A Software Fault-Tolerance Mechanism
for Mixed-Critical Real-Time Applications
on Consumer-Grade Many-Core Processors

vorgelegt von

Peter Munk, M.Sc.
geb. in Ostfildern

von der Fakultat IV — Elektrotechnik und Informatik
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Ben Juurlink
Gutachter: Prof. Dr. Hans-Ulrich HeiB
Gutachter: Prof. Dr.-Ing. Michael GlaB
Gutachterin: Prof. Dr. Sabine Glesner

Tag der wissenschaftlichen Aussprache: 22. Juli 2016

Berlin 2016






Abstract

The number of cores per processor continues to increase due to higher integration rates
and smaller feature sizes. This development of many-core processors leads to a higher
susceptibility to soft errors, which are caused by high-energy particle strikes.

At the same time, the complexity and computational demand of automotive applications
is rising steadily, following the vision of highly automated driving. Due to their computa-
tional performance and their comparatively low costs, commercial off-the-shelf many-core
processors become attractive in cost-driven mass markets such as the automotive domain.
In order to execute safety-critical automotive applications on such processors and fulfill
the obligatory safety standards, fault-tolerance mechanisms have to be installed. How-
ever, hardware-implemented fault-tolerance mechanisms increase the unit costs and are
uncommon in consumer-grade many-core processors, which are designed for applications
without safety requirements.

In this thesis, we present an adaptive software-implemented fault-tolerance mechanism
that is based on the N modular redundancy principle, leveraging the spatial redundancy
of many-core processors. In order to eliminate the voter as a single point of failure, our
mechanism employs two fail-silent voters that check and repair each other. The fail-silent
behavior is achieved by an encoded voting procedure. Our fault-tolerance mechanism
includes a state-conserving repair procedure to recover from replica and voter failures. In
contrast to related work, we consider failures in all software components, including the
OS kernel.

In order to meet the real-time requirement of automotive applications, our fault-
tolerance mechanism utilizes well-known scheduling policies. However, consumer-grade
many-core processors do not commonly provide an inter-core communication with la-
tency and bandwidth guarantees. Therefore, we propose a software-based approach that
guarantees a bounded latency for dynamic communication. The main principle of our
approach is to limit the packet injection rate for all sources.

Furthermore, we present a framework that eases the development of safety-critical
real-time applications on consumer-grade many-core processors. The framework adapts
our fault-tolerance mechanism for each task of a mixed-critical task set such that the task’s
reliability and availability requirements are satisfied with minimum resource usage. A
discrete Markov chain model of our mechanism is used to determine the resulting reliability
and availability of each task. Measurements on a cycle-accurate and bit-accurate many-core
processor simulator with realistic fault injections show the advantage of our adaptive
software fault-tolerance mechanism and demonstrate the trade-off between resource usage
and fault-tolerance level.

111






Zusammenfassung

Aufgrund schrumpfender Strukturbreiten und eines steigenden Integrationsgrads wichst
die Anzahl der Rechenkerne pro Prozessor kontinuierlich. Diese Entwicklung von Many-
Core Prozessoren bedingt allerdings eine hohere Anfilligkeit fiir transiente Fehler, welche
aus energiereichen Partikeleinschligen resultieren.

Getrieben von der Vision des hochautomatisierten Fahrens nehmen die Komplexitit
und der Rechenbedarf von Software im Automobilbereich stetig zu. Aufgrund ihrer Re-
chenleistung und ihrer vergleichsweise geringen Stiickkosten wird der Einsatz von auf dem
Markt erhiltlichen Many-Core Prozessoren in stiickkostengetrieben Massenmirkten wie
dem Automobilereich zunehmend attraktiv. Um sicherheitskritische Anwendungen auf
solchen Prozessoren auszufithren und die entsprechenden Sicherheitsnormen zu erfiillen,
werden Fehlertoleranzmechanismen benétigt. In Hardware umgesetzte Mechanismen
erhohen die Stiickkosten und sind nicht in gingigen Many-Core Prozessoren verbaut,
welche fiir Anwendungen ohne Sicherheitsanforderungen ausgelegt sind.

In dieser Dissertation prisentieren wir einen adaptiven, in Software umgesetzten Feh-
lertoleranzmechanismus, welcher aufgrund des Prinzips der N Modular Redundancy die
raumliche Redundanz von Many-Core Prozessoren ausnutzt. Um die Vergleichseinheit als
singulire Fehlerursache auszuschlielen, enthilt unser Mechanismus zwei Vergleichsein-
heiten, welche sich gegenseitig iberpriifen und reparieren. Wir verwenden ein kodiertes
Vergleichsverfahren, um sicherzustellen, dass jede Vergleichseinheit im Fehlerfall keine
falschen Ergebnisse ausgibt. Unser Fehlertoleranzmechanismus enthilt eine zustandserhal-
tende Reparaturprozedur, um Ausfille von Repliken und Vergleichseinheiten zu kompen-
sieren. Im Gegensatz zu verwandten Arbeiten beriicksichtigt unser Ansatz Fehler in allen
Softwarekomponenten, einschlieflich dem Betriebssystem.

Um die Echtzeitanforderungen der Anwendung zu erfiillen, arbeitet unser Fehlerto-
leranzmechanismus mit bestehenden Scheduling-Verfahren. Allerdings bieten gingige
Many-Core Prozessoren typischerweise keine Hardwareunterstiitzung fiir den Informati-
onsaustausch zwischen den Rechenkernen mit garantierter Latenz und Bandbreite. Des-
halb stellen wir einen softwarebasierten Ansatz vor, welcher die Latenzen dynamischer
Kommunikation zwischen den Rechenkernen garantiert. Das zugrundeliegende Prinzip
unseres Ansatzes ist es, die Paketinjektionsrate fiir alle Quellen zu beschrinken.

Zudem prisentieren wir ein Framework, welches die Umsetzung von sicherheitskriti-
schen Echtzeitanwendungen auf giangigen Many-Core Prozessoren erleichtert. Das Frame-
work passt unseren Fehlertoleranzmechanismus fiir jede Softwareeinheit so an, dass deren
Zuverlissigkeits- und Verfiigbarkeitsanforderungen mit minimalem Ressourceneinsatz
erreicht werden. Ein Modell des Fehlertoleranzmechanismus als diskrete Markow-Kette
ermoglicht die Berechnung der sich ergebenden Zuverlissigkeit und Verfiigbarkeit jeder
Softwareeinheit. Messungen auf unserem zyklen- und bitakkurat simulierten Many-Core
Prozessor mit realistischer Fehlerinjektion zeigen den Vorteil unseres adaptiven Software-
Fehlertoleranzmechanismus und demonstrieren den Kompromiss zwischen Ressourcen-
verbrauch und Fehlertoleranzniveau.






Acknowledgment

Writing this thesis would not have been possible without the support of many people.
First and foremost, I want to thank Prof. Dr. Hans-Ulrich Heifd for supervising my thesis
and providing insightful comments and helpful advice. I thank my co-advisors Prof. Dr.
Sabine Glesner and Prof. Dr. Michael Glaf} for their valuable feedback on my thesis.
Special thanks go to Prof. Dr. Jan Richling, Dr. Helge Parzjegla, and Prof. Dr. Reinhard
Karnapke for all the fruitful discussions we had and their helpful comments. I would like
to thank all team members of the KBS research group at the TU Berlin, especially Anselm
Busse and Matthias Druve, for the answers to all my questions and their support, and Dr.
Matthias Diener for proof-reading this thesis.

As an industrial PhD student at the Robert Bosch GmbH, I had the opportunity
to gain insights into academia and industry at the same time. I thank my supervisor
Dr. Bjorn Saballus for his guidance on my way as a PhD student and his kind way to
increase my motivation and improve the focus of my work. I would like to thank all
members of the ManyCore Project and the CR/AEA department, especially Dr. Jochen
Hirdtlein and Dr. Dirk Ziegenbein, for giving me the opportunity to work in such an
open-minded and friendly environment. Special thanks go to Dr. Rai Devendra, Dr.
Dakshina Dasari, and Dr. Matthias Freier for proof-reading this thesis. I feel lucky to
share my workplace with my fellow PhD students Hendrik Rohm, Alexander Biewer,
Martin Lowinski, Dr. Matthias Freier, Felix Riitzel, and Soren Braunstein. Thank you for
the inspiring discussions about work and about life in general as well as the good times we
had together.

I am grateful for having received a fellowship from the Software Campus development
program, which is funded by Germany’s Federal Ministry of Education and Research.
This fellowship initiated a strong and fruitful collaboration with Dr. Mohammad Shadi
Alhakeem and Ralphael Lisicki, both of which I owe a debt of heartfelt gratitude. Without
their support, this thesis would not have been possible in the way it is today.

Last but not least, I want to thank my parents Roland and Mechthild Munk and my
brother Dr. Martin Munk for paving me the way to where I am today and their continuous
encouragement. These acknowledgements would be incomplete without wholeheartedly
thanking my wife Sandra for her never-ending support, including proof-reading this thesis,
and all the joyful moments in my life.

vil






1

Introduction

1.1 Motivation
1.2 Problem Statement
1.3  Research Questions
1.4 Proposed Solution

1.5 Main Contributions
1.6 Context
1.7 Outline

Fundamentals

2.1 Embedded Systems. . .......
2.1.1 Real-Time Systems . . . .
2.1.2  Safety-Critical Systems .

2.2 Many-Core Processors

Contents

221 General Many-Core Design . . . .. ... ...
222 Componentsof EachCore .. ................ . ......
223 Networkon-Chip .. ... ... ..
2.2.4 External Reliable Memory . ......... ... ... ... ....
225 FaultHypothesis . .. ... . ... ... ..
2.3 Embedded Many-Core Operating System . . . . .. ..o oo ..
231 RealTimeOSs . ... ...
232 Many-CoreOSs. ... ... i
2.3.3 Combination of Real-Time and Many-Core OSs . ..........

2.4 Summary

Related Work

3.1 Dynamic GS CommunicationonNoCs . . . ...................
3.1.1 Hardware-based Approaches ... .......... .. ... ... ...
3.1.2 Mathematical Approaches . .. ....... ... . ... L.
3.2 Fault-Tolerance Mechanisms for Many-Core Processors . . . .........
3.2.1 Hardware-based Fault-Tolerance Approaches. .. ... ........
3.2.2  Software-based Fault-Tolerance Approaches . .............

3.3 Summary

Dynamic Guaranteed Service Communication

4.1 Communication Model

4.2 Limited Packet Injection Rate Approach. . . ...................
421 Traversal Latency . ......... ... . ... . ... ...
422 BlockageLatency . ........ ... . i
4.2.3 Dynamic TrafficPattern . . ......... ... .............

N NN AW -

N (=}

O

19
20
21
23
28
28
33
33
34
36
39

41
41
41
42
43
44
45
53

55
55
56
57
58
60

X



Contents

4.3 DISCUSSION . v vt vttt e e e e e e e e e 61
44 SumMmary . . ... 62
5 Software Fault-Tolerance Mechanism 63
51 NMRApproach . ... ... ... . . 63
52 Reliable Voter . ... ... .. . 66
52.1 ANBDEncoding........... ... . ... ... ... 67

5.2.2  Encoded Voting Algorithm . .. ...................... 69

523 Residual SPOFs. .. ... ... .. . .. i 72

53 Repalr .. ..o 73
53.1  Spares . . ... e 74

5.3.2 State Duplication. ... ....... ... .. ... ... ... 75

53.3 CodeDuplication . ......... ... i 76

534 CoreReset .. ...... ... .. .. 76

53.5 RepairProcedure. . ... ... ... ... ... . ... 77

54 Real-Timelntegration . . ... ... ... ..t 78
54.1 Task Wrapper . ... ... 78

542 CommunICation . . . ..ot vvv vttt 79

543 Scheduling ........ . ... 79

544 OScomponents. .. ..........oiuiiiiniiiiia... 80

5.5 Mixed-Critical Task Set Example . . .. ....... ... . ... .. .... 81
551 Mapping .. ...t 82

55.2 Scheduling . ....... ... .. 82

55.3 FaultTolerance . ......... .. ... .. ... ... . ... 84

5.6 Summary .. ... 86
6 Software Fault-Tolerance Framework 87
6.1 Fault-Tolerance Models . . . ....... ... ... ... ... .. ... ... 87
6.2 MarkovChain........ ... ... ... 88
6.2.1 Discrete Time . . . . ..ot 89

6.22 Continuous Time . ......... ... . ... .. ... ...... 90

6.2.3 DTMC for Fault-Tolerance Analysis . .................. 90

6.3 PRISMModel . ... .. ... 93
6.3.1 The PRISM Probabilistic Model Checker . . .. ............ 93

6.3.2  Model of the Software Fault-Tolerance Mechanism . . ... ... .. 94

6.3.3 Model Analysis . .. ... .. 97

6.4 Workflow. ... ... . 99
6.4.1 Fault-Tolerance Analysis . .. ........ ... ... ..... 99

6.4.2 Fault-Tolerance Framework . . .. ... ... ... ... ... ... 101

6.5 Real-World Application Example .. ............. ... .. ... ... 102
6.5.1 ApplicationModel . . .. ... ... 102

6.5.2 Target Fault-Tolerance . ........................... 103

6.5.3 Hardware Properties .. .......... ... 104

6.5.4 Software Fault-Tolerance Framework . . . .. ........ ... ... 105

6.6 SUMMAIY . . ..ottt e 105



Contents

7 Evaluation

7.1 ExperimentalSetup ............ ... ... . ......
7.1.1 Hardware Simulator . . ... ........ ... .. ..
7.1.2  FaultInjection .......................
7.2 Dynamic GS Communication . .................
7.2.1 TrafficPatterns .. ...... ... ... ... ...
7.2.2  Transfer Latency Measurements . . ..........

7.2.3  Worst-Case Transfer Latency Evaluation

724 Load Measurements . . .. ........ouuuuunn.
7.3 Fault-Tolerance Evaluation. . . .. ................
7.3.1 Implementation ......................
7.3.2  Measured Fault-Tolerance ................
7.3.3 Overhead Evaluation . ..................
7.4 Comparison of Theory and Measurement . . . .. ......
741 Calibration. . ....... ... ... ... ... . ...
7.4.2  Analyzed Fault-Tolerance ................
7.43  Repair Procedure Influence ... ............
744 Model Scalability . . . ... oL
745 Model Precision .. ........ ...
75 Summary . ...

8 Conclusion

8.1 Summary and Discussion of Results. . . ............
8.2 Future Research Opportunities . . .. ..............

Bibliography

Publications by the Author
List of Figures

List of Tables

List of Listings

List of Symbols

List of Abbreviations

145
175
177
178
179
180

183

X1






The most certain and effectual check upon errors which arise
in the process of computation, is to cause the same computa-
tions to be made by separate and independent computers; *

DIONYSIUS LARDNER, 1834, [Lar34]

“Note that the computers here refer to human operators.

Introduction

In the past, new processor generations increased performance mainly by higher clock
frequencies, deeper pipelines, and larger caches [MHL*15]. This was accompanied by a
rising complexity and power dissipation, which at a certain point was no longer techno-
logically sustainable [Vaj11]. Nevertheless, the number of transistors per chip continued
to increase according to Moore’s law. Since the performance benefits of building larger
monolithic processors declined, hardware vendors started to produce chips with multiple
processor cores [ Bor07].

As a result, the first many-core processor with more than one thousand independent
processor cores has been commercially available since 2014 [PEZ12], as predicted by the
2011’s International Technology Roadmap for Semiconductors' [The11] and several other
authors [Bor07, MVdWF08, WAQ9, Vaj11].

At the same time, the computational demand in the embedded real-time safety-critical
domain increases. Embedded systems are information processing systems embedded into
an enclosing product [Mar11]. These embedded systems must often comply with real-
time constraints, since their correctness depends not only on the logical correctness of the
computation, but also on the physical time at which these results are produced [BW01,
But11]. In many cases, real-time embedded systems are used in a safety-critical context,
where a failure has catastrophic consequences on the user and the environment [ ALRLO4,
Kop11]. Typical examples of embedded real-time safety-critical systems are vehicles,
airplanes, nuclear power plants, or medical devices.

1.1 Motivation

Due to the growing complexity and rising number of supported features of embedded real-
time safety-critical systems, their performance requirements continue to rise. Consider for
example the automotive domain: Power-train functionalities such as combustion engine
control and transmission management or electric motor control and battery management,
comfort functions such as traffic sign recognition and lane keeping assistance, and safety

"Names used without any reference to copyrights or trademarks may still be legally protected.



1 Introduction

features such as collision avoidance systems are becoming more and more sophisticated
and complex. The development of such advanced driver assistance systems (ADAS) is
propelled by the vision of a highly automated driving (HAD) vehicle. The goal is to
reach an autonomous driving level and completely control the vehicle without any human
interaction or responsibility [Bun12, Nat13].

Driver-less cars are not only attractive for millions of commuters world-wide, but also
promise attractive business cases. Figure 1.1 shows an HAD prototype vehicle of the
Robert Bosch GmbH, which is based on Tesla’s Model S. The HAD functionality is
implemented on a computer installed in the trunk of the car, as shown in Figure 1.1a.
The computer contains a commercial off-the-shelf (COTS) processor with 16 cores and
256 GB main memory. Only few fault-tolerance mechanisms have been included in the
prototypical implementation, since a test driver is always supervising the vehicle as shown
in Figure 1.1b.

In order to leave the prototypical state, the spatial dimensions of the computer in the
trunk have to be reduced. Many-core processors potentially offer the computational
power to execute software that implements applications like HAD within given real-time
constraints. For this reason, many-core processors are not only attractive in the high
performance computing and consumer electronic domain, but are also gaining more
and more attention in the safety-critical real-time embedded domain [AEF*14, RCM 14,
SEH*12, MTK*11, RPM*15, SEU*15].

(a) The trunk of the HAD pro- (b) The HAD prototype drives autonomously on a highway and is
totype contains the main supervised by a test driver [TDb].
computer and measurement
equipment [ TDa].

Figure 1.1: An HAD prototype vehicle based on Tesla’s Model S.



1.2 Problem Statement

1.2 Problem Statement

The rising number of transistors per processor is the result of higher integration rates and
smaller feature sizes. The drawback of such highly integrated many-core processors is their
susceptibility to soft errors caused by high-energy particle strikes [Bor05, Bau05, Nic11].
Unless countermeasures are in place, soft errors can result in bit flips and eventually
jeopardize the correctness of the system. Due to their physical nature, we assume soft errors
to be stochastically independent and to occur with a constant rate. In contrast to permanent
errors, soft errors are of transient nature and can be repaired, e. g., by re-execution or
reloading the affected memory cell. In this thesis, we only consider soft errors since
the probability of a permanent error is at least three orders of magnitude lower than the
probability of a soft error during the useful operation phase of a processor [Bau05, Nic11].

Due to the safety-critical nature of most embedded real-time systems, they have to
be developed carefully and qualified to certain dependability standards, for instance the
IEC 61508 [Int10] and its derivatives, e.g., the ISO 26262 [Int11] for the automotive
industry. Consequently, appropriate fault-tolerance mechanisms are required to achieve
the specified system dependability measures, e. g., the reliability and availability. Fault
tolerance is the ability of a system to continue providing the correct service in presence of
faults and soft errors, respectively [Joh84]. This ability is necessary for example in HAD,
where a safe state cannot always be reached immediately as soon as an error is detected.

So far, most fault-tolerance mechanisms are implemented in hardware, e.g., error-
correcting code (ECC) protection for memories or triple modular redundancy (TMR)
setups [Sor09, KK10]. On the one hand, these hardware countermeasures increase the chip
area or the number of devices. Thus, hardware countermeasures increase the unit costs
and are therefore not common in consumer-grade many-core processors [GRSRV06]. On
the other hand, these COTS many-core processors are especially attractive in cost-driven
mass markets such as the automotive industry [ GRSRV06].

In this thesis, we consider COTS consumer-grade many-core processors. These pro-
cessors typically contain homogeneous cores connected by multiple Networks-on-Chip
(NoCs). Each core comprises an independent central processing unit (CPU) and a core-
local memory protected by a memory protection unit (MPU). Each wormhole-switching
NoC with 2D mesh topology implements the dimension-order (XY) routing policy with
round-robin early access arbitration. Furthermore, we assume a reliable off-chip memory
to be connected to the many-core processor.

Software-implemented hardware fault-tolerance approaches do not share the drawback
of high unit costs, since they leverage the computational performance of COTS consumer-
grade processors [GRSRV06, KK10]. Additionally, software-based mechanisms can be
applied exclusively to the safety-critical software entities, 1. e., tasks. In typical automotive
software applications, only a subset of tasks has safety requirements. For example, the
failure of a task that calculates the brake force potentially leads to an hazardous event,
while the failure of a task that merely protocols system variables is not considered critical.
Hence, safety requirements are only allocated to the former task. Any protection of
the latter task is superfluous and only increases costs. For this reason, software-based
fault-tolerance approaches that support such mixed-critical task sets are advantageous.



1 Introduction

Several software-based fault-tolerance approaches have been presented in literature.
For single-core processors, a common fault-tolerance approach is based on compiler
optimizations. These compiler-based solutions replicate data and instructions and add
comparison routines [ OSM02, RCA07, RKSH14]. However, compiler-based solutions
increase the execution time, which can render it difficult to apply them under real-time
constraints. The problem of combining real-time and fault-tolerance requirements is
considered by several scheduling algorithms, which mostly reserve re-execution slots in case
of a task failure [Kri14]. However, most of these scheduling approaches assume a reliable
fault detection mechanism as well as a fault-tolerant scheduling policy implementation and
task dispatcher in the operating system (OS). These assumptions are difficult to implement
on COTS processors, since all homogeneous cores and hence all software components are
affected by soft errors.

1.3 Research Questions

The main research question that we are concerned with in this thesis is:

How, to which extent, and with which overhead can the fault-tolerance require-
ments of mixed-critical task sets with real-time constraints on consumer-grade
many-core processor be achieved using only software means?

From this main research question, we deduce the following subordinated research
questions: Due to the real-time constraints of the application, the system has to meet its
implied deadlines at all times, even under the presence of errors. This especially affects the
parallel scheduling of replicated tasks as well as the inter-task communication between
the cores of the processor. However, most COTS consumer-grade many-core processors
contain a NoC that does not provide bandwidth and latency guarantees in hardware.

How to increase the system’s fault-tolerance level while guaranteeing the
real-time constraints without modifying the hardware?

As mentioned in the previous section, most software fault-tolerance mechanisms pro-
posed in literature assume a fault-free comparison unit or a reliable OS kernel. However,
all cores of a COTS many-core processor and hence all software entities including the OS
kernel are affected by soft errors. Therefore, the proposed solution has to consider failures
of the comparison unit and the OS kernel as well.

How to design a fault-tolerance mechanism only from software components
that potentially fail?

The software fault-tolerance mechanism has to guarantee the specific fault-tolerance
requirement of each individual task of a mixed-critical task set. In order to achieve each
task’s fault-tolerance requirement with the minimum overhead in terms of resources and
system load, the mechanism needs to be adaptable.

How to determine the fault-tolerance level achieved by a specific adaptation
of the software fault-tolerance mechanism at design time?



1.4 Proposed Solution

1.4 Proposed Solution

In order to answer the research questions identified in the previous section, we require an
artifact whose properties can be measured and evaluated. For this reason, we propose an
adaptive software-implemented hardware fault-tolerance mechanism that is based on the
well-known N modular redundancy (NMR) principle [Bir14, Kop11, KK10]. Under NMR,
a functional entity is replicated N times and a comparison unit, 1. e., a voter, tallies the
replica results. The large number of independent cores of COTS many-core processors
offers to implement NMR in software by assigning replicated tasks to separate cores. Since
the voter represents a single point of failure (SPOF), NMR is only beneficial if the voter is
reliable. However, as mentioned above, all cores and thus all software entities are affected
by soft errors. Therefore, we propose a voting scheme with two fail-silent voters that
increases the fault-tolerance of the voter without any hardware modification. Each fail-
silent voter either provides the correct result or it remains silent and forwards no result. In
order to achieve this fail-silent behavior, we extend the encoded voting approach of Ulbrich
et al. [UHK*12]. Figure 1.2 presents a schematic overview of the NMR mechanism on a
processor with 3 x 3 cores.

The fault-tolerance mechanism must respect the real-time requirements of the system.
The implied deadlines of the task set are adjusted such that well-known scheduling policies
for single-core processors can be employed to guarantee all real-time constraints. In order to
guarantee the real-time constraints of the dynamic inter-core communication between the
task replicas and the voter via the many-core processor’s interconnect fabric, we propose
a software-based mechanism that limits the packet injection rate to achieve a bounded
latency of the dynamic communication.

Due to the transient nature of soft errors, a software-based repair mechanism allows
to regain the functionality of a previously failed task replica. In this thesis, we present a
repair mechanism based on spare replicas that preserves the state of the protected task.

Ll |

ol @@l

- v

Figure 1.2: Schematic overview of the basic NMR mechanism for one task on a 3 x 3
many-core processor. Task 7" is replicated N = 3 times and forwards its result
to both fail-silent voters V, and V,, which compare the results and check each
other. Solid lines represent messages sent from the task replicas to voter V,,
dashed lines represent messages sent from the task replicas to voter V,, and
dotted lines are messages that are exchanged between both voters.



1 Introduction

The number of replicas and spares can be adapted for each safety-critical task. We
propose a framework that allows the software developer to specify the fault-tolerance
requirements of each individual task of a mixed-critical hard real-time application. In
this thesis, we use reliability and availability as fault-tolerance measures. The framework
employs a mathematical model to determine the resulting reliability and availability for a
given number of replicas and spares. Hence, it is able to adapt the software fault-tolerance
mechanism such that the target reliability and availability are achieved with a minimum
of resources.

1.5 Main Contributions

The primary contributions of this thesis to the state-of-the-art are as follows:

e A software-implemented mechanism that guarantees the latency of dynamic inter-
core communication on 2D mesh wormhole-switching NoCs, which implement
the dimension-order (XY) routing policy with round-robin early access arbitration
and thus support only best-effort communication. The main principle behind the
proposed mechanism is a common limited packet injection rate for all sources. In
contrast to related approaches, which derive the worst-case latencies of a static traffic
pattern, our solution supports dynamic guaranteed service (GS) communication

that changes at runtime, e. g., due to the reaction to a component failure. This work
is published in [MFRC15].

e An adaptive software fault-tolerance mechanism that increases the reliability and
availability of a task on a COTS many-core processor with homogeneous cores.
The mechanism is based on NMR to leverage the spatial redundancy of the proces-
sor. The fault-tolerance level of the voter as a SPOF in an NMR setup is increased
by employing two fail-silent majority voters that check and repair each other. To
achieve the fail-silent behavior, we extend the encoded voting approach of Ulbrich
et al. [UHK"12]. A state-preserving repair procedure leverages the reliable off-chip
memory to recover from task and voter failures caused by soft errors. Unlike other
software-based hardware fault-tolerance approaches, the proposed mechanism guar-
antees the real-time requirements of the task and considers failures in the underlying
OS kernel. Experiments on a cycle-accurate and bit-accurate (CABA) many-core
processor simulator show that the proposed fault-tolerance mechanism is able to
increase the reliability of a task by a factor of up to 2.22 compared to an unpro-

tected execution. The adaptive software fault-tolerance mechanism is published
in [AML*15, MAL*15, MAL*16].

e A fault-tolerance analysis algorithm that computes the reliability and availability
achieved by a specific configuration of our adaptive software fault-tolerance mech-
anism. The algorithm employs a discrete time Markov chain (DTMC) model of
the fault-tolerance mechanism, which is calibrated with measurements conducted
on our CABA many-core processor simulator. Compared to related fault-tolerance
analyses, our model is based on a physically accurate fault model. The DTMC model
of our software fault-tolerance mechanism is published in [MAL*16].



1.6 Context

e A software fault-tolerance framework that eases the development of embedded real-
time safety-critical applications of COTS consumer-grade many-core processors
by providing interfaces to specify a mixed-critical task set, its safety and real-time
requirements, as well as the processor’s properties. Our framework uses the fault-
tolerance analysis algorithm to adapt our software-based hardware fault-tolerance
mechanism for each task of a mixed-critical task set such that the task’s reliability and
availability requirements are met with minimum resource usage. An example derived
from a real-world application demonstrates the functionality of our framework.
The software fault-tolerance framework is published in [AML*15, MAL*15].

1.6 Context

This work has been performed in the context of the CR/SP16-008 “ManyCore” research
project in the Corporate Sector Research and Advance Engineering of the Robert Bosch
GmbH. The Robert Bosch GmbH is a leading global supplier of technology and services
in the automotive industry. The company actively develops HAD as a profitable future
product. The goal of the CR/SP16-008 “ManyCore” research project is to enable the
usage of consumer-electronic many-core processors in the automotive domain. The work
described in this thesis represents an important step to achieve this goal from the fault-
tolerance point of view.

1.7 Outline

The remainder of this thesis is organized as follows:

Chapter 2 introduces the fundamental background of this thesis. First, we focus on the
properties of embedded real-time safety-critical systems and their properties. Next, we
specify many-core processors and their hardware features and limitations. Details of the
NoC as the inter-core communication fabric and our fault hypothesis are included as well.
Afterwards, we introduce and combine important real-time and many-core OS concepts.

Chapter 3 discusses the related work of this thesis. This chapter contains two main
sections. In the first section, we present hardware-based solutions and mathematical
approaches to bound the latency of communication on a NoC. In the second section, we
survey fault-tolerance mechanisms implemented in hardware and then focus on different
software-based approaches.

Chapter 4 presents our approach to guarantee the latency of dynamic communication
on a NoC. The underlying idea is to limit the packet injection rate in software in order to
limit the upper bound of delays experienced by each packet in the NoC.

Chapter 5 introduces our software fault-tolerance mechanism. We justify the choice of
NMR as foundation of the proposed mechanism and present the encoding mechanism that
is used to design fail-silent voters in software and the repair mechanism that employs spare
replicas. Finally, we explain how the proposed fault-tolerance mechanism is integrated
with the real-time many-core OS.

Chapter 6 presents our software fault-tolerance framework. We first provide the mathe-

matical background of DTMCs. Afterwards, we present the DTMC model of our software



1 Introduction

fault-tolerance mechanism. The presented software fault-tolerance framework analyzes
the DTMC model to adapt the mechanism such that the reliability and availability target
of each task is achieved with minimum resource usage.

Chapter 7 experimentally evaluates our approaches. We use a simulated many-core
processor to experimentally verify that a limited packet injection rate can guarantee a
latency bound for dynamic communication. With the help of a fault injection mechanism,
we measure the reliability and availability that is achieved by our software fault-tolerance
mechanism. Finally, we compare the results of the DTMC model with the measured
reliability and availability values.

Chapter 8 summarizes our conclusions and gives an outlook on possible directions for
future work.



Fundamentals

This chapter introduces the background terminology and fundamental concepts used in
this thesis. It also establishes a common notation by defining important terms.

First, we present embedded real-time safety-critical systems, which are in the center of
attention of this thesis and whose properties, requirements, and constraints have to be
carefully considered when selecting or designing the hardware architecture and developing
the application software. Next, we specify the hardware architecture of many-core proces-
sors and enumerate its features and limitations. This includes details about the NoC, i.e.,
the inter-core communication infrastructure common to many-core processors, as well
as our fault hypothesis. Finally, we combine real-time OS concepts with many-core OS
designs to manage the considered system.

2.1 Embedded Systems

The scientific inventions and technological advancement in the past decades have lead to
ubiquitous electronic and computing devices that influence the daily lives of human beings.
These devices are trusted to control important and safety-critical products, e. g., a pace
maker that monitors and controls heartbeats, an industrial robot that builds products next
to or in cooperation with human workers, or an HAD vehicle. The electronic computing
devices or systems that control these products are an indivisible part of the product itself
and are therefore called embedded systems. In other words, an embedded system is an
“information processing system embedded into enclosing products” [Mar11, p. xiii]. In
this thesis, we focus on embedded systems.

Embedded systems usually need to conform various constraints including size and weight
limits, power consumption, as well as real-time and safety-critical requirements, while
meeting tight cost budgets [Ko096]. Size and weight limits as well as power consumption
are out of scope of this thesis, since they are considered less critical for an HAD vehicle
that serves as an example system through this thesis. In the following, we first consider the
real-time constraints and afterwards the safety-critical requirements of embedded systems
in detail.

2.1.1 Real-Time Systems

In this section, we summarize the basic concepts and models of real-time systems. Unless
stated otherwise, this summary is based on Buttazzo’s book on hard real-time computing
systems [But11].



2 Fundamentals

A real-time system is defined as “any information processing activity or system which has
to respond to externally generated input stimuli within a finite and specified delay” [BWO01,
p-13]. Hence, the correctness of a real-time system depends not only on the logical
correctness of the computation, but also on the physical time at which these results are
produced [BW01, But11, Kop11].

The functionality of a real-time system is implemented in software that controls the
hardware and connected peripherals such as sensors and actuators. The software is typically
divided into several encapsulated modules, so called tasks T, € 7. “A task is a software
entity or program intended to process some specific input or to respond in a specific
manner to events conveyed to it” [Nis97, p. 180]. In other words, a task is an abstract
unit of scheduling that models a single-threaded process in the context of the OS, which is
executed in a sequential fashion. Note that in this thesis, we use the term process when
referring to a program and its abstraction in the context of an OS. Furthermore, we use
the term task when referring to the abstract notion of a process in the context of real-time
scheduling.

A task T, € T becomes active as soon as it can potentially execute on the processor.
Active tasks are kept in the ready queune by the OS and the scheduler, respectively. The
scheduler decides which active task is running, 1. e., executed on the processor. The decision
follows a specific scheduling policy that is implemented by the scheduling algorithm, i.e.,
a set of rules that determines the task execution order. The procedure of allocating the
selected task to the processor is referred to as dispatching.

If the scheduler supports preemption, it can suspend the currently running task and
insert it into the ready queue when a more urgent task becomes active, such that the more
urgent task can be dispatched immediately. The process of exchanging the running task is
called context switch. A schedule denotes the assignment of tasks to the processor, such that
each task is executed until completion. A schedule is feasible if all tasks in the task set 7
can be completed according to a set of specified timing constraints. A set of tasks T is
said to be schedulable if there exists at least one scheduling algorithm that can produce a
feasible schedule.

The timing constraints of the real-time system have to be met by the software and the
executed tasks, respectively. Therefore, each task T, € T is assigned a relative deadline D,
that specifies the time by which the execution of the task must have finished with respect
to its activation time. The consequence of failing to provide a correct result within a given
deadline depends on the real-time system and its environment. Therefore, deadlines are
commonly differentiated in hard, firm, and soft:

Hard deadline. If a task misses a hard deadline, the consequences are hazardous and
can lead to the loss of human lives. A typical example of a system with hard deadlines
is an airbag electronic control unit (ECU).

Firm deadline. A firm deadline is allowed to be missed every once in a while, but the
result of a task is useless for the system after the deadline. An example of a system
with firm deadlines is the combustion engine ECU, where the physical inertia of
the engine forgives one missed injection.

10



2.1 Embedded Systems

Soft deadline. If a task misses a soft deadline, the usefulness of a result decreases with
the delay after the deadline, but no severe consequences are to be feared. A typical
example of a system with soft deadlines is an video playback device, where a delayed
frame is unpleasant but acceptable.

In this thesis, we consider tasks with hard deadlines.

Each task becomes active either in a periodic or an aperiodic manner. The activation of
a periodic task 7 € 7 is repeated with a fixed time interval, the period P,. For example,
a periodic task is activated with a specific sampling rate for a sensor signal. In contrast,
aperiodic tasks are activated at a priori unknown times, e. g., triggered by an interrupt
from an external sensor. An aperiodic task whose consecutive activations are separated by
a minimum inter-arrival time is called a sporadic task. There is a large body of real-time
scheduling theory that allows to include sporadic tasks in periodic schedules, e. g., the
Polling Server or the Deferrable Server. For this reason, we consider periodic tasks in this
thesis.

Current automotive software contains tasks with harmonic periods, i. e., the period
of each task is an integer multiple of the period of any other task, so V7,7, € 7 : P, =

kP;, k € N* [KZH15]. The hyperperiod P is the minimum interval of time after which
a schedule repeats itself. The advantage of harmonic periods is that the hyperperiod
Py = maxyr ¢y P; is generally smaller than the hyperperiod of unconstrained task sets

P =lem <Pi,P]-> VT, T] € 7 if synchronously activated. We consider task sets with

harmonic periods in this thesis.
The relation between a task’s relative deadline and its period is categorized as fol-
lows [SLLO7]:

o implicit it D, = P,,
e constrained if D, < P,, and
e arbitrary if there is no constraint between D, and P,.

In this thesis, we consider tasks with constrained deadlines, since they are most common
in automotive software.

The ;™ activation of a task 7 is called job T} ;- In other words, a periodic task releases
an infinite sequence of jobs. The job 7} ; becomes active at time 4, ; = O, + j - P, started
by the scheduler at time s; ;, and completes execution at time c; ;. The first activation of a
task 7; € 7 can be delayed by a phase or offset O,.

In order for a task to fulfill its real-time constraints, the completion time of each job has
to be before its absolute deadline, so ¢ <a;; +D,, Y; € N*. An overview of the task
execution over time is given in Figure 2.1 on the following page.

The worst-case execution time (WCET) E ;ofatask T, € 7 denotes the upper bound of the
duration of the task’s execution without preemption, 1. e., the maximum execution time of
all jobs 7; ; [WEE*08]. For simple processor architectures, a safe upper bound of this the-
oretical value can be estimated by commercial static timing analysis tools such as Absint’s

aiT [HF13],Tidorum’s Bound-T [Tid13], and Rapita System’s RapiTime [Rap13].

11



2 Fundamentals

Figure 2.1: Temporal parameters of the job 7} ; of task 7.

The scheduling analysis is a procedure to verify that the schedule of a given task set 7 is
feasible. Each scheduling policy and its respective scheduling algorithm needs a customized
scheduling analysis. Typically, the scheduling analysis method determines the worst-case

. A . .
response time (WCRT) R; of each task T, € 7. The WCRT denotes the maximum time
for executing a task considering the worst-case interference with the other tasks in the

A

task set, so R; = maxy;cy: ¢; ; —4; ;- If the WCRT of each task 7; € 7 is smaller than its

relative deadline , R . < D;, the schedule is feasible.
A plethora of scheduling policies for real-time systems is proposed in literature. The
policies can be classified by the following properties:

offline / online. Offline scheduling policies determine the complete schedule statically
before runtime. They are also known as cyclic or static scheduling policies. Typical
examples are list scheduling and time-triggered scheduling.

An online scheduling policy provides a scheduling algorithm that decides at runtime
which task is executed next. They are also known as dynamic scheduling policies.
Prominent examples are fixed-priority or earliest deadline first (EDF) scheduling.

static / dynamic priority assignment. Online scheduling policies generally select
the task to be executed next depending on its priority. Under a static priority
assignment scheme, the priority of each task is determined statically before runtime.
Typical examples are rate monotonic and deadline monotonic priority assignment
schemes. Under these schemes, priorities are selected inversely proportional to a
task’s period (rate) and absolute deadline, respectively, such that the task with the
shortest period and closest deadline, respectively, has the highest priority.

In a dynamic priority assignment scheme, the task’s priority is determined at run-
time. A common dynamic priority assignment scheme is included in the EDF
scheduling policy, where the task with the closest absolute deadline is assigned the
highest priority.

preemptive / non-preemptive. A preemptive scheduling policy pauses the execution
of a running task if a higher-priority task becomes active.

A non-preemptive scheduling policy always finishes the execution of the currently
running task before starting the next one. Hence, non-preemptive scheduling poli-
cies require less context switches in general.

12



2.1 Embedded Systems

partitioned / global. This classification is only applicable for systems with multiple
processing units, €. g., many-core processors. A partitioned scheduling policy em-
ploys a local scheduling algorithm per processing unit and core, respectively. Tasks
are mapped to one core statically and cannot be executed on another core. Note that
the procedure of task-to-core mapping is also known as task assignment or binding.

A global scheduling policy uses a global ready queue and does not only select which
tasks are executed next, but also on which cores. For this reason, global scheduling
policies require a task migration mechanism that allows to dynamically map tasks
to different cores.

Note that there are also semi-partitioned or hybrid solutions, where tasks can be
scheduled only on a subset of cores.

Offline scheduling policies are less flexible to react to environmental changes such as
tasks that are added at runtime. Additionally, their real-time guarantees strongly rely on
the hypotheses and assumptions of the system that are derived before runtime, e. g., the
WCETs. Therefore, online scheduling policies are commonly used by the automotive
industry.

Amongst the online scheduling policies, EDF is proven to be optimal in the sense
of feasibility, i. e., if there exists a feasible schedule for a given task set 7, then EDF is
able to find it. However, its scheduling algorithm is more complex and more difficult
to implement compared to fixed-priority scheduling policies. Additionally, it exhibits a
domino effect once a task misses its deadline. For this reason, fixed-priority scheduling
policies are generally preferred to EDF by the automotive industry [AUT15].

Global scheduling policies require task migrations, which introduce runtime overhead.
As a result, partitioned scheduling policies are preferred by the automotive industry.

Since we focus on the automotive domain in this thesis, we assume an online partitioned
fixed-priority preemptive scheduling policy with a deadline-monotonic priority assignment
scheme. Under this scheduling policy, the WCRT of each task 7; € 7 can be calculated by
the fixed-point iteration method of Audsley et al. [ABR*93]:

A A én A
RV =E+ > {P—}E] 2.1)

vD,<p, | 1)

Inter-Task Communication

In a realistic real-time system such as an HAD vehicle, tasks exchange information and
communicate with each other. In this thesis, we denote the information that is exchanged
between tasks as a message m, € M . Each message m, € ./ has one source task o : M —
Z and one destination task & : # — T . The size of a message m; is denoted as |m,|.

In general, inter-task communication is influenced by the schedule, 1. e., the task execu-
tion order. For example, consider two tasks 7, and 7, which become active at the same
time. Task 7} has the higher priority and receives a message from task 7,. Under the
fixed-priority scheduling policy, task 7] is executed first and receives either an old message
from the previous execution of task 7, or no message at all. Whether task 7| is able to

13



2 Fundamentals

provide its functionality with an old message depends on the application. The fact that
the application requires a new message, so task 7, has to be scheduled before task 7, is
called a precedence constraint.

A system behaves in a logically deterministic manner “if, given an initial state and a
set of ordered inputs, then the subsequent states and the values of subsequent outputs
are entailed” [Kop11, p. 125]. A deterministic behavior of a system is beneficial to test
its components, to mask a faulty channel, and helps to understand the system in gen-
eral [Kop11]. In case the precedence constraints are not exactly specified and tasks read
and write messages at arbitrary times, the system behaves non-deterministically due to the
varying runtimes of jobs.

In order to enforce a deterministic behavior, we assume that the communication follows
the concept of logical execution time (LET) [HHKO3, KS12]. For any task 7; € 7, the
beginning of the LET of the job T ; is equal to its activation time 4, ;. The end of the LET
of the job T ; is equal to its absolute deadline 4; ; + D;. All communication and message
transmission happens logically instantaneous at the beginning and the end of the LETs.
Thus, the actual execution time of a job within the LET does not influence the inter-task
communication. In other words, if the job finishes execution before its absolute deadline,
writing its output is delayed until its deadline and the end of its LET, respectively.

Consider any message m;, € M. Let T, = o(m;) denote the sending task and let
T, = &8(m;) denote the receiving task. From the implementation point of view, the
message passing service has to ensure that the message m; is transmitted between the
completion ¢; ; of the sending job 7 ; and before the start s, ; of the receiving job 7}, ; that
is activated at the same time or after the LET sending job, so 4, , > 4, ; + D;.

We assume a last-is-best semantic for all communication, i. e., only the last message is
relevant for the receiving task. This property allows to reduce the amount of messages
in general: If the sending task 7; has a smaller period than the receiving task 7, i.e.,
P, < P, then only the last job 7; ; within the period of the receiving task P, needs to send
a message.

The latest possibility for the job 7 ; to send a message is its absolute worst-case response
time a; ; + R ;- The earliest possibility for the job T}, ; to receive a message is the best-case
start time, 1. €., its activation time 4 ;. Since both times are known a priori, the worst-case
communication time (WCCT) CA]i of any message m; € ./ can be statically determined
before runtime by éi =ap,—(a;; +1A€k). This WCCT CAfi of each message m, € ./ has to
be guaranteed by the message passing service and the hardware platform, respectively.

Figure 2.2 on the next page presents an example schedule of two tasks 7} and 7, that
exchange messages following the LET concept and the last-is-best semantic. Message
m, is transmitted logically instantaneously from job 7, to job T, (and not job T ,)

at time a,, + D,. The WCCT of message m, is C, = a,, —(a,,+ ]A{z) Note that in a

feasible schedule, the maximum possible WCRT equals the deadline, so IAEZ < D,, and
Figure 2.2 only shows the absolute deadline of job T, ,. The second job of this task 7},
has a longer execution time and is preempted twice by job 77 , and job 7 ;. However, the
communication is still deterministic due to the LET concept.

14



2.1 Embedded Systems

/—/%
m
73 N TN N
T \\\:_:' \\\::.: A
“1,1+R1 A Y
m \ '
A Rt I G
\ \ > [
/—/%
a0 LETof T, a,0+D, a1 Sy G

Figure 2.2: A schedule extract of two tasks 7} (blue) and 7, (red) that exchange messages
according to the LET concept. Task 7, has half the period and a shorter
deadline than task 7,. According to the deadline monotonic priority assign-
ment scheme, task 7 has the higher priority. Both tasks are executed on the
same core, so task 7} preempts task 7, (preemption time is shown as red line).
Note that the actual, varying runtimes are shown.

In the example shown in Figure 2.2, message 7, is transmitted logically instantaneously
ata, ;+ D, from job T ; to job T, ;. The WCCT of message m, is C; =a,, —(a,; + R;) =

1-P,—(1-P,+ }A{l) The preemption of job T, leads to a later start time, so s, > a, ;.
Therefore, the actual communication time in this period is larger than the WCCT.

Note that communication between tasks at arbitrary times might be faster compared
to the LET concept, especially on a single-core processor. However, as soon as tasks
are executed on separate cores, the delay of communication via global variables is non-
deterministic and depends on the runtimes of higher-priority tasks, while it is exactly the
same delay as on a single core under the LET concept.

Apart from inter-task communication, tasks also communicate with external resources
to read sensor values or write actuator signals. Following the LET concept, we assume
that all required sensor signals are available at the beginning of the job’s LET. Similarly,
the actuator signals are forwarded only at the end of the job’s LET. This functional-
ity is implemented by so-called drivers within the OS, which are described in detail in
Section 2.3.3.

2.1.2 Safety-Critical Systems

In this section, we introduce safety-critical systems and define common measures of their
properties.

A safery-critical system has to be dependable [Mar11], 1. e., it has “to avoid service failures
that are more frequent and more severe than is acceptable” [p. 13][ALRL04]. Note that
in contrast to the real-time system definition, service failures here include incorrect results
with a correct timing, 1. e., produced before the deadline. Typical examples of safety-critical
systems are nuclear reactors, medical devices, and vehicles.

The definition of dependability is based on the term service failure, abbreviated failure
hereafter. A failure occurs when the service delivered by the system deviates from the

intended service of the system [ ALRLO04, Kop11]. For example, an HAD vehicle failed if it

15



2 Fundamentals

does not response to changes in the environment anymore. Another example of a failure
is storing or forwarding an incorrect result, which is also known as silent data corruption
(SDC) [Kop11]. Note that the intended service is the service documented in the system’s
specification, which does not necessarily represent the correct service [Kop11].

The failure is the result of an unintended state within the system, which is called
error [Kop11]. Errors that are present in the system but not detected are latent er-
rors[ALRLO4]. Typical examples of errors are bit flips in memory cells or a lost connection
between two components.

An error is caused by an adverse phenomenon, which is called a fault [Kop11]. Faults
can be internal or external of a system [ ALRLO4]. Examples of internal faults are wear-
out effects such as electromigration [Sor09]. An example of an external fault is a high-

energy particle strike [Bau05]. A fault is active when it causes an error, otherwise it is
dormant [ALRLO4].

The duration of faults is classified as permanent, transient, or intermittent [KK10,
Sor09]. A permanent fault is persistent in time, e. g., the result of a wear-out effect or a
systematic fault such as a hardware design flaw or a software bug. A transient fault is present
only for a bounded time interval, e. g., the high-energy particle strike. An intermittent
fault oscillates between active and dormant, so it occurs sporadically in a bursty manner,
e.g., due to a loose connection. The manifestation of a transient fault is also known as soft
error [Sor09]. Similarly, the effects of permanent faults are known as hard errors [Sor09].

The notion of fault, error, and failure always depends on the point of view and the
system boundaries. The effects of faults, errors, and failures influence the dependability of
a system. The following measures and metrics are used to evaluate the dependability of a
system [ALRLO4]:

Reliability is the probability of a system to provide the correct service until the mis-
sion time t, , given that the system was operational at the time ¢, [KK10]. Let .
denote the lifetime of the system (the time until the system fails) that is operational
at t = 0 and let F(¢) denote the cumulative distribution function of . [KK10].
Then [KK10],

R(t)=Pr{S >t} =1—F(1). 2.2)

Quantitatively, reliability specifies the probability that no operational interruptions
will occur during a stated time interval [Bir14]. This does not mean that redun-
dant parts may not fail, such parts can fail and be repaired without operational
interruption at system level [Bir14].

The failure rate A(t) is the conditional probability that a system will fail at time ¢
when it provided the correct service at least until time ¢ [KK10]. As a conditional
probability, the failure rate A(z) of the system can be calculated as [KK10]

/()

Ar)= Q)

2.3)

16



2.1 Embedded Systems

ngze)re £ (¢) is the probability density function of the system’s lifetime &, so f(¢) =
c@iﬁﬁ?@iﬁf’[ EIIE 11;:]hab1hty R(t) of the system can be expressed by the
dR(t)

dt

= —A(t)R(2). (2.4)

For a failure rate A(t) = A and t, =0, the solution of Equation (2.4) is
R(t,)=e M, 2.5)
which defines the reliability after a mission time ¢,, [Bir14].

Safety denotes the absence of catastrophic consequences on the user(s) and the envi-
ronment [ ALRLO04]. Examples of catastrophic consequences, also known as malign
failures, are a meltdown in a nuclear power plant, the loss of human life caused by
failed medical equipment, or an accident caused by an HAD vehicle. In many cases,
the safety-critical system has to be developed according to safety standards, e. g., the
IEC 61508 [Int10] and the ISO 26262 [Int11] in the automotive industry. These
safety standards specify a hazard and risk analysis to deduce the safety level of a
system and its functions. This analysis includes an assessment of the severity of the
consequences and likelthood of a failure. Hence, safety can be expressed as reliability
regarding malign failures [Kop11]. In other words, safety can be considered as an ex-
tension of reliability with respect to failures that may create safety hazards [Dub13].
Consequently, increasing the reliability also increases the safety, since less failures
occur in the system. However, while reliability assurance deals with measure to
minimize the total number of failures, safety assurance examines measures which
allow an item to be brought into a safe state in the case of failure [Bir14]. In conse-
quence, increasing the safety can reduce the reliability, e. g., if a system is brought
into safe state by shutting it down when a component failure is detected, although it
is unclear whether the component failure will cause a system failure.

Maintainability is defined as the ability of a system to undergo modifications and
repairs [ALRLO4]. These modification and repairs can be carried out either in a
preventive manner at predetermined intervals in order to reduce wearout failures,
or in a corrective manner after a failure has be recognized [Bir14]. In this thesis,
we focus on corrective maintenance, referred to as maintenance in the following.
Maintainability is expressed by the probability that a repair of the system or parts
of it will be performed within a stated time interval after the occurrence of a non-
catastrophic or benign failure [Bir14].

Availability is a broad term that expresses the ratio of delivered to expected service
of a system [Bir14]. In contrast to reliability, which does not allow any failure of
the system, availability considers system failures and the continuance of the system
after a repair. The point availability A,(#) denotes the probability that the system
provides the correct service at a stated instant of time ¢ [Bir14], so

Ap(t) =Pr{correct service at t|new at t = 0}. (2.6)

17



2 Fundamentals

The average availability A(z,)) is defined as the expected proportion of time in which
system provides the correct service in (¢, t,, ] given a new system at ¢, [ Bir14, Dub13],

SO
1

A(tm):t—JthP(t)dt. 2.7)

m

The long-term availability is the stationary or steady-state of the point availability
or average availability [KK 10, Bir14]. This is the common meaning of the term
availability. The long-term availability is defined as

A, =1limAp(t)= lim A(t,). (2.8)

t—00 t,,—00

However, Equation (2.8) only holds if fault coverage, switching, and logistic support
are ideal [Bir14]. This means that any failure of a system component is detected and
a maintenance mechanism is always started. As we show in Section 5.2 on page 66,
this assumption does not hold for our realistic fault model. Therefore, in this thesis
we consider the average availability A(¢, ), referred to as availability hereafter.

In this thesis, we focus on the system’s reliability and availability, since both of them
have positive impact on the safety measure of a system. We also consider corrective
maintenance in terms of a software implemented repair process.

Fault Tolerance

In case a failure occurs in a safety-critical system, a safe state that is identified a priori has to
be reached. If this safe state can quickly be reached, the system is called fail-safe [Kop11].
For example, a typical safe state of an industrial robot is to stop moving and power off.
Hence, detecting a system failure is sufficient for fail-safe systems.

However, there are environments where a safe state cannot be reached quickly and
without further operation, e. g., an aircraft or an HAD vehicle. Such safety-critical sys-
tems are called fail-operational systems [Kop11]. After a system failure is detected, a
fail-operational system has to continue to provide a possible degraded service until a safe
state is reached. For example, after a system failure the HAD vehicle has to operate until
the driver has taken control or the car is stopped in a safe position. In this thesis, we focus
on fail-operational systems.

Fault prevention is part of general engineering and development methods and aims
to reduce the number of faults introduced in the produced system [ALRLO4]. In order
to create a fail-operational system, fault prevention mechanisms are not sufficient. In-
stead, a fault tolevance approach with active redundancy to mask component failures is
required [Kop11]. Fault tolerance is the ability of a system to continue providing the cor-
rect service in presence of faults [Joh84]. Note that self-repair, self-healing, and resilience
are used as synonyms for fault tolerance [ALRLO4].

The most important and most common fault-tolerance strategy is triple modular redun-
dancy (TMR) [Kop11, Dub13]. Under TMR the results of three redundant fault contain-
ment units (FCUs) are compared by a voter, as shown in Figure 1.2 on page 5. An FCU is a
system component that fails independently, i. e., error propagation to other components

18



2.2 Many-Core Processors

is prevented. The voter accepts and outputs the final result only if at least two FCUs
deliver the same result [Par94]. The reliability of the voter has a significant impact on the
system’s reliability, since it is in series with the redundant FCUs and thus a single point of
failure (SPOF) [Dub13]. Although a failure of an FCU is masked by the voter, it reduces
or eliminates any further fault-masking capability [Kop11]. Therefore, a maintenance
mechanism that repairs the failed FCU when notified by the voter is beneficial for the
system’s fault-tolerance.

A fail-silent FCU either produces a correct result or no result at all [Kop11]. If the
FCUs exhibit fail-silent behavior, a dual modular redundancy (DMR) setup is sufficient to
construct a fault-tolerant system.

N modular redundancy (NMR) is the generalization of the TMR strategy for N redun-
dant FCU. The voter compares all FCUs results and generates an output only if ¥ <N
FCUs delivered the same result. The NMR fault-tolerance mechanism has the following
prerequisites [Kop11]:

e Deterministic behavior of the FCUs. Without a deterministic behavior of the
FCUs, two fault-free FCUs that started in the same state might at some point
provide different results for the same input value.

e Independently failing FCUs. If a fault causes more than one FCU to fail, it can be
shown that the correlated failure has a tremendous impact on the overall reliability.

e Communication infrastructure with overload prevention. Without further assump-
tions about the fault model, a failed FCU could overload the communication infras-
tructure and delay the results of the working FCUs.

e Fault-tolerant global time base. Without a global time base, the FCUs have to reach
consensus over the time, i. e., they have to synchronize. Independent of the fault
model, this requires to tolerate Byzantine or malicious faults, e.g., a failed FCU
that sends a correct result or timestamp to one part of the remaining FCUs, and an
incorrect result or timestamp to the other part.

Note that security measures partly overlap with dependability measures and include
availability, integrity, and confidentiality [ALRLO4]. Integrity is defined as the absence
of improper system alterations and confidentiality denotes the absence of unauthorized
disclosure of information [ ALRLO4]. Security is an important topic, especially considering
the increasing connectivity trend in embedded systems. However, security is orthogonal
to our work and out of scope of this thesis.

2.2 Many-Core Processors

Higher integration rates and shrinking feature sizes allowed hardware manufactures to
increase the amount of processing elements or cores per chip. Such many-core processors
can provide higher computational power compared to single-core processors at the same
operating frequency. In this section, we introduce the specific hardware properties of
many-core processors. After a general distinction between multi-core and many-core

19



2 Fundamentals

processors, we present the components of a single core. Multiple cores are connected by a
NoC, whose structure we detail afterwards. Finally, we present our fault hypothesis for
the many-core processor hardware.

2.2.1 General Many-Core Design

Today’s multi-core processors or Multi-Processor Systems-on-Chip (MPSoCs) comprise
up to 18 cores, such as Intel’s Xeon E7-8890 v3 processor [Int15]. Such general-purpose
multi-core processors contain homogeneous complex high-performance cores and provide
a shared address space between these cores. In order to maintain a cache-coherent memory
system, the last-level cache (LLC) is typically shared by all cores, while the highest level
(L1) cache is core-private [ Vaj11]. A cache system is said to be coherent if and only if all
cores, at any point in time, have a consistent view of what is the last globally written
value to each location [Vaj11]. The cache-coherence protocol that ensures this property is
implemented on top of an interconnect fabric such as a crossbar or ring bus that connects
the cores and higher-level caches, respectively, with the LLC [Vaj11].

