
Programming and Managing
Swarms of Mobile Robots:

A Systemic Approach

vorgelegt von
Daniel Graff, M.Sc.
geb. in Hildesheim

von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
– Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuss:
Vorsitzender: Prof. Dr. Odej Kao
Gutachter: Prof. Dr. Hans-Ulrich Heiß
Gutachter: Prof. Dr.-Ing. Reinhardt Karnapke
Gutachter: Prof. Dr. César Augusto Fonticielha De Rose

Tag der wissenschaftlichen Aussprache: 22.02.2016

Berlin 2017
D 83

Abstract

Numerous heterogeneous devices—including stationary as well as mobile devices—exist
that are equipped with a variety of sensors and actuators. This enables new kinds
of applications, e.g., applications for monitoring the environment and initiating early
warnings in case of natural catastrophes, applications for exploration missions as well as
applications for monitoring structural integrity of buildings.

The design of the resulting cyber-physical systems is a challenging task. Distribution,
concurrency and synchronization together with real space and time are challenging as-
pects that need to be addressed and carefully treated when implementing such systems.
In order to relieve programmers from error-prone properties of cyber-physical systems
and facilitate application development by enabling the programmer to solely focus on
the program’s intention, this thesis presents an approach of a cyber-physical operating
system.

The thesis addresses the following aspects: in order to program applications, a suit-
able programming abstraction is required that enables to incorporate real space and time
into a programming language and allows to bind program code to space and time.

Executing such applications requires a suitable runtime system. The design should
follow a modular system architecture in order to achieve a simple mechanism to add new
components or exchange active ones. This way, new devices featuring new capabilities
can be integrated with less effort.

Allowing programmers to have access physical space and time requires a schedul-
ing that considers—besides time—also physical space. The scheduling has to address
both orthogonal dimensions inevitably resulting in a higher complexity. Coordinated
movement for mobile devices becomes necessary.

i

Zusammenfassung

Es existiert eine Vielzahl heterogener, stationärer sowie mobiler Geräte, die mit unter-
schiedlichen Sensoren und Aktuatoren bestückt sind. Neuartige Anwendungen wie Früh-
warnsysteme für Naturkatastrophen, Erkundungsmissionen oder auch Überwachungen
von strukturellen Veränderungen in Bauwerken werden dadurch ermöglicht.

Das Design der daraus resultierenden cyber-physischen Systeme bringt eine Vielzahl
an Forschungsfragen und Herausforderungen mit sich. Verteiltheit, Nebenläufigkeit und
Synchronisation stellen zusammen mit der realen Raum-Zeit Herausforderungen dar,
welche bei der Implementierung eines solchen Systems sorgsam behandelt werden müssen.
Um den Programmierer von fehlerträchtigen Eigenschaften cyber-physischer Systeme zu
entlasten und gleichzeitig die Anwendungsentwicklung zu vereinfachen, indem der Pro-
grammierer sich allein auf die Intention des Programms konzentrieren kann, wird in dieser
Arbeit ein Betriebssystem für cyber-physische Systeme vorgestellt.

In der Arbeit werden die folgenden Themen bearbeitet: Die Anwendungsentwick-
lung erfordert eine geeignete Programmierabstraktion, welche Raum-Zeit-Bezüge in Pro-
grammiersprachen ermöglicht und dadurch das Binden von Raum-Zeit-Parametern an
Programmteile realisiert.

Für die Ausführung solcher Programme wird die Entwicklung eines entsprechenden
Laufzeitsystems notwendig. Das Design sollte einer modularen Systemarchitektur folgen,
welche einfaches Hinzufügen von neuen Komponenten oder auch den Austausch von
aktiven Komponenten auf einfache Weise ermöglicht. So können neuartige Geräte, welche
neue Features mit sich bringen, mit wenig Aufwand in das System integriert werden.

