 86–93, March 2002.

[46] M. J. Hadley, “Web application description language (wadl),” Sun Microsystems, Inc.,

Mountain View, CA, USA, Tech. Rep., 2006.

[47] ——, “Web application description language (wadl) specification,” 2009. [Online].

Available: http://www.w3.org/Submission/wadl/

[48] R. Kübert, G. Katsaros, and T. Wang, “A restful implementation of the ws-agreement

specification,” in Proceedings of the Second International Workshop on RESTful

Design, ser. WS-REST ’11. New York, NY, USA: ACM, 2011, pp. 67–72. [Online].

Available: http://doi.acm.org/10.1145/1967428.1967444

[49] F. Blumel, T. Metsch, and A. Papaspyrou, “A restful approach to service level agree-

ments for cloud environments,” in Dependable, Autonomic and Secure Computing

(DASC), 2011 IEEE Ninth International Conference on, Dec 2011, pp. 650–657.

[50] O. Wäldrich, “Orchestration of resources in distributed, heterogeneous grid environ-

ments using dynamic service level agreements,” Ph.D. dissertation, Technische Univer-

sität Dortmund, Sankt Augustin, 12 2011.

[51] W3C, “Team comment on the ”web application description language” submission,”

2009. [Online]. Available: http://www.w3.org/Submission/2009/03/Comment

[52] D. Clinton, J. Tesler, M. Fagan, J. Gregorio, A. Sauve, and J. Snell, “Opensearch

1.1 specification (draft 5),” 2014. [Online]. Available: http://www.opensearch.org/

Specifications/OpenSearch/1.1

http://dx.doi.org/10.1007/978-3-642-30973-1_32
http://doi.acm.org/10.1145/1367497.1367606
http://doi.acm.org/10.1145/1367497.1367606
http://www.w3.org/Submission/wadl/
http://doi.acm.org/10.1145/1967428.1967444
http://www.w3.org/Submission/2009/03/Comment
http://www.opensearch.org/Specifications/OpenSearch/1.1
http://www.opensearch.org/Specifications/OpenSearch/1.1

160 Bibliography

[53] J. Gregorio and B. M. Consulting, “The atom publishing protocol,” Network Working

Group, Tech. Rep., 2007. [Online]. Available: http://tools.ietf.org/search/rfc5023

[54] M. Kelly, “Json hypertext application language,” 2013. [Online]. Available:

http://tools.ietf.org/html/draft-kelly-json-hal-06

[55] M. zur Muehlen, J. V. Nickerson, and K. D. Swenson, “Developing web services

choreography standards - the case of {REST} vs. {SOAP},” Decision Support Systems,

vol. 40, no. 1, pp. 9–29, 2005, web services and process management. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S0167923604000612

[56] B. Upadhyaya, Y. Zou, H. Xiao, J. Ng, and A. Lau, “Migration of soap-based services

to restful services,” in Web Systems Evolution (WSE), 2011 13th IEEE International

Symposium on, 2011, pp. 105–114.

[57] G. Mulligan and D. Gracanin, “A comparison of soap and rest implementations of a ser-

vice based interaction independence middleware framework,” in Simulation Conference

(WSC), Proceedings of the 2009 Winter, 2009, pp. 1423–1432.

[58] M. Comuzzi and G. Spanoudakis, “Dynamic set-up of monitoring infrastructures for

service based systems,” in Proceedings of the 2010 ACM Symposium on Applied

Computing, ser. SAC ’10. New York, NY, USA: ACM, 2010, pp. 2414–2421.

[Online]. Available: http://doi.acm.org/10.1145/1774088.1774591

[59] “The grinder, a java load testing framework,” 2013. [Online]. Available: http:

//grinder.sourceforge.net

[60] A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo, “Web services security: Soap

message security 1.0,” 2004. [Online]. Available: http://docs.oasis-open.org/wss/2004/

01/oasis-200401-wss-soap-message-security-1.0.pdf

[61] D. Eastlake and J. Reagle, “Xml signature,” IETF and W3C, 2000. [Online]. Available:

http://www.w3.org/Signature/

[62] J. Durand, A. Otto, G. Pilz, and T. Rutt, “Cloud application management for platforms

version 1.1,” Organization for the Advancement of Structured Information Standards

(OASIS), November 2014, oASIS Standard, CAMP-v1.1. [Online]. Available:

http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html

[63] D. Doug and G. Pilz, “Cloud infrastructure management interface (cimi) model

and restful http-based protocol),” Distributed Management Task Force Inc. (DMTF),

September 2012, latest version: 1.0.1, document number: DSP0263. [Online].

Available: http://dmtf.org/standards/cmwg

http://tools.ietf.org/search/rfc5023
http://tools.ietf.org/html/draft-kelly-json-hal-06
http://www.sciencedirect.com/science/article/pii/S0167923604000612
http://doi.acm.org/10.1145/1774088.1774591
http://grinder.sourceforge.net
http://grinder.sourceforge.net
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/Signature/
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html
http://dmtf.org/standards/cmwg

Bibliography 161

[64] R. Nyren, A. Edmond, A. Papaspyrou, and T. Metsch, “Open cloud computing

interface - core,” Open Grid Forum (OGF), Open Cloud Computing Interface (OCCI)

working group, April 2011, updated version: GFD-P-R.183. [Online]. Available:

https://www.ogf.org/documents/GFD.183.pdf

[65] D. A. Moon, “Object-oriented programming with flavors,” in Conference Proceedings

on Object-oriented Programming Systems, Languages and Applications, ser.

OOPLSA ’86. New York, NY, USA: ACM, 1986, pp. 1–8. [Online]. Available:

http://doi.acm.org/10.1145/28697.28698

[66] T. Metsch and A. Edmond, “Open cloud computing interface - restful http

rendering,” Open Grid Forum (OGF), Open Cloud Computing Interface (OCCI)

working group, June 2011, version: GFD-P-R.185. [Online]. Available: https:

//www.ogf.org/documents/GFD.185.pdf

[67] ——, “Open cloud computing interface - infrastructure,” Open Grid Forum (OGF),

Open Cloud Computing Interface (OCCI) working group, April 2011, updated version:

GFD-P-R.184. [Online]. Available: https://www.ogf.org/documents/GFD.184.pdf

[68] M. Papazoglou and W.-J. van den Heuvel, “Service oriented architectures: approaches,

technologies and research issues,” The VLDB Journal, vol. 16, no. 3, pp. 389–415,

2007. [Online]. Available: http://dx.doi.org/10.1007/s00778-007-0044-3

[69] L. Clement, A. Hately, C. von Riegen, and T. Rogers, “Universal description, discovery

and integration v3.0.2 (uddi),” Organization for the Advancement of Structured

Information Standards (OASIS), February 2005, uDDI Spec Technical Committee

Draft, Dated 20041019. [Online]. Available: http://www.uddi.org/pubs/uddi v3.htm

[70] H. Ludwig, “Ws-agreement concepts and use - agreement-based service-oriented

architectures,” IBM Research Report, Tech. Rep., 2006. [Online]. Available: http:

//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.476&rep=rep1&type=pdf

[71] A. Cruz, P. Ramalheira, and E. Troup, “Service delivery broker,” SAPO part of

Portugal Telecom, Tech. Rep., January 2012, whitepaper v1.1. [Online]. Available:

http://sdb.sapo.pt/en/index.html

[72] D. Tektonidis, A. Bokma, G. Oatley, and M. Salampasis, “Onar: An ontologies-

based service oriented application integration framework,” in Interoperability of

Enterprise Software and Applications, D. Konstantas, J.-P. Bourrires, M. Leonard,

and N. Boudjlida, Eds. Springer London, 2006, pp. 65–74. [Online]. Available:

http://dx.doi.org/10.1007/1-84628-152-0 7

[73] MO-BIZZ Marketplace, 2015, (accessed May 2015). [Online]. Available: https:

//market.mobizz-project.eu/en/

https://www.ogf.org/documents/GFD.183.pdf
http://doi.acm.org/10.1145/28697.28698
https://www.ogf.org/documents/GFD.185.pdf
https://www.ogf.org/documents/GFD.185.pdf
https://www.ogf.org/documents/GFD.184.pdf
http://dx.doi.org/10.1007/s00778-007-0044-3
http://www.uddi.org/pubs/uddi_v3.htm
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.476&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.476&rep=rep1&type=pdf
http://sdb.sapo.pt/en/index.html
http://dx.doi.org/10.1007/1-84628-152-0_7
https://market.mobizz-project.eu/en/
https://market.mobizz-project.eu/en/

162 Bibliography

[74] EsperTech, “Event series intelligence - continuous event processing for the right

time enterprise,” EsperTech Inc., Tech. Rep., 2015, product overview technical Data

Sheet. [Online]. Available: http://www.espertech.com/download/public/EsperTech%

20technical%20datasheet.pdf

[75] TM Forum, “Software enabled services management interface (smi) specification

package-tip smi specification v1.6.0 standard,” 2012, (accessed May 2015). [Online].

