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ABSTRACT

Advancements in machine learning in combination with fundamen-
tal research in cognitive neuroscience have put forth application areas
for brain-computer interfaces (BClIs) that go beyond communication
and control. The ability to decode covert mental states and inten-
tions from the electroencephalogram (EEG) in real-time — hence, to
study the "brain at work" — establishes the basis for multifaceted ap-
plications of non-control BCIs. In this thesis, the use of such BCls
is demonstrated with two independent studies which both have dif-
ferent research directions and serve different purposes. While the
first study follows what has been the traditional path of BCI research,
namely the development of an application for people, the second
study strikes a new path by engaging in the hitherto unsought ap-
proach to use a closed-loop BCI as a research tool for cognitive neu-
roscience.

The first study aims for the classification of operator workload as
it is expected in many real-life workplace environments. Brain-signal
based workload predictors, based on modulations of the power of
theta and alpha oscillations in the EEG associated with workload
changes, were explored. The predictors differed with respect to the
level of label information required for training, including an entirely
unsupervised approach. This was made possible by employing state-
of-the-art EEG spatial filtering methods from machine learning. Mean
classification accuracies above 9o% were achieved with the super-
vised predictors and 82% with the unsupervised approach. The find-
ings show that workload states can be successfully differentiated from
brain signals, even when less and less information from the experi-
mental paradigm is used, thus paving the way for real-world applica-
tions in which label information may be noisy or entirely unavailable.

The second study investigates the role of the readiness potential
(RP), a slow cortical potential that starts more than 1 second before
spontaneous, voluntary movements. Despite decades-long research
in cognitive neuroscience, it has yet remained unclear whether the
onset of the RP triggers a chain of events that unfolds in time and
cannot be cancelled or whether people can cancel movements after
onset of the RP. In this study, this question was addressed in a real-
time experiment in which subjects were required to terminate their
decision to move upon seeing a stop signal. This signal was elicited
by a BCI that had been trained to detect RPs in the ongoing EEG.
It was found that subjects could indeed cancel intended movements
after the onset of the RP, however only up to a point of no return
at approximately 200 ms before movement onset. The finding that
the onset of the RP does not trigger a ballistic process that cannot be
stopped throws some light on the controversial debate regarding the
role of the RP in movement preparation.
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ZUSAMMENFASSUNG

Fortschritte im Maschinellen Lernen und Erkenntnisse in den Kogni-
tiven Neurowissenschaften haben neue Anwendungsmoglichkeiten
fiir Hirn-Computer-Schnittstellen (HCS) hervorgebracht, die tiber die
gangigen Kommunikationsanwendungen hinaus gehen und auf der
Echtzeit-Erkennung verdeckter mentaler Zustande und Absichten im
Elektroenzephalogramm (EEG) basieren. Diese Dissertation demon-
striert dies anhand von zwei unabhédngigen Studien, die jeweils un-
terschiedliche Forschungsziele haben. Wahrend sich die erste Studie
mit der traditionellen Entwicklung einer personenbezogenen Anwen-
dung beschiftigt, schldgt die zweite Studie einen neuen Pfad ein und
verfolgt das Ziel, HCS direkt als Werkzeug fiir Forschung in den Ko-
gnitiven Neurowissenschaften einsetzen zu kénnen.

Die erste Studie strebt die Klassifizierung von Arbeitslast an, wie
sie in vielen Arbeitsplatzumgebungen zu erwarten ist. Dazu wurden
verschiedene Arbeitslast-Pradiktoren untersucht, die auf Energiemo-
dulationen von theta- und alpha-Oszillationen im EEG beruhen, wel-
che mit Anderungen von Arbeitslast einhergehen, einschliesslich ei-
nes komplett nicht-tiberwachten Pradiktors. Um dies zu ermoglichen,
wurden allerneueste Methodenentwicklungen aus dem Maschinel-
len Lernen benutzt. Mit den tiberwachten Methoden wurden durch-
schnittliche Klassifizierungsgenauigkeiten von tiber 9go% erreicht, mit
dem nicht-tiberwachten Ansatz 82%. Diese Ergebnisse zeigen, dass
Arbeitslast-Zustdnde anhand von Hirnsignalen erfolgreich differen-
ziert werden konnen, selbst wenn zunehmend weniger Information
iiber das experimentelle Paradigma benutzt wird. Damit ist der Weg
geebnet fiir Praxisanwendungen, wo Kennsatz-Information oft ver-
rauscht oder erst gar nicht vorhanden ist.

Die zweite Studie untersucht die Funktion des Bereitschaftspoten-
tials (BP), ein EEG-Signal, das mehr als 1 Sekunde vor spontanen,
absichtlichen Bewegungen beginnt. Trotz jahrzentelanger Forschung
herrscht noch Unklarheit dariiber, ob das Einsetzen des BP eine Er-
eignisskette in Gang setzt, die sich nicht mehr aufhalten ldsst oder
ob Menschen eine Bewegung selbst nach Einsetzen des BP stoppen
konnen. Diese Frage wurde in einem Echtzeit-Experiment untersucht,
in dem Versuchsteilnehmer aufgefordert wurden, eine Entscheidung
fiir eine Bewegung zurtick zu ziehen, sobald ein Stoppsignal erschien.
Dieses Signal wurde von einer HCS gesteuert, die zuvor darauf trai-
niert worden war, das Einsetzen von BPs im EEG zu erkennen. Das
Experiment ergab, dass Versuchsteilnehmer Bewegungen selbst nach
Einsetzen des BP stoppen konnten, jedoch nur bis zu einem Umkehr-
grenzpunkt, der bei ungefahr 200 ms vor Einsetzen der Bewegung lag.
Die Erkenntniss, dass das Einsetzen des BP nicht einen ballistischen,
d.h. unaufhaltbaren, Prozess in Gang setzt, leistet einen Beitrag zur
Aufklarung der kontroversen Debatte beziiglich der Rolle des BP.
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INTRODUCTION

Despite being far from providing a complete and coherent under-
standing, neuroscience has delivered a plethora of findings that have
established a large corpus of knowledge about the function of the hu-
man brain (Kandel et al., 2000). Cognitive neuroscience in particular
has so far strengthened the notion that virtually all human behavior
and cognition have a neuronal correlate in the brain (Gazzaniga, 2004;
Raichle, 2009). While brain processes can often be directly linked to
overt behavior, it is the realm of covert mental states and intentions
that is hidden in the inaccessible mind of a person and therefore
eludes a forthright investigation. Often in research, the prevalent
approach to overcome this handicap is to link recorded brain activity
to subsequently obtained subjective reports (Hebb, 2005). And yet,
it seems most intriguing to depart from such retrospective analyses
and study the relationship between brain processes and covert mental
states in real-time, that is to study the "brain at work".

In humans, this endeavor was pioneered by brain-computer inter-
faces (BClIs) based on the electroencephalogram (EEG) (Berger, 1929).
The original motivation for the development of BCIs was to provide
paralyzed patients with a direct communication and control chan-
nel through thought (Birbaumer et al., 1999; Wolpaw et al., 2002),
making the use of efferent pathways obsolete. The BCI achieves this
by converting brain activity patterns, which are associated with the
willful generation of mental states by the user, into meaningful con-
trol signals (Dornhege, 2007; Wolpaw and Wolpaw, 2012). One of
the principles for such BClIs, the detection motor imagery-induced
modulation of the sensorimotor rhythm (Pfurtscheller and Da Silva,
1999), represents one of the first covert mental states being detected
in real-time from ongoing neural activity. This endeavor has been
consistently fostered by advancements in and contributions from the
machine learning community which have substantially improved sig-
nal processing approaches, allowing to decode relevant information
from the intrinsically noisy and convoluted measurements of brain
activity (Dornhege et al., 2007; Blankertz et al., 2008; Tomioka and
Muiiller, 2010; Ddhne et al., 2014a; Ddhne et al., 2014b).

While BCI research has primarily been focused on its use as an as-
sistive technology in the medical context, since the turn of the century
research has expanded towards BCI applications that go beyond con-
trol (Blankertz et al., 2010) and entails the use of BCIs for the assess-
ment of a variety of covert mental states and intentions (Kohlmorgen
et al., 2007, Miiller et al., 2008; Schubert et al., 2008; Abbass et al.,
2014; Haufe et al., 2014b).



INTRODUCTION

1.1 CONTRIBUTIONS IN THIS THESIS

At the core of this thesis is the use of such BCIs that allow a person
to engage with a self-paced task, while the BCI silently analyses the
ongoing EEG in the background and infers intentions or mental states
from it. This implicit information can then be used by the BCI to
interact with the individual based on specific purposes. The versatile
scope of application is exemplified in two independent studies which
both have different research directions and serve different purposes,
and yet both exploit the virtues of such BCI, namely the ability of real-
time decoding of information from and interaction with the "brain at
work".

Advancing the Assessment of Operator Workload with BCls

The first contribution follows what has been the traditional path of
BClI research in the last decades, namely the development of an appli-
cation for people, and is concerned with enhancing the interaction of
humans with a machine, computer or work environment. This idea
is described well by neuroergonomics (Parasuraman, 2003) which
suggests to augment the development of human-machine interaction
frameworks, traditionally based solely on the measurement of overt
performance or subjective reports, by using neurophysiological mark-
ers related to human cognition and behavior. Given that our mod-
ern world has created many fields of activity in which humans are
engaged as operators in attention-demanding and safety-critical ac-
tivities (Wilde, 1982), the idea emerges to employ BCls that monitor
particular cognitive states of the operator in real-time, such as vigi-
lance and workload, thus providing the possibility of enhancing the
interaction of the operator with a machine, computer or work envi-
ronment (Parasuraman and Wilson, 2008). To date, this approach has
been explored in various contexts such as driving (Kohlmorgen et al.,
2007; Haufe et al., 2011; Dijksterhuis et al., 2013; Haufe et al., 2014b),
air traffic control (Abbass et al., 2014), piloting (Borghini et al., 2014)
and industrial work environments (Venthur et al., 2010a).

The contribution in this thesis aims for the development of a BCI
that assesses the level of cognitive workload of a human operator
in the context of an industrial work environment by analyzing the
ongoing EEG in real-time. In a study with ten participants, the ability
of a BCI to differentiate different levels of operator workload from
the EEG is demonstrated. Of particular importance was to reduce as
much as possible the requirements that the BCI needs to achieve this
goal. To this end, novel, state-of-the-art machine learning methods for
the analysis of EEG data are employed (Déhne et al., 2014a; Dahne
et al., 2014b). This contribution thus endeavors the advancement of
workload assessment with a BCI and aims to pave the path for its
application in non-laboratory conditions.



1.2 OUTLINE OF THIS THESIS

Investigating the Role of the Readiness Potential

The second contribution strikes a new path that fundamentally de-
parts from the traditional goal of BCIs and demostrates the use of a
BClI as a research tool to address a question in cognitive neuroscience.
The object of investigation is the readiness potential (RP), a slow cor-
tical potential that starts more than one second before spontaneous,
voluntary movements (Kornhuber and Deecke, 1965). Although it has
been suggested that the RP may constitute a part of a general mech-
anism of movement preparation, to date the exact nature and causal
role of the RP in voluntary movements is debated controversially (Li-
bet, 1985; Haggard, 2008; Schurger et al., 2012). This contribution
aims to follow up this line of research by investigating the role of
the RP and study how much the presence of the RP undermines the
degree of control that a person exerts in the generation of voluntary
movements. We therefore asked two questions: (i) Does the onset of
the readiness potential trigger a chain of events that unfolds in time
and cannot be cancelled, and if not, is there a point of no return af-
ter which an intended movement can no longer be aborted? And (ii)
can individuals behave unpredictably by intentionally overriding the
readiness potential?

One obvious and intriguing way to test the underlying hypothe-
ses is if a person is provided with an immediate notification that a
readiness potential has just started in their EEG, but before they have
started the intended movement, thus potentially giving them the op-
portunity to stop the movement (Haynes, 2011). Here, the use of a
BCI comes into play in a unique way: It can track the ongoing EEG,
detect the occurence of a readiness potential and immediately pro-
vide this information to the subject with high temporal precision as
a signal to withhold the intended movement. In this part of the the-
sis, the exellence of a BCI to be used in an experimental paradigm in
order to investigate the outlined questions is demonstrated, thereby
fostering the study of human volition with a novel approach.

1.2 OUTLINE OF THIS THESIS

Following this introduction the thesis is structured as follows. Chap-
ter 2 is on fundamentals and provides the technical and scientific
scope of the two studies. It introduces the concepts of neurophysi-
ological measures and of several machine learning techniques used
to decode information from them as well as the current state of BCI
technology. Chapter 3 deals with the first study and first formulates
the motivation and challenges for the development of a system capa-
ble of real-time detection of operator workload from brain signals. It
then continues to present an experiment that aimed at mimicking the
circumstances under which such a system would ultimately be em-
ployed and suggests a workflow for the analysis of the EEG signals
recorded during the experiment, including the use of state-of-the-art
machine learning methods. Eventually, the analysis results are pre-
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INTRODUCTION

sented, interpreted and discussed. Chapter 4 presents the second
contribution. After formulating two hypotheses concerning the role
of the readiness potential, an experiment is described to test these
hypotheses. Subsequently, the results from the experiment are pre-
sented and the hypotheses evaluated. Finally, Chapter 5 consists of a
general discussion of the two presented studies and provides a final
conclusion.

1.3 LIST OF PUBLICATIONS
1.3.1 Included Publications

The two core parts of this thesis amount to the two aforementioned
studies which were published in peer-reviewed journals and further-
more presented in parts at conferences. This thesis closely follows
those publications.

Remark: In the first of the publications listed below under Jour-
nal Articles, the first-authorship was shared with Daniel Birman (DB).
We both contributed equally to the design of the study, the record-
ing and analysis of the data and the writing of a first version of the
manuscript. When DB left the research group, the final design of
the presentation of our research results, including the generation of
some additional data, and all final steps of manuscript preparation
and submission, was my sole responsibility.

Journal Articles

M. Schultze-Kraft, D. Birman, M. Rusconi, C. Allefeld, K. Gor-
gen, S. Dahne, B. Blankertz, and J.-D. Haynes (2016a). The point
of no return in vetoing self-initiated movements. Proceedings
of the National Academy of Sciences 113.4, pp. 1080-1085. DOI:
10.1073/pnas.1513569112

M. Schultze-Kraft, S. Ddhne, M. Gugler, G. Curio, and B. Blan-
kertz (2016b). Unsupervised classification of operator workload
from brain signals. Journal of Neural Engineering 13.3, p. 036008.
DOI: 10.1088/1741-2560/13/3/036008

Conference Abstracts

M. Schultze-Kraft, S. Ddhne, G. Curio, and B. Blankertz (2013a).
,Temporal and spatial distribution of workload-induced power
modulations of EEG rhythms.” In: 5th International BCI Meeting,
Asilomar, USA

M. Schultze-Kraft, D. Birman, M. Rusconi, C. Allefeld, K. Gor-
gen, S. Dahne, B. Blankertz, and J.-D. Haynes (2014a). ,, A man
vs. machine shootout duel: Do we have control over our choice-
predictive brain signals?” In: 12th International Conference on
Cognitive Neuroscience (ICON), Brisbane, Australia


http://dx.doi.org/10.1073/pnas.1513569112
http://dx.doi.org/10.1088/1741-2560/13/3/036008

1.3 LIST OF PUBLICATIONS

M. Schultze-Kraft, S. Dahne, G. Curio, and B. Blankertz (2014b).
,Classification of visuomotor workload: A comparison of state-
of-the-art spatial filtering methods.” In: Annual Meeting of the
Organization for Human Brain Mapping (OHBM), Hamburg, Ger-
many

M. Schultze-Kraft, D. Birman, M. Rusconi, C. Allefeld, K. Gor-
gen, S. Ddahne, B. Blankertz, and J.-D. Haynes (2015). ,Predict-
ing and interrupting movement intentions with a closed loop
BCL” in: Annual Meeting of the Organization for Human Brain
Mapping (OHBM), Honolulu, USA

1.3.2 Not Included Publications

Two further studies that were published in peer-reviewed journals
and presented at conferences were conducted at the beginning of my
work on this thesis and are listed below. However, they ultimately
did not find their way into this thesis.

Journal Articles

M. Schultze-Kraft, R. Becker, M. Breakspear, and P. Ritter (2011a).

Exploiting the potential of three dimensional spatial wavelet
analysis to explore nesting of temporal oscillations and spatial
variance in simultaneous EEG-fMRI data. Progress in biophysics
and molecular biology 105.1, pp. 67-79

M. Schultze-Kraft, M. Diesmann, S. Griin, and M. Helias (2013b).
Noise suppression and surplus synchrony by coincidence detec-
tion. PLoS Comput Biol 9.4, €1002904

Conference Abstracts

M. Schultze-Kraft, M. Diesmann, S. Griin, and M. Helias (2011b).
Correlation transmission of spiking neurons is boosted by syn-
chronous input. BMC Neuroscience 12.1, p. 1

M. Schultze-Kraft, M. Diesmann, S. Griin, and M. Helias (2011¢).
,How much synchrony would there be if there was no syn-
chrony?” In: Ninth Gottingen Meeting of the German Neuroscience
Society, Gottingen, Germany
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FUNDAMENTALS

2.1 MEASURING BRAIN ACTIVITY

The first prerequisite for the study of the human brain is the ability
to quantify neural activity. Technological advances in the course of
the last hundred years have provided increasingly refined methods
that measure neural activity at multiple temporal and spatial scales
(Hodgkin and Huxley, 1952; Cohen et al., 1968; Jobsis, 1977, Wyler
et al., 1984; Kwong et al., 1992; Scanziani and Hausser, 2009). Being
the primary method of choice for use in BCIs, this thesis focuses on
the electrophysiological measure called electroencephalogram (EEG)
(Berger, 1929). The following sections provide a basic understand-
ing of the generation of EEG signals and introduce the two most
important neurophysiological phenomena observed in EEG signals,
event-related potentials and oscillatory activity.

2.1.1  Electroencephalography

The human EEG, first described by Berger (1929), measures changes
in electrical potentials between electrodes placed on the scalp. There
are three types of signal sources that contribute to its formation: Elec-
trical activity of large numbers of (mostly) cortical neurons, physi-
ological artifacts of non-cerebral origin such as muscle and ocular
activity, and non-physiological artifacts from the measurement appa-
ratus. While the two latter contributions are not entirely unavoidable,
EEG experiments take precautions to keep them to a minimum.

The cerebral contribution to the EEG is a result of the synchronous
activity of approximately one hundred billion heavily interconnected
neurons. Closely following Baillet et al. (2001), Nunez and Srinivasan
(2005), and Wolters and Munck (2007), the generating mechanism
can be summarized as follows. Neurons are specialized cells which
communicate with each other via short electrical pulses and chemical
processes. By means of ionic pumps, a high concentration of potas-
sium ions is maintained inside the cell, while a high concentration
of sodium and calcium ions is maintained in the extracellular matrix.
This creates an electrical gradient that keeps the membrane of neu-
rons electrically charged. Neurons can be subdivided into three main
compartments: the cell body (soma), the dendrites and the axon. Sig-
nal transmission between neurons can be roughly described by the
following process: By means of synapses, neurotransmitters are re-
leased from the presynaptic cell and enter the postsynaptic cell at
their dentritic tree. This causes a small, transient change in polar-
ization of the postsynaptic cell called a postsynaptic potential (PSP).
These PSPs travel along the dentrites to the soma where they are in-
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tegrated and depolarize the cell membrane. If this depolarization
reaches a certain threshold various voltage-dependent ion channels
are activated in succession, which creates an action potential. This
electric pulse, mediated through an ion current flow and chemical
transmission at the synapses, travels along the axon of the cell and
via synapses in turn excites the next postsynaptic cell. This current
flow is called the primary current.

However, the rule of conservation of electric charges implies that
there is also current flow in the opposite direction. This secondary
volume current travels through the extracellular matrix of the neuron.
Given the geometric and conductive properties of the traversed me-
dia, which are the brain, the cerebrospinal fluid, the scull and scalp
tissue, the volume current of a single neuron would not be measure-
able at the scalp. However, here two important properties of brain
anatomy and function come into play. First, the most prominent type
of neurons in the cortex, the pyramidal cells, are organized in layers
and have an apical dendrite that is oriented perpendicularly to the
scalp. And second, due to their heavy interconnected nature, neu-
rons tend to be synchronously activated in large ensembles. There-
fore, their primary currents add and the corresponding secondary
currents, which spread over the whole volume conductor, are strong
enough to be measurable as scalp potentials. The dynamics observed
in the EEG signals is assumed to be caused by interacting networks
of such active cortical patches. EEG is usually recorded unipolar, that
is by recording all channels against a single or a pair of reference
electrodes. For reproducibility, recording electrodes are placed on
the scalp according to a fixed scheme, for which the extended 10-20
international system is commonly used.