The scalability of these multi-core processors is limited by the memory bandwidth
and throughput of the interconnect fabric as well as the power consumption [Vaj11].
Therefore, researchers in academia and industry are working on tiled architectures and
many-core processors, which are “loosely defined as chips with several tens, but more
likely hundreds, or even thousands of processor cores” [Vaj11, p. 13].

In contrast to multi-core processors, many-core processors abandon a cache-coherence
mechanism due to its communication overhead [MVdWFO08, Rut14]. Instead, they pro-
vide core-local memories that can be used as scratchpad memories and include a scalable
communication fabric such as an on-chip network, which allows direct access to the
core-local memories [ Vaj11]. Many-core processors eventually contain heterogeneous spe-
cialized cores with different performance characteristics and instruction set architectures
(ISAs) [Rut14]. Additionally, while general-purpose multi-core processors often include a
speculative dynamic instruction scheduling, the trend in many-core processors is to revert
to simple single-issue in-order execution [Vaj11, Rut14].

In contrast to graphics processing units (GPUs) such as Nvidea’s Tesla series [NVI14]
or AMD’s FirePro series [Swi14], which belong to the class of single instructions, mul-
tiple data (SIMD) of parallel computers, many-core processors belong to the multiple
instructions, multiple data (MIMD) class. Similar to a distributed system, each core of a
many-core processor can execute a different instruction.

Typical examples of COTS many-core processors are

e Adapteva’s Epiphany [Adal3]
e Kalray’s Massively Parallel Processor Array (MPPA) [dDAB*13, dDAPL14]
e Mellanox’s TILE-GX processors [Mel15]

e PEZY Computing’s PEZY SC [PEZ12]

20



2.2 Many-Core Processors

e Intel’s TeraFLOPS processor [ VHR708], Single-chip Cloud Computer (SCC) [Int12,
Bar10a, MVdWFO8], and Many Integrated Core (MIC) architecture with the Xeon
Phi coprocessor product family

e ST(microelectronics) Heterogeneous IOwpoweR Many-core (STHORM) academic
processor [MBF*12, BFFM12]

To improve the power efficiency and scalability of many-core processors, researchers
have introduced the globally asynchronous, locally synchronous (GALS) approach. In a
GALS architecture, each core is managed by its own clock and represents a synchronous
block of logic in an independent timing domain [ TGLO07]. The clocks of separate cores
potentially run at different frequency and phases. The communication fabric is either
asynchronous (clockless), mesochronous (hierarchical clock tree with same frequency
but different phases), or synchronous but driven by a separate clock. The core interfaces
synchronize both clock domains, e. g., via dual-clock first in, first out (FIFO) buffers. The
GALS approach is implemented e. g., in the STHORM, which contains an asynchronous
NoC [MBF*12, BFFM12].

The non-deterministic hardware timing properties of GALS many-core processors
render their usage for embedded applications with real-time requirements difficult. For
this reason, in this thesis we assume that all cores and the NoC operate at the same
frequency and that the hardware timers of different cores do not drift, 1. e., exhibit a
bounded clock skew. This assumptions follows the synchronous processor design with a
global clock implemented in Adapteva’s Epiphany, Mellanox’s TILE-GX, Kalray’s MPPA,
Intel’s SCC with dynamic voltage and frequency scaling (DVFS) disabled.

2.2.2 Components of Each Core

In this thesis, we consider many-core processors that consist of y - x cores C; ; € € with
j=1,2,...,yand 1 =1,2,...,x. The number of cores in a many-core processor is denoted
as |6 | = yx. All cores are homogeneous, 1. e., all cores are of a common type, support the
same instruction set architecture (ISA), and operate at the same frequency.

Each core consists of a CPU, a timer, an inter-core reset (ICR) mechanism, a scratch-pad
random access memory (RAM) protected by an MPU, and a network interface (NI),
as shown in Figure 2.3 on the following page. Following the typical System-on-Chip
(SoC) communication standards, the communication between these components via the
core-local crossbar is specified by a protocol such as the Virtual Component Interface
(VCI) [On-01], the Open Core Protocol (OCP) [Acc13], or the Advanced eXtensible
Interface (AXI) [ARMO4]. In this thesis, we assume that the protocol of the core-local
crossbar specifies transactions based on requests and responses.

The CPUs in a many-core processor typically follow the Reduced Instruction Set
Computing (RISC) scheme and have a lower complexity than the high-performance cores
of general-purpose multi-core processors. For example, Adapteva’s Epiphany contains
32bit RISC CPUs with a flexible pipeline length between five and eight stages [ Ada13].
STHORM contains STxP70-V4 CPUs that have a 32bit RISC architecture with a seven-
staged pipeline [BFFM12]. Note that simple CPU architectures without out-of-order

21



2 Fundamentals

Figure 2.3: Architectural model of a core of a many-core processor containing a CPU, a
timer (INT), an ICR mechanism, an uncached scratch-pad RAM protected
by an MPU, and an NI connected by a local crossbar (depicted as X).

execution, branch prediction, or caches are advantageous to determine a tightly bound
WCET estimation [ WEE*08].

The core-local timer can be configured in software to provide a periodic interrupt after
a specific amount of cycles. This interrupt is required to drive the real-time scheduler of
the OS.

Each core is able to trigger the reset of another core by the ICR mechanism. The reset
interrupt uses separate signal lines independent of the NoC. A core-local reset mechanism
is implemented e. g., in Adapteva’s Epiphany and in Intel’s SCC.

The core-local scratch-pad RAM is integrated on the same die and operates with the same
performance as a cache. It provides at least two banks that can be accessed in parallel. One
bank is reserved for the .mailbox section, a specific memory area used for communication
between cores. The remaining banks are used for the remaining sections containing
instructions and data. This assumption follows the design of Adapteva’s Epiphany, which
provides four banks that can be accessed in parallel each cycle.

The CPU and the NI potentially access the .mailbox section of the RAM in parallel.
Without a dual-port RAM, which is uncommon in COTS hardware due to its higher
costs, these parallel accesses result in conflicts that have to be handled by the core-local
crossbar. In this thesis, we assume that the core-local crossbar implements a round-robin
arbitration policy to solve such conflict. Thus, a read or write request of the CPU or the
NI is blocked in the worst-case. Due to the round-robin arbitration policy, this blocking
delay is bounded and can be included in the WCET. Since the CPU is only delayed when
accessing the RAM bank with the .mailbox section, the increase in the WCET is within
reasonable bounds.

To prevent a propagating failure when one failed core corrupts the instructions or data
of another core and ultimately cause a failure of the other core, we assume a memory
protection unit (MPU) is available in each core. The software configures the MPU to
prevent all write accesses to a specific address space from all but the local core. Thus, the
MPU prohibits all requests of the NI to memory sections other than the .mailbox section
and respective RAM bank. This assumption follows the design of Adapteva’s Epiphany,
which provides an MPU for eight predefined sections, Kalray’s MPPA, which provides a
full-fledged memory management unit (MMU), and Mellanox’s TILE-GX, which provides
a configurable “hardwall” in the NoC.

The NI connects a core with the NoC of the many-core processor. It consists of two
parts, the initiator NI and the target NI. The initiator NI translates a CPU’s read or

22



2.2 Many-Core Processors

write requests to non-local memories into request packets and injects these request packets
into the NoC. It also receives response packets from the NoC and translates them into
responses for the requesting local CPU. These responses contain the data that was read or
information about the success of a write operation. The target NI receives request packets
from the NoC and translates them into requests for the local RAM. It also receives the
RAM response, converts it into a response packet, and sends it back to the requesting
CPU via the NoC.

The CPU either stalls until a response packet is received, or it continues execution and
deals with the response packet when it is received. The former case is known as synchronous
or blocking communication. The latter case is known as asynchronous or non-blocking
communication. In this thesis, we consider both cases.

2.2.3 Network-on-Chip

In this section, we present the architecture of the NoC including the routing mechanism
for the packets.

A packet-switching NoC is a scalable on-chip communication infrastructure, which is
the result of adapting concepts such as routers and packets from computer networks into
chip design [DT03, DMB06, BM06, MHL*15]. Due to their limited scalability, point-to-
point connections, crossbars, and shared (ring) buses are replaced by NoCs in many-core
processors [BM06, ZKCS02, MHL*15]. Hence, a NoC as communication fabric is an
important differentiator between the multi-core and many-core processors [ Nik15]. Since
all cores are connected by the NoC, the many-core processor provides a shared memory
abstraction with non-uniform memory access (NUMA) latencies. Following Adapteva’s
Epiphany and Intel’s SCC, we assume a global address space where the highest bits of the
memory address encode the core ID.

In this thesis, we consider a many-core processor that contains two NoCs, as shown in
Figure 2.4 on the next page. Two separate NoCs are required to break the request-response
dependency [HGRO7]. If both request and response packets were sent in the same NoC,
the request packet of one message could hold resources required by the response packet of
another message and vice versa. Thus, deadlocks could still arise due to dependencies at
message level [HGRO7]. For this reason, COTS many-core processors typically contain
multiple NoCs, e. g., Adapteva’s Epiphany, Kalray’s MPPA, and Mellanox’s TILE-GX.

The request and response NoC have the same architecture and are identical except for
the width of the links. For this reason, unless explicitly stated, we describe one NoC that
represents the request or the response NoC in the following.

NoC Architecture

The NoC contains y - x routers 1 ER withj =1,2,...,yand i =1,2,...,x. The routers
are connected in a 2D mesh topology, as depicted in Figure 2.4 on the following page.
This topology is very common in many-core processor NoCs [BM06, MHL*15], e. ., in
Adapteva’s Epiphany, Mellanox’s TILE-GX, and Intel’s SCC.

In the 2D mesh topology, two adjacent routers are connected by a point-to-point
connection. Hence, when the NI of core C; ; injects a packet p; € & in the NoC, the

23



2 Fundamentals

Figure 2.4: Architectural model of the request (dark) and response (light) 2D mesh NoCs
with links and routers in a 4 - 4 many-core processor.

packet is forwarded to the router 7, ; via the point-to-point connection. If the packet’s

52
destination is core C,;,., and router 7;,,.,,, respectively, the packet p, traverses 4
routers, as shown in Figure 2.6 on page 27 for the red route (dashed line). The function
h: P — NT denotes the number of routers on the route of a packet from its source to its
destination, 1. e., the number of hops. The functions o : 2 — 6 and & : Z — 6 denote
the corresponding source and destination core of each packet. In this thesis, we consider
only unicast packets with exactly one source and one destination.

The connection between two adjacent routers as well as the connection between a router
and an NIisimplemented by alink / € £. A link is a bidirectional (full-duplex) connection,
so two neighboring routers can exchange packets in opposite directions without a conflict.
It is physically implemented by multiple wires for data transfers and the router-level flow
control mechanism.

A flow control unit (flit) is an atomic entity that is transmitted over any link / € &
in one clock cycle. Thus, the size of a flit (in bits) equals the number of data wires in a
link. The only difference between the request and the response NoC is that the flit size in
the request network is larger than in the response network, which results from the SoC
communication protocol. In both networks, all links have the same bandwidth b = 1%.

The size of a packet p, € 2 is denoted as | p,| and specifies the natural number of flits
that belong to the packet p;. When a read or write request is injected into the request
network, the NI translates it into a request packet and three flits, respectively. Similarly,
when a response is injected into the response network, the NI translates it into a response
packet and three flits, too. Thus, all packets have a common fixed size of three flits, so
|p;| = 3flits. The first (header) flit contains the destination address. The second flit decodes

the request type, the source address, and other configuration information. The third (tail)

24



2.2 Many-Core Processors

flit contains the actual data to be written. The flits are injected into the network in an
ordered manner.

Router

A schematic overview of a router 7, ; is presented in Figure 2.5 on the following page. Fol-
lowing the 2D mesh topology, each router has five input and five output ports. Four ports
are connected to the northern, eastern, southern, and western router or left unconnected
if the router is placed a the edge of the chip. The fifth port of router 7; ; is connected to
the NI of the core C ;- Note that the NI of each core is connected to both NoCs, 1. e., to
one router of the request NoC and one router of the response NoC.

Within a router, each input and output port is connected to a link controller (LC).
The input LC stores the received flits in the input FIFO buffer and notifies the upstream
router via the router-level flow control wire in case the input FIFO buffer is full. The
output LC forwards the flits in the output FIFO buffer unless the flow control signals
no capacity in the downstream router. To forward the flits from the input buffer to the
output buffer, each router contains an internal crossbar. The crossbar allows to forward
flits from different input buffers to mutually different output buffers in parallel. In this
thesis, L denotes the fixed amount of time it takes for one flit to be forwarded from the
input to the output port of a router without a conflict. The internal crossbar is controlled
by the routing and arbitration logic.

Routing Policy

The routing logic implements the dimension-order (XY) routing policy. Under this
policy, a packet is first transmitted along the horizontal axis. When the column of the
destination core is reached, the packet is transmitted along the vertical axis until the
destination core is reached. An example of two routes following this routing policy is
shown in Figure 2.6 on page 27. The dimension-order (XY) routing policy is known
to be minimal, deadlock-free, and deterministic [DMB06]. A packet always traverses
the network with a minimal number of hops under a minimal routing policy [DMBO06].
Under a deterministic routing policy, the same path between any source and destination
pair is always chosen [DTO03]. It is a subset of oblivious routing, where the route is agnostic
of the network’s present state [DT03]. Hence, deterministic routing policies ensure the
in-order delivery of packets [DMBO06]. Since the dimension-order (XY) routing policy is
simple to implement [DT03], it is commonly used in COTS many-core processors, e. g.,
in Adapteva’s Epiphany, Mellanox’s TILE-GX, and Intel’s SCC.

The arbitration logic resolves collisions that occur if multiple packets need to be for-
warded to the same output port at the same time. Early access means that a packet is
forwarded immediately if there is no collision. To resolve a collision, the arbitration logic
applies a round-robin early access scheme to select one packet that is transmitted. All
remaining packets are stalled and their flits are stored in the input buffers. When the tail
flit of the selected packet is transmitted, the conflict between the remaining packets is

. . . A
resolved in the same manner. In this thesis, L denotes the upper bounded amount of
time in which a packet is stalled by a collision with another packet in one router, 1. e., the

25



2 Fundamentals

data =
fc

A

I,

Figure 2.5: Architectural model of a router with five input and output link controllers
(LCs) connecting the data and flow control (fc) signals to the FIFO input
and output buffers, and an internal crossbar controlled by the routing and
arbitration logic.

worst-case time it takes a router to arbitrate a collision and process all flits of the selected
packet.

Consider one packet p, € 2 in an empty NoC, 1. e., no other packets can collide with
packet p;. The routing logic determines the requested output port from the destination
address stored in the header flit of packet p,. If there is no collision, the router reserves the
connection from input to output port until the tail flit of the packet p; is forwarded. If
there is enough space in the bounded FIFO input buffer of the next router, each following
flit of packet p, is forwarded immediately in a pipeline manner. This way of forwarding
packets is known as wormbhole switching [DMBO06]. Wormbhole switching is the prevailing
design choice in NoCs due to its reduced buffer requirements [BMO06], and is implemented
e.g., in Kalray’s MPPA, Mellanox’s TILE-GX, and STHORM.

In contrast to store-and-forward switching that is commonly used in computer networks
and stores packets completely in one router, a packet can span multiple routers in a
wormbhole switching network, as shown in Figure 2.6 on the facing page for the three flits
of the red packet [BMO06]. This property leads to additional collisions, e. g., if a router
reserved an output port for the remaining flits of packet p. and the header flit of newly
arriving packet p; contains an address that requires the same output port. Since the output
port is reserved for packet p; already, the newly arriving packet p; is stalled until the tail
flit of the packet p, has passed and no arbitration is needed.

The bounded input FIFO buffer might not be large enough to store all flits of a stalled
packet and newly arriving packets. To prevent a buffer overflow, the LC employs a
router-level flow control mechanism to notify the upstream router that it does not accept
more flits. Since the buffers of the upstream routers will eventually be full as well, the
router-level flow control mechanism propagates the blockage through the NoC. This
mechanism is known as back-pressure [DMBO06]. If the back-pressure reaches a core and
its NI, respectively, no further packets can be injected into the NoC.

An example of the described behavior is given in Figure 2.6 on the next page. The route
of packet p, is shown as red dotted line, its flits are represented as filled red input buffers.

26



2.2 Many-Core Processors

Figure 2.6: A schematic representation of a NoC with only a selection of routers, links,
and FIFO buffers with a capacity for two flits are shown. The routes of the
two packets, red and blue, are represented by dotted lines and follow the XY
routing policy. The header flits of the red and blue packet collided in the
center router. The round robin arbitration selected the red packet. The blue
packet is stalled and currently causes back-pressure.

The route and flit of packet p; are painted in blue color. Since the red packet p; either
was selected by the arbitration logic in the previous clock cycle or arrived one clock cycle
before the blue packet p, its header flit was already forwarded to the downstream router
and the output port is reserved for the red packet p;. The blue packet p; is stalled and
causes back-pressure in the NI, since the last flit cannot be injected into the NoC.

Guaranteed Service Communication

In contrast to point-to-point or crossbar communication fabrics, the communication
latency in a NoC is affected by collisions and the resulting back-pressure. Hence, when a
CPU accesses a memory via the NoC, the latency of the access depends on the packets
currently present in the NoC and ultimately on the instructions executed by the other
cores in the processor. However, GS communication is required in real-time systems in
order to ensure the WCCTs and verify the application’s real-time constraints, respectively.
GS communication describes a Quality of Service (QoS) class that includes a guaranteed
performance of the traffic, 1. e., a bounded latency and a guaranteed bandwidth [BMO06].

Without the a priori knowledge of the executed instructions on all cores, the state
of the round-robin arbitration logic at any point in time, and other low-level details, a
logical separation of the communication on the NoC is required to derive the latency
of the communication. The logical separation of communication can be achieved by
reserving dedicated channels in a NoC and implementing virtual circuit switching [BMO06].
In contrast to a packet-switched network, a circuit switched network first establishes a
connection between source and destination that is used exclusively afterwards, as known
from the landline telephone network.

Virtual circuits use logically independent resources in order to avoid packet colli-
sions [BM06]. Resource independence is either achieved by applying a time-division

27



2 Fundamentals

multiplexing (TDM) scheme for the complete NoC, ase. g., in the Athereal NoC [ GDRO5,
GHI10], or by introducing virtual channels. Virtual channels share a physical link but use
independent and individual input buffers per virtual channel in the router ports. If the vir-
tual channels are arbitrated by priority levels and a preemption mechanism, concepts from
scheduling theory can be adapted to determine an upper bound of the communication
latency [BMO6].

However, NoCs with GS communication are typically not available in COTS many-core
processors [DNNP14, AJEF15]. Except for Kalray’s MPPA, all mentioned many-core
processors provide merely best-effort (BE) communication. Kalray’s MPPA includes a
hardware-implemented traffic shaper that allows to enforce GS communication for a stati-
cally known communication by applying network calculus (see Section 3.1.2 on page 42).
Note that the NoC in Intel’s SCC provides eight virtual channels, but it does not support
reserving virtual channels for GS communication [Bar10a]. Therefore, in this thesis we
assume that the NoC does not provide any hardware support for GS communication.

2.2.4 External Reliable Memory

Focusing on consumer-grade many-core processors, we do not assume any fault-tolerance
hardware features such as ECCs protecting the memories [Dub13], fingerprinting the
instruction execution history [SGK*04], or lock-stepped cores [Sor09].

However, we assume a reliable off-chip memory to be available and connected to the
many-core processor. This off-chip memory is necessary to load the instructions and data
into the many-core processor’s RAMs after the power is switched on. All mentioned COTS
many-core processors provide interfaces to connect external memories to the processor’s
NoC. An example of a reliable off-chip memory is a flash memory with ECC protection.
Note that ECC is a typically implemented in NAND flash memories to compensate
wear-out effects [CYM112, YLJY15].

We further assume that the CPU of each core fetches the first instructions from this
external reliable memory.

2.2.5 Fault Hypothesis

In this section, we introduce our fault hypothesis, 1. e., the nature and origin of faults. In
this thesis, the system boundary is the many-core processor. Therefore, we do not consider
faults outside the processor, e. g., a short circuit due to water on the printed circuit board
(PCB) or a power surge in the ECU due to a lightning strike.

Fault Rate

The notion of faults, errors, and failures introduced in Section 2.1.2 on page 15 depends
on the level of detail and scope in which they are used. For example, at the physical level
of an SRAM cell, a fault denotes the impact of a high-energy particle, an error occurs if
the impact was large enough to flip the stored value, and a hardware failure arises if the
cell is read, since the SRAM component fails to provide its correct service. At software
level, a fault denotes a bit flip in a memory cell, an error occurs if the cell is read, and

28



2.2 Many-Core Processors

a software failure arises if the wrong value is not masked and results in a wrong output.
Finally, at system level, a fault denotes reading a flipped memory cell, an error occurs if
the software executed on one core produces a wrong output, and a system failure arises
only if no other means are taken and the wrong output is not checked, e. g., by comparing
it with the results produced by other cores, but forwarded immediately.

In order to specify our fault hypothesis, we first assume a physical level of detail. Here,
a failure is the hardware failure of an electronic component of the system. For these
hardware components, the failure rate over time is commonly assumed to follow the
well-known bathtub curve, plotted in Figure 2.7 [KK10, Bir14].

A2)

//
7/

//
7/ 4

1 2 3

Figure 2.7: Schematic plot of a bathtub curve, representing the hardware failure rate over
time in three phases.

The bathtub curve can be divided into three phases [Bir14]:

1. Early hardware failures that typically result from production defects. They are
eliminated by stress and burn-in tests.

2. A constant hardware failure rate during operational lifetime.

3. Wearout failures caused by aging effects. For many electronic devices, these failures
occur after ten years.

In this thesis, we only consider the useful operation phase. It is commonly assumed that in
the useful operation phase, the hardware failure rate A is constant [KK 10, Nic11, Bir14].

Fault Types

Considering the system level of detail, the hardware failure of an electronic component is
the result of a fault at the physical level. As mentioned in Section 2.1.2 on page 15, these
physical faults are either of permanent, transient, or intermittent nature.

Permanent faults are persistent in time. Typical examples of permanent faults are
disconnected wires or broken transistors that are the results of electromigration and time-
dependent dielectric breakdown caused by stress migration and thermal cycling [Sor09].
These are typical examples of aging and wearout effects. During the useful operation phase
of most systems, the permanent fault rate is three orders of magnitude lower the fault rate

29



2 Fundamentals

of transient faults [Bau05, Nic11]. Therefore, we do not consider permanent faults in this
thesis.

An intermittent fault oscillates between an active and a dormant state, so it occurs
occasionally in a bursty manner. They are typically caused by wearout effects that have
not yet resulted in a permanent fault [Kop11]. Hence, an increasing intermittent fault
rate is an indication for the beginning of the wear-out phase [Kop11]. Since we focus only
on the useful operation phase of a system, we do not consider intermittent faults in this
thesis.

Transient faults are only present for a bounded time interval. Due to the physical nature
of these transient faults, we assume that they are stochastically independent. In this thesis,
we consider transient faults.

A common cause of transient faults is electromagnetic interference, either from outside
the device or from long parallel signal wires [Sor09]. The latter is also known as a cross-
talk [Sor09]. Furthermore, transient faults originate from cosmic radiation and radioactive
impurities in the chip and its packaging [Bau05]. The impact of cosmic rays with the
atmosphere causes high-energy ionizing particles, e. g., neutrons, whereas radioactive
impurities produce alpha particles [BauO5]. If a high-energy particle or an alpha particle
strikes the chip, it can dislodge a significant amount of charge within the semiconductor
material, which is referred to as single event effect (SEE) [Nic11]. If this charge exceeds
the critical charge of the semiconductor, it can change the state of a logic element such as
an SRAM cell and become an error, which is known as single event upset (SEU) [ Bau05,
Sor09, Bir14]. If a particle strike affects combinational logic, it is called a single event
transient (SET) and becomes an error only if latched in a logic element [MEOQ2].

Additionally, high-energy ionizing particle strikes can turn on the parasitic bipolar
transistors of a complementary metal-oxide-semiconductor (CMOS) transistor, which is
then latched-up [DSSHO3]. This fault is called single event latch-up (SEL) and exhibits no
transient behavior [Bau05]. Instead, the recovery from an SEL requires a full power cycle
(pseudo-permanent behavior) or is completely impossible (permanent behavior) [DSSHO03,
I011]. Dodd et al. [DSSHO3 ] showed that in contrast to SEUs and SETs, whose rate
increases with a lower device voltage, the probability of SELs reduces with a lower voltage.
As modern processors operate at decreasingly low voltages [Nic11], we do not consider

SELs in this thesis.

Fault Effects

Transient faults can cause soft errors, e. g., a logical circuit malfunction or a single or
multiple bit flips in memory cells, registers, or NoC router buffers. In contrast to per-
manent faults, whose effects are often modeled as so-called stuck-at errors, the damage of
soft errors is not permanent [ Nic11]. Thus, a soft error can be repaired by software by
re-executing the instruction, rewriting the memory cell, or resending the packet.

Since a soft error at the system level of detail is equivalent to a failure at the level of
detail of a hardware component, the hardware failure rate A is also known as soft error
rate (SER). The SER is typically given in failure in time (FIT), where one FIT is one failure
in 10” device hours. A device hour is an hour of the device operating. In 2005, Baumann
stated that for advanced computer chips, the SER A can exceed 50,000 FIT [Bau05].

30



2.2 Many-Core Processors

A soft error can propagate through the system and cause other errors such as a software
task exhibiting incorrect behaviors, either by producing erroneous results or no result at
all (omission fault). In case fault-tolerance mechanisms are not protecting the system and
the soft error is not detected and corrected or masked, it results in a potentially hazardous
system failure.

Vulnerability Factor

A fault can be masked and not become an error even if no fault-tolerance mechanism is
present, e. g., in case a faulty memory cell is not used at all. Such faults that do not cause a
failure are called benign. Similarly, errors can be masked and not become failures, e. g., if
an ECC detects and masks a faulty memory cell. The ratio of faults that become failures
is commonly known as vulnerability factor.

Vulnerability factors were defined for microprocessor components [MWE*03], for
ISAs[RSKH11], and for the complete system stack including hardware and software [Sri10].
Simulations showed that the vulnerability factors highly depend on the specific hardware
and software implementation [Sri10].

In this thesis, we define the vulnerability factor v as the fraction of faults that cause
a failure of a software component executed on one core. For example, a task T with a
vulnerability factor v executed on a core with an SER A is expected to fail with the task
failure rate A = v, A

Common Mode Faults

Common mode faults denote faults that occur simultaneously in different components of a
system [Dub13]. These faults often originate from the same root cause, therefore they
also known as common cause faults [ TSQ9].

The first reason for common mode faults are systematic faults such as hardware design
flaws and software bugs. This source of common mode faults can be eliminated using
diverse hardware designs and N-version programming, respectively [Dub13]. However,
we consider homogeneous many-core processors with a common hardware design for
all cores. Therefore, we rely on test and verification methods that show or prove the
correctness of the hardware design or software behavior, and do not consider common
mode faults caused by systematic faults in this thesis.

The second reason for common mode faults is the shared environmental condition,
e. g., the temperature, pressure, or electromagnetic interference that affects the complete
chip [Dub13]. In this thesis, we assume that the processor is operated within its specified
conditions. For COTS many-core processors in the automotive domain, this typically
means they are installed within the passenger cabin. Therefore, we do not consider
common mode faults caused by environmental conditions.

The third reason for common mode faults are shared resources such as the power supply
as well as the clock and reset tree in the many-core processor [Dub13]. The chip can be
designed to protect against such faults by including redundant power supplies and voltage
monitoring, core-local clock signals according to the GALS approach, and a specific pattern
as a reset signal. However, except for the academic STHORM processor, such features

31



2 Fundamentals

are typically not implemented in COTS many-core processors. Thus, common mode
faults caused by shared resources need to be considered. Due to their nature of affecting
the complete processor, they cannot be protected against by software running on the
same processor, which is the proposed solution to protect against transient faults in this
thesis. Hence, we do not specifically consider common mode faults caused by shared
hardware resource in the following. Instead, we propose to compensate for these common
mode faults in shared resources by increasing the vulnerability factor v of each component
respectively.

Byzantine Faults

The term Byzantine fault originates from the Byzantine Generals Problem described by
Lamport et al. [LSP82]. The authors investigate the problem of a distributed system
reaching consensus when component failures are observed differently by the remaining
components of the system. These component failures, which result in an inconsistence
within the system, are known as Byzantine faults [ALRLO4].

A common way to interpret Byzantine faults is to consider them as malicious, 1. e., a
component sends different messages to the other components on purpose. As mentioned
in Section 2.1.2 on page 18, we do not focus on security issues in this thesis. Therefore, we
assume that task replicas do not send different results to both voters on purpose.

Byzantine faults can be the effects of soft errors as well. However, our fault-tolerance
mechanism does not resemble a distributed system and the task replicas do not need to
reach consensus. Instead our mechanism includes two fail-silent voters that compare the
results of all replicas. Instead of negotiating the final result, the inactive voter merely
serves as backup of the active voter. Therefore, no Byzantine faults can occur between
both voters.

Consider the case where a task replica sends a correct result to one voter and an incorrect
result to the other voter. If the inactive voter receives the incorrect result, the correct
result will be forwarded by the active voter. If the active voter gets the incorrect resul, it
will detect the incorrect result. in this case, Even if the active voter is unable to determine
the majority of results, the inactive voter will output the final result correctly. Hence, the
voters are able to tolerate Byzantine faults of the task replicas.

The voters compare the results available at given instants of time. As mentioned at the
beginning of this section, all cores of the many-core processor operate with a common
frequency. Hence, the processor provides a global time base for all task replicas and voters
and no consensus over time needs to be found.

32



2.3 Embedded Many-Core Operating System

2.3 Embedded Many-Core Operating System

The general job of an OS is “to control all the computer’s resources and provide a base upon
which the application programs can be written” [TWO06, p. 1]. In the scope of this thesis,
the OS has to provide the means to execute embedded real-time safety-critical applications
on a many-core processor. Thus, the embedded many-core OS has to adapt concepts from
the world of well established, commercially available real-time operating systems (RTOSs)
as well as concepts from the world of academic, scalable many-core OSs. In this section, we
first present important concepts of RTOSs. Then, we introduce the main architecture of
many-core OSs, before we propose how both worlds can be combined. Finally, we detail
the OS message passing mechanism and present means to ensure fault isolation between
cores.

2.3.1 Real-Time OSs

An RTOS must provide all essential general-purpose OS capabilities. This includes the
management of resources such as the CPU, memory, interrupts, and system timer as
well as providing a hardware abstraction layer to the application and the management
of processes including the scheduling and inter-process communication (IPC) [TWO06].
These mandatory OS functionalities are implemented by the kernel [Mar11].

If the kernel provides only the essential functionalities and all other OS services are
implemented as processes in user space, the OS architecture is called microkernel [RDJ*09].
Examples of microkernel-based OSs is SYSGO’s PikeOS, whose design is based on the 1.4
Microkernel [KWO08].

In contrast, if all OS services are implemented within the kernel, the OS architecture
is called monolithic kernel [RD]JT09]. Examples of a monolithic kernel architecture are
Lynx Technologies’ Lynx OS [Ble11] and Linux, which was adapted for real-time systems
by several projects, amongst others the Preempt RT patch [RHO07], Litmus®T [BCA08],
Xenomai [OB12], and Real-Time Application Interface (RTAI) [MBD*00].

In addition to common OS features, an RTOS must provide a notion of physical time,
have a predictable timing behavior, i. e., the execution times of services must be upper
bounded, and include a real-time scheduling algorithm, which guarantees that all tasks
meet their deadlines [Mar11].

The field of application of RTOSs starts at deeply embedded systems with a small
microcontroller, a few kilobytes of memory, and a few megahertz of clock frequency and
ends at MPSoCs with gigabytes of attached memory and a clock frequency in the range
of a gigahertz. Especially at the low-performance end, a low context switching latency,
a small memory footprint, and low overheads in general are important features of an
RTOS [BMO05]. In such simple systems without virtual memory and an MMU, the RTOS
design is often “kernel-less” and the OS is linked together with the application [RDJ*09].
Thus, the software is contained in a single executable which is executed in a single address
space and no program loader is required [RDJ*09]. Additionally, OS service calls can
be implemented as function calls and do not require a context switch [RDJ*09]. The
OS can still protect itself from unwanted modifications if an MPU is available in hard-

ware. Examples of RTOSs that are linked together with the application are AUTOSAR

33



2 Fundamentals

basis software [AUT15], Express Logic’s ThreadX [Exp06], and Mentor Graphics’ Nu-
cleus [Men15].

Additionally, an RTOS often has to be certified when used in a safety-critical con-
text [Kop11]. However, certification is difficult if it contains dynamic control structures
and thus behaves non-deterministically [Kop11]. Examples of RTOSs that are certified
to the IEC 61508 standard [Int10] are Green Hills’s Integrity [ Gre13] and Wittenstein’s
SafeRTOS [Bar10b]. A sister RTOS of the latter, namely FreeRTOS, is also available as
open-source software [Bar10b].

Due to their historical dominance in embedded systems, RTOSs are typically designed
for single-core processors. However, some RTOSs also support symmetric multi-processor
(SMP) systems. An SMP system is a homogeneous multi-core processor or a computer with
multiple homogeneous processors [ Vaj11]. The cores or processors access a shared main
memory with a global address space [Vaj11]. If the SMP system has a uniform memory
access (UMA) architecture, all tasks and processes can be executed by any core or processor
without additional overhead. In an SMP system, the RTOS kernel typically resides on one
core or processor and controls all cores or processors [ Vaj11]. An example of an RTOS
that supports SMP systems is Embedded Configurable Operating System (eCos) [ Mas03].

Some RTOSs also support asymmetric multi-processor (AMP) systems, which have sepa-
rate address spaces per core or processor [ Vaj11]. The cores or processors potentially have
heterogeneous architectures [ Vaj11]. In such systems, each core or processor is managed
by its own kernel and the RTOSs provides a message passing service for IPC [Vaj11]. An
example of a RTOS that supports AMP systems is WindRiver’s VxWorks [Win16].

The latter setup is closely related to the typical architecture of scalable many-core
OSs, which is presented in the following. Note that there also exist hybrid SMP/AMP
setups, also known as bound multi-processors (BMPs) systems [ Vaj11]. BMPs systems are
supported by some RTOSs, namely Enea’s Operating System Embedded (OSE) [Str09],
eSOL’s eT-Kernel [Gon07], and QNX Neutrino [QNX12].

2.3.2 Many-Core OSs

Many-core processors contain hundreds of cores, abandoned cache-coherence, and repre-
sent a NUMA architecture. These processors propel the research and exploration of novel
and scalable OS designs. Hence, apart from the hardware architecture, the OS design
provides a clear differentiation between multi-core and many-core processor [Rut14].
As a result, several academic projects have proposed concepts for an OS for many-core
processors, some of which are discussed in the following:

Barrelfish [BBD09, BPS*09] is an OS with a multikernel architecture. The mul-
tikernel manages each core by a so-called CPU driver in privileged mode and a
monitor process in user mode. Together, CPU driver and monitor provide typical
microkernel functions, e. g., time-sliced scheduling, IPC, and low-level resource
allocation. Similar to a microkernel, device drivers and higher-level system services
run as user-level processes. Barrelfish’s design is based on three principles:

e explicit inter-core communication

e hardware-neutral OS structure

34



2.3 Embedded Many-Core Operating System

e share nothing, replicate instead

Corey [BWCC*08] is an OS with a exokernel architecture. In an exokernel archi-
tecture, the resources are provided to the application and its libraries with little
abstractions. Corey allows applications to dedicate cores and address rages to ker-
nel functions and data. As a result, the inter-core communication is reduced and
optimized for the application.

Factored OS (fos) [WAO09] puts scalability as the primary design constraint and
replaces time with space sharing. Each service of the OS is implemented by one
or more so-called servers. The servers are spatially distributed across the many-
core processor such that no time multiplexing on any core is necessary. The OS’s
functionality is provided as a collaboration of the servers, which communicate via a
message passing service. Servers are executed on top of a microkernel that provides
a protection mechanism and the communication infrastructure. The applications
are executed on cores separate from the OS services. The authors give the following
recommendations and design principles for many-core OSs:

e Avoid use of hardware locks
e Separate OS and application resources

e Avoid global cache-coherent shared memory

HeliOS [NHM*09] introduces satellite kernels, which provide a single uniform set
of abstractions on heterogeneous many-core processors. Each NUMA domain is
managed by one satellite kernel, which has few hardware requirements in order to
run on a variety of core architectures. Satellite kernels communicate via message
passing. The applications are compiled to a common intermediate language (CIL)
and are later compiled to the ISA of the core they are executed on. Each application
specifies an affinity value as part of its meta data, which indicates the amount
of communication with other applications, other instances of itself, or specific
hardware. Helios was designed under the following principles:

e Avoid unnecessary remote communication
e Require minimal hardware primitives
e Require minimal hardware resources

e Avoid unnecessary local IPC

Tesselation [LKB*09] is an OS that focuses on space-time partitioning. A spatial par-
tition is an isolated unit containing a subset of physical machine resources. Resources
are divided amongst interacting software components either exclusively or with soft
real-time (RT) guarantees. A global partition manager virtualizes spatial partitions
by time-multiplexing. The space-time partitions are multiplexed in coarse-grain and
allow user-level scheduling inside the component. The software components have
unrestricted access to their resources while they are active and communicate with
other components via message passing.

35



2 Fundamentals

In the following, we deduce the common trends of many-core OSs, following the work
of Vadja [Vaj11]:

1. Each core is managed by a separate kernel. The kernel provides only the fundamen-
tal services such as IPC and resource management. Higher-level OS services are
implemented on top of this microkernel.

2. The many-core OSs implement IPC via a message passing mechanism.

3. Due to the decreasing number of processes per core and the increasing number
of cores per chip, the trend shifts from time-sharing to space-sharing approaches.
Whereas Tesselation and Barrelfish still allow multiple applications to be scheduled
on the same core, fos already executes each application exclusively on each core. The
latter is beneficial for the performance, since less context switches are required and
fewer cache misses are expected.

4. Support for heterogeneous architectures is becoming more important. Starting from
cores with the same ISA but different clock frequencies, over different internal archi-
tectures such as pipeline depth, to cores with different ISAs or even re-programmable
field-programmable gate array (FPGA) cores.

2.3.3 Combination of Real-Time and Many-Core OSs

In this section, we combine the concepts of RTOSs with the design of many-core OSs.
Many-core OSs propose to manage each core by a local microkernel that provides only
the fundamental services. This design is similar to microkernel-based RTOSs. The simple
CPU architecture and small size of core-local memory advocates to manage each core by a
RTOS kernel with a low memory footprint.

Scheduling

The RTOS kernel provides a fixed-priority preemptive scheduling algorithm and resource
management services. As mentioned in Section 2.1.1 on page 9, a feasibility test for this
scheduling algorithm exists.

Since all cores of the many-core processor are driven by a common clock signal, we
assume that all timers and schedulers, respectively, are synchronous and exhibit no drift.

We assume a global deadline monotonic priority assignment, i. e., all priority levels are
valid for all local schedulers. Hence, if the same set of tasks and processes, respectively, is
scheduled by two RTOS kernels on separate cores, the jobs will be executed at the same
time on both cores.

Mapping

The RTOS kernel and all processes scheduled by the kernel are contained in the core-
local memory in order to reduce memory access latencies for instruction fetches and
local data accesses. However, the memory capacity and the computational power of each
core is limited. Thus, not all processes can be executed on a single core in general and a

36



2.3 Embedded Many-Core Operating System

feasible process-to-core mapping that fulfills all constraints has to be found. In general, the
underlying constraint satisfaction problem is NP-complete. Note that the complexity of
this problem might be increased by additional constraints, such as subsets of processes
that have to be executed on mutually exclusive cores for fault-tolerance reasons.

The problem to find a feasible mapping of processes to cores has been extensively
researched and several algorithms to solve the problem have been proposed [SC13]. These
approaches are either of heuristic or exact nature. Examples of heuristic approaches
are tabu search, simulated annealing, ant colony optimization, genetic algorithms, or
particle swarm optimization [SC13]. Exact algorithms are commonly based on symbolic
approaches such as satisfiability modulo theories (SMT) or mixed integer linear programming
(MILP). The former approach includes a pseudo-Boolean satisfiability (SAT) solver to decide
the satisfiability of a decision problem and incorporates a background theory solver to
interpret formulae [BSST09]. The latter approach only accepts linear constraints but ties
to find an optimal solution, e. g., regarding the overall performance, the communication
latency, or the energy efficiency.

In hard real-time systems, the solution of a mapping algorithm has to result in a feasible
schedule on all cores and a guaranteed communication between all processes. Note that
in this thesis, we assume a partitioned scheduling policy that requires a static mapping,
so processes are not migrated between cores at runtime. Furthermore, the processes are
single-threaded and therefore mapped to exactly one core.

Several authors have addressed the mapping problem in the context of hard real-time sys-
tems. Liu et al. [LGX*11] use a latency computation as background theory and perform
optimization by a branch and bound strategy incorporated into an SMT solver. Kumar et
al. [KCT13] create an SMT solver by combining a SAT solver and real-time calculus as back-
ground theory solver. Biewer et al. [BGH14, BAG*15] propose an SMT-based approach,
where the logic solver performs static binding and routing while the background theory
solver computes global time-triggered schedules. Reimann et al. [RGH*10, RLG*11]
present an SMT-based system synthesis with hard real-time constraints, which includes a
fixed-priority preemptive scheduling policy.

The presented approaches are required to map complex applications with a large number
of processes on processors with barely enough resources. However, in this thesis we present
a case study for which a feasible process mapping can easily be determined manually.
Therefore, the inclusion of a solver to find a feasible mapping is left as future work.

Distributed Message Passing Service

The distributed message passing service (DMPS) provides the IPC between processes that
are managed by separate kernels on different cores. It keeps the mapping of a process
transparent to its communication partners. Unless the RTOSs already includes a DMPS,
e.g., because it supports AMP systems, we assume that it is added to the RTOS.

As defined in Section 2.1.1 on page 13, the IPC adheres a last-is-best semantic and follows
the LET concept in order to decouple communication from computation. Due to the
last-is-best semantic, only one input buffer per receiving message per task is required. We
assume the input buffer is located in the core-local memory of the receiving task and can
be accessed by the receiving task without contention from other processes. From the

37



2 Fundamentals

LET concept follows that the DMPS has to transmit all messages and fill all input buffers
read by a process before the process is scheduled. The WCCTs for the transmission of
all messages are statically derived and have to be guaranteed by the DMPS and the NoC
hardware. In Chapter 4 on page 55, we show how an upper bound for the communication
over the NoC can be guaranteed.

External Communication Driver

In order to implement the LET concept and to achieve logical determinism, all commu-
nication between tasks and external resources such as sensors and actuators has to be
independent of the task’s actual execution time. Therefore, the OS contains so-called
drivers. Drivers are low-level routines that are executed as exactly as possible at the tasks’
LET borders with deactivated interrupts [HHKO03]. When a task reads a sensor value, a
sensor driver reads the sensor value at the task’s activation time and stores the value at the
task’s input buffer similar to a message. As soon as a task writes an actuator signal, an
actuator driver reads the task’s output buffer and forwards the signal to the actuator at the
task’s deadline.

Since external resources are not part of the many-core processor, we consider them to
be reliable in the following. Most sensors include a digital /analog converter that contains
a sample and hold logic. This sample and hold logic keeps the signal stable for a specific
amount of time. Since drivers are scheduled precisely, we assume that replicated drivers
on separate cores read the same value from a common sensor.

Note that a typical setup to increase the reliability of a system if only unreliable sensors
are available is to connect multiple unreliable sensors to the processor. This way, each task
replica can read values from a different sensor. However, since sensor values are typically
noisy, the signals from different sensors will slightly differ. As a result, the task replica
results will differ and a more complex voting procedure is required [Par94]. Nevertheless,
we are confident that the software fault-tolerance mechanism proposed in this thesis can
be adapted for systems with unreliable sensors.

We further assume that new data can always be read from or written to resources in
an atomic way. In other words, we do not consider complex state-full external resources
that can only be accessed in a mutually exclusive way and therefore require resource access
protocols to be in place.

Fault Isolation

According to our fault hypothesis in Section 2.2.5, faults occur independently. Consider a
bit flip in the memory area of one process. As a result, the process can fail and outputs a
wrong result or no result at all. In case the kernel mode and MPU are configured correctly,
the core-local OS kernel ensures that the remaining processes are still scheduled correctly.
However, the OS kernel is stored in the core-local memory, too, and is subject to faults as
well. In case a fault affects the scheduler and dispatcher or other critical kernel routines,
all processes scheduled on the core with a failed OS kernel fail as well. Therefore, there is
no fault isolation on one core.

38



2.4 Summary

In order to prevent a failed process or OS kernel to overwrite data in the memory
of another core, we leverage the core-local MPUs. During initialization, the OS kernel
configures the local MPU to prevent all write accesses from other cores to the local RAM
except for the .mailbox section that is required to implement the DMPS. We assume that
the MPU can be configured such that each core can only write to a specific part of the
.mailbox section. Thus, a failed core cannot overwrite messages from other cores in the
memory of another core. To prevent dual-point failures, i. e., a failed MPU and the failure
of another core that abuses the missing protection, the OS periodically checks the state of
the MPU. Note that the MPU cannot prevent soft errors in the core-local memories, it is
merely required to establish fault isolation between cores.

In order to prevent a failed OS kernel from triggering another core’s reset via the ICR
mechanism, the ICR mechanism’s interface requires a special authentication, e. g., a specific
sequence of at least two instructions or a specific bit pattern that has to be written to at
least two memory cells. Therefore, a single bit flip in any instruction of the privileged OS
code cannot trigger the reset of another core. Additionally, the respective ICR function
contains a plausibility check to prevent a single bit flip to alter the destination core, e. g.,
by comparing the function’s parameter with a value stored at a specific memory location.
To prevent dual-point failures, the OS function is periodically compared with the correct
version stored in the reliable external memory.

There still exists a residual probability of a core failure that is not isolated to one core.
For example a failure that disables the MPU in combination with a failure that abuses
the missing protection before it is detected by the periodical check or a failure in the ICR
function that circumvents the plausibility check in combination with a failure that calls the
ICR function with a wrong parameter before the periodical comparison. However, such
combination of failures within the check or comparison period have a very low probability
and are neglected in the following. In other words, we assume that fault isolation between
cores can be established.

2.4 Summary

In this chapter, we have presented the relevant background of this thesis. First, we have
introduced the fundamental constraints and concepts of real-time embedded systems.
In this thesis, we consider tasks sets with harmonic periods, hard deadlines, no phases,
constraint deadlines, and a global deadline-monotonic priority assignment. Next, we
have defined important measures of safety-critical systems, such as the reliability and the
availability. Afterwards, we have described the common design principles of many-core
processors. This thesis focuses on COTS many-core processors with homogeneous cores
and two NoCs. Each core contains CPU, a timer, an ICR mechanism, a scratch-pad
RAM protected by an MPU, and an NI. Each wormhole-switching NoC with a 2D mesh
topology implements the dimension-order (XY) routing policy with round-robin early
access arbitration and connects a reliable off-chip memory to the many-core processor.
The fault hypothesis of this thesis considers transient faults in the cores and the NoCs
of the many-core processor. Finally, we have combined the concepts of real-time and

39



2 Fundamentals

many-core OSs. In this thesis, each core is managed by a local RTOS kernel that provides
an online partitioned fixed-priority preemptive scheduling algorithm and a DMPS.

40



Related Work

This chapter discusses the related work of this thesis. First, we survey existing approaches
to provide dynamic guaranteed service (GS) communication on NoCs. Afterwards, we
present an overview of fault-tolerance mechanisms focusing on software-implemented
mechanisms for many-core processors.

3.1 Dynamic GS Communication on NoCs

One possibility to provide dynamic GS communication on NoCs is based on hardware
support. In the following, we will provide an overview of such possibilities. If the
NoC hardware does not support GS communication, mathematical models can be used
to determine the upper bound of the packet latencies. We discuss such mathematical
approaches afterwards.

3.1.1 Hardware-based Approaches

A common hardware-based approach to provide dynamic GS communication is to con-
struct contention-less NoCs, so packets cannot be blocked by other packets and the
worst-case latencies are trivial to determine.

Several authors propose to prevent contention by TDM [GDRO05, KSW]06, PK08,
SBSK12, WGO™*13]. Under TDM, time slots are assigned to the packets of a static traffic
pattern at design time. If the traffic pattern is not known at design time, the assignment of
packets to time slots has to be modified at runtime. Winter and Fettweis [WF11] present
a hardware-implemented solution to allocate GS virtual channels at runtime. Other
hardware solutions employ a probe packet that tries to reserve free time slots [KB10,
LJL14]. Stefan et al. [SNG12] propose an online time slot allocation algorithm based on
backtracking in software.

Apart from TDM, another approach to prevent contention in NoCs is to introduce
virtual channels with different priority levels [ST11, BSO5]. Offline feasibility algorithms
allow to determine whether all latency requirements of a static traffic pattern are guar-
anteed [SB08, Shi09, BIS10, IHB15]. In order to support dynamic traffic patterns, some
authors propose an application programmable interface (API) in hardware to allow the
software to reserve a new route in the network at runtime [CASM11, CCM14, RCM13,
RCM15].

Nikolic et al. [NYP14] present an algorithm to determine the worst-case communication
delays on NoCs with priority virtual channels, for applications that are implemented

41



3 Related Work

according to the Limited Migrative Model (LMM) [NP12, Nik15]. The LMM is a semi-
partitioned approach, where each task is encapsulated in a dispatcher and a allocated to a
statically selected subset of cores. At runtime, the dispatchers communicate with each
other and choose a master dispatcher, which executes the tasks.

Kalray’s MPPA [dDAPL14] many-core processor contains NIs with a traffic shaper
implemented in hardware. This traffic shaper enforces a software-specified packet injection
rate and hence allows to determine the worst-case delays and buffer sizes with the help of
network calculus [LM]J*09]. With this hardware-based solution, the MPPA is an exception
from the commercially available many-core processors, since it provides means to ensure
GS communication in its NoC. Most other consumer-grade COTS many-core processors
do not contain a NoC with hardware support for GS communication, since multiple
physical channels, traffic shapers, virtual channels with priority levels, or a TDM scheme
typically require more buffers or chip area and hence result in larger unit costs.

3.1.2 Mathematical Approaches

Most commercially available many-core processors are designed to provide best-effort
service and contain a NoC without virtual channels [DNNP14, AJEF15].

Kiasari et al. [KJL13] provide an overview of mathematical analysis methods to deter-
mine the latency of packets in such NoCs, namely queuing theory, data-flow analysis,
scheduling analysis, and network calculus. Queuing theory considers only the average
properties of the network. Data-flow analysis is able to determine the worst-case latency
and additionally allows to model dependent flows. However, restrictive models of compu-
tation (MOC:s) such as synchronous data-flow (SDF) or cyclo-static data-flow (CSDF) have
to be used. As mentioned above, scheduling analysis provides feasibility tests for flows in a
NoC if the NoC contains virtual channels with different priority levels. Network Calculus
is 2 methodology to derive worst-case latencies and backlog bounds, which uses an elegant
abstraction with arrival curves and service curves on top of a min-plus algebra [KJL13].

Network calculus is designed for forward networks in which the service curve of a
router is independent of the service curves of the other routers. However, the router-level
flow-control in NoCs introduces back-pressure, hence the service curve of a router depends
on the service curve of the next router [DNNP14]. Qian et al. [QLD09, QLD10] extend
network calculus to calculate the end-to-end delay bound of a flow in a NoC with wormhole
switching and flow control. The extension models the flow control as another service
curve. It operates based on a contention tree that covers direct and indirect contention by
constructing complex contention scenarios from three basic contention patterns.

Ferrandiz et al. [FFF11] showed that modeling the flow control as another service
curve is pessimistic. The authors introduce a so-called wormhole section, that is a set of
consecutive routers shared by a static set of flows. They compute the service curve of a
section offered to an input flow by concatenating all contained routers and subtracting the
arrival curve of all intersecting flows.

As mentioned by Dasari et al. [DNNP14], the idea of wormhole sections does not scale
with an increasing number of traffic flows. If the number of flows with short intersecting
parts increases, the wormhole sections get more fragmented. In the end, every router is
treated as an individual wormhole section and the results are pessimistic again [DNNP14].

42



3.2 Fault-Tolerance Mechanisms for Many-Core Processors

The problem of determining the worst-case delays in networks with wormhole switching
was addressed by several authors without using network calculus as well [Lee03, RMB*13,
FFF09]. The common approach is to recursively analyze the contention in each router
on the path of each flow of packets [FFF12]. To determine the worst-case scenario, all
sources are considered to inject packets at the maximum rate and all buffers are assumed
to be full initially [DNNP14].

Dasari et al. [DNNP14, Das14] enhance this recursive calculus method by leveraging the
input arrival patterns known from network calculus. Due to the blocking semantics, they
identify a minimum inter-release time of packets and incorporate this into the recursive
algorithm. This allows the analysis to prune packets that will not be present at the time the
analyzed packet reaches a router. Additionally, Dasari et al. parametrized the algorithm to
be able to adjust for the trade-off between complexity and tightness.

Abdallah et al. [AJEF15] focus on the same problem and present an algorithm to
compute the worst-case traversal times of static flows in the NoC. In contrast to Dasari et
al., the authors do not consider the application-level arrival patterns but leverage the fact
that two indirectly conflicting flows are not necessarily blocking each other, but can be
forwarded both in a pipeline manner, as described by Lu et al. [LJS05].

While the discussed mechanisms allow to determine the worst-case transfer latencies
(WCTLs) on NoCs without hardware support for GS communication, they all assume
a static set of flows captured in a static traffic pattern. However, soft errors in cores and
their repair require a dynamic modification of the traffic pattern, especially if data has to
be copied from the external reliable memory.

Tagel et al. [TEH]J11] present a communication model and synthesis approach to guar-
antee the communication latencies on NoCs without hardware support. Using a heuristic
approach, the authors propose to execute the communication synthesis method not offline
but at run-time whenever the SoC is reconfigured. However, this approach requires to
know changes in the traffic pattern in advance, in order to compute all communication
latencies and check if all real-time constraints are still met. Since this assumption does
not hold for reactions to soft errors, a mechanism that guarantees the communication
latencies of all possible traffic patterns is needed.

3.2 Fault-Tolerance Mechanisms for Many-Core
Processors

The subject of fault-tolerance and reliability is of great interest in academia and indus-
try [GRSRVO06, Sor09, KK10, Bir14]. With the advent of multiple cores per processor,
their inherent spatial redundancy was soon leveraged by fault-tolerance mechanisms. An
excellent overview of fault-tolerance mechanisms for multi-core processors is provided by
Gizopoulos et al. [GPA*11]. In the following, we provide an overview of hardware-based
fault-tolerance mechanisms with a focus on multi- and many-core processors. Afterwards,
we detail software solutions that are applicable on COTS processors as well.

43



3 Related Work

3.2.1 Hardware-based Fault-Tolerance Approaches

Baleani et al. [BFM*03] present different SoC architectures for safety-critical automotive
applications, including lock-step, TMR, and dual lock-step configurations. The authors
state the overhead in terms of chip area for configurations is 6%-30%. Similar works
propose configurable [ AR]JS07] or dynamically adjustable [ LIMMO7] redundancy con-
figurations, or support mixed-critical applications [ WCS09]. Smolens et al. [SGK104]
propose a fingerprinting technique that summarizes the history of executed instructions
into a cryptographic signature. The fingerprints of two processors can be compared in a
DMR configuration and reduce the error-detection effort.

The mentioned approaches have in common that they require a reliable voter, which
compares and tallies the results of the replicated executions. To increase the reliability of
the voter, Patooghy et al. [PM]*06] propose a hardware-based mechanism that leverages
temporal redundancy. A disagreement unit, which was originally proposed to switch in
spare replicas, compares the replicas’ results again and switches in a spare voter if a failure
of the first voter is detected. Sloan and Kumar [SK09] present a fault-tolerance mechanism
for many-core processors in which the voting logic is integrated into the NoC routers to
allow distributed voting.

Li et al. [LRS"08] studied the effects of faults and state that 95% of the unmasked
faults are detected via simple symptoms. Thus, the authors propose low-cost hardware
monitors to detect software anomalies such as fatal hardware traps, high OS load, and
hangs. When an anomaly is detected, the control is transferred to the firmware that initiates
further diagnosis. This method was adapted by Hari et al. [HLR*09] for multi-threaded
applications.

However, all discussed solutions share the drawback of specific hardware prerequi-
sites. While the chip area overhead might be small compared to COTS chips, the cost of
producing such specialized chips is high if not a large number of chips is produced.

Hardware/Software Co-Design Approaches

Several authors addressed fault-tolerance and robustness in hardware /software co-design
approaches. Hardware/software co-design combines the design of hardware and software
components in a single effort [Sch13]. Depending on given optimization criteria, hardware
components are allocated (selected), software tasks are bound (mapped) to them, and a
task schedule is determined.

Xie et al. [ XLK*04, XLK*07] incorporate reliability into a hardware /software co-design
paradigm for embedded systems. They introduce an allocation and scheduling algorithm
that selectively duplicates critical tasks to detect soft errors. The task criticality is specified
by the user or derived from the number of preceding tasks that require the output. The
authors focus only on error detection and lack to derive the resulting reliability of the
system.

Reimann et al. [RGL*08] present a system synthesis approach for dependable embedded
systems, which automatically performs redundant task binding, namely simplex, duplex,
and TMR, as well as the voter placement. The voter is implemented either in hardware
or in software. The design space exploration evaluates the introduced dependability in

44



3.2 Fault-Tolerance Mechanisms for Many-Core Processors

terms of the mean time to failure (MTTF), to quantify reliability, and the mean time to
unsafe failure MTTUF), to quantify safety, for different task replications schemes together
with additional objectives like power consumption and latency. The reliability of the
voter depends on the design space of its implementation, i. e., the number of FPGA slices
and RAM used. However, the approach does not target homogeneous COTS many-core
processors with same SERs on all cores, including the voter core.