Available: https://www.tmforum.org/resources/standard/smi-specification-packagetip

smi specification v1-6-0/

[76] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown, and

G. Parulkar, “Can the production network be the testbed?” In USENIX Symposium on

Operating Systems Design and Implementation (OSDI), 2010.

[77] ——, “Flowvisor: A network virtualization layer,” Technical Report Openflow-tr-2009-

1, Stanford University, July 2009.

[78] E. Salvadori, R. Corin, A. Broglio, and M. Gerola, “Generalizing virtual network topolo-

gies in openflow-based networks,” in Global Telecommunications Conference (GLOBE-

COM 2011), 2011 IEEE, Dec., pp. 1–6.

[79] R. Corin, M. Gerola, R. Riggio, F. De Pellegrini, and E. Salvadori, “Vertigo: Network

virtualization and beyond,” in Software Defined Networking (EWSDN), 2012 European

Workshop on, oct. 2012, pp. 24 –29.

[80] M. Koerner and H. Almus, “Hla - a hierarchical layer application for openflow manage-

ment abstraction,” in Proceedings of the Fourth International Conference on Network of

the Future (NoF’13), Pohang, Korea, oct 2013, pp. 1–4.

[81] M. Koerner, A. Stanik, and O. Kao, “Applying qos in software defined networks by using

ws-agreement,” in Cloud Computing Technology and Science (CloudCom), 2014 IEEE

6th International Conference on, Dec 2014, pp. 893–898.

[82] The OpenFlow Consortium, “Openflow switch specification - version 1.0.0,” Decmber

2009. [Online]. Available: http://www.openflow.org/wp/documents/

[83] Open Networking Foundation, “Openflow switch specification - version 1.4.0,” October

2013. [Online]. Available: https://www.opennetworking.org/

[84] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner, “Openflow: Enabling innovation in campus networks,” ACM

SIGCOMM Computer Communication Review, April 2008.

[85] A. Fei, G. Pei, R. Liu, and L. Zhang, “Measurements on delay and hop-count of the

internet,” in IEEE GLOBECOM’98-Internet Mini-Conference. Citeseer, 1998.

http://www.espertech.com/download/public/EsperTech%20technical%20datasheet.pdf
http://www.espertech.com/download/public/EsperTech%20technical%20datasheet.pdf
https://www.tmforum.org/resources/standard/smi-specification-packagetip_smi_specification__v1-6-0/
https://www.tmforum.org/resources/standard/smi-specification-packagetip_smi_specification__v1-6-0/
http://www.openflow.org/wp/documents/
https://www.opennetworking.org/

Bibliography 163

[86] F. Begtaševiü and P. Van Mieghem, “Measurements of the hopcount in internet,” in Pro-

ceedings of Passive and Active Measurement (PAM, 2001, pp. 23–24.

[87] S. Garcı́a-Gómez, M. Jimenez-Ganan, Y. Taher, C. Momm, F. Junker, J. Biro, A. Meny-

chtas, V. Andrikopoulos, and S. Strauch, “Challenges for the comprehensive manage-

ment of cloud services in a paas framework,” Scalable Computing: Practice and Expe-

rience, vol. 13, no. 3, pp. 201–2013, 2012.

[88] A. Menychtas, S. Gomez, A. Giessmann, A. Gatzioura, K. Stanoevska, J. Vogel, and

V. Moulos, “A marketplace framework for trading cloud-based services,” in Economics

of Grids, Clouds, Systems, and Services, ser. Lecture Notes in Computer Science,

K. Vanmechelen, J. Altmann, and O. Rana, Eds. Springer Berlin Heidelberg, 2012, vol.

7150, pp. 76–89. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-28675-9 6

[89] D. Zeginis, F. D’Andria, S. Bocconi, J. Gorronogoitia Cruz, O. Collell Martin, P. Gou-

vas, G. Ledakis, and K. A. Tarabanis, “A user-centric multi-paas application manage-

ment solution for hybrid multi-cloud scenarios,” Scalable Computing: Practice and Ex-

perience, vol. 14, no. 1, pp. 17–32, 2013.

[90] M. Comuzzi, C. Kotsokalis, C. Rathfelder, W. Theilmann, U. Winkler, and G. Zacco,

“A framework for multi-level sla management,” in Service-Oriented Computing.

ICSOC/ServiceWave 2009 Workshops, ser. Lecture Notes in Computer Science, A. Dan,

F. Gittler, and F. Toumani, Eds. Springer Berlin Heidelberg, 2010, vol. 6275, pp.

187–196. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-16132-2 18

[91] J. Happe, W. Theilmann, A. Edmonds, and K. T. Kearney, “A reference architecture

for multi-level sla management,” in Service Level Agreements for Cloud Computing,

P. Wieder, J. M. Butler, W. Theilmann, and R. Yahyapour, Eds. Springer New York,

2011, pp. 13–26. [Online]. Available: http://dx.doi.org/10.1007/978-1-4614-1614-2 2

[92] A. Ciuffoletti, A. Congiusta, G. Jankowski, M. Jankowski, O. Krajicek, and N. Meyer,

“Grid infrastructure architecture: A modular approach from coregrid,” in Web

Information Systems and Technologies, ser. Lecture Notes in Business Information

Processing, J. Filipe and J. Cordeiro, Eds. Springer Berlin Heidelberg, 2008, vol. 8,

pp. 72–84. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-68262-2 6

[93] C. Cacciari, D. Mallmann, C. Zsigri, F. D’Andria, B. Hagemeier, A. Rumpl,

W. Ziegler, and J. Martrat, “Sla-based management of software licenses as web service

resources in distributed computing infrastructures,” Future Generation Computer

Systems, vol. 28, no. 8, pp. 1340–1349, 2012, including Special sections SS: Trusting

Software Behavior and SS: Economics of Computing Services. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X11002287

http://dx.doi.org/10.1007/978-3-642-28675-9_6
http://dx.doi.org/10.1007/978-3-642-16132-2_18
http://dx.doi.org/10.1007/978-1-4614-1614-2_2
http://dx.doi.org/10.1007/978-3-540-68262-2_6
http://www.sciencedirect.com/science/article/pii/S0167739X11002287

164 Bibliography

[94] A. Lawrence, K. Djemame, O. Wäldrich, W. Ziegler, and C. Zsigri, “Using service level

agreements for optimising cloud infrastructure services,” in Towards a Service-Based

Internet. ServiceWave 2010 Workshops, ser. Lecture Notes in Computer Science,

M. Cezon and Y. Wolfsthal, Eds. Springer Berlin Heidelberg, 2011, vol. 6569, pp.

38–49. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-22760-8 4

[95] R. Kuebert, A. Tenschert, O. Wäldrich, W. Ziegler, and D. Battre, “A service level agree-

ment layer for the d-grid infrastructure.”

[96] M. Couceiro, P. Ruivo, P. Romano, and L. Rodrigues, “Chasing the optimum in repli-

cated in-memory transactional platforms via protocol adaptation,” in Dependable Sys-

tems and Networks (DSN), 2013 43rd Annual IEEE/IFIP International Conference on,

June 2013, pp. 1–12.

[97] M. Couceiro, P. Romano, and L. Rodrigues, “Polycert: Polymorphic self-optimizing

replication for in-memory transactional grids,” in Proceedings of the 12th International

Middleware Conference, ser. Middleware ’11. Laxenburg, Austria, Austria:

International Federation for Information Processing, 2011, pp. 300–319. [Online].