2.1.2 Event-Related Potentials

Event-related potentials (ERPs) are characteristic deflections in the
EEG following internally or externally triggered events (Luck, 2014).
They exhibit a spatio-temporal signature that depends on the location
of the active cerebral current sources involved in the processing of the
event and the spatio-temporal dynamics of source activition. The am-
plitude of ERPs typically lies in the range of 1-20 uV, which is approx-
imately 1-2 orders of magnitude below the background activity level.
However, because they are both time and phase-locked to the event,
each component of the complex has a latency and polarity that is ap-
proximately the same for repetitions of the event. Therefore, ERPs
are usually estimated from multiple repetitions of the same event by
averaging the respective event-locked EEG segments. This procedure
increases the signal-to-noise ratio (SNR) of ERPs by cancelling out
EEG activity that is unrelated to the task.

External events that elicit ERP responses have long since been re-
ported as triggered by visual (Spehlmann, 1965; Jeffreys and Axford,
1972), auditory (Davis, 1939) or tactile and electrical (Penfield and
Boldrey, 1937) stimuli. An ERP is typically considered a complex
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that consists of several components that exhibit a characteristic spatio-
temporal shape. While early components (w.r.t. stimulus onset) re-
flect the processing of physical properties of the stimulus (Polich,
1989), later components are increasingly cognitive in nature, that is
they can be modulated by top-down processes such as attention (Hill-
yard et al., 1973), semantic processing (Falkenstein et al., 2000) and
expectation (Walter et al., 1964). The study of event-related potentials
has widespread applications in clinical diagnosis and psychophysiol-
ogy (Fabiani et al., 2000).

More importantly, ERPs have proven to be excellent signals to be
used for the control of brain-computer interfaces (Blankertz et al.,
2011), as already suggested by Vidal (1973). Among the various types
of ERPs used for BClIs are visually evoked potentials (Miiller-Putz et
al., 2005), auditory evoked potentials (Schreuder et al., 2010) and the
P300 (Farwell and Donchin, 1988). The most promiment example
of an internally triggered ERP is the readiness potential (RP), first
described by Kornhuber and Deecke (1965) (see Section 4.1.1).

2.1.3 Oscillatory Activity

The EEG power spectrum typically exhibits a characteristic 1/f shape
(Penttonen and Buzsaki, 2003). However, this spectrum is often found
to be superimposed by one or more spectral peaks representing in-
creased oscillatory activity in particular frequency bands (Buzsaki
and Draguhn, 2004). The most prominent is the alpha band which
ranges in the frequency 8 to 13 Hz and is often observable with the
naked eye in unfiltered EEG data. Other relevant frequency bands in-
clude the delta band (1-3 Hz), the theta band (4-7 Hz), the beta band
(14-30 Hz) and the gamma band (30 to more than 100 Hz). Modula-
tions of the oscillatory power of all frequency bands are associated
with various cognitive and sensory phenomena, including alterness
(Jung et al., 1997), attention (Harmony et al., 1996; Klimesch et al.,
1998; Bauer et al., 2006), memory encoding (Klimesch, 1999; Jensen
and Colgin, 2007), workload (Gevins and Smith, 2003; Holm et al.,
2009) and perception (Makeig and Jung, 1996; Thut et al., 2006; Schu-
bert et al., 2009). Alpha power is further modulated by the amount of
relaxation of the visual system, is strongest when the eyes are closed
and over perieto-occipital areas (Niedermeyer, 1997).

Similarly, the related mu rhythm lies in a similar frequency band,
is strongest over central areas and is related to the level of relaxation
of the motor system. Its power, as well as that of the beta band,
decreases when movements are observed (Babiloni et al., 2002) and
executed or even imagined (Pfurtscheller and Da Silva, 1999). This
process is called event-related desynchronization (ERD) (Pfurtscheller
and Da Silva, 1999) and is utilized in a type of brain-computer inter-
faces, where the willful modulation of EEG band power via motor
imagery is used to control computer applications, such as spelling
programs (Blankertz et al., 2007b; Blankertz et al., 2008). Interest-
ingly, this desynchronization is not only observed during movement
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but starts up to two seconds before voluntary, self-initiated move-
ments (Pfurtscheller and Aranibar, 1979; Bai et al., 2005).

2.2 BRAIN-COMPUTER INTERFACES

At the Ostler Society of Oxford in 1964, Grey Walter presented an ex-
periment that he never published but that was recounted only much
later by Dennett (1993). This experiment, in which a patient was able
to advance slides of a slide’s projector whenever his brain activity
indicated that he intended to press the button, represents the first re-
ported instance of a brain-computer interface. The term BCI was then
introduced by Vidal (1973) who suggested to make use of externally
triggered event-related potentials in order to control an apparatus or
device.

2.2.1  BClIs for Communication and Control

Although an array of BCI applications have emerged ever since, so far
BCI research has primarily focused on its application as an assistive
technology for individuals with complete (or near-complete) paraly-
sis. If all or most motor functions are compromised a BCI can decode
information from otherwise intact brain areas and use these to control
a computer program or device, thus superseding the brain’s natural
efferent pathways (Birbaumer et al., 1999; Dornhege, 2007).

The concept of such a communication channel relies on the assump-
tion that a person can willfully alter his brain state to express an inten-
tion (Sutton et al., 1965), thus allowing for direct "communication and
control” through thought (Wolpaw et al., 2002). Research has shown
that BCIs can be controlled using a variety of measurements of brain
activity, such as intracortical recordings (Nicolelis, 2003), electrocor-
ticography (ECoG) (Leuthardt et al., 2004; Leuthardt et al., 2006),
functional magnetic resonance imaging (fMRI) (Weiskopf et al., 2004),
functional near-infrared spectroscopy (fNIRS) (Coyle et al., 2004; Fa-
zli et al., 2012) and magnetoencephalography (MEG) (Mellinger et al.,
2007). However, due to its high temporal resolution and cost effi-
ciency, the EEG has been the single most widely used measurement
of brain activity in BCI research (Mason et al., 2007). Most BClIs for
communication use the user’s intention to control a computer pro-
gramm, typically a speller. Since the turn of the century, progress in
BCI research has been accelerated by constant advancements in ma-
chine learning (Blankertz et al., 2002; Dornhege et al., 2007; Tomioka
and Miiller, 2010).

In principle, there exist two basic types of brain-computer inter-
faces for communication, which differ with respect to the signal they
use: event-related potentials (EPRs) and event-related desynchroniza-
tion (ERD). ERP-based BClIs rely on exogenous stimulation to elicit
ERP responses in the user’s brain that convey information about their
intention. The most widely studied ERP-based BCIs employ the so-
called odball-paradigm using visual (Farwell and Donchin, 1988; Sell-
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ers et al., 2006; Treder and Blankertz, 2010), auditory (Schreuder et al.,
2010; Schreuder et al., 2011) or tactile stimuli (Miller-Putz et al., 2006).
Other approaches use steady state visually evoked potential (SSVEP)
paradigms which can be based on time modulation (Guo et al., 2008),
frequency modulation (Miiller-Putz et al., 2005; Allison et al., 2008),
and code modulation (Bin et al., 2011). BCIs that use ERD for control
employ the motor imagery (MI) paradigm (Wolpaw and McFarland,
2004; Blankertz et al., 2007a) and provide asynchronous, continuous
output signals that are optimal for applications such as motor control
and object manipulation (Pfurtscheller et al., 2003; Galén et al., 2008).

2.2.2  BClIs beyond Control

Early findings that assocciated electrocortical activity with task per-
formance and cognitive states such a vigilance (Beatty et al., 1974;
Matousek and Petersén, 1983) laid the foundations for the idea to
use ongoing EEG activity in order to infer particular mental states
of the users and thus provide the possibility of enhancing the inter-
action of humans with machines, computers or work environments
(Parasuraman, 2003; Parasuraman and Wilson, 2008). Only recently
and going hand in hand with advancements in data analysis meth-
ods, BCI research beyond control and communication has expanded
considerably (Miiller et al., 2008; Blankertz et al., 2010; Zander and
Kothe, 2011; Erp et al., 2012).

For instance, the interaction with software interfaces can be adapted
by a BCI by exploiting implicit information about the cognitive state
of its user (Nicolae et al., 2015; Us¢umli¢ and Blankertz, 2016; Wenzel
et al., 2016). Furthermore, the design of products can be optimized
based on its direct effect on neural processes, such as the quality
perception of speech (Porbadnigk et al., 2013) and video (Scholler
et al., 2012; Acqualagna et al., 2015). BCIs can also detect specific
brain states before they trigger behavioral actions, particularly in
safety-critical applications such as in emergency braking situations
during driving (Haufe et al., 2014b). Furthermore, BCIs have suc-
cessfully been used to assess workload as induced by the n-back task
(Prinzel et al., 2000; Scerbo et al., 2003), in air traffic control (Abbass
et al., 2014), in piloting (Borghini et al., 2014), in a simulated driv-
ing environment (Dijksterhuis et al., 2013) or in real traffic conditions
(Kohlmorgen et al., 2007).

2.3 METHODS IN BCI RESEARCH

The work with brain-computer interfaces involves the use of several
signal processing and analysis methods. The following sections de-
scribe the methods that are essential in this thesis. First, the clas-
sification and regression methods and their regularization approach
are described. Subsequently, four EEG spatial filtering methods and
the linear generative model of EEG, on which they are based, is pre-
sented. Finally, a method for the removal of EOG activity and the
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approach for model selection fundamental to BCI research, namely
cross-validation, are described.

2.3.1  Classification and Regression

Classification and regression are both instances of supervised learn-
ing (Bishop, 2007). The goal of classification is to use the features of
an object on order to determine to which class it belongs. By using
features from the data, it finds a separating hyperplane such that both
classes are maximally separated. From the many methods that exist
for classification, in this thesis one is employed that has proven to
be a powerful tool for classification of binary classes extracted from
EEG data (Friedman, 1989; Blankertz et al., 2011), the Linear Discrim-
inant Analysis (LDA). Given that often the number of observations
available for training a classifier is small, it is advisable to regularize
the classifier, which is achieved by shrinking the estimated covariance
matrix (Ledoit and Wolf, 2004; Schéfer, Strimmer, et al., 2005; Bartz
and Miiller, 2013). The concepts of LDA and shrinkage are described
in the following.

Linear Discriminant Analysis

Given two class-distributions, Linear Discriminant Analysis (LDA) is
the optimal classifier in the sense that it minimizes the risk of misclas-
sification for new samples drawn from the same distributions, assum-
ing that the following three criteria are fulfilled: (a) The features of
each class are Gaussian distributed, (b) Gaussians of all classes have
the same covariance matrix and (c) the true class distributions are
known (Friedman, 1989). The first two criteria are largely satisfied
by a variety of features extracted from the EEG, such as ERP ampli-
tudes and the magnitude of ERD. The last criterion is obviously never
satisfiable with real data, means and covariance matrices of the dis-
tributions have to be estimated from those data. The estimation bias
that is expected to occur with high dimensional data is dealt with
regularization (see section below).

A LDA classifier can be characterized by a projection vector w and
a bias term b, which refer to the separating hyperplane w'x +b = 0.
The weight vector of an LDA classifier is defined by

w=2 (i —fiy) (1)
and the bias
wT (fy + 1) (2)
where [i.. is the mean of class ¢, and 3 is the pooled covariance matrix,
that is the average of the class-wise covariance matrices. A class label

can then be assigned to a data point x € RN according to sign(w ' x —
b).
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Regularization

The class means and class-wise covariance matrices of an LDA clas-
sifier both have to be estimated from the data. For the empirical
covariance matrix, this may become a problem when only a small
number of observations n are available compared to the number of
dimensions d of the data. This is particularly the case for d > n and
leads to a systematic error where large eigenvalues of the covariance
matrix are estimated too large, and small eigenvalues are estimated
too small (Bartz and Miiller, 2013). Because this error is detrimental
for the performance of an LDA classifier, it is essential to mitigate this
effect with regularization. Different approaches for regularization ex-
ist (Tomioka and Miiller, 2010). In an approach called shrinkage, the
empirical covariance matrix is shrunk, i.e. made more spherical. This
is achieved by replacing £ with

Zyv)=(1—v)E+yV], (3)

where v is the average eigenvalue of £. The hyperparametery € [0, 1]
tunes the degree to which £ is shrunk towards a spherical covariance
matrix with vy = 0 meaning unregularized LDA and vy = 1 yield-
ing a perfectly spherical covariance matrix. One possible way to de-
fine an optimal vy is via cross-validation (see Section 2.3.4), however,
such an approach is very time-consuming. Fortunately, an analytical
method exists to calculate the optimal shrinkage parameter where
large sample-to-sample variance in the empirical covariance are pe-
nalized with a stronger shrinkage (Ledoit and Wolf, 2004; Schéfer,
Strimmer, et al., 2005). Let xq,...,xn € R4 be n feature vectors and
let (xi)i resp. (fi); be the ith element of the vector xi resp. fi, and
define

zij(k) = ((xx)i — (W) ((xx )5 — (1)5), (4)

then the optimal shrinkage parameter can be found by

oo Ty Varlzg(K)
(m—1)2 3 sizj + > i (sii—v)2’

(5)

where si; denotes the element in the ith row and jth column of b

Ridge Regression

The goal of linear regression is to model the relationship of a target
variable with a set of explanatory variables. This is achieved by using
linear predictor functions whose unknown model parameters are esti-
mated from the data. Linear regression models are often fitted using
the least squares approach. LDA has been shown to be equivalent to
linear regression with the class label as the output (Duda et al., 2001).
Because this approach also suffers from the high dimensionality of
data, its regularized version, ridge regression, is used in this thesis.
Like with LDA, the empirical covariance matrix is shrunk using the
above approach.

13
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2.3.2 EEG Spatial Filtering

In this thesis, several spatial filtering methods for EEG data were
used. In the following sections, first some principles, on which all
methods are based, are introduced, followed by a description of the
employed methods, and finally some properties and applications are
discussed.

Forward Model of EEG

All described methods are based on what is called the generative or
forward model of EEG. The forward model states that the observed
data can be decomposed into a limited set of components. Each com-
ponent, in turn, is characterized by a fixed spatial activation pattern
and a corresponding time course of activity. The physics of electro-
physiology implies that the scalp measurements are a linear super-
position of the individual component activities. Thus, the mapping
of component activity to the EEG recording channels is modeled by
the following equation. Let x(t) € R¢ denote the d-dimensional EEG
recording at time point t, then

K
x(t) = > ai-si(t)+elt)
i=1
= As(t)+e(t), (6)

where a; € RY denotes the spatial activation pattern and s;(t) the
temporal activation of the ith component, for i € {1, ..., K}. The matrix
A = [ay,..,ak] € R¥*K contains the spatial activation patterns of the
K components in its columns and the vector s(t) = (s (t), ..., sK(t))T €
R¥ contains the temporal activity of all components at time point t.
Activity that is not explained by the K components is captured by

e(t) € R4 and considered noise.

Backward Model of EEG

The estimation of components from the data, i.e., the inversion of
the generative model, is called backward modeling. In this approach,
the estimation of the time courses and spatial activation patterns is
parameterized by a so-called spatial filter matrix, here denoted by
W € RY*K. An estimate of the component time courses, denoted by
§, is extracted by projecting the data onto the columns of W. Thus,

S(t) =W x(t) . (7)

An estimate of the corresponding spatial activation patterns can be
derived from the spatial filters using the filter-pattern transformation

A=cw (chw) - ®)

where C denotes the covariance matrix of the EEG data x. It is impor-
tant to note that the neurophysiological interpretability of extracted
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components, i.e. their anatomical origin and neurophysiological rel-
evance, is not encoded in the filter coefficients, but is only possi-
ble through interpreting the spatial activation patterns (Haufe et al.,
2014C).

Four State-of-the-Art Methods

From Egs. 7 and 8 it follows that the estimation of components is
reduced to finding appropriate spatial filters, i.e., columns of matrix
W. The following sections present four methods (Koles, 1991; Nikulin
et al., 2011; Ddhne et al., 2014a; Dédhne et al., 2014b) that optimize
such spatial filters based on certain assumptions about the statistics
of the components that are to be extracted from the data. In particular,
these methods make assumptions about the spectral properties of the
component time courses. All four methods are examples of backward
modeling techniques and they are all based on the linear generative
model shown in Eq. (6).

In order to optimize spatial filters that extract oscillatory compo-
nents it is useful to express the spectral power of a signal in terms
of variance. Let ¢$ denote the spectral power of the estimated com-
ponent time course $ in a frequency band f. Then ¢$ is well approx-
imated by first bandpass filtering the time-domain signal and then
computing its variance, which we denote by Var (§¢). Note that the
variance of the (bandpass filtered) component time series can be ex-
pressed in terms of the spatial filter w that is necessary to extract §
from the data:

df ~ Var (§;) =w' Crw, 9)

where Cs denotes the covariance matrix of the bandpass filtered data.

A time-resolved expression for component bandpower can be de-
rived by simply computing the variance in short consecutive time
windows, also called epochs. Let these epochs be indexed by e €
[1,...,N¢], then we have

d)f(e) ~w'Cele)w, (10)

where C¢(e) denotes the covariance matrix of the bandpass filtered
data within the eth epoch.

Method 1: Spatio-Spectral Decomposition (SSD)

The aim of Spatio-Spectral Decomposition (SSD) is to optimize spatial
filters W for components that concentrate most of their spectral power
in a given frequency band (Nikulin et al., 2011). The idea is to sep-
arate components with a "peaky" power spectrum from components
which exhibit more of a 1/f spectrum. While the former is attributed
to genuine brain processes, the latter is considered background noise.
Thus, it is useful to define the spectral signal-to-noise ratio (SNR) of a

component for a given frequency band f as ﬁ, where f — 6
f—5 f+o

and f + 6 denote frequency bands neighboring the band of interest f.

Using the variance approximation for spectral power, it is possible to
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parameterize the spectral SNR of a component time course § in terms
of the spatial filter w:

d)f' - WTCfW
(bf_ s +ds5) W' (Cros+Cris)W

(11)

SSD optimizes the above expression for a set of weight vectors under
the constrained that the component time courses are decorrelated to
each other. Haufe et al. (2014a) have demonstrated the usefulness of
SSD as a dimensionality reduction tool for the analysis of oscillatory
processes in the EEG.

Method 2: Source Power Co-modulation (SPoC)

The bandpower of neural oscillations changes over time and these
power dynamics have been related to switching of mental states. A
method that optimizes spatial filters based on a presumed covaration
between band power dynamics and an external target signal is the
Source Power Co-modulation analysis (SPoC) (Dédhne et al., 2014a).
Let the variable z denote the target signal and let us further assume
that z has zero mean. Then the covariance between the bandpower
dynamics of a component § and the target signal z can be expressed
in terms of the spatial filter w as

Cov (¢},2) = — Z dile) - z(e)

Ne
= w' <]\L Z Csl(e) -z(e)) wW. (12)

The SPoC algorithm optimizes spatial filters that maximize the above
expression under the constraint that extracted source time courses
have unit variance and are mutually decorrelated.

Method 3: Common Spatial Patterns (CSP)

If the bandpower dynamics of a component are to be used in a clas-
sification setting, one can base the optimization of the spatial filters
on the assumed difference of bandpower between classes. This then
leads to an algorithm called Common Spatial Patterns (CSP) (Koles,
1991; Blankertz et al., 2008). CSP seeks components that maximize
the class difference of bandpower. Let d)f/i and Cg; respectively de-
note the power and covariance of component § for class i € {1,2} and
frequency band f. Then the CSP objective function can be formalized
as

di— i =w' (Cr1 —Cr2)w, (13)

subject to unit variance and mutual decorrelation constraints. Note
that CSP can be obtained as a special case of SPoC by encoding the
class labels in the SPoC target function z.
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Method 4: Canonical Source Power Co-modulation (¢SPoC)

While CSP and SPoC use label information for the extraction of rel-
evant components, canonical Source Power Co-modulation (cSPoC)
(Ddhne et al., 2014b) optimizes spatial filters solely based on assump-
tions about (positive or negative) co-variation between bandpower
dynamics of individual components. In addition to d)f(e) let d)f,(e)
denote the time-resolved bandpower dynamics of a separate compo-
nent § at a frequency band f, with f # f. As before, let C¢(e) denote
the corresponding time series of covariance matrices. With these def-
initions the notion of bandpower covariance is formalized as

a % 1 Ne 2 &
Cov (5, 05) = Ne;d)?(e)-cbfs(e)
N,
_ ]\L;chf(e)w.chf(e)w. (14)

cSPoC optimizes the above expression for pairs of filters w and w
under unit variance and mutual decorrelation constraints. The algo-
rithm can be set to either maximize or minimize the objective func-
tion, thereby searching for components with positive or negative band-
power covariance, respectively.

Properties and Applications

Owing to volume conduction (see Section 2.1.1), raw EEG scalp po-
tentials are known to have a poor spatial resolution. According to
the linear generative model of EEG, spatial filtering methods decom-
pose the observed data into a set of components. This decomposition
is used in BCI research for different purposes. First, while EEG is
usually recorded from 64 or more channels, the number of sources
in the brain that generate relevant signals are expected to be much
smaller. If scalp measurements are assumed to be a linear superpo-
sition (i.e. weighted sum) of the individual component activities, ex-
tracting those components that are assumed to have useful properties
for a particular BCI application, while removing components that are
unrelated to that application, is advantageous for the real-time anal-
ysis of EEG data. This procedure is called dimensionality reduction
and its virtue has been demonstrated by methods such as principal
component analysis (PCA) and SSD (Haufe et al., 2014a).