Die Einführung von Raum-Zeit-Parametern ermöglicht auf einfache Weise das Pro-
grammverhalten zu steuern. Bei der Einplanung des Programms müssen sowohl Zeit als
auch Raum, welche orthogonale Dimensionen darstellen, berücksichtigt werden. Dies
führt unweigerlich zu einer Erhöhung der Komplexität. Zusätzlich wird eine Koor-
dinierung der Bewegung mobiler Geräte notwendig.

iii

Preface

Dedication

I dedicate this thesis to the most wonderful person I have ever known. She was signif-
icantly involved in many discussions that, finally, led to the decision that I started my
PhD at the TU Berlin. She was my best personal advisor, the most trustworthy person
I have ever met, the person who guided me during the long time and hard work on this
thesis. The person which whom I had many discussions about this work. Based on her
strong encouragement I finally finished this work successfully. She was a wonderful per-
son and she will always be a wonderful person in my thoughts.

The most special thanks go to you, Roberta. I love you for everything that you have
done for me in any direction. It is an honor to have met such a person like you.

In loving memories

v

vi

Acknowledgements

This work would not have been possible with the help of many people:

First of all, I would like to thank my advisor Prof. Dr. Hans-Ulrich Heiß for giving me
the opportunity to conduct research at his group and for providing me with everything
necessary for completing it.

I thank Prof. Dr.-Ing Jan Richling and Prof. Dr.-Ing. Reinhardt Karnapke for helpful
advice and support. I say thanks to all colleagues that were present during that time
at the Communication and Operating Systems group (Arnd, Anselm, Tammo, Alex,
Matthias, Daniela, Helge, Jörg, Jan, Stefan und Mohannad).

I thank Prof. Jan Rabaey for the inspiring stay as a visiting researcher at his institute,
the Swarm Lab of UC Berkeley. In these seven months abroad, I made a significant
progress for this thesis. California, in general, was an inspiring place in many directions.

Special thanks go to my mother Gabriele, my father Dieter, my sister Svenja and Sven.
They always encouraged me while working on this thesis.

Many thanks go to all friends which directly or indirectly supported me by technical or
social contributions: Robert, Alexej, Daniel, Rene, Jens and Anton.

Many thanks go to the Berkeley fellas Joseph, Barbara, Marcel, Severin and Matteo.

Finally, many thanks go to the entire Team Berlin for all help that you have provided,
especially to Rike and Thomas.

vii

Publications

Parts of this thesis are based on previous publications:

• Chapter 1 is partially based on work published in [32, 33, 34].

• Chapter 3 is partially based on work published in [33].

• Chapter 4 is mainly based on work published in [32, 33, 34]. It is partially based
on preceding publications [25, 26, 27, 28, 30, 31, 36].

• Chapter 5 is mainly based on work published in [32, 33, 34]. It is partially based
on preceding publications [27, 28, 30, 31].

• Chapter 6 is mainly based on work published in [29, 35].

• Chapter 7 is partially based on work published in [32].

A few additional co-authored publications have not been incorporated into this the-
sis [68, 69, 93].

viii

Contents

1 Introduction 1
1.1 Past, Present and Future . 1
1.2 Motivation . 3
1.3 Thematic Demarcation . 4
1.4 Shortcomings of Current Approaches . 5
1.5 Contribution of this Thesis . 7
1.6 Structure of the Thesis . 8

2 Related Work 9
2.1 Swarm-bots . 9
2.2 I-Swarm . 9
2.3 Swarmanoid . 10
2.4 SwarmRobot . 11
2.5 Symbrion & Replicator . 11
2.6 Kilobot . 12
2.7 iRobot-SwarmBot . 12
2.8 The TerraSwarm Project . 12

3 Swarm Idea 15
3.1 Mobile Distributed Systems . 15
3.2 The Approach . 16
3.3 Definitions . 17
3.4 Example Applications . 19