Available: http://dl.acm.org/citation.cfm?id=2414338.2414360

[98] R. Cascella, L. Blasi, Y. Jegou, M. Coppola, and C. Morin, “Contrail: Distributed

application deployment under sla in federated heterogeneous clouds,” in The Future

Internet, ser. Lecture Notes in Computer Science, A. Galis and A. Gavras, Eds.

Springer Berlin Heidelberg, 2013, vol. 7858, pp. 91–103. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-38082-2 8

[99] E. Carlini, M. Coppola, P. Dazzi, L. Ricci, and G. Righetti, “Cloud federations

in contrail,” in Euro-Par 2011: Parallel Processing Workshops, ser. Lecture

Notes in Computer Science, M. Alexander, P. D’Ambra, A. Belloum, G. Bosilca,

M. Cannataro, M. Danelutto, B. Di Martino, M. Gerndt, E. Jeannot, R. Namyst,

J. Roman, S. Scott, J. Traff, G. Valle, and J. Weidendorfer, Eds. Springer

Berlin Heidelberg, 2012, vol. 7155, pp. 159–168. [Online]. Available: http:

//dx.doi.org/10.1007/978-3-642-29737-3 19

[100] K. Voss, K. Djemame, I. Gourlay, and J. Padgett, “Assessgrid, economic

issues underlying risk awareness in grids,” in Grid Economics and Business

Models, ser. Lecture Notes in Computer Science, D. Veit and J. Altmann, Eds.

Springer Berlin Heidelberg, 2007, vol. 4685, pp. 170–175. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-74430-6 14

[101] D. Battre, K. Djemame, I. Gourlay, M. Hovestadt, O. Kao, J. Padgett, K. Voss,

and D. Warneke, “Assessgrid strategies for provider ranking mechanisms in

risk-aware grid systems,” in Grid Economics and Business Models, ser. Lecture

http://dx.doi.org/10.1007/978-3-642-22760-8_4
http://dl.acm.org/citation.cfm?id=2414338.2414360
http://dx.doi.org/10.1007/978-3-642-38082-2_8
http://dx.doi.org/10.1007/978-3-642-29737-3_19
http://dx.doi.org/10.1007/978-3-642-29737-3_19
http://dx.doi.org/10.1007/978-3-540-74430-6_14

Bibliography 165

Notes in Computer Science, J. Altmann, D. Neumann, and T. Fahringer, Eds.

Springer Berlin Heidelberg, 2008, vol. 5206, pp. 226–233. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-85485-2 19

[102] H. Pouyllau and R. Douville, “End-to-end qos negotiation in network federations,” in

Network Operations and Management Symposium Workshops (NOMS Wksps), 2010

IEEE/IFIP, April 2010, pp. 173–176.

[103] N. Le Sauze, A. Chiosi, R. Douville, H. Pouyllau, H. Lonsethagen, P. Fantini,

C. Palasciano, A. Cimmino, M. C. Rodriguez, O. Dugeon, et al., “Etics: Qos-enabled

interconnection for future internet services,” Future network and mobile summit,

2010. [Online]. Available: https://www.ict-etics.eu/fileadmin/documents/publications/

scientific papers/ETICS mobile summit2010.pdf

[104] H. Pouyllau and G. Carofiglio, “Inter-carrier sla negotiation using q-learning,”

Telecommunication Systems, vol. 52, no. 2, pp. 611–622, 2013. [Online]. Available:

http://dx.doi.org/10.1007/s11235-011-9505-5

[105] G. Brataas, E. Stav, S. Lehrig, S. Becker, G. Kopčak, and D. Huljenic,

“Cloudscale: Scalability management for cloud systems,” in Proceedings of the

4th ACM/SPEC International Conference on Performance Engineering, ser. ICPE

’13. New York, NY, USA: ACM, 2013, pp. 335–338. [Online]. Available:

http://doi.acm.org/10.1145/2479871.2479920

[106] R. Jimenez-Peris, M. Patiño-Martinez, K. Magoutis, A. Bilas, and I. Brondino, “Cumu-

lonimbo: A highly-scalable transaction processing platform as a service,” ERCIM News,

vol. 89, no. null, pp. 34–35, 2012.

[107] I. Anghel, M. Bertoncini, T. Cioara, M. Cupelli, V. Georgiadou, P. Jahangiri,

A. Monti, S. Murphy, A. Schoofs, and T. Velivassaki, “Geyser: Enabling green

data centres in smart cities,” in Energy Efficient Data Centers, ser. Lecture

Notes in Computer Science, S. Klingert, M. Chinnici, and M. Rey Porto, Eds.

Springer International Publishing, 2015, vol. 8945, pp. 71–86. [Online]. Available:

http://dx.doi.org/10.1007/978-3-319-15786-3 5

[108] B. Jones and F. Casu, “Helix nebula-the science cloud: a public-private partnership to

build a multidisciplinary cloud platform for data intensive science,” in EGU General

Assembly Conference Abstracts, vol. 15, 2013, p. 1510.

[109] A.-F. Antonescu, A. Gomes, P. Robinson, and T. Braun, “Sla-driven predictive orchestra-

tion for distributed cloud-based mobile services,” in Communications Workshops (ICC),

2013 IEEE International Conference on, June 2013, pp. 738–743.

http://dx.doi.org/10.1007/978-3-540-85485-2_19
https://www.ict-etics.eu/fileadmin/documents/publications/scientific_papers/ETICS_mobile_summit2010.pdf
https://www.ict-etics.eu/fileadmin/documents/publications/scientific_papers/ETICS_mobile_summit2010.pdf
http://dx.doi.org/10.1007/s11235-011-9505-5
http://doi.acm.org/10.1145/2479871.2479920
http://dx.doi.org/10.1007/978-3-319-15786-3_5

166 Bibliography

[110] D. Ardagna, E. di Nitto, P. Mohagheghi, S. Mosser, C. Ballagny, F. D’Andria, G. Casale,

P. Matthews, C.-S. Nechifor, D. Petcu, A. Gericke, and C. Sheridan, “Modaclouds: A

model-driven approach for the design and execution of applications on multiple clouds,”

in Modeling in Software Engineering (MISE), 2012 ICSE Workshop on, June 2012, pp.

50–56.

[111] E. Tego, F. Matera, V. Attanasio, and D. Del Buono, “Quality of service management

based on software defined networking approach in wide gbe networks,” in Euro Med

Telco Conference (EMTC), 2014, Nov 2014, pp. 1–5.

[112] M. Addis, M. Jacyno, M. Hall-May, M. McArdle, and S. Phillips, “Planning and man-

aging the cost of compromise for av retention and access,” Motion Imaging Journal,

SMPTE, vol. 121, no. 1, pp. 32–38, Feb 2012.

[113] M. Surridge, A. Chakravarthy, M. Hall-May, X. Chen, B. Nasser, and R. Nossal,

“Serscis: Semantic modelling of dynamic, multi-stakeholder systems,” November 2012.

[Online]. Available: http://eprints.soton.ac.uk/349295/

[114] F. Longo, D. Bruneo, M. Villari, A. Puliafito, E. Salant, and Y. Wolfsthal, “From vision

cloud to cloudwave: Towards the future internet and a new generation of services,” in

Intelligent Networking and Collaborative Systems (INCoS), 2014 International Confer-

ence on, Sept 2014, pp. 641–646.

[115] A. Barker, B. Varghese, and L. Thai, “Cloud services brokerage: A survey and research

roadmap,” in Cloud Computing (CLOUD), 2015 IEEE 8th International Conference on,

June 2015, pp. 1029–1032.

[116] A. Amato, B. Di Martino, and S. Venticinque, “A distributed cloud brokering service,”

INFORMATICA, vol. 26, no. 1, pp. 1–15, 2015.

[117] A. Amato, G. Cretella, B. Di Martino, and S. Venticinque, “Semantic and agent tech-

nologies for cloud vendor agnostic resource brokering,” in Advanced Information Net-

working and Applications Workshops (WAINA), 2013 27th International Conference on,

March 2013, pp. 1253–1258.