Second, if oscillatory signals of interest — like the central p-rhythm
in motor imagery (MI) — are weak in power, while other sources pro-
duce strong signals in similar frequency ranges like the x-rhythm of
the visual cortex or movement and muscle artifacts, it becomes es-
sential to calibrate the BCI to the specific characteristics of each user.
The problem even increases when the goal is to analyze single trials
of EEG for BCI applications. In this context, the calculation of subject-
specific spatial filters, which are optimal for the extraction of specific
power oscillations, has proven to be useful. Here the most widely
used approach is CSP (Blankertz et al., 2008), which has become one
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of the corner stones of sensorimotor rhythm based brain-computer
interfaces (Sannelli et al., 2011; Fazli et al., 2015).

And finally, unsupervised methods like the independent compo-
nent analysis (ICA) (Bell and Sejnowski, 1995; Hyvarinen, 1999), whose
decomposition principle is based on statistical independence, have
been used to analyze the functionality and dynamics of components
in the EEG (Makeig et al., 1996; Makeig et al., 1999; Makeig et al.,
2002).

Spatial filtering methods can be subdivided into supervised and un-
supervised methods. Supervised methods make use of class member-
ship (e.g. in CSP) or an external target signal (e.g. in SPoC) during
the optimization of the parameters. While the use of such methods
for the extraction of features from EEG signals is quite common, their
requirement for a supervision signal limits their use in BCls to ap-
plications where such a signal or information is necessarily available.
Unsupervised methods, on the other hand, don’t require a supervi-
sion signal as they rely on the statistics of the data alone. Such meth-
ods may thus use a-priori information about the BCI experiment that
is expected to be reflected in the EEG, such as a specific frequency
band of interest (e.g. in SSD) or the anti-correlation of particular fre-
quency bands (e.g. in cSPoC).

2.3.3 Removal of EOG Activity

Vertical and horizontal eye movements cause strong scalp deflections
in the EEG, called electrooculogram (EOG) activity, which are 1 to
2 orders of magnitude higher than the activity originating from the
cortex. These deflections are measured predominantly in frontal EEG
electrodes and the direction and magnitude of the deflections are in-
dicative of the orientation and degree of eye motion (Figure 1a). EOG
activity is considered as an artifact that is very often removed from
the EEG during preprocessing before further analysis. Several meth-
ods exist for such a removal.

In experimental paradigms, where the information for a BCI appli-
cation is conveyed in short segments of EEG data (e.g. in ERP-based
spellers), a very common approach consists in removing any such
segments that contain deflections caused by eye movements. The de-
tection of these segments is accomplished via a simple criterion that
is based on the fact that EOG deflections exhibit a considerably larger
amplitude or variance than cortically generated potentials. Other ap-
proaches employ unsupervised source separation methods such as
ICA in order to identify and remove components that contain arti-
facts (Vigario, 1997; Jung et al., 2000; Winkler et al., 2011), or use a
regression approach that subtracts estimated EOG activity from the
EEG Parra et al. (2005). Figure 1b shows two exemplary segments of
EEG data, before and after removing EOG activity with this regres-
sion approach.
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Figure 1: Estimation and removal of EOG activity, demonstrated ex-
emplarily on EEG data from subject /i in Chapter 3. (a)
Estimated scalp projections (left) and time courses (right) of
horizontal (top) and vertical (bottom) EOG activity. Hor-
izontal eye movements were estimated from the difference
between electrodes Fg and F1o, vertical eye movements were
estimated from the average of electrodes Fp1 and Fp2. Hori-
zontal eye movements to a particular side cause deflections
in the EEG whose polarity is reversed in electrodes placed
on opposed sides of the scalp. Hence, they exhibit a topol-
ogy with a clear amplitude symmetry along the medial axis,
but reversed polarity. The topology of vertical eye move-
ments shows a clear central contribution from the most
frontal channels that quickly decreases in dorsal direction
with a perfect symmetry with respect to amplitude and po-
larity. The two events observed in the estimated time course
are typical for eye blinks. (b) Time courses of EEG segments
in channels FCz (top) and FC6 (bottom), one time before
(green) and one time after (red) removal of EOG activity.
While the influence of the eyeblinks is clearly seen in both
channels before removal, the impact of horizontal eye move-
ments on central channels (e.g. FCz) is very small. Note that
the regression approach clearly removes the deflections as-
sociated with eye movements without affecting the non eye
related EEG signals.
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2.3.4 Model Selection

Whenever a model, such as a classifier, needs to be selected, it is essen-
tial to chose one that generalizes well in the sense that it reasonably
explains unseen data (Miiller et al., 2001; Bishop, 2007). One well-
established technique to estimate the predictive value of a model is
called cross-validation. In a K-fold cross-validation, the dataset is split
into K equal parts. In each fold, the model is fitted on K — 1 parts
(called the training set) and applied to the part that was left out (called
the test set). The average error across all folds then provides a good
estimate of the generalization error of the selected model.

If the data are independent and identically distributed this gener-
alization error is unbiased. However, due to the temporal structure
of EEG data in most BCI experiments non-stationarities are to be ex-
pected, which violates the assumption of independence (Lemm et al.,
2011). Therefore, an unbiased validation scheme is chronological valida-
tion. Here, it is ensured that the training set chronologically precedes
the test set. The generalization error in this validation scheme will
reflect a failure of the model to be invariant against potential non-
stationarities in the data.

Another potential caveat arises when validating EEG data with
block design, in which an experiment is divided into blocks of dif-
ferent experimental conditions and each block comprises several sin-
gle trials of the same condition. Trials within one block are likely
to be stochastically dependent, while stochastic independence can
be assumed for data across blocks. In this case it is advised to em-
ploy the so-called leave-one-block-out cross-validation. As with generic
cross-validation, one block is left out for testing, and the other blocks
are used for training the model. However, for smaller numbers of
blocks, the leave-one-block-out cross-validation tends to overestimate
the generalization error because non-stationarities are not represented
equally for both classes. In this case, it is advisable to employ a leave-
one-block-pair-out cross-validation, where adjacent pairs of blocks are
left out for testing in each fold.



ADVANCING THE ASSESSMENT OF OPERATOR
WORKLOAD WITH BCIS

The development of BCIs capable of real-time assessment of the work-
load state of operators is an endeavor that has been followed for sev-
eral decades now. The foundations of this idea were laid already
two decades ago (Makeig et al., 1994; Gevins et al., 1995; Pope et al.,
1995), showing that an EEG-based workload assessment can be used
for adaptive purposes in operational environments. Numerous stud-
ies have since then successfully demonstrated this idea (Prinzel et al.,
2000; Scerbo et al., 2003; Kohlmorgen et al., 2007, Wilson and Rus-
sell, 2007; Christensen et al., 2012). In this chapter, we aim to extend
this line of experimental work and seek to advance the detection of
operator workload with BCIs by exploring new possibilities rendered
feasible by novel developments in machine learning techniques. We
formulate several challenges in the development of BCI-based work-
load detection and suggest the means by which those challenges can
be tackled. The proposed approach is evaluated on EEG data from an
experiment in which participants executed a task with differing lev-
els of workload. We present the results of the analysis, discuss their
relevance and examine the degree to which the proposed challenges
were accomplished.

Parts of the findings presented in this chapter were published in
Schultze-Kraft et al. (2016b).

3.1 BACKGROUND AND MOTIVATION

In the following sections, we first of all present the background and
motivation of this chapter and provide an overview of previous work
on the detection of mental states from EEG.

3.1.1  The Concept of Workload

Humans are limited in the ability to process information, remember
things and sustain a high level of attention over longer periods of
time (Manzey, 1998). When challenged with arduous tasks, these lim-
itations cause humans to become exhausted and to make errors. The
study of mental or operator workload is closely related to these limita-
tions. By means of assessing and examining the level of workload
under different conditions, it aims to disclose the various factors that
influence the level of workload and provides insights into the impli-
cations of excessive worklod on the performance, health and safety of
the operator. Workload can be described by the “complex interaction
between the characteristics of the person and the demands of the task
to be accomplished” (Manzey, 1998, p. 800).

21



22

ADVANCING THE ASSESSMENT OF OPERATOR WORKLOAD WITH BCIS

Different theoretical concepts of workload exist. Based on neuro-
physiological findings, the activation model proposes that several sys-
tems of activation and arousal are implemented as circuits in the
brain and are directly associated with the accomplishment of complex
tasks (Pribram and McGuinness, 1975). In the resource model workload
is seen as the amount of capacity demanded by a task and identifies
a direct correlation between mental workload and resource demands
for information processing (Kahneman, 1973). Accounting for new
findings from neurophysiology, this model was later refined by dif-
ferentiating between resources corresponding to different processing
stages, perception modalities and aspects of visual processing (Wick-
ens, 2002). The workload state of humans is not directly observable
but can be inferred indirectly through various variables, including
task performance, subjective (Hart and Staveland, 1988) and periph-
eral physiological measures (Vogt et al., 2006; Karavidas et al., 2010;
Reimer and Mehler, 2011).

3.1.2  Motivation for Workload Assessment

Our modern world has generated many fields of activity in which
human operators are required to perform monotonous but attention-
demanding tasks, such as in driving, air traffic control or in industrial
contexts. Such environments are predestined to cause high levels
of workload in individuals operating in them, having critical conse-
quences for health, safety and efficiency aspects (Wilde, 1982; Sarter
and Woods, 1995). It has thefore become important to study sys-
tem performance and safety critical tasks under the scrutiny of po-
tentially detrimental effects of excessive workload, with the ultimate
goal to prevent this hazardous functional state by maintaining men-
tal workload or task demand within an acceptable range (Hockey,
2003). A reliable and real-time assessment of the operator’s work-
load would provide the possibility to mitigate the consequences of
excessive workload, for instance by adapting the the task difficulty or
instructing the operator to take a break (Prinzel et al., 2000).

One way to achieve a real-time assessment of workload is by mea-
suring the operator’s physiological markers such as heart rate, res-
piration rate or skin conductance and infer from them the level of
workload. During the last decades, neurophysiology has proven to
be a sensitive and informative modality for the measurement of work-
load (Gevins and Smith, 2003; Berka et al., 2007; Holm et al., 2009;
Christensen et al., 2012). Neurophysiological markers of workload
are not ascertainable via physiological measures and provide comple-
mentary, non-overlapping information (Hankins and Wilson, 1998;
Matthews et al., 2015). This has led to concepts such as neuroer-
gonomics (Parasuraman, 2003) and augmented cognition (Stanney et al.,
2009), which suggest to use neurophysiologically assessed operator
workload in order to enhance human-machine interaction. The level
to which this approach is feasible depends on the sensitivity with
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which such markers can be reliably obtained from neurophysiologi-
cal measures like EEG.

3.1.3 Assessment of Mental States from EEG

Numerous studies have shown the suitability of using power mod-
ulations in particular frequency bands in the EEG for the decoding
and prediction a variety of mental states, such as alertness, vigilance,
fatigue and attention (Kecklund and Akerstedt, 1993; Jung et al., 1997;
Miiller et al., 2008; Schubert et al., 2008; Schmidt et al., 2009; Stikic
et al., 2011; Sonnleitner et al., 2012). In particular, EEG has been
shown to provide reliable estimators of workload. EEG estimators of
workload are based on the fact that changes in workload are associ-
ated with characteristic changes in the EEG. These typically amount
to modulations in the power of oscillatory activity in particular fre-
quency bands of the EEG (Buzsaki and Draguhn, 2004).

The most prominent frequency bands with power changes related
to workload are theta (4-7 Hz) and alpha (8-13 Hz). Theta power
has been shown to be positively correlated with workload, most no-
tably over frontal regions, whereas alpha power is typically found
to be negatively correlated with workload, in particular over parietal
regions (Gevins and Smith, 2003; Holm et al., 2009) (although some
studies have produced unclear or contradictory findings regarding
the alpha band, see Section 3.5.3). An index for workload can be
derived from the absolute power in the theta and alpha frequency
bands in the EEG (Gevins and Smith, 2003; Berka et al., 2007) or from
the ratio between them (Pope et al., 1995; Holm et al., 2009). Other
studies have additionally made use of power changes in other fre-
quency bands such as delta, beta and gamma (Brouwer et al., 2012;
Christensen et al., 2012). EEG-based workload indices can be further
obtained using not only spectral but also features from event-related
potentials (ERPs) (Prinzel et al., 2003; Brouwer et al., 2012; Martel et
al., 2014). Other studies have strived to make workload state detec-
tion robust against affective contexts (Miihl et al., 2014) and day-to-
day variability (Christensen et al., 2012).

3.2 GOAL AND CHALLENGES

The ultimate goal to enhance human-machine interaction with brain-
computer interfaces, as suggested by the neuroergonomic approach,
requires fundamental research that provides the basis for the devel-
opment of such systems. In this chapter we aim to contribute to that
research by demonstrating the successful detection of different levels
of operator workload from EEG on a single-trial level. Importantly,
this endeavor is set under consideration of several challenges that
we identify as being of particular importance for the development
of modern workload detection with BCIs. We now elaborate on the
motivation for those challenges and propose the means by which we
seek to tackle them.
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3.2.1  Challenge 1: Assess Workload from Multiple Modalities

Assessment of workload from EEG has so far been primarily focused
on mental workload as induced by demands in mental effort such
as working memory and attention, to a lesser extent by perceptual
and motor demands. A widely used experimental protocol are n-
back style tasks that demand sustained attention to a train of stim-
uli (Gevins et al., 1990; Gevins and Cutillo, 1993; Stikic et al., 20171;
Brouwer et al., 2012; Hogervorst et al., 2014). The Multi-Attribute
Task Battery (MATB), a personal computer-based multi-tasking en-
vironment (Comstock Jr and Arnegard, 1992), has been used as an
experimental paradigm that provides a more naturalistic setting of
human-computer interaction (Prinzel et al., 2000; Prinzel et al., 2003;
Christensen et al., 2012). Even more tailored to everyday situations
are efforts to assess operator workload from EEG in noisy environ-
ments, such as that experienced by aircraft pilots and car drivers
(Kohlmorgen et al., 2007; Putze et al., 2010; Dijksterhuis et al., 2013;
Borghini et al., 2014). Tasks in such environments typically involve
increased requirements in multiple modalities, from attention and
working memory to the executive control of visuomotor behavior.

Here, we aimed at assessing such a multimodally effected work-
load as it might be expected in an industrial setting. We envisioned an
industrial workplace where an automated plant produces parts at a
certain speed and a human operator assembles them into a final prod-
uct as they are transported past them on a conveyor. Such a work-
place offers the ideal scenario for employing the neuroergonomic ap-
proach because it involves several competing goals: While a high
work speed is desired to maximize productivity, a too high work-
load of the operator may result both in an increased rate of defective
goods and — most importantly — it may be detrimental to the opera-
tor’s health. Here, a continuous assessment of workload would allow
to dynamically adapt the work speed to a level that counterbalances
the plant’s productivity and the operator’s performance and health.

Approach: We mimicked such a scenario by designing an experi-
mental task on a touch screen that required continuous visuomotor
demands by subjects. By changing task difficulty, the experiment in-
duced two levels of operator workload on subjects.

3.2.2  Challenge 2: Use Exclusively Brain Signals

Such a task requires operators to constantly execute head and eye
movements, which are both expected to be correlated with task dif-
ficulty. Unfortunately, the two main artifact sources in the EEG are
electrooculogram (EOG) and electromyogram (EMG) activity. EMG
activity that occurs near EEG channels, for instance due to head move-
ments, leads to an increase of power in those channels in the beta and
gamma frequency band. Similarly, EOG activity caused by eye move-
ments like saccades or blinking is reflected as pronounced potentials
in the EEG, which can result in an increase of EEG power in mul-
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tiple frequency bands. This circumstance may become relevant for
the detection of workload states when oscillatory signals in the EEG
are used as markers, particularly when the experimental paradigm
as the one outlined above involves movements of the head and eyes.
If the task difficulty that modulates the workload is correlated with
the amount of EMG and EOG activity, the spectral features extracted
from the EEG are likely to be spurious. In rare cases, this issue is
negligible because the workload inducing task is independent from
the EMG and EOG activity (Kohlmorgen et al., 2007). However, in the
typical case the task difficulty will be correlated with head and eye
movements. Moreover, workload has been found to have an impact
on eye blink frequency and duration (Brookings et al., 1996; Veltman
and Gaillard, 1996).

Despite employing artifact rejection approaches, most studies that
use oscillatory EEG signals for workload detection do so without fur-
ther inspecting the sources of the signals eventually used for classifi-
cation (e.g. Prinzel et al., 2000; Scerbo et al., 2003; Christensen et al.,
2012). In such a practice the classifier can be considered a "black box"
where the exact source of the used signals is unknown and irrelevat.
While such an approach is technically legitimate, if relevant signals
used for classification are not of cortical origin, the proper meaning
of a BCl is reduced ad absurdum. If, for instance, the majority of sig-
nals used for classification are movement artifacts assossiated with
the task (e.g. Dijksterhuis et al., 2013), one might as well use a classi-
fier based on EMG activity, without the need for EEG electrodes. In
this study, the emphasis was to ensure that non-cortical signals in the
EEG were not use as markers for workload assessment, hence aiming
for a "true" brain-computer interface in its proper meaning.

Approach: We tackled the outlined challenge by employing a three-
fold strategy. First, we limited the frequency range of the extracted
spectral features to frequencies below 14 Hz. Because EMG activity
has been found to be largely absent from frequencies below 20 Hz
(Whitham et al., 2007), EMG contamination was negligible. Second,
during preprocessing we estimated horizontal and vertical eye move-
ments and removed them from the EEG data, thereby minimizing the
impact of EOG activity. And finally, the use of state-of-the-art spatial
filtering methods (Blankertz et al., 2008; Dahne et al., 2014a; Ddhne
et al., 2014b) allowed us to interpret the extracted signals neurophys-
iologically and therefore to inspect those signals for residual EOG
activity.

3.2.3 Challenge 3: Reduce Training Requirements

We sought to explore the possibility to use progressively less label
information from the experiment, eventually striving for an unsuper-
vised approach, a hitherto unsought attempt. Let us start with the
most common setting of supervised classification, where the exact
condition labels of the examples used for training are known. The

25



26

ADVANCING THE ASSESSMENT OF OPERATOR WORKLOAD WITH BCIS

classical practice here is to train a linear classifier on the extracted
features using those exact labels.

In our industrial workplace scenario, however, a situation is very
well conceivable in which the different workload conditions are nei-
ther externally induced nor known (but result e.g. from a self-regu-
lation mechanism) but instead the performance of the operator (e.g.
error rate) is known. This variable is expected to reflect the workload
state and can be considered a noisy version of the true labels. The
obvious approach in this case is to employ a linear regression on the
EEG features, using the error rate as target variable.

In a third scenario we assume that also the error rate is unknown
and no other information about the workload condition is available.
This scenario is most intriguing, for two reasons. First, it requires an
approach that combines EEG features using only the prior knowledge
about the spectral changes in the EEG associated with workload and
their spatial localization (Gevins and Smith, 2003; Holm et al., 20009).
Because no label information is available, such an approach must
be inherently unsupervised. And second, if feasible, it would open
up the possibility to implement a workload detection system with
minimal requirements for calibration, thus making it easy to deploy
and to use in everyday situations.

Approach: We implemented several predictive models which fall into
one out of three categories, depending on the amount of information
required by the approach. These categories include (a) the use of
binary class labels, (b) the use of a continuous error measure, and
(c) no use of a supervision signal at all. Some of the models include
the use of machine learning methods (described in Section 2.3.2) that
account for the linear generative model of EEG in order to find spatial
filters that are optimal for extracting oscillatory signals associated
with changes of the workload level (Blankertz et al., 2008; Dédhne et
al., 2014a; Dahne et al., 2014b).

3.2.4 Challenge 4: Explore the Added Value of Peripheral Physiology

Previous studies have shown that workload is not only associated
with changes in the EEG but also with peripheral physiological mea-
sures (PPMs) such as heart rate (Vogt et al., 2006), respiration fre-
quency (Karavidas et al., 2010) and electrodermal response (Kohlisch
and Schaefer, 1996; Reimer and Mehler, 2011). It was furthermore
found that multiple measures for mental workload are only weakly
correlated and provide non-overlapping information, calling into ques
tion whether they assess a common factor (Hankins and Wilson, 1998;
Matthews et al., 2015). These findings suggest that physiological mea-
sures of workload may constitute an added value to the EEG in pre-
dicting different states of workload.

Approach: In addition to EEG, we recorded heart and respiration
rate and electrodermal response. In the final analysis step we ex-
amined whether a fusion of EEG features with PPM features could
improve the performance of workload state detection.
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3.3 PROCEDURES

The following sections elaborate on the experimental procedures used
in this study. First, the experimental task and setup are described.
Subsequently, a general analysis pipeline is proposed that includes
several preprocessing steps. And finally, the prediction models im-
plemented with the goal to detect workload states from the recorded
EEG are specified.