3.4.1 Stationary Monitoring . 19
3.4.2 Shore Monitoring . 19
3.4.3 Exploration . 20
3.4.4 Object Monitoring . 20

3.5 Application Classification . 23
3.6 Dimensions for WSN Applications . 24
3.7 Conclusion . 25

ix

x CONTENTS

4 Swarm Programming Model 27
4.1 Introduction . 27
4.2 Related Work . 28
4.3 Language Aspects . 29

4.3.1 Language Aspect Dimensions . 29
4.3.2 Language Aspect Selection . 33

4.4 Swarm Model . 34
4.4.1 System Model . 35
4.4.2 Application Model . 36
4.4.3 lib/driver-Concept . 38

4.5 Capability/Driver-Model . 39
4.5.1 Development . 39
4.5.2 Code Generation . 40
4.5.3 Lifecycle . 42

4.6 Application/Lib-Model . 43
4.6.1 Development . 43
4.6.2 SwarmActionSuite Interface Operations 44
4.6.3 Contracts . 45
4.6.4 Contract Creation Lifecycle . 46
4.6.5 SwarmActionSuite Lifecycle . 47
4.6.6 Event Model . 49
4.6.7 Dependent Actions . 50
4.6.8 Application Lifecycle . 53

4.7 Dependency Graph Generation . 54
4.7.1 Scheduling a New ActionSuite . 55
4.7.2 Rescheduling an Existing ActionSuite 56
4.7.3 Unscheduling an Existing ActionSuite 57

4.8 Conclusion . 58

5 Swarm Runtime System 61
5.1 Introduction . 61
5.2 Action Management and Swarm Virtualization 61
5.3 Architecture . 63

5.3.1 Local System Services . 63
5.3.2 Global System Services . 66

5.4 System Utilization . 68
5.4.1 Job Utilization . 68
5.4.2 Motion Utilization . 68
5.4.3 Relative Motion Utilization . 69
5.4.4 Utilization . 69
5.4.5 Relative Utilization . 69
5.4.6 Idle Time . 70
5.4.7 Relative Idle Time . 70

CONTENTS xi

5.4.8 Example . 70
5.5 System Operation . 71

5.5.1 Variant of Two-Phase Commit Protocol 72
5.5.2 Control Flow . 74

5.6 System Interface . 77
5.6.1 External System Interface . 77
5.6.2 Internal System Interface . 77
5.6.3 System Statistics Interface . 78

5.7 Conclusion . 78

6 Group-Scheduling Problems (Offline) 81
6.1 Introduction . 81
6.2 Related Work . 81
6.3 Assumptions and Model . 82
6.4 Timed Petri Nets . 83
6.5 Translating Model into TPN . 86
6.6 Schedule with Minimal Makespan . 90
6.7 Case Study . 93
6.8 Conclusion . 94

7 Swarm Space-Time Scheduling (Online) 97
7.1 Introduction . 97
7.2 Related Work . 98
7.3 Assumptions and Model . 99

7.3.1 The Model of the World . 99
7.3.2 Actions and ActionSuites . 99
7.3.3 Transaction-based Scheduling . 100

7.4 Job Scheduling . 102
7.4.1 Location Sampling . 103
7.4.2 Determine Slot Candidates . 104
7.4.3 Dependent Jobs . 106
7.4.4 Periodic Jobs . 107
7.4.5 Transactions . 107

7.5 Trajectory Planning . 109
7.5.1 Spatial Path Planning . 110
7.5.2 Temporal Path Planning . 110
7.5.3 Forbidden Regions . 112
7.5.4 Trajectory Planning . 117
7.5.5 Waiting Times . 118

7.6 Evaluation . 119
7.6.1 Complexity Analysis . 119
7.6.2 Benchmarks . 121

7.7 Conclusion . 126

xii CONTENTS

8 Evaluation 129
8.1 Introduction . 129
8.2 Simulation . 130

8.2.1 Virtual Movement vs. Physical Movement 130
8.2.2 System Utilization . 135

8.3 Hybrid Approach . 140
8.3.1 Slow Dynamic Obstacles and Waiting Times 142
8.3.2 Triangle Formations . 144
8.3.3 Obstacles . 148