[118] G. Anastasi, E. Carlini, M. Coppola, and P. Dazzi, “Qbrokage: A genetic approach

for qos cloud brokering,” in Cloud Computing (CLOUD), 2014 IEEE 7th International

Conference on, June 2014, pp. 304–311.

[119] S. Sundareswaran, A. Squicciarini, and D. Lin, “A brokerage-based approach for cloud

service selection,” in Cloud Computing (CLOUD), 2012 IEEE 5th International Confer-

ence on, June 2012, pp. 558–565.

http://eprints.soton.ac.uk/349295/

Bibliography 167

[120] I. U. Haq, A. A. Huqqani, and E. Schikuta, “A conceptual model for aggregation and

validation of slas in business value networks,” in The 3rd International Conference on

Adaptive Business Information Systems (ABIS 2009), March 2009. [Online]. Available:

http://eprints.cs.univie.ac.at/175/

[121] P. Pawluk, B. Simmons, M. Smit, M. Litoiu, and S. Mankovski, “Introducing stratos:

A cloud broker service,” in Cloud Computing (CLOUD), 2012 IEEE 5th International

Conference on, June 2012, pp. 891–898.

[122] I. ul Haq, A. Huqqani, and E. Schikuta, “Aggregating hierarchical service level

agreements in business value networks,” in Business Process Management, ser.

Lecture Notes in Computer Science, U. Dayal, J. Eder, J. Koehler, and H. Reijers,

Eds. Springer Berlin Heidelberg, 2009, vol. 5701, pp. 176–192. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-03848-8 13

[123] S. Wieser and L. Boszormenyi, “Decentralized topology aggregation for qos estimation

in large overlay networks,” in Network Computing and Applications (NCA), 2011 10th

IEEE International Symposium on, Aug 2011, pp. 298–301.

[124] “IEEE Cloud Computing Initiative,” IEEE Foundation, 2015, web Side, accessed June

2015. [Online]. Available: http://cloudcomputing.ieee.org/

[125] “IEEE Standards Association,” IEEE Foundation, 2015, web Side, accessed June 2015.

[Online]. Available: http://standards.ieee.org/index.html

[126] “IEEE Project P2301 - Guide for Cloud Portability and Interoperability Profiles

(CPIP),” IEEE Computer Society, CPWG/2301 WG - Cloud Profiles WG (CPWG)

Working Group, 2015, web Side, accessed June 2015. [Online]. Available:

https://standards.ieee.org/develop/project/2301.html

[127] “IEEE Project P2302 - Standard for Intercloud Interoperability and Federation

(SIIF),” IEEE Computer Society, ICWG/2302 WG - Intercloud WG (ICWG)

Working Group, 2015, web Side, accessed June 2015. [Online]. Available:

https://standards.ieee.org/develop/project/2302.html

[128] “IEEE Cloud Computing Intercloud Testbed,” IEEE Intercloud Testbed, IEEE Cloud

Computing Initiative, 2015, web Side, accessed June 2015. [Online]. Available:

http://www.intercloudtestbed.org/

[129] “The XMPP Standards Foundation,” XMPP Standards Foundation, 2015, web Side,

accessed June 2015. [Online]. Available: http://xmpp.org/

[130] P. Saint-Andre, “Extensible messaging and presence protocol (xmpp): Core,” RFC

6120, March 2011. [Online]. Available: http://xmpp.org/rfcs/rfc6120.html

http://eprints.cs.univie.ac.at/175/
http://dx.doi.org/10.1007/978-3-642-03848-8_13
http://cloudcomputing.ieee.org/
http://standards.ieee.org/index.html
https://standards.ieee.org/develop/project/2301.html
https://standards.ieee.org/develop/project/2302.html
http://www.intercloudtestbed.org/
http://xmpp.org/
http://xmpp.org/rfcs/rfc6120.html

168 Bibliography

[131] P. Waher, “Xep-0332: Http over xmpp transport,” XMPP Standards Foundation (XSF),

2014, version: 0.3. [Online]. Available: http://xmpp.org/extensions/xep-0332.html

[132] J. Hildebrand, P. Millard, R. Eatmon, and P. Saint-Andre, “Xep-0030: Service

discovery,” XMPP Standards Foundation (XSF), 2008, version: 2.4. [Online]. Available:

http://xmpp.org/extensions/xep-0030.html

[133] N. Grozev and R. Buyya, “Inter-cloud architectures and application brokering:

taxonomy and survey,” Software: Practice and Experience, vol. 44, no. 3, pp. 369–390,

2014. [Online]. Available: http://dx.doi.org/10.1002/spe.2168

[134] D. Bernstein, D. Vij, and S. Diamond, “An intercloud cloud computing economy - tech-

nology, governance, and market blueprints,” in SRII Global Conference (SRII), 2011

Annual, March 2011, pp. 293–299.

[135] D. Bernstein and D. Vij, “Intercloud directory and exchange protocol detail using xmpp

and rdf,” in Services (SERVICES-1), 2010 6th World Congress on, July 2010, pp. 431–

438.

[136] L. Yu, A Developer’s Guide to the Semantic Web. Springer-Verlag Berlin Heidelberg,

2014, vol. 2.

[137] G. Klyne, J. J. Carroll, and B. McBride, “Rdf 1.1 concepts and ab-

stract syntax,” Februray 2014. [Online]. Available: http://www.w3.org/TR/2014/

REC-rdf11-concepts-20140225/

[138] B. Di Martino, G. Cretella, A. Esposito, A. Willner, A. Alloush, D. Bernstein, D. Vij,

and J. Weinman, “Towards an ontology-based intercloud resource catalogue – the ieee

p2302 intercloud approach for a semantic resource exchange,” in Cloud Engineering

(IC2E), 2015 IEEE International Conference on, March 2015, pp. 458–464.

[139] A. Willner, R. Loughnane, and T. Magedanz, “Fiddle: Federated infrastructure discov-

ery and description language,” in Cloud Engineering (IC2E), 2015 IEEE International

Conference on, March 2015, pp. 465–471.

[140] D. Bernstein and D. Vij, “Intercloud exchanges and roots topology and trust blueprint,”

in Proc. of 11th International Conference on Internet Computing, 2011, pp. 135–141.

[Online]. Available: http://weblidi.info.unlp.edu.ar/worldcomp2011-mirror/ICM3485.

pdf

[141] ——, “Intercloud federation using via semantic resource federation api and dynamic

sdn provisioning,” in Network of the Future (NOF), 2014 International Conference and

Workshop on the, vol. Workshop, Dec 2014, pp. 1–8.

http://xmpp.org/extensions/xep-0332.html
http://xmpp.org/extensions/xep-0030.html
http://dx.doi.org/10.1002/spe.2168
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://weblidi.info.unlp.edu.ar/worldcomp2011-mirror/ICM3485.pdf
http://weblidi.info.unlp.edu.ar/worldcomp2011-mirror/ICM3485.pdf

Bibliography 169

[142] ——, “Intercloud security considerations,” in Cloud Computing Technology and Science

(CloudCom), 2010 IEEE Second International Conference on, Nov 2010, pp. 537–544.

[143] ——, “Using semantic web ontology for intercloud directories and exchanges,”

in International Conference on Internet Computing, 2010, pp. 18–24. [On-

line]. Available: http://www.cloudstrategypartners.com/resources/Using+Semantic+

Web+Ontology+for+Intercloud+Directories+and+Exchanges+-+Draft.pdf

[144] ——, “Using xmpp as a transport in intercloud protocols,” in 2010 the 2nd

International Conference on Cloud Computing, CloudComp, 2010. [Online]. Avail-

able: http://www.cloudstrategypartners.com/resources/Using+XMPP+as+a+transport+

in+Intercloud+Protocols+-+Draft+Copy.pdf

[145] D. Bernstein and Y. Demchenko, “The ieee intercloud testbed – creating the global cloud

of clouds,” in Cloud Computing Technology and Science (CloudCom), 2013 IEEE 5th

International Conference on, vol. 2, Dec 2013, pp. 45–50.