3.3.1 The Experiment: Mimicking an Industrial Workplace

Experimental Task

Ten healthy male subjects, aged 26 to 40, participated in the experi-
ments. All participants gave their informed oral and written consent.
Subjects were instructed to carry out a task on a 21-inch touch screen
lying on a table in front of them (Figure 2). The task was designed
as a computer game: Objects consisting of three vertically aligned
screws (screw triplets) were falling vertically with equal velocity from
random positions at top of the screen, approaching the bottom of the
screen. Each screw in a triplet was randomly tagged and colored with
one out of four predefined colors; multiple occurrences of one color
were not allowed. At the bottom border of the screen was a bucket
consisting of three vertical segments. Using their index fingers, sub-
jects could tag (and untag) the bucket segments with colors by press-
ing colored buttons positioned both at the left and right borders of the
screen. Furthermore they could move the bucket horizontally along
the entire bottom screen border by sliding the bucket with one of the
index fingers. The task was to catch each falling screw triplet with
the bucket before it reached the bottom, ensuring that each time the
bucket was tagged with the same colors and in the same order as
the caught screw triplet. Catching with wrong colors was considered
an error as well as letting a triplet hit the bottom of the screen. The
falling speed of the triplets was constant throughout the experiment,
however the interval between the occurrence of the triplets varied in
two different conditions. In the low workload condition (L) the in-
terval between each set was constant, whereas in the high workload
condition (H) the intervals were shorter and varied randomly.

Experimental Setup

Before the experiment started the game’s parameters were calibrated
for each subject individually in three 5-minute runs. The first run was
a free trial run during which subjects could familiarize themselves
with the game. All participants quickly reached a fairly constant error
rate. In the second run the falling velocity of the screw triplets and
the intervals between them were adjusted such that subjects where
able to accomplish the task with an error rate of approximately 10%.
Participants consistently reported the task being moderately demand-
ing but not stressful. This setting was then used during the experi-
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Figure 2: Snapshot from one of the experiments showing a subject
play the game on the touch screen.
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Figure 3: Block structure of the experiment. Participants performed
four runs of 24 minutes, each consisting of 9o seconds
blocks of alternating low (L) and high (H) workload
condition.

ment for the low workload condition. In the third run the game
parameters for the high workload condition were determined by ad-
justing the variance of the randomly occurring intervals between the
screw triplets such that an increased sense of stress was reported and
yielding error rates between 20 and 25%. Eventually, each subject
performed four sessions of 24 minutes each during which EEG was
recorded (Figure 3). Each session consisted of 16 blocks of go seconds
each of alternating L and H conditions, starting with condition L. In
order to mimic the conditions of an industrial workplace, during the
whole experiment a closed loop recording of a real acoustic scenery
of an industrial work environment was played through speakers at
realistic volume. The touch screen task was implemented in the open
source framework Pyff (Venthur et al., 2010Db).

Data Acquisition

During the experiments, EEG data was recorded at 1000 Hz using
BrainAmp amplifiers and 64 electrode actiCAP (Brain Products GmbH,
Gilching, Germany), filtered by an analog bandpass filter between
0.1 and 250 Hz before being digitized and stored for offline analysis.
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In addition to the EEG three peripheral physiological signals were
recorded: Electrocardiogram (ECG) was recorded bipolarly with two
surface Ag/AgCl electrodes positioned at breast height at the front
and back of the body; respiration activity was recorded using a Sleep-
mate respiratory effort belt (Ambu, Ballerup, Denmark); skin con-
ductance was recorded with a GSR module (Becker Meditec GmbH,
Karlsruhe, Germany).

3.3.2 Data Analysis

The data analysis employed in this study is schematically described
in Figure 4 and detailed in the following subsections. First, several
preprocessing steps including artifact removal and bandpass filtering
were performed on all data sets. Next, one of six prediction models
was trained on part of the data and subsequently tested on data that
were not used for training. The output of a prediction model was
evaluated in two separate ways, namely by computing (i) the model’s
correct classification rate of workload conditions and (ii) the correla-
tion of the model’s output with the error rate. Some of the workload
prediction models employ so-called spatial filtering methods which
are in turn based on a linear generative model of EEG. For a detailed
description of these methods, see Section 2.3.2. We now continue with
a detailed account of the preprocessing steps and thereafter describe
the workload prediction models.

Suppression of Eye Movement Artifacts

Due to the lack of electrodes that directly recorded this activity, we
used the difference between electrodes Fg and F10 and the average of
electrodes Fp1 and Fp2 to estimate horizontal and vertical EOG activ-
ity, respectively. Those four electrodes were excluded from all subse-
quent analyses. The estimated horizontal and vertical EOG activity
was then removed from the EEG data by means of the regression
approach described in Section 2.3.3.

Segmentation into Epochs

The bandpass filtered EEG data were then segmented into non-over-
lapping time windows of go seconds length. We refer to the data
within such a time window as an epoch.

Extraction of Peripherial Physiological Signals

A subject-specific heart beat template was extracted from the raw
ECG signal and subsequently correlated with the signal in a sliding
window. The times of high correlation peaks detected by a threshold
represented the times of heart beats, from which the time-resolved
frequency was obtained. Similarly, the respiratory activity recorded
by the respiratory effort belt was lowpass filtered and the peaks and
troughs of each inhalation and exhalation threshold detected, yield-
ing a time-resolved respiration frequency.
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Figure 4: Schematic representation of the data analysis workflow. See
text for details.
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Bandpass Filtering and Dimensionality Reduction

The scalp EEG was bandpass filtered in two separate frequency bands,
namely the theta range (4-7 Hz) and the alpha range (8-13 Hz). For
each of the two frequency bands, a Butterworth filter of order 5 and
non-causal IIR filtering was employed. This operation yielded two
bandpass filtered datasets per subject, which served as input to the
channel-based prediction models. For the spatial filtering methods
(see next section) an additional preprocessing step consisting of di-
mensionality reduction was applied. We used Spatio-Spectral De-
composition (SSD) (Nikulin et al., 2011; Haufe et al., 2014a) (see also
Section 2.3.2) in order to extract a maximally oscillatory subspace for
the theta range and the alpha range. Thus, SSD was applied twice
to the EEG data in order to optimize for theta and alpha separately.
From both applications of SSD, the first 15 SSD components were
retained while the remaining components were discarded, yielding
two 15 dimensional datasets per subject, which served as input to the
spatial-filter-based prediction models.

3.3.3 Prediction Models

We implemented six different predictive models, which fall into one
out of two categories: (i) channel-based and (ii) spatial-filter-based. In the
channel-based models, feature extraction is done for each recording
channel separately. In the spatial-filter-based models the data are first
projected onto a set of optimized spatial filters and features are then
extracted from the output of the spatial filters. Furthermore, each of
the channel-based and spatial-filter-based models fall into one out of
three sub-categories, as outlined above: (a) the use of binary class
labels, (b) the use of a continuous error measure, and (c) no use of
a supervision signal at all. In all models, we used log-variance of
bandpass filtered data, computed within gos epochs, as features that
represent spectral modulations.

For the channel-based models, log-var features are computed accord-
ing to

Pitle) = log(Var(xif(e))) , (15)

where x; (e) denotes the signal in of a single EEG channel indexed by
i € {1, ..., Nchannels), bandpassed filtered for frequency band f € {6, o,
within the epoch indexed by e € {1, vy Nepochs}.

For the spatial-filter-based models, log-var features are computed ac-
cording to

Purle) = log (Var(wiXs(e))) , (16)

where X¢(e) denotes the signal of all bandpass-filtered EEG channels
within the epoch e, while w; ¢ denotes the frequency-band-specific
spatial filter indexed by i € {1, .., K} with K being the number of
filters to be used per frequency band.

In order to suppress drifts and fluctuations that are outside of the
relevant time-scale, the log-var features were high-pass filtered at
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1/600 Hz (thereby removing changes slower than 10 minutes). Once
the log-var features have been computed and filtered, they are com-
bined according to

gle) = D > bys-Pigle), (17)

f={o,0}i=1

where {j(e) denotes the scalar output of the model for the eth epoch.

The parameters that all prediction models have to estimate using
training data are the weighting coefficients b; ¢. Additionally, spatial-
filter-based models have to estimate the spatial filters w; ¢. The pre-
diction models differ in the algorithms that are used to optimize the
spatial filters and weighting coefficients. In the following we describe
the properties of each prediction model in detail.

Classification Models

If the true exact labels from the experiment are available, it is possible
to employ a classification-based approach.

Chc, (classification on channels): This model uses regularized Lin-
ear Discriminant Analysis (LDA) to train the weighting coefficients
based on labels. The regularization is based on shrinkage of the fea-
ture covariance matrix, as described in Section 2.3.1.

SF¢i, (spatial filtering & classification): The corresponding spatial-
filter-based model uses the Common Spatial Patterns (CSP) algorithm
(see Section 2.3.2) to train the spatial filters and LDA to combine the
resulting log-var features. CSP finds filters that increase the power
contrast between two experimental conditions and is an established
method in BCI research. The spatial filters were optimized using
the CSP algorithm separately for each frequency band, such that the
resulting CSP signals have maximal variance difference between the
two workload classes. From each of the two resulting set of filters,
the K = 3 filters with the largest absolute Eigenvalue were selected,
yielding six filters in total.

Regression Models

Whenever a continuous measure, such as the the error rate, is avail-
able a regression-based approach can be used.

Chgeg (regression on channels): In this model the error rate is used
as a supervision signal to optimize the weighting coefficients using
ridge regression, which is a regularized version of ordinary regres-
sion. The regularization is based on shrinkage of the feature covari-
ance matrix.

SFReg (spatial filtering & regression): In order to train the spatial
filters for the corresponding spatial-filter-based model, we employ a
novel method called the Source Power Co-Modulation (SPoC) analy-
sis, which optimizes the correlation of band power to a given target
function, in this case the error rate (Ddhne et al., 2014a). The spa-
tial filters were optimized using the SPoC algorithm separately for
each frequency band. From each of the two resulting sets of filters,
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the K = 3 filters with the largest absolute Eigenvalue were selected,
yielding six filters in total. The resulting log-var features were then
combined using ridge regression.

Unsupervised Models

In this setting no supervision signal is present; thus the employed
methods must be unsupervised. The well-known workload mod-
ulated interaction between frontal theta and parietal alpha power
(Gevins and Smith, 2003; Holm et al., 2009) forms the basis of both
models.

Chuus (unsupervised on channels): Because this model operates
on single channels, it must be fundamentally simple in order to be
unsupervised. The model output is constructed by subtraction of
theta log-var features at channel Fz from alpha log-var features at
channel Pz.

SFuys (spatial filtering & unsupervised): The filters for for this

model were optimized using the cSPoC algorithm (Déhne et al., 2014b).

Given two datasets, cSPoC maximizes pairs of filters such that the
bandpower dynamics between pairs are highly (anti-)correlated. In
this setting, cSPoC was employed to maximize anti-correlation be-
tween theta and alpha bandpower dynamics. Three filter pairs (i.e.
K = 3 filters per frequency band) were optimized and the resulting
log-var features are combined by averaging them within bands and
then subtracting the resulting averaged theta cSPoC features from the
averaged alpha c¢SPoC features.

Prediction Model Based on Peripherial Physiological Signals

In addition to the six prediction models outlined above, we tested
whether features derived from the peripheral physiological measures
(PPM) constitute an added value. This model is comprised of the
PPMs recorded during the experiment. An inspection of their change
over time confirmed that they were modulated by the induced work-
load state with equal direction (see Figure 5 and Section 3.4.1). The
mean heart rate, respiration rate and skin conductance in each data
epoch were computed, high-pass filtered at 1/600 Hz (thereby remov-
ing changes slower than 10 minutes), z-scored, and finally summed
up in order to generate the model output. Note that this model is un-
supervised as well, since it comprises a simple summation of features
that does not require label information.

Owerview of Prediction Models

The six models are summarized in Table 1. In this table, the models
are categorized according to the level at which features are extracted
and to how much information is required during training.

What all models have in common is that they yield a one dimen-
sional output with one value for each data epoch. This model out-
put was then used two-fold for validation: One validation approach
consisted in treating the sign of the output as the classification of
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workload into either the low (positive sign) or high (negative sign)
state and computing the average classification accuracy. The other
approach consisted in computing the correlation of the model output
with the error rate of the subject. In order to test for generalization,
the validation was done in a chronological 4-fold cross-validation. In
this cross-validation scheme, each of the four sessions became the test
set once, while the remaing three were used for training. The classi-
fication accuracy and correlation value were then computed from the
average across test folds.

3.4 RESULTS
3.4.1 Impact of Task on Error Metrics and Physiology

Before analyzing the recorded EEG data, we first examined the im-
pact of the experimental task on task performance and on the phys-
iological data. Participants consistently reported the difference be-
tween the low and high workload condition as clearly distinguishable.
These two conditions were calibrated before the experiment for each
participant individually, such that the error rate in each condition was
approximatly 10% and 20%, respectively.

Error Metrics

Figure 5a confirms the strong effect that the task had on subjects’
error rate. The error rate was modulated by the condition in a step
function manner. During the low workload condition the rate was ap-
proximately 10%. When the condition was changed from low to high
workload (at t = 90 sec) the error rate rapidly increased to about 20 to
25% after which it remained approximately constant throughout the
high workload condition. Accordingly, the opposite occurred when
switching from high to low workload.

channel-based spatial-filter-based
classification | Chcj, (LDA) SFcy, (CSP + LDA)
regression Chpeg (Regression) | SFrey (SPoC + Regression)
unsupervised | Chyys (Power diff.) | SFy,s (c<SPoC + Power diff.)

Table 1: The six models used to predict workload and which algo-
rithms they use. The models are categorized with respect
to the level at which log-var features are extracted (channel-
based vs spatial-filter-based) and the amount of information
required during training (binary labels for classification, con-
tinuous measure for regression, no supervision signal for
unsupervised).
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Peripheral Physiological Measures

In a next step, we also analyzed the task’s impact on the three periph-
eral physiological measures (PPMs) respiration, heart beat and elec-
trodermal response. We found that also these were clearly modulated
by the task (Figure 5b-d). Similar to the error rate, the respiratory and
cardiac frequency were modulated by the condition in a step function
manner, with lower rates during the low workload condition. Electro-
dermal response, on the other hand, constantly decreased during low
workload and increased during high workload condition.

The impact of condition switch had delay of 10 to 20 seconds both
with the three PPMs and the error rate. This effect is partly a result
of the way the touch screen task was implemented: In order to avoid
undesirable behavioral effects by sudden changes in the game, the
switch of task difficulty occured slowly, taking full effect only after
roughly 10 seconds.

3.4.2 Performance of Predictive Models

Spatial-Filtering Models

We assessed the ability of each of the three predictive models based
on spatial filtering to classify between both workload conditions and
to predict the error rate. Therefore, according to the analysis pipeline
described above, the models were trained and validated individually.
Figure 6a shows the mean classification accuracies for the three mod-
els. As the average across subjects shows, SF¢;, performs best (94.1%),
followed by SFree (91.8%) and SFyys (82.3%). The correlations of
model outputs with the error rate show a very similar picture (Fig-
ure 6b), with mean correlations of 0.68, 0.67 and 0.60, respectively.

Impact of Label Degradation

Across validation type (i.e. classification accuracy or correlation with
error rate) we find a successive decrease of performance with respect
to the type of labels used by the model: Cla > Reg > Uns. A sta-
tistical test shows that this difference is significant for models SF¢,
and SFys across both validation types (classification accuracy: two-
sided, paired t(?) = 3.71, p = 0.005; correlation: two-sided paired
t(9) = 3.45, p = 0.007), as well as for models SFge, and SFyys (classifi-
cation accuracy: two-sided, paired t(?) = 3.32, p = 0.009; correlation:
two-sided paired t(?) = 3.13, p = 0.012).

Single Subjects

An inspection of results from single subjects (Figure 7) shows that this
performance gradient is most evident for subjects with lowest classi-
fication accuracies or correlations (subjects ed-ik) but is otherwise less
pronounced or absent. Considering that a classification accuracy of
70% has been suggested as a minimum criterion for BCIs (Kiibler et
al., 2001), Figure 7a shows that this value is achieved in 10 out of
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Figure 5: Impact of the experimental paradigm on task performance

and peripheral physiological measures (PPMs). Shown are
the grand averages of the mean over all L-H block pairs
of the error rate (a), respiratory frequency in breaths per
minute (b), cardiac frequency in beats per minute (c) and
electrodermal response in Galvanic skin potential (d). Light
blue shadings indicate the standard error of the mean. Sin-
gle subject data were computed over 5-second segments and
subsequently smoothed with a 20-second sliding zero-phase
boxcar window and averaged over all 32 pairs of consecu-
tive L-H blocks. Due to large inter-subject differences in the
average of the PPMs, the grand average and standard error
were computed after subtracting the mean in the indicated
bar. Thus, the plotted values represent changes from this
baseline.
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Figure 6: Performance of spatial-filtering-based models SFcy;, SFreg
and SFyjs, assessed by the mean classification accuracy (a)
and the correlation of the models” output with error rate
(b). Error bars indicate the standard error of the mean and
asteriscs indicate statistically significant difference of means
(x* :p < .05, % : p < .01). Scatter plots in ¢ and d show
between-model comparisons of single subject classification
accuracies and correlations, respectively.
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10 subjects with the SF¢j, model, followed by SFreg (9/10) and SFys
(8/10).

Comparison with Channel Models

We next compared the performance of these models with that of
the three analogous models that did not use spatial filtering, namely
Chcia, Chreg and Chyyys. This comparison shows that the lack of a spa-
tial filtering method in the models consistently results in a decrease
of performance, both in the classification accuracy and in the corre-
lation with the error rate (Figure 8). When considering the classifica-
tion accuracy, there is a descrease of 3.75%, 4.29% and 8.21% within
the classification, regression and unsupervised models, respectively.
Similarly, when considering the correlation with error rate, there is a
respective descrease in correlation of 0.025, 0.039 and 0.133. A statisti-
cal test reveals that this decrease is significant across validation types,
but only among the regression models (classification accuracy: one-
sided, paired t(?) = 2.27, p = 0.025; correlation: one-sided paired
t(9) = 2.16, p = 0.020), but not among the classification models (clas-
sification accuracy: one-sided, paired t(9) = 1.60, p = 0.072; correla-
tion: one-sided, paired t(?) = 1.80, p = 0.053) or unsupervised mod-
els (classification accuracy: one-sided, paired t(9) = 1.32, p = 0.110;
correlation: one-sided, paired t(?) = 1.66, p = 0.066).
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Figure 8: Performance comparison of spatial-filtering-based models
with the channel-based models Chcy,, Chgeg and Chyyys, as-
sessed by the mean classification accuracy (a) and the cor-
relation of the models” output with error rate (b). Scatter
plots in ¢ and d show between-model comparisons of sin-
gle subject classification accuracies and correlations, respec-
tively. Note that in the most right scatter plot in d one data
point is not shown, because model Chy;,,s achieved a correla-
tion of -0.2.
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3.4.3 Inspection of Model Components

We further aimed to investigate whether the EEG features used to
train the CSP, SPoC and cSPoC filters were of cortical origin or whe-
ther they might stem from ocular or other artifact sources. For this
purpose we examined the spatial activation patterns that correspond
to the components found by the three methods as well as the corre-
sponding power envelopes of the components’ time series. In contrast
to spatial filters, the spatial activation patterns of components can be
interpreted physiologically, as they allow to draw conclusions about
the spatial location of the cerebral source that generated the compo-
nent’s activity (Haufe et al., 2014c¢). Figure 9 shows the patterns and
power envelopes of the three spatial filtering methods. The compo-
nents were computed on the whole data set and then projected on
the band-pass filtered data that had been segmented into epochs of
10 seconds length. The resulting power envelope was then smoothed
with a 50-second, sliding, zero-phase boxcar window and averaged
over all 32 pairs of consecutive L-H blocks.

In the following, we show results exemplarily for four different
subjects. Subjects were selected such that they roughly represent the
spectrum of classification performance in our study, from best (sub-
ject gaa), over moderate (subject /h) to lowest (subjects icc and ik).
Furthermore, we show the component pairs that correspond to the
highest value of the corresponding optimization criterion, that is, for
example, the component with largest absolute-value Eigenvalue in
the case of CSP.

The results for the remaining six subjects are shown in Appendix A
in Figures 23 and 24. Likewise, in Appendix A the results of all
subjects that correspond to the second highest and third highest values
of the corresponding optimization criterion are shown in Figures 25
to 28, respectively.