Sun et al. [SGD15] propose a highly-automated formal approach that provides fault-
tolerance in a distributed multi-processor system. Their approach is based on discrete
controller synthesis. For a given definition of the system, a controller code is generated
that detects processor failures from missing heartbeats and performs offline determined
task migrations to continue the execution of the system. The authors assume that all
processors are fail-silent, which is typically not the case for consumer-grade devices.

Similar to hardware/software co-design is the idea to consider fault-tolerance over
multiple layers, namely from the hardware features to the application itself [HBD*13,
HBZ* 14, SAB*15]. Sabry et al. [SAC14] propose such a cross-layer reliable system design
that combines the error resiliency at different layers of abstraction. The authors integrate
a fault-tolerance buffer into the on-chip SRAMs. Information on reliability from the
hardware level is propagated to the application level, which contains a checkpointing and
rollback mechanism. The authors optimize buffer size and checkpointing frequency to
minimize the energy overhead with given performance and size constraints.

Considering the combination of hardware and software to increase the fault-tolerance
is certainly a promising approach. However, the hardware of the COTS consumer-grade
processors we consider in this thesis cannot be changed and hence, the discussed solutions
are not applicable.

3.2.2 Software-based Fault-Tolerance Approaches

Software-based fault-tolerance mechanisms for consumer-grade COTS processors do not
share the high unit costs of hardware-based approaches. A good overview of software-
implemented hardware fault-tolerance is given by Goloubeva et al. [GRSRV06]. In the
following, we first introduce arithmetic coding techniques and compiler-based solutions.
Next, we discuss approaches that combine fault-tolerance and real-time scheduling poli-
cies. Finally, software-based methods that leverage the spatial redundancy of many-core
processors are presented.

Arithmetic Coding

Information redundancy in form of coding is a common way to increase the fault-tolerance
of hardware and software [Dub13]. While parity codes and linear codes such as Hamming
and cyclic redundancy check (CRC) codes only protect data, arithmetic codes protect
operations as well [Dub13]. The simplest representative of arithmetic code is the AN
code. AN encoding is the multiplication of the data N with the code A, with N, Ae N*,
hence the name of the coding scheme. Note that the symbol N denotes the number of
replicas under the NMR scheme in this thesis. Therefore, we substitute N with X in the
following but still refer to the arithmetic coding scheme as ANBD coding.

45



3 Related Work

Errors are detected by checking whether the division of an encoded value by A has a
reminder. The multiplication is an invariant with respect to the addition and subtraction
(AX; +AX, = A(X;+X,)), so errors during addition of two encoded values can be detected.
The underlying idea is that a faulty arithmetic operation does not preserve the code with a
high probability, so a faulty operation most likely results in a non-valid code word [ Avi71].
Thus, AN coding protects against modified operands and faulty operation.

However, an error that exchanges the operands or the operator itself leads to a wrong
value but a valid code word, so it remains undetected. For this reason, Forin [For90]
introduced ANB coding by adding a per-variable static signature B. The arithmetic
operations are adapted such that they ensure that the result is again correctly encoded
and has a signature that depends only on the signatures of the input variables. Since these
variables and their signatures are known at compile time, the resulting signature after
the operation is known as well and can be compared at run time. For example, consider
the variable X; that is assigned the static signature B; and the variable X; with the static
signature B;. Each variable is encoded by X" = A- X + B. Hence, if both variables are
added, the resulting signature B; + B; is statically known and reveals if an operand or the
operator was exchanged.

Additionally, errors can result in a lost update of one or both operands. Forin [For90]
proposes to protect against outdated operands by introducing a sequence counter D that
counts variable updates, resulting in ANBD coding. Under ANBD coding, the variable
X is encoded as X' = A- X+ B+ D. The expected value of the sequence counter D after
and operation with ANBD-encoded variables depends on the operation and has to be
computed dynamically.

Forin included ANBD coding in the vital coded processor. The vital coded processor
executes applications that are completely ANBD-coded but requires special hardware
features to store and check signatures.

As Schiffel [Sch11] pointed out, Forin lacks to discuss implementation of operations
other than addition and branch statements. Schiffel and Fetzer [WF07] propose an ANBD-
coded interpreter for binary programs, which encodes the executed program at load time.
The interpreter detects corrupted data and faulty executions of the executed program
without special hardware requirements.

In [SSSF10a], Schiffel et al. replaced the binary interpreter by a compiler that automat-
ically encodes an application either with AN-, ANB, or ANBD-code. Note that only
register variables are encoded, all values loaded or stored in the memory are not encoded.
The same authors compare the runtime overhead with compiler-based approaches, cf. Sec-
tion 3.2.2 on the facing page. The measured throughput of compiler-based approaches is
higher than the throughput of ANBD coding [SSSF10b]. However, the error detection
rate of the latter is higher [SSSF10b].

ANBD coding protects against errors in faulty operations, modified operands, capabili-
ties exchanged operands, exchanged operators, and lost updates [Sch11]. Thus, ANBD
coding is capable of protecting against data and control flow errors [Sch11]. However,
encoding the complete application significantly prolongs the execution time since more
computational effort is required for the encoded operations, which renders the application

46



3.2 Fault-Tolerance Mechanisms for Many-Core Processors

of information redundancy methods difficult under real-time constraints. Additionally,
the hardware redundancy of many-core processors is left unused.

Compiler-based Approaches

Duplicating code and data at the source code level was proposed by Rebaudengo et
al. [RRTV99]. At instruction level, the idea of Error Detection by Duplicated Instruc-
tions (EDDI) was presented by Oh et al. [OSMO02]. The proposed software fault-tolerance
mechanism replicates individual instructions while storing the results in separate registers
of a single CPU. Comparing the results of the registers allows to detect errors. Rice et
al. [RCV*05] build on the work of Oh et al. and present a compiler-based approach named
Swift. Swift employs unused instruction-level resources to decrease the runtime overhead.
Rice et al. [RCA07] extended their work and included Swift-R and Trump. Swift-R adds
recovery to the error detection functionality of Swift by creating two copies of an in-
struction and by employing a TMR scheme. The authors report an execution time of
1.99 normalized to an unprotected execution. To reduce this overhead, Rice et al. present
Trump that employs AN encoding to store the redundant data in two instead of three
registers. Trump has a normalized runtime of 1.36. To further improve the reliability, the
authors propose to statically analyze the source code, in order to find invariants and add
mask instructions that ensure them. The authors state that the additional performance
costs for masking are negligible.

In order to reduce the performance overhead of EDDI, Borodin et al. [BJV07, BJHV09]
propose to apply no or only weak instruction-level fault-tolerance techniques to uncritical
parts of an application and use the time and resource gains to apply stronger fault-tolerance
techniques to the more critical parts.

Shafik et al. [SRP*13] propose a software modification tool that adds a combination
of three software-only fault-detection mechanisms. First, it replaces the original data
types and arithmetic operations with their encoded versions at the source code level.
After compilation, jump instructions are protected by label signatures and check-pointing
routines are added at assembly level. The authors report a performance overhead of 83%.

The discussed compiler-based approaches are designed for single-core processors and
significantly increase the runtime of the application. The increased runtime can hinder
the application of compiler-based approaches in real-time constraint embedded systems,
where the computational power is low and deadlines have to be guaranteed.

Rehman et al. [RSKH11, RKSH14] propose to estimate the effect of hardware faults on
software errors by introducing the instruction vulnerability index (IVI). The IVI considers
spatial and temporal vulnerabilities from the processor architecture, e. g., the pipeline
stages. Based on this value, high-level source code reliability transformations such as
data type optimization and loop unrolling are performed. This decreases the number of
critical instruction executions and can be combined with instruction-level approaches
discussed above. Rehman et al. use an instruction set simulator (ISS) to simulate a Leon-II
processor with ECC protected data and instruction caches. Faults are injected based
on a physical fault model that includes the neutron flux rate. Rehman et al. suggest 10,
50, and 100 faults/10MCycles, which is equivalent to an SER A of 1-107%,5-107%, and
1-107°. The fault injection rate for the different components of the processor (register

47



3 Related Work

file, PC, ALU, etc.) are determined from the component’s chip area. In [RTK"13],
Rehman et al. combine the compiler-based reliability optimization mechanisms with
real-time constraints. They profile the functional (failures) and temporal (missed deadlines)
reliability of multiple versions of functions compiled with different performance and
reliability trade-offs. Based on the measured profiles, scheduling tables are constructed at
compile time. These scheduling tables are used by the OS to dynamically select a suitable
version of a function depending on the behavior of its predecessors. While the approach
of Rehman et al. considers real-time constraints, it is designed for single-core processors.
Therefore, it is orthogonal to our approach of leveraging the spatial redundancy of many-
core processors.

Compiler-based approaches require the software’s source code to be available for recom-
pilation. This is often impossible as many vendors distribute software as binaries [D6b14].
The fault-tolerance mechanism presented in this thesis does not share this requirement and
can protect binary software entities, as long as the task’s interfaces are specified accordingly.

Scheduling Approaches

Most discussed compiler-based fault-tolerance mechanisms extend the execution time of
the software and do not consider the effects of this behavior on the real-time constraints of
the system. In the following, we discuss scheduling policies that combine fault-tolerance
and real-time requirements. An excellent overview of such scheduling policies is given by
Krishna [Kri14].

Burns et al. [BDP96] present a feasibility analysis of fault-tolerant real-time task sets.
The authors assume that a fault can only affect one task at a time and is detected at the end
of that task’s execution. If a fault is detected, the task is re-executed.

Tchamgoue et al. [TSH*15] present a compositional real-time scheduling framework
which uses time redundancy to tolerate faults. Each component contains a fault manager
which detects the failure of a task and starts the task’s associated backup strategy, 1. e.,
a backup task. The authors analyzed the schedulability considering a rate monotonic
scheduling algorithm.

Izosimov et al. [IPEPO8] present a hybrid real-time fault-tolerant scheduling approach
for single core processors. If a fault is detected, the task is re-executed. Offline schedules
guarantee that the deadlines of hard real-time tasks are always met, while the execution
of soft real-time tasks might be canceled under the presence of faults. The approach is
extended for distributed embedded systems which enable spatial redundancy by Pop et
al. [PIEP09].

Saraswat et al. [SPMQ9] propose a fault-tolerance mechanism for mixed-critical task
sets. Tasks can have either hard or soft real-time constraints. Soft real-time tasks are
scheduled by a constant bandwidth server (CBS). Task dependability requirements are
either none, only permanent, or transient and permanent faults. Transient faults are
tolerated using checkpointing with roll-back recovery, which is accounted for in each
task’s WCET. Permanent faults are handled by restarting affected tasks on other processors.
The authors present a greedy online heuristic to ensure all deadlines are met and to select
the destination processor in case of permanent faults.

48



3.2 Fault-Tolerance Mechanisms for Many-Core Processors

Hagque et al. [HAZ13] optimize the energy consumptions for reliable real-time appli-
cations on multi-core processors with dynamic voltage scaling (DVS). A lower voltage
saves energy, but also increases the SER. By replicating tasks on several cores, the authors
propose a heuristic that achieves a certain reliability target with minimum energy. The
authors assume that each task copy conducts an acceptance or sanity check, and as long as
one task finishes successfully, the reliability target is achieved.

Axer et al. [ASE11] present a reliability analysis for mixed-critical real-time task sets.
The execution of each periodic task instance is separated by checkpoints and replicated
on multiple cores depending the task’s criticality. Faults are detected by comparing the
hardware-generated execution fingerprints generated of the task replicas. The presented
analysis considers temporal failures that stem from re-execution starting from the last
checkpoint in case of an error as well as logical failures.

Mottaghi and Zarandi [MZ14] propose a EDF-based scheduling policy that tolerates
single and multiple transient faults. Depending on the core utilization and a task’s de-
fined criticality threshold, the scheduling policy marks runnable tasks either critical or
non-critical. The criticality is then used to assign a fault-tolerance method, namely task
replication on two cores or checkpointing with roll-back recovery. The authors assume
fault detection is performed by the task itself using sanity checks.

Girault et al. [GKSSO03] present an algorithm for automatically obtaining distributed
and fault-tolerant static schedules. The algorithm is based on a list scheduling heuristic
with an active task replication strategy and includes the scheduling of inter-task messages.
The fault-tolerance is specified as the maximum number of processor failures. The authors
assume fail-silent behavior of the processors, which eases fault detection.

Eles et al. [EIPP08] present a system synthesis approach for fault-tolerant hard real-time
systems. They focus on the handling of transient faults using both checkpointing with
rollback recovery and active replication. The system synthesis algorithm decides on the
assignment of fault-tolerance policies to processes, the optimal placement of checkpoints
and the mapping of processes to processors, while satisfying the timing constraints of the
application. The authors assume the software architecture, including the real-time kernel,
error detection and fault-tolerance mechanisms are themselves fault-tolerant.

Bagheri and Jervan [B]14] extend the system-level design frameworks for NoC-based
multi-core processors of Tagel et al. [TEH]J11] to support mixed-critical task sets. The
framework considers only a subset of tasks to have predictability and dependability re-
quirements. Fault tolerance is achieved by check-pointing, fault detection, rollback, and re-
execution. The schedule is generated with adequate recovery slacks to enable re-execution
without deadline misses. The authors do not provide any details about the fault-detection
mechanism.

The presented scheduling policies mainly rely on re-execution to increase the fault-
tolerance of the system. An orthogonal approach is to increase the reliability of a multi-
core system by adjusting the task mapping [SSKH13]. While static task mappings, which
try to balance the temperature between the cores, can increase the lifetime of the system,
they cannot overcome the faults incurred in the system [SSKH13]. Therefore, researchers
have investigated global scheduling policies that adapt the task mapping at runtime based
on precomputed mappings [LKP*10, DKV13] or completely dynamically [AFALOQ7,

49



3 Related Work

CM11, RDMDY15]. These task remapping strategies are difficult to apply under real-time
constraints, since the migration effort has to be considered carefully.

All discussed fault-tolerant real-time scheduling and mapping policies assume a reliable
fault detection mechanism. However, if implemented in software, the fault detection
mechanism is subject to errors as well. Furthermore, most discussed approaches require a
fault-tolerant OS kernel that implements the scheduling policy.

Fault-tolerant OS. David and Campbell [DCO07] combine techniques such as exception
handling, code reloading, component isolation and restarts, service restarts, watchdog
timers, transactional components, and process level checkpointing and restore to build
a self-healing OS named Choices. The authors tested the recovery rate of the named
techniques on a simulated hardware platform where faults were injected. However, Choices
does not support real-time applications. Additionally, most named techniques require
additional runtime and are therefore difficult to apply under real-time constraints.

Borchert et al. [BSS13] present a software-based memory error protection approach that
is used to harden OSs. The authors use aspect-oriented programming to add replication and
encoding schemes to OS data structures. While single bit flip fault injections experiments
show that the number of failures can be reduced significantly, the approach is only possible
for object-orient OSs such as eCos.

Hoffmann et al. [HBD"14] evaluated the fault-tolerance of statically and dynamically
configured OSs. In contrast to dynamically configured OSs such as eCos or FreeR-
TOS, where tasks can be added and removed at runtime, the task set and its proper-
ties is defined at compile time in statically configured OSs such as OSEK/OS and AU-
TOSAR/OS [HBD*14]. The authors show that statically configured OSs are inherently
more reliable, since less instructions are executed and the static configuration data can be
stored in a read-only memory. Hardening the dynamic OS with software-based methods
similar to the ones proposed by Borchert et al. and with hardware-based measures such
as an MPU and watchdog allows to achieve the same robustness level as the static OS.
However, the overhead in terms of memory consumption and runtime are significant.

Task-Replication Approaches

Most discussed arithmetic coding concepts, compiler extensions, scheduling policies, and
fault-tolerance OS designs leverage information and temporal redundancy. Adapting
hardware fault-tolerance concepts such as NMR has been proposed at large scale for
distributed systems [KDK*89, KWQ*12] and ECU networks [ AFK05], at machine scale
for SMP machines with multiple processors [SMR*07], and for single-core processors with
simultaneous multi-threading! [MKRO02, GSVP03]. With the advent of multi- and many-
core processors, leveraging the inherent spatial redundancy to implement fault-tolerance
mechanism on a single chip became attractive.

Derin et al. [DCT*13] present the MADNESS project, which includes an adaptive
run-time application mapping approach to allow graceful degradation in the presence of
faults. Applications have to follow the polyhedral process network (PPN) MOC. Faults

'Also known as hyper-threading

50



3.2 Fault-Tolerance Mechanisms for Many-Core Processors

are detected by self-testing routines in hardware. For critical applications, an NMR task
replication scheme is proposed as well.

Bolchini et al. [BMS12] present a dynamic scheduling solution to achieve fault tolerance
in many-core architectures. The TMR-based fault-tolerance mechanism replicates a task
on three cores within a cluster of STMicroelectronics’s P2012 many-core processor. Each
cluster has a cluster controller, which is a core that is particularly resistant to failures.
A comparison unit is instantiated on the cluster controller to analyze the results of the
tasks on demand. The authors consider transient and permanent faults and dynamically
schedule task replicas on healthy cores. In [BCM13], the authors add duplication with
comparison (DWC) and DWC plus re-execution as possible reliability mechanisms. A
software layer above the operating system dynamically selects an appropriate reliability
mechanism based on run-time metrics in order to achieve the best possible balance between
reliability and performance. However, the reliability depends on the specific hardware
architecture of the P2012 with the hardened cluster controller for the comparison unit.
Additionally, the fault model aims at handling a maximum number of concurrent faults
instead of considering randomly distributed faults.

Dobel et al. [DHE12] present an OS service that provides software-implemented re-
dundant multi-threading to unmodified binary-only applications called Romain. The OS
service is part of the L4/Fiasco.OC microkernel OS. The framework allows to detect and
recover from single-event upsets in hardware. The Romain service itself is implemented
within a reliable computing base (RCB). The RCB is an analogy to the trusted computing
base (TCB) in security research. The RCB is defined as “a subset of software and hardware
components that ensures the operation of software-based fault-tolerance methods and that
we distinguish from a much larger amount of components that can be affected by faults
without affecting the program’s desired results” [ED12]. In [DH12], Ddbel and Hirtig
propose to execute the RCB on radiation-hardened cores. Débel et al. [DMH14] also
explicitly consider the effect of replica and RCB placement for heterogeneous many-core
processors. Dobel and Hirtig [DH13] investigate the runtime overhead of Romain and
suggest to protect the RCB using compiler-based mechanisms, namely SWIFT or ANBD
encoding. The insightful work of Débel [D6b14] shows that the fault-tolerance of appli-
cations can be increased by software-implemented OS-level mechanisms that are based
on process replication. In his experiments, Dobel [D5b14] employs the fault injection
framework FAIL* [SHD"15] and measures fault coverage of single bit flips.

Holler et al. [HRIK15] focus on the complete spectrum of dependability, which includes
not only reliability and availability but also security. For this reason, the authors propose
an approach based on software replication that compiles the replicas diversely [HKR*15].

All approaches discussed so far do not consider real-time requirements of the system.
The following two works include this as well.

Huang et al. [HBR*11] present an analysis and optimization method for fault-tolerant
task scheduling on multi-core processors considering real-time constraints. Fault-tolerance
is achieved using a combination of replication and re-execution. The system-level reliability
is computed by a binary tree analysis considering permanent and transient faults. A multi-
objective evolutionary algorithm optimizes the fault-tolerance policy assignment, the
mapping of tasks to processing elements, and the static time-triggered schedule of tasks
as well as messages. Huang [Hual4] uses the evolutionary algorithm as a design space

51



3 Related Work

exploration engine for fault-tolerant embedded system design on MPSoCs. The software
application is represented as a Kahn process network (KPN). In order to consider the fault
coverage of the comparison unit in the reliability analysis as well, Huang refers to the
results of Schiffel et al. [SSSF10b], which state that the fault coverage grows exponentially
with a linearly growing runtime overhead. Huang evaluates the relationship between the
number of replicas and the voter coverage with the number of detected unrecoverable
faults and the SDCs. Note that the fault coverage results of Schitfel et al. only specifies
the number of replica failures that are not detected by the voter or the ANBD code,
respectively. However, the fault coverage does not include the reliability of the voter, i. e.,
faults inside the voter with lead to an SDC even though all replica results are correct. In
his experiments, Huang assumes an abstract task-level fault rate. Additionally, Huang
assumes the OS including the scheduler is fault-free.

Similar to our goal, Yoneda et al. [YISK15] aim to increase the reliability of an automo-
tive ECU that includes a many-core processor. The authors propose the Duplication with
Temporary TMR and Reconfiguration (DTTR) scheme: two task replicas are executed on
two separate cores and their results are compared. In case of a mismatch, the execution is
repeated together with a previously inactive third replica on another core to detect the
failed replica. It is assumed that if the fault was transient, all three replicas will deliver the
same result again. Otherwise, the faulty core is disabled and the system is reconfigured by
activating spare replicas. Faults such as bit flips that require a repair mechanism are not
considered. The authors assume dependable inter-core communication and that two or
more cores cannot fail within two cycle times. A cycle time is similar to the hyperperiod.
Yoneda et al. propose to implement the voter either in hardware, or use two voters that en-
code the final result. In the latter case, the actuator uses the first correctly encoded result it
receives. However, the voters receive unencoded values from the replicas. Thus, the voting
procedure might fail and the actuator uses a correctly encoded but wrong result. Yoneda et
al. model the DTTR scheme as a Markov chain and compare the resulting reliability after a
mission time with a dual lock-step configuration and a TMR plus spare configuration. The
constant fault rate of the voter is assumed to be significantly smaller than the fault rate of
the replicas. The authors evaluate the reliability for different cycle times. A shorter cycle
time limits the reexecution possibilities and constrains the reconfiguration possibilities.
Hence, a shorter cycle time results in a lower probability. In contrast, we assume that the
real-time constraints are derived from the system’s properties and its environment and do
not allow task reexecution.

Ulbrich et al. [UHK* 12, Ulb14] present the Combined Redundancy (CoRed) architec-
ture, a software-based fault-tolerance approach for mixed-criticality control applications.
CoRed protects an application by TMR and employs ANBD coding to increase the
fault-tolerance of the software voter. The authors provide extensive experiments includ-
ing a quadrocopter to analyze their approach. Similar to Débel, Ulbrich et al. employ
FAIL* [SHD*15] to inject single bit flips in the CPU’s registers with the help of its hard-
ware debugger. Hoffmann et al. [HUD" 14a, HUD" 14b ] present insightful details about
the implementation of the CoRed architecture and show that complete fault coverage
for single and dual bit flips can be achieved. However, the complete fault coverage holds
only within their protection domain, which ends by forwarding an encoded tallied result
and a dynamic signature. All units that use this result as an input, e. g., another software

52



3.3 Summary

task or an actuator, have to decode the result and compare the dynamic signature with
the static signature stored locally. Especially if the result is used by a hardware actuator,
the implementation of this decode and comparison routine results in additional costs.
Furthermore, errors that affect the decode and comparison routine are not considered by
CoRed. The CoRed architecture also does not consider errors at OS level, e. g., within the
scheduler. While the ANBD coding approach is able to detect control-flow errors within
the voter, it is unable to do so in case the OS kernel failed.

3.3 Summary

In this chapter, we have presented and discussed the related work of this thesis.

There are several approaches to provide dynamic GS communication in NoCs by
adapting the hardware. However, most COTS many-core processors do not offer such
specialized NoCs. Mathematical methods such as network calculus or recursive calculus
allow to model best-effort NoCs of such processors. The mathematical model can be
analyzed to determine the WCTLs of a static traffic pattern. However, as soon as the traffic
pattern changes dynamically, e. g., due to reactions to a soft error, the analysis has to be
repeated and the result has to be checked according to the real-time constraints. Since this
prolongs the reaction time to soft error and might even prevent a repair process completely
if the real-time constraints are not met, a software-based solution to allow dynamic GS
communication in best-effort NoCs is proposed in this thesis.

The literature contains a variety of hardware-based fault-tolerance mechanisms such
as NMR, lock-stepping, and fingerprinting. Similar to hardware-software co-design
approaches, these fault-tolerance mechanisms are not applicable for COTS consumer-
grade many-core processors due to their specialized hardware requirements. Software-
implemented hardware fault-tolerance approaches do not share these specialized hardware
requirements. Information redundancy methods such as ANBD coding and compiler-
based approaches such as EDDI and Swift increase the execution time of an application
and do not leverage the spatial redundancy of many-core processors. Fault-tolerant real-
time scheduling policies combine reliability and real-time requirements. However, most
scheduling policies assume a reliable fault detection mechanism and scheduler implemen-
tation, 1. e., a fault-tolerant OS. Some researchers have investigated the robustness and
fault-tolerance of OSs, but assume only single bit flip fault models. The inherent spatial
redundancy of many-core processors is exploited by several fault-tolerance mechanisms.
However, most of these approaches do not consider real-time requirements or assume a
fault-tolerant OS. A comparison of software-implemented hardware fault-tolerance mech-
anisms that leverage the spatial redundancy with respect to the research questions of this
thesis is presented in Table 3.1 on the next page.

53



3 Related Work

Table 3.1: Comparison of software-implemented hardware fault-tolerance mech-
anisms that leverage spatial redundancy of many-core processors with
respect to the research questions of this thesis.

*
He)

— He) —

I B

o I % =

CQ" Q — o — (\F

o o S = = ﬂ;;

f g £ EE EZ

25 gL L ¢z

- ° =S = =
= 58 S & I g 8

- = b3 5 ]

: 2 3 5 2 § 8 ¢
T L £ T g s o -3
o o o QK8 B S = =
Objective A & A T T > P H
Considers real-time constraints e (2 A
Considers faults in the voter — V)Y vy - V)Y - v v
Considers faults affecting the OS - - - = = = =/
Uses physically accurate fault model’ — — — — (V) — — V
Includes a repair mechanism v v v - /S = =/
Supports mixed-critical task sets - - - - = vy =V
Is adaptable - - - - v v =/
Provides a fault-tolerance analysis® - - - - v v =/

I'The real-time constraints influence the reliability.

?In terms of mapping the voter to the cluster controller.

7 In terms of encapsulating the voter in the reliable computing base (RCB).

#Only considers voter coverage, does not provide an implementation.

> Assumes exponential fault distribution with multiple parallel bit flips.

¢ While the fault rate is exponentially distributed, the experiments are performed at high level and
assume the task’s failure rate to be known.

7 Tasks with different reliability requirements are scheduled on different cores.

# A model of mechanism that allows to estimate resulting fault-tolerance level.

54



Dynamic Guaranteed Service
Communication

COTS consumer-grade many-core processors do not provide hardware support for guaran-
teed service (GS) communication on the NoC. However, in order to use such many-core
processors in systems with real-time constraints, a guaranteed bandwidth and bounded
end-to-end latency for all packets on the NoC is essential. Without GS support by the
NoC, it cannot be guaranteed that communicating tasks mapped to different cores meet
all deadlines and receive all messages in time.

In this chapter, we propose a method to achieve GS communication without special
hardware support such as virtual channels or a TDM scheme. We first introduce the
communication model and review how packets are generated. Then, we prove that our
central idea, a limited packet injection rate for all sources, indeed limits congestion in the
NoC. Finally, we derive the worst-case transfer latency (WCTL) of any packet, discuss our
approach, and combine it the with DMPS of the OS.

The work presented in this chapter is published in [MFRC15].

4.1 Communication Model

In order to write data to or read data from other components via the NoC, any function
internally uses one or multiple store word and load word instructions with an address
that belongs to the component located on another core or even outside the many-core
processor. When executed by the CPU, the instruction is forwarded to the NI, which

. H . .
transcodes the request into a request packet p; € & and three flits, respectively, that are
injected in the request NoC. The request packet is routed through the request network
and processed by the destination component. As a result, a corresponding response packet

9. € P is injected into the response NoC and finally returned to the requesting CPU.

The set of all request packets 7 represents the traffic pattern, since it includes all read
and write requests that are injected into the request NoC by all cores. Note that each
request packet requires a corresponding response packet to be injected into the response
NoC due to the request-response protocol of the hardware components.

55



4 Dynamic Guaranteed Service Communication

4.2 Limited Packet Injection Rate Approach

. . . . . —_—> . .
We are interested to bound the time between injecting the request packet p.” and receiving

— . .
the response packet p,. We denote this time as transfer latency L,. The transfer latency
L. is composed of three parts:

. . e —
1. The time required for the request packet p. to traverse the request NoC from source
— .. —
core o( p;) to destination core 8(p; ).

. . . e o .
2. The time the destination needs to process the request packet p. and to inject the
. b
corresponding response packet p. .

. . < .
3. The time required for the response packet p, to traverse back in the response NoC
. . —_ —_—
from the destination core 8( p;) to the source core o(p.).

In other words,
Li:Lp(pi)+Lé‘+Lp(pi)’ (41)

where L (p;) is the latency of the packet p; in the request or the response NoC and Ly is

. . . el P
the time the destination component needs to process the request packet p. and inject the
— . . .
response packet p.. An overview of the various latencies that lead to the traversal latency
L. of the packet p. is presented Figure 4.1 on the facing page.
Our goal is to determine an upper bound of all transfer latencies in an arbitrary traffic

pattern. This WCTL L is specified as the maximum transfer latency L = max, . - L;.
pi e i

According to Equation (4.1), the WCTL L is only achieved if the latency of the destina-
tion L as well as the latency of the request packet L, (7, ) and the latency of the response
packet L p((p_l») are all maximal. The request and response NoCs are identical except for the
link width and flit size, respectively. However, both networks offer the same bandwidth
= )(E = 3flit.
Therefore, unless explicitly stated, we do not differentiate between the request and the

response NoC in the following and denote a packet in any network as p, € . In any
network the maximal latency of a packet is defined as the worst-case packet latency (WCPL)

Lp = MaXy, cx» Lp(pi)'
Hence, the WCTL 1s

fi . N
b= 1?:& and all packets have the same size in both networks, so ‘ P;

L=2L,+L,, (4.2)

where I, s 1s the upper bound of Ly, the latency of the destination core. Note that Equa-
tion (4.2) represents an upper bound since the request packet and the corresponding
response packets do not both experience the WCPL in each NoC in general.

Our goal is to guarantee the WCTL for a dynamically changing traffic pattern, 1. e., we
want to allow request packets to be removed from, added to, or modified in the set of

ﬁ . . . . . .
request packets & without any restriction of the source and destination. However, this
can change the transfer latency L, of existing packets as a result of collisions in the shared

medium NoC. In the following, we show that an upper bound of the WCTL £ in any

56



4.2 Limited Packet Injection Rate Approach

Request NoC Response NoC

Figure 4.1: A schematic overview of the latencies in the request and response NoCs.

traffic pattern can be found if the injection rate F of all sources C, , € 6 is limited by a

certain bound. This maximum injection rate F is defined as F = 7 Thus, the minimum

. . . . . A
time each source has to wait before injecting the next request packet is at least L. Note

that due to the definition of the WCTL £, any source will receive a response packet before
injecting the next request packet. Hence, our approach is applicable to both synchronous
and asynchronous NoCs.

For the sake of brevity, we define the system . that consists of two 2D-mesh worm-
hole switching NoCs, each with the dimension order (XY) routing policy, y X x cores,
bidirectional (full-duplex) links, FIFO buffers, and a router-level flow control mechanism.
Furthermore, each source in the system .% obeys the maximum packet injection rate F.

In the following, we use some properties of the system % to determine the latency of a
packet without any collisions. By adding the worst-case latency introduced by collisions

with other packets, we derive the WCPL L,

4.2.1 Traversal Latency

We start by analyzing the traversal latency Ly (p,), i. e., the latency of the packet p; in one
otherwise empty NoC of the system .. The traversal latency Ly(p;) is the time required
for the packet p, to traverse the request or the response NoC from o(p;) to 8(p;) without
any collisions.

Let L, denote the latency of a router, 1. e., number of clock cycles required by the router
to process one flit, and & denote the bandwidth of any link / € &. The traversal latency
is derived by adding up the latency of each router L, and each link % passed by the first
flit of packet p; on its route through the network. Since the number of hops 4(p;) is
defined as the number of routers passed by the packet p;, one more link latency % has
to be added to reach the NI of the destination core, as can be seen in Figure 4.1. Under
the wormhole switching mechanism, the remaining flit cannot be delayed by any router
and follow the first flit immediately, so M has to be added until the complete packet
traversed the network, where | p,| is the size of the packet p; in flits. Thus, the complete
traversal latency is

1flic,  |pi
;)T

Lo(p)=h(p,)(L,+ (4.3)

57



4 Dynamic Guaranteed Service Communication

Consequently, the worst-case traversal latency LA¢ of any packet p, € # in one otherwise
empty NoC of the system . is

tlie, |p;

L¢ :Vrgsé.};»[,¢(pi):(x -+—:)/—1)(Lr —|—7>+ b

“4.4)

Due to the dimension-order (XY) routing protocol, the maximum number of routers to
be traversed in each 2D-mesh NoC with y x x routers is y + x — 1, namely from one corner

to the diagonally opposite corner. Note that the worst-case traversal latency LA¢ holds for
the request and for the response NoC.

4.2.2 Blockage Latency

As soon as there is more than one packet present in one NoC, the latency of each packet
potentially increases due to collisions and blockages by other packets. In the following,
we use some properties of the system . to derive the maximum blockage latency of any
packet in one NoC of the system ..

Lemma 4.1. Two packets of an arbitrary traffic pattern collide at most once in one NoC of
the system & .

Proof. Suppose two packets p_ and p, collide once, i.e., they arrive in a router r and
request the same link /_ in the same cycle. The router r resolves this conflict by blocking
one packet and forwarding the other one. The dimension order (XY) routing policy of
the NoC implies that the remaining route of packet p, and the remaining route of packet
P, in the NoC each have at most two parts A and B. Part A of both remaining routes
is identical. It contains at least the link /.. In part A, no further collisions of packet p,
and packet p, are possible due to the FIFO buffers and the order-preserving property of
the dimension order (XY) routing policy. Part B of the remaining route of each packet
exists if §(p,) # 8(p,). The dimension order (XY) routing policy ensures that part B of
both routes is different, thus no further collisions of packet p_ and packet p, are possible.
Without loss of generality, since the remaining routes of the packets p, and p, have at
most two parts A and B which cannot lead to further collisions, two packets collide at
most once in any router of one NoC. O

Lemma 4.2. For an arbitrary traffic pattern in the system &, a packet collides at most once
with other packets injected by any other source in one NoC.

Proof. Let the packet p, be injected at ¢,. Let p, € 2, be a packet in a set of packets 2,
injected by another source at time ¢;. Since all sources obey the maximum packet injection
rate, the injection time of any other packet p, € &, from the same source o(p,) = o (p,)
is

t, >t + nl,nel. (4.5)

Suppose the packet p, collides with the packet p, at .. According to the definition
of the WCPL L, the packet p, and any packet p, € &, is present in one NoC of the

58



4.2 Limited Packet Injection Rate Approach

system . for at most the time L »- Therefore, the packet p, can only collide with the
packet p, if

t,<te-<t, +EP and (4.6)
t, <te<t +L> (4.7)

hold.
According to Lemma 4.1, p_ collides at most once with p. in one NoC. However, the
packet p, could collide with another packet p, € &, from the same source as packet

p;. From Equation (4.6) and Equation (4.7) follows that ¢, —L <t <t+ A ,- From
Equation (4.5) follows that any previous packets p; € &, with j <7 is present in the NoC

at most until t; —L , < t,. Likewise, any subsequent packet p, € &, with & > i is not

injected into the NoC before ¢, + L> t,+ A »- Hence, all previous and subsequent packets
of p; cannot collide with the packet p_ in the same NoC. Therefore, packet p_ collides at
most once with any packet p, € &, injected by another source in one NoC. O

Figure 4.2 on the following page visualizes the proof of Lemma 4.2 on page 58. All
depicted packets experience their worst-case latencies. By shifting the time at which packet
p, 1s injected by core C ; into the request network back and forth, it can be seen that
packet p_ collides only with one packet from the other core C, ,1 in the request network.

Due to the definition of the packet injection rate F, the number of packets present in
the NoCs of the system . is limited. In the following, we prove that this also limits the
maximum number of times any packet can collide with other packets and potentially be

blocked.

Theorem 4.1. For an arbitrary traffic pattern in the system &, any packet p, € P collides
at most xy — 2 times with other packets in one NoC.

Proof. In one NoC of the system ., there exist xy sources. According to Lemma 4.2,
any packet p; € Z collides at most once with any packet from another source in one
NoC of the system .¥. Due to the dimension order (XY) routing policy and bidirectional
links, the destination core 8(p,) of the packet p; cannot inject packets that collide with
the packet p., since all common links are traversed in the opposite direction if there are
any. Furthermore, the packet p; cannot collide with any other packet p, € & injected by
the same source o(p;) = o (p,,) if all sources obey the packet injection rate F. Thus, any
packet p, € 2 collides at most xy —2 times with other packets in one NoC. O

The latency added by a collision L (p;) of the packet p; with another packet does not
only depend on the traffic pattern, but also on the internal state of the router. Since an
exact analysis of the collision latency has to include details like the state of the router-
internal round-robin arbitration logic, which are not statically known for a dynamic traffic
pattern, we consider the worst-case behavior and assume a packet is always blocked in

case of a collision. The worst-case collision latency LAC is the upper bound of the latency
experienced by any packet when colliding with another packet, namely the time required
by a router to arbitrate a conflict and process all three flits of the other packet.

59



4 Dynamic Guaranteed Service Communication

> 1

> L

1

Ly, Ly L, & ¢ t+L, t+1 L

Figure 4.2: Visualization of the proof of Lemma 4.2. The core C, ; sends one packet p,.
The core C, ; sends three consecutive packets with the maximum injection
rate. The time during which a request packet is present in the request network
is shown as a dark colored area. Similarly, the time during which the response
packet traverses the response network is depicted as a light colored area. All
packets experience the worst-case latencies.

Corollary 4.1. For an arbitrary traffic pattern in the system &, the worst-case blocking
latency Ly of any packet p, € P in one NoC is at most

Ly=(xy—2)L. (4.8)
Proof. Based on Theorem 4.1, any p, € 2 collides at most xy —2 times with other packets
in one NoC. Hence, the worst-case blocking latency L, of any p, € & is the number

. . . . . . . A .
of collisions of the packet multiplied with the worst-case collision latency L, i.e., the
maximum amount of time it takes a router to arbitrate the conflict and process the winning
packet. O

The WCPL I » in the system # is the sum of the worst-case traversal latency LA¢ and

the worst-case blockage latency L » of any packet, so
L,=Ly+L, 4.9)

For a given set of parameters of the system ., Equation (4.2) calculates the WCTL L
of any transfer in the system . The WCTL L defines the maximum packet injection
rate F = % By definition, the injection rate limits the number of packets present in the

system . at any instant of time, which again limits the number of collisions and bounds
the WCTL L.

4.2.3 Dynamic Traffic Pattern

In the following, we prove that the definition of the packet injection rate F allows to

—
dynamically modify the traffic pattern, 1. e., that the set of request packets & can be
modified at runtime without violating the guaranteed WCTL L.

Theorem 4.2. In the system &, the source and destination of any unprocessed request packet
—_— A
p; € P can be changed without increasing the WCTL L. Furthermore, in the system &,

60



4.3 Discussion

H . .
new request packets can be added to the traffic pattern &P and existing request packets can be
% . . . A
removed from the traffic pattern & without increasing the WCTL L.

Proof. The WCTL [ calculated in Equation (4.2) is upper bounded if all parts of Equa-
tion (4.2) are upper bounded. The latency of the destination Ly is upper bounded by

definition. The WCPL £ » 1s defined by Equation (4.9). According to Corollary 4.1, any

packet p, € 2 is blocked for at most L  time units in the system . The worst-case
traversal latency LA¢ of any packet p;, € Z? in one otherwise empty NoCs of the system .¥

A
is upper bounded, since the maximum number of hops in each NoC is fix. Thus, L, and
A . . . . . .
L cannot increase in the system ., independent of the modifications in the traffic pattern

and the set of request packets P, respectively. O

4.3 Discussion

The presented approach is designed for systems with separate NoCs for request and
response packets. Separate NoCs are commonly used to prevent message-level dead-
locks [HGRO7]. However, in case every request packet is completely received by the
destination before the response packet is created, a message-level deadlock cannot occur
and it is possible to transfer packets of both types in one NoC. In this case, the presented
limited packet injection rate approach can still be applied, since the WCTL L already
considers each packet being blocked by one request and one response packet from every
other source in the worst case.

The limited packet injection rate approach is inverse to the comprehensive analysis
methods mentioned in Section 3.1.2 on page 42. Instead of taking a fixed traffic pattern as
given, we shape the traffic pattern in such way that the latency is inherently bounded. In
contrast to methods based on TDM, our solution is more flexible since it does not restrict
injections to specific time slots but merely bounds the injection rate.

The real-time many-core OS enforces that all traffic in the NoCs is created by OS
functions: The DMPS that implements the IPC between cores, the drivers that read sensor
values and write actuator signals, and the initialization and repair routines, which copy
all necessary instructions and data from the external memory to the core-local memory.
Since they are part of the OS, the packet injection rate of these functions can be controlled
and adjusted.

For example, consider the DMPS that has to guarantee that each message m; € 4

is delivered within its WCCT C .. The presented limited packet injection rate approach

guarantees the WCTL [ for every packet. The first two flits of each packet encode the
destination address and the request type, respectively. Thus, only the last flit contains the
actual data to be transferred. Assume the size of the message |72, ] is given in bytes and the

effective flit size to be 32 bits in the request and the response network. When C; < |72—"|L

A
holds, the WCCT C,; of the message m; is guaranteed and the real-time constraints are
met.

61



4 Dynamic Guaranteed Service Communication

According to our fault hypothesis presented Section 2.2.5 on page 28, the DMPS is sub-
ject to soft errors, too. However, a failed DMPS potentially violates the limited injection
rate and hence affects the guaranteed latency of independent inter-core communication.
For this reason, we follow our approach for the ICR mechanism and the MPU configura-
tion presented in Section 2.3.3 on page 38: The DMPS is periodically checked by the OS,
e.g., by computing a checksum of the respective code section or comparing the section
with the correct version stored in the reliable external memory. In case a failure in the
DMPS is detected, the OS kernel prevents further packet injections by resetting the local
core.

4.4 Summary

In this chapter, we have presented a software solution that allows GS communication on
NoCs that support only best-effort communication. Our central idea is to limit the packet
injection rate of all cores. The injection rate is the inverse of the time between sending
two consecutive packets. An upper bound of the packet injection rate can be implemented
in software and enforced by the OS without additional hardware support. The proposed
method does not depend on a static and a priori known communication. As long as no
source exceeds the maximum packet injection rate, our solution supports a dynamic GS
communication that changes at runtime. This is an important requirement for our system,
since faults occur at arbitrary points in time and the ensuing repair process requires GS
communication between the cores and the external memory. In Section 7.2 on page 114,
we present an experimental evaluation of our approach for different traffic patterns.

62



Software Fault-Tolerance Mechanism

The main motivation of this thesis is to leverage the computational power of many-
core processors in safety-critical systems. In order to comply with the mandatory safety
standards and to achieve the respective reliability and availability targets, fault-tolerance
mechanisms have to be employed. However, the hardware of low-cost COTS consumer-
grade processors is not specifically designed to provide a high level of fault-tolerance and
cannot be modified. Therefore, a software-based mechanism has to be found.

In this chapter, we present our software-based hardware fault-tolerance mechanism.
Our mechanism is based on the well-known NMR scheme, can be adapted for each task
separately, and is designed to comply with the system’s real-time constraints. First, we
compare different software-implemented hardware fault-tolerance approaches and justify
the choice of an NMR-based mechanism. Next, we focus on the voter, the SPOF in
any NMR-based mechanism. In order to improve the voter’s reliability, we propose an
approach with two fail-silent voters that check each other. Afterwards, we introduce
our repair procedure that restores failed task replicas or voters and thus additionally
improves the system’s reliability and availability. Finally, we explain how the proposed
fault-tolerance mechanism is integrated with the real-time many-core OS and provide a
comprehensive example of the mechanism’s functionality and real-time capability.

The work presented in this chapter is published in [MAL*15, MAL*16].

5.1 NMR Approach

In Section 3.2, we introduced several concepts to increase the fault-tolerance of many-core
processors. Amongst the fault-tolerance mechanisms that do not depend on hardware
modifications and thus can be applied on COTS processors, there are

e arithmetic coding,

e compiler-based approaches,

e scheduling policies,

e and task-replication methods.

Arithmetic coding such as ABND coding and compiler-based approaches such as EDDI
and Swift increase the execution time of the software and the tasks, respectively. An
extended WCET of a subset of tasks can result in a real-time system to miss its deadlines.
Furthermore, both methods do not utilize the spatial redundancy of many-core processors.

63



5 Software Fault-Tolerance Mechanism

Fault-tolerant scheduling policies combine real-time and reliability requirements. These
policies often reserve time slots for reexecuting a task in case its failure was detected. For
multi-core processors, researchers have proposed global scheduling policies that adapt the
task mapping in case of a task failure. However, all policies discussed in Section 3.2.2 require
a reliable fault detection mechanism as well as a fault-tolerant scheduler and dispatcher
implementation. On a homogeneous many-core processor where all cores exhibit the
same SER, such reliable software components require additional protection.

Task-replication methods like NMR are inherently parallel and therefore well suited for
many-core processors. As explained in Section 2.1.2, an FCU failure is not only detected
but can also be masked if the redundancy level is larger than two, so N > 3. Hence,
no reexecution is required, which eases the application of the NMR mechanism under
real-time constraints.

Furthermore, the NMR scheme is adaptable: with a reliable voter, a higher redundancy
level N results in a higher system reliability for realistic SERs [KK10]. Thus, tasks with
different safety criticalities and target reliabilities, respectively, can all be handled by the
same NMR mechanism if a different redundancy level N for each task is chosen.

Consequently, we select NMR as the basis of our software fault-tolerance mechanism.
Each safety-critical task 7 is replicated N times. Each task replica Tl.] with j =1,2,...,N;
is mapped to a mutually different core. All task replicas are executed in parallel and send
their results to two common voter tasks V! and V2, which are executed on separate cores,
as shown in Figure 5.1. Note that task replicas or voters of different tasks can be mapped
to the same core.

Majority Voting. Inan NMR mechanism, the voter compares the results of all replicas
in order to determine the correct result and to identify all failed task replicas. Several
voting algorithms have been proposed in literature. The most common generic voting
strategies are [LBBO4]:

unanimity voting: all results have to be equal (M, = N;)

majority voting: at least M, = {%] task replicas deliver the correct result
plurality voting: relaxed form of majority voter, implements M;-out-of-N; voting, e. g.,

2-out-of-5 or 3-out-of-7
median voting: selects the mid-value of replica results
(weighted) average voting: calculates the (weighted) average of replica results

The former three voting strategies are exact and require at least M, replicas to de-
liver exactly the same result. The latter two voting strategies are inexact and can handle
replica results that differ within a small application-specific threshold, e. g., due to sensor
noise [LBBO4].

The most suitable voting algorithm depends on the application and its environment,
e. g., the cardinality of the voter input and output space as well as the voting algorithm’s
time and space complexity [LBB04]. We focus on exact voting algorithms, since they

64



5.1 NMR Approach

Figure 5.1: Schematic overview of the NMR mechanism on a 2 x 5 many-core processor.
Task 7 is replicated N; = 5 times and forwards its result to voters V;' and
V2. Task T, is replicated N, = 3 times and forwards its result to voters V!
and V. Solid lines represent messages sent from the task replicas to voter
V!, dashed lines represent messages sent from the task replicas to voter V7,
and dotted lines are messages that are exchanged between both voters.

are less complex compared to inexact algorithms [Par94]. Furthermore, inexact voting
strategies are less suitable in safety-critical systems, since they do not fail silently in case
no consensus is found, but still provide a potentially catastrophic output [LBB04].

Exact voting algorithms require task replicas that use identical input data and are deter-
ministic at their interfaces. The input data of each task replica 7/, i. e., the messages and
sensor values read by the task T, are provided by the local OS kernel’s DMPS and drivers.
These OS functions are designed to ensure that all replicas work with the same input data,
as explained in Section 2.3.3.

Note that task replicas might perform floating point operations, which have a limited
precision and introduce inaccuracies, and provide a floating point result. However, as
long as all replicas use the same deterministic functions with the identical input data, their
results are identical at binary level, since the same inaccuracies occur in all replicas. Hence,
an exact voting algorithm can still compare the results bit by bit.

Amongst the exact voting algorithms, the unanimity voter is very strict and does not
mask any task replica failure. Hence, it does only provide fault detection but no fault
tolerance. The plurality voting strategy can produce a tie, i. e., it can determine two correct
results. For example, in a 3-out-of-7 configuration, 3 task replicas deliver result X,, another
3 replicas generate result X, # X,, and the last replica outputs another obviously wrong
result. The plurality voter is unable to decide if result X, or result X, is correct. The
majority voter does not share this problem. Therefore, we use a majority voting strategy

in this thesis.

N;+1

ItM = |_lT-| or more task replicas fail, which is the case in the previous example, the

majority voter cannot decide on a correct result. This case is denoted as a detected system
failure or detected uncorrectable failure. In this thesis, we consider M, as constant in order
to achieve a higher reliability. In other words, if some of the N; task replicas failed, A,

65



5 Software Fault-Tolerance Mechanism

is not adapted to the smaller N;. For example, if N; =5 and 2 task replicas have failed
already, all M; =3 remaining replicas have to provide correct results.

5.2 Reliable Voter

The reliability of an NMR system R, (t,,) after the mission time ¢,, without a repair
procedure is given by [KK10]

Ryum):Rv(tm)Z(].V )(RTum))“(l—RT(tm))”"; 6.1

=M \ !

where R/ (¢,,) is the reliability of the voter after the mission time ¢, R;(¢,,) is the relia-

bility of a task replica after the mission time ¢,,, and (7) denotes the binomial coefficient
!

Since the voter is in series to the task replicas and represents a SPOF, the absence of
errors in the voter is of paramount importance. However, we consider consumer-grade
processors with homogeneous cores that all exhibit the same SER. Like any other task, the
voter task is affected by bit flips in its code and data sections, by failures in the core-local
OS, and by faults in the NoC or the logic and the register file during its execution. Thus,
the voter task exhibits a failure rate that is approximately similar to the failure rate of a
task replica, so Ry/(t,,) &~ R(¢,,). From Equation (5.1) follows that the reliability of the
system R ,(¢,,) is worse compared to the reliability of an unprotected simplex system
without a reliable voter, i.e., R, (t,,) = R4(t,,).

Consider two safety-critical tasks 7| and 7. Both are replicated on the processor and
task 77 sends its results to task 7). In this case, the problem of the voter as a SPOF can be

circumvented by adding one majority voter for each task replica T of the receiving task,
as shown in Figure 5.2. In this well-known setup, a single voter failure does not cause more
harm than a single task replica failure [KK10]. However, this solution cannot by applied
if the receiver of the result generated by the safety-critical task 7 is not replicated. For
example, the receiver of the result the safety-critical task 7, might be an external actuator
that is not replicated.

Therefore, we require a fault-tolerance mechanism that provides one reliable output.
Hence, we have to harden the implementation of a single voter in software. For selecting
an appropriate software fault-tolerance mechanism for the voter, we follow the same
reasoning as for tasks: we use two voters that run in parallel on separate cores and leverage
the spatial redundancy of the many-core processor. However, adding a voter-voter to
compare the results of both voters just introduces another SPOF. Therefore, in contrast
to the fault-tolerance mechanism for tasks, the voters have to check each other.

Both voters receive and vote on the replicas’ results. However, at any time, only one
voter is active, forwards the tallied result, and starts the repair procedure for failed replicas.
In addition, each voter sends a notification to the other voter after it has successfully
finished the voting procedure. The absence of this notification tells a voter that the other
voter has failed. When a failure of the inactive voter is detected by the active voter, the
active voter starts the repair procedure of the failed voter. In case the active voter failed,

66



5.2 Reliable Voter

Figure 5.2: Visualization of two safety-critical tasks 7} and 7, on a 2 X 3 many-core
processor. Task 7, receives a message from 7. Since both tasks are replicated
N, = N, =3 times, three majority voters can be added in between the tasks.
Each replica 77 sends its result to all voters V/*. Solid lines represent messages
sent from the task replicas to voter V', dashed lines represent messages sent
from the task replicas to voter V2, and dotted lines represent messages sent
from the task replicas to voter V.

the inactive voter becomes active, forwards its tallied result, and starts the repair procedure
for the failed task replicas and the failed voter. Once the failed voter is repaired, it sends
notifications again but it does not become active unless the active voter fails.

Note that for the time a failed voter is repaired, the active voter remains a SPOF. How-
ever, in total the system’s reliability and availability are increased since only a combination
of two failures, one in both voters, can result in a system failure. In contrast to the detected
system failure that occurs when a voter detects that M; or more task replicas failed, the
failure of both voters is an critical system failure or an SDC, since the system is unaware of
its failure and cannot reach a safe state.

5.2.1 ANBD Encoding

The notification that a voter finished the voting procedure is not enough to decide whether
the voter has failed. A failure can still cause a voter to skip the replica results comparison
routine and send a notification immediately without having determined the correct result.

To ensure that a notification is only sent after the voting procedure was successtully
executed, we depend on a mechanism to guarantee a fail-silent behavior of both voters.
If a voter is fail-silent, it will only send a notification to the other voter and forward the
tallied result if no failure occurred. To achieve this fail-silent behavior, we extend the

CoRed Encoded Voter approach [UHK™12], which originally is designed only for the TMR

mechanism.

The encoded voter approach relies on ANBD coding, which represents a combination
of AN coding, per value signatures, and sequence counters. ANBD codes detect data,
addressing, and sequence faults, as introduced in Section 3.2.2.

67



5 Software Fault-Tolerance Mechanism

Multiplying the integer value X with a constant integer number A is the widely known
AN arithmetic coding scheme. With a carefully selected constant A, it efficiently detects
manipulations of the encoded value. To check if the encoded variable X’ represents a valid
code and was not manipulated, it has to be tested whether

X" mod A=0. (5.2)

Typically, large prime numbers are used as A [Sch11]. However, as Hoffmann et
al. [HUD" 142, HUD" 14b] pointed out, the selection of A should also consider the charac-
teristics of the hardware architecture. In our implementation, we use the Super-As proposed
by Hoffmann et al. [HUD"14a, HUD" 14b].

Let X and X, denote two AN encoded values that are operands of an addition. The
multiplication with A is an invariant with respect to addition and subtraction. Other
operations such as integer multiplication and division can be adapted to ensure the result is
encoded correctly afterwards, e. g., by dividing and multiplying the result with A [Sch11].
Hence, errors during the operation with encoded values can be detected, since a faulty
arithmetic operation does not preserve the code with a high probability. Therefore, the
result X =X + X} = A(X; + X, ) is still a valid code word when the addition itself was
fault-free, since X; mod A =0 holds.

However, if a fault causes one of the operands or the operator to be exchanged, the
resulting code word will still be valid although an error occurred. In order to detect such
operator and operand errors, a unique static signature B; for each variable X is added to
the plain value. Since these signatures are statically assigned, the expected signature after
the operation with the chosen operands is also known. Let B; be the signature of X’ and
B, be the signature of X;. The expected signature of the result X] of the addition of X
and X is B, + B,,. Exchanged operands or another operator would obviously result in a
different signature. Hence, each variable X; is encoded by

X' =A-X;+B, (5.3)

under this coding scheme, which is known as ANB coding.

When a fault causes a variable update to be lost, e. g., a bit flip in the memory address
that causes the new value is stored in a wrong memory cell, the expected signature after an
operation would be correct and the code word would be valid. Therefore, a cyclic sequence
counter D =0,1,..., D that counts variable updates is added to the plain value, which
reveals outdated values. This coding scheme is known as ANBD coding and encodes each
variable X by

X'=A-X+B,+D. (5.4)

The expected sequence counter after an operation with ANBD encoded values has to
be computed dynamically. Note that B; + D < A has to be fulfilled when selecting the

. . . A
signatures B; and the static maximum sequence counter value D [ WF07].

The AN, ANB, and ANBD coding schemes require all values to be integer. However,
only the voting procedure itself is encoded. The task’s function can include floating point

68



5.2 Reliable Voter

computations since it is protected by replication. Therefore, the task replicas can encode
the binary alias of their floating point result before sending it to the voter. The encoded
voting algorithm operates on the encoded values and forwards the tallied and decoded
result, which still represents a floating point value for the receiving task or actuator. Hence,
the ANBD encoded voting procedure does not impose a restriction on the application.

5.2.2 Encoded Voting Algorithm

To protect the voting algorithm with the ANBD coding scheme, the voting algorithm has
to be implemented using only encoded operations that are applied directly on the encoded
values and conserve the arithmetic code. Hence, data integrity can be ensured during the
execution of the encoded voting algorithm.

Let X; and X, represent the results of two task replicas 7/ and T*. Before each task
replica sends its result to both voters, it encodes its result with the ANB code and Equa-
tion (5.3), respectively. The task replicas do not add the sequence counter D, since this
requires all task replicas and both voters of one task to maintain a common sequence
counter value. As soon as a repair procedure is introduced to the system, a repaired task
replica or voter has to gather the current value of D from other task replicas or voters. This
introduces common cause failures, as other task replicas or voters may provide a corrupt
value of D. In order to circumvent another voting procedure to determine the correct
sequence counter value after each repair, we design the DMPS to delete an incoming
message when it is read. Therefore, when the voter collects a replica’s result and this
replica fails silently in the next period, the voter will not be able to read the old result
again and is able to detect the replica’s failure. A lost update is still possible if the DMPS
and the task replica fail at the same time. However, the probability of this combination
of failures is comparable to the combination of a failed task replica and a failure in the
checking routine of D inside an encoded operation. Note that in contrast to the sequence
counter D, the signature B; and the integer constant A are statically known.

Both voters Vi1 and Vf receive the ANB encoded results X;. and X;e from the two

task replicas 7/ and 7). Once each voter reads the replica value, it adds a voter-internal
sequence counter D to the encoded value. This leads to an ANBD-encoded replica result,
which allows to detect lost updates within the encoded voting procedure itself. Since the
sequence counter D is maintained by each voter separately, no agreement policy between
both voters in required.