[146] “IEEE P2302/D0.9 - Draft Standard for Intercloud Interoperability and

Federation (SIIF),” IEEE Computer Society, ICWG/2302 WG - Inter-

cloud WG (ICWG) Working Group, January 2015, unpublished, Re-

stricted Member Access. [Online]. Available: https://mentor.ieee.org/p2302/dcn/

15/p2302-15-0004-00-DRFT-intercloud-p2302-draft-0-9.doc

[147] J. Wagener, E. Willighagen, A. Heusler, T. Markmann, and O. Spjuth, “Xep-0244: Io

data,” XMPP Standards Foundation (XSF), 2008, version: 0.1. [Online]. Available:

http://xmpp.org/extensions/xep-0244.html

[148] ——. Xws4j: Xmpp web services for java (xws4j). Version 09.05.19, Project Website,

accessed November 2015. [Online]. Available: http://xws4j.sourceforge.net/index.html

[149] J. Wagener, O. Spjuth, E. Willighagen, and J. Wikberg, “Xmpp for cloud

computing in bioinformatics supporting discovery and invocation of asynchronous

web services,” BMC Bioinformatics, vol. 10, p. 279, 2009. [Online]. Available:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755485/

[150] Internet Society (ISOC), 2015, web Side, accessed November 2015. [Online]. Available:

http://www.internetsociety.org/

[151] Internet Corporation for Assigned Names and Numbers (ICANN), 2015, web Side,

accessed November 2015. [Online]. Available: https://www.icann.org/

[152] F. Forno and P. Saint-Andre, “Xep-0072: Soap over xmpp,” XMPP Standards

Foundation (XSF), 2005, version: 1.0. [Online]. Available: http://xmpp.org/extensions/

xep-0072.html

http://www.cloudstrategypartners.com/resources/Using+Semantic+Web+Ontology+for+Intercloud+Directories+and+Exchanges+-+Draft.pdf
http://www.cloudstrategypartners.com/resources/Using+Semantic+Web+Ontology+for+Intercloud+Directories+and+Exchanges+-+Draft.pdf
http://www.cloudstrategypartners.com/resources/Using+XMPP+as+a+transport+in+Intercloud+Protocols+-+Draft+Copy.pdf
http://www.cloudstrategypartners.com/resources/Using+XMPP+as+a+transport+in+Intercloud+Protocols+-+Draft+Copy.pdf
https://mentor.ieee.org/p2302/dcn/15/p2302-15-0004-00-DRFT-intercloud-p2302-draft-0-9.doc
https://mentor.ieee.org/p2302/dcn/15/p2302-15-0004-00-DRFT-intercloud-p2302-draft-0-9.doc
http://xmpp.org/extensions/xep-0244.html
http://xws4j.sourceforge.net/index.html
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755485/
http://www.internetsociety.org/
https://www.icann.org/
http://xmpp.org/extensions/xep-0072.html
http://xmpp.org/extensions/xep-0072.html

170 Bibliography

[153] D. Winer, “XML-RPC Specification,” Scripting News, Inc., 2003, web Side,

accessed June 2015, Version: updated 6/30/03 DW. [Online]. Available: http:

//xmlrpc.scripting.com/spec.html

[154] D. Adams, “Xep-0009: Jabber-rpc,” XMPP Standards Foundation (XSF), 2011, version:

2.2. [Online]. Available: http://xmpp.org/extensions/xep-0009.html

[155] H. Nomoto, “State oriented programming,” in High Assurance Systems Engineering,

2004. Proceedings. Eighth IEEE International Symposium on, March 2004, pp. 304–

305.

[156] T. Berners-Lee, R. T. Fielding, and L. Masinter, “Uniform resource identifiers

(uri): Generic syntax,” The Internet Society, 1998, rFC 2396. [Online]. Available:

https://www.ietf.org/rfc/rfc2396.txt

[157] P. Saint-Andre, “Xep-0114: Jabber component protocol,” XMPP Standards Foundation

(XSF), 2012, version: 1.6. [Online]. Available: http://xmpp.org/extensions/xep-0114.

html

[158] P. Waher, “Xep-0337: Event logging over xmpp,” XMPP Standards Foundation (XSF),

2008, version: 0.1. [Online]. Available: http://xmpp.org/extensions/xep-0337.html

[159] Igniterealtime Open Source community, “Smack api,” Jive Software, 2015, latest

version: 4.1.5. [Online]. Available: http://www.igniterealtime.org/projects/smack/

[160] ——, “Whack api,” Jive Software, 2015, latest version: 2.0.0. [Online]. Available:

http://www.igniterealtime.org/projects/whack/

[161] Apache Software Foundation, “Apache wicket,” Apache Software Foundation, 2015,

latest version: v7.0. [Online]. Available: http://wicket.apache.org/

[162] Bootstrap Community, “Bootstrap is the most popular html, css, and js framework for

developing responsive, mobile first projects on the web,” Twitter, 2015, latest version:

v3.3.6. [Online]. Available: http://getbootstrap.com/

http://xmlrpc.scripting.com/spec.html
http://xmlrpc.scripting.com/spec.html
http://xmpp.org/extensions/xep-0009.html
https://www.ietf.org/rfc/rfc2396.txt
http://xmpp.org/extensions/xep-0114.html
http://xmpp.org/extensions/xep-0114.html
http://xmpp.org/extensions/xep-0337.html
http://www.igniterealtime.org/projects/smack/
http://www.igniterealtime.org/projects/whack/
http://wicket.apache.org/
http://getbootstrap.com/

A. Appendix

Contents
A.1. XWADL Schema . 171

A.2. REST-XML Schema . 174

A.3. Classification Schema . 177

A.4. XML-Rendering Schema . 179

A.5. EventLog Schema . 182

A.6. Evaluation Recording . 183

A.1. XWADL Schema✞ ⊵
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”urn:xmpp:rest−xwadl” xmlns=”urn:xmpp:rest−xwadl”
elementFormDefault=”qualified”>

<xs:element name=”resource type”>
<xs:complexType>

<xs:sequence>

<xs:element name=”documentation” type=”documentationType”
minOccurs=”0” maxOccurs=”1” />

<xs:element ref=”grammars” minOccurs=”0” maxOccurs=”1” />

<xs:element ref=”method” minOccurs=”0” maxOccurs=”unbounded” />

<xs:element ref=”action” minOccurs=”0” maxOccurs=”unbounded” />

</xs:sequence>

<xs:attribute name=”path” type=”xs:string” use=”required” />

</xs:complexType>

</xs:element>

<xs:complexType name=”documentationType”>
<xs:simpleContent>

<xs:extension base=”xs:string”>
<xs:attribute name=”title” type=”xs:string” />

</xs:extension>

</xs:simpleContent>

172 A. Appendix

</xs:complexType>

<xs:element name=”grammars”>
<xs:complexType>

<xs:sequence>

<xs:element name=”documentation” type=”documentationType”
minOccurs=”0” maxOccurs=”unbounded” />

<xs:any namespace=”##other” processContents=”lax” minOccurs=”0”
maxOccurs=”unbounded” />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”method”>
<xs:complexType>

<xs:sequence>

<xs:element name=”documentation” type=”documentationType”
minOccurs=”0” maxOccurs=”1” />

<xs:element ref=”request” minOccurs=”0” maxOccurs=”1” />

<xs:element ref=”response” minOccurs=”0” maxOccurs=”1” />

</xs:sequence>

<xs:attribute name=”type” type=”methodType” use=”required” />

</xs:complexType>

</xs:element>

<xs:simpleType name=”methodType”>
<xs:restriction base=”xs:string”>

<xs:enumeration value=”GET” />

<xs:enumeration value=”POST” />

<xs:enumeration value=”PUT” />

<xs:enumeration value=”DELETE” />

</xs:restriction>

</xs:simpleType>

<xs:element name=”request”>
<xs:complexType>

<xs:sequence>

<xs:element name=”documentation” type=”documentationType”
minOccurs=”0” maxOccurs=”1” />

<xs:element name=”template” type=”xs:string” minOccurs=”0”
maxOccurs=”unbounded” />

</xs:sequence>

<xs:attribute name=”mediaType” type=”xs:string” use=”required” />

</xs:complexType>

</xs:element>

A.1. XWADL Schema 173

<xs:element name=”response”>
<xs:complexType>

<xs:sequence>

<xs:element name=”documentation” type=”documentationType”
minOccurs=”0” maxOccurs=”1” />