Spatial Activation Patterns

The form of the CSP, SPoC and cSPoC components’ activation pat-
terns shown in Figure 9 — but also the patterns of the components
of the second and third highest optimization criterion values, as well
as all those of the other subjects (see Figures 23 to 28) — shows none
of the characteristics of patterns related to EOG (see e.g. Figure 1a)
or EMG (see e.g. Figure 10) activity, hence suggesting that the com-
ponents found by the three methods are of cortical origin. An ex-
amination of the patterns in the theta frequency band shows that all
three methods consistently found a characteristic theta mid-frontal
component, either among the component with the highest value of
the corresponding optimization criterion (Figure 9: cSPoC for subject
gaa, all methods for subject Ih, CSP and SPoC for subjects icc and ik),
or among the components with lower values of the optimization crite-
rion. Regarding the patterns of the alpha band components, although
no particular consistency is observable across subjects, the spatial dis-
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Figure 9: Spatial activation patterns and power envelopes of compo-

nents extracted by the three EEG spatial filtering methods.
Shown are four exemplary results from subjects gaa (a), Ih
(b), icc (c) and ik (d). The shown activation patterns (scalp
maps) and power envelopes correspond to the components
with the highest value of the optimization criterion of the
respective method. The left and middle column show the
activation patterns of components obtained from the theta
(blue) and alpha (red) bandpassed data, respectively. The
color coding and sign of the activation patterns were ad-
justed to be consistent across methods and subjects but are
arbitrary otherwise. The power envelopes (right column)
are color coded accordingly (theta: blue, alpha: red), the
x-axis shows time in seconds. Due to standardizing to z-
scores, the amplitudes of the curves do not relate to dis-
criminative power.
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Figure 10: The first three spatial activation patterns found by CSP and
SPoC for the beta band (14-29 Hz), exemplarily for subjects
Ih (a) and icc (b).

tribution of these patterns suggest that the sources that generated
them are of cortical origin as well.

Inspection of Beta Band Patterns

Independent of the analysis pipeline of the predictive models, we
furthermore examined the spatial activation patterns found by CSP
and SPoC when applied to EEG data filtered in the beta frequency
range (14—29 Hz). In contrast to those in the theta and alpha band,
they all display the characteristics of patterns related to EMG activity
(Figure 10). In this frequency range, the EMG activity caused by head
movements has a strong impact on the outermost channels, resulting
in patterns with either a clear ring shape (e.g. first components for
subject Ih), or with very focal contributions from only a few channels
(e.g. third components for subject ).

Power Envelopes

The right column in the four panels of Figure 9 shows the power
envelopes of the theta and alpha components’ time series, averaged
over all L-H block pairs. The envelopes of theta components (blue) de-
picted in Figure 9 all show a positive correlation between band power
and the task difficulty, i.e. low power during the L, high power during
the H condition. Also a majority amongst all other theta components
used for classification shows this positive correlation. This finding is
consistent with workload literature (Gevins and Smith, 2003; Holm et
al., 2009) and substantiates the assumption that the theta components
found by the three models are sound. The power envelopes of alpha
components (red), on the other hand, don’t show a consistent ten-
dency towards a negative correlation of alpha power against induced
workload state, as is often reported in workload literature. For in-
stance, while for subjects gaa and Ih the expected negative correlation
is indeed observed in all models, for subjects icc and ik the correlation
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has the same sign as that of the its theta counterpart. Interestingly,
the correlation of alpha power with workload level is directly related
to the performance of the predictive models.

3.4.4 Added Value of Physiological Measures

Given the modulation of PPMs by the workload condition (Figure 5b-
d) and given that PPM features can be extracted from the data as
an unsupervised signal, we assessed whether PPM features consitute
an added value to the features extracted in the unsupervised models
Chyys and SFy,s. We first of all found that the mean classification ac-
curacy using only PPM features was 81.8% (Figure 11, white bar). We
then repeated the cross-validation with models Chyy,s and SFyys, this
time however augmenting the EEG features with PPM features, re-
sulting in classification accuracies of 79.3% for model Chyj,s (3.6% in-
crease) and 88.2% for model SF;,;s (4.3% increase). While the increase
for model Chy,s is not significant (paired, one-sided t(9) = —0.90,
p = 0.19), the increase for model SFyj,s is significant (paired, one-
sided t(9) = —3.03, p = 0.007). These results support the assumption
that peripheral physiology can indeed provide an added value to the
unsupervised model SFyy,s for the classification of workload.

3.5 DISCUSSION
3.5.1 Performance Loss Due to Label Degradation

We investigated the limits of classifying workload states by progres-
sively confining the information about the experiment available to
the BCI, ultimately striving for a fully unsupervised approach. We
therefore employed six predictive models, three of which use state-of-
the-art spatial filtering methods. In order to classify both workload
conditions, all models exploit the known relationship between work-
load and power modulations in the theta and alpha frequency bands
in the EEG. However, they differ in the type and amount of informa-
tion they require about the experiment. While the classification and
the regression models required either direct or indirect label informa-
tion from the experiment, the unsupervised models do not require
any information at all, thus constituting virtually unsupervised ap-
proaches.

The progressive restriction of information is reflected in a decrease
of classification performance. The predictive models SF¢j, and SFge
(and the spatial filtering methods used therein, CSP and SPoC) both
represent typical examples of supervised approaches. However, while
CSP and LDA need to be trained using binary labels of induced work-
load states, SPoC in combination with regression may use any contin-
uous variable or measurement that reflects the induced state. In our
study the error rate of subjects is an obvious candidate for a target
variable for SPoC, since it was found to be clearly modulated by the
workload state (Figure 5a). However, it is likely that changes in the er-
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Figure 11: Added value of peripheral physiological measures. a.
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son to the two unsupervised predictive models Chy,s and
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augmenting with PPM features. Scatter plots in b show
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ror rate are additionally influenced by other, perhaps more stochastic,
aspects of brain activity, or that they are inluenced by the structure of
the experiment (Porbadnigk et al., 2015). The error rate can thus be re-
garded as a noisy version of the workload condition labels. Therefore,
a decline in classification accuracy as well as error rate prediction per-
formance is to be expected when going from the SF¢j, model (trained
with noise-free workload condition labels) to the SFg., model (trained
with the error rate).

The mean classification accuracy of the SFj,; model showed a fur-
ther decline in performance relative to that of the SFg,, model. This
decrease was expected as well, since — as opposed to models SFy,
and SFg,, - the optimization procedure in cSPoC (the spatial filter-
ing method used in model SFyy;;) is agnostic of the precise experiment
structure and relies solely on the known workload induced modula-
tions of cross-frequency couplings in the EEG. To some degree this
method may suffer from the fact that the sign of workload induced
power modulations in the alpha band is not so clear (see Section 3.5.3).
This assumption is supported when inspecting the power envelopes
of the cSPoC components of subjects icc and ik (Figure g9c,d). Al-
though it is intrinsic to the optimization procedure of cSPoC to find
component pairs whose power envelopes are maximally negatively
correlated, the power envelopes of the ¢SPoC alpha components of
these subjects show a rather positive correlation with the envelopes
of the theta components and therefore with the workload condition.
Correspondingly, those two subjects have the lowest classification ac-
curacies with the predictive model SFys.

3.5.2 The Advantage of Spatial Filtering

For similar reasons as stated above, the three channel-based mod-
els Chcyy, Chreg and Chypps show the same decline of performance
when going from using class labels to the unsupervised case. While
model Chgy, uses precise binary labels to combine the extracted fea-
tures, model Chge, performs a regression on the error rate, a noisy
version of the class labels. Finally, model Chyp,s comprises a funda-
mentally simple unsupervised approach that makes use solely of the
known workload-induced, localized anticorrelation of theta and al-
pha power. The more interesting finding, however, is that for the
classification-based, regression-based and unsupervised models, the
use of spatial filtering leads to performance increases of roughly 4%,
4% and 8%, respectively. Due to the small number of subjects and —
particularly for the unsupervised models — due to the large spread of
accuracies across subjects, this increase is not statistically significant
for all models. Nevertheless, this finding substantiates the argument
that the use of spatial filtering is essential for extracting meaningful
features from oscillatory EEG signals and can result in considerable
performance increases in the classification of workload states from
EEG.
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3.5.3 Interpretation of Model Components

An inspection of the patterns corresponding to the filters found by the
methods CSP, SPoC and ¢SPoC shows that they all lack the character-
istics of components associated with EOG or EMG activity (Figure 9).
This finding suggests that the signals used by the four EEG models
were indeed generated by cortical sources and were not confounded
by other (non-EEG) variables related to workload or to the task.

Findings from neurophysiology indicate a relationship between the-
ta and alpha oscillations in the EEG on the one hand and cognitive
effort, task engagement and workload on the other hand (Klimesch,
1999). Furthermore, time pressure effects on visuomotor task perfor-
mance are reflected in power changes in midline theta and parietal
alpha (Slobounov et al., 2000). An increase of theta power has been
shown to be associated with working memory and cognitive control,
predominantly over frontal regions (Jensen and Tesche, 2002; Onton
et al., 2005; Cavanagh and Frank, 2014). Our results confirm the posi-
tive correlation with workload (Figure 9). Not only did all three spa-
tial filtering methods find at least one component that shows the char-
acteristic frontal midline theta activation pattern, but also the power
envelope corresponding to those patterns was positively correlated
with the workload condition.

The exact role of the alpha rhythm with respect to workload, on
the other hand, is still not very clear. Findings from numerous stud-
ies have lead to the prevailing idea of alpha band synchronization
as a cortical "idling” mechanism. Accordingly, a decrease in alpha
power has been shown to be associated with an increase in resource
allocation or workload (Klimesch, 1999; Keil et al., 2006), thus rep-
resenting a marker for workload that is opposite to that of the theta
band. However, several studies have questioned a clear negative re-
lationship between alpha power and workload, showing that alpha
power can indeed increase with memory load (Jensen et al., 2002)
and that the exact direction depends on the specific task and the
strategy of subjects (Klimesch et al., 1999; Cooper et al., 2003) and
even depends on the precise frequency sub-range (Fink et al., 2005).
Findings from some studies using non-visual tasks even contradict
the negative relationship between alpha power and workload, show-
ing that the parietal alpha power increases with workload (Galin et
al., 1978; Markand, 1990), while other findings suggest that in tasks
with constant high visual flow the alpha rhythm might be completely
blocked already, showing little to no changes related to workload
(Kohlmorgen et al., 2007).

This unclear role of the alpha band is a likely explanation for the
fact that our data show neither an apparent consistency across sub-
jects in the shape of the activation patterns, nor in the sign of the
correlation between the envelopes and the workload condition. Since
the spectral features resulting from the spatial filters in the predic-
tive models SF¢j; and SFg,, are subsequently optimized via LDA and
regression, respectively, the inconsistency in the sign of the relation-
ship between alpha power and workload is irrelevant for these mod-
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els. For the unsupervised model SFy;,s, however, the unsupervised
subtraction of cSPoC features may have a detrimental effect on its
performance.

3.5.4 Added Value of Peripheral Physiology

Previous studies have shown that workload is not only associated
with changes in the EEG but also with peripheral physiological mea-
sures (PPMs) such as heart rate (Vogt et al., 2006), respiration fre-
quency (Karavidas et al., 2010) and electrodermal response (Kohlisch
and Schaefer, 1996; Reimer and Mehler, 2011). We recorded these
three PPMs in addition to the EEG and investigated their ability to
classify the induced workload states. We found that the three PPMs
were modulated by task difficulty (Figure 5) and that features ex-
tracted from them can be combined in an unsupervised manner to
classify the workload conditions with an accuracy of 81% (Figure 11).
Previous studies have reported only small and non-significant classi-
fication increases when fusing EEG features with features from physi-
ological measures, as compared to using only EEG (Christensen et al.,
2012; Hogervorst et al., 2014).

In contrast, we found that even an unsupervised fusion of PPM fea-
tures with the cSPoC features in model SFyy,; resulted in a significant
increase of classification performance of 4.3%. A possible explanation
for this disagreement is that the type of workload induced in this
study, which involved constant motor engagement, has a stronger ef-
fect on the vegetative system than the mental workload as induced
by an n-back task (Hogervorst et al., 2014). Hence, physiological mea-
sures can indeed constitute an added value to EEG-derived signals
for the classification of workload states, even with an unsupervised
approach.

36 CRITICAL ASSESSMENT OF CHALLENGES

At the beginning of this chapter we formulated several challenges
that were of major interest. In the following, we assess to what extent
those challenges were met and how they contribute to the goal of
developing brain-computer interfaces capable of online detection of
workload states.

3.6.1 Assessment of Challenge 1

The first challenge was to go beyond the hitherto prevailing efforts
to assess workload as induced by purely mental effort (Gevins et al.,
1990; Stikic et al., 2011; Brouwer et al., 2012; Hogervorst et al., 2014).
With the experimental design presented here, participants faced sev-
eral challenges: (i) They were required to be constantly attentive of
the falling screw triplets, (ii) to memorize the color code of (multi-
ple) triplets when tagging the catching bucket and (iii) to coordinate
the execution of hand movements with the visual perception of the
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game. The task is thus likely to increase requirements in attention,
working memory and in visuomotor coordination. Our findings con-
firm the expected effects of working memory and attention demands
on the theta and alpha frequency bands (Section 3.5.3). However, the
integration of sensory information into executive control components
of complex visuomotor tasks has been found to be associated with
modulation of long-range coupling (Von Stein and Sarnthein, 2000;
Sauseng et al., 2007), coherence (Classen et al., 1998; Aoki et al., 2001)
and power (Chen et al., 2003) in the theta and alpha frequency bands.
It is therefore not trivial to find the same effects of a multimodally
effected workload on those frequency bands as for purely mental ef-
fort (Gevins and Smith, 2003; Holm et al., 2009). Nonetheless, the
interpretation of the found model components (Section 3.5.3), in com-
bination with the clear success of the predictive models (Section 3.4.2),
supports the validity of our approach.

3.6.2  Assessment of Challenge 2

The second challenge was to develop a "true" brain-computer inter-
face in its proper meaning, and is closely related to the first one. This
is becasue the task required participants to continuously move their
head and eyes and the intensity and frequency of those movements
was likely to be correlated with the task difficulty. An inspection
of the components found by the three spatial filtering methods (Sec-
tion 3.4.3) reveals that none of them displays the characteristics of
components associated with EOG or EMG activity (Figures 1 and 10).
The introduction of EMG activity into the signals used for classifica-
tion was averted by simply restricting the used frequencies to bands
clearly below 20 Hz (Whitham et al., 2007). The influence of EOG
activity was minimized by removing the estimated eye movements
from the EEG data via a regression approach (Parra et al., 2005).

Most importantly, however, the very ability to assess the origin of
the signals used by the models via inspection of the spatial activa-
tion patterns is only rendered possible by the use of the spatial filter-
ing methods. While one can obtain spatial activation patterns from
the weighting coefficients in models Chcj, and Chg,g, they cannot be
interpreted physiologically because the bandpower is computed at
the level of channels, which corresponds to a non-linear transforma-
tion of linearly mixed signals. Only by accounting for the generative
model, i.e. by first applying a linear unmixing and then applying the
non-linearity (computing the bandpower), a phyiological interpreta-
tion becomes possible (Ddhne et al., 2014a; Dahne et al., 2014b; Haufe
et al., 2014c). Thus, only the use of the spatial filtering methods CSP,
SPoC and cSPoC allows for a thorough scrutiny of the origin of sig-
nals in verifying that this origin is cortical.
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3.6.3 Assessment of Challenge 3

These spatial filtering methods are also the essential ingredient for
tackling the third challenge. The CSP analysis (Blankertz et al., 2008)
is widely used among the BCI community and has become one of the
corner stones of sensorimotor rhythm based BCls (Fazli et al., 2015).
Given a binary classification setting it is well suited for maximizing
the signal-to-noise ratio of power modulations in a frequency band.
The SPoC algorithm (Dédhne et al., 2014a) can be considered a gen-
eralization of CSP where the two-class labels become a continuous
target variable and thus can be applied in a regression setting. The
finding that the roughly 2% decrease in performance between mod-
els SFcj, and SFgee (Which use CSP and SPoC, respectively) is almost
negligible suggests that the strict requirement for binary labels can
be abandoned if a continuous variable closely related to the work-
load state is available.

The use of the canonical SPoC algorithm (Dédhne et al., 2014b) in
model SF,; demonstrates that we can go even one step further and
completely eliminate the need for a supervision signal. A mean per-
formance of roughly 82% and 8 out of 10 subjects achieving more than
70% accuracy are substantial results considering the completely un-
supervised approach in this model. They furthermore demonstrate
that the effect of workload level on the well-known anti-correlation
of theta and alpha power is robust enough to be used in an unsu-
pervised setting where no label information is available. This finding
shows that it is in principle possible to develop a BCI for workload
detection with minimal requirements for calibration.

3.6.4 Assessment of Challenge 4

The fourth challenge aimed at exploring the fusion of brain and pe-
ripheral physiological measures for detecting workload levels. The
convenience in this approach comes from the unsupervised nature of
the extracted PPM features. This allows to combine them with the
EEG features extracted in the unsupervised predictive models Chypys
and SFys. Our findings show that in the case of model SFyy,;; a sig-
nificant increase of more than 4% is achieved, resulting in a mean
performance of 88% and achieving more than 70% accuracy in all but
one subject. Hence, the fusion of neuro- with peripheral physiolog-
ical signals yields a substantial improvement of performance for the
unsupervised approach. At first sight, the idea to fuse the features
of several modalities might seem contradictory given that challenge
2 aimed at excluding any non-cortical signals for workload detection.
However, our proposed procedure allows for a fully controlled fusion,
where the contribution of each modality is known. Thus, depending
on the precise specifications of the ultimate BCI application and on
the availability of such physiological signals, the augmentation of the
feature space can be turned on and off as needed.
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INVESTIGATING THE ROLE OF THE READINESS
POTENTIAL

It has been repeatedly shown that many voluntary decisions are pre-
ceded by specific brain signals. The most well-studied instance is
the so called readiness potential (RP), which starts more than one
second before spontaneous, voluntary movements (Kornhuber and
Deecke, 1965). Similar signals have also been demonstrated using
other imaging techniques including functional magnetic resonance
imaging (fMRI) (Soon et al., 2008), invasive measures such as single
neuron recordings (Fried et al., 2011) and local field potentials (Maoz
et al., 2012). Such preceding signals are not only found for movement
decisions but also for free choices between high-level cognitive tasks
(Soon et al., 2013), for perceptual choices (Bode et al., 2012) and for
value-based decisions (Maoz et al., 2013). These findings suggest that
such signals may constitute a part of a general mechanism of decision
preparation.

To date, the exact nature and causal role of the RP in voluntary
movements — but also of other choice-preceding brain activity — is de-
bated controversially. On the one hand, it is evident that the very last
part of the RP close to the movement is directly linked to movement
preparation and execution (Shibasaki and Hallett, 2006). And yet the
finding that the RP starts more than one second before the movement
is remarkable, even more so considering the famous experiment by
Libet et al. (1983). They reported that the onset of the RP preceded
not only the movement but also the perceived time of the intention
to move. Libet’s findings and subsequent variants of his experiment
(Haggard and Eimer, 1999; Soon et al., 2008; Fried et al., 2011) seem
to demonstrate that the decision to move is generated unconsciously
by preconscious neural processes and only enters awareness later. In
contrast, recent studies have put forward a reinterpretation of the RP,
suggesting that its early onset is the result of averaging stochastic, au-
tocorrelated background fluctuations (Schurger et al., 2012; Jo et al,,
2013) and that the neural commitment to move occurs indeed later,
shortly before the movement (Schurger et al., 2016).

In this chapter, we sought to contribute to this line of research by
employing a brain-computer interface as a research tool. We thus
exploit the ability of a real-time BCI to detect covert movement inten-
tions from the ongoing EEG and therefore to interact with the person,
even before any overt movement occurs. This allows us to investigate
the role of the RP and study the degree of control that a person exerts
in the generation of voluntary movements. In the following sections,
we first describe the existing research on the RP and on inhibitory
control and subsequently formulate questions that result from the
connection of these two research directions. We then continue to pro-
pose an experiment in which a brain-computer interface is employed
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in order to test the underlying hypotheses and finally present our
findings and discuss how they relate to the ongoing controversy on
movement preceding brain signals.

Parts of the findings presented in this chapter were published in
Schultze-Kraft et al. (2016a).

4.1 THE OBJECTIVE OF INVESTIGATION
4.1.1  The Readiness Potential

The readiness potential (RP) was first described by Kornhuber and
Deecke (1965). They found that a slow negative EEG potential is
observed preceding voluntary, self-initiated movements (Figure 12).
They termed this activity "Bereitschaftspotential”, which was then ap-
propriated in English to readiness potential. The RP starts more than
one second before the onset of self-initiated movements and is ob-
served over central EEG channels. Ever since, numerous studies have
examined the individual components and neural mechanisms of the
RP. From its onset and up until about 400 ms before movement on-
set, the RP shows a slow negativation that is maximal at the midline
centro-parietal area and is symmetrically distributed over the scalp,
independent of the body part that is moved (Deecke et al., 1969; Cui
et al., 1999). About 400 ms before movement onset, the RP suddenly
increases its slope and becomes asymmetrically distributed on the
scalp, with a stronger negativity over the hemisphere contralateral to
the moved body part (Coles et al., 1988; Eimer, 1998). Hence, this
late component of the RP has been coined the lateralized readiness
potential (LRP).