To compare the two ANBD-encoded values, the correctness of the relation X; =X, has

to be evaluated. According to Equation (5.4), this relation can be written as:

1 1
K(x;.—B].—D): K(x’k_Bk—D),

which can be simplified to
X, —X}, =B, —B,. (5.5)

Hence, all comparison operations within the voting algorithm are replaced with Equa-
tion (5.5), as shown in line 7 of Listing 5.1.

69



5 Software Fault-Tolerance Mechanism

int j,k,v;
for (j=0; j<=N,—M, && v<M;; j+=1) {
D B.;

or (k=j+1; k<N, && v<M;; k+=1) {
if (X, —X| == B,—B;) {

& = EU{k};
D = D+((X,—X])+B,);
v+=1;

Listing 5.1: Encoded voting algorithm—Part 1

The encoded voting algorithm presented in Listing 5.1 tries to find M, task replicas
that deliver the same result. The IDs of these M replicas with an equal result are stored
in the equality set &, 50 Yj,k € & : X; = X,,. The voting algorithm ends as soon as M,
equal results have been found. The remaining replica results are not compared and the
respective replica IDs are not added to the equality set even if the replicas have sent the same
(correct) value. Unless M, or more replicas failed, which is equivalent to a detected system
failure, the equality set contains exactly M, replicas at the end of the voting algorithm. The
encoded result of any of the M, replicas referred to by the equality set & can be considered
as correct.

However, during the execution of the encoded voting algorithm, soft errors may cause
false branch decisions, jumps in the instruction sequence, or incorrect values to be stored
in temporary variables. In order to guarantee the correctness of the execution and the
control flow of the encoded voting procedure itself, we combine the ANBD coding with
signatured instruction streams [SS87]. Under this approach, each possible path in the
program’s control flow, i. e., the sequence of operations, is characterized by a unique static
signature S that can be computed offline. At runtime, a dynamic signature D is generated
dynamically depending on the executed control flow. After the voting algorithm, both
signatures are compared and an inequality indicates a failure in the execution.

In order to guarantee the correct execution of our voting procedure, it is implemented
such that there is only one valid path to each decision. The result of the encoded voting
algorithm is the equality set & containing the IDs of M; replicas that delivered the same
result. The voter’s decision and the corresponding control flow have to be mapped to a
constant static signature S and the selection of this static signature has to be unique for
each decision path. We use the sum of the signatures of the replicas referred to by the
equality set & as the static signature S to represent this path, so

S=>B.. (5.6)

jEE

70



5.2 Reliable Voter

To ensure the uniqueness of this static signature, Equation (5.6) must result in a different
value for each equality set. Selecting the values B, plays the main role in the fulfillment of
this requirement. Since each replica is either contained in the equality set or not, we choose
2/ as the value of the signature B ;- Hence, the summation of all B, in the equality set is
exclusive and satisfies the uniqueness requirement. For small N and a 32 bit architecture,
it is feasible to determine A such that A> B, + D. Hoffmann et al. [HUD"14b] showed

that 2/ is bad choice for the parameter A, since it results in a shift operation and a low
Hamming distance between code words. However, the signatures B; are added to the code
word, so they do not influence encoding with the parameter A.

During the voter’s execution, a dynamic signature D is computed depending on the
comparisons and the branch decisions that lead to the resulting equality set §. As shown
in lines 2 and 8 in Listing 5.1, the dynamic signature D is calculated during the execution
of the voting procedure as

M;
. / /
D=B, + Z;(Xef —X,)+B,,, (.7)
]:
where ¢,,...,e;,, € & are the elements of the equality set . In case of an error-free

execution of the voting procedure, it follows from Equation (5.5) and Equation (5.7) that

D=>'B, (5.8)

jeé

which equals the static signature of the equality set S.

Any failure in the execution of the voting procedure affects the dynamic signature D,
which does not equal the static signature for the resulting equality set anymore and thus
reveals the failure.

For example, consider a soft error in the comparison of two encoded values in line 7
of Listing 5.1, which causes the algorithm to execute lines 8-10 and & to be added to the
equality set &, although X; #X,. Since (X| — X:)+ B, is added to the dynamic signature
D and X — X’ # B, —B;, the dynamic signature D will not match the static signature S

that is computed from the equality set &.

As another example, imagine a soft error in the program counter causes it to skip the
computation of the dynamic signature in lines 9 and 10 after it successfully added the
correct replica k to the equality set &. Again, the static signature S will not be equivalent
with the dynamic signature D.

Let a soft error affect the temporary variables j or k. This causes the algorithm to skip
the comparison of some replica results. In case this results in the algorithm to find less
than M; replicas with equal results, the encoded voter wrongly assumes a detected system
failure and fails silently. This is the wished behavior in case of a voter failure and allows
the other voter to jump in. In case the algorithm skipped the comparison of some results
but still finds an equality set & with M; equal results, the soft error is benign and can be
ignored.

Listing 5.2 on the following page shows all checks that are performed before the decoded
result is forwarded (line 21) and the other voter is notified (line 23). First, we ensure that

71



5 Software Fault-Tolerance Mechanism

if (8] '= M) {
return; //fail stilently

+

S = 0;

for (ejéc‘f) {
S=S+B,;

+

if (S '= D) {
return;

+

int t = XQO - BEO - D;
if (¢t modA != 0) {

return,;
+
if (mode == active) {
outputResult (receiver, t / A);
}

notifyOtherVoter () ;

Listing 5.2: Encoded voting algorithm—Part 2

M. replicas with equal results have been found and added to the equality set & in line 1. If
this is not the case, the voter fails silently since it can be the result of a soft error in the
voting algorithm and the other voter determined a correct result.

Next, the static signature is computed and compared with the dynamic signature. In
contrast to computing the static signature S at runtime, it can as well be computed at
compile time for each equality set and stored in a look-up table. Both design choices differ
only in execution time and memory consumption.

Finally, the encoded result of the first replica referred to by the equality set is selected.
As mentioned above, any other result is equally valid. In line 16, it is checked if the result
is still correctly encoded and no soft error has affected the value in the meanwhile, so it
tests whether (X; —B; —D) mod A =0 holds. In case this check fails, the voter does not
check the next replica but instead fails silently and relies on the other voter to jump in. If
the encoding is valid, the active voter decodes the tallied result and sends it to the receiver.
Both voters notify each other if all checks are passed.

5.2.3 Residual SPOFs

The encoded voting algorithm allows to determine the data integrity of the result as well
as the correctness of the execution and the control flow. In order to fail silently if an error

72



5.3 Repair

occurred, the data integrity and the correct execution have to be evaluated, as shown in
Listing 5.2. However, this evaluation is subject to soft errors, too.

A soft error in the comparison of the static and the dynamic signature can deem the
correct result of a voting procedure as incorrect, which still results in a fail-silent behavior.
In case the voting procedure failed before, an error in the comparison routine can prevent
the voting failure to be detected and thus break the fail-silent assumption. However, this
requires the occurrence of two soft errors within the same period and therefore has a low
probability.

In contrast to Ulbrich et al. [UHK"12], we do not follow the assumption that an
actuator receiving the voter’s result can handle encoded results. Therefore, the voter has to
decode the tallied result before forwarding it to an external device. However, a soft error
can affect the decoded result after it has passed this integrity check, see line 20 and 21 in
Listing 5.2. This residual SPOF has a low probability, as the decoded and checked result is
subject to faults only for a minimal duration, before forwarding it to its final destination.

The underlying OS kernel including the scheduler and dispatcher can also be affected
by soft errors. As a result, the voter task might not be executed any more, which results
in fail-silent behavior. The voter task could also be scheduled too early or too late. If
executed too early, the replica results are not generated yet, which will be detected by the
wrong sequence counter D and cause the voter to fail silently. If executed too late, the
other voter will detect the missing notification and start the repair procedure.

Furthermore, soft errors can affect the communication infrastructure between the cores.
In most cases, such soft errors in the NoC lead to erroneous replica results or missing
notifications and cause unnecessary repairs. However, with a low probability a soft error
in the NoC can change the voter’s output before reaching its destination or cause an
omission failure. With a low probability, a soft error can also affect the DMPS such that
wrong messages are sent to the destination of the voter output.

The discussed residual SPOFs have a low probability but are evidence that complete
reliability cannot be achieved within realistic system boundaries. Therefore, the prob-
ability of their occurance is considered in the model of the fault-tolerance mechanism
in Section 6.1.

5.3 Repair

In our fault hypothesis we consider only transient faults, since they occur at much higher
rates compared to permanent faults. Transient faults are caused by cosmic radiation,
radioactive impurities in the chip, or electromagnetic interference. As a result of their
physical nature, transient faults are present in the system only for a bounded time interval.

Soft errors are the manifestation of transient faults. Due to the large fraction of chip area
occupied by the core-local SRAMs, 90% of soft errors are bit flips in memory [EET* 14,
EET*15]. While the transient fault that causes a bit flip is only present for a bounded
time interval, the soft error is only repaired if the failed memory cell is re-written. If this
is the case, the soft error that caused a task replica failure does not occur again when the
task replica is executed in the next period. However, in case a memory cell is written only

73



5 Software Fault-Tolerance Mechanism

once and always read afterwards, the transient fault at hardware level can have permanent
behavior from the software’s point of view.

A simple experiment with our cycle-accurate simulator, which is explained in detail
in Chapter 7, with an unprotected task executed on a single core showed that out of
3,952,726 periods with erroneous results, only 42,123 soft errors vanished and the next
period delivered a correct result again. Hence, in 99% of the measured failures the transient
hardware fault caused a permanent software failure. The reason for this large fraction of
soft errors that cause permanent software failures is the great amount of instructions and
static data stored in the core-local memories, which are only read but not rewritten.

From this simple experiment we conclude that an active repair procedure is necessary
to restore a failed task replica or voter. While the software fault-tolerance mechanism
is able to operate with N; — M, failed task replicas and one failed voter, any additional
task replica failure will cause a detected system failure and any additional voter failure
will cause a critical system failure. Therefore, adding the repair procedure to the software
fault-tolerance mechanism increases the system’s reliability and availability.

5.3.1 Spares

Once a task replica failure is detected, we want to replace it with a functional task replica
and operate with the all N, task replicas as soon as possible. Therefore, each safety-critical
task 7 has not only N task replicas T/ with j =1,2,..., N, but additionally S, spares ik
with £ =1,2,...,5.. A spare is another replication of the original task that is mapped to a
different core than the other spares, replicas, and voters of the respective task. Hence, a
task or its instructions and static data, respectively, is replicated and statically mapped to
N; + S, cores in total, as shown in Figure 5.3. Note that similar to task replicas, spares can
be mapped to the same cores with spares and replicas of other tasks.

Spares are scheduled by the core-local OS and its scheduler in the same way as task
replicas. However, in contrast to task replicas, spares do not execute the task’s original
code, but only inform both voters about their existence in every period. This is achieved
by sending a special message to the voter.

If necessary, a spare can be started by the active voter. When a spare is started, it becomes
a task replica, executes the task’s code, and sends the obtained result to both voters.

Informing the voter about the spare’s existence requires less time than executing the
original task’s code and sending the result to the voter. Hence, the WCET of a spare is
generally shorter than the WCET of a task replica. In order to ensure that spares meet
their deadlines even after they were started by the voter and became a task replica, the
WCET of a spare is set to the WCET of the respective task replica during the scheduling
analysis.

Since spares are not executed, starting a spare can uncover dormant errors in its code
or static data. In this case, the voter detects the failure of the new task replica in the next
period and activates another spare.

The advantage of using spares compared to using N, + §; task replicas all the time is
a lower runtime overhead. The free runtime can be used for scheduling uncritical tasks.
The disadvantage is a lower system reliability and availability. However, the reliability

74



5.3 Repair

Figure 5.3: Overview of the NMR mechanism with spares on a 2 x 5 many-core processor.
Task T has N, =5 replicas and S, = 2 spares, task 7, has N, =3 replicas and
S, =1 spare, and task 75 has Ny =5 replicas but no spares, so §; = 0. Solid
lines represent messages sent from the task replicas to voter V!, dashed lines
represent messages sent from the task replicas to voter V?, and dotted lines
are messages that are exchanged between both voters.

and availability is still better than using only N, task replicas without any spares, since it
takes longer to repair a task replica than to activate a spare in general and therefore the
system has to operate with less than N, task replicas for a longer time. Note that a task
can also be configured to have no spares, so S; =0, if the target reliability and availability
can be achieved without using spares.

5.3.2 State Duplication

When the voter detects a task replica failure, it actives a spare of the respective task. The
voter knows about the spare’s existence and location since it was notified by the spare in
the same period.

Tasks can have an internal state, e. g., a variable for the integration of a sensor value or a
mode setting. This internal state is used by all jobs of a replica. It is not to be confused
with the temporary variables used by each job during its execution, which are stored in the
register file and the stack, but are deleted after the job is finished. Note that the internal
state is the reason why repairing all task replicas in case of a detected system failure is not
possible. Under majority voting, a detected system failure occurs if less than M, replicas
deliver the same result. In this case, a fault-free task replica with a correct state cannot be
identified.

All task replicas have their own internal state in order to ensure fault isolation. Since
all task replicas are deterministic and process the same input values, their internal states
are identical. However, a spare does not execute the original task’s function and does not
know about its current internal state. Hence, the internal state of a fault-free task replica
has to be copied to the spare’s core before the spare can become a new task replica.

Long latency errors are errors that are present in a component but cause the components
failure only after a long time, e. g., an error that only affects a rarely used branch or mode.

75



5 Software Fault-Tolerance Mechanism

These errors might be present in the internal state and cause a task replica to fail only
when the rarely used branch is executed or the mode is entered. Otherwise, the replica
provides a correct result and is deemed fault-free by the voter. Therefore, the long latency
errors present in the internal state can be copied to a spare when the spare is activated.
As a result, two task replicas will fail at the same time once the long latency error is
triggered. However, long latency errors can be detected and eliminated at design time
by the CrashFinder technique [LLP15]. This technique combines static analysis methods
with fault injection tests. Therefore, we assume that a correct result is equivalent to a
fault-free internal state in this thesis.

To copy the internal state from a fault-free task replica to a spare is the job of the staze
duplication service (SDS). The SDS is part of the core-local OS and hence it is present on all
cores. When the voter starts the repair procedure for a failed task replica, it activates the
SDS on a core where a spare of the respective task is located. The voter informs the SDS
about the location of a fault-free task replica, e. g., one of the replicas in the equality set.
Once started, the SDS copies the internal state of the fault-free replica to the local core
and activates the local spare, so the spare becomes a new task replica.

The SDS is executed after the task’s voter but before the next period of the respective
task. Therefore, it is ensured that no task replica is running in parallel to the SDS and the
copy of the internal state is consistent. Note that there exists an SDS for each task replica
and spare mapped to the local core. Considering typical embedded applications and the
throughput of the NoC, we assume that the SDS is able to copy the complete internal
states and activate all local spares before the SDS’s deadline.

Due to the SDS, the system operates with N; task replicas in the next period as long as
enough spares are available. Otherwise, the number of active replicas is decreased until
enough spares are available to restore all N; replicas.

5.3.3 Code Duplication

When the voter detects a task replica failure, it does not only active a spare but also starts
the repair of the failed replica. In order to do so, the voter notifies the code duplication
service (CDS) on the core with the failed task replica. Similar to the SDS, the CDS is part
of the OS and therefore it is present on all cores.

Once started, the CDS deletes the failed task from the OS and the scheduler, respectively,
such that the failed replica is not executed anymore. Afterwards, it overwrites the replica’s
code and static data with the task’s code and data stored in the reliable external memory.
When all code and data is completely restored, the CDS registers the repaired task in the
OS again. Since all tasks are initially configured as spares, the repaired task replica has to
be started by the voter before it actually executes the restored code.

5.3.4 Core Reset

According to our fault hypothesis, the OS kernel and its components, the scheduler,
dispatcher, DMPS, and drivers are subject to faults as well. As a result, a task replica failure
can also be caused by a failed underlying OS kernel function. For example, if the scheduler

76



5.3 Repair

fails, a task replica might be terminated too early or not be started at all. In this case, the
voter will not get any result from this replica.

In order to repair an OS failure, a mechanism that operates independently of the core’s
OS is required. The ICR mechanism fulfills this requirement. After a reset, any core
of the many-core processor fetches its instructions from the reliable external memory.
These instructions copy the code and data of the OS and all tasks mapped to the restarted
core from the reliable external memory to the core-local memory. This way, all transient
faults in code or data in all tasks as well as in the OS and its components are cleared.
After the core-local memory content is completely restored, the execution continues with
instructions from the local memory. By default, all task replicas are configured as spares
after booting.

Repairing a core with the reset mechanism is coarse grained and takes a large amount of
cycles compared to rewriting the unknown memory cells that caused the failure. Addi-
tionally, it affects all replicas and spares from different tasks that are mapped to the core,
although the error might only affect one replica. Therefore, a core is only repaired by a
reset when the task replica repair procedure with the CDS is not possible or has failed.

5.3.5 Repair Procedure

After the encoded voting procedure, both voters compare the encoded results of all replicas
not referred to by the equality set with the tallied encoded result. All task replicas that did
not sent a correct result are repaired. In order to not repair a task or core twice, only the
active voter actually starts the SDS and the CDS or triggers a core reset.

The kernel components that implement the repair procedure, 1. e., the SDS and the
CDS, are also affected by soft errors. In case of a CDS failure, the failed task replica is not
repaired and is not becoming a new spare. For this reason, both voters keep track of the
number of periods they do not get a spare notification from the respective task and core
after starting the repair procedure. Each voter stores this information in its internal state.
If a voter does not receive a spare notification after a certain timeout, which is derived
from the CDS’s WCRT, it assumes the OS has failed and the active voter uses the ICR
mechanism to reset the respective core.

A failure of the SDS will be detected by both voters in the next period when the new
task replica delivers no or a wrong result. Hence, both voters search a new spare and the
active voter starts the CDS for the failed task replica. However, the effect of an SDS failure
equals the effect of a dormant error in the spare, which also causes a failure once the spare
is activated and becomes a task replica. Since the voters cannot distinguish between an
SDS failure and a dormant error in the spare, the CDS always repairs the SDS together
with the failed task replica.

When a task replica fails on a core where the CDS is currently repairing another task
replica, it is likely that not the task replica but the underlying OS caused the failure of
both task replicas. Therefore, a voter first determines whether the CDS is already executed
on a core with a failed task replica. If this is the case, the voter immediately uses the reset
mechanism to repair the core.

Soft errors can occur during the boot process, e. g., when data is copied over the unreli-
able NoC and stored in the unreliable core-local memory. For this reason, the voter also

77



5 Software Fault-Tolerance Mechanism

monitors the number of periods it does not get a notification from a spare after starting
the core reset routine. If the number of periods exceeds the maximum boot timeout, the
core reset routine is started again.

In case a voter does not receive a notification from the other voter, it repairs the failed
voter, too. For an efficient implementation, the voters of different tasks are typically
mapped to one core and share a large amount of instructions. Therefore, all voters mapped
to the same core are likely to fail simultaneously. Consequently, the fault-free voter
immediately triggers a core reset in case of a voter failure and we do not use spare voters.

After booting, all voters on the restarted core are inactive. Since each voter is inactive
after a reset and does not forward the tallied result or trigger the repair mechanism, it does
not need to copy the potentially corrupt internal state of the active voter but can build
up its internal state over multiple periods. Note that the internal state is only used to
monitor the timeouts of the repair procedures. Therefore, if a voter becomes active before
it completely gathered the current timeouts in its internal state, it might restart a running
CDS or boot process or delay the restart of a failed repair process. This is acceptable in
contrast to copying the potentially corrupt internal state of the active voter, which can
result in common cause failures that ultimately causes a critical system failure.

In addition to the SDS, CDS and the boot process, the described repair procedure
executed by each voter is subject to soft errors, too. In most cases, an error in the repair
procedure of the active voter only leads to unnecessary repairs, while an error in the
inactive voter is only reflected in its internal state. However, in some rare cases a failure
in the repair procedure of the a voter can lead to a system failure, e. g., if the active voter
wrongly triggers the repair of a fault-free task replica and only M, fault-free task replicas
are present in the system, if the active voter issues the SDS to copy the internal state of a
faulty task replica to a spare and therefore less than M, fault-free task replicas are available
in the next period, or if the inactive voter wrongly triggers the repair of the active voter but
does not become active itself. In other words, the fact that the voters are able to repair task
replicas breaches the fault isolation assumption between cores. However, the analysis of a
model of the software fault-tolerance mechanism shows that adding an error-prone repair
procedure to the mechanism still results in a higher reliability and availability compared
to a mechanism without repairs, cf. Section 7.4.3 on page 134.

5.4 Real-Time Integration

In this section, we describe how the proposed software fault-tolerance mechanism can
be applied for a mixed-critical task set & and integrated with the system’s real-time
constraints.

5.4.1 Task Wrapper

The original function of each safety-critical task 7; € F is encapsulated within a task
wrapper, as shown in Listing 5.3. The task wrapper can be configured only by the SDS to
act either as task replica or as spare by the active variable, which equals 0 initially. Note

78



5.4 Real-Time Integration

that the value of B; is different on each core and the input_data structure is updated by
the DMPS and the drivers according to the LET principle.

The wrapped task is mapped to N; + S; mutually different cores. The parameters N,
and §; are selected depending on the task’s safety criticality, as is shown in the next chapter.
For each safety critical task 7; € 7, two voters V' and V? are mapped to separate cores as

well, such that no voter is present on the same core as any task wrapper T/ .

When the system is started, all task replicas are initially configured as spares, since this
is the desired behavior after a core reset. When both voters are executed for the first time,
they check whether they receive more notifications from spares than configured for the
respective task. If this is the case, each voter assumes not just its local core was reset but
the complete system was started. Therefore, one voter becomes active while the other
stays inactive, which is decided e. g., depending on the mapping. The active voter starts
the first N, spares of the respective task such that in the next period, the system is correctly
configured.

The set of distributed task wrappers and voters represents a reliable task for the rest of
the system. Therefore, all components together have to comply with the original task’s
real-time requirements.

5.4.2 Communication

Inter-task communication follows the LET concept, so all messages between tasks or the
periphery are exchanged logically instantaneously at the task’s activation and deadline,
which is implemented by the DMPS and the drivers. However, the communication
between the task wrappers and both voters cannot follow the LET concept, since this
would delay the output of the result by an additional period. Therefore, the task wrappers
send their results directly to both voters and do not use the LET. Note that the voter
forwards the tallied result with the DMPS or respective driver again.

If all cores obey the limited packet injection rate approach presented in Chapter 4, the
WCTL £ of any packet is guaranteed independently of the packet’s source and destination.
This allows to determine the WCCT él- of any message m,. For example, consider a
many-core processor with a flit size of 32bits in the request and the response network and
the size of a message 7; sent from any task wrapper T/ = o(m;) to any voter V/ = &8 (m;)

to be |m,| = 8bytes. Thus, the WCCT C - of this message is ¢ .= 21, as long as all sources
obey the limited injection rate.

5.4.3 Scheduling

Each task wrapper is periodically executed by the OS scheduler of the respective core with
the original task’s period P;. In order for the SDS to have sufficient time to activate a spare

before its next periodical activation, the relative deadline each task wrapper D! needs to
be advanced in case the difference between the period and the original deadline of the

task is smaller than the WCET of the SDS, so le = min(D,, P, —E <ps)- The fixed-point
iteration method presented in Section 2.1.1 is used to determine the WCRTs ]AQZ of each

79



5 Software Fault-Tolerance Mechanism

void wrapper () {

if (active) A{
X = original function (*input_data);
X;. = X-A+B;;
sendMngoVoters(X;);

} else {
sendMsgToVoters (SPARE_CODE) ;

}

Listing 5.3: Task wrapper

task wrapper on all cores. If the WCRT of any task wrapper is larger than its potentially
advanced deadline, the real-time constraints are not guaranteed and the task set cannot
be scheduled together with the software fault-tolerance mechanism. In this case, the task
mapping has to be adjusted. If a modified task mapping does not lead to a feasible schedule,
a processor with more cores or a higher performance is the only option left.

Both voter tasks are instantiated on separate cores and scheduled with the same period

as the respective task, so P}, = P;. However, each voter is activated with an offset of the

WCCT and the maximum WCRT of all task wrappers, so O, = CAIZ- + maxy; IAQZ . The
voter must be able to trigger the SDS and activate a spare before the next period. For this
reason, the deadline of each voter task Dy, is the original task’s deadline advanced by the

WCET of the SDS £ «ps and the WCCT ¢ ; of the respective message to start the SDS, so

D‘j/_ =D, —E <Ds — C ;- The fixed-point iteration method is used again to check whether
all advanced deadlines of both voters are met.

5.4.4 OS components

Apart from the task wrappers and voters, the OS components that implement the repair
procedure have to comply with the system’s real-time constraints as well.

State Duplication Service

The SDS is part of the OS kernel on each core. Its job is to copy the internal state of a
fault-free task replica to the local spare and activate it. In order to activate the spare before
the next period, the SDS has to be executed after the voter but before the next periodical
activation of the respective task.

For this reason, the deadlines of all task wrappers are advanced such that a free time
frame between each task wrapper’s deadline and its next periodic activation exists. This
time frame is reserved for the execution of the SDS. Note that the SDS is only executed
when activated by a voter and it is able to activate the spares of all tasks mapped to the
local core. Although the SDS has to copy data from another core, its WCET is known
due to the limited packet injection rate approach.

80



5.5 Mixed-Critical Task Set Example

Code Duplication Service

Similar to the SDS, the CDS is part of the OS kernel. Its job is to restore a failed task
replica. Since the SDS ensures that a new task replica is available in the next period, the
runtime of the CDS is less critical. Thus, the CDS consumes the remaining execution
time when activated by the voter and is preemptable by all core-local real-time tasks. For
example, the CDS uses the time frame reserved for the SDS when the SDS is not activated.
Note that the WCRT of the CDS is known nevertheless.

The CDS runs only when activated by the voter, which is checked during the SDS time
window. Since the active voter resets the core as soon as two task replicas failed on the
same core, the CDS has to repair only one task replica at any time.

Reset Service

When the voter triggers the reset of a core, the restarted OS has to schedule all local tasks
in synchronization with the tasks on other cores. For this reason, the boot duration of all

cores is prolonged to match an integer multiple of the hyperperiod P. The maximum of
A
this boot duration and the WCET of the CDS is denoted as worst-case repair time B.
The voter does not directly trigger the restart of another core but uses a reset service

provided by the OS in order to schedule a core reset exactly at the next hyperperiod P.
This way, the reset core is in synchronization with the other cores after booting.

5.5 Mixed-Critical Task Set Example

In order to demonstrate the functionality of our software fault-tolerance mechanism and
illustrate its real-time capability, we provide an example with a mixed-critical real-time
task set in the following.

The parameters of the chosen task set are given in Table 5.1. The task priorities for the
fixed-priority scheduling policy are assigned according to the deadline-monotonic priority
assignment scheme and criticality of the task.

The number of task replicas N; and spares S, is chosen depending on the criticality level,
as is explained in detail in the next chapter. The function of each original task 7}, 7,, and
T; is encapsulated in a task wrapper, which is then replicated N; 4+ S, times. Note that task
T, 1s uncritical, so it is not protected by the software fault-tolerance mechanism and not
included in a task wrapper.

The four mixed-critical tasks have different but harmonic periods. Note that 10 ms and
20ms are typical periods in automotive applications [KZH15]. For the sake of simplicity,
we neglect non-periodic tasks in our case study. However, non-periodic tasks could be
included by reserving separate cores for interrupt-driven task replicas and voters.

In the example, the WCETs of the SDS E «ps and any voter E </ equal 1.5ms. The WCCT

¢ . of any message sent between task wrappers, voters, and the SDS or CDS is 0.25 ms.

81



5 Software Fault-Tolerance Mechanism

Task P, =D, éi Priority N, §,
T, 10ms 2.5ms 4 5 2
T, 10ms 2.5ms 3 301
T, 20ms 4.5ms 2 5 0
T, 10ms 2.5ms 1 1 0

Table 5.1: The timing and mapping parameters of the mixed-critical real-time task set
example.

!l .O i!
S kY
MO
LSO
.

Figure 5.4: A manually derived mapping of the task set example on a 2 x 5 many-core
processor. The solid, dashed, and dotted arrows represent messages that are
sent to the first voter, the second voter, and between both voters, respectively.

5.5.1 Mapping

All task replicas, spares and voters of the same task have to be mapped to mutually exclusive
cores. As mentioned in Section 2.3.3 on page 36, there exist heuristic and solver-based
solutions to determine a feasible task mapping. In this example, the task mapping is
derived manually and follows a first fit approach, except that task replicas 73 and T are
placed one core further to the right. The unprotected 7, is mapped to its own core in
order to improve the load balancing and to prevent its state from being affected by a reset
of its core due to another task’s failure. The task mapping on a 2 x 5 many-core processor
is depicted in Figure 5.4.

5.5.2 Scheduling

For the given task set and mapping, Figure 5.5 on the next page presents a worst-case
schedule of cores C| ,, C ;, and C,,. In the worst-case schedule, the execution time of all
tasks equals their WCETs. Additionally, the SDS and the CDS are activated. Since the
worst-case schedule represents the complete hyperperiod P= maxy; P; = 20ms of the task
set, it includes the WCRT: of all tasks on the depicted cores.

All wrapper tasks and voters are scheduled on their local cores with the original task’s
period, so P/ = P] = P,. Since all tasks in the example task set have implicit deadlines,

l

82



5.5 Mixed-Critical Task Set Example

CDS

cDS |

~ ‘

| | | | | | | | | | | | | | |>L
T T T T T T

0 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 5.5: Schematic representation of the worst-case schedule on cores C, ;, C, ;, and
C,,. Task activations are indicated by arrows pointing upwards, absolution
deadlines by arrows pointing downwards. Colored horizontal lines designate
tasks that are activated but currently preempted by higher priority tasks.

so P, = D, the relative deadline of each task wrapper is advanced by the WCET of
the SDS. As shown in Figure 5.5, the relative deadline of all task wrappers of task 7] is

D] =D, —EASDS = (10— 1.5)ms = 8.5ms. Similarly, the relative deadline of each task
wrapper of task 7, also equals D) = 8.5ms and the relative deadline of each task wrapper
of task 7 is D] = 18.5ms.

The WCRTSs ]AQZ of all task wrappers on all cores are calculated using the fixed-point
iteration method. As shown in Figure 5.5, all advanced deadlines are met although task
wrapper job 73| on core C, ; is preempted twice by task wrappers 7' and 7, and once
by the SDS. Its WCRT R} = £, + 2(E, + E,) + E¢pyg = 454 2(2.5+2.5) + 1.5 = 16ms.
Note that task wrappers 7} and 7, cannot be preempted by the SDS, since SDS is only
executed after their advanced deadline, which is chosen such that the SDS finishes before
their next periodic activation.

For each task, both voters are offset by the maximum WCRT of any task wrapper of
the respective task. As shown in Figure 5.5, the WCRT of the task wrapper for task 73 on

core C,, is Ri= EA3 + EA1 = 7ms. This is shorter than the WCRT ]%% = 16 ms of the task
wrapper on core C, 3, since only two tasks are scheduled on core C, ,. Hence, the offset of

both respective voters Ol3 = Of,} is (Aji + maxy; feg = 16.25ms. The offsets of the voters of
task 7} and 7, are derived in the same way.

83



5 Software Fault-Tolerance Mechanism

In order to be able to trigger the SDS and activate a spare before the next perlod the
deadline of each voter D] is advanced by the WCET of the SDS E «pg and the WCCT C of
the respective message to start the SDS. For the given example task set, the relative deadline
of the voter of task 73 mapped to core C | is DV =D, ESDS—C (20—1.5—0.25)ms =

18.75ms. The fixed-point iteration method is used again to determine the WCRTs ﬁ]v

of all voters and check whether all voters meet their advanced deadlines. As shown in
Figure 5.5, the voter of task T; is preempted by the voter task 7, but still meets its deadline
in the worst-case. Thus, the complete task set is feasible.

5.5.3 Fault-Tolerance

Once the mixed-critical real-time task set is integrated with the software fault-tolerance
mechanism, it is protected from N, — M. task replica failures and single voter failures.
Figure 5.6a on the facing page depicts the schedule of the running system under the
presence of faults. As mentioned before, the boot duration is prolonged to match one
hyperperiod P =20ms. Hence, all task wrappers and voters are scheduled first after 20 ms.

All task wrappers are initially configured as spares and notify their respective voters
about their existence. Since there are more spares present in the system than configured,
the voters detect the system start. In this case, one voter becomes active, e. g., depending
on the core ID, and starts the first N; replicas of each replicated task. This mechanism
will initialize the software fault-tolerance mechanism as long as less than the configured
number of spares fail during the initialization boot process of the system.

In the next period, after 31 ms, a fault causes the task wrapper of task 7} on core C, , to
fail. This failure is detected by both voters. The active voter starts the CDS on core C,,.
The CDS deletes the failed task replica from the scheduler table, copies the code and static
data from the reliable external memory to the local core, and registers a new task wrapper
afterwards. Therefore, a new spare fz is available after 50 ms again.

The active voter additionally triggers the SDS on core C, ;. The SDS copies the internal
state from the fault-free replica it was informed about by the voter. Afterwards, the SDS
activates the local spare Tf’ such that in the next period, after 40ms, N, = 5 task replicas
are active.

The schedule is continued in Figure 5.6b. A soft error causes an OS failure in core C, ,
after 63.25ms. As a result, the voter V) on core C, ; is not notified by V. Therefore,
it becomes active and forwards its tallied result in case it has not been active already.
Additionally, the voter uses the reset service of the OS to reset the core C;, at the next
hyperperiod, i.e., at 80ms. The boot duration is extended to match the hyperperiod
P =20ms. Hence, all voters on core C,, are executed again after 100 ms, but are inactive.
Note that this is not shown in Figure 5.6b.

After 62ms, the task replica job 77, fails on core C, ;. Since this task has the period
P, = 20ms, the CDS is only started at 78.5 ms, after the voter 73, has detected the failure.
The CDS restores the task wrapper of task 73. Hence, the voters of 7} are notified by a
new spare on core C, ; afterwards. Note that this is not shown in Figure 5.6b anymore.
Since the system operates with 4 < Nj task replicas when the new spare becomes available,

84



5.5 Mixed-Critical Task Set Example

=
=

71 71
Y21 Via

72
2,1

=

7
a

i

IIII

ol
i

T7
boot 4]

N
,

20 22 24 26 28

Y] ST

!

42
+

34

w |
S
w
()

(a) After 31ms, task replica job 77, fails. The SDS activates spare i" and the CDS repairs the failed replica

such that the second spare iz is available after 50 ms again.

Cia . - Vll,n Vi, Vi 33

1 1 1 1
I n n n
k +

4 4 4 n n n n 4 4
+ + + + + + + + + + + + +

60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

(b) After 62ms, the task replica job T3, fails on core C, ;. Since task Tj is configured without spares, the
failed replica first becomes a spare after 100 ms before all five replicas are active again after 120 ms (not
shown). After 63.75ms, the OS on core C , fails. As a result, the other voters on core C, ; reset core

C,, at the next hyperperiod at 80ms. All voters on core C, , are executed again in passive mode after
100ms (not shown).

Figure 5.6: Schematic representation of an example schedule of the mixed-critical real-
time task set protected by the software fault-tolerance mechanism under the
presence of faults. The communication between the components is omitted
for the sake of clarity.

the active voter immediately starts the SDS and the failed task replica is finally restored at
120 ms after two periods P;.

Consider the case that instead of the task replica job 77, the OS of C, ; fails after 62 ms.
Then the task replica job 77, does not deliver a result neither. This is detected by the
voter job T}, which starts the CDS on core C, ;. Hence, the voter job 77, detects that

85



5 Software Fault-Tolerance Mechanism

the CDS is running already and issues the reset of the core C, ; at the beginning of the
next hyperperiod.

5.6 Summary

In this chapter, we have presented our software-based hardware fault-tolerance mechanism.
We have reasoned that a mechanism based on the NMR scheme is most suitable to increase
the reliability and availability of software executed on a many-core processor and can be
integrated with the system’s real-time constraints. Furthermore, the level of replication
can be adapted for each task such that the fault-tolerance mechanism supports mixed-
critical task sets. Additionally, we have selected a majority voter due to its low complexity
and since it does not produce ties.

The voter represents a SPOF in the system, thus it has to be reliable. We have proposed
to increase the reliability by using two fail-silent voters that check each other. The fail-
silent behavior is achieved by the encoded voting procedure that operates only on ANBD-
encoded replica results. The procedure returns the equality set that refers to M task replicas
that delivered a correct result as well as a dynamic signature D. Comparing the dynamic
signature with the static signature S, which is unique for each equality set, uncovers failures
in the control flow of the encoded voting procedure. The result of any replica that is
referred to by the equality set represents the tallied result. The integrity of the tallied
result is ensured since it stays ANBD-encoded all the time. However, the comparison
of the dynamic and the static signature as well as the final decoding of the tallied result
are subject to faults, too. We have discussed the residual SPOFs and include them in our
model of the fault-tolerance algorithm, which is presented in the next chapter.

To further increase the system’s fault tolerance, we have extended the NMR scheme by
a repair procedure. The repair procedure is activated by a voter when it detects a failed
task replica or a failure of the other voter. In order to operate with N task replicas even
after a replica failure, we have added spares to the systems. Spares are task replicas that
are not executed but can be activated by the voter. The code duplication service (CDS)
and state duplication service (SDS) are OS services that repair the failed task replica and
copy the internal state of a fault-free replica to activate the spare, respectively. In case these
OS services fail as well, the voter uses the inter-core reset ICR) mechanism to restart the
respective core.

To integrate the software fault-tolerance mechanism with a mixed-critical task set, the
original task function is encapsulated in a task wrapper that is mapped to mutual exclusive
cores together with both voters. We have shown how to select the voter offset and advance
the deadlines of task wrappers such that the system complies with its real-time constraints.
The fixed-point iteration method for the partitioned fixed-priority preemptive scheduling
policy is used to provide the respective real-time guarantees.

We have illustrated the functionality and the real-time capability of the proposed soft-
ware fault-tolerance mechanism in a comprehensive example. The example shows that
the mechanism tolerates component failures to protect mixed-critical task sets and meets
all deadlines. An experimental evaluation and implementation of the presented software
fault-tolerance mechanism is given in Section 7.3 on page 120.

86



Software Fault-Tolerance Framework

The implementation of a mixed-critical application on an unreliable many-core processor
is challenging and time-consuming, especially when real-time constraints have to be guar-
anteed. This task typically requires the cooperation of hardware experts determining the
SER of the many-core processor, safety analysts specifying the reliability and availability
targets depending on the obligatory safety standards, real-time specialists defining the task
set and its parameters, and software developers implementing the functionality of the
system and configuring the OS accordingly.

We propose a software fault-tolerance framework that provides all involved roles with
an interface to specify a mixed-critical task set, its safety and real-time requirements, and
the properties of the many-core processor. Based on this specification, the framework
employs a fault-tolerance analysis to derive the resulting reliability and availability of each
task on the target hardware. These results are used to adapt the software fault-tolerance
mechanism for each task such that the task’s fault-tolerance requirements are met with
minimum overhead in terms of system utilization, i.e., with the minimum required
number of replicas and spares. Thus, the proposed fault-tolerance framework alleviates
the integration of our software fault-tolerance mechanism with a mixed-critical real-time
task set.

In this chapter, we first present an overview of approaches to model a system in order to
assess its fault-tolerance properties. Next, we detail discrete time Markov chains (DTMCs)
as the underlying mathematical model of our fault-tolerance analysis. We show how to
model and analyze the proposed software fault-tolerance mechanism as a DTMC using
the PRISM probabilistic model checker. Afterwards, we present how our fault-tolerance
framework integrates the fault-tolerance analysis and its results with the fault-tolerance
mechanism. Finally, we demonstrate the functionality of our fault-tolerance framework
with a mixed-critical real-time task set example derived from a real-world application.

The work presented in this chapter is published in [AML*15, MAL*15, MAL*16].

6.1 Fault-Tolerance Models

In order to adapt the software fault-tolerance mechanism such that it achieves the target

reliability R and target availability A after the mission time t,, with minimum over-
head in terms of system utilization, the actual reliability R and availability A for a given
parametrization of the mechanism have to be known.

One way to determine these values is to implement the mechanism and measure the
actual reliability and availability of the system. However, realistic SERs are low and

87



6 Software Fault-Tolerance Framework

realistic mission times are long. Hence, it takes a huge amount of long measurements until
statistically significant values can be obtained.

Another way to determine the actual reliability and availability is to analyze a model
of the software fault-tolerance mechanism. Once the mechanism is modeled and all
parameters are known, the actual reliability R and availability A of the system can be
analyzed faster compared to measurements. For this reason, we present a model of the
software fault-tolerance mechanism in the following.

One approach to model a system in order to assess its reliability is to partition it into
independent components and represent it as a reliability block diagram [Bir14, p. 28]. If
the reliabilities of the components in the block diagram are known, the system’s reliability
can be derived from combinatorial calculations of series and parallel connections between
these components. For example, Equation (5.1) on page 66 calculates reliability of an
NMR system from the reliabilities of the components, namely the replicas and the voter.

Note that the reliability block diagram derives the failure rate of the system but does
not account for the mode and effect (consequence) of a failure [Bir14, p.72]. In reliability
engineering, these cause-to-effect chains are typically derived by a fault tree analysis (FTA)
or by failure mode, effects and criticality analysis (FMECA). In an FMECA all possible
failure modes, their effects, and their criticality are systematically assessed in an inductive
(bottom-up) way [Bir14, p.72]. In an FTA the failure-causes-to-effects are investigated in
deductive (top-down) way as a logic combination of faults [Bir14, p.76]. In this thesis, we
focus on the system’s reliability and availability. While we differentiate between two modes,
namely detected and undetected system failures, we do not consider the application-specific
effect of these system failures.

If a system contains a repair procedure, imperfect voters, or different failure modes,
it is complex in the scope of reliability analysis [Bir14]. For complex systems, the reli-
ability cannot be derived by a reliability block diagram and combinatorial arguments
anymore [Bir14]. For example, in an NMR system with a repair procedure, the number
of replicas changes over time. This dynamic value of N; is not captured by Equation (5.1)
on page 66, which therefore does not model the system correctly. Since our software
fault-tolerance mechanism contains a repair procedure, too, it cannot be modeled as a

reliability block diagram.

6.2 Markov Chain

The common ways to model reliability of complex systems are stochastic processes. In the
following, we give a basic overview of mathematical foundation of stochastic processes
based on [Ros14] and [Bir14]. Note that in this thesis, we do not contribute to the field
of stochastic processes but leverage existing approaches to model and analyze our system.

A stochastic process is a collection of random variables {X,}. The state space X is the
collection of all possible values the random variables can take on, 1. e., the sample space.
A sample path or realization of a stochastic process is the collection of values from the
state space that are assumed by the random variables in one realization of the random
process, €. g., X, =x;,X, = x,,... with x, € 2. The index ¢ denotes the time and is either
continuous or discrete.

88



6.2 Markov Chain

6.2.1 Discrete Time

If the index ¢ is discrete and the state space & is a discrete, finite, and countable set,
the stochastic processes is a discrete time Markov chain (DTMC) if it satisfies the Markov
property. The Markov property is

Pr(X, = x,| X, =x0, X, =x45..., X, =x,_,) =Pr(X, =x,|X, ,=x,_,), 6.1)
where x; € X are the states of the process. In other words, in a DTMC the transition to
the next state only depends on the previous state, which means it is memory-less. This
memory-less property implies that in order to predict the future states reached by the
DTMG, it is sufficient to know the current state. Note that the state changes only occur
at discrete time steps ¢.

The one-step transition probability 7 is the probability that the process, when in state
x; at time ¢, will next transition to state x; at time ¢t + 1, so

o =Pr(X, = x;|X, =x;). 6.2)

x x
Since the transition probabilities are probabilities, 0 < 7;'F' <1 holds. Furthermore,
Xj

since the chain must transition somewhere, Zx e nt 41 =1 holds.
]

If all one-step transition probabilities do not depend on time, so w2t = forall
XirXj

t, then the DTMC is called time homogeneous. In the following, we con51der only time
homogeneous DTMC:s.

A state x; € X is called absorbing state if 7
of the DTMC enters an absorbing state, it never exits this state again.

wx =1.In other words, once a realization

A (time homogeneous) DTMC is fully specified by the one-step transition probability
matrix P that contains all one-step transitions and the initial state distribution Pr(X, =
x,)=kforallx,e X and0<k < 1.

The n-step transition probability is

ﬂfc:’?xj =Pr(X,,, =x;|X, =x,). (6.3)

for n > 0. Note that the superscript (7) is an index and not an exponent. The n-step
transition probabilities satisfy the Chapman-Kolmogorov equations

— (n) - (m)
= Z T, 6.4)

xkE%

for all 2, m > 0. This can be also ertten as Pt"+m) = P()P(")_ By induction follows that
the transition probabilities after the 7' step can be calculated as P to the power of 7, so
P =P”. Asa result, it is possible to compute the probability of reaching any state x ;
after a particular discrete time ¢, given the one-step transition probability matrix and the
initial state distribution of the DTMC.

89



6 Software Fault-Tolerance Framework

6.2.2 Continuous Time

According to our fault hypothesis, failures occur at exponentially distributed, random
points on a continuous time axis. Hence, they cannot be modeled directly with a DTMC.

If the time index ¢ of a stochastic process is continuous and the state space & is a
discrete, finite, and countable set, the stochastic processes is a continuous time Markov
chain (CTMC) if it satisfies the Markov property. Note that CTMCs are also known as
Markov processes in literature. CTMCs are conceptually similar to DTMCs. However,
the transition probabilities Ty, x, AT replaced by transition rates P, In order to fulfill the
Markov property, the time spent in each state has to be exponentially distributed [Ros14,
p-373]. Hence, the time spent in a state x; before transitioning to state x; is exponentially

. ) 1
distributed with mean .

Xpxj

This property fits well to our fault hypothesis and allows to model a replica failure as
a transition between two states with the constant failure rate A. However, the periodic
executions that cause a fault to become active and lead to a component failure as well as the

repair times in our system is not exponentially distributed. Instead, we assume a constant
A

period P; and worst-case repair time B. Since this property requires a deterministic
distribution to model the time spent in a subset of states, our software fault-tolerance

mechanism cannot be accurately modeled by a CTMC.

6.2.3 DTMC for Fault-Tolerance Analysis

In order to incorporate exponentially distributed SERs with deterministic repair rates, we
leverage the periodic nature of the considered real-time system. The periodic nature allows
to discretize the time by considering a transition to the next state as the next period. For
example, we calculate the probability of a failure during one period but are not interested
in the exact time of the fault that caused the failure. At each discrete time step, i.e., at
each period, the state is changed only if a failure occurred. For this reason, we are able to
use a DTMC to model our software fault-tolerance mechanism and analyze the resulting
reliability and availability.

Note that there exist extensions of Petri nets such as discrete deterministic and stochastic
Petri nets (DDSPNs) [ZCH97] and stochastic activity networks (SANs) [SM00], which
support exponential and deterministic distributions for transitions between places and
states, respectively. However, compared to our approach these approaches are more
complex.

Reliability. In the following, we introduce how a DTMC model is analyzed and how its
reliability can be derived based on the example depicted in Figure 6.1 on the facing page.
The example system contains two task replicas. Hence, the number of alive replicas can
be modeled as the states of a DTMC. In state (2), both replicas are alive, in state (1) one
replica failed while the other is alive, and in state (0) both replicas failed.

Let f denote the probability of a failure of a task replica within the duration of one
period P;, so f =1—e~*"i. Note that the complete duration of the period is captured in
the task failure probability f although the task execution will be shorter in most cases.

90



6.2 Markov Chain

T = 1

Figure 6.1: A DTMC model of a system with two replicas and a repair procedure that
repairs one replica as long as the other replica is fault-free. The repair pro-
cedure fails with the same probability as a task replica f. The state number
represents the number of fault-free replicas. State (0) is an absorbing state
since no repair is possible anymore.

The reason is that failures in the OS kernel as well as bit flips in the task’s memory area
also result in task failures but occur during the complete period.

Assume that a failed replica is repaired within one period, as long as the other replica
is alive. The repair procedure fails with the same probability /. If both replicas fail, the
system cannot be repaired anymore.

The probability that either of the two fault-free replicas in state (2) fails is £ + f, thus
the transition from state (2) to state (1) has the probability 7, ; = 2f. The probability that
both alive replicas in state (2) fail within the same period is f - f, so the transition from
state (2) to state (0) has the probability 7r,, = 2. The probability of staying in state (2) is
my,=1—f?=2f.

When one replica failed, the realization of the DTMC is in state (1). The failed replica
is repaired within one period, but the repair procedure is subject to faults as well. The
probability that the remaining fault-free replica and the repair of the failed replica both
fail is /- f, hence transition from state (1 to state (0) has the probability 7, , = /2. The
other way round, the probability that the remaining fault-free replica as well as the repair
procedure of the other replica are both fault-free is (1—f)?, hence transition from state (1) to
state (2) has the probability 7, , = (1—f)2. In case the repair is successful and the remaining
replica fails or the repair fails and the remaining replica stays fault-free the state is not
changed. Thus, the probability of staying in state (D is 7, , = 1 —(1—f )*— f2 =2f —2f2.

In case both replicas have failed, the system is not repaired anymore. Thus, state (0)
is an absorbing state and the probability of staying in state (0) is 7,y = 1, therefore
Toy = 7o =0

All state transition probabilities can be represented in the one-step transition matrix P,
which is

1 0 0
P=(f2 2f =2f* (1—f)
froo2f 1= fr=2f

91



6 Software Fault-Tolerance Framework

Both task replicas are initially fault-free, thus the initial state distribution is Pr(X, =0) =0,
Pr(X,=1)=0,and Pr(X, =2) =1 0r (0,0,1) if represented as a vector.

With the transition matrix P and the initial state distribution, it is now possible to
calculate the probability of each state after an arbitrary number of discrete time steps, 1. e.,
periods. In reliability theories, the reliability R(t) is the probability of the DTMC not
having reached the failed state until time ¢. So, the reliability of the system is the sum
of all possible realizations of the DTMC until the given number of periods that do not
contain state (0).

Since the failed state is an absorbing state in our example, no realization that contains
state (0) will ever leave it. Thus, we can calculate the reliability of the system as the
probability of not being in state (0) at the specified time. The reliability of the modeled
system after t = nP; is R(nP;) = 1 —Pr(X, =0) =3, _» ni")o Pr(X, = x;). This can
also be represented in matrix notation, where (Pr(X, = 0),Pr(X = 1),Pr(X, =2)) =
(0,0,1)P".

For example, consider a period P, = 10ms and an (unrealistic) failure rate A =10.536 %

Thus, the probability of a failure per period f =1—e~*" =0.1, so the one-step transition
matrix is
1 0 0
P=(0.01 0.18 0.81
0.01 0.2 0.79

Furthermore, assume we are interested in reliability of the modeled system after ¢t =
100ms = 10P;, so » = 10. With the initial state distribution vector (0,0, 1), the state
probability vector after » = 10 discrete time steps is

(0,0,1)P* =(0.0956,0.179,0.725)

and the system is in state (0) with a probability of 9.56%. Thus, the reliability of the
system after ¢ = 100 ms is R(10P;) = 1—0.0956 = 90.4%.

In general it is not sufficient to calculate the probability of not reaching the failed state
at the specified time in order to determine reliability of the system. If the failed state is not
an absorbing state, the probability will include realizations that contain the failed state
but end in a fault-free state. However, the definition of the reliability is specified as the
probability that no operational interruptions will occur during a stated time interval.

Availability. In contrast to the reliability, the availability considers system failures and
the continuance of the system after a repair. So far, there is no difference between the
availability and the reliability in the example, since the system is either alive or it failed
and cannot be repaired anymore.

In order to demonstrate the difference between reliability and availability, assume that
the example system depicted in Figure 6.1 on page 91 fails as soon as one replica fails. In
other words, the system is only working if both replicas are fault-free, 1. e., if the system
is in state (2). In state (1), the system is now considered to have failed, but the repair
procedure allows the system to become fault-free again.

The point availability A,(¢) denotes the probability that the system provides the correct
service at a stated instant of time ¢, as defined in Section 2.1.2 on page 15. The point

92



6.3 PRISM Model

availability can be calculated as the reliability in the previous example, since it explicitly
includes realizations of the DTMC that contain the failed states (0) and (1). In other words,
the point availability is Ap(nP;) =Pr(X, =2) =3 4 = ﬂi:l’)z Pr(X, =x;).

The average availability A(z,,) is defined as the expected proportion of time in which
the system provides the correct service in (¢y,¢,,]. Let the mission time ¢, = nP; and
to =0. Then, the average availability is A(z,,) = i Zi';to Ap(t)= % " o Pr(X, =2).

The long-term availability A, is defined as the stationary or steady-state of the point
availability or average availability. It is calculated as A; =lim, ,  Ap(¢). Since the example
system still contains the absorbing state (0), which is never left once entered, the probability
of being in state (0) is Pr(X, = 0) = 1 for n — oo and probability of being in any other
state is Pr(X, =1) =Pr(X, =2) =0 for n — oo. Thus, the long-term availability A, for a
system that is able to fail completely is always A, =0. For this reason, we focus on the
average availability in this thesis and abbreviate it as availability in the following.

6.3 PRISM Model

For a simple system such as the previous example, the DTMC can be derived manually.
However, for more complex systems such as our proposed software-based hardware fault-
tolerance mechanism with its fail-silent voters and spares, a manual derivation of a DTMC
model is time-consuming and error-prone. Therefore, we generate and analyze the DTMC
model of our fault-tolerance mechanism using the PRISM probabilistic model checker
version 4.3 [KNP11, PRI15].

6.3.1 The PRISM Probabilistic Model Checker

The PRISM probabilistic model checker is a free and open-source software tool for formal
modeling and analysis of systems that exhibit random or probabilistic behavior. It sup-
ports DTMCs, CTMCs, Markov decision processes, and probabilistic timed automata as
mathematical models.

PRISM requires the system to be described in the state-based PRISM language. The
PRISM language allows to define several modules. Each module can have local variables.
The state of the system is defined by the local variables of all modules. The local variables
within each module are changed by a set of commands. Each command consists of a guard
and one or more updates. The guard is a predicate over all variables that has to be satisfied
in order to enable the updates of the command. Each update describes the transition
the module can make by assigning new values to the local variables. Each update is also
assigned a probability. The probability of all updates in one command has to sum up to
one. Each command can also be labeled by an action. Commands with the same action in
different modules are synchronized, so they make their transitions simultaneously. When
multiple commands are enabled in different modules, PRISM makes a probabilistic choice
and combines the probabilities of the commands’ updates. The PRISM language also
supports the use of global constants, e. g., for defining failure probabilities. An example of
a system described in the PRISM language is given in Listing 6.1 on page 95.

93



6 Software Fault-Tolerance Framework

6.3.2 Model of the Software Fault-Tolerance Mechanism

The PRISM model of our software fault-tolerance mechanism uses the following constants:
e Fr: the failure rate A; of the replicas

e Fs: the failure rate Az of the spares

Fv: the failure rate A, of the voter

e Fc: the failure rate A of the voter caused by residual SPOFs

T: the mission time ¢,

P: the task period P,
e Ni: the number of task replicas N,
e Si: the number of spares §;

Based on these constants, the PRISM model first calculates the number of periods within
the mission time Tp = T/P and the minimum number of active replicas required by the
NMR scheme Mi=floor (Ni/2)+1. Note that all constants have the same time base, e. g.,
hours, milliseconds, or cycles.

For each failure rate, the PRISM model calculates the probability of a failure after
one period and the probability of a correct period. Note that the complete duration
of the period is used to calculate the probability of a correct period and the probability
of a failure after one period, since bit flips in the memory as well as failures in the OS
kernel occur during the complete period. The probability of a task replica failure after
one period is dr = 1 — e """ and the probability of a failure-free period of the replica
is cr = 1 —dr = ¢ ™", Similarly, the probability of a spare failure after one period is
ds = 1—e "*" and the probability of a correct period of the spare is cs = 1 —ds.

For the voter, the probability of a silent failure after one period isdv=1—e"F"". As
explained in Section 5.2.3 on page 72, there exist residual SPOFs in each voter that can
cause a voter to fail in a non-silent way. In the following, we denote such non-silent voter
failures as critical. The probability of a critical failure after one period is dc =1 — e F°P.
As a result, the probability of a correct period of the voter is cv =1—(dv +dc).

The worst-case repair time Bis specified as the maximum of the boot duration and the
WCET of the CDS in Section 5.4.4 on page 81. This time is a multiple of the task’s period
P., since a repaired task is not activated before its next period. The ratio of errors that
affect only one task replica to errors that affect the OS kernel and therefore all replicas
on the same core is unknown. Therefore, we conservatively assume the worst-case repair

. A . . . .
time B is always required in the model of the software fault-tolerance mechanism. In the

B

following, let B denote the worst-case repair time in periods, so B = 5.

The PRISM model of our software fault-tolerance mechanism contains four modules:

94



o e N o v R W N =

—
o

11

6.3 PRISM Model

module voterl

vi [0..Bv] init Bv;

[V] v1=Bv -> cv:(vl’=vl) + dv:(vli’=1) + dc:(v1’=0);

[V] v1<Bv & v1>=2 -> cv:(vl1’=v1+1) + dv:(vl1’=1) + dc:(v1’=0);
[V] v1<2 -> true;

[R] v1>=2 -> true;

[R] vi=1 & v2=Bv -> (v1’=2);

[R] vi=1 & v2<Bv -> true;

[R] v1=0 -> true;

endmodule

module voter2 = voterl [vl=v2, v2=vl] endmodule

Listing 6.1: The two voter modules of the PRISM model. The second voter is a copy of

the first voter.

. The first module contains the variables for the number of alive replicas r, failed

replicas fr, alive spares s, and failed spares f£s. Additionally, the first module contains
the variables bz for the number of tasks that have been under repair for i periods,
with 7 =1,...,B. All variables have to be contained within one module, since the
repair procedure requires to modify all of them and updates can only assign new
values to the local variables in PRISM.