</xs:sequence>

<xs:attribute name=”mediaType” type=”xs:string” use=”required” />

</xs:complexType>

</xs:element>

<xs:element name=”action”>
<xs:complexType>

<xs:sequence>

<xs:element name=”documentation” type=”documentationType”
minOccurs=”0” maxOccurs=”1” />

<xs:element ref=”parameter” minOccurs=”0” maxOccurs=”unbounded”
/>

<xs:element ref=”result” minOccurs=”0” maxOccurs=”1” />

</xs:sequence>

<xs:attribute name=”name” type=”xs:string” use=”required” />

</xs:complexType>

</xs:element>

<xs:element name=”parameter”>
<xs:complexType>

<xs:sequence>

<xs:element name=”documentation” type=”documentationType”
minOccurs=”0” maxOccurs=”1” />

</xs:sequence>

<xs:attribute name=”name” type=”xs:string” use=”required” />

<xs:attribute name=”default” type=”xs:string” />

<xs:attribute name=”type” type=”parameterType” use=”required” />

</xs:complexType>

</xs:element>

<xs:element name=”result”>
<xs:complexType>

<xs:sequence>

<xs:element name=”documentation” type=”documentationType”
minOccurs=”0” maxOccurs=”1” />

</xs:sequence>

<xs:attribute name=”type” type=”parameterType” use=”required” />

</xs:complexType>

</xs:element>

174 A. Appendix

<xs:simpleType name=”parameterType”>
<xs:restriction base=”xs:string”>

<xs:enumeration value=”STRING” />

<xs:enumeration value=”INTEGER” />

<xs:enumeration value=”DOUBLE” />

<xs:enumeration value=”BOOLEAN” />

<xs:enumeration value=”LINK” />

</xs:restriction>

</xs:simpleType>

</xs:schema>✝ ✆
LISTING A.1: XWADL Schema

A.2. REST-XML Schema✞ ⊵
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”urn:xmpp:xml−rest” xmlns=”urn:xmpp:xml−rest”
elementFormDefault=”qualified”>

<xs:element name=”resource”>
<xs:complexType>

<xs:choice>

<xs:element ref=”method” minOccurs=”1” maxOccurs=”1” />

<xs:element ref=”action” minOccurs=”1” maxOccurs=”1” />

</xs:choice>

<xs:attribute name=”path” type=”xs:string” use=”required” />

</xs:complexType>

</xs:element>

<xs:element name=”method”>
<xs:complexType>

<xs:sequence>

<xs:element ref=”request” minOccurs=”0” maxOccurs=”1” />

<xs:element ref=”response” minOccurs=”0” maxOccurs=”1” />

</xs:sequence>

<xs:attribute name=”type” type=”methodType” use=”required” />

</xs:complexType>

</xs:element>

A.2. REST-XML Schema 175

<xs:simpleType name=”methodType”>
<xs:restriction base=”xs:string”>

<xs:enumeration value=”GET” />

<xs:enumeration value=”POST” />

<xs:enumeration value=”PUT” />

<xs:enumeration value=”DELETE” />

</xs:restriction>

</xs:simpleType>

<xs:element name=”request”>
<xs:complexType>

<xs:sequence>

<xs:element name=”representation” type=”xs:string”
minOccurs=”0” maxOccurs=”1” />

<xs:any namespace=”##other” processContents=”lax” minOccurs=”0”
maxOccurs=”unbounded” />

</xs:sequence>

<xs:attribute name=”mediaType” type=”xs:string” use=”required” />

</xs:complexType>

</xs:element>

<xs:element name=”response”>
<xs:complexType>

<xs:sequence>

<xs:element name=”representation” type=”xs:string”
minOccurs=”0” maxOccurs=”1” />

<xs:any namespace=”##other” processContents=”lax” minOccurs=”0”
maxOccurs=”unbounded” />

</xs:sequence>

<xs:attribute name=”mediaType” type=”xs:string” use=”required” />

</xs:complexType>

</xs:element>

<xs:element name=”action”>
<xs:complexType>

<xs:sequence>

<xs:element ref=”parameter” minOccurs=”0” maxOccurs=”unbounded”
/>

<xs:element ref=”result” minOccurs=”0” maxOccurs=”1” />

</xs:sequence>

<xs:attribute name=”name” type=”xs:string” use=”required” />

</xs:complexType>

</xs:element>

176 A. Appendix

<xs:element name=”parameter”>
<xs:complexType>

<xs:choice>

<xs:element name=”STRING” type=”xs:string” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”INTEGER” type=”xs:integer” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”DOUBLE” type=”xs:double” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”BOOLEAN” type=”xs:boolean” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”LINK” type=”xs:anyURI” minOccurs=”1”
maxOccurs=”1” />

</xs:choice>

<xs:attribute name=”name” type=”xs:string” use=”required” />

</xs:complexType>

</xs:element>

<xs:element name=”result”>
<xs:complexType>

<xs:choice>

<xs:element name=”STRING” type=”xs:string” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”INTEGER” type=”xs:integer” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”DOUBLE” type=”xs:double” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”BOOLEAN” type=”xs:boolean” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”LINK” type=”xs:anyURI” minOccurs=”1”
maxOccurs=”1” />

</xs:choice>

</xs:complexType>

</xs:element>

</xs:schema>✝ ✆
LISTING A.2: REST-XML Schema

A.3. Classification Schema 177

A.3. Classification Schema✞ ⊵
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”urn:xmpp:occi−classification” xmlns=”urn:xmpp:occi−classification”
elementFormDefault=”qualified”>

<xs:element name=”Classification”>
<xs:complexType>

<xs:sequence>

<xs:element name=”KindType” type=”CategoryClassification”
minOccurs=”0” maxOccurs=”1” />

<xs:element name=”MixinType” type=”MixinClassification”
minOccurs=”0” maxOccurs=”unbounded” />

<xs:element name=”LinkType” type=”LinkClassification”
minOccurs=”0” maxOccurs=”unbounded” />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:complexType name=”MixinClassification”>
<xs:complexContent>

<xs:extension base=”CategoryClassification”>
<xs:sequence>

<xs:element name=”applies” type=”xs:string”
minOccurs=”1” maxOccurs=”1”
default=”http://schema.ogf.org/occi/core#category” />

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name=”LinkClassification”>
<xs:complexContent>

<xs:extension base=”CategoryClassification”>
<xs:sequence>

<xs:element name=”relation” type=”xs:string”
minOccurs=”1” maxOccurs=”1”
default=”http://schema.ogf.org/occi/core#category” />

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

178 A. Appendix

<xs:complexType name=”CategoryClassification”>
<xs:sequence>

<xs:element name=”term” type=”xs:string” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”schema” type=”xs:string” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”title” type=”xs:string” minOccurs=”0”
maxOccurs=”1” />

<xs:element ref=”attributeClassification” minOccurs=”0”
maxOccurs=”unbounded” />

</xs:sequence>

</xs:complexType>

<xs:element name=”attributeClassification”>
<xs:complexType>

<xs:sequence>

<xs:element name=”name” type=”xs:string” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”type” type=”attributeType” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”mutable” type=”xs:boolean” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”required” type=”xs:boolean” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”default” type=”xs:string” minOccurs=”0”
maxOccurs=”1” />