The early RP is generated in the pre-supplementary motor area
(preSMA) and the SMA proper, while the late component is gen-
erated by the contralateral primary motor cortex (M1) (Lang et al.,
1991; Cui et al., 1999; Yazawa et al., 2000; Shibasaki and Hallett, 2006).
Furthermore, while RPs are mostly reported for self-initiated move-
ments of body limbs or fingers, they have been also observed before
eye saccades (Papadopoulou et al., 2010), speech (Galgano and Froud,
2008) and imagined movements (Cunnington et al., 1996). Recently,
Alexander et al. (2016) also reported readiness potentials driven by
non-motoric processes.

4.1.2 Is there a Point of no Return?

Given the early onset of the RP before a voluntary movement, the
question arises how much its presence undermines a person’s degree
of control over their behavior. Let us consider the following analogy:
One possibility is that the onset of the readiness potential triggers a
chain of events that unfolds in time and cannot be cancelled. The
onset of the readiness potential in this case would be akin to tipping
the first stone in a row of dominoes. If there is no chance of interven-
ing, the dominoes will gradually fall one by one until the last one is
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Figure 12: The first depiction of a readiness potential (figure taken
from Kornhuber and Deecke (1965)). The shown poten-
tials are the average of 512 movements of the left hand,
unipolarly recorded with two electrodes over the left (prae-
centr. li.) and right (praec. re.) motor areas and referenced
against an electrode on the nose. The arrow (at t = 0 sec)
indicates movement onset. The onset of the RP was re-
ported to be between 1 and 1.5 seconds before movement
onset. The stronger negativation of the potential close to
the movement at the right electrode (contralateral to the
moved hand) already indicated what was later termed the
lateralized readiness potential (LRP) (Coles et al., 1988).

reached. A different possibility is that a person can still terminate the
process, akin to taking out a domino at some later stage in the chain
and thus preventing the process from completing. In other words,
is there, along the time course of the RP, a point of no return after
which the process of movement preparation becomes "ballistic" and
the intended movement can no longer be aborted?

The question whether there is a point of no return in movement
(preparation) has so far been investigated in the context of the stop-
signal paradigm (Logan and Cowan, 1984). In this paradigm, subjects
are given a primary task to perform and, on occasion, a stop signal is
presented that tells them not to respond on that trial. Findings from
such studies have led to a model for response inhibition called the
race model: It proposes that a go process (triggered by the go stimu-
lus) and a stop process (triggered by the stop signal) race against each
other until a point of no return is reached (Osman et al., 1986). If the
go process wins, then there is a response despite the stop signal. If the
stop process wins, then no response occurs. The point of no return is
said to separate the initially controlled stage from the subsequent bal-
listic stage of the race. Previous work on event-related potentials has
indicated that planned movements can be interrupted by stop signals
until very late stages, even beyond central planning and all of the way
into motor execution. This has been taken to indicate that there is no
final ballistic stage in the brain where a movement will necessarily
unfold fully once triggered (De Jong et al., 1990).
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In contrast to stop signal studies, in the case of spontaneous, vol-
untary movements the initial decision to move is not externally but
internally triggered. It has as yet remained unclear whether a person
is able to cancel self-initiated movements after the onset of a RP, and
if so, whether there is a point of no return after which the process
becomes ballistic and a cancellation impossible.

4.1.3 Can a Person Override the RP?

Another related question that departs from the concept of inhibitory
control is whether subjects can intentionally override or manipulate
the RP. Answering this question would allow to reveal whether the
readiness potential is a uniform and inalterable — and thus, ultimately,
a necessary — feature of movement preparation (Pockett and Purdy,
2010). Although no direct evidence for the ability to intentionally
override the RP exists, previous findings suggest that such a mecha-
nism could hypothetically exist. For instance, conscious attention to
the intention in voluntary movements results in an increased activity
in the pre-SMA (Lau et al., 2004), the brain area where the early RP
is believed to be generated. Furthermore, the amplitude of the RP
has been shown to be influenced by several factors, such as effort,
precision and complexity of the movement (Kitamura et al., 1993;
Masaki et al., 1998; Slobounov et al., 2004). And finally, the ampli-
tude of the RP has also been found to differ substantially depending
on whether a spontaneous movement is performed consciously or un-
consciously (Keller and Heckhausen, 1990). These findings support
the idea that the readiness potential might indeed be under the con-
scious control of an individual, possibly enabling them to behave in
an unpredictable fashion.

4.1.4 A Man—Machine Duel

We directly tested these two hypotheses in an experiment in which
participants played a game against a "decision prediction machine"
(Chiang, 2005; Haynes, 2011) that is able to detect the readiness po-
tential from the EEG and feed back its occurrence to a person instan-
taneously and in real-time. In this game, participants made sponta-
neous, voluntary movements, but were instructed to terminate their
decision and withhold any movement whenever a stop signal was
elicited by the prediction machine. If they moved without being pre-
dicted they would win points; if they moved despite the elicitation
of the stop signal they would lose points. Hence, subjects were chal-
lenged to avoid having their decision to move predicted from pre-
vious brain activity, either by stopping the intended movement or
— alternatively — by modifying or overriding their RP. Because of the
similarity with a shootout scenario in a western, where a gunman has
to draw unpredictably, we coined our experiment the "duel game".

Evidently, the basic requirement for the machine in this duel is
to be able to elicit the stop signal after the onset of the RP but be-
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fore the onset of the movement. This machine was implemented by
means of a brain-computer interface that had been trained to detect
the occurrence of a RP in the EEG. Detection of movement intention
from preceding brain signals has been typically studied offline (Lew
et al., 2012; Salvaris and Haggard, 2014), whereas to date only few
have undertaken the approach in real-time (Bai et al., 2011; Maoz
et al., 2012). Here, we used features from EEG segments preceding
voluntary movements in order to train a BCI to detect RPs from the
ongoing EEG. During the experiment, such a detection immediately
elicited a stop signal that instructed participants to withhold any in-
tended movement.

4.2 PROCEDURES

In the following sections, the experimental procedures employed in
this chapter are described. We start with presenting the "duel game"
task that participants performed during the experiment and conclude
with the description of the BCI predictor and several offline analyses
that were conducted after the experiment.

4.2.1  The "Duel Game”

Subjects

We investigated twelve healthy, right-handed, naive subjects (7 fe-
male, mean age 24.9, SD 2.3 years). Two subjects (one male, one
female) were removed directly after stage I because their low RP am-
plitudes yielded classifier accuracies near chance level. The experi-
ment was approved by the local ethics board and was conducted in
accordance with the Declaration of Helsinki. All subjects gave their
informed oral and written consent.

The Task

Subjects were seated in a chair facing a computer screen at a distance
of approximately 1 m. They were asked to place their hands in their
lap and their right foot 1-2 cm in front of a 10 cm x 20 cm switch pedal
(Marquardt Mechatronik GmbH, Rietheim-Weilheim, Germany) at-
tached to the floor. The delay times between motor cortex and on-
set of EMG in the peripheral muscle (soleus) are well described and
amount to around 25 ms (Morita et al., 2000), which is slightly slower
than delay times for hand movements of 15 ms (Calancie et al., 1987).
However, depressing a pedal/button with the foot is a very standard
effector. Especially to everyone driving a car this foot movement is
well learned due to its similarity to pressing the brake pedal in a
motorized vehicle. It has also been studied in several BCI settings,
e.g. in the context of emergency braking (Haufe et al., 2011). The
precise movement task consisted in lifting the foot from the floor and
pressing the button as fast as possible and in a consistent way. Foot
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Figure 13: Experimental design. The experiment consisted of three
consecutive stages. In all three stages, after seeing the
green trial start cue subjects were instructed to press the
floor mounted foot button at any time, unless the light
turned red (stop signal). During stage I the stop signals
were random. After stage I a classifier was trained on but-
ton presses from stage I and the BCI predictor was acti-
vated. In the subsequent stages II and III stop signals were
elicited in real-time by the BCI predictor. After stage II
subjects were informed about the predictor and instructed
to try and move unpredictably.

movements were chosen after piloting instead of hand movements
because they yield larger readiness potentials (Brunia et al., 1985).

In the experiment subjects played a novel "duel game" based on
the Libet experiment (Libet et al., 1983) using aspects of interruption
and stop signal tasks. The duel game consisted of individual trials
of which each subject performed an average of 326 during the whole
experiment. The start of a trial was signaled by the circle in the mid-
dle of the screen turning green. Subjects were instructed to wait for 2
seconds after the start cue, after which they could press the button at
any time, unless the stop signal — indicated by the circle turning red
—was shown. In that case they were told to withhold any movements.
The framing of a game was chosen so that subjects would feel encour-
aged to execute button presses as late as possible. In order to achieve
this, at the end of the experiment subjects were paid 10€ per hour
but could earn an additional bonus. This bonus was based both on
the number of trials in which they pressed the button without being
interrupted by the stop signal and on the duration between trial start
and the time of button press.

The task was organized into three stages (each organized into two
10-minute blocks) (Figure 13). During stage I stop signal times were
randomly drawn from a uniform distribution in the interval 2 to 18.5
seconds after the trial start cue. During stages II and III stop sig-
nals were triggered in real-time by the beforehand trained BCI pre-
dictor. Furthermore, in these two stages 40% of trials were randomly
assigned as "silent". In these trials the BCI predictions were recorded
but the stop signal was turned off; thus these trials were always ended
by the subject pressing the button. Before stage I subjects were in-
formed that the computer generated the stop signals "randomly" and
that there was "no particular pattern”. No new information was pro-
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vided to subjects before stage 1II, i.e. they were unaware of the change
of the origin of stop signals. Before stage III, subjects were told that
the computer was trying to predict them: "The computer will try to
guess when you are about to move and interrupt you, the interrup-
tions are based on your history of previous actions." Subjects were
asked not to test the system by making false or bizarre movements —
with the new instruction that they should "try to be unpredictable."

Questionnaire

A questionnaire was used to collect information about each subject’s
subjective experience. After each stage subjects were asked two ques-
tions: "Did you use a particular strategy during the last round?" and
"Did you feel there was a connection between your actions and the
appearance of an interruption?" After stage III subjects were asked
three further questions: Whether or not they felt predicted; how good
the computer’s predictions were; and if predictions had improved or
worsened since the last stage.

4.2.2  Data Acquisition

EEG was recorded at 1 kHz with a 64-electrode Ag/AgCl cap (64Ch-
EasyCap, Brain Products GmbH, Gilching, Germany) mounted ac-
cording to the 10-20 system, referenced to FCz and re-referenced
offline to a common reference. The amplified (analog filters: o.1,
250 Hz) signal was converted to digital (BrainAmp MR Plus and
BrainAmp ExG), saved for offline analysis, and simultaneously pro-
cessed in real-time by the Berlin Brain-Computer Interface (BBCI")
toolbox (Blankertz et al., 2007a). The "duel game" task was imple-
mented using the Pythonic Feedback Framework (PyFF) (Venthur et
al., 2010b).

In addition to EEG, electromyogram (EMG) was recorded from the
right calf using surface Ag/AgCl electrodes in order to obtain the
earliest measure of movement onset. EMG onset was determined by
first computing the square of the EMG signal and then detecting the
time points of crossing of a subject-specific threshold of 99.9% above
baseline.

4.2.3 Online BCI Predictor

At the end of stage I, a linear classifier was trained using segments
of EEG data from all stage I trials which were not ended by a ran-
dom stop signal but by a button press. From each of these trials, two
periods were defined as "movement" and "no movement": The for-
mer were 1200 ms long segments immediately preceding EMG onset,
while the latter were 1200 ms long segments immediately preceding
the trial start cue. EEG data from those segments were averaged over
100 ms windows, resulting in 12 samples per window and channel.

1 github.com/bbci/bbci_public
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The samples from a subset of channels were concatenated and used
as features to train a regularized Linear Discriminant Analysis (LDA)
classifier with automatic shrinkage (Blankertz et al., 2011). Channels
in which the RP peak amplitude was above the mean RP amplitude
across all channels were chosen as the subset, the number varied be-
tween 8 and 12 across subjects. The so-trained classifier was even-
tually used to make predictions of movements in real-time during
stages II and III. Every 10 ms a feature vector was constructed from
the immediately preceding 1200 ms of EEG data and used as input to
the classifier, generating a classifier output value every 10 ms. When-
ever this value crossed a threshold this was considered a prediction,
the event time was recorded and a stop signal issued (except for silent
trials).

The classifier output threshold was determined individually for
each subject after the training of the classifier. For this we performed
a 10-fold cross-validation where — mimicking the real-time predictor
with a sliding window — we computed the time of first threshold
crossing of the classifier output for different threshold values. We
assumed that predictions earlier than the onset of the readiness po-
tential at 1000 ms before movement onset likely represented false
positives. Since we sought to predict subjects as early as possible,
the threshold was chosen such that the number of predictions in the
interval -1000 to 0 ms with respect to movement onset was maximal.

4.2.4 Offline Analyses

Three offline analyses were performed on the EEG data after record-
ing. A detailed overview of each analysis is provided in Appendix A
in Table 2. Analysis 1 was used as a qualitative assessment of the
amplitude of the RP at the time of EMG onset in Section 4.3.2, anal-
yses 2 and 3 were used to search the EEG for markers of movement
preparation prior to stop signals in Section 4.3.5.

4.3 RESULTS
4.3.1  Behavioral Results

We first examined the participants” behavior in pressing the button.
Since a certain variability in the velocity of movements was expected,
the EMG onset was used as a reference point throughout all analy-
ses. The mean waiting time between trial start and EMG onset across
subjects and stages was 5441 ms and the mean movement duration
from EMG onset to button press across subjects and stages was 316
ms. Figure 14 shows the waiting times and movement durations for
single stages. Although the distributions pooled across all subjects
in Figure 14a suggest that participants waited less to press the but-
ton after the trial start cue, a one-way three-level repeated measures
ANOVA revealed that the effect of stage on waiting time is not signif-
icant (F(2,18) = 3.36, p = 0.06). The same analysis on movement ve-
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Figure 14: Behavioral results. a. Distribution of waiting times (time
from trial start to EMG onset) for the three stages, pooled
across all subjects. Waiting times shorter than 2 seconds
were discarded from all analyses. The mean waiting time
across subjects was 5995 ms, 5462 ms and 4907 ms in suc-
cessive stages I, II and III, respectively. b. Distribution of
movement duration (time from EMG onset to button press)
for all three stages (as in a). The mean duration of move-
ments from EMG onset to button press was 345 ms, 305 ms
and 303 ms in stages I, IT and III, respectively.

locity, however, revealed a significant effect of stages (F(2,18) = 9.86,
p = 0.0013), such that movements were made faster in stages II and
II.

4.3.2 Readiness Potential

Next we examined the readiness potential of foot movements as re-
corded by the EEG. Figure 15 shows the mean EMG activity (top),
the distribution of button press times (inset) and the average readi-
ness potentials (RPs, main panel) for the three experimental stages,
time-locked to EMG onset. During all experimental stages the event-
related potential time-locked to EMG onset showed the typical expo-
nential-looking readiness potential at channel Cz (Deecke et al., 1969).
As the scalp topographies of the three shaded intervals show, the RP
has the highest amplitude over channel Cz. Furthermore, the RP did
not manifest a lateralization at any time. This is to be expected for
foot movements because in contrast to hand movements the motor
representation of the leg and foot are not on the lateral surface but on
the medial wall (Brunia et al., 1985). Despite the differences in exper-
imental conditions, there was no significant difference between RPs
in the three stages. Thus, the instruction given to subjects between
stages II and III to use strategies to avoid prediction did not alter the
shape of the readiness potential. There was no significant main effect
of stage at either interval (F(2,18) = 0.02, p = 0.97; F(2,18) = 0.12,
p = 0.89; and F(2,18) = 0.20, p = 0.82, respectively), suggesting that
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the subjects’ strategies to avoid prediction did not alter these preced-
ing brain signals.

We further investigated the relationship between RP amplitude on
the one hand and waiting time and movement duration on the other.
Therefore, we first performed a qualitative assessment of the ampli-
tude of the RP at the time of EMG onset. For this, we performed
the offline analysis 1, as defined in Section 4.2.4. We used the cross-
validated classifier output at EMG onset as an estimate for RP ampli-
tude, since both quantities are directly related. As depicted in Fig-
ure 16, the amplitude of the RP at EMG onset showed a significant
negative correlation both with waiting time (r = —0.12; p < 0.001)
and with movement duration (r = —0.22; p < 0.001). Thus, the
stronger the RP, the shorter the waiting time and the faster the move-
ment.

4.3.3 Possible Trial Outcomes

Each trial could end in one of four possible ways (Figure 17): In the
first case the subject pressed the button while the light was green,
thus without being detected. We refer to these as missed button press
trials. In this case the participant wins. A second case was that the
computer predicted a movement, turned on the stop signal and the
subject subsequently pressed the button within the next 1000 ms. We
term this a predicted button press trial. In this case the computer has
won the trial. Another possibility is that the BCI indicated a readiness
potential and elicited a stop signal but the subject didn’t press the
button within a period of 1000 ms. In these cases neither the partic-
ipant won (because they didn’t manage to press the button without
being detected) nor the computer won (because the participant did
not move as was required by the task).

At first sight one might consider all such trials as false alarms, with
the classifier indicating a movement without any decision or prepa-
ration on the side of the participant. However, it is also possible that
the classifier detected a button press that was being prepared but that
the participant was able to cancel the process in time. One such case
would be if the participant indeed started to move — as indicated by
an EMG onset — but then didn’t complete the button press. We term
these trials aborted button press trials because the movement starts but
is then cancelled at a late stage after EMG onset.

A second possibility is that the stop signal was elicited and the
participant showed no overt sign of movement. These cases might
either result from a movement preparation being terminated at an
early stage of preparation, which we would term early cancellation
trials. Alternatively such cases might reflect spurious or false positive
detections by the classifier, which we term proper false alarm trials.
Please note that there is no overt difference in behavior between these
latter two cases and thus we jointly refer to trials with stop signals
but without overt movement as ambiguous or early cancellation / false
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Mean readiness potential (RP), EMG activity and button
press distribution. The top panel shows the squared EMG
potential recorded at the right calf, averaged over all stages
and subjects. The 99.9% quantile of the baseline signal
was used as a threshold for EMG onset detection. The
three colored lines in the bottom panel show the grand
average RP at channel Cz, during individual stages of the
experiment. RPs were computed by averaging EEG seg-
ments time-locked to the time of EMG onset and baseline
corrected to the mean between -2000 and -1800 ms. For
stage I, trials with uninterrupted button presses were used,
for stages II and III, silent trials were used because these
provide an unbiased selection of trials which were not ac-
tively interrupted by the BCIL. Individual RPs were then
averaged across subjects, the squared error of the mean is
shown in the corresponding colored shadings. The scalp
topographies show the EEG potential of all recorded chan-
nels, averaged over the three time intervals indicated by
the shaded regions: [-550 -400] ms, [-150 0] ms and [250
400] ms. The inset panel on the right shows the button
press distribution relative to EMG onset, pooled across all
stages and subjects.
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Figure 16: Waiting time (a) and movement duration (b) as a function
of classifier output at time of EMG onset. Classifier out-
put was obtained via cross-validation from all silent trials
in stages II and III. Correlation of waiting time and move-
ment duration with classifier output and the linear fit are
indicated in red.

alarm trials. Figure 18 shows the proportion of trials that had these
four outcomes, separately for stages I, II and III:

Missed button presses: In stage I (black bars in Figure 18) when stop
signals were random, most trials (66.5%) end with an undetected but-
ton press, i.e. the subject wins by pressing the button without be-
ing predicted. The proportion of these trials is substantially reduced
in stages II and III (31.9% and 30.8% respectively; paired ty = 6.49,
p < 0.001 and paired to = 9.99, p < 0.001) when the classifier is active.
Please note that between stages II and III subjects were informed that
a prediction algorithm was being used and that they should act un-
predictably. Nonetheless, there is no difference in the number of un-
detected button press trials between stages II and III (paired ty = 0.33,
p =0.75).

Predicted button presses: In stage I a very small number of trials
(1.2%) ends with a detected button press, i.e. a case where the ran-
dom "classifier" has won. In contrast, during stages II and III the
proportion of such trials is strongly increased by a factor of around
18 (19.5% and 22.8%; paired t9 = 5.52, p < 0.001 and paired ty =7.19,
p < 0.001).

Aborted button presses: In stage I also aborted button presses occur
very rarely (2.2%), a rate that substantially increased in stages II and
I (15.2% and 16.3%; paired t9 = 2.67, p = 0.025 and paired ty = 2.81,
p = 0.020).

Ambiguous (early cancellations or false alarms): These types of trial
occurred with similar rates in stages I, II and III (30.1%, 33.5% and
30.0%) with no significant difference between stage I and stages II
and III (paired t9 = 0.77, p = 0.46 and paired to = 0.023, p = 0.98).