. The second module specifies the first voter. For simplicity, the module introduces

the constant Bv = B 4 2. It contains a variable v1 that denotes the state the first
voter is in: Bv for working, Bv-1 to 2 when under repair, 1 for failed silently, and 0
for failed critically. The complete voter module is shown in Listing 6.1.

. The third module specifies the second voter. The PRISM language supports module

renaming, i. e., the duplication of modules and substitution the local variable names.
We use this possibility and define the third module as a copy of the second module
that substitutes the variable v1 with the variable v2, as shown in Listing 6.1.

. The fourth module defines the order of the synchronized commands of the previous

three modules.

If two commands within the same module are enabled at the same time, local nondeter-
minism occurs. For DTMC models, PRSIM solves this local nondeterminism by randomly
selecting one transition of the module. However, replica, spare, and voter failures as well as
failures during the repair procedure occur simultaneously within each period. Therefore,
we split each period into the following B + 4 steps. All commands that belong to one step
are synchronized by an action.

Replica failures (RF): The number : of replicas that fail in the current period depends

on the probability of a replica failure after one period dr and the number of alive
replicas r. In order to reduce the number of states of the resulting DTMC, we
calculate the number of failed replicas directly in the model, following the binomial

95



O o N ! R W N =

—
o

6 Software Fault-Tolerance Framework

[RF] r=3 -> pow(cr,3) : (r’=3)

+ 3xpow(cr,2)*xdr : (r’=2)&(fr’=fr+1)
+ 3*xcr*pow(dr,2) : (r’=1)&(fr’=£fr+2)

+ pow (dr,3) : (r’=0)&(fr’=fr+3);
[RF] r=2 -> pow(cr,2) : (r’=2)

+ 2xcrxdr : (r’=1)&(fr’=fr+1)

+ pow(dr,2) : (r’=0)&(fr’=fr+2);

[RF] r=1 -> cr : (r’=1)

+ dr : (r’=0)&(fr’=fr+1);

[RF] r=0 -> true;

Listing 6.2: Code excerpt of the replica module of the PRISM model with the commands

96

that calculate the failure probabilities of 0-3 alive replicas following the
binomial distribution %B(r,fr).

distribution %(r,dr). An excerpt of the PRISM code for 0-3 alive replicas is shown
in Listing 6.2. Note that the probability of a failure-free period of the replica is
cr = 1 —dr. The number of failed replicas 7 is subtracted from the number of alive
replicas in the next period, so r’ = r —i, and added to the number of failed replicas
in the next period, so fr' = fr+1.

Spare failures (SF): In a next step, the number ; of spares that fail in the current

period is calculated in the same way as the number of failing replicas. The number
of failed spares ; is subtracted from the number of alive spares in the next period, so
s’ = s—J, and added to the number of failed spares in the next period, so fs’ = fs+j.

Last repair period (RB): Previously failed replicas are completely repaired after B

periods. Hence, the number stored in each variable bB is added to the number
of available spares £’ or to the number of failed spares fs’, depending on the

probability of a failure that occurred within the worst-case repair time B. The
probability of at least one failure during the B periods is calculated following the
binomial distribution 2 (bB,ds”). Note that we use the probability of a spare failure
after one period ds to determine whether the repair procedure was successful, since
like a spare the task is not executed when under repair. While this probability does
not include the probability of a CDS failure explicitly, it includes the probability of
OS kernel failure to which the CDS belongs.

repair period (Rz): All replicas under repairsincez = 1,...,B—1 periods are added
to the next repair phase, so bj ’=bz and b:’=0 with j =7 + 1.

Voter failures (V): In the second to last step of each period, the transitions of both

voters are evaluated. Each voter fails either silently (v’=1) with probability dv or
it fails critically (v’=0) with probability dc. Note that each voter is contained in a
separate module and the respective commands are labeled with the same action, so
they are active simultaneously. Thus, PRISM combines the probabilities of either
of them or both failing in this period. If the voter is not working and the repair
procedure was started in a previous period, so v<Bv & v>=2, the voter is repaired



6.3 PRISM Model

unless it fails again with probability dv or dc, respectively, so cv:v’=v+1. The voter
module is shown in Listing 6.1 on page 95.

Repair procedure (R): Finally, in the last step the number of active replicas and vot-
ers is evaluated and the repair procedures are started if the system has not failed
completely. If sufficiently many replicas are still alive, so r > Mi, at least one voter is
alive vi=Bv | v2=Bv, and no voter failed critically v1>0 & v2>0, then each failed
replica is repaired by adding it to the first boot phase, so b1’=fr and fr’=0. For each
missing replica Ni —r, a failed or alive spare is chosen randomly with probabilities
fs/(s+fs) and s/ (s+£s), respectively. A spare becomes a replica r’=r+1, s’=s-1
and a failed spare becomes a failed replica fr’=fr+1, fs’=fs-1. An excerpt from
the repair commands in the replica module is shown in Listing 6.3 on the following
page. If a voter failed silently and the other voter has not failed, e. g., vi=1 & v2=Bv,
the repair procedure of the failed voter is started, e.g., v1=2. If the other voter
also failed e. g., vi=1 & v2<2 or the voter failed critically, e. g., v1=0, it stays in the
respective state forever. The voter repair commands are shown in Listing 6.1 on
page 95.

6.3.3 Model Analysis

From the software fault-tolerance mechanism modeled in the PRISM language, the PRISM
model checker generates a DTMC model. The model checker supports the automated
analysis of quantitative properties of the DTMC model and provides four different model-
checking engines. In order to describe the properties of the model that should be evaluated
by the model checking engine, PRISM provides the PRISM property specification language
that subsumes several well-known temporal logics.

We are interested in the reliability and availability of the software fault-tolerance mecha-
nism. From the definition of reliability in Section 2.1.2 on page 15 follows that it represents
the probability of all paths through the state space that do not contain a failed state. Hence,
these paths contain only states with more than Mi replicas that are still alive, at least one
voter that is working, and no voter that has failed in a critical way. In the PRISM property
specification language, this is defined as P=7 [G<=Tp* (B+4) r>=Mi & v1>0 & v2>0 &
(v1=Bv | v2=Bv)], where Tp is the number of periods in the mission time. The first
operator P=7 states that we are interested in the probability of the path property stated
in square brackets. The path property is a formula that evaluates to either true or false
for a single path in a model. The first element of the path property is the global temporal
operator G<=Tpx (B+4). The global temporal operated is an invariance, so it evaluates to
true only if the following path property remains true in all Tp* (B+4) states along the
path. Note that model divides each period in B + 4 steps, so the complete mission time is
Tpx (B+4).

In order to evaluate the availability, we employ PRISM’s reward mechanism. This
mechanism allows to add a specific value to a reward variable whenever a guard evaluates
to true. As shown in Listing 6.4 on the next page, we add the value 1/Tp and the end of
each period (synchronized with the last step [R]) in case the fault-tolerance mechanism
produced a result, 1. e., more than Mi replicas are still alive, at least one voter is working,

97



O ® N ! R W N =

6 Software Fault-Tolerance Framework

[R] r<Ni & s=0 & fs=0 & (r>=Mi) & (v1=Bv|v2=Bv) & v1>0 & v2>0 ->
(b1’=fr)&(fr’=0) ;
//No spare available, repair failed replica to get a new spare
[R] r<Ni & s=0 & £s>0 & (r>=Mi) & (v1=Bv|v2=Bv) & v1>0 & v2>0 ->
(b1’=fr)&(fr’=min(N-r,fs))&(fs’=fs-min(N-r,fs));
//0nly failed spares available, they become failed replicas
[R] r<Ni & s>0 & fs=0 & (r>=Mi) & (v1=Bv|v2=Bv) & v1>0 & v2>0 ->
(b1’=fr)&(fr’=0)&(s’=max(0,s-(N-r)))&(r’=min(N,r+s));
//0nly alive spares available, so use as many as required or needed
[R] r=Ni-1 & s>0 & fs>0 & (r>=Mi) & (v1=Bv|v2=Bv) & v1>0 & v2>0 ->
(s/s+fs)
(b1’=fr)&(fr’=0)&(fs’=fs)&(s’=max(0,s-1))&(r’=min(N,r+1))
+ (fs/s+fs) : (bl’=fr)&(fr’=1)&(fs’=max(0,fs-1))&(s’=s)&(r’=1);
//0One replica failure, failed and alive spares available:
//choose randomly if a failed or an alive spare is used

Listing 6.3: Code excerpt of the replica module of the PRISM model with the commands
that repair replica failures depending on the number of available alive and
failed spares.

rewards "alive"
[R] (r>=Mi) & (v1>0) & (v2>0) & ((vi=Bv) | (v2=Bv)): 1/Tp; //Add
1/Tp for every complete period which a correct result
endrewards

Listing 6.4: The reward in the PRISM model used to calculate the average availability.

and no voter failed in a critical way. In the PRISM property specification language, the
statement R"alive"=7 [C<=Tp* (B+4)] calculates the cumulative reward for the complete
mission time Tp* (B+4). Since the mission time comprises Tp periods, the reward variable
"alive" represents the average number of periods without a failure, which equals the
definition of the average availability given in Section 2.1.2 on page 15.

Analysis of an Unprotected Task Execution. In order to compare the resulting
reliability and availability of a task protected by our software fault-tolerance mechanism
with an unprotected execution of the same task, the reliability and availability of the
unprotected execution have to be calculated. Although the PRISM model provides results
for a respective configuration N; = 1 and §; = 0, these values include the probabilities
of voter failures, which do not exist when a task is executed in an unprotected manner.
Therefore, the reliability and availability of the unprotected execution are calculated as
follows:

As defined in Section 2.1.2 on page 15, the reliability of an unprotected task 7' after the
mission time ¢, 1s

R(t,)=e rin (6.5)

m

on a processor core with a task failure rate A. As mentioned in Section 2.2.5 on page 31,
the task failure rate A = v A depends on the vulnerability factor v, of the task and the
SER A of the core.

98



6.4 Workflow

For a continuous and unprotected system, the average availability is computed according
to Equation (2.7) on page 18. The periodic nature of the real-time system allows to
discretize Equation (2.7) over time. Together with the definition of the point availability
in Equation (2.6) on page 17, the average availability in a periodic system is

At,)=

n
)= — E Pr{correct service after i periods|system new at : =0},

n54

where 7 is the number of completed periods in the mission time, so 7 =[ % |. In a system

without a repair procedure, the probability of a correct service after i periods is the
reliability after one period R, = R(P,) to the power of . Note that the reliability after
one period R, < 1 for realistic failure rates and periods. Thus, the average availability of
an unprotected task 7; in a periodic system is a geometric series, SO

Rp(1—Rp)
Z = 1_R) (6.6)

6.4 Workflow

In this section, we present our software fault-tolerance framework, which integrates the
analysis with our fault-tolerance mechanism. First we describe an algorithm that leverages
the PRISM model to determine the minimum number of necessary task replicas and spares.
Afterwards, we present the workflow, interfaces, and components of the framework before
we provide a comprehensive example.

6.4.1 Fault-Tolerance Analysis

The fault-tolerance analysis employs the PRISM model to determine the minimum number
of task replicas and spares that are required to achieve the target reliability R. and the target

availability fL of a task 7 with the period P; after the mission time ¢,,. The failure rate of
a task replica A7, a spare Az, a voter Ay, and the rate of critical voter failures A depend
on SER A and the vulnerability v of the respective component. The SER A of any core of
the many-core processor is typically specified by the hardware manufacturer or derived
from fault injection experiments. The vulnerability factor v of a component depends on
various properties including the size of the component in the memory, the hardware’s
robustness to faults, and the software implementation. Its value can be conservatively
approximated by fault injection experiments and field data or estimated by experienced
experts.

The fault-tolerance analysis algorithm is presented in Listing 6.5 on the next page.
It starts by checking whether the task’s execution has to be protected by the software
fault-tolerance mechanism at all. Therefore, the algorithm first calculates the reliability
and availability of an unprotected execution using Equation (6.5) and Equation (6.6). In
case the resulting reliability and availability are higher than the target reliability and
target availability, so R;(¢,,) > ]{-(tm) and A;(t,,) > I‘L(tm), the task is executed without
protection from the software fault-tolerance mechanism.

99



6 Software Fault-Tolerance Framework

(N,S,) faultToleranceAnalysis (]\él-,/L,Pl-,tm,AT,Af,AV,AC) {
//compare R and A of unprotected ezecution

Ri e e_ATtm ;
n= Ltm/PzJ >

Ai:RP(l_JS;)/n(l_RP); .
if ((R;,>2R;) && (A, >2A4,)) {
return (1,0);
}
//compare R and S with tincreasing N and S
for (N,=3; N +S§ +2<L|6|; N,+=2) {
M=[(N;+1)/2];
for (§,=0; ((§,<M) && (N, +S§,+2<Z|6])); S;++) {
(R,,A;) =
runPRISMModelChecker (A, Az, Ay, Ac,t,,,P;,N;, S,
if ((R,>R) & (A, >A)) {
return (N,,S);
}
}

}
return (NOT_FOUND) ;

Listing 6.5: Fault-tolerance analysis algorithm.

Otherwise, the algorithm initially selects the parameters N; = 3 and S, = 0, which
represent the smallest number of task replicas and spares required by the software fault-
tolerance mechanism. The algorithm uses the PRISM model to calculate the reliability
R.(t,)) and availability A,(z,) of the task for the selected parameter setting. If the resulting
reliability and availability are higher than the target reliability and target availability, so

R(t,)> R A(t,)and A(¢,)> A .(¢,,), the current parameter setting is returned.

Otherwise, the number of spares §; is increased until S; = M,. We set the maximum
number of spares to M; = [#], since the majority voter is unable to determine a result
if more than M, replicas are under repair in the same period. If the target reliability and
target availability are not achieved with the maximum number of spares M;, the number

of task replicas N; is increased by 2 and the number of spares S, is reset to 0.

The fault-tolerance algorithm continues to increase the number of spares and replicas
until the target reliability and target availability are achieved or all cores of the many-core
processor are used by the two voters, the task replicas, and the spares, so N, + S, +2 > | 6.
In the latter case, the required fault-tolerance level cannot be achieved by the software
fault-tolerance mechanism on the given many-core processor and a respective information
is returned.

100



6.4 Workflow

As a result of the fault-tolerance analysis, the parameters N, and §; are selected such that
the task achieves the target reliability and target availability with the minimum number
of task replicas and spares, and thus with minimum overhead.

6.4.2 Fault-Tolerance Framework

The software fault-tolerance framework combines the fault-tolerance mechanism with
the fault-tolerance analysis. The components and the workflow of the framework are
presented in Figure 6.2. The variables depicted on the left side of Figure 6.2 represent the
interface for the domain experts. For example, the task 7; and its period P, are defined by a

real-time specialist, the target reliability R ., the target availability z‘{i , as well as the mission
time ¢, are specified by a safety analyst, and the failure rates of all involved components
Az, Az, Ay, and A are determined by a hardware expert from the processor’s SER A and
the respective component’s vulnerability factor v, vz, vy, and v..

The fault-tolerance analysis is carried out for each task 7; € 7. The target reliability

]éi(tm) and target availability fii(tm) of each task 7; as well as the mission time ¢, are
specified by the developer. These values are typically derived from the system’s specifi-
cation, its environment, and the safety standards the system has to fulfill. As mentioned
before, the failure rate of a task replica A, a spare Az, a voter A, and the rate of critical
voter failures caused by the residual SPOFs A. are typically derived from fault injection
experiments, field data, or estimated by experienced experts.

As a result of the fault-tolerance analysis, the number of task replicas N, and spares S,
are known or the analysis showed that the specified fault-tolerance level cannot be achieved
with the given hardware and the software fault-tolerance mechanism, in which case the
workflow is canceled with an error.

The implementation of the elements of the software fault-tolerance mechanism pre-
sented in the previous chapter are contained within the framework. For each task, the
framework encapsulates the original task function in the task wrappers and it creates the
respective voters. Furthermore, it adds the CDS, SDS, the reset service as well as the

DMPS and drivers to the OS kernel.

Manual
or
external

mapping

Scheduling
AEEEEE I PR >
not feasible Analysis feasible

Run

SCS.c, CCS.c,
Task_Wrapper_j_i.c,
Voter_k_i.c

0S_Config.h

Fault-
Tolerance

T;,P; ——f Fault-

tolerance

Iéi, fii, t, —
Analvsi L N;, S, |Mechanism
Ag, Az Ay, A —f Analysis

Figure 6.2: Overview of the software fault-tolerance framework. The data flows are
shown as solid lines, the control flows are shown as dashed lines. The input
variables on the left hand side represent the interfaces for the domain experts.

YN

101



6 Software Fault-Tolerance Framework

The complete software is then mapped to the many-core processor, following the
constraints of the software fault-tolerance mechanism. The mapping is performed either
manually or by using existing approaches described in Section 2.3.3 on page 36. As a result,
each component is mapped to one core of the many-core processor, which is depicted as
0S_config.h in Figure 6.2 on page 101.

If a mapping is found, the mapped software is input to the scheduling analysis described
in Section 5.4.3 on page 79. In case the WCRTS of all task wrappers and voters are shorter
than their respective deadlines, the schedule is feasible and the system is ready to be
executed. If the schedule is infeasible, the task mapping has to be adjusted accordingly.

6.5 Real-World Application Example

Highly automated driving (HAD) is a prominent example of a safety-critical application
with high computational demands and real-time constraints. HAD applications typically
comprise several parts [LABT11]. First, various sensor data, e. g., from cameras, radar
devices, ultrasonic sensors, or Global Positioning System (GPS) units, is analyzed to detect
objects and features such as obstacles and the road surface. This detection is often executed
within the sensor itself and the detected objects and features are sent to a main controller.

In the main controller, the features and objects detected by separate sensors are merged,
a map of the environment is generated, and the position of the vehicle within this map is
estimated. At the same time, the trajectory is planned. The trajectory is a combination of
the high-level route to the destination and low-level maneuvers, e. g., due to recognized
traffic lights or obstacles.

Finally, the trajectory is used to calculate the steering angle and the acceleration or
breaking signal. These signals are sent to the ECUs that control the electronic steering,
the combustion engine or the electric motor, and the breaking system. As a real-time
system, the various parts of the HAD application are typically encapsulated in periodically
executed tasks.

6.5.1 Application Model

The goal of this example is to show that the proposed software fault-tolerance framework
can be applied to real-world applications. However, most HAD applications are currently
not designed for many-core processors but assume a shared memory architecture in the
main controller and an SMP OS. For example, most software implementations make
extensive use of look-up tables that are accessed by several tasks from different cores.
On a many-core processor, the look-up table would either be replicated to decrease the
access latency or the values would be computed during runtime, leveraging the additional
computational power. Additionally, a complete HAD application is too complex to be
executed within reasonable time on a simulated many-core processor, which is presented
in the next chapter.

Therefore, this example contains only a subset of four mixed-critical tasks. These four
mixed-critical tasks are already known from the example of the previous chapter and
Section 5.5 on page 81. The example is limited to a single many-core processor, which is

102



6.5 Real-World Application Example

equivalent to the scope of our software fault-tolerance mechanism. Note that a common
goal in the automotive industry is to combine the functionality of multiple ECUs in a
single or a few distributed control systems to reduce hardware costs.

6.5.2 Target Fault-Tolerance

The safety-criticality of the system and its components is derived from the safety standard
for the automotive industry, the ISO 26262 [Int11]. Note that this thesis does not argue
whether the ISO 26262 is applicable for HAD applications. We merely use the safety
standard to exemplify the functionality of our software fault-tolerance framework.

The ISO 26262 describes how hazard analysis and risk assessment determine the safety
goal and automotive safety integrity level (ASIL) of a safety item. In case the failure
of a safety item has a high severity, is difficult to control by the driver, and has a high
probability to occur, the safety item has the highest safety goal ASIL D. A safety item is
a system or array of systems that implement a function at the vehicle level [Int11]. The
ASIL of a safety item is inherited by all systems, which include elements such as a software
unit or task, respectively [Int11].

Considering transient hardware faults, the ISO 26262 specifies a probabilistic metric for
random hardware failures (PMHEF) that has to be achieved. For the safety goal ASIL D,

the ISO 26262 defines the random hardware failure target A <10 h™". For the safety
goals ASIL C and ASIL B, the random hardware failure targets are both A< 10707
For ASIL A, the ISO 26262 does not require to evaluate the safety goal violations due to
random hardware failures. However, the ISO 26262 is derived from the IEC 61508, the
international standard for electrical, electronic, and programmable electronic safety-critical
systems [Int10]. Similar to the ISO 26262, the IEC 61508 defines four safety integrity
levels (SILs). The IEC 61508 requires the average probability of a failure of a safety-critical
function to be < 1078 h™" for the highest SIL 4 as well as < 107> h™" for the lowest SIL 1,
respectively [Int10]. While the random hardware failure target of the ISO 26262 must not
be confused with the average probability of a failure of a safety-critical function required
by the IEC 61508, we nevertheless assume a random hardware failure target A<10-5h~!
for ASIL A in this example.

The ASIL requirement of each task of the example task set is defined in Table 6.1 on the
following page. Note that the ASIL requirements are chosen to represent a mixed-critical
application such as HAD. Task 7, has no safety-critical functionality, which is denoted as
class Quality Management (QM) by the ISO 26262.

For each of the remaining three tasks, we derive the target reliability ]VQ(tm) and target
availability /I(tm) We select the mission time ¢,, = 24 h, since we assume this the maximum
amount of time an HAD vehicle operates without any interruptions. Any interruption
leads to a restart of the application and many-core processor, respectively, which causes all
unprotected core-local memories to be reloaded and results in the fault-free state.

As mentioned in Section 2.2.5 on page 31, only a subset of faults causes a task to

fail. Therefore, we calculate the target failure rate of a task JV\T = fvTj depending on

the vulnerability factor v, of a task and the random hardware failure target . Without

103



6 Software Fault-Tolerance Framework

\%

Task P=D ASIL R A

T, 10ms D 0.999999985 0.9999999927
T, 10ms A 0.999985 0.9999927

T, 20ms C  0.99999985  0.999999927
I, 10ms QM - -

Table 6.1: A specified safety goal (ASIL) and the required target reliability R and target

availability A of the mixed-critical real-time task set example after a mission
time ¢,, = 24h.

anticipating the results of Section 7.4.1 on page 130, we set the task vulnerability factor v
t0 0.061. For example, task 7| with the safety goal ASIL D and the random hardware failure

target A<10%h " hasa target failure rate /v&TI =6.1-10"°h~". With Equation (6.5) on

page 98 and Equation (6.6) on page 99, we calculate its target reliability ]V€1 > 0.999999985

and its target availability fil > 9999999927 after the mission time ¢,, = 24 h. The respective
value for 7, and T; are calculated in the same way and are presented in Table 6.1.

6.5.3 Hardware Properties

In this thesis, we aim to increase the fault-tolerance of COTS consumer-grade many-core
processors in software. One example of such a processor is Adapteva’s Epiphany III, which
is produced in a 65nm process and has 32kB local SRAM memory per core [Adal3].
A single SRAM cell has an SER of 107* to 1072 FIT [Sla11]. This SER is constant for
processes from 250nm down to 50nm [Sla11]. The reason is that on the one hand, the
critical charge of particle strikes decreases with smaller cells, which increases the SER,
and on the other hand, the cell area shrinks, which decreases the cross section for particle
strikes and thus the SER [Sla11].

Hence, the memory of each core of the considered COTS many-core processor has
an SER A between 2.62 - 10_8% and 2.62-10°¢ % Around 10% of all soft errors in an
architecturally similar OpenRISC 1200 processor occur in the CPU’s register file, combi-
national logic, and the flip-flops [EET* 14, EET*15]. Thus, the SER of each core is set to
A<2.87-107° % in this example. Note that soft errors in the NoC are not considered in
the SER A, since we focus on the SER of a single core.

Considering the task vulnerability factor v, = 0.061, the failure rate of the task executed
on one core of the COTS many-core processor is A < 1.75- 107 % With this failure rate
A, the unprotected execution of any task on one core of the COTS many-core processor
results in the reliability R = 0.99999974 and the availability A = 0.99999987 after the
mission time ¢, = 24h.

104



6.6 Summary

6.5.4 Software Fault-Tolerance Framework

The software fault-tolerance framework uses the fault-tolerance analysis algorithm for
each task of the example task set to determine the minimum number of task replicas and
spares that are required to achieve the target reliability and target availability.

Since task 7} is not safety-critical, it is executed without any protection. The previous
calculation of the reliability R =0.99999974 and availability A =0.99999987 of an unpro-
tected execution of any task on one core of the COTS many-core processor shows that

target reliability ]VQZ =0.999985 and target availability fiz =0.9999927 of task 7, with the
safety goal ASIL A are achieved without the software fault-tolerance mechanism. However,
the target reliabilities and availabilities of task 77 with ASIL D and task 7} with ASIL C
are not met without a fault-tolerance mechanism.

Based on the fault injection experiments presented in Section 7.4.1 on page 130, we
assume a task vulnerability factor v =0.061, a spare vulnerability factor v~ =0.05484,
a voter vulnerability factor vy, = 0.7031, and a vulnerability factor v, =4.881- 107 of
critical voter failures. With these vulnerability factors and the SER 1 =2.87-107¢ % of
one core of the considered COTS many-core processor, the analysis of the PRISM model
of our software fault-tolerance mechanism with N; = 3 task replicas and § = 0, spares
results in the reliability R = 0.9999999965 and the availability A = 0.9999999931 after
a mission time ¢, = 24 h. Hence, the fault-tolerance analysis determines that the target

reliability Iél = 0.999999985 and target availability A1 = 0.9999999927 of task 7, with
safety goal ASIL D as well as the target reliability ]V€3 =0.99999985 and target availability
A; =0.999999927 of task T with the safety goal ASIL C can both be achieved with the

lowest possible number of replicas N = 3 and spares §; =0.

With this result of the fault-tolerance analysis algorithm, the software fault-tolerance
framework replicates the respective tasks three times, encapsulates them in the task wrap-
per, initializes the necessary voters, and generates all components of the repair procedure,
as shown in Figure 6.2 on page 101. The resulting task set is mapped to the cores of the
many-core processor with the additional constraint that task replicas, voters, and spares of
the same task have to be mapped to mutually exclusive cores. Note that the replicas and
voters of separate tasks can be mapped to the same core.

In order to evaluate different configurations of the software fault-tolerance mechanism
in the following and to create a more interesting mapping problem, we arbitrarily modify
the parameters N, and S; of the task set as follows: Task 7| has N; =5 replicas and §;, =2
spares, task 7, has N, = 3 replicas and S, = 1 spare, and task 7} has N; =5 replicas and no
spares, so S; = 0. Note that these configurations achieve a higher reliability and availability
than required by the safety standard. The task set example with modified parameters is
shown in Table 5.1 on page 82. The task mapping of the mixed-critical task set is presented
in Section 5.5.1 on page 82.

6.6 Summary

In this chapter, we have presented our software fault-tolerance framework. The goal of
the framework is to ease the application of the software-based hardware fault-tolerance

105



6 Software Fault-Tolerance Framework

mechanism described in the previous chapter. Therefore, the framework provides inter-
faces to describe the application as a mixed-critical real-time task set, to specify the safety
requirements in form of the target reliability as well as the target availability of each task,
and to provide the hardware properties as the SER per core and the vulnerability factors
of the software components. The functionality of the framework is demonstrated by
an example derived from a real-world application. The example shows that the safety
requirements of some tasks of a mixed-critical task set can only be achieved on a COTS
consumer-grade many-core processor when the software fault-tolerance framework is
employed.

We have presented a fault-tolerance analysis algorithm to determine the minimum
numbers of task replicas and spares that are required to achieve the target reliability
and target availability of each task. Our fault-tolerance analysis employs the PRISM
probabilistic model checking engine to determine the resulting reliability and availability
of a task protected by a specific configuration of the software fault-tolerance mechanism.
The input of the probabilistic model checking engine is a model of our fault-tolerance
mechanism in the PRISM language. The underlying mathematical concept of this model is
aDTMC. In Section 7.4 on page 130, we compare the results of our PRISM model with the
values obtained from an experimental evaluation of the proposed software fault-tolerance
mechanism.

106



Evaluation

In this chapter, we experimentally evaluate the proposed mechanism presented in the
previous chapters. First, we introduce the experimental setup, 1. e., the many-core processor
simulator and the fault injection method. Then, we experimentally verify the dynamic
guaranteed service (GS) communication concept presented in Chapter 4 on this simulated
many-core processor. Next, we detail the implementation of our software-based hardware
fault-tolerance mechanism presented in Chapter 5 and measure the achieved reliability
and availability as well as the generated overhead in terms of system load. Finally, we
compare the measured fault-tolerance with the results obtained by the fault-tolerance

analysis method presented in Chapter 6.
The work presented in this chapter is published in [MFRC15, MAL*15, MAL*16].

7.1 Experimental Setup

In the following, we present the cycle-accurate and bit-accurate (CABA) many-core proces-
sor simulator. Afterwards, we introduce our fault injection mechanism that is part of this
simulator.

7.1.1 Hardware Simulator

In contrast to higher-level simulations such as instruction-level or task-level, all timing
effects such as the contention on the NoC are accurately simulated at CABA level. This
allows us to precisely evaluate the real-time capability of the software. However, this
high accuracy comes with the disadvantage of a slow simulation speed. An FPGA imple-
mentation of the many-core processor and the fault injection extension can decrease the
runtime of a single experiment significantly. However, various experiments with different
injected faults are necessary to generate statistically meaningful results. In contrast to the
FPGA implementation, the single-threaded CABA simulation can easily be executed in
parallel on modern multi-core servers or server clusters. Therefore, all experiments were
conducted on a CABA many-core processor simulator.

Our simulator is based on SoCLib! [PBAM*09]. SoCLib is an open-source platform
for virtual prototyping that includes a library with several virtual intellectual property
(IP) components, such as CPUs, timers, caches, memories, crossbars, NoCs, and TTY
interfaces. These virtual components communicate with the VCI protocol [On-01]. The

!Subversion (SVN) revision 2581 from January 20, 2015

107



7 Evaluation

VCI protocol specifies the communication between an initiator and target component
based on requests and responses.

SoClib is based on SystemC, an American National Standards Institute (ANSI) stan-
dard C++ class library for system and hardware design which includes an event-driven
simulation kernel [IEE12]. To speed up the simulation, we use the open-source System-
CASS library? [BPGO04] instead of the original SystemC simulation engine. In contrast to
SystemC, SystemCASS was optimized for SoCLibs CABA components and uses static
scheduling, which is enabled by a statically derived signal dependency graph [BPGO04].
The many-core processor simulator that uses the SoClib and SystemCASS libraries is
compiled with GCC version 4.7.3.

Core Design

The simulated processor is configured in the style of a COTS many-core processor, as
defined in Section 2.2 on page 19. Each core is comprised of a CPU with a 32 Bit little endian
Microprocessor without Interlocked Pipeline Stage (MIPS) architecture, 64KiB RAM, a
timer, an inter-core reset (ICR) mechanism, a TTY interface, and a network interface (NI)
connected by a local crossbar, as shown in core C, , of Figure 7.1 on the facing page.

The MIPS32El CPU provides a RISC instruction set and has a pipeline with five
stages [Uhl05]. The on-chip memories are uncached since they are directly implemented
on the chip and can be accessed with low latency. The floating point unit is turned
off since we do not assume a floating point unit (FPU) to be available at each core of a
many-core processor. For this reason, the application uses software-implemented floating
point operations. The timer is provided by SoCLib’s XICU component. The core-local
crossbar implements a round-robin arbitration policy in case of conflicts, i.e., in case
several initiators try to reach the same target. Since SoCLib’s RAM component does not
support multiple banks, we added two RAMs to the chip. One RAM component contains
the .mailbox section and the other component the remaining sections.

Network-on-Chip

The simulated processor contains y - x cores C;; € ¢ with j = {1,2,...,y} and i =
{1,2,...,x}, which are connected by the Distributed, Scalable, Predictable Interconnect
Network (DSPIN). The DSPIN [MPGS06] is a 2D packet switching NoC that uses a di-
mension order (XY) routing policy with wormhole switching and round-robin arbitration.
The DSPIN implementation provided as a virtual component in SoCLib does neither
support virtual channels nor does it support different clock domains.

Following the VCI protocol for an interface to another communication fabric, the NI
consists of two parts, the initiator NI and the target NI. As explained in Section 2.2.3 on
page 23, if request and response packets were transmitted in the same NoC, deadlocks could
arise due to dependencies at message level [HGRO7]. Therefore, the processor contains
two NoCs, one for the requests and one for the responses, as depicted in Figure 2.4 on
page 24. The flit size in the request network is 39 bits and the flit size in the response
network is 32bits. The initiator NI translates the VCI requests, e. g., from CPU on core

2SVN revision 58 from October 14, 2015

108



7.1 Experimental Setup

Figure 7.1: The architecture of the simulated many-core processor with 5-2 cores. The
cores are connected by the request NoC (dark) and the response NoC (light).
Both NoCs also connect the external read-only memory (ROM) and actu-
ator (ACT) interface. Core C,, is shown with its internal components, a
MIPS32El CPU, two RAMs, a timer (INT), an ICR mechanism (MBX), a
TTY interface, and an NI.

C,, into a packet comprised of multiple flits, which are sent through the request NoC.
When the target NI receives all flits of a packet, it translates it back to a VCI request
and forwards it to the local target component, e.g., the RAM on core C, ;. The local
target component receives the request and creates a response, e. g., the requested data or
information about the success of a write operation. This response is then sent to the
response port of the target NI that translates it into flits and sends them through the
response NoC. Finally, when the initiator NI received all flits from the response network,
it forwards the VCI response to the requesting component, the CPU on core C, ; in this
example.

Figure 7.1 depicts the architecture of a simulated many-core processor with 5-2 cores
as well as the external ROM and actuator interface. Core C, ; is shown with its internal
components. All cores are connected by two DSPIN NoCs, one for transferring requests
and one for transferring the corresponding responses.

Memory Map

The simulated processor provides a 32 bits flat global address space. Each CPU can access
the components of the other cores via the NoC. The complete memory map is shown in
Table 7.1 on the following page. In the address, the first two nibbles decode the row and
column of the core. We extended the instruction set to map all addresses of the very first
core, 1. e., all addresses that start with 0x00, to the local memory of the executing core,
so one executable can be loaded on any core. The third nibble of the address decodes the
core-local component. To implement the MPU functionality in the simulator, we adapted
the NI to allow write requests only to the .mailbox section in any other core’s RAM.

109



7 Evaluation

Address

From To Element
0x0000 0000 0x00ff ffff Mapped to the local core

0x1100 0000 0x1100 f000 External-write-protected RAM bank of core C, |

0x1110 0000 0x1110 1000 Unprotected RAM bank (the .mailbox section)

0x1120 0000 0x1120 0010 Memory-mapped TTY interface

0x1130 0000 0x1130 1000 Timer interface (SoCLib XICU component)

0x1140 0000 0x1140 0300 Reset interrupt trigger (SoCLib Mailbox component)

0x1150 0000 0x1150 0004 Output interface for RTOS trace; data is converted
into a trace file by simulator

0x7:00 0000 Oxjiff ffff Core C]-)Z- with j ={1,2,...,y}and i = {1,2,...,x},
same setup as core C

0x2000 0000 0x2000 a000 ROM bank 0

0x2010 0000 0x2010 a000 ROM bank 1

0x2020 0000 0x2020 a000 ROM bank 2

0x2030 0000 0x2030 0020 Virtual actuator interface; data is stored with a time-
stamp externally

Table 7.1: The memory map of the simulated many-core processor.

In order to be able to determine the load of each core, we employ the tracing facility of
the RTOS on each core. The tracing events are stored in a special memory section. All
data written to this section is stored in a trace file outside the simulator together with the
current number of simulated cycles.

To implement the ICR mechanism, a mailbox component was added to each core. Note
that the mailbox component is not to be confused with the .mailbox section in the RAM.
The mailbox component is provided by the SoCLib library and provides memory-mapped
interrupt triggers. It is configured to provide as many triggers as cores, such that each core
is able to reset another core. Note that the interrupt signals are point-to-point connections
and independent of the NoC.

In our hardware model, we assume a reliable external memory to be connected to the
processor. To mimic a ROM with multiple banks, we attached three uncached ROM:s
of size 40KiB to the NoC. When the simulator starts, each ROM component loads the
sections of a specified file in the Executable and Linkable Format (ELF).

Depending on its ID, the CPU fetches the first instructions from the respective external
ROM over the NoC. These first instructions copy the respective . text and . data sections
for a voter, a task replica, or the unprotected task core from the ROM into the unreliable
core-local RAM. After the copy routine, the execution of the OS kernel is started by
setting the program counter (PC) to a start address in the core-local RAM. Note that the
selection of which core loads which sections can be done completely in software, too.

In order to analyze the reliability and availability of the simulated system, an additional
virtual actuator interface (ACT) is added to the NoC. All data written to this virtual

110



7.1 Experimental Setup

actuator interface is stored outside the simulator together with a timestamp given in
simulated cycles. Since the application and its timing requirements are statically known,
the timestamp and value of the generated result can be compared with its deadline and
the expected correct value. This way, we can calculate the fault-tolerance of the simulated
system.

7.1.2 Fault Injection

Under normal operating conditions, the occurrence rate of faults is very low and requires
extensive experiments, e. g., measuring the soft errors in 64 devices with 7 Gbits SRAM
cells in total at 2552 m altitude for 6702 h of operation [ASM™12]. In order to decrease the
experimental effort and speed up the experiment duration, fault injection is a commonly
used technique [HTI97].

Faults can be injected either at hardware-level or in software. Hardware-implemented
fault injection methods based on heavy-ion radiation, pin-level injection, or electromag-
netic interference require a dedicated equipment and a complex setup [HTI97]. In contrast,
software-based fault injection approaches do not require specialized hardware and allow
repeatable experiments by adding fault injecting code to the target software. However,
these modifications influence the system under test and can cause side effects. By injecting
faults in a simulated hardware platform that executes the software under test, researchers
have limited the side effects without requiring specialized equipment [DJPI9%6].

The fault space of all possible bit flips at all possible points in time is too large to
be evaluated completely within reasonable time, even if only single bit flips are consid-
ered [SHD*15]. Following the physical nature soft errors, we choose a random sampling
approach: faults are injected in random locations at random points in time. The spatial
fault distribution follows a uniform probability, whereas the temporal fault injections are
exponentially distributed. Hence, the more experiments are performed the better is the
statistical approximation of the reliability and availability.

Compared to the related work presented in Chapter 3 on page 41, our fault injection
mechanism does not assume an abstract task-level fault rate but is based on the SER of
the physical hardware. Furthermore, our fault injection mechanism is not restricted
to single bit flips but generates multiple faults distributed randomly in time and over
components. We extend the SoCLib-based many-core processor simulator by a fault
injection mechanism. As a CABA simulator, the simulated level of detail allows to inject
all faults specified in our fault hypothesis present in Section 2.2.5 on page 28. This
statistical fault injection on microarchitectural simulators can provide early and accurate
reliability characterization [KTCG15]. In the following, we describe the fault injection
implementation in the memories, register files, and the NoC.

Core-Local RAM

To inject soft errors in the core-local memories, we extended the RAM component used
by each core. The SER A per core is provided as input parameter to the simulator. It is
used to calculate the fault injection cycle ¢, at which a soft error is injected. Follow the

inverse transform sampling method, this point in time ¢, is calculated by (7.1) [Dev86],

111



7 Evaluation

where U is a uniformly distributed random number within the interval (0, 1) generated
by the C++ rand()/ RAND_MAX statement.

t = M 7.1)

When the simulator reached the fault injection cycle ¢/, the error is injected by flipping
one randomly selected bit of a randomly selected memory cell following a uniform distri-
bution. Additionally, the next fault injection cycle ¢, is computed. Note that soft errors
affecting two memories in separate cores can occur in parallel, since each core has its own
memory component. A visualization of the temporal and spatial distribution of the faults
is given in figure Figure 7.2.

é 0.04 | | § 0.004
5]
= &
5 5
bS] Q
3 3
E 0.02 |- . v 0.002
= ke
e 2
o | | | O
0 02 04 06 08 1 0 0.5 1 1.5
Time in cycles -10° Address -10*
(a) In time (b) In space

Figure 7.2: A histogram with 250 bins of the fault injection times and core-local memory
locations with an SER A =1.1- 1077 after 819,340 injections.

Core-Local Register File

Soft errors also affect the CPU and its internal components. To include such errors in
our simulation, we inject bit flips in the register file. Similar to the core-local memory,
the fault injection mechanism waits for an exponentially distributed random number of
cycles and then flips a random bit in a randomly selected register. Note that the PC as part
of the register file is subject to these bit flips as well.

Ebrahimi et al. [EET* 14, EET*15] analyzed the soft error distribution for the Open-
RISC 1200 processor, which is architecturally very similar to the simulated MIPS32EI
with its 32 bit RISC architecture and the five-staged pipeline. For this processor with 4KiB
cache and 32 registers the authors found that for different embedded workloads 90% of
soft errors affect the cache. Less than 1% of faults affected the combinational logic and
the flip-flops. Since the effects of such faults, e. g., in pipeline, the arithmetical logical
unit (ALU), and the integer multiplication and division unit, lead to wrong register values
in most cases, no additional faults were injected there. Ebrahimi et al. found that the

112



7.1 Experimental Setup

remaining 9% of faults affected the register file. Following these results, we set the SER
for faults in the register file to 10% of the SER A for the core-local memories.

Network-on-Chip

Apart from the core-local components like RAMs and CPUs, soft errors also affect the
NoC. They can result in bit flips in the flits currently stored in the router and NI buffers.
A bit flip affecting the first flit results in the packet being delivered to the wrong address. In
most cases, this address either does not exist, is protected by the MPU, or is badly aligned.
Thus, the probability of a bit flip causing a packet to overwrite existing data stored in a
.mailbox section is low. A bit flip in the second flit that decodes the VCI request is either
masked or causes the NI to reject the packet. A soft error affecting the third flit causes
wrong data to be written to the correct memory address.

The combinational logic and the flip-flops of the NI and the router with its internal
crossbar are affected by soft errors, too. These soft errors in logic can cause a flit to be
dropped, forwarded to the wrong output port, or manipulate its data. As a result, the
effects are similar to soft errors affecting the occupied NoC buffers.

Apart from particle strikes, soft errors in the long inter-router wires are caused by
crosstalk coupling [RFZ]13, FA12]. Crosstalk coupling is the result of electromagnetic
interference that occurs under specific transition patterns between parallel wires [RFZ]13,
FA12]. Crosstalk coupling causes glitches and delays, which again result in bit flips in
the flits currently sent via the wire. However, an analysis of the crosstalk coupling in
the inter-router wires would require a complete synthesis of the simulated many-core
processor and therefore is out of scope of this thesis.

From a packet point of view, the end-to-end fault rate depends on its size, its route
through the NoC, and the router design [VWOH15]. Hence, fault injection at the target
NIs has to determine the fault rate for each packet separately. Additionally, the traffic
pattern and contention it causes within the NoC affects the fault rate of each packet, since
a packet that is blocked and stored in a router buffer is subject to soft errors for a longer
period.

Therefore, we inject faults directly within the DSPIN routers. Similar to the fault
injection method in the core-local RAMs and register files, a random bit in a randomly
chosen element of a randomly selected FIFO input buffer is flipped after an exponentially
distributed random amount of cycles.

In the simulated many-core processor, every router has 5 input ports and each port has
a FIFO buffer for 4 flits. The flit size in the request network is 39 bits and 32 bits bits in
the response network. Thus, a router of the request network provides 98 bytes of SRAM,
which is equivalent to 0.146% of the size of the core-local SRAM. In order to include faults
from crosstalk coupling in the wires as well as in the combinational logic and the flip-flops
of the router and the NI, we set the SER per router to 1% the memory fault rate A.

113



7 Evaluation

7.2 Dynamic GS Communication

In this section, we use the CABA simulated many-core processor described in the previous
section to evaluate our limited packet injection rate approach. This approach is presented
in Chapter 4 and guarantees GS communication in the DSPIN NoC, which supports only
best-effort communication in hardware.

The experiments are performed on the many-core processor simulator with deactivated
fault injection. The parameters of the simulated hardware are as follows: The simulated
processor is configured to contain 16 cores with x =y =4 . The packet size in the request
and the response network is |p,| = 31lits, the latency of a router is L, = 3cycles, the

blockage latency in case of a collision is LAC = 4cycles, the latency of the destination core
is L s = 2cycles, and the bandwidth of any link [, € L is b =1 Cf}%.

In order to evaluate our approach, we are interested in the transfer latencies and the
load on the links. Both values are obtained for the SystemC trace generated by the DSPIN
NoC. In order to decrease the simulation runtime and to minimize side effects, all software
is implemented at assembler level without an OS.

In this section, we first present different traffic patterns that are used for the evaluation
of the limited packet injection rate approach. Next, we measure the transfer latencies of
a selected traffic pattern under different packet injection rates. These measurements are
compared to the WCTL and corresponding packet injection rate in the following. In order
to indicate the level of pessimism introduced by our approach, we finally measure the load

on the links for different injection rates.

7.2.1 Traffic Patterns

. . . ﬁ
First, we describe the traffic patterns, i. e., the set of all request packets &, that are used
to measure the transfer latencies in the following experiments.
Unfortunately, the traffic pattern that results in a transfer latency as long as the theoret-

ical WCTL £ is unknown. Such a traffic pattern requires a request packet to be blocked
by one packet from all other sources in the request NoC and the corresponding response
packet to be blocked by one packet from all other sources in the response NoC as well.
This behavior is difficult to achieve since packets for all sources have to collide in each
network. It is trivial to create a traffic pattern in which all packets collide in the request
network by forcing all packets to use a single common link. However, due to the dimen-
sion order (XY) routing policy, this single common link is located between a router and
an NI of a core. Thus, all response packets are injected one after the other and do not
collide in the response network. Note that in order to derive the WCTL, we assume there
is a traffic pattern where all packets collide in the request NoC and in the response NoC.

In the following experiments, we use two well-known traffic patterns: The first traffic
pattern maximizes the transfer latency in the request NoC. This latency traffic pattern is
achieved if all sources send packets to the same destination with their maximum allowed
packet injection rate F, as illustrated in Figure 7.3a on the facing page. Since all sources
inject packets with a common destination, all request packets potentially collide in the last
link between the request NoC and the destination core’s NI. The request packets with the

114



7.2 Dynamic GS Communication

Cii Cin Cis Cis Ciy Cin Cis Ciq
TN LN W50 Y < N Y Ve Vi
\ I~y @ ’ \' @y Q™ \‘
C2 1 C22 C23 C24 C2 1 C22 C23

J
.4
o
Ij
P
<
A%
l"
P
<4
J O
L7

P
X
=15
AWK
<F
P| %
T 4
A
A 4

Ci Ci2 Cis Cia Cia Cia Cis Cia
A LY y y A Ao L, L
2 S > > i AN ANDN N
(a) Latency (all-to-one) traffic pattern (b) Throughput (uniform all-to-all) traffic pat-
tern

Figure 7.3: Visualization of the packet routes in the request NoC for two traffic patterns.

highest number of hops from source to destination arrive at the last link after all other
request packets and hence are potentially blocked by all other packets.

The opposite extreme traffic pattern balances the traffic optimally in the request NoC.
Since this maximizes the network’s throughput, it is also known as the worst-case through-
put traffic pattern [TDO2]. In the throughput traffic pattern, each source core C; ; sends
packets to the destination core C,_.,, .., as shown in Figure 7.3b.

The third traffic pattern we employ in the following experiments is the random tratfic
pattern. In this traffic pattern, each core sends packets to other randomly selected cores.
Two consecutive request packets can be sent to different cores. The random destination
addresses are computed offline.

7.2.2 Transfer Latency Measurements

In a first experiment, we measure the transfer latencies under the latency traffic pattern,
so all cores send request packets to core C, ;. Due to the router-level flow control, an NI
cannot inject new request packets into the request NoC if the input buffer of the first
router is full. Since we want to capture the maximum latency of each packet, we set the
buffer size of both NoCs to 50 packets and 150 flits, respectively. Each source sends 50
request packets, so all NIs are always able to inject new packets.

Figure 7.4 on the next page shows the packet injection times and the corresponding
response packet receive times of core C,,. Note that core C,, sends packets with the
hlghest number of hops to the destination, which results in the worst-case traversal latency
L¢.

Figure 7.4a on the following page shows the latencies in the original, synchronous
version of DSPIN, where the NIs wait for the response packet while the CPU is stalled.
Without decreasing the packet injection rate (O NOPs), the transfer latency of the first
packet sent from C, , is 138 cycles. This is due to cores closer to the destination which

115



7 Evaluation

0 NOPs

A [ATATATATA[A[A[ATATATATATATATATATNATATATATAIATAT
snors | [T LTSI T T LT U

VIV IVIVIVIIV V

0 500 1,000 1,500 2,000 2,500 3,000

3,000

Cycles
(a) With synchronous NoCs

| | | !
1,000 1,500 2,000 2,500 3,000
KA A A A NN AN AN A AN A N A A A A AR AR A A A AN A A A AN AN A AN A A A A
8 NOPs
\, ‘ ‘ \,
0 500 1,000 1,500 2,000 2,500 3,000
AAAAAAdAAAAAAAAARAAAANAAAAARAAARA
11 NOPs
| { | | [
0 500 1,000 1,500 2,000 2,500 3,000
Cycles

(b) With asynchronous NoCs

Figure 7.4: Trace of 50 request packet injection times and the corresponding response
packet receive times under the latency traffic pattern within the first 3,000
cycles of source core C,,. Dark blue filled up arrows represent injected
request packets and light blue empty down arrows represent arriving response
packets. Each trace represents a different packet injection rate implemented
by a different number of NOP instructions between two consecutive packet
injections.

have a shorter traversal latency and inject multiple packets before the request packet of
first packet sent from source C, , arrives at the destination.

By decreasing the packet injection rate for all sources, this effect is prevented and the
measured traversal latency is reduced. After a waiting time equivalent to 8 NOPs, the
traversal latency of the first packet sent from C, , is reduced to 88cycles. Hence, we
found an injection rate that bounds the blockage of the first packet sent from C, , for the
latency traffic pattern. Adding more NOP instructions between packet injections does
not decrease the transfer latency of the first packet anymore.

The synchronous nature of the DSPIN NoC has the disadvantage that the CPU is stalled
during the transfer, while it could potentially execute memory-independent instructions.
In order to achieve a common packet injection rate for all sources, the time each CPU
stalls has to be subtracted from the additional waiting time added by software. Note that

116



7.2 Dynamic GS Communication

the time each CPU stalls is different for each source, since it depends on the transmission
time of the injected packet and hence on the traffic pattern.

Therefore, we adapted DSPIN’s NIs to support asynchronous behavior and alleviate
the mentioned disadvantages of the synchronous NoC. Figure 7.4b on page 116 shows the
latencies in the asynchronous version of DSPIN.

Without decreasing the packet injection rate (0 NOPs), the request and the response
NoC are both severely overloaded. In order to reduce the blocking effects, we decrease the
injection rate of all sources by adding NOP instructions between two packet injections.
As a result, the transfer latency of the first packet sent from source C, , is reduced. When
8 or more NOP instructions are inserted, the transfer latency of this packet is constantly
88 cycles. Note that an injection rate equivalent to 8 NOP in an asynchronous network
is higher compared to a synchronous network, since the CPU processes the first NOP
instruction immediately instead of being stalled until the response packet is received.

When the packet injection rate is equivalent to 11 or more NOP instructions, the
response packet corresponding to the first request packet is received before the second
request packet is sent. The reason for transfer latency of 88 cycles with a lower injection
rate is that there are no collisions in the response network under the latency traffic pattern.
Thus, the next request packet can be injected a certain time before the previous response
packet is received without creating more collisions.

Both experiments show that a lower packet injection rate reduces the blocking effects,
reduces the transfer latency, and thus maximizes the number of transferred packets. Addi-
tionally, we measured that a packet injection rate F equivalent to 8 NOP instructions is
sufficient to limit the blockage delay in the asynchronous and in the synchronous version
of the NoC and to guarantee a constant transfer latency under the latency traffic pattern.

7.2.3 Worst-Case Transfer Latency Evaluation

Next, we calculate the WCTL and compare it to the maximum measured transfer latencies
(MMTLs) of the different traffic patterns. We use the parameters of the simulation platform

and Equation (4.2) on page 56 to calculate the WCTL L as follows:
L=2r +1,
=2Ly+Ly)+Ly

tflic,  |p;

=2((xy =1L, + =)+ +(xy—2)L.)+Ls

=2(4+4—1D0B+1)+3+(4-4—2)-4)+2)cycles
= 176cycles

The definition of the packet injection rate F = 5 requires each core to wait 176 cycles

before injecting the next packet. Due to disabled caches and the latency of local memory
accesses, each NOP instruction takes 7 cycles. Hence, a waiting time of 176 cycles requires
26 NOP 1nstructions.

In Figure 7.5 on page 119, the MMTLs for different traffic patterns are plotted. When
the packet injection rate F is obeyed and consecutive injections are separated by 26 NOPs,

117



7 Evaluation

none of the simulated traffic patterns had an MMTL higher than 176 cycles of the WCTL.
Hence, the calculated WCTL is indeed an upper bound for all simulated traffic patterns.

Under the throughput traffic pattern with 1,000 injected request packets, the MMTLs
are at most 53 cycles in synchronous NoCs and 49 cycles in asynchronous NoCs, as shown
in Figure 7.5a on the facing page. Furthermore, the packet injection rate does not influence
the measured transfer latency in asynchronous NoCs and only very little in synchronous
NoCs. The reason is that the throughput traffic pattern is designed to cause few collisions.

Compared to the throughput traffic pattern, the latency traffic pattern with 50 injected
request packets causes large MMTLs, as shown in Figure 7.5b on the next page. Especially if
the packet injection rate is high and the NoCs are asynchronous, the MMTL is 2,791 cycles.
The reason is the design of the latency traffic pattern, which causes many collisions since
all packets are sent to a common destination.

In order to find a traffic pattern that causes even higher transfer latencies, we performed
800 simulations with a random traffic pattern. In the random traffic pattern, each core
injects 1,000 packets to random destinations cores. The MMTLs of all 800 repetitions are
plotted in Figure 7.5¢ on the facing page. However, none of the 800 runs with the random
traffic pattern resulted in a latency in the range of latency traffic pattern.

7.2.4 Load Measurements

In this experiment, we compare the average load in the links of the request and the response
NoC under different packet injection rates. The load of each link is calculated by dividing
the number of transferred flits by the number of cycles of the entire experiment. In the
following, we use the average link load that is the sum of the loads of all links in both
NoCs divided by the total number of links.

Figure 7.6 on page 120 shows the measured average link load under the latency tratfic
pattern with different packet injection rates. The bend of the load curve at 7 NOPs in the
asynchronous NoCs and 3 NOPs in the synchronous NoCs is due to links that are 100%
loaded and router-level flow-control causing back-pressure.

With an injection rate F = and 26 NOPs between consecutive packet injections,

1
respectively, the load is 1.06% in asynchronous NoCs and 0.869% in synchronous NoCs.

The first experiment in Section 7.2.2 on page 115 shows that a packet injection rate F
equivalent to 8 NOPs is sufficient to achieve a bounded MMTL. With a delay of 8 NOPs,
the link load is 2.94% in asynchronous NoCs and 1.81% in synchronous NoCs. Hence, for
the latency traffic pattern our approach is pessimistic by a factor of 2.77 in asynchronous
NoCs and 2.08 in synchronous NoCs for the latency traffic pattern.

The origin of the lower average link load as well as the discrepancy between the MMTL
and the WCTL is manifold:

1. The traffic pattern that results in the WCTL is unknown. Amongst the three
investigated traffic patterns, the latency traffic pattern causes the highest MMTL.
Under the latency traffic pattern all packets are routed over one common link in the
request network. However, no collisions are expected in the response NoC under
the latency traffic pattern, since the responses are injected one after another by a
single source only.

118



7.2 Dynamic GS Communication

% ! ’ + Asynchronous
C 5l . «~ Synchronous | |
o
.S X X X X
=
2 50 [ x X X X X X -
2 * + %k 4+ X + + %k k k ¥ + X + X X X + + *k ¥ X + + k + ¥ ¥ ¥ + +
| | | | | | |
0 5 10 15 20 26 30
NOPs
(a) Throughput traffic pattern with 1,000 request packets per source
3,000 = f I I =
% 1. + Asynchronous
e + « Synchronous
> 2,000 | . Y .
5 +
= 1,000 |- + :
= ;
2 176 XXX X X X X X ok K KX % K X X K X % K X ¥ kK X % K X ¥ kK X * %
| | | | | | | |
0 5 8§ 10 15 20 26 30
NOPs
(b) Latency traffic pattern with 50 request packets per source
] ] ] T I I
o T +°° + Asynchronous
= 65| X x .
9 x  + o+ o+ « Synchronous
Q * X X +
E 60 1 + + o+ +
= T T T B
E X X X X 5 X 4+ X X 5 X 5 X X X X < L
E x + * X X + + + X
55 L | | | | | | - | |
0 5 10 15 20 26 30

NOPs

(c) Maximum of 800 repetitions of a random traffic pattern with 1,000 request packets per source

Figure 7.5: Maximum measured transfer latencies (MMTLs) of various traffic patterns
with different packet injection rates in synchronous and asynchronous NoCs.

2. The worst-case behavior is assumed for each collision, 1. e., a packet is always assumed
to be blocked for the duration to forward an entire packet. In reality, a packet can
also win the arbitration or it is blocked only be the last flit of another packet.

3. In the worst-case, a packet is blocked by packets from all other sources. In our
implementation of the latency traffic pattern, all sources start injecting packets at

119



7 Evaluation

R + Asynchronous | |
= *y
. ik « Synchronous
:'S 3r F y
x +
< o X T
=, *x t |
4 X o +
,S XX« o+ + 1
Xy +
D—l 1 | X X x x ;r J)Z :: :: i ;r J; ;r ;r |
| | | | | | | |
0 5 g 10 15 20 26 30
NOPs

Figure 7.6: Measured average load on the links of synchronous and asynchronous NoCs
for different packet injection rates under the latency traffic pattern.

the same time. Hence, the request packet . with o(7,) = C, 4 1s blocked by only
9 packets. The other packets are transferred before they can collide with packet 7. .