<xs:element name=”description” type=”xs:string”
minOccurs=”0” maxOccurs=”1” />

</xs:sequence>

</xs:complexType>

</xs:element>

A.4. XML-Rendering Schema 179

<xs:simpleType name=”attributeType”>
<xs:restriction base=”xs:string”>

<xs:enumeration value=”STRING” />

<xs:enumeration value=”ENUM” />

<xs:enumeration value=”INTEGER” />

<xs:enumeration value=”FLOAT” />

<xs:enumeration value=”DOUBLE” />

<xs:enumeration value=”BOOLEAN” />

<xs:enumeration value=”URI” />

<xs:enumeration value=”SIGNATURE” />

<xs:enumeration value=”KEY” />

<xs:enumeration value=”DATETIME” />

<xs:enumeration value=”DURATION” />

<xs:enumeration value=”LIST” />

<xs:enumeration value=”MAP” />

</xs:restriction>

</xs:simpleType>

</xs:schema>✝ ✆
LISTING A.3: Classification Schema

A.4. XML-Rendering Schema✞ ⊵
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”urn:xmpp:occi−representation”

xmlns=”urn:xmpp:occi−representation”
elementFormDefault=”qualified”>

<xs:element name=”Category List”>
<xs:complexType>

<xs:sequence>

<xs:element ref=”Category” minOccurs=”0” maxOccurs=”unbounded” />

</xs:sequence>

</xs:complexType>

</xs:element>

180 A. Appendix

<xs:element name=”Category”>
<xs:complexType>

<xs:sequence>

<xs:element name=”Kind” type=”CategoryType” minOccurs=”0”
maxOccurs=”1” />

<xs:element name=”Mixin” type=”CategoryType” minOccurs=”0”
maxOccurs=”unbounded” />

<xs:element name=”Link” type=”LinkType” minOccurs=”0”
maxOccurs=”unbounded” />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:complexType name=”LinkType”>
<xs:complexContent>

<xs:extension base=”CategoryType”>
<xs:sequence>

<xs:element name=”target” type=”xs:anyURI” minOccurs=”0”
maxOccurs=”1” />

<xs:element name=”Mixin” type=”CategoryType” minOccurs=”0”
maxOccurs=”unbounded” />

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name=”CategoryType”>
<xs:sequence>

<xs:element name=”term” type=”xs:string” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”schema” type=”xs:string” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”title” type=”xs:string” minOccurs=”0”
maxOccurs=”1” />

<xs:element name=”attribute” type=”AttributeType”
minOccurs=”0” maxOccurs=”unbounded” />

</xs:sequence>

</xs:complexType>

A.4. XML-Rendering Schema 181

<xs:complexType name=”AttributeType”>
<xs:choice>

<xs:element name=”STRING” type=”xs:string” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”ENUM” type=”xs:string” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”INTEGER” type=”xs:int” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”FLOAT” type=”xs:float” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”DOUBLE” type=”xs:double” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”BOOLEAN” type=”xs:boolean” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”URI” type=”xs:anyURI” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”SIGNATURE” type=”xs:base64Binary”
minOccurs=”1” maxOccurs=”1” />

<xs:element name=”KEY” type=”xs:base64Binary” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”DATETIME” type=”xs:dateTime” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”DURATION” type=”xs:duration” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”LIST” type=”ListType” minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”MAP” type=”MapType” minOccurs=”1”
maxOccurs=”1” />

</xs:choice>

<xs:attribute name=”name” type=”xs:string” use=”required” />

</xs:complexType>

<xs:complexType name=”ListType”>
<xs:sequence>

<xs:element name=”item” type=”xs:string”
minOccurs=”0” maxOccurs=”unbounded” />

</xs:sequence>

</xs:complexType>

<xs:complexType name=”MapType”>
<xs:sequence>

<xs:element name=”item” type=”MapItem”
minOccurs=”0” maxOccurs=”unbounded” />

</xs:sequence>

</xs:complexType>

182 A. Appendix

<xs:complexType name=”MapItem”>
<xs:simpleContent>

<xs:extension base=”xs:string”>
<xs:attribute name=”key” type=”xs:string” use=”required” />

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:schema>✝ ✆
LISTING A.4: XML-Rendering Schema

A.5. EventLog Schema✞ ⊵
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs=’http://www.w3.org/2001/XMLSchema’
targetNamespace=’urn:xmpp:eventlog’ xmlns=’urn:xmpp:eventlog’
elementFormDefault=’qualified’>

<xs:element name=’log’>
<xs:complexType>

<xs:sequence>

<xs:element name=’message’ type=’xs:string’ minOccurs=’1’
maxOccurs=’1’ />

<xs:element name=’tag’ minOccurs=’0’ maxOccurs=’unbounded’>
<xs:complexType>

<xs:attribute name=’name’ type=’xs:string’ use=’required’ />

<xs:attribute name=’value’ type=’xs:string’ use=’required’ />

<xs:attribute name=’type’ type=’xs:QName’ use=’optional’
default=’xs:string’ />

</xs:complexType>

</xs:element>

<xs:element name=’stackTrace’ type=’xs:string’ minOccurs=’0’
maxOccurs=’1’ />

</xs:sequence>

<xs:attribute name=’timestamp’ type=’xs:dateTime’ use=’required’ />

<xs:attribute name=’id’ type=’xs:string’ use=’optional’ />

<xs:attribute name=’type’ type=’EventType’ use=’optional’
default=’Informational’ />

<xs:attribute name=’level’ type=’EventLevel’ use=’optional’
default=’Minor’ />

A.6. Evaluation Recording 183

<xs:attribute name=’object’ type=’xs:string’ use=’optional’ />

<xs:attribute name=’subject’ type=’xs:string’ use=’optional’ />

<xs:attribute name=’facility’ type=’xs:string’ use=’optional’ />

<xs:attribute name=’module’ type=’xs:string’ use=’optional’ />

</xs:complexType>

</xs:element>

<xs:simpleType name=’EventType’>
<xs:restriction base=’xs:string’>

<xs:enumeration value=’Debug’ />

<xs:enumeration value=’Informational’ />

<xs:enumeration value=’Notice’ />

<xs:enumeration value=’Warning’ />

<xs:enumeration value=’Error’ />

<xs:enumeration value=’Critical’ />

<xs:enumeration value=’Alert’ />

<xs:enumeration value=’Emergency’ />

</xs:restriction>

</xs:simpleType>

<xs:simpleType name=’EventLevel’>
<xs:restriction base=’xs:string’>

<xs:enumeration value=’Major’ />

<xs:enumeration value=’Medium’ />

<xs:enumeration value=’Minor’ />

</xs:restriction>

</xs:simpleType>

</xs:schema>✝ ✆
LISTING A.5: EventLog Schema

A.6. Evaluation Recording✞ ⊵
<iq to=”exchange.intercloud.cit.tu−berlin.de” id=”3BHdb−14” type=”get”

from=”alex0@intercloud.cit.tu−berlin.de/Smack”>
<resource_type xmlns=”urn:xmpp:rest−xwadl” path=”/agreement/testSLA”/>

</iq>✝ ✆
LISTING A.6: IQ payload of an XWADL Get

184 A. Appendix

✞ ⊵
<iq type=”result” id=”3BHdb−14” from=”exchange.intercloud.cit.tu−berlin.de”

to=”alex0@intercloud.cit.tu−berlin.de/Smack”>
<resource_type xmlns=”urn:xmpp:rest−xwadl”

xmlns:urn=”urn:xmpp:occi−classification” path=”/agreement/testSLA”>
<documentation title=”Summary”>This resource allows for managing

service level agreements.</documentation> <grammars>

<urn:Classification>

<urn:KindType>

<urn:term>agreement</urn:term>

...

</urn:KindType>

...

</urn:Classification>

</grammars>

<method type=”PUT”>
<documentation title=”addGuaranteeTerm”>This method adds a set of

guarantee terms as link resources.</documentation>

<request mediaType=”xml/occi”/>
<response mediaType=”text/uri−list”/>

</method>

...