If one were to count any movement after a stop signal (whether
completed or aborted) as a win for the BCI predictor then the pro-
portion of trials on which the BCI "wins" is considerably increased.
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Figure 17: Possible trial outcomes. If the button was pressed without
a preceding stop signal this ended the current trial. We
refer to this as a missed button press trial. If a stop sig-
nal was issued and the subject pressed the button during
the subsequent second, we term the trial predicted button
press. If no button press but an EMG onset occurred after
the stop signal we term the trial aborted button press. Oth-
erwise if no observable movement followed a stop signal
we refer to this as an ambiguous trial that reflected either
an early cancellation or a false alarm. Furthermore, dur-
ing stages II and III 40% of trials were silent (not shown
here). In these trials the time of a planned stop signal was
recorded but the red stop signal itself was not presented.
These trials always ended when the participant eventually
pressed the button.
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Figure 18: Percentage of trial outcomes across stages for the four trial
categories described in Figure 17. All trial categories in one
stage (bars of same color) add up to 100%. Shown is the
average across subjects (error bars = SEM). In missed but-
ton press trials the participant wins. In predicted button
press trials the BCI wins. Aborted button press trials and
the ambiguous early cancellation / false alarm trials con-
stitute draws because the participant’s task was to press a
button without being detected.
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Figure 19: Distribution of BCI predictions time-locked to EMG on-
set. The three panels show the distribution of stop sig-
nals timings in predicted button press trials (a, red) and
in aborted button press trials (b, green). Panel (c, red and
green) shows their joint distribution. The black distribu-
tion superimposed as outline in all three panels shows the
stop signal distribution in silent trials adjusted to account
for the imbalanced probability of a trial being silent (40%)
or not (60%). All bins comprised intervals of 100 ms and
counts were pooled across stages II and III of all subjects.
Please note that in silent trials the distributions refer to the
first stop signals that would have been emitted.

In that case there is no significant difference between the percentage
rate of missed button press trials and correct detections (combined
predicted button presses + aborted button presses) in stages II and
I (34.6% and 39.1%; t¢ = —0.27, p = 0.79 and paired to = —0.88,
p = 0.39).

4.3.4 Timing of Predictions

We also assessed how the timing of stop signals was related to move-
ment onsets (as assessed by the onset of the peripheral EMG signal).
Figure 19a (red) shows the distribution of stop signals in predicted but-
ton press trials, i.e. trials where subjects pressed the button despite
an immediately preceding red light. The vast majority of stop signals
occurred after EMG onset, thus when subjects had already begun to
move but before the button was pressed. Here the stop signal pre-



4.3 RESULTS

sumably came too late to prevent the subjects from finishing their
movement and pressing the button.

Figure 19b (green) shows the distribution of stop signal times for
aborted button press trials, i.e. where subjects began to move but
cancelled the movement before the button was completed. Here, the
stop signals occurred earlier (starting around 200 ms before EMG on-
set). Thus, when stop signals were presented at late stages of move-
ment preparation subjects could not prevent beginning to move, even
though they could abort the movement. There was a gradual transi-
tion between stop signal times where movements could be aborted
and those where they could not be aborted (Figure 19c), presum-
ably reflecting a variability of stop signal reaction times (Logan and
Cowan, 1984).

There were hardly any cases where subjects moved despite being
presented with stop signals earlier than 200 ms before EMG. This is
interesting given that the readiness potential begins to deviate from
baseline more than 1000 ms before EMG onset (Figure 15). One pos-
sibility is that some detections were made at this early stage but that
participants were almost always able to cancel the movement com-
pletely. In order to assess how early predictions could be made in
principle, independent of the presentation of a stop signal, we stud-
ied the behavior of the predictor in silent trials. Please recall that here,
when the BCI predicted a movement, the prediction time was silently
recorded but the stop signal was not turned on and the trial contin-
ued until the button was pressed. As Figure 19a-c (black distribution)
shows, a majority of predictions also in silent trials occurred around
movement onset.

However, many silent predictions occurred more than 200 ms be-
fore movement onset, compatible with the early RP onset. These early
detections are not found for predicted button press trials (Figure 19a,
red) or aborted button press trials (Figure 19b, green) when stop sig-
nals are active. Thus, had the stop signal been active for these early
predictions, subjects might have been caught preparing a movement
but been able to cancel preparation early enough to prevent any ob-
servable movement. Resolving this issue would directly address the
question whether trials with stop signals but no overt movements
constitute early cancellations or false alarms, and thus help interpret
this ambiguous trial category.

4.3.5 In Search of Early Cancellations

If a proportion of these trials indeed reflected early cancellations in-
stead of false alarms, one might observe some signs of movement
preparation given that movement-preceding signals have been pro-
posed to start before a decision (Schurger et al., 2012). We therefore
hypothesized one prediction: If the stop signals that occur without
any sign of subsequent movement are due to cancellations at an early
stage of motor preparation, neural signatures of such motor prepara-
tion should be observable in the EEG at the time of BCI stop signals.
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We tested this prediction with the offline analyses 2 and 3 described
in Appendix A, Table 2. In both analyses, a classifier was trained on
EEG features preceding uninterrupted movements (missed button press
and silent trials) and applied to EEG features preceding stop signals
from several trial types: trials from stages II and III without any sign
of movement (early cancellation/false alarm trials, aborted button press tri-
als, predicted button press trials) and all trials with stop signals from
stage L.

Probing the Presence of RPs

In the first test, the classifier was trained in analogy to the BCI pre-
dictor, i.e. on the RP that precedes movements, and applied with a
sliding window on the tested trials (Figure 20). In stage I the com-
puter predictions were generated randomly. As expected, the classi-
fier did not detect a readiness potential (Figure 20, blue line), which
is easily explained by the fact that the random stop signals were un-
likely to catch subjects by chance just while they were preparing a
movement. In the early cancellation/false alarm trials (trials without
any overt movement), however, the classifier output shows a positive
deflection (indicating the detection of a RP) that starts roughly 1 sec-
ond before prediction time and reaches the threshold at the time of
prediction (Figure 20, yellow line). The shape and time course be-
fore the time of prediction were undistinguishable from trials which
containted actual movements (aborted button press and predicted button
press trials, orange and red lines in Figure 20).

On the one hand, the similarity of the running classifier outputs
between early cancellation/false alarm trials and trials containing overt
movements confirms that the BCI elicited a stop signal in the former
trial types because the EEG at that moment manifested the topology
of a readiness potential. However, from this it doesn’t follow that
participants were indeed preparing a movement and then cancelled it.
This is because the classifier that initiated the stop signal was trained
on the RP. Thus a false alarm should exhibit an RP-like topography
as well.

Probing the Presence of ERD

Hence, we searched for an independent indicator of movement prepa-
ration in ambiguous trials that was not based on the RP. For this we
chose the event-related desynchronization (ERD) that occurs before
and during movements in particular frequency bands in the EEG
(Pfurtscheller and Aranibar, 1979). ERD and RPs have been shown
to have different generators in the brain and thus provide different
information (Nagamine et al., 1996; Babiloni et al., 1999; Bai et al.,
2006; Sochtirkova et al., 2006), therefore making ERD an index for mo-
tor preparation that is independent of the RP. If the stop signals that
occur without any sign of subsequent movement are due to cancel-
lations at an early stage of motor preparation, ERD might have been
present at the time of prediction, even if subjects didn’t move. To
test this, according to the offline analysis 3 described in Appendix A,



4.3 RESULTS

Output of RP classifier

Random stop signal (Stage 1)
Early cancellation / FA
Aborted button press

Predicted button press

Threshold

Normalized classifier output

Time to stop signal (s)

Figure 20: Time-resolved output of a classifier trained to detect RPs,
time-locked to the onset of stop signals. Shown is the
grand average for all random stop signals in stage I (blue)
and for stages I and III from the three trial categories that
involved stop signals: yellow = early cancellation/false
alarm (FA); orange = aborted button press; red = predicted
button press. The classifier output at time T is an index
of the presence of a RP in a backward-looking time win-
dow ranging from T-1200ms to T. Classifier outputs below
the threshold correspond to a "no RP detected" and other-
wise to an "RP detected" decision of the classifier (absolute
values are arbitrarily scaled).

Table 2, we trained a classifier on the ERD preceding uninterrupted
movements and eventually applied it to the four trial types shown in
Figure 21.

In stage I the computer predictions were generated randomly. As
expected, classification performance was at chance level for the ran-
dom predictions in stage I (mean 50.5% =+ 2.0% SEM, to = 0.26, p =
0.79). BCI predictions in ambiguous trials of stages II and III, how-
ever, could be classified with accuracies that were significantly above
chance level (mean 58.9% + 2.6% SEM, to = 3.38, p = 0.008). Classifi-
cation accuracies of predictions in trials which contained actual move-
ments were better (mean 64.6% + 2.0% SEM, to = 6.99, p = 0.0001
and mean 66.3% =+ 3.2% SEM, to = 5.08, p = 0.0007). This is to be
expected for two reasons. First, in aborted button press and predicted
button press trials at the time of prediction a movement had already
begun, whereas in hypothetical early cancellation trials no movement
would have occurred at all. Second, we can expect that a certain frac-
tion of stop signals in the grouped early cancellation/false alarm trials
were actually false alarms of the BCI predictor caused by random
fluctuations in background activity or artifacts in the EEG, whereas
in movement trials every stop signal involved a movement. Using
the ERD as an independent physiological signal (Pfurtscheller and
Aranibar, 1979) confirmed that at least a subset of ambiguous trials
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Figure 21: Detection of event-related desynchronization (ERD) pre-
ceding stop signals. A classifier was trained to detect
event-related desynchronization (ERD) and applied to 500
ms windows immediately preceding stop signals. The box
plots show the median and lower and upper quartile accu-
racies over subjects for the same four trial categories as in
Figure 20, the whiskers show the range (i.e. the largest and
smallest values). Asterisks indicate statistically significant
accuracy mean above chance level (50%) with *x : p < .01
and xx % : p < .001.

had possibly already reached a movement preparation stage and thus
were not "false alarms", but rather early cancellations.

4.3.6  Questionnaire

We also used a questionnaire after each stage in order to assess sub-
jects” experiences and strategies during the different sections of the
experiment. Subjects where asked two questions: "Did you use a
particular strategy during the last round?" and "Did you feel there
was a connection between your actions and the appearance of an in-
terruption?”. Detailed information about the participants” responses
are given in Appendix A in Tables 3 and 4. During stage I 4/10
participants reported trying to "wait as long as possible" before an in-
terruption, which they described as a "risky" strategy. Another 4/10
reported waiting until they "felt an interruption would come". Fur-
thermore, 4/10 participants said that they modified their strategy dy-
namically and "pressed earlier [on trials] after interruptions”. After
stage II all participants reported that they made changes to how or
when they chose to move. Notably, 4/10 participants reported acting
more "unpredictably” or more "spontaneously” than during stage I
and 1/10 participants reported ignoring the "urge" to move in favor
of a deliberate strategy. After stage III 5/10 participants reported act-
ing unpredictably or not thinking about their actions. Nine out of ten



4.4 DISCUSSION

participants reported that they felt predicted while the remaining par-
ticipant reported that s/he could not rule out the possibility. Seven
out of ten participants reported that something related to foot move-
ments caused the interruptions. Among these two participants re-
ported that "everything" caused interruptions, 2/10 specifically men-
tioned "thinking about pressing", 2/10 mentioned the change from
being relaxed to preparing to move, and 1/10 mentioned movement
onset. The remaining 3/10 participants reported feeling predicted
but did not identify a specific event as being tied to predictions. As
mentioned above, the changes revealed by the behavioral analyses
did not result in a modification of the recorded readiness potential.

4.4 DISCUSSION

In our experiment we used a brain-computer interface (BCI) that was
designed to detect the occurrence of a readiness potential in real-time.
Subjects were challenged to press a button while at the same time
avoiding being predicted by the BCIL If a light was green they were
allowed to press a button to win the trial, if the light turned red they
were not allowed to press the button. In some cases this might involve
subjects having to cancel a movement upon seeing the red stop signal.
Our study thus combined aspects of interruption studies (Hughes et
al., 2011; Schurger et al., 2012) with aspects of cancellation studies
(Brass and Haggard, 2007; Verbruggen and Logan, 2008). This exper-
iment allowed us to test the two proposed hypotheses of conscious
control. In the following sections, we first present a model that sum-
marizes the obtained results and subsequently assess the hypotheses
in the light of our findings and discuss the implications.

4.4.1  Model of Results

From the results obtained in our experiment, a hypothetical time line
of events and stages leading up to a button press can be described as
follows (Figure 22):

Baseline: In a first stage a person has not yet engaged in preparing
for a movement. If a readiness potential is detected at this stage it is
due to a false positive: a similarity between the RP shape and random
fluctuations in brain activity. If a stop signal is elicited during this
stage this constitutes a false alarm. Please note that our data are
agnostic as to whether the onset of the readiness potential occurs
prior to the preparation or not.

Movement preparation: At some point a person decides to move and
starts movement preparation. If a stop signal is presented during
this period, movement preparatory signals can be observed, for ex-
ample a RP or ERD, but there are no overt signs of movement (as
indicated by the EMG). However, an explanation is needed to clarify
why people cannot prevent themselves from moving if the stop signal
is presented later than 200 ms before movement onset. This cannot
reflect the conduction delay between primary motor cortex and the
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Figure 22: Summary model of results (see text for details). Abbrevi-
ations: SSRT, stop signal reaction time; RP, readiness po-
tential; ERD, event-related desynchronization; EMG, elec-
tromyogram; BP, button press

calf muscles controlling the movement of the foot, because this delay
is much shorter, around 25-30 ms (Morita et al., 2000). Instead, it pre-
sumably reflects the time it takes between the physical onset of the
stop signal and the time the stop signal can catch up with and cancel
a prepared movement (indicated by the X symbol in Figure 22). This
so-called stop signal reaction time has been reported to be around 200
ms (Logan and Cowan, 1984), which is compatible with our data. So
the time around 200 ms prior to movement onset constitutes a point
of no return (De Jong et al., 1990) after which the initiation of a move-
ment cannot be cancelled, even if it might still be possible to abort
the completion of the movement.

Movement execution: Once the efferent motor signals have reached
the peripheral muscles, the person begins to move. In the early stages
of this phase it is still possible to abort the movement. As the move-
ment progresses towards completion this becomes less possible due
to the stop signal reaction time. Aborting a movement at this stage
constitutes a "late cancellation" because it occurs in time to prevent
pressing the button but not in time to cancel signs of overt movement.
Once a second, late point of no return that divides controlled and
ballistic phases of movement processing is reached, the stop-process
cannot catch up with the go-process in time to abort the completion
of the movement and thus the button will be pressed.

4.4.2 Assessment of Hypotheses

The Non-Overridable Readiness Potential

We found that the shape of the readiness potential was not affected
by whether subjects were actively trying to evade being predicted or
not (Figure 15). When they were actively being predicted by the BCI,
subjects "lost" the trial 50% more often, due to pressing the button
after a stop signal had been shown (Figure 18). Importantly, this rate
was the same in stages II and IIL
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It is important to note that the roughly 30% unsuccessfully pre-
dicted movements are expected because the BCI predictor was ad-
justed conservatively to avoid false positives in the long waiting pe-
riod before a movement is finally elicited. They do not reflect an
ability of subjects to deliberately change or suppress their readiness
potential when they move. On the other hand, they don’t allow the
conclusion that the RP is an unavoidable — or necessary — part of
movement preparation. Such a conclusion would necessarily require
a single trial analysis showing that every single button press was pre-
ceded by a RP, irrespective of whether it was predicted by the BCI or
not.

We can, however, conclude that people are not able to exert any con-
trol over their readiness potential, which would have allowed them to
act unpredictably when asked to do so. It is, however, possible that
our experimental protocol is not sufficient to fully refute this possibil-
ity. When participants were informed about the predictor after stage
I and instructed to move unpredictably during stage III, they per-
formed each about 100 more movements. It could still be possible
that they would have been able to "train" an unpredictable behavior
given more time and trials. Furthermore, our choices pertained to de-
cisions "when" to move and "whether" to move, but it did not involve
a choice between different responses ("what" choices) (Brass and Hag-
gard, 2008). It remains therefore unclear, whether people are able to
"fool" a predictor that has been trained to detect such "what" choices
from brain signals, for instance to move either the left or the right
hand (Haggard and Eimer, 1999; Soon et al., 2008).

The Late Point of no Return

Despite the stereotypical shape of the readiness potential and its early
onset at around 1000 ms before EMG activity, several aspects of our
data suggest that subjects were able to cancel an upcoming movement
until a point of no return was reached around 200 ms before move-
ment onset. If the stop signal occurs later than 200 ms before EMG
onset the subject cannot avoid moving. However, up until a second
point of no return is reached (after movement onset) participants can
still avoid completing the movement. For this it is necessary to con-
sider the possible outcomes of our study. One possibility is that the
onset of the readiness potential triggers a causal chain of events that
unfolds in time and cannot be controlled, as in the domino analogy.
This would be a ballistic stage of processing (Logan and Cowan, 1984;
De Jong et al., 1990).

Alternatively, participants may be able to cancel a movement at
later stages of movement preparation or even during execution. If the
process initiated by the readiness potential were indeed ballistic and
the readiness potential can be detected several hundred ms before the
movement, some of the stop signals should occur several hundred ms
before EMG onset. If however the subjects can still inhibit the chain
of events from eliciting a movement, akin to taking out a domino
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somewhere down the chain, the result would be an absence of such
early predictions.

This is exactly what we find (Figure 19). The "successful” stop sig-
nals (i.e. those where subjects press a button despite the stop signal)
only occur at a late stage after onset of the peripheral EMG signal.
This suggests that once the motor command has reached the periph-
eral muscle there is a very low chance of cancelling the movement
before the button is pressed (compare the red and green distributions
in Figure 19¢). If the stop signal occurs within 200 ms before EMG on-
set the subject begins a movement but can still cancel its completion
and avert the button press. Thus, there appear to be two points of no
return, meaning a stage of processing in the brain after which move-
ments cannot be cancelled. Our data therefore refutes the assumption
that there is no final ballistic stage in the brain and in contrast sug-
gest that there is indeed a point of no return around 200 ms before a
movement after which the onset of a movement cannot be cancelled
(even if it is still possible to alter the movement) (De Jong et al., 1990).
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Findings from cognitive neuroscience have repeatedly shown that
mental states and intentions of humans — whether directly reflected
in behavior, or hidden in the mind of a person — are associated with
specific brain signals (Gazzaniga, 2004). The ability of modern brain-
computer interfaces to study this relationship in real-time and provide
immediate feedback to the person has put forth novel application pos-
sibilities for such BCIs. The work presented in this thesis aims to
engage in the intriguing endeavor to study the "brain at work" by ex-
ploring the real-time assessment and detection of covert mental states
and intentions from the ongoing EEG. The two contributions demon-
strate how such BCIs can be used for completely different purposes,
while exploiting the virtues that they bring about.

5.1 CHARACTERISTICS OF BCIS FOR APPLICATIONS BEYOND CON-
TROL

It has been suggested to refer to brain-computer interfaces that go
beyond the traditional goal of communication and control as BCIs for
"mental state monitoring" (Miiller et al., 2008) or "passive BCIs" (Zan-
der and Kothe, 2011), in the latter case because, from the point of view
of the person, no active effort occurs towards an interaction with the
BCI. However, such a labeling implies a passivity among such BCIs
that is inconsistent with their multifaceted scope of applications. For
instance, while the concept of traditional BCls for communication
and control is akin to two partners talking to each other and work-
ing on the same goal (establishing the communication channel), by
contrast the concept of non-control BCIs is akin to one person (the
user/human) "minding their own business", while the other person
(the BCI), sits aloof, observes the former and decides whether, when
and how to interact. The human may not even be aware of the pres-
ence of the BCI (as is the case during one experimental stage in the
work presented in Chapter 4).

Hence, instead of contrasting active vs. passive BCIs, a more fitting
comparison would be that of "bilateral" vs. "unilateral" BCIs. By de-
coding information from the ongoing EEG, unilateral BCIs can infer
covert mental or cognitive states and intentions from the user, while
retaining full control over the interaction with the behavior of the
user. This interaction can range from very occasional (as targeted by
the envisioned application in Chapter 3) to very frequent (as imple-
mented in the BCI predictor in Chapter 4). Furthermore, unilateral
BClIs allow the user to focus on the primary task — which in both
presented studies was to win a game — without being imperatively
interfered with.
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Control-directed BCIs have been characterized by their closed-loop
nature (Blankertz et al., 2005), because the establishing of the commu-
nication channel relies on feeding the user’s decoded intentions back
to the user in real-time. Aside from a few studies aiming for adap-
tive automation (Prinzel et al., 2000; Prinzel et al., 2003; Scerbo et al.,
2003), non-control BCIs have been predominantly open-loop systems,
since their primary goal has been the "monitoring" of mental states
(Kohlmorgen et al., 2007; Miiller et al., 2008), or the exploration of
future closed-loop systems (Haufe et al., 2011; Haufe et al., 2014b),
however without employing a direct interaction with the user. While
the work presented in Chapter 3 falls into this latter category, the
work in Chapter 4 represents an instance of a BCI that is at its very
core a closed-loop system, relying on its ability for fast responsive
feedback.