4. The latency of a router L is only 2 cycles if the link was free before. We calculated
with L = 3cycles, since it takes one additional cycle to detect whether a previously
occupied link is free again.

7.3 Fault-Tolerance Evaluation

In this section, we experimentally verify the proposed software fault-tolerance mechanism.
First, we describe the implementation details of the mixed-critical task-set and the real-
time many-core OS used in the experiment. Then, we present and discuss the measured
reliability and availability of the task-set. Finally, we evaluate the overhead of our fault-
tolerance mechanism in terms of system load.

7.3.1 Implementation

For the evaluation of the software fault-tolerance mechanism, we reuse the well-known
task set with four mixed-critical tasks described in Table 5.1 on page 82 and Table 6.1 on
page 104. To summarize: Task 7| is replicated N; =5 times and has S, = 2 spares, task 7,
is replicated N, = 3 times and has S, = 1 spare, task T; is replicated N; =5 times but has
no spares ($; = 0), and task 7} is not safety-critical, so it is not replicated at all. All tasks
except task 7 have a period of P, = P, = P, = 10ms, task 7; has a period of P; =20ms.

The worst-case repair time is 2 hyperperiods, so B=2p.

Sample Algorithm

A task’s vulnerability to soft errors depends on the algorithm it executes. Each instruction
and static data element of the compiled algorithm is subject to soft errors while it is
executed by the CPU. The task’s vulnerability to soft errors also depends on the number
of compiled instructions and the size of the static data that are stored in the core-local

120



7.3 Fault-Tolerance Evaluation

memory, which is affected by soft errors, too. Hence, an algorithm that only waits for a
specific execution time, which was measured before in a real system, and finally outputs a
statically configured result is not representatively affected by soft errors. A comparison of
the reliability and availability of tasks that execute different algorithms would include their
different vulnerabilities. Therefore, all four mixed-critical tasks in the task set execute the
same sample algorithm in order to allow a fair comparison of different parameter settings
of our fault-tolerance mechanism.

The sample algorithm is designed to represent a mixture of typical workloads of embed-
ded software components. It consists of the following parts: First, the task counts the bits
of a given sensor value using a look-up table. The bit counting routine is selected from the
automotive category of MiBench benchmark suit for embedded applications [GRE*01].
Next, the task executes stack-intensive recursive procedure calls to calculate the Fibonacci
number of the number of bits of the sensor value. Finally, the resulting Fibonacci number
is the input of three software-implemented floating point operations, namely multipli-
cation, division, and square root taken from the Newlib C 2.2.0 library. The resulting
floating point number is truncated to integer and sent to the voter or outputted by the
actuator driver, respectively.

Operating System

As described in Section 2.3.3 on page 36, we combine the concepts of RTOSs with the
design of many-core OSs by managing each core by its own RTOS kernel. As RTOS kernel,
we select FreeRTOS V8.2.1 [Bar10b]. FreeRTOS is a memory-efficient, configurable, and
open-source RTOS. It supports dynamic task management, so the task execution can
be stopped and re-initiated at runtime. To port FreeRTOS to the specific setup of our
simulated many-core processor, we added a new hardware abstraction layer (HAL) to
the kernel. The complete OS kernel and all processes executed on the local core reside
completely inside the core’s local RAM.

On each core, the processes are scheduled by FreeRTOS’s fixed-priority preemptive
scheduler. FreeRTOS uses a periodic timer interrupt, 1. e., a tick, to keep track of the time
and switch the execution of processes. We set the tick interrupt to 25,000 cycles, which is
equivalent to 0.25 ms assuming a processor speed of 100 MHz.

FreeRTOS provides macros and hooks that allow to trace events of several components,
including the scheduler and dispatcher [Bar10b]. In order to determine the task runtimes
and the system load of each core, we employ this tracing facility. All tracing events are
stored in a special memory section such that the simulator is able to generate an external
trace file, as described in Section 7.1.1 on page 107.

Since FreeRTOS does not provide an IPC mechanism for processes on separate cores
managed by different kernels, we extended the OS by a DMPS. The DMPS obeys the
maximum packet injection rate. It provides an interface for each task that allows to specify
the core and a slot to which a message should be sent. The message size is set to 32 bits, so
a message 1s read as an atomic entity and no locking mechanism is required. The receiver
process of the message is not interrupted but has to check for new messages itself. When
a task reads the message from a specific core and slot, the message is deleted. Using this
message passing mechanism, the replicas of one task running on separate cores send their

121



7 Evaluation

results to a statically assigned slot number on both voter cores. When the voter of this
task is executed, it reads all messages from replica cores by checking the respective slots.
The scheduling and the WCCT ensures that all messages for the replicas are transmitted
by the DMPS before the voter task is scheduled.

In order to provide input data for the sample algorithm of each task, we added virtual
sensor drivers to FreeRTOS. On each core, the virtual sensor driver delivers a sequence
of input values to all task replicas. These input values have to be the same for all tasks in
order to allow a fair comparison of their reliability and availability. However, the sequence
of inputs starts with a different value for each task in order to detect a failed voter that
overwrites the output of the voter of another task. The input values are calculated by each
virtual sensor driver in a loop that repeats itself after 50 values. Hence, the virtual sensor
driver’s loop counter of each task represents a variable state that has to be copied from a
fault-free replica during a replica repair. Solely because the input values and the sample
algorithm of the tasks are statically known, failures can be detected as wrong outputs after
the simulation.

Compilation and Boot Process

To compile the RTOS together with the task set, we use the GCC version 4.8.3 for the
32bit little endian MIPS architecture with floating point emulation and optimization
level 2.

Three separate files in the ELF are generated: one for the core that executes the task
T, without protection, one for the cores that execute the voters, and one for cores that
execute the task replicas of T}, T, and T;. For simplicity, replicas of all tasks are contained
in the latter executable file. Depending on the task mapping and the ID of the CPU that
executes the software, only a subset of replica tasks is instantiated by the local OS.

As mentioned in Section 7.1.1 on page 107, the many-core simulator loads the compiled
ELF files into the external ROMs prior to the simulation. When a core of the many-core
processor is reset, the CPU fetches the first instructions from one of the external ROM
over the NoC depending on its ID. Note that for simplicity, we statically configured which
core fetches its first instructions from which external ROM in the simulated hardware.
This configuration can as well be included in the first instructions.

These first instructions initiate the boot process and copy the . text and . data sections
that include the OS kernel and the tasks from the external ROM to the core-local RAM.
After the copy procedure, the local RAM of the core executing task 7} is occupied to
79.4%, the RAM of a core executing all voter tasks is occupied to 69.8%, and the RAM
containing replicas of all tasks except task 7} is occupied to 91.8%.

Furthermore, the boot process clears all remaining sections, namely the .mailbox,
.stack, and . bss sections. Using the tracing facility of the simulated many-core processor,
we measure the maximum duration of the boot process to be 2,883,197 cycles. Assuming
a processor speed of 100 MHz, the boot process takes 28.8 ms. Since the boot duration is

not a multiple of the hyperperiod P =20 ms of the task set, it has to be extended in order
to continue execution in synchronization with the other cores after a reset. Therefore, the
OS waits by polling a hardware cycle counter after all data is copied to the core-local RAM

122



7.3 Fault-Tolerance Evaluation

and all remaining sections are cleared. After the repair time B =2P =40ms has passed,
the boot process finishes by enabling the scheduler and the tick interrupt, respectively.

Execution Times

A histogram of the measured execution times of each task is shown in Figure 7.7. The
execution times are measured using the tracing facility of FreeRTOS. No faults were
injected during the measurement of the execution time.

I 7,
I 7,
7|

o
N
T

©
—_
[

b | | | |

0 0.2 04 06 08 1 1.2 14 16 18 2

Measured runtime in cycles 10°

Relative occurrence per task

(@]
[

Figure 7.7: A histogram with 500 bins of the measured execution times of all tasks after
100,315 periods of task 7| with P, = 10ms or 16.7 min of simulated real-world
time, respectively. The bins are derived from the execution times of each task
separately.

Figure 7.7 shows that the measured execution times of the unprotected task 7, are
slightly lower compared to the execution times of the remaining tasks. The reason is
that in contrast to the remaining tasks, task 7} is not encapsulated by the task wrapper.
The histogram also reveals that 21.4% and 25.0% of measured execution times of tasks
T, and T, take only 6,814 and 6,888 cycles, respectively. This is due to tasks 7} and 7,

being configured with T =2and T = 1 spares, respectively, and spares do not execute the
original task’s algorlthm but merely check whether they have been activated by the SDS.

The longest measured execution time of all tasks is 206,843 cycles. With a clock fre-
quency of 100Mhz, this equals 2.06 ms. Note that in Table 5.1 on page 82, the WCETs of
all tasks except task 7 are 2.5 ms, which represents a safe upper bound of the maximum
measured execution time. However, the WCET of task 75 is 4.5ms in Table 5.1 on page 82.
This value was chosen to demonstrate the scheduling analysis for the mixed-critical task
set. However, as mentioned before, all tasks have to execute the same sample algorithm in
order to be able to compare the reliability and availability of different parametrization of
the software fault-tolerance mechanism.

123



7 Evaluation

7.3.2 Measured Fault-Tolerance

The software described in the previous section is executed on the simulated many-core
processor. The simulator injects faults with a constant SER A, as explained in Section 7.1.2
on page 111.

In order to measure the reliability and average availability of each of the four tasks,
we compare all results generated by each task with the expected results. Furthermore,
we check whether each result was received by the virtual actuator before its respective
deadline. This is possible since the sample algorithm of all tasks as well as the input values
are statically known. Thus, even if more than M, replicas fail with the same result and the
majority voter forwards this wrong result, we are able to detect the system failure.

In case all results generated by a task within the mission time ¢,, are correct and received
in time, the reliability of the task is 1, otherwise it is 0. The fraction of correct and timely
results generated by each task represents the task’s average availability.

In order to cope with computational effort of the CABA processor simulation, the
mission time is set to ¢, = 10% cycles, which is equivalent to 1s assuming a clock frequency
of 100Mhz. With this mission time, the average runtime of a single-threaded simulation
experiments is 53.7 £ 1.67 min on an Intel Xeon E3-1270v3 processor. To compensate
the short mission time, the SER A is increased respectively. For comparison: an SER

A=10" Cyclles is equivalent to 36, OOO% when assuming a clock frequency of 100 Mhz.

Failure Types

In a first experiment, we investigate the different failure types that are caused by the
injected faults. The different failure types are explained in the following:

No result. No result was received by the virtual actuator before the task’s original
deadline. This failure type represents silent failures, which are also known as detected
system failures or detected uncorrectable failures.

Wrong result. A wrong result was received by the virtual actuator. This failure type
represents critical failures, undetected system failures, and SDCs, respectively.

More than two results. We accept receiving two correct results from both voters of
the same task within the same period, since this might occur in case one voter core
is freshly repaired and the other voter core fails because of a different task. However,
if more than two results are received in one period, this is considered as a critical
failure since it indicates the failure of at least one voter.

Two results from one voter. Two results from the same voter were received within
one period. This is considered a critical failure since each voter is expected to deliver

only one result per period.

Voter results differ. Both voters of a single tasks send a result to the virtual actuator
but these results differ. This failure type represents a critical failure.

124



7.3 Fault-Tolerance Evaluation

In this experiment, SER is set to A = 6.87-107® Cyﬁ In order to generate statistically
meaningful results, the experiment was repeated 10,000 times. Note that the specific fault
injection times and locations are randomly selected in each experiment.

Figure 7.8 on the next page plots the average absolute number of measured failures and
their respective types for each of the four tasks of the mixed-critical task set. Note that the
absolute number of failures does not directly represent a task’s reliability and availability.
For example, Figure 7.8 on the following page shows that task 77 has the lowest number
of silent failures. However, task 75 also has a longer period than the other tasks, thus the
number of expected results is lower. Nevertheless, the results already indicate that the
software fault-tolerance mechanism is able to decrease the number of failures.

Reliability and Availability Distribution

Knowing the various failure types, we are now interested in the distribution of the measured
reliability and availability.
For a single experiment with a constant SER A = 6.87-107* Cy%, the measured reliability

of a task is only 1 if all results are correct and in time. Otherwise, the measured reliability
of the task is 0. Hence, the distribution of the measured reliability is bipolar.

The empirical mean of the measured reliability converges to the theoretical reliability
for the number of experiment n — oo [Birl4, p. 4]. Therefore, the experiment was
repeated 7 = 10,000 times with a constant SER but random fault injection times and
locations. In the following, we denote the mean measured reliability of all experiments as
the reliability. Since the reliability distribution is bipolar, other measures than the mean
such as the variance and standard deviation are not applicable.

Figure 7.9 on page 127 plots the measured bipolar reliability distribution of each task of
the mixed-critical task set after » = 10,000 experiments. The figure shows that tasks with
a higher number of replicas N and spares § have a higher average reliability. For example,
the reliability of task 7, with N =5 and § =2 is R; = 93.3% and the reliability of the
unprotected task 7}, is R, = 66.1% after the mission time ¢,, = 10® cycles and with an SER

A=6.87-108 .

cycle”
The measured availability of each experiment is computed as the number of correct
and timely generated results divided by the total number of expected results. Figure 7.10
on page 127 shows a histogram with 100 bins of each task’s measured availability on the

simulated many-core processor with an SER 1 =6.87-107% Cyﬁ The histogram represents

the distribution of the measured availability after 10,000 experiments. Note that for the
depicted distribution, measures such as variance and standard deviation are not applicable.

Figure 7.10 shows that low availability values were measured less often for tasks with a
higher number of replicas N and spares S. Thus, tasks with a high number of replicas N
and spares § have a higher average measured availability. For example, task 7] with N =5
and spares § = 2 has a measured availability A > 0.99 in 93.3% of experiments, while the
unprotected task 7, has a measured availability A > 0.99 only in 66.1% of experiments.
Note that an experiment with a measured availability A = 0 means that no correct and
timely result was generated, most likely because both voters failed before they could

125



7 Evaluation

) T
S 151 |
5 T,
—
§ I,
) T3
° 10} |
B T,
—
]
0
g .
g 5 "1;) T "2) T ?3 T _ : B
g | 222 &sso el e
n
5 S GIN % Qe
<< N o NS — o o
O | _ | _ | — 1 | | | | |
S < o X N
» & & >
& o
@o & e%& $@° <~
> © ~
\\9 cj&’ O\a@
& N 2\
Xt 8
O‘Q
&44

Figure 7.8: The average absolute number of failures and their respective types that each
task 7, experiences within the mission time on the simulated many-core

processor with an SER 1 =6.87-107% —

cycle”

initially activate the task replicas. Following the same reasoning as for the reliability, we
consider the empirical mean of the measured availabilities as availability in the following.

Fault-Tolerance over Mission Time

Figure 7.11 on page 128 plots the reliability and availability of each task after various

mission times ¢,,. The minimum mission time ¢,, = 10’ cycles is equivalent to 100 ms and

the maximum mission time ,, = 10° cycles is equivalent to 1s assuming a clock frequency
1

of 100MHz. The SER is A=1.1-107 Saw Each experiment was repeated 10,000 times.

The measured results show that for an increasing mission time, the reliability and
availability decreases less steeply for a larger number of replicas N and spares S. In all
cases, the reliability and availability of tasks that are protected by the software fault-
tolerance mechanism is higher than the reliability and availability of the unprotected task
T,. However, the figure also indicates that for a mission time ¢,, — oo, the reliability and
availability of any task R, =A; =0.

Fault-Tolerance over SER

Figure 7.12 on page 128 plots the reliability R availability A of each task on the simulated
many-core processor with various SERs A. For each SER A, the experiment was repeated
10,000 times. The mission time is constant #,, = 10® cycles.

126



7.3 Fault-Tolerance Evaluation

1
I|7}
. 08) I|7} |
>
= £
o 0.6} T, .
Q
[
S
5 04| .
3
@)
02} .
oL mlN _
0 1
Reliability R,

Figure 7.9: The bipolar distribution of the measured reliability R, distribution of each
task 7; after the mission time ¢, = 10® cycles on the simulated many-core

processor with an SER 1 =6.87-107% —

cycle®

10° ? _ T1 é
R —1 5 ]
c 100 | —T, E
.g i T, ]
g 1072 ¢ E
t: - &
] | v ]
Q
é’ 10_3§ E
107 E
C Il Il Il Il Il Il Il Il |

0 61 02 03 04 05 06 07 08 09 1
Availability A,

Figure 7.10: Histogram with 100 bins of the measured availability A, distribution of each
task 7 after the mission time z,, = 10° cycles on the simulated many-core
processor with an SER 1 =6.87-107% —

cycle”

Figure 7.12 shows that the fault-tolerance increases with a larger number of replicas N
and spares S. In most cases, the reliability and availability of the tasks protected by our
software fault-tolerance mechanism are higher than the reliability and availability of the
unprotected task 7,. However, for high SERs, this effect is inverse. The reason is that for
such high SERs the combined probability of a failure of both voters or a failure of more
than M, replicas is larger than the probability of a failure of a single task. For lower and
more realistic SERs, the measurements reveal that the software fault tolerance mechanism

127



7 Evaluation

1, |
09| .
< 08} )
E R A ~J
& 0.7 |— T1----T1
— T2 T2
061 — T3 T3
05| 1 T4 T4 -
107 108

Mission time ¢,, in cycles

Figure 7.11: The reliability R and availability A of each task T after various mission
times ¢,, on the simulated many-core processor with a constant SER A =

cycles®
|
0.8
jé 0.6 I
= R A
& g4l | TL---T1
e T2 T2
021 —— T3 -»-T3
T4 T4 I
1| ! ! T S R R B | T Y
10~? 10-8 107 10—

1.1-107 -2

SER Ain 1/cycles

Figure 7.12: The reliability R availability A of each task T; after the constant mission
time ¢, = 10%cycles on the simulated many-core processor with various
SERs A.

is able to increase the reliability of a task by a factor of up to 2.22 (with N =5 replicas and
S =2 spares and an SER 1 =2,81-107 ——).

cycles

7.3.3 Overhead Evaluation

The fault-tolerance increment achieved by the proposed software fault-tolerance mecha-
nism takes its toll on the system’s resources. In this section, we present the overhead in
terms of system load that is introduced by the fault-tolerance mechanism.

128



7.3 Fault-Tolerance Evaluation

We define the system load as the percentage of time in which the idle task is not running,
1. e., the time in which each core is booting or executing tasks and OS kernel functions,
divided by the total elapsed runtime. Note that the maximum load of the simulated
many-core processor with 10 cores is 10, since the maximum load of each core is 1. We
employ the tracing facility of FreeRTOS and the simulated many-core processor in order
to determine the system load of the mixed-critical task set example. The following values
represent the average system load after 10,000 runs of the same experiment.

Under an SER A=10"" ﬁ, where only few repairs are executed, the average system
load of the unprotected task 7, is 0.089. When protected by the software fault-tolerance
mechanism, each task is replicated on multiple cores. Thus, the load of task 7, with N, =5
replicas and §; = 2 spares is 0.475, the load of task 7, with N, = 3 replicas and §, = 1
spares is 0.287, and the load of task 7} with N; =5 replicas no spares (§; = 0) is 0.226.
Note that task 7 has a longer period than the other tasks, in fact P; = 2P, = 2P,, thus
its contribution to the system load is lower. For each task, the software fault-tolerance
mechanism instantiates two voters. The load of both voters V' and V for task 7 is 0.118,
the load of both voters for task 7, is 0.0813, and the load of both voters for task 77 is 0.0451.
Again, the contribution of both voters for task 7; to the system load is lower than the
other tasks due to the longer period of task 7;. Additionally, the software fault-tolerance
mechanism requires an SDS and a CDS on each core, which add a load of 0.0284 and
0.0641 to the system, respectively. Considering the additional load of the SDS and the
CDS as shared between all three protected tasks, the load of task 7 is 7 times higher and
the load of task 7, is 4.5 times higher than the load of the unprotected task 7. For a fair
comparison, we assume task 7; runs with the same period as the remaining tasks and we
double its load. As a result, the load of task Tj is 6.8 times higher, than the load of the
unprotected task 7.

2y IIII | [msDs
IIIIIIIIII II CDS
I aaaanil |

NSNS A

System load

10~ 1078 10~/ 10-°
SER A

Figure 7.13: Average measured system load of the mixed-critical task set example per
SER A.

129



7 Evaluation

Figure 7.13 on page 129 plots the measured average system load per SER A and the
portion each task contributes to the system load. The values show that for a higher SER,
the system load increases since more repairs are necessary.

The measured load has to be considered carefully, since the OS and its tracing facility are
affected by soft errors, too. For example, the name of the task that is currently scheduled
might be modified or the tracing routine stops working correctly due to soft errors. In
both cases, the load measurement is disturbed. As a result, the standard deviation of the
measurement increases especially for high SERs. For example, the standard deviation
of the load of task 7 is 0.0048 for an SER A = 10~ but increases to 0.0879 for an SER
A=1.1-10" and up to 0,306 for an SER A =1.1-107°.

7.4 Comparison of Theory and Measurement

In this section, we evaluate our fault-tolerance analysis and the underlying DTMC model
of our software fault-tolerance mechanism by comparing the measured reliability and
availability with the results of the analysis. In order to compare the theoretical and the
measured results, all parameters of the model have to be known. Therefore, we first
calibrate our model and determine the vulnerability factors of the software components.
Next, we present the fault-tolerance analysis results for the same mission times and SERs
as in the measurement. Furthermore, we remove the repair procedure from the model
in order to determine its influence on the reliability and investigate the scalability of the
model-based analysis. Finally, we evaluate the error between the fault-tolerance analysis
and the measured results.

7.4.1 Calibration

The PRISM model and the underlying DTMC model operate with software component
failure rates instead of the hardware’s SER. As mentioned in Section 2.2.5 on page 31, the
failure rate A = v A of any software component depends on the vulnerability factor v of
the component and the SER A. The vulnerability factors of the software components,
namely the vulnerability factors of the task replica v, the spare vz, the voter vy, as well
as the vulnerability factor of the voter for critical failures caused by the residual SPOFs v
are unknown in general.

One way to determine these vulnerability factors are exhaustive fault injection cam-
paigns. In such a campaign, every single bit at every possible cycle is flipped and each
time it is checked whether the software component still works as expected. Consider for
example task 7, with period P, = 10 ms, which is equivalent to 100,000 cycles assuming
a clock frequency of 100MHz. Together with the OS kernel that also affects the task’s
correct execution, the size of task 7, in the core-local memory is 52kB. To determine the
vulnerability factor of task 7}, an exhaustive fault injection campaign requires 4.2 - 10'°
experiments. Note that there exist methods to prune the search space by combining faults
with the same effect [SHD*15]. However, the vulnerability factor has to consider failures
caused by combinations of faults as well, which leads to a combinatorial explosion of the
search space even with pruning.

130



7.4 Comparison of Theory and Measurement

Minimizing Error Approach

Therefore, we take another approach and leverage the fact that the measured results are
already known and include the vulnerability factors. We compute the absolute reliability
error as the difference between the reliability derived by the fault-tolerance analysis and
the measured reliability. We sum up the squared absolute reliability error for all 16 SERs
that were used in the previous experiments. Finally, we search the vulnerability factors
that yield the minimum squared error sum between the reliability of the fault-tolerance
analysis and the measured reliability.

To find the minimum factors, we use the Nelder-Mead algorithm [NM65], since it does
not need to know the derivative of the n-dimension function of which it searches the
minimum. Note that the Nelder-Mead algorithm is also known as Downhill Simplex
method. It calculates the function values of a simplex, the geometrical object connecting
n + 1 points, e. g., a triangle for » =2 dimensions. The function values are sorted. The
point of the simplex that yields the worst function value is iteratively replaced by reflection
at the centroid of the remaining points. If the function value of the reflected point is better
than the best point of the simplex, the simplex is expanded in the respective direction. If
the function value of the reflected point is not better than any of the remaining points,
the reflected point is contracted closer to the centroid. If the contracted point does not
yield a better function value than any of the remaining points, all points of the simplex
are reduced around the centroid. Hence, the simplex moves in the direction of the (local)
minimum and finally contract around it.

In the following, we use the implementation of the Nelder-Mead algorithm provided
by Perl’s Math: : Amoeba module version 0.05. The maximum number of iterations is set
to 100 but was never reached to determine the vulnerability factors with a convergence
tolerance of 107°.

To determine the vulnerability factor of a task replica v, we leverage the fact that
the task 7} is executed without protection on a separate core C,5. The Nelder-Mead
algorithm finds the minimum square error sum between the measured reliability of task
T, and the estimate of the model with the task vulnerability factor v = 0.061. Note
that the reliability of an unprotected execution is not derived by the DTMC model but
calculated from Equation (6.5) on page 98 and Equation (6.6) on page 99. As mentioned in
Section 7.3.1 on page 120, all tasks execute the same algorithm and are implemented the
same way. Hence, the task vulnerability factor v, also holds for 7}, 7, and Tj,.

Since spares are not executed but only reside in the core-local memory until activated
by the voter, they are only affected by faults in the core-local memory but do not fail due
to CPU faults. As stated in Section 7.1.2 on page 111, 90% of faults are injected into the
core-local memory while 10% of faults affect the CPU. Hence, we conclude that the spare
vulnerability factor vz = 0.9v; = 0.0549. The spare vulnerability factor v is valid for
each task 7, € 7 for the same reason as for the common task vulnerability factor.

In order to derive the vulnerability factor of the voter vy, and the vulnerability factor of
critical voter failures caused by the residual SPOFs v, we use the Nelder-Mead algorithm
to find the minimum error between the measured reliability and availability of each task 7,
T,, and T; separately. Note that 7} is executed without protection by a voter. An overview

131



7 Evaluation

of the vulnerability factors of each task as determined by our calibration approach is given
in Table 7.2.

Task o4 Vs vy Ve
T, 0.06094 0.05484 0.4184 7.487-10"*
T, 0.06094 0.05484 0.5609 6.190-10"*
T, 0.06094 0.05484 0.7031 4.881- 107
T, 006094 - - _
Table 7.2: Overview of the vulnerability factors of a task replica v, spare vz, voter vy,
and the vulnerability factor of critical voter failures v caused by the residual
SPOFs of each task 7, € 7.

Discussion of vulnerability factors

The results show that the vulnerability of the voter to critical failures caused by faults in
the residual SPOFs is more than 50 times smaller than the vulnerability of the voter to
silent failures, as expected in Section 5.2.3 on page 72.

However, in contrast to a task replica that is only vulnerable to 6.1% of faults, voter
failures are caused by at least 41.8% of faults. One reason of this high voter vulnerability
factor is the repair procedure contained in each voter, which is subject to faults as well but
not checked by the other voter and only repaired if the voting procedure fails, too. While
the DTMC considers failures during the repair process of a voter or task replica, it does
not account for the fact that the repair procedure in the voter which triggers the repair
process can fail. By minimizing the difference between the fault-tolerance analysis results
and measured values, we account for this fact to the voter’s vulnerability factor.

Table 7.2 reveals that the voters of the different tasks do not have the same vulnerability
factor. This unexpected outcome is explained as follows: The first voter of each task is
mapped to core C, ,, as shown in Figure 5.4 on page 82. Additionally, all first voters share
their implementation of the voting procedure. The same holds for the second voter of each
task. Both voters check each other and start the repair of a failed voter at the hyperperiod.
As a result, the voter V, of task T}, which has the highest priority and is executed first,
has the lowest probability of faults in its code and data. The voter V; of task T}, which is
executed last, has the highest chance to be affected by the accumulated faults. Additionally,
all faults that cause previous voters to get stuck and occupy the CPU cause a failure of
voter V; due to its lower priority. Note that an execution time monitor as part of the OS
kernel can prevent such failures but has not been implemented in our experiments, since
we focus on our software fault-tolerance mechanism.

7.4.2 Analyzed Fault-Tolerance
We employ PRISM’s hybrid probabilistic model checking engine to analyze the PRISM

model of our software fault-tolerance mechanism and to calculate the resulting reliability

R and availability A. The hybrid model checking engine provides the best compromise

132



7.4 Comparison of Theory and Measurement

between runtime and memory space [PRI15]. To increase the precision of the returned
values, we set the termination epsilon of the iterative numerical method of the model
checking engine to 107 using the -epsilon switch.

To calculate the reliability R and availability A of the unprotected task 7, we implement
Equation (6.5) and Equation (6.6) in a Perl script and use the Math: :BigFloat module to
achieve arbitrary precision.

Fault-Tolerance over Mission Time

Figure 7.14 on the next page plots the results of the four tasks of the mixed-critical task set
' Based on this

cycles

SER, the vulnerability factors presented in Table 7.2 on page 132 are used to calculate the
failure rate A of each software component.

for a varying mission time ¢, . The SER A is constantly set to 1.1- 10~/

Figure 7.14 shows that a larger number of task replicas and spares results in a higher
reliability and availability after the same mission time and under the same SER. The
results also indicate that for an increasing mission time, the fault-tolerance of the system
decreases. The reason of this behavior is that the system does not recover from a detected
or undetected system failure. These system failures occur with a low probability. However,
they cause an absorbing state in the underlying DTMC model. Since any realization of the
DTMC model eventually enters the absorbing state at some point in time, the reliability
and availability of the system are both R(¢,)) = 0 and A(¢,,) = O for an infinite mission
time £, — 0O.

Fault-Tolerance over SER

Figure 7.15 on the next page plots the resulting reliability R and availability A of the four
tasks under different SERs A. The mission time ¢,, is constantly set to 10® cycles.

Figure 7.15 shows that a higher number of replicas and spares allows to tolerate a higher

SER. For example, for a mission time ¢,, = 10° cycles and under the SER A = 107* Cyiles,

the reliability of task 7] with N, =5 and §; =2 is R, = 99.736% and the reliability of task
T, with N; =5 and §; =0 is R; = 99.602%. For the same mission time ¢, and SER A, the
reliability of the unprotected task 7, is R, = 93.81%.

The results show that for high SERs the unprotected execution results in a higher
reliability and availability. This effect is due to the fact that the combined probability
of a failure of both voters or more than ; task replicas gets larger than the probability
of the failure of a single task. However, for lower and more realistic SERs, our software
fault-tolerance mechanism is able to significantly increase the resulting reliability and
availability of a task. Consistent with the measured results in Section 7.3.2 on page 126,
we find that the fault tolerance mechanism achieves a reliability increment of a factor of up
to 2.20 with N =5 replicas and S = 2 spares and an SER A =2,81-10~ @ A detailed

comparison between the theoretical results and the measured fault-tolerance values is given
in Section 7.4.5 on page 136.

133



7 Evaluation

1,
0.9
< i
o8
g
x 0.7H—T1----T1
—T2----T2
061 T3 T3
051 T4 T4 |

Figure 7.14: The reliability R and availability A computed from the model for a varying

|
107

Mission time ¢,, in cycles

1

mission time ¢, . The SER Ais 1.1- 1077 .

cycles

108

T T T T T T T
1,
0.8
S o6f
S R A N
% 0.4 | Tl -t T]. \\\\ \\\\ \\\\
T2 T2 LN
02| |— T3 T3 ]
T4 T4
L1 Lo | Lo | L L |

107 1078 10~ 107¢

Failure rate A in 1/cycles

Figure 7.15: The reliability R and availability A computed from the model for different
SERs A. The mission time ¢, is 10® cycles.

7.4.3 Repair Procedure Influence

In order to analyze the reliability and availability of our software fault-tolerance mechanism
without the repair procedure, all boot and repair steps are removed from the PRISM model.

The modified PRISM model is analyzed for different SERs A. The mission time ¢, is
constantly set to 10® cycles. The resulting reliability R and availability A of the tasks are
plotted in Figure 7.16 on the facing page. Note that the resulting reliability and availability
of the unprotected task are exactly the same as in the Figure 7.15, since the unprotected
execution does not contain a repair procedure.

134



7.4 Comparison of Theory and Measurement

0.8 i
3 06l ; i
g R
& g4l |— T1--—TI1 |
— T2 T2
02— T3 T3 e y
T4 T4
L1 | ! \:=;;\;;;;;‘=-
109 108 107 107

Failure rate A in 1/cycles

Figure 7.16: The reliability R and availability A for varying SERs A computed from a
model of the software fault-tolerance mechanism without the repair proce-
dure. The mission time ¢, is 10%cycles.

Compared to the reliability and availability of the original software fault-tolerance
mechanism with a repair procedure, the resulting values computed from the PRISM model
without a repair procedure are worse for any configuration. In fact, the reliability is only
improved for an SER A< 3,5-107” for task 7;, an SER A< 1.87- 107 for task 7,, and an
SER A< 1.17- 1077 for task 7;.

7.4.4 Model Scalability

An overview of the number of states and transitions of the DTMC model generated from
our PRISM model is given in Table 7.3 on the following page. Two configurations of the
software fault-tolerance mechanism that are not used in the task set are added to improve
the significance of the results, namely N =7 replicas with § =0 and § = 3 spares and a
period of 10ms each.

Table 7.3 shows that a higher number of task replicas and spares leads to a larger number
of states and transitions contained in the DTMC model. Additionally, the number of
states and transitions is significantly lower without the repair procedure. Note that the
number of states of the configuration Ny =5 and §; = 0 is significantly lower, since the
respective task 7; has twice the period of the other tasks and the other configurations
given in Table 7.3. Hence, the number of steps in resulting PRISM model is only half as
high as in the other models but the probability of a failure after one period is higher.

We measured the runtime of PRISM’s hybrid model checking engine version 4.3 on an
Intel Xeon E3-1270v3 processor with 32 GB RAM. The results given in Table 7.3 indicate
that the model checking time increases exponentially with the number of task replicas
and spares as well as the complexity of the fault-tolerance mechanism itself. The SER has
no significant influence on the measured model checking time. However, a longer mission
time increases the model checking time, since the length of each realization of the DTMC

135



7 Evaluation

Reliability  Availability

Al 3 i
N; S. Rep. States Transitions ﬁ ctmcles analysis analysis
cycles Y timeins  timeins
— 216 488 1.1-1077 108 0.011 0.006
3 1 1-107~° 108 0.432 0.819
v 10,721 18,159 1.1-107  10° 0.464 0.756
1.1-10~7 10° 2.895 7.425
—_ 162 393 1.1-1077 108 0.005 0.003
5 0 1-107° 108 0.072 0.132
v 3,495 7,036 1.1- 10~ 108 0.07 0.1
1.1-10~7 10° 0.401 0.921
—_ 486 1,341 1.1- 10~ 108 0.014 0.018
5 2 1-107° 108 4.795 23.48
v 82,392 156,050 1.1- 10~ 108 4.084 21.43
1.1-10~7 10° 18.31 71.26
— 216 596 1.1-10~7 108 0.009 0.008
70 1-107  10° 772.7 2,155
v/ 6837504 15555064 1.1-107  10° 789.0 2,138
1.1-10~7 10° 6,106 15,031
—_ 864 2,816 1.1- 10~ 108 0.021 0.022
7 3 1-107° 108 2,092 4,941
v 11,530,898 29,377,772 1.1- 10~ 108 2,249 4,935
1.1-10~7 10° 15,288 39,222

Table 7.3: The size of the DTMC model generated by PRISM’s single-threaded hybrid

model checking engine and the time to analyze the model measured on an
Intel Xeon E3-1270v3 processor.

model increases. Compared to 10,000 repetitions of a simulation, where each run takes

53.7 min in average, the model-based fault-tolerance analysis of all tasks is faster by a factor
of 1.2-10°.

7.4.5 Model Precision

Finally, we evaluate the precision of the model-based analysis of the software fault-tolerance
mechanism. Therefore, we compare the results obtained from the DTMC model with the
measured values.

The fault-tolerance analysis determined that task 7 with N =5 replicas and § = 2 spares
has a reliability R = 85.48% and availability A = 98.20% under a SER A=1.1-10~7 —

cycles
and after a mission time ¢, of 10%cycles. For the same SER and mission time, we measured

136



7.5 Summary

the reliability R = 85.11% and availability A = 94.69% of task 7 after 10,000 runs on our
simulated many-core processor. Thus, the absolute error between the estimated and the
measured value is 0.367 percentage points for the reliability R and 3.51 percentage points
for the availability A.

0.4 [ = )
R A
o3| |~ T1-+-Ti P
5 07| | T2 - T2 AN
g:: , 1 \ \\
o —k— T3 k- T3 / / i A
L 021 P e X -
—(‘5’ T4 T4 // L ,7 ~\*\ \\\
_.% //)’:/ // A
< O.l [ %//// /J/// \\*\\ X .|
_ 4”$::I’// *
I S ettt e e ¥===0 0 ettt - |
L1 Lo Lo L1
1077 103 10~/ 10-°

SER Ain 1/cycles

Figure 7.17: The absolute error between the theoretical estimate of the reliability R
and the availability A computed from the DTMC model and the measured

reliability and availability values.

Figure 7.17 plots the absolute error of the theoretical and measured reliability and
availability. The absolute errors of the reliability are below 1.63 percentage points. How-
ever, our fault-tolerance analysis overestimates the resulting availability with the selected
vulnerability factors. The absolute errors of the availability is up to 37.85 percentage
points. This reveals that the vulnerability factors are chosen by minimizing the reliability
error.

The comparatively large absolute error of the availability is caused by the fact that the
PRISM model of our software fault-tolerance mechanism considers each task separately.
Therefore, it does not consider the effects when replicas from different tasks are mapped to
the same core. For example, if two task replicas on the same core fail, the voter resets this
core and the third, potentially fault-free replica is terminated as well. Similarly, we manually
mapped the voters of all tasks to the same core and let them share the voting procedure.
As it turns out, this is a suboptimal design decision since the independence between the
voters and hence their fault-tolerance is sacrificed to an efficient implementation. However,
modeling the complete system with all tasks in a single DTMC model would significantly
increase the number of states and transitions and thus the model checking time.

7.5 Summary

In this chapter, we have employed a many-core processor simulator to evaluate the ap-
proaches presented in the previous chapters. The configuration of the simulated processor

137



7 Evaluation

follows the common design principles of COTS consumer-grade many-core processors as
defined in Section 2.2 on page 19. The cycle-accurate and bit-accurate (CABA) simulator
includes a fault injection mechanism to emulate faults in the CPU, core-local memory,
and the NoC.

In order to evaluate the dynamic GS communication approach presented in Chapter 4,
we have measured the transfer latencies of three traffic patterns (latency, throughput, and
random) with different packet injection rates. When enforcing the limited packet injection
rate, the measured results provide evidence that our approach indeed guarantees an upper
bound of the WCTL. With the latency traffic pattern, we have compared the average link
load generated by the packet injection rate that was calculated to guarantee the WCTL
with the average link load resulting from a packet injection rate that was deemed sufficient
to achieve a bounded MMTL. The results show that our dynamic GS communication
approach is pessimistic by a factor of 2.77 in asynchronous NoCs and 2.08 in synchronous
NoC:s for the latency traffic pattern.

Next, we have experimentally evaluated our software-based hardware fault-tolerance
mechanism with an implementation of the mixed-critical task set known from the examples
of the previous chapters. The results show that tasks protected by the fault-tolerance
mechanism have a higher reliability and availability than the unprotected tasks except for
very high (and unrealistic) SERs. For N =5 replicas and § = 2 spares our mechanism is
able to increase the reliability of a task by a factor of up to 2.22. As expected, this increase
takes its toll on the system load, which is 7 times higher compared to an unprotected
execution of the same algorithm. Considering the rising number of cores in a many-core
processor and the increasing SER of the hardware, we argue that this overhead becomes
less and less important when a certain fault-tolerance level has to be ensured.

In order to calibrate parameters and determine the vulnerability factors required by
our fault-tolerance framework and analysis, respectively, we have minimized the error
between results of the underlying PRISM model and the measured reliability value. The
fault-tolerance analysis is used to derive the reliability and availability of the mixed-critical
task set example without simulation. We have shown that if the repair mechanism is
removed from our software fault-tolerance mechanism and the PRISM model, respectively,
the fault-tolerance level decreases and is only superior to the unprotected execution for
low (but more realistic) SERs. The model checking time increases significantly with
an increasing number of replicas and spares, with a longer mission time, and when the
repair mechanism is included. However, compared to the 10,000 repetitions of the CABA
simulation, the theoretical fault-tolerance analysis is still faster by 6 orders of magnitude.
Finally, we have compared the absolute error between the fault-tolerance analysis and the
measured reliability and availability. Due to the chosen calibration process, the error of
the reliability values is below 1.63 percentage points. However, the error of the availability
values is up to 37.85 percentage points. This is caused by the fact that the PRISM model
considers each task separately and the manual mapping is suboptimal. Nevertheless, the
model-based analysis and the measurements both provide evidence that our software
fault-tolerance mechanism is able to increase fault-tolerance of a task compared to an
unprotected execution on a many-core processor.

138



Conclusion

In this chapter, we summarize the results of this thesis and discuss them with respect to
the research questions defined in the introduction. Finally, we outline potential future
research directions.

8.1 Summary and Discussion of Results

In this thesis, we have presented a software-based hardware fault-tolerance framework
for mixed-critical task sets on consumer-grade commercial off-the-shelf (COTS) many-
core processors. The proposed framework provides interfaces for all roles involved in
designing a safety-critical real-time application, such as hardware experts, safety analysts,
real-time specialists, and software developers. Based on the requirements and properties
specified through these interfaces, the framework selects the parameters of our software
fault-tolerance mechanism for each task such that the task’s fault-tolerance requirement
is achieved with the minimum amount of resources, i. e., cores. In order to perform this
parameter selection, the fault-tolerance level in terms of reliability and availability of each
task must be known a priori. To solve this problem, we have proposed a fault-tolerance
analysis based on a discrete time Markov chain (DTMC) model of our software fault-
tolerance mechanism. The DTMC model operates on the failure rates of the software
components instead of the soft error rate (SER) of the hardware. Therefore, we have
calibrated the model and the respective vulnerability factors based on the measurements
we have conducted on our cycle-accurate and bit-accurate (CABA) many-core processor
simulator. Hence, we have answered the question of how to determine the fault-tolerance
level achieved by a specific adaptation of the software fault-tolerance mechanism at design
time.

The proposed software fault-tolerance mechanism is able to increase the reliability
and availability of a task using only software means. In order to leverage the spatial
redundancy of many-core processors, our mechanism is based on the well-known N
modular redundancy (NMR) principle. However, without a reliable majority voter,
redundant and parallel execution of the same task on separate cores is not beneficial. We
have solved this problem without any hardware modification using two fail-silent voters
that check and repair each other. To achieve the fail-silent behavior, we have extended
the encoded voting procedure proposed by Ulbrich et al. [UHK"12] to support more
than three replicas. The encoded voting procedure compares ANBD-encoded results
without decoding them, such that any error in the voting procedure or the replica results is
detected before forwarding the tallied result. In contrast to Ulbrich et al. [UHK*12], our

139



8 Conclusion

fault-tolerance mechanism provides a decoded result that can be used by external devices
without further calculations. However, this includes some residual single point of failures
(SPOFs) which we have discussed and evaluated in this thesis.

In order to further increase a task’s fault tolerance level without additional runtime
overhead, we have added a repair procedure and spare replicas to our software fault-
tolerance mechanism. When a voter detects a failed task replica, the repair procedure copies
the state of a fault-free task replica to a spare replica. Afterwards, the spare is activated
and replaces the failed replica. Thus, our fault-tolerance mechanism supports state-full
tasks and is able to operate with the original number of replicas as soon as possible. In
contrast to most related fault-tolerance mechanisms, we have explicitly considered failures
in all software components, including the voter and the repair procedure itself as well
as the underlying OS kernel and its scheduler. In case one of both voters, a component
of the repair procedure, or the OS kernel has failed, the respective core is restarted and
reloads its core-local memory from an external reliable memory, e. g., an ECC-protected
flash memory. Hence, the proposed software fault-tolerance mechanism answers the
question of how to design a fault-tolerance mechanism only from software components
that potentially fail.

We have investigated the combination of many-core and real-time OSs in order to
comply with the real-time requirements of the application. One key design principle of
many-core processors is a core-local memory and an inter-core communication fabric such
as a Network-on-Chip (NoC). Therefore, we have proposed to manage each core with a
core-local kernel that provides a priority-based preemptive real-time scheduler as well as a
distributed message passing service (DMPS).

The DMPS requires an inter-core communication with a guaranteed latency and band-
width. However, most consumer-grade many-core processors do not provide a NoC that
provides latency and bandwidth guarantees in hardware. We have solved this problem in
software with our limited packet injection rate approach. The main idea of this approach
is that each core has to wait at least the duration of the worst-case transfer latency (WCTL)
between sending two consecutive packets. In contrast to related work such as network
calculus or recursive calculus, our limited packet injection rate approach also provides
guarantees for dynamic traffic patterns that are unknown at design time. Such traffic
patterns are caused by repair processes that occur at unpredictable points in time as a
reaction to task replica failures. With the help of our CABA many-core processor simula-
tor, we have shown that our derivation of the packet injection rate indeed guarantees an
upper bound of the WCTL. While we have been unable to find a traffic pattern where the
WCTL is actually reached, we have determined that for the latency traffic pattern, our
approach is pessimistic by a factor of 2.77 in asynchronous NoCs and a factor of 2.08 in
synchronous NoCs. Together with our fault-tolerance mechanism, the proposed limited
packet injection rate approach provides an answer to the question of how to increase
the system’s fault-tolerance level while guaranteeing the real-time constraints without
modifying the hardware.

In this thesis, we have evaluated the software fault-tolerance framework with an example
task set containing four tasks with different real-time constraints and fault-tolerance
requirements, which are derived from a realistic application. We have shown how to select
the voter offset and advance the deadlines of the task replicas such that well-established

140



8.2 Future Research Opportunities

scheduling policies are able to guarantee the application’s real-time requirements. The
example task set has been executed on our many-core processor simulator. This simulator
is able to inject faults in the core-local memories, the CPU registers, and the NoC buffers.
We have measured that our software fault-tolerance mechanism is able to increase the
reliability of a task with five replicas and two spares by a factor of up to 2.22 compared to an
unprotected execution of the same task. As expected, the overhead in terms of system load
is 7 times higher in this configuration compared to the unprotected execution of the task.
Considering the rising number of cores and the increasing SER of many-core processors,
we argue that this overhead becomes less and less important when certain fault-tolerance
requirements have to be ensured. With these results we have answered the main research
question of this thesis. We have shown how to achieve the fault-tolerance requirements of
mixed-critical task sets with real-time constraints on consumer-grade many-core processor
using only software means and we have quantified the resulting reliability and availability
as well as the generated overhead.

8.2 Future Research Opportunities

The software fault-tolerance framework presented in this thesis eases the implementation
of safety-critical applications with real-time requirements on consumer-grade many-core
processors, which provide the necessary computational performance at attractive costs.
During our research, we have identified the following questions that are worth further
investigation.

Fault Hypothesis

While the fault injection mechanism of our many-core processor simulator is able to inject
faults in separate components at the same time, it is limited to single bit flips. Chatterjee
et al. [CNM™14] show that with a decreasing feature size the amount of multi-cell upsets
(MCUs) in SRAMs increases. Although we assume only minor effects on the vulnerability
factors, adding such multi bit flips to our fault injection mechanism would increase its
accuracy.

Furthermore, our fault hypothesis considers only transient hardware faults. Although
the permanent fault rate is significantly lower [ Bau05], it would be interesting to include
such faults to the fault hypothesis and extend the fault-tolerance mechanism accordingly.

Fault-Tolerance Mechanism

The voters of the presented software fault-tolerance mechanism perform an exact majority
voting scheme. Depending on the system, other voting schemes might be beneficial. For
example, the majority scheme can be replaced by a 2-out-of-5 or 4-out-of-5 scheme given a
configuration with five replicas. Another example is the median voter, which belongs to
the group of inexact voters.

Our fault-tolerance mechanism uses exactly two fail-silent voters that check and compare
each other. The number of voters could be increased in order to evaluate its benefit on the
fault-tolerance level and its overhead in terms of system load. A setup with more than two

141



8 Conclusion

voters requires to establish a hierarchy amongst the voters to ensure that only one voter
forwards the final result. Similar to this idea, spare voters could be introduced, since the
current repair procedure for voters is based on the inter-core reset mechanism only.

In this thesis, each task replica and spare is statically assigned to a specific core. In
case of a replica failure, the repair procedure chooses the first available spare and the
closest fault-free task replica. Instead, the repair procedure could select the spare in an
intelligent way, e. g., depending on the accumulated number of failures or the current load
of a core. This is especially useful if permanent faults are considered, too, and cores with
permanently failed hardware components need to be avoided. Furthermore, the static
assignment of spares could be completely abandoned and instead, the new core on which
the replacement of a failed task replica is instantiated could be determined dynamically.
In this case, the repair procedure would adopt the behavior of a load balancer and is able
to reduce the thermal stress between the cores. Eventually, we imagine task replicas are
relocated proactively before a failure occurs.

Complex Applications

In this thesis, we consider typical automotive applications that consist of periodically
executed tasks with comparatively small results. Applications from other domains might
include long-running multi-threaded processes that generate large results. In order to
support such kind of applications, adjustments of our software fault-tolerance framework
might increase its efficiency. The well-known concepts of checkpoints and checksums
indicate a potential way to deal with long-running processes and large results. Instead of
replicating tasks, it might be necessary to replicate threads.

Real Hardware

All experiments of this thesis are conducted on a CABA many-core processor simulator.
This simulation-based approach allows to inject faults without modifying the applica-
tion software or the OS. Furthermore, multiple simulators can be executed in parallel to
generate a large number of results. However, the CABA simulation is computationally
expensive and thus limited to small applications with low complexity. For this reason, it
would be interesting to evaluate the scalability our software-based fault-tolerance mecha-
nism on a real many-core processor with carefully implemented fault injection in software
or a field-programmable gate array (FPGA) implementation of a many-core processor
with fault injection extensions.

Fault-Tolerance Framework

The presented software fault-tolerance framework adapts the number of replicas and spares
based on the result of our fault-tolerance analysis and the underlying DTMC model. This
model of the fault-tolerance mechanism considers only a single task and currently does not
include side effects between replicas or voters of different tasks that are mapped to the same
core. If such side effects would be included in the model, the precision of its results is likely
to increase. However, the complexity of the model and hence the number of states in the
DTMC model and the analysis time will increase as well. Other modeling methodologies

142



8.2 Future Research Opportunities

such as stochastic activity networks (SANs) are computational less intensive to analyze
but are limited to simulation-based solvers [MAL*15].

In this thesis, we employ the partitioned fixed-priority preemptive scheduling policy
for which a feasibility test exists. Our limited packet injection rate approach guarantees
an upper bound of the communication delay. Both of these properties ease the search of a
feasible task-to-core mapping. However, additional constraints are introduced by the fault-
tolerance mechanism that requires a subset of task to be mapped to mutually exclusive
cores. For complex applications with many communicating tasks and a high system
utilization, the mapping problem becomes difficult to be solved manually. Therefore, we
suggest to adapt and include existing task mapping solutions to our framework.

Our framework should not be limited to the presented software fault-tolerance mecha-
nism. Instead, we see great potential in including other fault-tolerance mechanisms to our
framework. We envision our framework to be capable of selecting a suitable subset from a
catalog of hardware and software mechanism such that the fault-tolerance requirements
are achieved in an optimal way.

143






[ABR*93]

[Accl3]

[Adal3]

[AEF*+14]

[AFALO7]

[AFKO5]

[AJEF15]

[ALRLO4]

Bibliography

Neil C. Audsley, Alan Burns, Mike M. Richardson, Ken Tindell, and Andy J.
Wellings. Applying new scheduling theory to static priority pre-emptive
scheduling. Software Engineering Journal, 8(5):284-292, 1993. doi:10.
1049/sej.1993.0034. Cited on page 13.

Accellera Systems Initiative Inc. Open Core Protocol Specification 3.0, 2013.
URL: http://www.accellera.org/images/downloads/standards/
ocp/0CP_3.0_Specification.zip [accessed March 28, 2016]. Cited on
page 21.

Adapteva, Inc. Epiphany architecture reference, 2013. URL: http://
www.adapteva.com/docs/epiphany_arch_ref.pdf [accessed March 28,
2016]. Cited on pages 20, 21, and 104.

Philip Axer, Rolf Ernst, Heiko Falk, Alain Girault, Daniel Grund, Nan
Guan, Bengt Jonsson, Peter Marwedel, Jan Reineke, Christine Rochange,
Maurice Sebastian, Reinhard Von Hanxleden, Reinhard Wilhelm, and Wang
Yi. Building timing predictable embedded systems. ACM Transactions
on Embedded Computing Systems (TECS), 13(4):82:1-82:37, 2014. doi:10.
1145/2560033. Cited on page 2.

Luis Almeida, Sebastian Fischmeister, Madhukar Anand, and Insup Lee. A
dynamic scheduling approach to designing flexible safety-critical systems.
In Proceedings of the 7th ACM & IEEE International Conference on Embedded
Software (EMSOFT), pages 67-74, 2007. doi:10.1145/1289927.1289942.
Cited on page 50.

Joakim Aidemark, Peter Folkesson, and Johan Karlsson. A framework for
node-level fault tolerance in distributed real-time systems. In Proceedings
of the International Conference on Dependable Systems and Networks (DNS),
pages 656-665, 2005. doi:10.1109/DSN.2005.7. Cited on page 50.

Laure Abdallah, Mathieu Jan, Jérome Ermont, and Christian Fraboul.
Wormhole networks properties and their use for optimizing worst case
delay analysis of many-cores. In Proceedings of the 10th IEEE Interna-
tional Symposium on Industrial Embedded Systems (SIES), pages 59-68, 2015.
doi:10.1109/SIES.2015.7185041. Cited on pages 28, 42, and 43.

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E.

Landwehr. Basic concepts and taxonomy of dependable and secure com-

puting. IEEE Transactions on Dependable and Secure Computing, 1(1):11-33,

145


http://dx.doi.org/10.1049/sej.1993.0034
http://dx.doi.org/10.1049/sej.1993.0034
http://www.accellera.org/images/downloads/standards/ocp/OCP_3.0_Specification.zip
http://www.accellera.org/images/downloads/standards/ocp/OCP_3.0_Specification.zip
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://dx.doi.org/10.1145/2560033
http://dx.doi.org/10.1145/2560033
http://dx.doi.org/10.1145/1289927.1289942
http://dx.doi.org/10.1109/DSN.2005.7
http://dx.doi.org/10.1109/SIES.2015.7185041

Bibliography

[AR]S07]

[ARMO4]

[ASE11]

[ASM12]

[AUT15]

[Avi71]

[BAG*15]

[Bar10a]

146

2004. doi:10.1109/TDSC.2004.2. Cited on pages 1, 15, 16, 17, 18, 19,
and 32.

Nidhi Aggarwal, Parthasarathy Ranganathan, Norman P. Jouppi, and
James E. Smith. Configurable isolation: building high availability systems
with commodity multi-core processors. In Proceedings of the 34th Annual
International Symposium on Computer Architecture (ISCA), pages 470-481,
2007. doi:10.1145/1250662.1250720. Cited on page 44.

ARM Ltd. AMBA AXI Protocol Specification, 2004. URL:

http://infocenter.arm.com/help/index. jsp?topic=/com.arm.
doc.ihi0022b/index.html [accessed March 28, 2016]. Cited on page 21.

Philip Axer, Maurice Sebastian, and Rolf Ernst. Reliability analysis for
mpsocs with mixed-critical, hard real-time constraints. In Proceedings of
the 7th IEEE JACM /IFIP International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pages 149-158, 2011. doi:
10.1145/2039370.2039396. Cited on page 49.

J.L. Autran, S. Serre, D. Munteanu, S. Martinie, S. Semikh, S. Sauze,
S. Uznanski, G. Gasiot, and P. Roche. Real-time soft-error testing of
40nm SRAMs. In Proceedings of the IEEE International Reliability Physics
Symposium (IRPS), pages 3C.5.1-3C.5.9, 2012. doi:10.1109/IRPS.2012.
6241814. Cited on page 111.

AUTOSAR. General specification of basic software modules, Release 4.2.2,
2015. URL: http://www.autosar.org/fileadmin/files/releases/4-
2/software-architecture/general/standard/AUTOSAR_SWS_
BSWGeneral.pdf [accessed March 28, 2016]. Cited on pages 13
and 34.

Algirdas Avizienis. Arithmetic error codes: Cost and effectiveness studies
for application in digital system design. IEEE Transactions on Computers,
C-20(11):1322-1331, 1971. doi:10.1109/T-C.1971.223134. Cited on

page 46.

Alexander Biewer, Benjamin Andres, Jens Gladigau, Torsten Schaub, and
Christian Haubelt. A symbolic system synthesis approach for hard real-time
systems based on coordinated SMT-solving. In Proceedings of the Conference
& Exhibition on Design, Automation & Test in Europe (DATE), pages 357-362,
2015. URL: http://dl.acm.org/citation.cfm?id=2755834 [accessed
March 28, 2016]. Cited on page 37.

Max Baron. The single-chip cloud computer—Intel networks 48 Pentiums
on a chip. Microprocessor Report, 2010. URL: http://www.intel.
com/content/dam/www/public/us/en/documents/technology-
briefs/intel-labs-single-chip-cloud-article.pdf [accessed
March 28, 2016]. Cited on pages 21 and 28.


http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1145/1250662.1250720
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022b/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022b/index.html
http://dx.doi.org/10.1145/2039370.2039396
http://dx.doi.org/10.1145/2039370.2039396
http://dx.doi.org/10.1109/IRPS.2012.6241814
http://dx.doi.org/10.1109/IRPS.2012.6241814
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/standard/AUTOSAR_SWS_BSWGeneral.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/standard/AUTOSAR_SWS_BSWGeneral.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/standard/AUTOSAR_SWS_BSWGeneral.pdf
http://dx.doi.org/10.1109/T-C.1971.223134
http://dl.acm.org/citation.cfm?id=2755834
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-cloud-article.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-cloud-article.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-cloud-article.pdf

Bibliography

[Bar10b]

[BauO5]

[BBD*+09]

[BCAOS]

[BCM13]

[BDP96]

[BFFM12]

[BEM*03]

[BGH14]

Richard Barry. Using the FreeRTOS Real Time Kernel—Standard Edition.
Real Time Engineers Ltd., 2010. Cited on pages 34 and 121.