<method type=”GET”>
<documentation title=”getRepresentation”>This method returns the

representation of this resource.</documentation>

<response mediaType=”xml/occi”/>
</method>

<method type=”GET”>
<documentation title=”getSubResources”>This method returns a list

of all sub resources.</documentation>

<response mediaType=”text/uri−list”/>
</method>

</resource_type>

</iq>✝ ✆
LISTING A.7: IQ payload of an XWADL Result

A.6. Evaluation Recording 185

✞ ⊵
<iq to=”exchange.intercloud.cit.tu−berlin.de” id=”3BHdb−17” type=”set”

from=”alex0@intercloud.cit.tu−berlin.de/Smack”>
<resource xmlns=”urn:xmpp:xml−rest” path=”/agreement/testSLA”>
<method type=”PUT”>
<request mediaType=”xml/occi”>
<representation><![CDATA[<Category

xmlns="urn:xmpp:occi-representation">

<Link>

<term>guaranteeterm</term>

<schema>http://schema.cit.tu-berlin.de/occi/sla#</schema>

<title>GuaranteeTerm Link</title>

<attribute name="occi.guaranteeterm.sensor">

<STRING>xmpp://wally080.cit.tu-berlin.de#/sensor/senX1</STRING>

</attribute>

<attribute name="occi.guaranteeterm.state">

<ENUM>undefined</ENUM>

</attribute>

<attribute name="occi.guaranteeterm.relationaloperator">

<ENUM>GREATER_THAN_OR_EQUAL_TO</ENUM>

</attribute>

<target>xmpp://wally080.cit.tu-berlin.de#/compute/vmX1</target>

<Mixin>

<term>timewindowmetric</term>

<schema>http://schema.cit.tu-berlin.de/occi/cep

#</schema>

<title>Time Window Metric Mixin</title>

<attribute name="occi.metric.windowtype">

<ENUM>SlidingWindow</ENUM>

</attribute>

<attribute name="occi.metric.windowduration">

<INTEGER>15</INTEGER>

</attribute>

<attribute name="occi.metric.durationunit">

<ENUM>minutes</ENUM>

</attribute>

</Mixin>

<Mixin>

<term>eventlog</term>

<schema>http://schema.cit.tu-berlin.de/occi/cep

#</schema>

<title>Event Log Mixin</title>

<attribute name="occi.eventlog.eventid">

<STRING>AvailabilityEvent</STRING>

</attribute>

186 A. Appendix

</Mixin>

<Mixin>

<term>aggregation</term>

<schema>http://schema.cit.tu-berlin.de/occi/cep

#</schema>

<title>Aggregation Mixin</title>

<attribute name="occi.aggregation.operation">

<ENUM>avg</ENUM>

</attribute>

</Mixin>

<Mixin>

<term>availability</term>

<schema>http://schema.cit.tu-berlin.de/occi/sla/guaranteeterm

#</schema>

<title>Availability Mixin</title>

<attribute name="occi.guaranteeterm.availability.slo">

<DOUBLE>50.0</DOUBLE>

</attribute>

</Mixin>

</Link>

</Category>]]></representation>

</request>

<response mediaType=”text/uri−list”/>
</method>

</resource>

</iq>✝ ✆
LISTING A.8: IQ payload of a REST-XML Set✞ ⊵

<iq type=”result” id=”3BHdb−17” from=”exchange.intercloud.cit.tu−berlin.de”
to=”alex0@intercloud.cit.tu−berlin.de/Smack”>

<resource xmlns=”urn:xmpp:xml−rest” path=”/agreement/testSLA”>
<method type=”PUT”>
<response mediaType=”text/uri−list”>
<representation>xmpp://exchange.intercloud.cit.tu-berlin.de#

/agreement/testSLA/413382d9-f0db-4425-a8eb-41b69cd807d5;

</representation>

</response>

</method>

</resource>

</iq>✝ ✆
LISTING A.9: IQ payload of a REST-XML Result

A.6. Evaluation Recording 187

✞ ⊵
select avg(availability) from AvailabilityEvent.win:time(15

minutes) where object = ’xmpp://wally080.cit.tu−berlin.de#/sensor/senX1’ and

subject = ’xmpp://wally080.cit.tu−berlin.de#/compute/vmX1’ having

avg(availability)>= 50.0✝ ✆
LISTING A.10: Generated expression for fulfilled guarantee terms✞ ⊵

select avg(availability) from AvailabilityEvent.win:time(15

minutes) where object = ’xmpp://wally080.cit.tu−berlin.de#/sensor/senX1’ and

subject = ’xmpp://wally080.cit.tu−berlin.de#/compute/vmX1’ having

avg(availability)< 50.0✝ ✆
LISTING A.11: Generated expression for violated guarantee terms✞ ⊵

<message to=”exchange.intercloud.cit.tu−berlin.de” id=”3BHdb−19” type=”normal”
from=”alex0@intercloud.cit.tu−berlin.de/Smack”>

<log xmlns=”urn:xmpp:eventlog”
object=”xmpp://wally080.cit.tu−berlin.de#/sensor/senX1”
subject=”xmpp://wally080.cit.tu−berlin.de#/compute/vmX1”
timestamp=”2015−12−01T01:24:59.222+01:00” id=”AvailabilityEvent”>

<tag xmlns:xs=”http://www.w3.org/2001/XMLSchema” name=”availability”
type=”xs:double” value=”45.37660022765001”></tag>

</log>

</message>✝ ✆
LISTING A.12: Message payload of an EventLog

	Title
	Acknowledgement
	Abstract
	Contents
	1 Introduction
	1.1 Problem Definition
	1.2 Contribution
	1.3 Outline of the Thesis

	2 SLA Fundamentals and Definitions
	2.1 Disambiguation
	2.2 Approaches for Service Level Agreements
	2.3 WS-Agreement
	2.3.1 WS-Agreement Model
	2.3.2 WS-Agreement Protocol
	2.3.3 WS-Agreement Factory Service
	2.3.4 WS-Agreement Agreement Service
	2.3.5 WS-Agreement Language

	2.4 WS-Agreement Negotiation
	2.4.1 WS-Agreement Negotiation Model
	2.4.2 WS-Agreement Negotiation Protocol
	2.4.3 WS-Agreement Negotiation Language

	3 Standards and Implementation Analysis
	3.1 WS-Agreement Dependency Analysis
	3.2 WS-Agreement Applicability Analysis
	3.2.1 Participant roles
	3.2.2 Protocol Variants
	3.2.3 Service Terms

	3.3 WSAG4J Framework Analysis
	3.4 REST as an alternative to WSRF
	3.4.1 History and Motivation
	3.4.2 Features
	3.4.3 Interoperability
	3.4.4 Network Load and Performance
	3.4.5 Related Work

	3.5 Performance Evaluation
	3.5.1 Test Scenarios
	3.5.2 Test Infrastructure
	3.5.3 Impact of Security Technology
	3.5.4 Measurement Results
	3.5.5 Conclusion

	3.6 Further REST-based Cloud Standards
	3.6.1 Cloud Application Management for Platforms
	3.6.2 Cloud Infrastructure Management Interface
	3.6.3 Open Cloud Computing Interface

	4 Agreement Mediation Approaches
	4.1 Registry Approach
	4.1.1 Service Visibility and Discovery
	4.1.2 Complexity and Automation

	4.2 Broker Approach
	4.2.1 Advertising SLA Temples
	4.2.2 Discovering and Comparing service offer
	4.2.3 Feeding in monitoring data
	4.2.4 Getting notified about SLA events

	4.3 ESB Approach
	4.3.1 Architecture
	4.3.2 SLA Engine
	4.3.3 On-Boarding Process
	4.3.4 SLA Inheritance

	4.4 Federation Approach
	4.4.1 Architecture
	4.4.2 SLA Aggregation
	4.4.3 Expected Aggregation Count

	4.5 Related Approaches
	4.6 Conclusion

	5 Intercloud SLA Management
	5.1 XMPP
	5.2 Related Work
	5.3 REST with XMPP
	5.3.1 Resource Exploration
	5.3.2 Resource Access
	5.3.3 Implementation Concept
	5.3.4 Performance Evaluation

	5.4 REST with XMPP Rendering
	5.4.1 Classification Rendering
	5.4.2 Representation Rendering
	5.4.3 Implementation Concept

	5.5 Intercloud Agreement-Mediators
	5.6 Protocol Extensions
	5.6.1 Monitoring Model
	5.6.2 Service Level Agreement Model
	5.6.3 Event Processing Model

	6 Intercloud Prototyping and Evaluation
	6.1 Implementation
	6.1.1 Communication Pattern
	6.1.2 Service Discovery
	6.1.3 Service Catalog
	6.1.4 Complex Event Processing

	6.2 Evaluation
	6.2.1 Use Case Testing
	6.2.2 Load Testing
	6.2.3 Conclusion

	7 Concluion and Future Work
	Bibliography
	A Appendix
	A.1 XWADL Schema
	A.2 REST-XML Schema
	A.3 Classification Schema
	A.4 XML-Rendering Schema
	A.5 EventLog Schema
	A.6 Evaluation Recording