5.2 A BCI FOR ADVANCED ASSESSMENT OF OPERATOR WORK-
LOAD

In the work presented in Chapter 3, we aimed to advance the assess-
ment of operator workload from ongoing EEG. For this purpose, we
presented an approach that builds on findings from previous work in
this field (Gevins and Smith, 2003; Kohlmorgen et al., 2007) and incor-
porated newly developed methods from machine learning (Ddhne et
al., 2014a; Dahne et al., 2014b), thus allowing to pursue the implemen-
tation of several challenges which address the ultimate areas of appli-
cation in which such a BCI might be of use. One of the challenges
was to depart from the prevailing focus on purely mental workload
in laboratory conditions, and rather assess workload as it is expected
in many real-life situations, such as in an industrial work environ-
ment. This entailed an experiment that required not only cognitive
effort but also an increased visuomotor coordination, thereby induc-
ing workload on multiple modalities. Tightly linked to this was the
challenge to implement a "true" BCI in the sense that only EEG sig-
nals with cerebral origin are used as features. We intended to achieve
this by either removing or avoiding confounding non-cerebral signals
from the EEG, the success of which was eventually verified by assess-
ing the neurophysiological plausibility of the signal sources.

The fact that the level of cognitive workload modulates the power
of theta and alpha oscillations with contrary direction (Gevins and
Smith, 2003; Holm et al., 2009), offers the unique possibility to em-
ploy the novel cSPoC method, which finds spatial EEG filters such
that the correlation of the power between those two bands is maxi-
mally anti-correlated (Ddhne et al., 2014b). Using cSPoC, a sufficient
requirement for training is to provide the BCI with segments of EEG
data with varying theta to alpha power contrast (induced by vary-
ing levels of workload), thus eliminating the need for a supervision
signal. We hereby demonstrated for the first time the feasibility to em-
ploy an unsupervised approach for the assessment of workload from
ongoing EEG. However, also the use of the spatial filtering method



5.3 A CLOSED-LOOP BCI FOR COGNITIVE NEUROSCIENCE

SPoC (Déhne et al., 2014a) represents an advance in workload assess-
ment by demonstrating the feasibility of using a continuous rather
than a binary supervision signal, which has so far been the preva-
lent research direction (Kohlmorgen et al., 2007; Brouwer et al., 2012;
Dijksterhuis et al., 2013).

Although in our experiment we did not induce workload levels
from a continuous spectrum but rather used a performance measure
as a continuous supervision signal that was tightly linked to the bi-
nary workload levels, one can assume this approach to be also ap-
plicable to the former case. This assumption was confirmed in a re-
cent study, where participants played a video game whose difficulty
was changed every 60 seconds from a set of 10 levels (Naumann et
al., 2016). Because the difficulty levels were expected to directly re-
flect the mental workload induced by the game, a SPoC analysis was
applied to the theta and alpha EEG bands and the resulting compo-
nent signals combined with regression in order to predict the levels.
A mean correlation between true and predicted levels of 0.85 was
achieved, thus showing the suitability of using SPoC for assessing
workload from a continuum of levels.

Our approach furthermore allows for a continuous measurement
of workload from ongoing EEG activity without intervening with the
user’s primary task. This is in contrast to alternative approaches
that rely on the evocation of event-related potentials by means of
secondary stimuli (Allison and Polich, 2008). Furthermore, since the
predictive models were employed in a cross-validation, the basic re-
quirements for their application in an online scenario are existent. In
this context, it is noteworthy that the long-term stability of parame-
ters in an online workload detection system has been demonstrated
(Arico et al., 2014). In order to fully achieve an online applicability,
some preprocessing steps need to be adapted first, such as the dimen-
sionality reduction via SSD and removal of EOG activity. Our work
ultimately paves the way for real-world applications of operator work-
load assessment in which label information may be noisy or entirely
unavailable. According to the neuroergonomical approach (Parasur-
aman and Wilson, 2008), a system is envisioned that enhances the
interaction between a human operator and a work environment. This
enhancement can for instance amount to adapting the task difficulty
or to instructing the operator to take a break, thereby mitigating the
consequences of excessive workload.

5.3 A CLOSED-LOOP BCI FOR COGNITIVE NEUROSCIENCE

With the work presented in Chapter 4 we broke new ground by us-
ing a brain-computer interface as a research tool for cognitive neuro-
science. We trained a BCI to detect the occurrence of readiness po-
tentials and provide immediate feedback to participants in real-time,
thus allowing us to address questions concerning the nature of the
readiness potential in an unprecedented way. Given the early onset
of the RP at more than one second before voluntary movements (Ko-
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rnhuber and Deecke, 1965), allegedly much earlier than the time of
perceived intention (Libet, 1985), the question arises how much the
presence of the RP undermines the degree of control that a person ex-
erts over their decision. Does the onset of the RP trigger a ballistic pro-
cess that necessarily leads to a movement and cannot be consciously
terminated? And if not, does the process become ballistic at a later
stage of movement preparation? We investigated these questions by
testing whether participants were able to stop an intended movement
after onset of the RP. Our findings suggest that there exists indeed a
point of no return after which movement execution becomes ballis-
tic, reflected by an increasing difficulty of participants to completely
withhold the intended movement or, if already started, to stop its
completion. However, we identified this point of no return occurring
not with the onset of the RP but much later, around 200 milliseconds
before movement onset.

5.3.1 The Role of the Readiness Potential

In a seminal experiment, Libet et al. (1983) used an experimental
setup to determine the time when participants consciously formed
their intention to perform spontaneous, voluntary movements. They
found this time to be around 200 ms before movement onset, while
the mean onset time of the RP occurred about 550 ms before move-
ment onset. This temporal precedence of brain activity over the per-
ceived time of intention was also found in subsequent experiments
using the lateralized readines potential (Haggard and Eimer, 1999)
and single neuron recordings (Fried et al., 2011). Two further studies
used a pattern-based analysis on fMRI data in order to assess which
brain regions had predictive information about a subject’s decision
and found that regions of the frontopolar cortex and precuneus/pos-
terior cingulate cortex coded predictive information seven seconds
before the decision was made (Soon et al., 2008; Soon et al., 2013).
Together, these findings seem to demonstrate that our decisions are
determined by unconscious neural processes while consciousness is
merely a late byproduct of those neural processes with no influence
on its own (Roskies, 2010; Smith, 2011; Lavazza, 2016) and continue
to be used as one of the main arguments against the existence of a
free will (Pockett, 2004).

However, not only has the Libet experiment met several criticisms,
focusing on the feeling of volition (Lau et al., 2007, Matsuhashi and
Hallett, 2008), on attentional effects (Keller and Heckhausen, 1990),
on the influence of priming effects (Taylor and McCloskey, 1990; Tay-
lor and McCloskey, 1996), and showing that movement preceding
brain signals do not specifically determine behavior (Herrmann et
al., 2008; Trevena and Miller, 2010). More importantly, recent stud-
ies have put forward a reinterpretation of the RP, suggesting that the
early RP is the result of autocorrelated, stochastic fluctuations in brain
activity in the decision network (Schurger et al., 2016), a mechanism
that has been shown to account for observed reaction times (Hanes
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and Schall, 1996; Brown and Heathcote, 2005) and perceptual choices
(Usher and McClelland, 2001; Deco et al., 2007). Regarding the RP,
it has been suggested that an accumulator integrates autocorrelated
neuronal fluctuations until a decision threshold is reached (Schurger
et al., 2012), or that the early RP emerges through an unequal ratio
of negative and positive potential shifts (Jo et al., 2013). In this view,
the time of intention and the neural commitment to act are identified
as the moment of threshold crossing, which is consistently reported
as being around 200 ms before the movement (Schurger et al., 2012;
Murakami et al., 2014). The preceding neural activity (i.e. the early
RP) would be the result of averaging trials that end with a movement
and only reflects the threshold crossing of the accumulated noise or
the unequal ratio of negative and positive potential shifts (Schurger
et al., 2012; Jo et al., 2013).

In order to further shed light on the disagreement between these
opposing views, it seems appropriate to probe how tight the causal re-
lationship is between the readiness potential and the intended move-
ment. How can the findings presented in Chapter 4 contribute to this
controversy? First of all, it is important to note that the interpreta-
tion of our data is in general agnostic as to whether the decision to
move occurred 1000 or 200 ms before the movement. However — in
line with previous work — it suggests that the "neural commitment to
move" (Schurger et al., 2016) cannot be identified with the early on-
set of the readiness potential, because movements could be cancelled
until a late point of no return. Interestingly, this point of no return
at 200 ms before movement onset is in line with the reported onset
time of perceived intention (Libet et al., 1983). Thus, if one identifies
this time point as the time point of both the neural and the conscious
commitment to move, it could be considered as corresponding to the
elicitation of the "internal go signal", analogous to the external go
signal in stop signal studies. This would explain why stop signals
presented after this point of no return are less and less successful in
inhibiting the movement, as reflected in the stop signal reaction time
in the race model (Logan and Cowan, 1984; De Jong et al., 1990). Re-
garding the domino analogy, it would mean that its very premise —
that the early onset of the RP is akin to tipping the first in a row of
dominoes — is faulty, and that the first domino is in fact tipped over
much later, at the identified point of no return.

5.3.2 The Ability to "Veto” Voluntary Movements

Libet himself found that subjects could "veto" motor performance
during a 100 - 200 ms period before a prearranged time to act (Li-
bet, 1985). Thus, while the commitment to act might be initiated
unconsciously, Libet argued that the ability to consciously veto the
action reconstituted the free will — although he saw the necessity to
explain the ability to veto with a dualistic mechanism, that is with-
out requiring a neural correlate. A few other studies exist that have
examined the spontaneous cancellations of self-initiated movements.
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In contrast to Libet’s view, recent studies found that last-moment de-
cisions to delay voluntary movements may depend on unconscious
preparatory neural activity (Filevich et al., 2013), and that inhibition
of an impending motor action can be initiated by unconscious stim-
uli (Hughes et al., 2009). Furthermore, using fMRI with a Libet-like
paradigm where participants were asked to perform self-paced move-
ments, but to withhold the action at the last possible moment in some
trials, studies have identified the dorso fronto-median cortex as the
brain area associated with the endogenous cancellation process (Brass
and Haggard, 2007; Kiihn et al., 2009).

In contrast to our externally triggered stop signals, those studies
used internally triggered, "voluntary" vetoes. While such experiments
allow to study the mechanisms of self-control, they don’t seem appro-
priate for the search of a point of no return in vetoing self-initiated
movements. First, such veto paradigms rely on trusting a person
to make up their mind to perform a movement and then to rapidly
choose to terminate that movement, a task that seems highly unnatu-
ral. And second, combining findings that suggest that voluntary inhi-
bition is influenced by early neural activity (Hughes et al., 2009; File-
vich et al.,, 2013) with the thresholded accumulator model (Schurger
et al., 2012; Schurger et al., 2016), makes it reasonable to assume that
the decision to either veto or not to veto a voluntary movement is
as much effected or initiated by early brain activity as the decision
to move itself. Thus, in order to assess whether potentially precon-
sciously generated decisions undermine the degree of control of an
individual, it seems necessary to use externally triggered stop signals.

While the study of externally triggered movement cancellations
has so far been conducted in the context of stop-signal paradigms
(Logan and Cowan, 1984; De Jong et al., 1990), the study of exter-
nally triggered stopping of voluntary movements is a per se challeng-
ing endeavor because it requires an online detection of covert move-
ment preparation signals like the RP. To date, only one study has
adopted the approach of interrupting voluntary movements, however
depending on occasional coincidences of movement intentions and
auditory stop signals presented at random times (Matsuhashi and
Hallett, 2008). To the best of our knowledge, the findings reported
in Chapter 4 represent the first instance of a "true" veto experiment
where the probability was maximized for stop signals to be elicited
after onset of the RP but before any sign of overt behavior.

5.3.3 BClIs for Movement Prediction

The first attempts on single-trial EEG aimed at predicting the later-
ality of finger movements from the lateralized readiness potential
with the goal to improve the responsiveness of control-based BClIs
(Dornhege et al., 2002; Blankertz et al., 2003; Krauledat et al., 2004;
Blankertz et al., 2006). This work led to the development of a sys-
tem capable of online predictions of externally evoked actions such
as in an emergency braking situation (Haufe et al., 2011; Haufe et al.,
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2014b). To the best of our knowledge, using ERD features only one
study has so far aimed at using EEG to predict voluntary movements
in real-time, however reporting very few successful predictions (Bai
et al., 2011).

There is a general trade-off between sensitivity and specificity when
calibrating a BCI for movement detection. A low classifier threshold
increases the probability of early predictions but comes at the expense
of a higher rate of false alarms, while a high threshold minimizes the
false alarm rate. The specific choice thus depends on the purpose
of the study. One such purpose is the development of asynchronous
BClIs, which allow individuals to control a device at their own pace
(Borisoff et al., 2004; Fatourechi et al., 2008, Hasan and Gan, 2010).
For such systems a very low false positive rate is essential, while the
temporal resolution of detections is negligible. In contrast, in Chap-
ter 4 a detailed investigation of the timing of potential cancellations
of movements required that we predict and interrupt subjects as early
as possible. Consequently, our choice of the threshold resulted in a
false alarm rate that was appropriate for our goals but higher than in
other BCI studies (Bai et al., 2011).

5.4 CONCLUSIONS

Brain-computer interfaces have continuously evolved over time and
created new application areas — not unlike the tree of life of species.
Ever since the first proposal by Vidal (1973), the main branch of BCIs
has dealt with establishing a communication channel between a user
and a computer program (Birbaumer et al., 1999; Wolpaw et al., 2002;
Dornhege, 2007). Later, another branch of BCIs emerged that did not
rely on the ability of people to willfully alter brain states to express
intentions (Sutton et al., 1965; Pfurtscheller and Da Silva, 1999), but
rather on ongoing brain activity related to particular mental states
(Mtller et al., 2008; Schubert et al., 2008; Sturm et al., 2015, Wenzel
et al., 2016).

One of the sub-branches sought to develop BClIs for the monitoring
and assessment of cognitive workload (Scerbo et al., 2003; Kohlmor-
gen et al., 2007; Abbass et al., 2014). The work presented in Chap-
ter 3 followed up on this line of experimental work and strived for
its advancement. Given the noisy and convoluted characteristics of
brain signals contained in the EEG, BCI research has ever since been
dependent on intelligent data analysis techniques for the robust ex-
traction of such signals (Dornhege et al., 2007; Blankertz et al., 2008;
Blankertz et al., 2011). Therefore, one of the paramount ingredients
in Chapter 3 was the integration of state-of-the-art machine learning
methods (Ddhne et al., 2014a; Ddhne et al., 2014b), which allowed to
pursue the implementation of approaches that had hitherto not been
possible — most notably, abandoning the necessity for a supervision
signal.

The work presented in Chapter 4 entered uncharted waters and
could be considered as establishing a new branch in BCI research,
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namely the use of a real-time, closed-loop BCI as a research tool.
This approach emerged from linking the ability of BCIs to detect
and feed back event-related potentials with high temporal precision
(Krauledat et al., 2004; Haufe et al., 2011) with the decade-long con-
troversy regarding the role of the early readiness potential (Kornhu-
ber and Deecke, 1965; Libet, 1985; Schurger et al., 2016). While the
cognitive neuroscience community has contributed considerable in-
sights into this controversy with numerous studies (Keller and Heck-
hausen, 1990; Haggard and Eimer, 1999; Matsuhashi and Hallett,
2008; Schurger et al., 2012; Jo et al., 2013), the investigation of ques-
tions regarding the conscious control of individuals during the build-
up of the RP has so far eluded a forthright investigation with preva-
lent experimental paradigms. It is only by implementing a closed-
loop BCI that it becomes possible to address such questions (Haynes,
2011).

The success of the experimental approach presented in Chapter 4 in
addressing questions from cognitive neuroscience paves the way for
future applications of BClIs in this field. Not only can the experiment
in Chapter 4 be modified in order to further shed light on the exact
role of the RP, for instance by presenting stop signals at different
time points of movement preparation (Marks, 1985), or by applying
transcranial magnetic stimulation (TMS) to subjects instead of stop
signals (Lau et al., 2007). Experiments can be also designed to address
questions regarding value-based decisions (Maoz et al., 2012), or even
combine several brain imaging modalities, such as with simultaneous
EEG-fMRI (Ritter and Villringer, 2006; Ddhne et al., 2015).

With this thesis we thus demonstrated how research needs, such
as advancements of existing technologies or the emergence of novel
scientific tools, can be approached by the continuous evolution of
brain-computer interfaces, a process that — not unlike the evolution
of life — is fostered by linking previously unrelated research.
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Figure 23: Spatial activation patterns and power envelopes of compo-

nents extracted by the three EEG spatial filtering methods
from subjects ica (a), kq (b), is (c) and bad (d). The shown
activation patterns (scalp maps) and power envelopes cor-
respond to the components with the highest value of the
optimization criterion of the respective method.
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Figure 25: Spatial activation patterns extracted by the three EEG spa-
tial filtering methods from subjects gaa (a), ica (b), kq (c), Ih
(d), is (e) and bad (f). The shown activation patterns (scalp
maps) and power envelopes correspond to the components
with the second highest value of the optimization criterion
of the respective method.
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Figure 26: Like Figure 25, but for subjects ed (a), icb (b), icc (c) and ik
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Figure 27: Like Figure 25, but showing components with the third
highest value of the optimization criterion of the respective
method.
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Analysis 1 Analysis 2 Analysis 3

Training set Missed(]) Missed(I), Silent(IT,III)

Features signal downsampled to 10 Hz log-var features: «; (8 - 10 Hz), oz
(11 - 14 Hz), B (15 - 19 Hz), 2 (20 -
27 Hz)

"Movement" window [-1200 0o]ms w.r.t. EMG onset [-500 o]lms w.r.t. EMG onset

"No Movement" window [-1200 0o]ms w.r.t. trial start [-1500 -1000]ms w.r.t. EMG onset

Test set Silent(IL1IT) Predicted(ILIII), Aborted(ILIII), Early /FA(LILIII)

Applied to [-1200 o]ms w.r.t. EMG onset whole trial (1200ms sliding window) | [-500 o]ms w.r.t. stop signal

Table 2: Detailed overview of the three offline analyses performed after EEG recording. The analyses used different trial types (Silent, Missed,
Predicted, Aborted and Early/FA, see Section 4.3.3) from different stages (I, I and III) as training and test set, respectively. In analyses
1 and 2, features were extracted in analogy to the BCI predictor described in Section 4.2.3. In analysis 2, the classifier was applied to
the whole trial with a sliding window. In analysis 3, a classifier was trained on concatenated log-var features from four frequency bands.
Therefore, for each band individually, Common Spatial Pattern (CSP) filters were defined that maximize the power contrast between
"movement” and "no movement" windows (Blankertz et al., 2008). The trained classifier was applied to 500 ms EEG segments preceding a
stop signal.
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"Did you use a particular strategy during the last round?"

Stage I

Stage 11

Stage III

Pressed earlier on trials following interrup-
tions. (4)

Got interrupted more often, so pressed earlier
overall. (4)

Tried to be unpredictable [or] didn’t think
about movements. (5)

Tried to wait as long as possible [or] played
riskier. (4)

Tried to be more spontaneous [or] didn’t think
[or] tried to be unpredictable. (4)

"] pressed faster." (3)

Waited until "I felt an interruption would
come" and then pressed. (4)

"l didn’t wait for the interruptions, I played
safer." (3)

"I was more relaxed [or] meditative." (2)

Pressed randomly (avoided rhythms, heart
rate, breathing) (2)

" tried to be less tense just before movements."

(2)

Ignored the "feeling" or "urge" to move. (2)

Pressed faster or "I tried to play it safe." (2)

"I had more of a strategy, it was less of an
"urge’." (1)

"I tried to ignore when I was interrupted.” (1)

Thought about other things, pressed when the
‘urge’ came.

" tried harder." (1)

"T don’t know." (1)
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Table 3: Summary of Responses to Question 1. Each participant was questioned at the end of every ten minute block (two per stage) during the
experiment. Participants were not prompted but openly volunteered different strategies that they felt they had followed intentionally
or unintentionally. Because many responses overlapped this table includes quotes and paraphrased quotes without quotations grouped
together with other similar answer types. Each group includes the number of participants, in parentheses, who volunteered the quoted
information. Because participants could mention multiple strategies, the total for each stage can add up to more than 10.



"Did you feel there was a connection between your actions and the appearance of an interruption?"

Stage 1

Stage 11

Stage III

"There was no consistent connection." (n=6)

Moving the foot caused interruptions. (4)

"There was no consistent connection." (3)

"] saw a pattern in the timing" of interruptions.

(4)

"Thinking about pressing [or] the ’feel-
ing/urge’ to press" caused interruptions. (3)

"The switch from being 'relaxed” to 'going to
push™ caused interruptions. (2)

"If I wait too long then an interruption comes."

(3)

"There was no consistent connection.” (2)

"Everything" related to foot movement caused
interruptions. (2)

"The moment of choice." (1)

"Thinking about pressing [or] the ’feel-

ing/urge’ to press" (2)

"Heart rate" (1)

Moving the foot caused interruptions (1)

"I have no idea." (1)

Table 4: Summary of Responses to Question 2. See Table 3
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