Robert C. Baumann. Radiation-induced soft errors in advanced semicon-
ductor technologies. IEEE Transactions on Device and Materials Reliability,
5(3):305-316, 2005. doi:10.1109/TDMR.2005.853449. Cited on pages 3,
16, 30, and 141.

Andrew Baumann, Paul Barhamy, Pierre-Evariste Dagandz, Tim Harrisy,
Rebecca Isaacsy, Simon Peter, Timothy Roscoe, Adrian Schiipbach, and
Akhilesh Singhania. The multikernel: A new OS architecture for scalable
multicore systems. In Proceedings of the 22nd ACM Symposium on Operat-
ing Systems Principles (SOSP), pages 29-44, 2009. doi:10.1145/1629575.
1629579. Cited on page 34.

Bjorn B. Brandenburg, John M. Calandrino, and James H. Anderson. On
the scalability of real-time scheduling algorithms on multicore platforms: A
case study. In Proceedings of the 32nd IEEE Real-Time Systems Symposium
(RTSS), pages 157-169, 2008. doi:10.1109/RTSS.2008.23. Cited on page
33.

Cristiana Bolchini, Matteo Carminati, and Antonio Miele. Self-adaptive
fault tolerance in multi-/many-core systems. Journal of Electronic Testing,
29(2):159-175, 2013. doi:10.1007/s10836-013-5367~-y. Cited on pages
51 and 54.

Alan Burns, Robert I. Davis, and Sasikumar Punnekkat. Feasibility analysis
of fault-tolerant real-time task sets. In Proceedings of the 8th Euromicro
Workshopon Real-Time Systems (RTS), pages 29-33, 1996. doi:10.1109/
EMWRTS.1996.557785. Cited on page 48.

Luca Benini, Eric Flamand, Didier Fuin, and Diego Melpignano. P2012:
Building an ecosystem for a scalable, modular and high-efficiency em-
bedded computing accelerator. In Proceedings of the Conference on De-
sign, Automation and Test in Europe (DATE), pages 983-987, 2012. doi:
10.1109/DATE.2012.6176639. Cited on page 21.

Massimo Baleani, Alberto Ferrari, Leonardo Mangeruca, Alberto L.
Sangiovanni-Vincentelli, Maurizio Peri, and Saverio Pezzini. Fault-tolerant
platforms for automotive safety-critical applications. In Proceedings of the
International Conference on Compilers, Architectures and Synthesis for Embed-
ded Systems (CASES), pages 170-177, 2003. doi:10.1145/951710.951734.
Cited on page 44.

Alexander Biewer, Jens Gladigau, and Christian Haubelt. A novel model
for system-level decision making with combined ASP and SMT solving. In
Proceedings of the Conference & Exhibition on Design, Automation & Test in

147


http://dx.doi.org/10.1109/TDMR.2005.853449
http://dx.doi.org/10.1145/1629575.1629579
http://dx.doi.org/10.1145/1629575.1629579
http://dx.doi.org/10.1109/RTSS.2008.23
http://dx.doi.org/10.1007/s10836-013-5367-y
http://dx.doi.org/10.1109/EMWRTS.1996.557785
http://dx.doi.org/10.1109/EMWRTS.1996.557785
http://dx.doi.org/10.1109/DATE.2012.6176639
http://dx.doi.org/10.1109/DATE.2012.6176639
http://dx.doi.org/10.1145/951710.951734

Bibliography

[Bir14]

[BIS10]

[BJ14]

[BJHV09]

[BJVO7]

[Ble11]

[BMO5]

[BMO6]

[BMS12]

148

Europe (DATE), pages 217:1-217:4, 2014. doi:10.7873/DATE.2014.230.
Cited on page 37.

Alessandro Birolini. Reliability Engineering: Theory and Practice. Springer,
7th edition, 2014. doi:10.1007/978-3-642-39535-2. Cited on pages 5,
16, 17, 18, 29, 30, 43, 88, and 125.

Alan Burns, Leandro Soares Indrusiak, and Zheng Shi. Schedulability
analysis for real time on-chip communication with wormhole switching.
International Journal of Embedded and Real-Time Communication Systems,
1(2):1-22, 2010. doi:10.4018/jertcs.2010040101. Cited on page 41.

Mehrdad Bagheri and Gert Jervan. Fault-tolerant scheduling of mixed-
critical applications on multi-processor platforms. In Proceedings of the
12th IEEE International Conference on Embedded and Ubiguitons Computing
(EUC), pages 25-32, 2014. doi:10.1109/EUC.2014.13. Cited on page 49.

Demid Borodin, Ben H.H. Juurlink, Said Hamdiout, and Stamatis Vassiliadis.
Instruction-level fault tolerance configurability. Journal of Signal Processing
Systems, 57(1):89-105, 2009. doi:10.1007/s11265-008-0175-9. Cited
on page 4/.

Demid Borodin, Ben H.H. Juurlink, and Stamatis Vassiliadis. Instruction-
level fault tolerance configurability. In Proceedings of the International Confer-
ence on Embedded Computer Systems: Architectures, Modeling and Simulation
(IC-SAMOS), pages 110-117,2007. doi:10.1109/ICSAMOS. 2007 .4285741.
Cited on page 47.

John Blevins. Enhancing application performance on multicore systems.
White paper, 2011.  URL: http://mil-embedded.com/articles/
enhancing-application-performance-multicore-systems/ [ac-

cessed March 28, 2016]. Cited on page 33.

Sanjeev Baskiyar and Natarajan Meghanathan. A survey of contempo-
rary real-time operating systems. Informatica (Slovenia), 29(2):233-240,
2005. URL: http://www.informatica.si/index.php/informatica/
article/view/36 [accessed March 28, 2016]. Cited on page 33.

Tobias Bjerregaard and Shankar Mahadevan. A survey of research and
practices of network-on-chip. ACM Computing Surveys, 38(1):1-51, 2006.
doi:10.1145/1132952.1132953. Cited on pages 23, 26, 27, and 28.

Cristiana Bolchini, Antonio Miele, and Donatella Sciuto. An adaptive
approach for online fault management in many-core architectures. In Pro-
ceedings of the Conference & Exhibition on Design, Automation & Test in Eu-
rope (DATE), pages 1429-1432, 2012. doi:10.1109/DATE.2012.6176589.
Cited on pages 51 and 54.


http://dx.doi.org/10.7873/DATE.2014.230
http://dx.doi.org/10.1007/978-3-642-39535-2
http://dx.doi.org/10.4018/jertcs.2010040101
http://dx.doi.org/10.1109/EUC.2014.13
http://dx.doi.org/10.1007/s11265-008-0175-9
http://dx.doi.org/10.1109/ICSAMOS.2007.4285741
http://mil-embedded.com/articles/enhancing-application-performance-multicore-systems/
http://mil-embedded.com/articles/enhancing-application-performance-multicore-systems/
http://www.informatica.si/index.php/informatica/article/view/36
http://www.informatica.si/index.php/informatica/article/view/36
http://dx.doi.org/10.1145/1132952.1132953
http://dx.doi.org/10.1109/DATE.2012.6176589

Bibliography

[Bor05]

[Bor07]

[BPGO4]

[BPS*+09]

[BSO5]

[BSS13]

[BSSTO09]

[Bun12]

[Butl1]

Shekhar Borkar. Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation. IEEE Micro, 25(6):10-
16, 2005. doi:10.1109/MM.2005.110. Cited on page 3.

Shekhar Borkar. Thousand core chips: A technology perspective. In Proceed-
ings of the 44th Annual Design Automation Conference (DAC), pages 746-749,
2007. doi:10.1145/1278480.1278667. Cited on page 1.

Richard Buchmann, Frédéric Pétrot, and Alain Greiner. Fast cycle accurate
simulator to simulate event-driven behavior. In Proceedings of the Interna-
tional Conference on Electrical, Electronic and Computer Engineering (ICEEC),
pages 35-38, 2004. doi:10.1109/ICEEC.2004.1374374. Cited on page
108.

Andrew Baumann, Simon Peter, Adrian Schiipbach, Akhilesh Singhania,
Timothy Roscoe, Paul Barham, and Rebecca Isaacs. Your computer is
already a distributed system. why isn’t your OS? In Proceedings of the 12th
Workshop on Hot Topics in Operating Systems (HorOS), pages 12-17, 2009.
URL: http://www.usenix.org/events/hotos09/tech/full_papers/
baumann/baumann. pdf [accessed March 28, 2016]. Cited on page 34.

Tobias Bjerregaard and Jens Sparsg. A scheduling discipline for latency and
bandwidth guarantees in asynchronous network-on-chip. In Proceedings
of the 11th International Symposium on Asynchronous Circuits and Systems
(ASYNC), pages 34-43, 2005. doi:10.1109/ASYNC.2005.7. Cited on page
41.

Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk. Generative
software-based memory error detection and correction for operating system
data structures. In Proceedings of the 43rd Annual International Conference on
Dependable Systems and Networks (DSN), pages 1-12, 2013. doi:10.1109/
DSN.2013.6575308. Cited on page 50.

Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli.
Satisfiability modulo theories. In Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 185,
pages 825-885. IOS Press, 2009. doi:10.3233/978-1-58603-929-5-825.
Cited on page 37.

Bundesanstalt fiir Straflenwesen. Rechtsfolgen zunehmender Fahrzeugau-
tomatisierung. Berichte der Bundesanstalt fitr StrafSenwesen, Unterreibe
"Fahrzeugsicherbeit", F83:1-2, 2012. URL: http://www.bast.de/DE/
Publikationen/Foko/2013-2012/2012-11.html [accessed March 28,
2016]. Cited on page 2.

Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Springer, 3rd edition, 2011. doi:
10.1007/978-1-4614-0676-1. Cited on pages 1, 9, and 10.

149


http://dx.doi.org/10.1109/MM.2005.110
http://dx.doi.org/10.1145/1278480.1278667
http://dx.doi.org/10.1109/ICEEC.2004.1374374
http://www.usenix.org/events/hotos09/tech/full_papers/baumann/baumann.pdf
http://www.usenix.org/events/hotos09/tech/full_papers/baumann/baumann.pdf
http://dx.doi.org/10.1109/ASYNC.2005.7
http://dx.doi.org/10.1109/DSN.2013.6575308
http://dx.doi.org/10.1109/DSN.2013.6575308
http://dx.doi.org/10.3233/978-1-58603-929-5-825
http://www.bast.de/DE/Publikationen/Foko/2013-2012/2012-11.html
http://www.bast.de/DE/Publikationen/Foko/2013-2012/2012-11.html
http://dx.doi.org/10.1007/978-1-4614-0676-1
http://dx.doi.org/10.1007/978-1-4614-0676-1

Bibliography

[BWO1]

[BWCC+08]

[CASM11]

[CCM14]

[CM11]

[CNM™*14]

[CYM*12]

[Das14]

150

Alan Burns and Andrew J. Wellings. Real-Time Systems and Programming
Languages: Ada 95, real-time Java and real-time POSIX. Addison-Wesley, 3rd
edition, 2001. Cited on pages 1 and 10.

Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans
Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yue-
hua Dai, Yang Zhang, and Zheng Zhang. Corey: An operating sys-
tem for many cores. In Proceedings of the 8th Symposium on Oper-
ating Systems Design and Implementation (OSDI), pages 43-57, 2008.
URL: https://www.usenix.org/legacy/events/osdi08/tech/full_
papers/boyd-wickizer/boyd_wickizer.pdf [accessed March 28, 2016].
Cited on page 35.

Everton Alceu Carara, Gabriel Marchesan Almeida, Gilles Sassatelli, and
Fernando Gehm Moraes. Achieving composability in NoC-based MPSoCs
through QoS management at software level. In Proceedings of the Conference
& Exhibition on Design, Automation & Test in Europe (DATE), pages 407-412,
2011. doi:10.1109/DATE.2011.5763071. Cited on page 41.

Everton Alceu Carara, Ney Laert Vilar Calazans, and Fernando Gehm
Moraes. Differentiated communication services for NoC-based MPSoCs.
IEEE Transactions on Computers, 63(3):595-608, 2014. doi:10.1109/TC.
2012.123. Cited on page 41.

Chen-Ling Chou and Radu Marculescu. FARM: Fault-aware resource man-
agement in NoC-based multiprocessor platforms. In Proceedings of the
Conference & Exhibition on Design, Automation & Test in Europe (DATE),
pages 673-678,2011. doi:10.1109/DATE.2011.5763113. Cited on page
50.

I. Chatterjee, B. Narasimham, N.N. Mahatme, B.L. Bhuva, R.A. Reed,
R.D. Schrimpf, J.K. Wang, N. Vedula, B. Bartz, and C. Monzel. Impact of
technology scaling on SRAM soft error rates. IEEE Transactions on Nuclear
Science, 61(6):3512-3518, 2014. doi:10.1109/TNS.2014.2365546. Cited
on page 141.

Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal,
Osman S. Unsal, and Ken Mai. Flash correct-and-refresh: Retention-aware
error management for increased flash memory lifetime. In Proceedings of
the 30th International Conference on Computer Design (ICCD), pages 94-101,
2012. doi:10.1109/ICCD.2012.6378623. Cited on page 28.

Dakshina Dasari. Timing Analysis of Real-Time Systems Considering the
Contention on the Shared Interconnection Network in Multicores. PhD
thesis, Faculdade de Engenharia da Universidade do Porto, 2014. URL:
www.cister.isep.ipp.pt/docs/893 [accessed April 25,2016]. Cited on
page 43.


https://www.usenix.org/legacy/events/osdi08/tech/full_papers/boyd-wickizer/boyd_wickizer.pdf
https://www.usenix.org/legacy/events/osdi08/tech/full_papers/boyd-wickizer/boyd_wickizer.pdf
http://dx.doi.org/10.1109/DATE.2011.5763071
http://dx.doi.org/10.1109/TC.2012.123
http://dx.doi.org/10.1109/TC.2012.123
http://dx.doi.org/10.1109/DATE.2011.5763113
http://dx.doi.org/10.1109/TNS.2014.2365546
http://dx.doi.org/10.1109/ICCD.2012.6378623
www.cister.isep.ipp.pt/docs/893

Bibliography

[DCO7]

[DCT+13]

[dDAB*+13]

[dDAPL14]

[Dev86]

[DH12]

[DH13]

[DHE12]

Francis M. David and Roy H. Campbell. Building a self-healing operating
system. In Proceedings of the 3rd International Symposium on Dependable,
Autonomic and Secure Computing (DASC), pages 3-10, 2007. doi:10.1109/
DASC.2007.22. Cited on page 50.

Onur Derin, Emanuele Cannella, Giuseppe Tuveri, Paolo Meloni, Todor
Stefanov, Leandro Fiorin, Luigi Raffo, and Mariagiovanna Sami. A system-
level approach to adaptivity and fault-tolerance in NoC-based MPSoCs:
the MADNESS project. Microprocessors and Microsystems, 37(6~7):515-529,
2013. doi:10.1016/j.micpro.2013.07.007. Cited on pages 50 and 54.

Benoit Dupont de Dinechin, Renaud Ayrignac, Pierre-Edouard Beaucamps,
Patrice Couvert, Benoit Ganne, Pierre Guironnet de Massas, Francois
Jacquet, Samuel Jones, Nicolas Morey Chaisemartin, Frédéric Riss, and
Thierry Strudel. A clustered manycore processor architecture for em-
bedded and accelerated applications. In Proceedings of the High Perfor-
mance Extreme Computing Conference (HPEC), pages 1-6, 2013. doi:
10.1109/HPEC.2013.6670342. Cited on page 20.

Benoit Dupont de Dinechin, Duco van Amstel, Marc Poulhigs, and Guil-
laume Lager. Time-critical computing on a single-chip massively parallel
processor. In Proceedings of the Conference & Exhibition on Design, Automa-
tion & Test in Europe (DATE), pages 97:1-97:6, 2014. doi:10.7873/DATE.
2014.110. Cited on pages 20 and 42.

Luc Devroye. Non-Uniform Random Variate Generation. Springer, 1986.
doi:10.1007/978-1-4613-8643-8. Cited on page 111.

Bjorn Dobel and Hermann Hirtig. Who watches the watchmen? - protect-
ing operating system reliability mechanisms. In Presented as part of the 8th
Conference on Hot Topics in System Dependability (HotDep), pages 1-6, 2012.
URL: https://www.usenix.org/conference/hotdepl12/workshop-
program/presentation/d%C3)B6bel [accessed April 25, 2016]. Cited
on page 51.

Bjorn Débel and Hermann Hirtig. Where have all the cycles gone? - inves-
tigating runtime overheads of os-assisted replication. In Proceedings of the
2nd Workshop on Software-Based Methods for Robust Embedded Systems (SO-
BRES), pages 2534-2547,2013. URL: http://os.inf.tu-dresden.de/
~doebel/papers/2013-sobres-overhead.pdf [accessed April 25, 2016].
Cited on pages 51 and 54.

Bjorn Dobel, Hermann Hirtig, and Michael Engel. Operating system
support for redundant multithreading. In Proceedings of the 10th Inter-

national Conference on Embedded Software (EMSOFT), pages 83-92, 2012.
doi:10.1145/2380356.2380375. Cited on pages 51 and 54.

151


http://dx.doi.org/10.1109/DASC.2007.22
http://dx.doi.org/10.1109/DASC.2007.22
http://dx.doi.org/10.1016/j.micpro.2013.07.007
http://dx.doi.org/10.1109/HPEC.2013.6670342
http://dx.doi.org/10.1109/HPEC.2013.6670342
http://dx.doi.org/10.7873/DATE.2014.110
http://dx.doi.org/10.7873/DATE.2014.110
http://dx.doi.org/10.1007/978-1-4613-8643-8
https://www.usenix.org/conference/hotdep12/workshop-program/presentation/d%C3%B6bel
https://www.usenix.org/conference/hotdep12/workshop-program/presentation/d%C3%B6bel
http://os.inf.tu-dresden.de/~doebel/papers/2013-sobres-overhead.pdf
http://os.inf.tu-dresden.de/~doebel/papers/2013-sobres-overhead.pdf
http://dx.doi.org/10.1145/2380356.2380375

Bibliography

[DJPI%]

[DKV13]

[DMBO6]

[DMH14]

[DNNP14]

[Dob14]

[DSSHO3]

[DT03]

[Dub13]

[ED12]

152

Todd A. DeLong, Barry W. Johnson, and Joseph A. Profeta III. A fault
injection technique for VHDL behavioral-level models. IEEE Design & Test
of Computers, 13(4):24-33, 1996. doi:10.1109/54.544533. Cited on page
111.

Anup Das, Akash Kumar, and Bharadwaj Veeravalli. Communication and
migration energy aware design space exploration for multicore systems
with intermittent faults. In Proceedings of the Conference & Exhibition on
Design, Automation & Test in Europe (DATE), pages 1631-1636, 2013. doi:
10.7873/DATE.2013.331. Cited on page 49.

Giovanni De Micheli and Luca Benini. Networks on Chips. Morgan Kauf-
mann, 2006. doi:10.1016/B978-012370521-1/50000-X. Cited on pages
23, 25, and 26.

Bjorn Dobel, Robert Muschner, and Hermann Hirtig. Resource-aware
replication on heterogeneous multicores: Challenges and opportunities. In
Presented at 1st Workshop on Resource Awareness and Adaptivity in Multi-Core
Computing(RACING), pages 1-6, 2014. URL: http://arxiv.org/abs/
1405.2913 [accessed April 25,2016]. Cited on page 51.

Dakshina Dasari, Borislav Nikoli¢, Vincent Nélis, and Stefan M. Pet-
ters. NoC contention analysis using a branch-and-prune algorithm. ACM
Transactions on Embedded Computing Systems, 13(3s):113:1-113:26, 2014.
doi:10.1145/2567937. Cited on pages 28, 42, and 43.

Bjorn Daobel.  Operating System Support for Redundant Multithreading.
PhD thesis, Technischen Universitit Dresden, 2014. URL: http://nbn-
resolving.de/urn:nbn:de:bsz:14-qucosa-157190 [accessed April 25,
2016]. Cited on pages 48, 51, and 54.

Paul E. Dodd, Marty R. Shaneyfelt, James R. Schwank, and Gerald L. Hash.
Neutron-induced latchup in SRAMs at ground level. In Proceedings of the
41st International Annual Reliability Physics Symposium, pages 51-55, 2003.
doi:10.1109/RELPHY.2003.1197720. Cited on page 30.

William Dally and Brian Towles. Principles and Practices of Interconnection
Networks. Morgan Kaufmann, 2003. Cited on pages 23 and 25.

Elena Dubrova. Fault-Tolerant Design. Springer, 2013. doi:10.1007/978~-
1-4614-2113-9. Cited on pages 17, 18, 19, 28, 31, and 45.

Michael Engel and Bjérn Dobel.  The reliable computing base: A
paradigm for software-based reliability. In Presented at the 1st Work-
shop on Software-Based Methods for Robust Embedded Systems (SOBRES),
2012. URL: http://www.danceos.org/sobres/2012/papers/SOBRES-
7-Engel . pdf [accessed April 25,2016]. Cited on page 51.


http://dx.doi.org/10.1109/54.544533
http://dx.doi.org/10.7873/DATE.2013.331
http://dx.doi.org/10.7873/DATE.2013.331
http://dx.doi.org/10.1016/B978-012370521-1/50000-X
http://arxiv.org/abs/1405.2913
http://arxiv.org/abs/1405.2913
http://dx.doi.org/10.1145/2567937
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-157190
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-157190
http://dx.doi.org/10.1109/RELPHY.2003.1197720
http://dx.doi.org/10.1007/978-1-4614-2113-9
http://dx.doi.org/10.1007/978-1-4614-2113-9
http://www.danceos.org/sobres/2012/papers/SOBRES-7-Engel.pdf
http://www.danceos.org/sobres/2012/papers/SOBRES-7-Engel.pdf

Bibliography

[EET*14]

[EET*15]

[EIPPOS]

[Exp06]

[FA12]

[FFF09]

[FFF11]

[FFF12]

[For90]

Mojtaba Ebrahimi, Adrian Evans, Mehdi Baradaran Tahoori, Razi Seyyedi,
Enrico Costenaro, and Dan Alexandrescu. Comprehensive analysis of
alpha and neutron particle-induced soft errors in an embedded processor
at nanoscales. In Proceedings of the Conference & Exhibition on Design,
Automation & Test in Europe (DATE), pages 1-6, 2014. doi:10.7873/DATE.
2014.043. Cited on pages 73, 104, and 112.

Mojtaba Ebrahimi, Adrian Evans, Mehdi Baradaran Tahoori, Enrico Coste-
naro, Dan Alexandrescu, Vikas Chandra, and Razi Seyyedi. Comprehensive
analysis of sequential and combinational soft errors in an embedded pro-
cessor. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 34(10):1586-1599, 2015. doi:10.1109/TCAD.2015.2422845.
Cited on pages 73, 104, and 112.

Petru Eles, Viacheslav Izosimov, Paul Pop, and Zebo Peng. Synthesis of fault-
tolerant embedded systems. In Proceedings of the Conference & Exhibition
on Design, Automation & Test in Europe (DATE), pages 1117-1122, 2008.
doi:10.1109/DATE.2008.4484825. Cited on page 49.

Express Logic Inc. ThreadX - the high-performance embedded kernel. User
guide version 5.0, 2006. Cited on page 34.

Bo Fu and Paul Ampadu. Error Control for Network-on-Chip Links. Springer,
2012. doi:10.1007/978-1-4419-9313-7. Cited on page 113.

Thomas Ferrandiz, Fabrice Frances, and Christian Fraboul. A method
of computation for worst-case delay analysis on SpaceWire networks. In
Proceedings of the International Symposium on Industrial Embedded Systems
(SIES), pages 19-27, 2009. doi:10.1109/SIES.2009.5196187. Cited on
page 43.

Thomas Ferrandiz, Frances Frances, and Christian Fraboul. Using network
calculus to compute end-to-end delays in spacewire networks. ACM SIGBED
Review - Work-in-Progress Session of the 23rd Euromicro Conference on Real-

Time Systems (ECRTS), 8(3):44-47,2011. doi:10.1145/2038617.2038627.
Cited on page 42.

Thomas Ferrandiz, Frances Frances, and Christian Fraboul. A sensitivity
analysis of two worst-case delay computation methods for spacewire net-
works. In Proceedings of the 24th Conference on Real-Time Systems (ECRTS),
pages 47-56, 2012. doi:10.1109/ECRTS.2012.35. Cited on page 43.

P. Forin. Vital coded microprocessor principles and application for various
transit systems. In J.-P. Perrin, editor, Control, Computers, Communications
in Transportation, IFAC Symposia Series, pages 79-84. Pergamon, 1990.
doi:10.1016/B978-0-08-037025-5.50017-7. Cited on page 46.

153


http://dx.doi.org/10.7873/DATE.2014.043
http://dx.doi.org/10.7873/DATE.2014.043
http://dx.doi.org/10.1109/TCAD.2015.2422845
http://dx.doi.org/10.1109/DATE.2008.4484825
http://dx.doi.org/10.1007/978-1-4419-9313-7
http://dx.doi.org/10.1109/SIES.2009.5196187
http://dx.doi.org/10.1145/2038617.2038627
http://dx.doi.org/10.1109/ECRTS.2012.35
http://dx.doi.org/10.1016/B978-0-08-037025-5.50017-7

Bibliography

[GDRO5]

[GH10]

[GKSS03]

[Gon07]

[GPA*11]

[GRE*01]

[Grel3]

[GRSRV06]

[GSVP03]

154

Kees Goossens, John Dielissen, and Andrei Radulescu. Zthereal network
on chip: concepts, architectures, and implementations. IEEE Design & Test
of Computers, 22(5):414-421, 2005. doi:10.1109/MDT.2005.99. Cited on
pages 28 and 41.

Kees Goossens and Andreas Hansson. The Acthereal network on chip
after ten years: goals, evolution, lessons, and future. In Proceedings of
the 47th Design Automation Conference (DAC), pages 306-311, 2010. doi:
10.1145/1837274.1837353. Cited on page 28.

Alain Girault, Hamoudi Kalla, Mihaela Sighireanu, and Yves Sorel. An algo-
rithm for automatically obtaining distributed and fault-tolerant static sched-
ules. In Proceedings of the International Conference on Dependable Systems and
Networks (DSN), pages 159-168, 2003. doi:10.1109/DSN.2003.1209927.
Cited on page 49.

Masaki Gondo. Blending asymmetric and symmetric multiprocessing with
asingle OS on ARM11 MPCore. White paper, 2007. URL: http://www.
esol.com/embedded/download/pdf/whitepaper_multicore.pdf [ac-
cessed April 30, 2016]. Cited on page 34.

Dimitris Gizopoulos, Mihalis Psarakis, Sarita V. Adve, Pradeep Ramachan-
dran, Siva Kumar Sastry Hari, Daniel J. Sorin, Albert Meixner, A. Biswas,
and Xavier Vera. Architectures for online error detection and recovery
in multicore processors. In Proceedings of the Conference & Exhibition
on Design, Automation & Test in Europe (DATE), pages 533-538, 2011.
doi:10.1109/DATE.2011.5763096. Cited on page 43.

Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin,
Trevor Mudge, and Richard B. Brown. MiBench: a free, commercially
representative embedded benchmark suite. In Proceedings of the Interna-
tional Workshop on Workload Characterization (WWC), pages 3-14. IEEE
Computer Society, 2001. doi:10.1109/WWC.2001.15. Cited on page 121.

Green Hills Software. INTEGRITY RTOS, 2013. URL: http://www.
ghs.com/download/datasheets/INTEGRITY_RTOS.pdf [accessed April
30, 2016]. Cited on page 34.

Olga Goloubeva, Maurizio Rebaudengo, Matteo Sonza Reorda, and Mas-
simo Violante. Software-Implemented Hardware Fault Tolerance. Springer,
2006. doi:10.1007/0-387-32937-4. Cited on pages 3, 43, and 45.

Mohamed A. Gomaa, Chad Scarbrough, T. N. Vijaykumar, and Irith Pomer-
anz. Transient-fault recovery for chip multiprocessors. IEEE Micro, 23(6):76~
83,2003. doi:10.1109/MM.2003.1261390. Cited on page 50.


http://dx.doi.org/10.1109/MDT.2005.99
http://dx.doi.org/10.1145/1837274.1837353
http://dx.doi.org/10.1145/1837274.1837353
http://dx.doi.org/10.1109/DSN.2003.1209927
http://www.esol.com/embedded/download/pdf/whitepaper_multicore.pdf
http://www.esol.com/embedded/download/pdf/whitepaper_multicore.pdf
http://dx.doi.org/10.1109/DATE.2011.5763096
http://dx.doi.org/10.1109/WWC.2001.15
http://www.ghs.com/download/datasheets/INTEGRITY_RTOS.pdf
http://www.ghs.com/download/datasheets/INTEGRITY_RTOS.pdf
http://dx.doi.org/10.1007/0-387-32937-4
http://dx.doi.org/10.1109/MM.2003.1261390

Bibliography

[HAZ13]

[HBD*13]

[HBD*14]

[HBR*11]

[HBZ*14]

[HF13]

[HGRO7]

[HHKO3]

[HKR*15]

Mohammad A. Haque, Hakan Aydin, and Dakai Zhu. Energy-aware task
replication to manage reliability for periodic real-time applications on multi-
core platforms. In Proceedings of the International Green Computing Confer-
ence (IGCC), pages 1-11, 2013. doi:10.1109/IGCC.2013.6604518. Cited
on page 49.

Jorg Henkel, Lars Bauer, Nikil Dutt, Puneet Gupta, Sani Nassif, Muhammad
Shafique, Mehdi Tahoori, and Norbert Wehn. Reliable on-chip systems
in the nano-era: Lessons learnt and future trends. In Proceedings of the
50th Annual Design Automation Conference (DAC), pages 99:1-99:10, 2013.
doi:10.1145/2463209.2488857. Cited on page 45.

Martin Hoffmann, Christoph Borchert, Christian Dietrich, Horst
Schirmeier, Riidiger Kapitza, Olaf Spinczyk, and Daniel Lohmann. Ef-
fectiveness of fault detection mechanisms in static and dynamic oper-
ating system designs. In Proceedings of the 17th International Sympo-
sium on Object /Component /Service-Oriented Real-Time Distributed Comput-
ing(ISORC), pages 230-237, 2014. doi:10.1109/ISORC.2014.26. Cited
on page 50.

Jia Huang, Jan Olaf Blech, Andreas Raabe, Christian Buckl, and Alois Knoll.
Analysis and optimization of fault-tolerant task scheduling on multiproces-
sor embedded systems. In Proceedings of the 9th International Conference on
Hardware /Software Codesign and System Synthesis (CODES+ISSS), pages 247-
256, 2011. doi:10.1145/2039370.2039409. Cited on pages 51 and 54.

Jorg Henkel, Lars Bauer, Hongyan Zhang, Semeen Rehman, and Muham-
mad Shafique. Multi-layer dependability: From microarchitecture to appli-
cation level. In Proceedings of the 51st Annual Design Automation Conference
(DAC), pages 47:1-47:6,2014. doi:10.1145/2593069.2596683. Cited on
page 45.

Reinhold Heckmann and Christian Ferdinand. Worst-case execution time
prediction by static program analysis. White paper, 2013. URL: http:
//www .absint.com/aiT_WCET.pdf [accessed April 30, 2016]. Cited on
page 11.

Andreas Hansson, Kees Goossens, and Andrei Radulescu. Avoiding message-
dependent deadlock in network-based systems on chip. VLSI Design, 95859:1-
10, 2007. doi:10.1155/2007/95859. Cited on pages 23, 61, and 108.

Thomas A. Henzinger, Benjamin Horowitz, and Christoph M. Kirsch.
Giotto: a time-triggered language for embedded programming. Proceedings
of the IEEE, 91(1):84-99, 2003. doi:10.1109/JPROC.2002.805825. Cited

on pages 14 and 38.

Andrea Holler, Nermin Kajtazovic, Tobias Rauter, Kay Romer, and Chris-
tian Kreiner. Evaluation of diverse compiling for software-fault detection. In

155


http://dx.doi.org/10.1109/IGCC.2013.6604518
http://dx.doi.org/10.1145/2463209.2488857
http://dx.doi.org/10.1109/ISORC.2014.26
http://dx.doi.org/10.1145/2039370.2039409
http://dx.doi.org/10.1145/2593069.2596683
http://www.absint.com/aiT_WCET.pdf
http://www.absint.com/aiT_WCET.pdf
http://dx.doi.org/10.1155/2007/95859
http://dx.doi.org/10.1109/JPROC.2002.805825

Bibliography

[HLR+09]

[HRIK15]

[HTI97]

[Hual4]

[HUD* 14a]

[HUD*14b]

[IEE12]

[THB15]

156

Proceedings of the Conference & Exhibition on Design, Automation & Test in Eu-
rope (DATE), pages 531-536, 2015. URL: http://dl.acm.org/citation.
cfm?1d=2755873 [accessed April 30, 2016]. Cited on page 51.

Siva Kumar Sastry Hari, Man-Lap Li, Pradeep Ramachandran, Byn Choi,
and Sarita V. Adve. mSWAT: Low-cost hardware fault detection and di-
agnosis for multicore systems. In Proceedings of the 42nd Annual Inter-
national Symposium on Microarchitecture (MICRO), pages 122-132, 2009.
doi:10.1145/1669112.1669129. Cited on page 44.

Andrea Holler, Tobias Rauter, Johannes Iber, and Christian Kreiner. To-
wards dynamic software diversity for resilient redundant embedded systems.
In Proceedings of the 7th International Workshop Software Engineering for
Resilient Systems (SERENE), pages 16-30, 2015. doi:10.1007/978-3-319-
23129-7_2. Cited on pages 51 and 54.

Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer. Fault injec-
tion techniques and tools. Computer, 30(4):75-82, 1997. doi:10.1109/2.
585157. Cited on page 111.

Jia Huang. Towards an Integrated Framework for Reliability-Aware Embed-
ded System Design on Multiprocessor System-on-Chips. PhD thesis, Technis-
che Universitit Miinchen, 2014. URL: http://nbn-resolving.de/urn/
resolver.pl?urn:nbn:de:bvb:91-diss-20141104-1178696-0-9 [ac-
cessed April 30, 2016]. Cited on pages 51 and 54.

Martin Hoffmann, Peter Ulbrich, Christian Dietrich, Horst Schirmeier,
Daniel Lohmann, and Wolfgang Schréder-Preikschat. Experiences with
software-based soft-error mitigation using AN codes. Software Quality
Journal, pages 87-113,2014. doi:10.1007/s11219-014-9260-4. Cited
on pages 52 and 68.

Martin Hoffmann, Peter Ulbrich, Christian Dietrich, Horst Schirmeier,
Daniel Lohmann, and Wolfgang Schroder-Preikschat. A practitioner’s guide
to software-based soft-error mitigation using an-codes. In Proceedings of
the 15th International Symposium on High-Assurance Systems Engineering
(HASE), pages 33-40, 2014. doi:10.1109/HASE.2014.14. Cited on pages
52,68, and 71.

IEEE Computer Society. 1666-2011 - IEEE standard for standard SystemC
language reference manual, 2012. doi:10.1109/IEEESTD.2012.6134619.
Cited on page 108.

Leandro Soares Indrusiak, James Harbin, and Alan Burns. Average and
worst-case latency improvements in mixed-criticality wormhole networks-
on-chip. In Proceedings of the 27th Conference on Real-Time Systems (ECRTS),
pages 47-56, 2015. doi:10.1109/ECRTS.2015.12. Cited on page 41.


http://dl.acm.org/citation.cfm?id=2755873
http://dl.acm.org/citation.cfm?id=2755873
http://dx.doi.org/10.1145/1669112.1669129
http://dx.doi.org/10.1007/978-3-319-23129-7_2
http://dx.doi.org/10.1007/978-3-319-23129-7_2
http://dx.doi.org/10.1109/2.585157
http://dx.doi.org/10.1109/2.585157
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20141104-1178696-0-9
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20141104-1178696-0-9
http://dx.doi.org/10.1007/s11219-014-9260-4
http://dx.doi.org/10.1109/HASE.2014.14
http://dx.doi.org/10.1109/IEEESTD.2012.6134619
http://dx.doi.org/10.1109/ECRTS.2015.12

Bibliography

[Int10]

[Int11]

[Int12]

[Int15]

[1011]

[IPEPOS]

[Joh84]

[KB10]

[KCT13]

[KDK*89]

International Electrotechnical Commission (IEC). 61508-1: Functional
safety of electrical /electronic/programmable electronic safety-related sys-
tems - Part 1: General requirements, 2010. Cited on pages 3, 17, 34, and 103.

International Standard Organization (ISO). ISO 26262-5: Road vehicles -
functional safety - Part 5: Product development at the hardware level, 2011.
Cited on pages 3, 17, and 103.

Intel Crop. The SCC platform overview, revision 0.8, 2012. URL:
https://communities.intel.com/docs/DOC-5512 [accessed April 30,
2016]. Cited on page 21.

Intel Crop. Intel Xeon processor E7-8890 v3 (45M cache, 2.50 GHz),
2015. URL: http://ark.intel.com/products/84685 [accessed April
30, 2016]. Cited on page 20.

Eishi Ibe and Kenichi Osada. Low Power and Reliable SRAM Memory Cell
and Array Design, chapter Reliable Memory Cell Design for Environmental
Radiation-Induced Failures in SRAM, pages 89-124. Springer, 2011. doi:
10.1007/978-3-642-19568-6_6. Cited on page 30.

Viacheslav Izosimov, Paul Pop, Petru Eles, and Zebo Peng. Scheduling of
fault-tolerant embedded systems with soft and hard timing constraints. In
Proceedings of the Conference & Exhibition on Design, Automation & Test in
Europe (DATE), pages 915-920, 2008. doi:10.1109/DATE.2008.4484791.
Cited on page 48.

Barry W. Johnson. Fault-tolerant microprocessor-based systems. [EEE
Micro, 4(6):6-21, 1984. doi:10.1109/MM.1984.291277. Cited on pages 3
and 18.

Tim Kranich and Mladen Berekovic. NoC switch with credit based guaran-
teed service support qualified for GALS systems. In Proceedings of the 13th
Conference on Digital System Design, Architectures, Methods and Tools (DSD),
pages 53-59, 2010. doi:10.1109/DSD.2010.30. Cited on page 41.

Pratyush Kumar, Devesh B. Chokshi, and Lothar Thiele. A satisfiability
approach to speed assignment for distributed real-time systems. In Proceed-
ings of the Conference & Exhibition on Design, Automation & Test in Europe
(DATE), pages 749-754, 2013. doi:10.7873/DATE.2013.160. Cited on
page 37.

Hermann Kopetz, Andreas Damm, Christian Koza, Marco Mulazzani,
Wolfgang Schwabl, Christoph Senft, and Ralph Zainlinger. Distributed
fault-tolerant real-time systems: the Mars approach. IEEE Micro, 9(1):25-40,
1989. doi:10.1109/40.16792. Cited on page 50.

157


https://communities.intel.com/docs/DOC-5512
http://ark.intel.com/products/84685
http://dx.doi.org/10.1007/978-3-642-19568-6_6
http://dx.doi.org/10.1007/978-3-642-19568-6_6
http://dx.doi.org/10.1109/DATE.2008.4484791
http://dx.doi.org/10.1109/MM.1984.291277
http://dx.doi.org/10.1109/DSD.2010.30
http://dx.doi.org/10.7873/DATE.2013.160
http://dx.doi.org/10.1109/40.16792

Bibliography

[KJL13]

[KK10]

[KNP11]

[Ko096 ]

[Kop11]

[Kril4]

[KS12]

[KSW]06]

[KTCG15]

[KW08]

158

Abbas Eslami Kiasari, Axel Jantsch, and Zhonghai Lu. Mathematical for-
malisms for performance evaluation of networks-on-chip. ACM Computing
Surveys, 45(3):38:1-38:41, 2013. doi:10.1145/2480741.2480755. Cited
on page 42.

Israel Koren and C. Mani Krishna. Fault-Tolerant Systems. Morgan Kauf-
mann, 2010. Cited on pages 3, 5, 16, 17, 18, 29, 43, 64, and 66.

Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Veri-
fication of probabilistic real-time systems. In Proceedings of the 23rd Inter-
national Conference on Computer Aided Verification (CAV), pages 585-591,
2011. doi:10.1007/978-3-642-22110-1_47. Cited on page 93.

Philip Koopman. Embedded system design issues (the rest of the story).
In Proceedings of the International Conference on Computer Design: VLSI
in Computers and Processors (ICCD), pages 310-317, 1996. doi:10.1109/
ICCD.1996.563572. Cited on page 9.

Hermann Kopetz. Real-Time Systems: Design Principles for Distributed
Embedded Applications. Springer, 2nd edition, 2011. doi:10.1007/978-1-
4419-8237-7. Cited on pages 1, 5, 10, 14, 15, 16, 17, 18, 19, 30, and 34.

C. Mani Krishna. Fault-tolerant scheduling in homogeneous real-time
systems. ACM Computing Surveys, 46(4):48:1-48:34, 2014. doi:10.1145/
2534028. Cited on pages 4 and 48.

Christoph M. Kirsch and Ana Sokolova. The logical execution time
paradigm. In Samarjit Chakraborty and J6rg Eberspicher, editors, Advances
in Real-Time Systems, pages 103-120. Springer, 2012. doi:10.1007/978-3-
642-24349-3_5. Cited on page 14.

Nikolay Kavaldjiev, Gerard J.M. Smit, Pascal T. Wolkotte, and Pierre G.
Jansen. Providing QoS guarantees in a NoC by virtual channel reservation.
In Proceedings of the International Workshop on Applied Reconfigurable Com-
puting, volume 3985, pages 299-310, 2006. doi:10.1007/11802839_38.
Cited on page 41.

Manolis Kaliorakis, Sotiris Tselonis, Athanasios Chatzidimitriou, and Dim-
itris Gizopoulos. Accelerated microarchitectural fault injection-based relia-
bility assessment. In Proceedings of the International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS), pages 47-52,
2015. doi:10.1109/DFT.2015.7315134. Cited on page 111.

Robert Kaiser and Stephan Wagner. The PikeOS concept-histroy and
design. White paper, 2008. URL: https://www.sysgo.com/nc/news-
events/document-center/whitepapers/pikeos-history-and-
design-jan-2008 [accessed April 30, 2016]. Cited on page 33.


http://dx.doi.org/10.1145/2480741.2480755
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1109/ICCD.1996.563572
http://dx.doi.org/10.1109/ICCD.1996.563572
http://dx.doi.org/10.1007/978-1-4419-8237-7
http://dx.doi.org/10.1007/978-1-4419-8237-7
http://dx.doi.org/10.1145/2534028
http://dx.doi.org/10.1145/2534028
http://dx.doi.org/10.1007/978-3-642-24349-3_5
http://dx.doi.org/10.1007/978-3-642-24349-3_5
http://dx.doi.org/10.1007/11802839_38
http://dx.doi.org/10.1109/DFT.2015.7315134
https://www.sysgo.com/nc/news-events/document-center/whitepapers/pikeos-history-and-design-jan-2008
https://www.sysgo.com/nc/news-events/document-center/whitepapers/pikeos-history-and-design-jan-2008
https://www.sysgo.com/nc/news-events/document-center/whitepapers/pikeos-history-and-design-jan-2008

Bibliography

[KWQ"12] Manos Kapritsos, Yang Wang, Vivien Quéma, Allen Clement, Lorenzo

[KZH15]

[LAB*+11]

[Lar34]

[LBBO4]

[Lee03]

[LGX*+11]

[LIMMO7]

Alvisi, and Mike Dahlin. All about Eve: Execute-verify replication for multi-
core servers. In Proceedings of the 10th Conference on Operating Systems Design
and Implementation (OSDI), pages 237-250. USENIX Association, 2012.
URL: https://www.usenix.org/system/files/conference/osdil2/
osdil2-final-190.pdf [accessed April 30, 2016]. Cited on page 50.

Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive
benchmarks for free. In Proceedings of the International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WATERS),
2015. URL: http://ecrts.eit.uni-kl.de/forum/viewtopic.php?f=
20&t=23 [accessed April 30, 2016]. Cited on pages 11 and 81.

Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held,
Soren Kammel, J. Zico Kolter, Dirk Langer, Oliver Pink, Vaughan Pratt,
Michael Sokolsky, Ganymed Stanek, David Michael Stavens, Alex Teichman,
Moritz Werling, and Sebastian Thrun. Towards fully autonomous driving:
Systems and algorithms. In Proceedings of the Intelligent Vebicles Symposinm
(IV), pages 163-168, 2011. doi:10.1109/IVS.2011.5940562. Cited on
page 102.

Dionysius Lardner.  Babbage’s calculating engine.  Edinburgh Re-
view, LIX(CXX):263-327, 1834. URL: http://www.archive.org/
details/Dionysius_Lardner_-_Babbages_Calculating Engine [ac-

cessed April 30, 2016]. Cited on page 1.

Gholam Reza Latif-Shabgahi, Julian M. Bass, and Stuart Bennett. A taxon-
omy for software voting algorithms used in safety-critical systems. IEEE
Transactions on Reliability, 53(3):319-328, 2004. doi:10.1109/TR.2004.
832819. Cited on pages 64 and 65.

Sunggu Lee. Real-time wormhole channels. Journal of Parallel and Dis-
tributed Computing, 63(3):299-311, 2003. doi:10.1016/S0743-7315(02)
00055-2. Cited on page 43.

Weichen Liu, Zonghua Gu, Jiang Xu, Xiaowen Wu, and Yaoyao Ye. Satis-
fiability modulo graph theory for task mapping and scheduling on multi-
processor systems. IEEE Transactions on Parallel and Distributed Systems,
22(8):1382-1389, 2011. doi:10.1109/TPDS.2010.204. Cited on page 37.

Christopher LaFrieda, Engin Ipek, Joé F. Martinez, and Rajit Manohar.
Utilizing dynamically coupled cores to form a resilient chip multiprocessor.
In Proceedings of the 37th Annual International Conference on Dependable
Systemsand Networks (DSN), pages 317-326, 2007. doi:10.1109/DSN.2007.
100. Cited on page 44.

159


https://www.usenix.org/system/files/conference/osdi12/osdi12-final-190.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-190.pdf
http://ecrts.eit.uni-kl.de/forum/viewtopic.php?f=20&t=23
http://ecrts.eit.uni-kl.de/forum/viewtopic.php?f=20&t=23
http://dx.doi.org/10.1109/IVS.2011.5940562
http://www.archive.org/details/Dionysius_Lardner_-_Babbages_Calculating_Engine
http://www.archive.org/details/Dionysius_Lardner_-_Babbages_Calculating_Engine
http://dx.doi.org/10.1109/TR.2004.832819
http://dx.doi.org/10.1109/TR.2004.832819
http://dx.doi.org/10.1016/S0743-7315(02)00055-2
http://dx.doi.org/10.1016/S0743-7315(02)00055-2
http://dx.doi.org/10.1109/TPDS.2010.204
http://dx.doi.org/10.1109/DSN.2007.100
http://dx.doi.org/10.1109/DSN.2007.100

Bibliography

[LJL14]

[LJS05]

[LKB*09]

[LKP+10]

[LLP15]

[LMJ*09]

[LRS*08]

[LSP82]

160

Shaoteng Liu, Axel Jantsch, and Zhonghai Lu. Parallel probe based dy-
namic connection setup in TDM NoCs. In Proceedings of the Confer-
ence & Exhibition on Design, Automation & Test in Europe (DATE), 2014.
doi:10.7873/DATE.2014.252. Cited on page 41.

Zhonghai Lu, Axel Jantsch, and Ingo Sander. Feasibility analysis of messages
for on-chip networks using wormhole routing. In Proceedings of the Asia
and South Pacific Design Automation Conference (ASP-DAC), volume 2, pages
960-964, 2005. doi:10.1109/ASPDAC.2005.1466499. Cited on page 43.

Rose Liu, Kevin Klues, Sarah Bird, Steven Hofmeyr, Krste Asanovic, and
John Kubiatowicz. Tessellation: Space-time partitioning in a manycore
client OS. In Proceedings of the 1st Conference on Hot Topics in Paral-
lelism (HotPar), 2009. URL: https://www.usenix.org/legacy/events/
hotpar09/tech/full_papers/liu/liu.pdf [accessed April 30, 2016].
Cited on page 35.

Chanhee Lee, Hokeun Kim, Hae-woo Park, Sungchan Kim, Hyunok Oh,
and Soonhoi Ha. A task remapping technique for reliable multi-core embed-
ded systems. In Proceedings of the International Conference on Hardware /-
Software Codesign and System Synthesis (CODES-+ISSS), pages 307-316, 2010.
doi:10.1145/1878961.1879014. Cited on page 49.

Guanpeng Li, Qining Lu, and Karthik Pattabiraman. Fine-grained charac-
terization of faults causing long latency crashes in programs. In Proceedings
of the 45th Annual International Conference on Dependable Systems and Net-
works (DSN), pages 450-461, 2015. doi:10.1109/DSN.2015.36. Cited on
page 76.

Zhonghai Lu, Mikael Millberg, Axel Jantsch, Alistair Bruce, Pieter van der
Wolf, and Tomas Henriksson. Flow regulation for on-chip communication.
In Proceedings of the Conference & Exhibition on Design, Automation & Test in
Europe (DATE), pages 578-581, 2009. doi:10.1109/DATE.2009.5090731.
Cited on page 42.

Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V. Adve,
Vikram S. Adve, and Yuanyuan Zhou. Understanding the propagation of
hard errors to software and implications for resilient system design. In
Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 265-276,
2008. doi:10.1145/1346281.1346315. Cited on page 44.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine gen-
erals problem. ACM Transactions on Programming Languages and Systems
(TOPLAS), 4(3):382-401, 1982. doi:10.1145/357172.357176. Cited on

page 32.


http://dx.doi.org/10.7873/DATE.2014.252
http://dx.doi.org/10.1109/ASPDAC.2005.1466499
https://www.usenix.org/legacy/events/hotpar09/tech/full_papers/liu/liu.pdf
https://www.usenix.org/legacy/events/hotpar09/tech/full_papers/liu/liu.pdf
http://dx.doi.org/10.1145/1878961.1879014
http://dx.doi.org/10.1109/DSN.2015.36
http://dx.doi.org/10.1109/DATE.2009.5090731
http://dx.doi.org/10.1145/1346281.1346315
http://dx.doi.org/10.1145/357172.357176

Bibliography

[Marl1]

[ Mas03 ]

[MBD*00]

[MBF+12]

[ME02]

[Mel15]

[Men15]

[MHL*15]

[MKRO2]

[MPGS06]

Peter Marwedel. Embedded System Design. Springer, 2nd edition, 2011.
doi:10.1007/978-94-007-0257-8. Cited on pages 1, 9, 15, and 33.

Anthony J. Massa. Embedded Software Development with eCos. Prentice
Hall, 2003. Cited on page 34.

P. Mantegazza, E. Bianchi, L. Dozio, S. Papacharalambous, S. Hughes, and
D. Beal. RTAIL Real-time application interface. Linux Journal, 72:1-10,
2000. URL: http://www.linuxjournal.com/article/3838 [accessed
April 30, 2016]. Cited on page 33.

Diego Melpignano, Luca Benini, Eric Flamand, Bruno Jego, Thierry Lep-
ley, Germain Haugou, Fabien Clermidy, and Denis Dutoit. Platform
2012, a many-core computing accelerator for embedded SoCs: Perfor-
mance evaluation of visual analytics applications. In Proceedings of the
49th Annual Design Automation Conference (DAC), pages 1137-1142, 2012.
doi:10.1145/2228360.2228568. Cited on page 21.

David G. Mavis and Paul H. Eaton. Soft error rate mitigation techniques for
modern microcircuits. In Proceedings of the 40th Annual Reliability Physics
Symposium, pages 216-225, 2002. doi:10.1109/RELPHY.2002.996639.
Cited on page 30.

Mellanox Technologies Ltd. TILEPro64 processor - product brief,
2015. URL: http://www.mellanox.com/related-docs/prod_multi_
core/PB_TILE-Gx72.pdf [accessed May 1,2016]. Cited on page 20.

Mentor Graphics Crop. Nucleus RTOS, 2015. URL: http:
//s3.mentor.com/public_documents/datasheet/embedded-
software/nucleus-rtos-ds.pdf [accessed April 30, 2016]. Cited on
page 34.

Sheng Ma, Libo Huang, Mingche Lai, Wei Shi, and Zhiying Wang. Networks-
on-Chip - From Implementations to Programming Paradigms. Morgan Kauf-
mann, 2015. doi:10.1016/B978-0-12-800979-6.09985-6. Cited on
pages 1 and 23.

Shubhendu S. Mukherjee, Michael Kontz, and Steven K. Reinhardt. De-
tailed design and evaluation of redundant multithreading alternatives. In
Proceedings of the 29th Annual International Symposium on Computer Ar-
chitecture (ISCA), pages 99-110, 2002. doi:10.1109/ISCA.2002.1003566.
Cited on page 50.

Ivan Miro Panades, Alain Greiner, and Abbas Sheibanyrad. A low cost
network-on-chip with guaranteed service well suited to the GALS ap-
proach. In Proceedings of the 1st International Conference and Workshops on
Nano-Networks (Nano-Net), pages 1-5, 2006. doi:10.1109/NANONET. 2006 .
346219. Cited on page 108.

161


http://dx.doi.org/10.1007/978-94-007-0257-8
http://www.linuxjournal.com/article/3838
http://dx.doi.org/10.1145/2228360.2228568
http://dx.doi.org/10.1109/RELPHY.2002.996639
http://www.mellanox.com/related-docs/prod_multi_core/PB_TILE-Gx72.pdf
http://www.mellanox.com/related-docs/prod_multi_core/PB_TILE-Gx72.pdf
http://s3.mentor.com/public_documents/datasheet/embedded-software/nucleus-rtos-ds.pdf
http://s3.mentor.com/public_documents/datasheet/embedded-software/nucleus-rtos-ds.pdf
http://s3.mentor.com/public_documents/datasheet/embedded-software/nucleus-rtos-ds.pdf
http://dx.doi.org/10.1016/B978-0-12-800979-6.09985-6
http://dx.doi.org/10.1109/ISCA.2002.1003566
http://dx.doi.org/10.1109/NANONET.2006.346219
http://dx.doi.org/10.1109/NANONET.2006.346219

Bibliography

[MTK*11]

Peter Marwedel, Jiirgen Teich, Georgia Kouveli, Iuliana Bacivarov, Lothar
Thiele, Ha Soonhoti, Chanhee Lee, Qiang Xu, and Lin Huang. Mapping of
applications to MPSoCs. In Proceedings of the 9th International Conference
on Hardware /Software Codesign and System Synthesis (CODES+ISSS), pages
109-118, 2011. doi:10.1145/2039370.2039390. Cited on page 2.

[MVdWFO08] Timothy G. Mattson, Rob Van der Wijngaart, and Michael Frumkin. Pro-

[MWE"03]

[MZ14]

[Nat13]

[NHM*09]

[Nicl1]

[Nik15]

[Nis97]

162

gramming the Intel 80-core network-on-a-chip terascale processor. In Pro-
ceedings of the Conference on Supercomputing (SC), pages 38:1-38:11, 2008.
doi:10.1145/1413370.1413409. Cited on pages 1, 20, and 21.

Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K. Rein-
hardt, and Todd Austin. A systematic methodology to compute the archi-
tectural vulnerability factors for a high-performance microprocessor. In
Proceedings of the 36th Annual International Symposium on Microarchitecture
(MICRO), pages 29-41, 2003. doi:10.1109/MICRO.2003.1253181. Cited
on page 31.

Mohammad H. Mottaghi and Hamid R. Zarandi. DFTS: A dynamic fault-
tolerant scheduling for real-time tasks in multicore processors. Microproces-
sors and Microsystems, 38(1):88-97, 2014. doi:10.1016/j.micpro.2013.
11.013. Cited on page 49.

National Highway Traffic Safety Administration. Preliminary
statement of policy concerning automated vehicle, 2013.  URL:
http://www.autoalliance.org/index.cfm?objectid=CC9678B0-
A415-11E5-997E000C296BA163 [accessed April 30, 2016]. Cited on page
2.

Edmund B. Nightingale, Orion Hodson, Ross Mcllroy, Chris Hawblitzel,
and Galen Hunt. Helios: Heterogeneous multiprocessing with satellite
kernels. In Proceedings of the 22nd Symposium on Operating Systems Principles
(SOSP), pages 221-234, 2009. doi:10.1145/1629575.1629597. Cited on
page 35.

Michael Nicolaidis, editor. Soft Errors in Modern Electronic Systems, vol-
ume 41 of Frontiers in Electronic Testing. Springer, 2011. doi:10.1007/978-
1-4419-6993-4. Cited on pages 3, 29, and 30.

Borislav Nikolic. ~ Many-Core Platforms in the Real-Time Embedded
Computing Domain. PhD thesis, CISTER Research Center, 2015. URL:
http://www.cister.isep.ipp.pt/docs/many_core_platforms_
in_the_real time_embedded_computing domain/1110/view.pdf
[accessed April 30, 2016]. Cited on pages 23 and 42.

Nimal Nissanke. Realtime Systems. Prentice Hall, 1997. Cited on page 10.


http://dx.doi.org/10.1145/2039370.2039390
http://dx.doi.org/10.1145/1413370.1413409
http://dx.doi.org/10.1109/MICRO.2003.1253181
http://dx.doi.org/10.1016/j.micpro.2013.11.013
http://dx.doi.org/10.1016/j.micpro.2013.11.013
http://www.autoalliance.org/index.cfm?objectid=CC9678B0-A415-11E5-997E000C296BA163
http://www.autoalliance.org/index.cfm?objectid=CC9678B0-A415-11E5-997E000C296BA163
http://dx.doi.org/10.1145/1629575.1629597
http://dx.doi.org/10.1007/978-1-4419-6993-4
http://dx.doi.org/10.1007/978-1-4419-6993-4
http://www.cister.isep.ipp.pt/docs/many_core_platforms_in_the_real_time_embedded_computing_domain/1110/view.pdf
http://www.cister.isep.ipp.pt/docs/many_core_platforms_in_the_real_time_embedded_computing_domain/1110/view.pdf

Bibliography

[NM65]

[NP12]

[NVI14]

[NYP14]

[OB12]

[On-01]

[OSM02]

[Par94]

[PBAM*+09]

[PEZ12]

John Ashworth Nelder and Roger Mead. A simplex method for function
minimization. Computer Journal, 7:308-313, 1965. URL: http://comjnl.
oxfordjournals.org/content/7/4/308.full.pdf [accessed April 30,
2016]. Cited on page 131.

Borislav Nikoli¢ and Stefan M. Petters. Towards network-on-chip agree-
ment protocols. In Proceedings of the 10th international conference on Em-
bedded Software (EMSOFT), pages 207-216, 2012. doi:10.1145/2380356.
2380395. Cited on page 42.

NVIDIA Crop. Tesla GPU accelerators, 2014.  URL: http:
//international.download.nvidia.com/pdf/kepler/TeslaK80-
datasheet.pdf [accessed April 30, 2016]. Cited on page 20.

Borislav Nikoli¢, Patrick Meumeu Yomsi, and Stefan M. Petters. Worst-
case communication delay analysis for many-cores using a limited migrative
model. In Proceedings of the 20th International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), pages 1-10, 2014.
doi:10.1109/RTCSA.2014.6910498. Cited on page 41.

Pierre Olivier and Jalil Boukhobza. A hardware time manager implementa-
tion for the Xenomai real-time kernel of embedded linux. ACM SIGBED
Review - 2nd Workshop on Embed With Linux (EWiLi), 9(2):38-42, 2012.
doi:10.1145/2318836.2318843. Cited on page 33.

On-Chip Bus (OCB) Development Working Group. Virtual Component
Interface Standard Version 2 (OCB 2 2.0. Technical report, VSI Alliance,
Inc., 2001. Cited on pages 21 and 107.

Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. Error detection
by duplicated instructions in super-scalar processors. IEEE Transactions on
Reliability, 51(1):63-75, 2002. doi:10.1109/24.994913. Cited on pages 4
and 47.

Behrooz Parhami. Voting algorithms. IEEE Transactions on Reliability,
43(4):617-629, 1994. doi:10.1109/24.370218. Cited on pages 19, 38,
and 65.

Nicolas Pouillon, Alexandre Becoulet, Aline Vieira de Mello, Francois
Pecheux, and Alain Greiner. A generic instruction set simulator API for
timed and untimed simulation and debug of MP2-SoCs. In Proceedings of the
International Symposium on Rapid System Prototyping (RSP), pages 116-122,
2009. doi:10.1109/RSP.2009.11. Cited on page 107.

PEZY Computing Ltd. PEZY-SC, 2012. URL: http://pezy.co.jp/en/
products/pezy-sc.html [accessed April 30, 2016]. Cited on pages 1
and 20.

163


http://comjnl.oxfordjournals.org/content/7/4/308.full.pdf
http://comjnl.oxfordjournals.org/content/7/4/308.full.pdf
http://dx.doi.org/10.1145/2380356.2380395
http://dx.doi.org/10.1145/2380356.2380395
http://international.download.nvidia.com/pdf/kepler/TeslaK80-datasheet.pdf
http://international.download.nvidia.com/pdf/kepler/TeslaK80-datasheet.pdf
http://international.download.nvidia.com/pdf/kepler/TeslaK80-datasheet.pdf
http://dx.doi.org/10.1109/RTCSA.2014.6910498
http://dx.doi.org/10.1145/2318836.2318843
http://dx.doi.org/10.1109/24.994913
http://dx.doi.org/10.1109/24.370218
http://dx.doi.org/10.1109/RSP.2009.11
http://pezy.co.jp/en/products/pezy-sc.html
http://pezy.co.jp/en/products/pezy-sc.html

Bibliography

[PIEP09]

[PKOS]

[PMJ*+06]

[PRI15]

[QLD0Y]

[QLD10]

[QNX12]

[Rap13]

[RCA07]

[RCM13]

164

Paul Pop, Viacheslav Izosimov, Petru Eles, and Zebo Peng. Design optimiza-
tion of time- and cost-constrained fault-tolerant embedded systems with
checkpointing and replication. IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, 17(3):389-402, 2009. doi:10.1109/TVLSI.2008.
2003166. Cited on page 48.

Christian Paukovits and Hermann Kopetz. Concepts of switching in the
time-triggered network-on-chip. In Proceedings of the 14th International
Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pages 120-129, 2008. doi:10.1109/RTCSA.2008.18. Cited on
page 41.

Ahmad Patooghy, Seyed Ghassem Miremadi, A. Javadtalab, Mahdi Fazeli,
and Navid Farazmand. A solution to single point of failure using voter repli-
cation and disagreement detection. In Proceedings of the 2nd International
Symposium on Dependable, Autonomic and Secure Computing (DASC), pages
171-176, 2006. doi:10.1109/DASC.2006.15. Cited on page 44.

PRISM Manunal Version 4.3,2015. URL: http://www.prismmodelchecker.
org/manual/Main/A110n0nePage [accessed April 30, 2016]. Cited on
pages 93 and 133.

Yue Qian, Zhonghai Lu, and Wenhua Dou. Analysis of worst-case delay
bounds for best-effort communication in wormhole networks on chip. In
Proceedings of the 3rd International Symposium on Networks-on-Chip (NoCs),
pages 44-53, 2009. doi:10.1109/N0CS.2009.5071444. Cited on page 42.

Yue Qian, Zhonghai Lu, and Wenhua Dou. Analysis of worst-case de-
lay bounds for on-chip packet-switching networks. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 29(5):802-815,
2010. doi:10.1109/TCAD.2010.2043572. Cited on page 42.

QNX Software Systems Ltd.  Multicore processing user’s guide,
2012. URL: http://support7.qnx.com/download/download/26177/
Multicore_Processing_Users_Guide.pdf [accessed April 30, 2016].
Cited on page 34.

Rapita Systems Ltd.  Rapitime explained. =~ White paper, 2013.
URL: https://www.rapitasystems.com/system/files/RapiTime}
20Explained.pdf [accessed May 1,2016]. Cited on page 11.

George A. Reis, Jonathan Chang, and David I. August. Automatic
instruction-level software-only recovery. IEEE Micro, 27(1):36-47, 2007.
doi:10.1109/MM.2007.4. Cited on pages 4 and 47.

Marcelo Ruaro, Everton Alceu Carara, and Fernando Gehm Moraes. Adap-
tive QoS techniques for NoC-based MPSoCs. In Proceedings of the In-
ternational Symposium on System on Chip (SoC), pages 1-6, 2013. doi:
10.1109/1880C.2013.6675274. Cited on page 41.


http://dx.doi.org/10.1109/TVLSI.2008.2003166
http://dx.doi.org/10.1109/TVLSI.2008.2003166
http://dx.doi.org/10.1109/RTCSA.2008.18
http://dx.doi.org/10.1109/DASC.2006.15
http://www.prismmodelchecker.org/manual/Main/AllOnOnePage
http://www.prismmodelchecker.org/manual/Main/AllOnOnePage
http://dx.doi.org/10.1109/NOCS.2009.5071444
http://dx.doi.org/10.1109/TCAD.2010.2043572
http://support7.qnx.com/download/download/26177/Multicore_Processing_Users_Guide.pdf
http://support7.qnx.com/download/download/26177/Multicore_Processing_Users_Guide.pdf
https://www.rapitasystems.com/system/files/RapiTime%20Explained.pdf
https://www.rapitasystems.com/system/files/RapiTime%20Explained.pdf
http://dx.doi.org/10.1109/MM.2007.4
http://dx.doi.org/10.1109/ISSoC.2013.6675274
http://dx.doi.org/10.1109/ISSoC.2013.6675274

Bibliography

[RCM14]

[RCM15]

[RCV+05]

[RDJ*09]

Marcelo Ruaro, Everton Alceu Carara, and Fernando Gehm Moraes.
Runtime QoS support for MPSoC: a processor centric approach. In
Proceedings of the 27th Symposium on Integrated Circuits and Systems De-
sign (SBCCI), pages 43:1-43:7, 2014. URL: http://www.inf.pucrs.
br/~moraes/my_pubs/papers/2014/sbcci_ruaro.pdf, doi:10.1145/
2660540.2661011. Cited on page 2.

Marcelo Ruaro, Everton Alceu Carara, and Fernando Gehm Moraes. Run-
time adaptive circuit switching and flow priority in NoC-based MPSoCs.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(6):1077-
1088, 2015. doi:10.1109/TVLSI.2014.2331135. Cited on page 41.

George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and
David I. August. SWIFT: Software implemented fault tolerance. In Proceed-
ings of the International Symposium on Code Generation and Optimization
(CGO), pages 243-254, 2005. doi:10.1109/CG0.2005.34. Cited on page
47.

Franz Rammig, Michael Ditze, Peter Janacik, Tales Heimfarth, Timo
Kerstan, Simon Oberthuer, and Katharina Stahl. Basic concepts of real
time operating systems. In Wolfgang Ecker, Wolfgang Miiller, and Rainer
Domer, editors, Hardware-dependent Software, pages 15-45. Springer, 2009.
doi:10.1007/978-1-4020-9436-1_2. Cited on page 33.

[RDMDY15] Laura A. Rozo Duque, Jose M. Monsalve Diaz, and Chengmo Yang. Im-

[RFZ]13]

[RGH*10]

[RGL*08]

proving MPSoC reliability through adapting runtime task schedule based
on time-correlated fault behavior. In Proceedings of the Conference & Ex-
hibition on Design, Automation & Test in Europe (DATE), pages 818-823,
2015. URL: http://dl.acm.org/citation.cfm?id=2755753.2755939
[accessed April 25,2016]. Cited on page 50.

Martin Radetzki, Chaochao Feng, Xueqian Zhao, and Axel Jantsch. Meth-
ods for fault tolerance in networks-on-chip. ACM Computing Surveys,
46(1):8:1-8:38, 2013. doi:10.1145/2522968.2522976. Cited on page
113.

Felix Reimann, Michael Glaff, Christian Haubelt, Michael Eberl, and Jiirgen
Teich. Improving platform-based system synthesis by satisfiability modulo
theories solving. In Proceedings of the 8th International Conference on Hard-
ware /Software Codesign and System Synthesis (CODES+ISSS), pages 135-144,
2010. doi:10.1145/1878961.1878986. Cited on page 37.

Felix Reimann, Michael Glaf}, Martin Lukasiewycz, Joachim Keinert, Chris-
tian Haubelt, and Jiirgen Teich. Symbolic voter placement for dependability-
aware system synthesis. In Proceedings of the 6th International Conference
onHardware /Software Codesign and System Synthesis (CODES+ISSS), pages
237-242,2008. doi:10.1145/1450135.1450190. Cited on page 44.

165


http://www.inf.pucrs.br/~moraes/my_pubs/papers/2014/sbcci_ruaro.pdf
http://www.inf.pucrs.br/~moraes/my_pubs/papers/2014/sbcci_ruaro.pdf
http://dx.doi.org/10.1145/2660540.2661011
http://dx.doi.org/10.1145/2660540.2661011
http://dx.doi.org/10.1109/TVLSI.2014.2331135
http://dx.doi.org/10.1109/CGO.2005.34
http://dx.doi.org/10.1007/978-1-4020-9436-1_2
http://dl.acm.org/citation.cfm?id=2755753.2755939
http://dx.doi.org/10.1145/2522968.2522976
http://dx.doi.org/10.1145/1878961.1878986
http://dx.doi.org/10.1145/1450135.1450190

Bibliography

[RHO07]

[RKSH14]

[RLG*11]

[RMB+13]

[Ros14]

[RPM*15]

[RRTV99]

[RSKH11]

[RTK*13]

166

Steven Rostedt and Darren V. Hart. Internals of the RT patch. In Proceed-
ings of the Linux Symposium, pages 161-172, 2007. URL: https://www.
kernel.org/doc/0ls/2007/01s2007v2-pages-161-172.pdf [accessed
May 1, 2016]. Cited on page 33.

Semeen Rehman, Florian Kriebel, Muhammad Shafique, and J6rg Henkel.
Reliability-driven software transformations for unreliable hardware. JEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
33(11):1597-1610, 2014. doi:10.1109/TCAD.2014.2341894. Cited on
pages 4 and 47.

Felix Reimann, Martin Lukasiewycz, Michael Glafi, Christian Haubelt, and
Jiirgen Teich. Symbolic system synthesis in the presence of stringent real-
time constraints. In Proceedings of the 48th Design Automation Conference
(DAC), pages 393-398, 2011. doi:10.1145/2024724.2024817. Cited on
page 37.

Dara Rahmati, Srinivasan Murali, Luca Benini, Federico Angiolini, Gio-
vanni De Micheli, and Hamid Sarbazi-Azad. Computing accurate per-
formance bounds for best effort networks-on-chip. IEEE Transactions on
Computers, 62(3):452-467, 2013. doi:10.1109/TC.2011.240. Cited on
page 43.

Sheldon M. Ross. Introduction to Probability Models. Elsevier Science, 11th
edition, 2014. Cited on pages 88 and 90.

Tiana A. Rakotovao, Diego P. Puschini, Julien Mottin, Lukas Rummel-
hard, Amaury Negre, and Christian Laugier. Intelligent vehicle percep-
tion: Toward the integration on embedded many-core. In Proceedings
of the 6th Workshop on Parallel Programming and Run-Time Management
Techniques for Many-core Architectures (PARMA-DITAM), pages 7-12, 2015.
doi:10.1145/2701310.2701313. Cited on page 2.

Maurizio Rebaudengo, Matteo Sonza Reorda, Marco Torchiano, and Mas-
simo Violante. Soft-error detection through software fault-tolerance tech-
niques. In Proceedings of the 14th International Symposium on Defect
and Fault-Tolerance in VLSI Systems (DFT), pages 210-218, 1999. doi:
10.1109/DFTVS.1999.802887. Cited on page 47.

Semeen Rehman, Muhammad Shafique, Florian Kriebel, and J6rg Henkel.
Reliable software for unreliable hardware: Embedded code generation aim-
ing at reliability. In Proceedings of the 7th International Conferenceon Hard-
ware /Software Codesign and System Synthesis (CODES+ISSS), pages 237-246,
2011. doi:10.1145/2039370.2039408. Cited on pages 31 and 47.

Semeen Rehman, Anas Toma, Florian Kriebel, Muhammad Shafique, Jian-
Jia Chen, and Jorg Henkel. Reliable code generation and execution on


https://www.kernel.org/doc/ols/2007/ols2007v2-pages-161-172.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-161-172.pdf
http://dx.doi.org/10.1109/TCAD.2014.2341894
http://dx.doi.org/10.1145/2024724.2024817
http://dx.doi.org/10.1109/TC.2011.240
http://dx.doi.org/10.1145/2701310.2701313
http://dx.doi.org/10.1109/DFTVS.1999.802887
http://dx.doi.org/10.1109/DFTVS.1999.802887
http://dx.doi.org/10.1145/2039370.2039408

Bibliography

[Rut14]

[SAB*15]

[SAC14]

[SBOS]

[SBSK12]

[SC13]

[Sch11]

unreliable hardware under joint functional and timing reliability considera-
tions. In Proceeedings of the 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 273-282, 2013. doi:10.1109/RTAS.
2013.6531099. Cited on page 48.

Jochem Hendrik Rutgers. Programming models for many-core architectures:
a co-design approach. PhD thesis, University of Twente, 2014. URL: http:
//doc.utwente.nl/90661/ [accessed May 1, 2016]. Cited on pages 20
and 34.

Muhammad Shafique, Philip Axer, Christoph Borchert, Jian-Jia Chen, Kuan-
Hsun Chen, Bjorn Débel, Rolf Ernst, Hermann Hirtig, Andreas Heinig,
Riidiger Kapitza, Florian Kriebel, Daniel Lohmann, Peter Marwedel, Se-
meen Rehman, Florian Schmoll, and Olaf Spinczyk. Multi-layer software
reliability for unreliable hardware. it - Information Technology, 57(3):170-
180, 2015. doi:10.1515/itit-2014-1081. Cited on page 45.

Mohamed M. Sabry, David Atienza, and Francky Catthoor. OCEAN: An
optimized HW /SW reliability mitigation approach for scratchpad memories
in real-time SoCs. ACM Transactions on Embedded Computing Systems - Spe-
cial Issue on Real-Time and Embedded Technology and Applications, Domain-
Specific Multicore Computing, Cross-Layer Dependable Embedded Systems, and
Application of Concurrency to System Design (ACSD), 13(4s):138:1-138:26,
2014. doi:10.1145/2584667. Cited on page 45.

Zheng Shi and Alan Burns. Real-time communication analysis for on-chip
networks with wormhole switching. In Proceedings of the 2nd International
Symposium on Networks-on-Chip (NOCS), pages 161-170, 2008. doi:10.
1109/N0CS.2008.11. Cited on page 41.

Martin Schoeberl, Florian Brandner, Jens Sparsg, and Evangelia Kasapaki. A
statically scheduled time-division-multiplexed network-on-chip for real-time
systems. In Proceedings of the 6th International Symposium on Networks-on-
Chip (NOCS), pages 152-160, 2012. doi:10.1109/N0CS.2012.25. Cited
on page 41.

Pradip Kumar Sahu and Santanu Chattopadhyay. A survey on application
mapping strategies for network-on-chip design. Journal of Systems Architec-
ture - Embedded Systems Design, 59(1):60-76,2013. doi:10.1016/j.sysarc.
2012.10.004. Cited on page 37.

Ute Schiffel. Hardware Error Detection Using AN-Codes. PhD thesis, Tech-
nische Universitdt Dresden, 2011. URL: http://nbn-resolving.de/urn:
nbn:de:bsz:14-qucosa-69872 [accessed May 1, 2016]. Cited on pages
46 and 68.

167


http://dx.doi.org/10.1109/RTAS.2013.6531099
http://dx.doi.org/10.1109/RTAS.2013.6531099
http://doc.utwente.nl/90661/
http://doc.utwente.nl/90661/
http://dx.doi.org/10.1515/itit-2014-1081
http://dx.doi.org/10.1145/2584667
http://dx.doi.org/10.1109/NOCS.2008.11
http://dx.doi.org/10.1109/NOCS.2008.11
http://dx.doi.org/10.1109/NOCS.2012.25
http://dx.doi.org/10.1016/j.sysarc.2012.10.004
http://dx.doi.org/10.1016/j.sysarc.2012.10.004
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-69872
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-69872

Bibliography

[Sch13]

[SEH*12]

[SEU*15]

[SGD15]

[SGK*04]

[SHD*15]

[Shi09]

[SK09]

[Sla11]

168

Patrick R. Schaumont. A Practical Introduction to Hardware /Software Code-
sign. Springer, 2nd edition, 2013. doi:10.1007/978-1-4614-3737-6.
Cited on page 44.

Christian El Salloum, Martin Elshuber, Oliver Hoftberger, Haris Isakovic,
and Armin Wasicek. The ACROSS MPSoC—a new generation of multi-core
processors designed for safety-critical embedded systems. In Proceedings of
the 15th Conference on Digital System Design (DSD), pages 105-113, 2012.
doi:10.1109/DSD.2012.126. Cited on page 2.

Selma Saidi, Rolf Ernst, Sascha Uhrig, Henrik Theiling, and Benoit Dupont
de Dinechin. The shift to multicores in real-time and safety-critical systems.
In Proceedings of the 10th International Conference on Hardware /Software
Codesign and System Synthesis (CODES), pages 220-229, 2015. doi: 10.1109/
CODESISSS.2015.7331385. Cited on page 2.

Wei-Tsun Sun, Alain Girault, and Gwenaél Delaval. A formal approach
for the synthesis and implementation of fault-tolerant industrial embedded
systems. In Proceedings of the 10th International Symposium on Industrial
Embedded Systems (SIES), pages 264-272,2015. doi:10.1109/SIES.2015.
7185068. Cited on page 45.

Jared C. Smolens, Brian T. Gold, Jangwoo Kim, Babak Falsafi, James C. Hoe,
and Andreas Nowatzyk. Fingerprinting: bounding soft-error-detection
latency and bandwidth. IEEE Micro, 24(6):22-29, 2004. doi:10.1109/MM.
2004.72. Cited on pages 28 and 44.

Horst Schirmeier, Martin Hoffmann, Christian Dietrich, Michael Lenz,
Daniel Lohmann, and Olaf Spinczyk. FAIL*: An open and versatile fault-
injection framework for the assessment of software-implemented hardware
fault tolerance. In Proceedings of the 11th European Dependable Computing
Conference (EDCC), pages 245-255, 2015. doi:10.1109/EDCC.2015.28.
Cited on pages 51, 52, 111, and 130.

Zheng Shi. Real-Time Communication Services for Networks on Chip. PhD
thesis, University of York, 2009. URL: https://cs.york.ac.uk/rts/
documents/thesis/shi09.pdf [accessed May 1,2016]. Cited on page 41.

Joseph Sloan and Rakesh Kumar. Towards scalable reliability frameworks
for error prone CMPs. In Proceedings of the International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems (CASES), pages
261-270, 2009. doi:10.1145/1629395.1629432. Cited on page 44.

Charles Slayman. Soft error trends and mitigation techniques in memory
devices. In Proceedings of the Annual Reliability and Maintainability Sympo-
sium (RAMS), pages 1-5,2011. doi:10.1109/RAMS.2011.5754515. Cited
on page 104.


http://dx.doi.org/10.1007/978-1-4614-3737-6
http://dx.doi.org/10.1109/DSD.2012.126
http://dx.doi.org/10.1109/CODESISSS.2015.7331385
http://dx.doi.org/10.1109/CODESISSS.2015.7331385
http://dx.doi.org/10.1109/SIES.2015.7185068
http://dx.doi.org/10.1109/SIES.2015.7185068
http://dx.doi.org/10.1109/MM.2004.72
http://dx.doi.org/10.1109/MM.2004.72
http://dx.doi.org/10.1109/EDCC.2015.28
https://cs.york.ac.uk/rts/documents/thesis/shi09.pdf
https://cs.york.ac.uk/rts/documents/thesis/shi09.pdf
http://dx.doi.org/10.1145/1629395.1629432
http://dx.doi.org/10.1109/RAMS.2011.5754515

Bibliography

[SLLO7]

[SMOO]

[SMR*07]

[SNG12]

[Sor09]

[SPMO09]

[Sri10]

[SRP*13]

[SS87]

[SSKH13]

Sang H. Son, Insup Lee, and Joseph Y.-T. Leung, editors. Handbook of
Real-Time and Embedded Systems. Chapman and Hall/CRC, 2007. doi:
10.1201/9781420011746. Cited on page 11.

William H. Sanders and John F. Meyer. Stochastic Activity Networks: Formal
Definitions and Concepts, volume 2090 of Lecture Notes in Computer Science,
pages 315-343. Springer, 2000. doi:10.1007/3-540-44667-2_9. Cited
on page 90.

A. Shye, T. Moseley, V.J. Reddi, J. Blomstedt, and D.A. Connors. Us-
ing process-level redundancy to exploit multiple cores for transient fault
tolerance. In Dependable Systems and Networks, 2007. DSN °07. 37th An-
nual IEEE /IFIP International Conference on, pages 297-306, 2007. doi:
10.1109/DSN.2007.98. Cited on page 50.

Radu Stefan, Ashkan Beyranvand Nejad, and Kees Goossens. Online alloca-
tion for contention-free-routing NoCs. In Proceedings of the Interconnection
Workshop on Nerwork Architecture: On-Chip, Multi-Chip (INA-OCMC), pages
13-16, 2012. doi:10.1145/2107763.2107767. Cited on page 41.

Daniel J. Sorin. Fault Tolerant Computer Architecture. Morgan & Claypool,
2009. doi:10.2200/S00192ED1V01Y200904CAC005. Cited on pages 3, 16,
28,29, 30, and 43.

Prabhat Kumar Saraswat, Paul Pop, and Jan Madsen. Task migration for
fault-tolerance in mixed-criticality embedded systems. ACM SIGBED Re-
view - Special Issue on the 2nd International Workshop on Adaptive and Re-
configurable Embedded Systems (APRES), 6(3):6:1-6:5, 2009. doi:10.1145/
1851340.1851348. Cited on page 48.

Vilas Keshav Sridharan. Introducing abstraction to vulnerabil-
ity analysis.  PhD thesis, Northeastern University, 2010.  URL:
http://www.vilas-sridharan.com/personal/Publications_files/
VKS_Dissertation_Final.pdf [accessed May 1, 2016]. Cited on page
31.

Rishad A. Shafik, Gerard Rauwerda, Jordy Potman, Kim Sunesen, Dhiraj K.
Pradhan, Jimson Mathew, and Ioannis Sourdis. Software modification
aided transient error tolerance for embedded systems. In Proceedings of
the Conference on Digital System Design (DSD), pages 219-226, 2013. doi:
10.1109/DSD.2013.32. Cited on page 47.

Michael A. Schuette and John Paul Shen. Processor control flow monitoring
using signatured instruction streams. [EEE Transactions on Computers,
36(3):264-276, 1987. doi:10.1109/TC.1987.1676899. Cited on page 70.

Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and J6rg Henkel.
Mapping on multi/many-core systems: Survey of current and emerging

169


http://dx.doi.org/10.1201/9781420011746
http://dx.doi.org/10.1201/9781420011746
http://dx.doi.org/10.1007/3-540-44667-2_9
http://dx.doi.org/10.1109/DSN.2007.98
http://dx.doi.org/10.1109/DSN.2007.98
http://dx.doi.org/10.1145/2107763.2107767
http://dx.doi.org/10.2200/S00192ED1V01Y200904CAC005
http://dx.doi.org/10.1145/1851340.1851348
http://dx.doi.org/10.1145/1851340.1851348
http://www.vilas-sridharan.com/personal/Publications_files/VKS_Dissertation_Final.pdf
http://www.vilas-sridharan.com/personal/Publications_files/VKS_Dissertation_Final.pdf
http://dx.doi.org/10.1109/DSD.2013.32
http://dx.doi.org/10.1109/DSD.2013.32
http://dx.doi.org/10.1109/TC.1987.1676899

Bibliography

[SSSF10a]

[SSSF10b]

[ST11]

[Str09]

[Swil4]

[TDa]

[TDb]

[TDO02]

170

trends. In Proceedings of the 50th Annual Design Automation Conference
(DAC), pages 1:1-1:10, 2013. doi:10.1145/2463209.2488734. Cited on
page 49.

Ute Schiffel, André Schmitt, Martin SiifSkraut, and Christof Fetzer. ANB-
and ANBDmem-encoding: Detecting hardware errors in software. In Pro-
ceedings of the 29th International Conference on Computer Safety, Reliability,
and Security (SAFECOMP), pages 169-182, 2010. doi:10.1007/978-3-
642-15651-9_13. Cited on page 46.

Ute Schiffel, André Schmitt, Martin Siilkraut, and Christof Fetzer.
Software-implemented hardware error detection: Costs and gains. In Pro-
ceedings of the 3rd International Conference on Dependability (DEPEND),
pages 51-57, 2010. doi:10.1109/DEPEND.2010.16. Cited on pages 46
and 52.

Yahia Salah and Rached Tourki. Design and FPGA implementation of a
QoS router for networks-on-chip. In Proceedings of the 3rd International
Conference on Next Generation Networks and Services (NGNS), pages 84-89,
2011. doi:10.1109/NGNS.2011.6142551. Cited on page 41.

Patrik Stromblad. ENEA multicore: High performance packet processing
enabled with a hybrid SMP/AMP OS technology. White paper, 2009.
URL: http://www.enea.com/Embedded-hub/whitepapers/white-
papers/Multicore-High-performance-packet-processing-
enabled-with-a-hybrid-SMPAMP-0S-technology [accessed May
1,2016]. Cited on page 34.

John Swinimer. AMD FirePro awarded top spot on the Green500
list, 2014. URL: http://www.amd.com/en-us/press-releases/Pages/
amd-firepro-awarded-2014nov20.aspx [accessed May 1, 2016]. Cited
on page 20.

Gabriela Tucher-Denkinger. Erprobungsfahrzeug Tesla, Kofferaum. URL:
http://www.bosch-mediaspace.de/mediaspace/media/object/
view/details.htm?objectId=54265 [accessed March 28, 2016]. Cited
on page 2.

Gabriela Tucher-Denkinger. Tesla auf Autobahn A81, von in-
nen. URL: http://www.bosch-mediaspace.de/mediaspace/media/
object/view/details.htm?objectId=54256 [accessed March 28, 2016].
Cited on page 2.

Brian Towles and William J. Dally. Worst-case traffic for oblivious routing
functions. In Proceedings of the 14th Annual Symposium on Parallel Algo-
rithms and Architectures (SPAA), pages 1-8, 2002. doi:10.1145/564870.
564872. Cited on page 115.


http://dx.doi.org/10.1145/2463209.2488734
http://dx.doi.org/10.1007/978-3-642-15651-9_13
http://dx.doi.org/10.1007/978-3-642-15651-9_13
http://dx.doi.org/10.1109/DEPEND.2010.16
http://dx.doi.org/10.1109/NGNS.2011.6142551
http://www.enea.com/Embedded-hub/whitepapers/white-papers/Multicore-High-performance-packet-processing-enabled-with-a-hybrid-SMPAMP-OS-technology
http://www.enea.com/Embedded-hub/whitepapers/white-papers/Multicore-High-performance-packet-processing-enabled-with-a-hybrid-SMPAMP-OS-technology
http://www.enea.com/Embedded-hub/whitepapers/white-papers/Multicore-High-performance-packet-processing-enabled-with-a-hybrid-SMPAMP-OS-technology
http://www.amd.com/en-us/press-releases/Pages/amd-firepro-awarded-2014nov20.aspx
http://www.amd.com/en-us/press-releases/Pages/amd-firepro-awarded-2014nov20.aspx
http://www.bosch-mediaspace.de/mediaspace/media/object/view/details.htm?objectId=54265
http://www.bosch-mediaspace.de/mediaspace/media/object/view/details.htm?objectId=54265
http://www.bosch-mediaspace.de/mediaspace/media/object/view/details.htm?objectId=54256
http://www.bosch-mediaspace.de/mediaspace/media/object/view/details.htm?objectId=54256
http://dx.doi.org/10.1145/564870.564872
http://dx.doi.org/10.1145/564870.564872

Bibliography

[TEH]J11]

[TGLO7]

[Thel1]

[Tid13]

[TS09]

[TSH*15]

[TWO6]

[UHK*12]

[UhI05]

[Ulb14]

Mihkel Tagel, Peeter Ellervee, Thorsten Hollstein, and Gert Jervan. Com-
munication modelling and synthesis for NoC-based systems with real-time
constraints. In Proceedings of the 14th International Symposium on Design
and Diagnostics of Electronic Circuits Systems (DDECS), pages 237-242, 2011.
doi:10.1109/DDECS.2011.5783086. Cited on pages 43 and 49.

Paul Teehan, Mark R. Greenstreet, and Guy G. Lemieux. A survey and
taxonomy of GALS design styles. IEEE Design Test of Computers, 24(5):418-
428,2007. doi:10.1109/MDT.2007.151. Cited on page 21.

The International Technology Roadmap for Semiconductors. System
drivers, 2011. URL: http://www.itrs2.net/itrs-reports.html [ac-
cessed May 1, 2016]. Cited on page 1.

Tidorum Ltd. Bound-T time and stack analyzer: User guide, 2013. URL:
http://www.bound-t.com/manuals/user-guide.pdf [accessed May 1,
2016]. Cited on page 11.

Peter Tummeltshammer and Andreas Steininger. Power supply induced com-
mon cause faults-experimental assessment of potential countermeasures. In
Proceedings of the International Conference on Dependable Systems Networks
(DSN), pages 449-457, 2009. doi : 10.1109/DSN.2009.5270308. Cited on
page 31.

Guy Martin Tchamgoue, Junho Seo, Jongsoo Hyun, Kyong Hoon Kim,
and Yong-Kee Jun. Supporting fault-tolerance in a compositional real-time
scheduling framework. ACM SIGBED Review - Special Issue on the 7th
Workshop on Compositional Theory and Technology for Real-Time Embedded
Systems (CRTS), 12(2):7-15, 2015. doi: 10.1145/2782753.2782754. Cited
on page 48.

Andrew S. Tanenbaum and Albert S. Woodhull. Operating Systems: Design
and Implementation. Pearson Prentice Hall, 3rd edition, 2006. Cited on
page 33.

Peter Ulbrich, Martin Hoffmann, Ridiger Kapitza, Daniel Lohmann,
Wolfgang Schroder-Preikschat, and Reiner Schmid. Eliminating single
points of failure in software-based redundancy. In Proceedings of the 9th
European Dependable Computing Conference (EDCC), pages 49-60, 2012.
doi:10.1109/EDCC.2012.21. Cited on pages 5, 6, 52, 54, 67, 73, and 139.

Michael Uhler. See MIPS Run. Computer Architecture and Design. Morgan
Kaufmann, 2nd edition, 2005. doi:10.1016/B978-012088421-6/50000-
8. Cited on page 108.

Peter Ulbrich. Ganzheitliche Feblertoleranz in eingebetteten Softwaresyste-
men. PhD thesis, Friedrich-Alexander-Universitdt Erlangen-Niirnberg,
2014. URL: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:

171


http://dx.doi.org/10.1109/DDECS.2011.5783086
http://dx.doi.org/10.1109/MDT.2007.151
http://www.itrs2.net/itrs-reports.html
http://www.bound-t.com/manuals/user-guide.pdf
http://dx.doi.org/10.1109/DSN.2009.5270308
http://dx.doi.org/10.1145/2782753.2782754
http://dx.doi.org/10.1109/EDCC.2012.21
http://dx.doi.org/10.1016/B978-012088421-6/50000-8
http://dx.doi.org/10.1016/B978-012088421-6/50000-8
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:29-opus4-50561
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:29-opus4-50561

Bibliography

[Vaj11]

[VHR*08]

[VWOH15]

[WA09]

[WCS09]

[WEE+08]

[WEF07]

[WF11]

172

de:bvb:29-opus4-50561 [accessed May 1, 2016]. Cited on pages 52
and 54.

Andras Vajda. Programming Many-Core Chips. Springer, 2011. doi:10.
1007/978-1-4419-9739-5. Cited on pages 1, 20, 34, and 36.

Sriram R. Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe, Howard
Wilson, James Tschanz, David Finan, Arvind Singh, Tiju Jacob, Shailendra
Jain, Vasantha Erraguntla, Clark Roberts, Yatin Hoskote, Nitin Borkar,
and Shekhar Borkar. An 80-tile sub-100-W TeraFLOPS processor in 65-
nm CMOS. [EEE Journal of Solid-State Circuits, 43(1):29-41, 2008. doi:
10.1109/J8SC.2007.910957. Cited on page 21.

Michael Vonbun, Stefan Wallentowitz, Andreas Oeldemann, and Andreas
Herkersdorf. An analytic approach on end-to-end packet error rate estima-
tion for network-on-chip. In Proceedings of the Conference on Digital System
Design (DSD), pages 621-628, 2015. doi:10.1109/DSD.2015.82. Cited
on page 113.

David Wentzlaff and Anant Agarwal. Factored operating systems (fos): The
case for a scalable operating system for multicores. ACM SIGOPS Operat-
ing Systems Review, 43(2):76-85, 2009. doi:10.1145/1531793.1531805.
Cited on pages 1 and 35.

Philip M. Wells, Koushik Chakraborty, and Gurindar S. Sohi. Mixed-mode
multicore reliability. In Proceedings of the 14th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 169-180, 2009. doi:10.1145/1508244.1508265. Cited
on page 44.

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter
Puschner, Jan Staschulat, and Per Stenstrom. The worst-case execution-
time problem—overview of methods and survey of tools. ACM Transac-
tions on Embedded Computer Systems, 7(3):36:1-36:53, 2008. doi:10.1145/
1347375.1347389. Cited on pages 11 and 22.

Ute Wappler and Christof Fetzer. Software encoded processing: Building
dependable systems with commodity hardware. In Proceedings of the 26th
International Conference on Computer Safety, Reliability, and Security (SAFE-
COMP), pages 356-369, 2007. doi:10.1007/978-3-540-75101-4_34.
Cited on pages 46 and 68.

Markus Winter and Gerhard P. Fettweis. Guaranteed service virtual channel
allocation in NoCs for run-time task scheduling. In Proceedings of the
Conference & Exhibition on Design, Automation & Test in Europe (DATE),


http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:29-opus4-50561
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:29-opus4-50561
http://dx.doi.org/10.1007/978-1-4419-9739-5
http://dx.doi.org/10.1007/978-1-4419-9739-5
http://dx.doi.org/10.1109/JSSC.2007.910957
http://dx.doi.org/10.1109/JSSC.2007.910957
http://dx.doi.org/10.1109/DSD.2015.82
http://dx.doi.org/10.1145/1531793.1531805
http://dx.doi.org/10.1145/1508244.1508265
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1007/978-3-540-75101-4_34

Bibliography

[WGO*13]

[Win16]

[XLK*+04]

[XLK*07]

[YISK15]

[YLJY15]

[ZCH97]

pages 419-424,2011. doi:10.1109/DATE.2011.5763073. Cited on page
41.

Hassan M. G. Wassel, Ying Gao, Jason K. Oberg, Ted Huffmire, Ryan
Kastner, Frederic T. Chong, and Timothy Sherwood. SurfNoC: A low
latency and provably non-interfering approach to secure networks-on-chip.
In Proceedings of the 40th Annual International Symposium on Computer
Architecture (ISCA), pages 583-594,2013. doi: 10.1145/2485922.2485972.
Cited on page 41.

Wind River Systems Inc. VxWORKS product overview, 2016. URL:
http://www.windriver.com/products/product-overviews/2691-
VxWorks-Product-0verview.pdf [accessed May 1,2016]. Cited on page
34.

Yuan Xie, Lin Li, Mahmut T. Kandemir, Narayanan Vijaykrishnan, and
Mary Jane Irwin. Reliability-aware co-synthesis for embedded systems.
In Proceedings of the 15th International Conference on Application-Specific
Systems, Architectures and Processors (ASAP), pages 41-50, 2004. doi:10.
1109/ASAP.2004.1342457. Cited on page 44.

Yuan Xie, Lin Li, Mahmut T. Kandemir, Narayanan Viaykrishnan, and
Mary Jane Irwin. Reliability-aware co-synthesis for embedded systems.
The Journal of VLSI Signal Processing Systems for Signal, Image, and Video
Technology, 49(1):87-99, 2007. doi:10.1007/s11265-007-0057-6. Cited
on page 44.

Tomohiro Yoneda, Masashi Imai, Hiroshi Saito, and Kenji Kise. Dependable
real-time task execution scheme for a many-core platform. In Proceedings
of the International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFTS), pages 197-204, 2015. doi:10.1109/DFT.
2015.7315162. Cited on pages 52 and 54.

Liu Yuan, Huaida Liu, Pingui Jia, and Yiping Yang. An adaptive ECC
scheme for dynamic protection of NAND flash memories. In Proceedings
of the International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1052-1055, 2015. doi:10.1109/ICASSP.2015.7178130.
Cited on page 28.

Robert Zijal, Gianfranco Ciardo, and Giinter Hommel.  Discrete
deterministic and stochastic Petri nets.  In Proceedings of the 9th
ITG /Gl -Fachtagung zu Messung, Modellierung und Bewertung wvon
Rechen- und Kommunikationssystemen (MMB), pages 103-117, 1997.
URL:  https://www.researchgate.net/publication/221441049_
Discrete Deterministic _and Stochastic Petri Nets [accessed
May 1, 2016]. Cited on page 90.

173


http://dx.doi.org/10.1109/DATE.2011.5763073
http://dx.doi.org/10.1145/2485922.2485972
http://www.windriver.com/products/product-overviews/2691-VxWorks-Product-Overview.pdf
http://www.windriver.com/products/product-overviews/2691-VxWorks-Product-Overview.pdf
http://dx.doi.org/10.1109/ASAP.2004.1342457
http://dx.doi.org/10.1109/ASAP.2004.1342457
http://dx.doi.org/10.1007/s11265-007-0057-6
http://dx.doi.org/10.1109/DFT.2015.7315162
http://dx.doi.org/10.1109/DFT.2015.7315162
http://dx.doi.org/10.1109/ICASSP.2015.7178130
https://www.researchgate.net/publication/221441049_Discrete_Deterministic_and_Stochastic_Petri_Nets
https://www.researchgate.net/publication/221441049_Discrete_Deterministic_and_Stochastic_Petri_Nets

Bibliography

[ZKCS02]  Cesar A. Zeferino, Marcio E. Kreutz, Luigi Carro, and Altamiro A. Susin.
A study on communication issues for systems-on-chip. In Proceedings of the
15th Symposium on Integrated Circuits and Systems Design (SBCCI), pages
121-126, 2002. doi:10.1109/SBCCI.2002.1137647. Cited on page 23.

174


http://dx.doi.org/10.1109/SBCCI.2002.1137647

Publications by the Author

The following publications (sorted in chronological order) contain material relevant to

this thesis.

[MFRC15]

[AML*15]

[MAL*15]

[MAL*16]

Peter Munk, Matthias Freier, Jan Richling, and Jian-Jia Chen. Dynamic
guaranteed service communication on best-effort networks-on-chip. In
Proceedings of the 3rd Eunromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing (PDP), pages 353-360, 2015. doi:
10.1109/PDP.2015.47. Cited on pages 6, 55, and 107.

Mohammad Shadi Alhakeem, Peter Munk, Raphael Lisicki, Helge Parzy-
jegla, and Gero Miihl. A framework for adaptive software-based reliability
in COTS many-core processors. In Workshop Proceedings of the 28th Inter-
national Conference on Architecture of Computing Systems (ARCS), pages
1-4, 2015. URL: http://ieeexplore.ieee.org/xpls/abs_all. jsp?
arnumber=7107113 [accessed March 28, 2016]. Cited on pages 6, 7, and 87.

Peter Munk, Mohammad Shadi Alhakeem, Raphael Lisicki, Helge Parzyjegla,
Jan Richling, and Hans-Ulrich Heiff. Toward a fault-tolerance framework for
COTS many-core systems. In Proceedings of the 11th European Dependable
Computing Conference (EDCC), 2015. doi:10.1109/EDCC.2015.32. Cited
on pages 6, 7, 63, 87, 107, and 143.

Peter Munk, Mohammad Shadi Alhakeem, Raphael Lisicki, Hendrik Rohm,
Helge Parzyjegla, and Hans-Ulrich Heif8. A software fault-tolerance mech-
anism for real-time applications on many-core processors. In Workshop
on Highly-Reliable Power-Efficient Embedded Designs (HARSH), 2016. doi :
10.13140/RG.2.1.3929.0004. Cited on pages 6, 63, 87, and 107.

The following papers were published during the course of my PhD but are not that part
of this thesis.

[MR14]

[MSRH15]

Peter Munk and Jan Richling. Migration-aware WCET estimation for hetero-
geneous multi-cores. ACM SIGBED Review - Special Issue on the 6th Workshop
on Adaptive and Reconfigurable Embedded Systems (APRES), 11(3):22-25, 2014.
doi:10.1145/2692385.2692388. Not cited.

Peter Munk, Bjorn Saballus, Jan Richling, and Hans-Ulrich Heifi. Position
paper: Real-time task migration on many-core processors. In Workshop
Proceedings of the 28th International Conference on Architecture of Computing
Systems (ARCS), pages 1-4, 2015. URL: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=7107098 [accessed March 28, 2016]. Not
cited.

175


http://dx.doi.org/10.1109/PDP.2015.47
http://dx.doi.org/10.1109/PDP.2015.47
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7107113
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7107113
http://dx.doi.org/10.1109/EDCC.2015.32
http://dx.doi.org/10.13140/RG.2.1.3929.0004
http://dx.doi.org/10.13140/RG.2.1.3929.0004
http://dx.doi.org/10.1145/2692385.2692388
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7107098
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7107098

Publications by the Author

[BMGH15] Alexander Biewer, Peter Munk, Jens Gladigau, and Christian Haubelt. On

176

the influence of hardware design options on schedule synthesis in time-
triggered real-time systems. In Proceedings of the 18. Workshop on Metho-
den und Beschreibungssprachen zur Modellierung und Verifikation von Schal-
tungen und Systemen (MBMV), pages 105-114, 2015. URL: http://nbn-
resolving.de/urn:nbn:de:bsz:14-qucosa-164197 [accessed March 28,
2016]. Not cited.


http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-164197
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-164197

List of Figures

1.1 An HAD prototype vehicle based on Tesla’s Model S. . .. .......... 2
1.2 Overview of basic NMR mechanism foronetask . .. ............. 5
2.1 Temporal parametersofajob .. ... ... .. ... ... . .. 12
2.2 Schedule extract with logical execution time (LET) communication . . .. 15
2.3 Architectural model ofacore . ... .. ... L L 22
2.4 Architectural model of the NoC . . ... ... . ... . ... .. .... 24
2.5 Architectural model of the Router . . . . ..... ... ... .. .... 26
2.6  Routes and collision of two packetsinaNoC . ................. 27
27 Bathtubcurve ... ... .. 29
4.1 NoClatency overview . .. ... .. .o i 57
4.2 Visualization of the proof of Lemma4.2. ... .................. 60
5.1 Overview of NMR mechanism fortwotasks . .. ................ 65
5.2 One majority voter pertask replica . .. ....... ... .. ... ... ... 67
5.3 Overview of NMR mechanism for three tasks with spares . ... ... ... 75
5.4 Mapping of the task set example . .. ........ . ... . ... . ... 82
5.5 Worst-case schedule of threecores . .. ....................... 83
5.6  Schedule of the example system under the presence of faults . . ... .. .. 85
6.1 DTMC model of a system with two replicas ... ................ 91
6.2 Overview of the software fault-tolerance framework . . . . ... .. ... .. 101
7.1  Architecture of the simulated many-core processor . ... ........... 109
7.2 The distribution of the injected faults in time and space. . .......... 112
7.3 Visualization of the traffic patterns . .. ........... . ... .. .. .. 115
7.4 Trace of request and response packet times . ................... 116
7.5 Maximum measured transfer latencies . .......... ... ... ... .. 119
7.6 Measured link load under the latency traffic patterns . . . .. ......... 120
7.7 The distribution of the measured execution time of all tasks. ... ... .. 123
7.8 Absolute number of failures and theirtypes. . . ... ... ... ... .. 126
7.9 Measured reliability distribution . . . ... ... o L oo 127
7.10 Measured availability distribution . . . ... ... ... o oo oL 127
7.11 Measured fault-tolerance after various mission times . . . . .. ........ 128
7.12 Measured results for varying SERs . . . ... ... .. oo oL 128
7.13 Average measured systemload . ....... ... ... i L 129
7.14 Model analysis results after a varying mission time . . .. ........... 134
7.15 Model analysis results for varying SERs . .. ......... ... ... .. 134
7.16 Model analysis results without the repair procedure ... ........... 135
7.17 Absolute error between theoretical and measured results . . ... ... ... 137

177



178

3.1
5.1
6.1

7.1
7.2
7.3

List of Tables

Comparison of related software fault-tolerance mechanisms . ... ... .. 54
Timing and mapping parameters of the example taskset .. ......... 82
Reliability and availability requirements of the example task set . . . . .. 104
The memory map of the simulated many-core processor. . . ......... 110
Vulnerability factors . . . ... ... 132
PRISM model checking state spaces and runtimes . . . . ............ 136



5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5

List of Listings

Encoded voting algorithm—Part 1. . . ... .. ... ... . ... ... 70
Encoded voting algorithm—Part2 . . .. ... .. ... ... .. ... 72
Task wrapper . ... .. ... 80
Both voter modules of the PRISM model . .................... 95
PRISM model code excerpt for replica failures . . .. .............. 96
PRISM model code excerpt for replica repairs .. ................ 98
Reward in the PRISM model . ...... ... .. ... . ... . ...... 98
Fault-tolerance analysis algorithm . ... ... ... ... ... ..... 100

179



List of Symbols

activation time

availability

point availability

long-term availability

target availability

integer constant A from ANBD
bandwidth

worst-case repair time in Periods
worst-case repair time

signature B from ANBD
binomial distribution
completion time

core

RO " g ®mm S > x>

core set

number of cores

ES

worst-case communication time

relative deadline

dynamic signature of encoded voting algorithm
sequence counter D from ANBD
maximum sequence counter value
destination

equality set of encoded voting algorithm
worst-case execution time

probability of fault per period

packet injection rate

number of hops

link

link set

latency

Mo R T M & % OO D9 O

worst-case latency

180



List of Symbols

> O[\‘>

&~
o5

I B> ez > > e x
O NN N <

3

g™ vV Oz Z x|

~

=1 Sl =

packet latency

latency destination
worst-case latency destination
worst-case packet latency
latency router

traversal latency

worst-case traversal latency
latency collision

worst-case latency collision
worst-case latency blockage
soft error rate (SER)

target SER

failure rate

voter failure rate

task failure rate

target task failure rate

spare failure rate

critical voter failure rate
message

message size

message set

number of replicas that have to deliver the same result
natural numbers (without 0)
number of task replicas
offset

period

hyperperiod

packet

set of packets

packet size

request packet

set of request packets
response packet

set of response packets

181



List of Symbols

182

T

=)
-

QWWQQV’\O;U<>U>U>&S‘

~

TS N9 N

transition probability
transition probability matrix
probability operator

router

set of routers

worst-case response time
reliability

target reliability

transition rate

start time

system

number of task spares

static signature of encoded voting algorithm
source

time

mission time

task

task set

spare task

voter

vulnerability factor

voter vulnerability factor
task vulnerability factor
spare vulnerability factor
critical voter vulnerability factor
state

state space

random variable

task replica result

encoded task replica result

integer numbers



ADAS
ALU
AMD
AMP
ANSI
API
ASIL
AXI

BE
BMP

CABA
CBS
CDS
CIL
CMOS
CoRed
COTS
CPU
CRC
CSDF
CTMC

DDSPN
DMPS
DMR
DSPIN
DTMC
DTTR
DVES
DVS
DWC

ECC
eCos
ECU
EDDI
EDF

List of Abbreviations

advanced driver assistance systems
arithmetical logical unit

Advanced Micro Devices

asymmetric multi-processor

American National Standards Institute
application programmable interface
automotive safety integrity level
Advanced eXtensible Interface

best-effort
bound multi-processor

cycle-accurate and bit-accurate
constant bandwidth server
code duplication service
common intermediate language
complementary metal-oxide-semiconductor
Combined Redundancy
commercial off-the-shelf
central processing unit

cyclic redundancy check
cyclo-static data-flow
continuous time Markov chain

discrete deterministic and stochastic Petri net
distributed message passing service

dual modular redundancy

Distributed, Scalable, Predictable Interconnect Network
discrete time Markov chain

Duplication with Temporary TMR and Reconfiguration
dynamic voltage and frequency scaling

dynamic voltage scaling

duplication with comparison

error-correcting code

Embedded Configurable Operating System
electronic control unit

Error Detection by Duplicated Instructions
earliest deadline first

183



List of Abbreviations

ELF

FCU
FIFO
FIT

flit
FMECA
fos
FPGA
FPU
FTA

GALS
GCC
GNU
GPS
GPU
GS

HAD
HAL

ICR
IEC
P
IPC
ISA
ISO
ISS
IVI

KPN

LC
LET
LLC
LMM

MCU
MIC
MILP
MIMD
MIPS
MMTL
MMU

184

Executable and Linkable Format

fault containment unit

first in, first out

failure in time

flow control unit

failure mode, effects and criticality analysis
Factored OS

field-programmable gate array

floating point unit

fault tree analysis

globally asynchronous, locally synchronous
GNU’s Not Unix (GNU) compiler collection
GNU’s Not Unix

Global Positioning System

graphics processing unit

guaranteed service

highly automated driving
hardware abstraction layer

inter-core reset

International Electrotechnical Commission
intellectual property

inter-process communication

instruction set architecture

International Organization for Standardization
instruction set simulator

instruction vulnerability index

Kahn process network

link controller

logical execution time
last-level cache

Limited Migrative Model

multi-cell upset

Many Integrated Core

mixed integer linear programming

multiple instructions, multiple data
Microprocessor without Interlocked Pipeline Stage
maximum measured transfer latency

memory management unit



List of Abbreviations

MOC
MPPA
MPSoC
MPU
MTTF
MTTUF

NI
NMR
NoC
NUMA

OCP
OS
OSE

PC
PCB
PMHF
PPN

QM
QoS

RAM
RCB
RISC
ROM
RT
RTAI
RTOS

SAN
SAT
SCC
SDC
SDF
SDS
SEE
SEL
SER
SET
SEU
SIL
SIMD

model of computation

Massively Parallel Processor Array
Multi-Processor System-on-Chip
memory protection unit

mean time to failure

mean time to unsafe failure

network interface
N modular redundancy
Network-on-Chip

non-uniform memory access

Open Core Protocol
operating system
Operating System Embedded

program counter

printed circuit board

probabilistic metric for random hardware failures
polyhedral process network

Quality Management
Quality of Service

random access memory

reliable computing base

Reduced Instruction Set Computing
read-only memory

real-time

Real-Time Application Interface
real-time operating system

stochastic activity network
satisfiability

Single-chip Cloud Computer
silent data corruption
synchronous data-flow

state duplication service
single event effect

single event latch-up

soft error rate

single event transient

single event upset

safety integrity level

single instructions, multiple data

185



List of Abbreviations

SMP

SMT

SoC

SPOF
SRAM
STHORM
SVN

TCB

TDM
TMR
TTY

UMA
VCI
WCCT
WCET
WCPL

WCRT
WCTL

186

symmetric multi-processor

satisfiability modulo theories

System-on-Chip

single point of failure

static random access memory (RAM)

ST(microelectronics) Heterogeneous |OwpoweR Many-core
subversion

trusted computing base
time-division multiplexing
triple modular redundancy
teletypewriter

uniform memory access
Virtual Component Interface

worst-case communication time
worst-case execution time
worst-case packet latency
worst-case response time
worst-case transfer latency



	Title Page
	Abstract
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Proposed Solution
	1.5 Main Contributions
	1.6 Context
	1.7 Outline

	2 Fundamentals
	2.1 Embedded Systems
	2.1.1 Real-Time Systems
	2.1.2 Safety-Critical Systems

	2.2 Many-Core Processors
	2.2.1 General Many-Core Design
	2.2.2 Components of Each Core
	2.2.3 Network-on-Chip
	2.2.4 External Reliable Memory
	2.2.5 Fault Hypothesis

	2.3 Embedded Many-Core Operating System
	2.3.1 Real-Time OSs
	2.3.2 Many-Core OSs
	2.3.3 Combination of Real-Time and Many-Core OSs

	2.4 Summary

	3 Related Work
	3.1 Dynamic GS Communication on NoCs
	3.1.1 Hardware-based Approaches
	3.1.2 Mathematical Approaches

	3.2 Fault-Tolerance Mechanisms for Many-Core Processors
	3.2.1 Hardware-based Fault-Tolerance Approaches
	3.2.2 Software-based Fault-Tolerance Approaches

	3.3 Summary

	4 Dynamic Guaranteed Service Communication
	4.1 Communication Model
	4.2 Limited Packet Injection Rate Approach
	4.2.1 Traversal Latency
	4.2.2 Blockage Latency
	4.2.3 Dynamic Traffic Pattern

	4.3 Discussion
	4.4 Summary

	5 Software Fault-Tolerance Mechanism
	5.1 NMR Approach
	5.2 Reliable Voter
	5.2.1 ANBD Encoding
	5.2.2 Encoded Voting Algorithm
	5.2.3 Residual SPOFs

	5.3 Repair
	5.3.1 Spares
	5.3.2 State Duplication
	5.3.3 Code Duplication
	5.3.4 Core Reset
	5.3.5 Repair Procedure

	5.4 Real-Time Integration
	5.4.1 Task Wrapper
	5.4.2 Communication
	5.4.3 Scheduling
	5.4.4 OS components

	5.5 Mixed-Critical Task Set Example
	5.5.1 Mapping
	5.5.2 Scheduling
	5.5.3 Fault-Tolerance

	5.6 Summary

	6 Software Fault-Tolerance Framework
	6.1 Fault-Tolerance Models
	6.2 Markov Chain
	6.2.1 Discrete Time
	6.2.2 Continuous Time
	6.2.3 DTMC for Fault-Tolerance Analysis

	6.3 PRISM Model
	6.3.1 The PRISM Probabilistic Model Checker
	6.3.2 Model of the Software Fault-Tolerance Mechanism
	6.3.3 Model Analysis

	6.4 Workflow
	6.4.1 Fault-Tolerance Analysis
	6.4.2 Fault-Tolerance Framework

	6.5 Real-World Application Example
	6.5.1 Application Model
	6.5.2 Target Fault-Tolerance
	6.5.3 Hardware Properties
	6.5.4 Software Fault-Tolerance Framework

	6.6 Summary

	7 Evaluation
	7.1 Experimental Setup
	7.1.1 Hardware Simulator
	7.1.2 Fault Injection

	7.2 Dynamic GS Communication
	7.2.1 Traffic Patterns
	7.2.2 Transfer Latency Measurements
	7.2.3 Worst-Case Transfer Latency Evaluation
	7.2.4 Load Measurements

	7.3 Fault-Tolerance Evaluation
	7.3.1 Implementation
	7.3.2 Measured Fault-Tolerance
	7.3.3 Overhead Evaluation

	7.4 Comparison of Theory and Measurement
	7.4.1 Calibration
	7.4.2 Analyzed Fault-Tolerance
	7.4.3 Repair Procedure Influence
	7.4.4 Model Scalability
	7.4.5 Model Precision

	7.5 Summary

	8 Conclusion
	8.1 Summary and Discussion of Results
	8.2 Future Research Opportunities

	Bibliography
	Publications by the Author
	List of Figures
	List of Tables
	List of Listings
	List of Symbols
	List of Abbreviations