8.4 Experiments on Testbed . 149
8.4.1 Four Robot Movement . 150
8.4.2 Triangle Formation . 154
8.4.3 Memory Usage and Movement Accuracy 159

9 Conclusion and Future Work 161
9.1 Conclusion . 161
9.2 Future Work . 162

A Used Hardware 165

B Locating System 167

C Motion Control 171

List of Figures

3.1 Role of the swarm operating system which serves as a system layer. 16
3.2 Monitoring multiple points along a trajectory. 20
3.3 Exploration by different robot types. 21
3.4 3-sided observation by different robot types. 22
3.5 Observation of moving object by different robot types. 22
3.6 Remapping: changing the involved robots while maintaining the observation. 22
3.7 Classification of swarm applications. 23
3.8 WSN applications, after Mottola and Picco [64]. 24

4.1 A taxonomy of language aspects in WSN programming abstractions (after
Mottola [64]). 30

4.2 Swarm model. 35
4.3 Spatio-temporal constraints. 38
4.4 lib/driver-concept using loose coupling. 39
4.5 Capability lifecycle. 43
4.6 Contract creation lifecycle state space. 46
4.7 ActionSuite lifecycle state space. 48
4.8 Application lifecycle state space. 54
4.9 Dependency graphs for actions (a, .., f). 56
4.10 Dependency graphs for actions (a, .., g). 58

5.1 Action management and swarm virtualization. 63
5.2 Architecture of the swarm runtime system. 64
5.3 Schedule of robot r. 70
5.4 Variant of two-phase commit protocol. 72
5.5 Spatio-temporal fork point. 73
5.6 Successfully scheduling of an ActionSuite. 75
5.7 Failure during scheduling of an ActionSuite. 75
5.8 System interface. 77

6.1 Examples for discrete topologies. 82
6.2 Example net, τ<t> denotes firing time t of τ. 84
6.3 Simple and extended grid topology model. 87

xiii

xiv LIST OF FIGURES

6.4 Task modeling. 88
6.5 Modeling a complete scheduling problem. 89
6.6 Shortest path in reachability graph. 92
6.7 States depending on grid-size with 2 robots and 1 task. 93
6.8 State distribution on a 12x12 grid with 2 robots and 5 tasks. 94

7.1 Dependent jobs. 99
7.2 Local schedule Si of a robot. 101
7.3 Global schedule Sg with frozen horizon fh. 102
7.4 Location sampling. 103
7.5 Job scheduling. 104
7.6 Schedule new action. 105
7.7 Scheduling of dependent jobs. 106
7.8 The transaction-semantic causes path alternatives while scheduling new

jobs. During the uncertainty period alternatives are locked. 108
7.9 Spatial path planning. 110
7.10 Temporal path planning with vmax = 2 represented by dashed lines. 111
7.11 Example: trajectory planning. 112
7.12 Computing forbidden regions. 113
7.13 Cases for computing forbidden regions. 113
7.14 Extended velocity vector v⃗ intersects π. 114
7.15 Cropping forbidden region. 115
7.16 Om has three trajectory segments (T0, T1 and T2) and crosses the path π

twice. The robot path has two segments (S0 and S1). The robot starts
initially at location x⃗0 = (4, 4) and proceeds towards x⃗2 = (10, 1) by
taking the detour over x⃗1 = (10, 10). 116

7.17 Space-time diagram with 2 × 3 tiles (two space segments and three time
segments). The two crossings of Om with path π causes two forbidden
regions. Due to the different relative orientations of Om to the robot, the
shape of the resulting forbidden regions appear different. 116

7.18 Improvement of the original version by preferring high velocities and, thus,
minimizing overall movement time. The result is a higher utilization since
robots are able to perform other tasks while they wait for their next move-
ment job. 118

7.19 Multiple obstacles crossing path π. 122
7.20 Impact of detail-level of obstacle on computation time. 122
7.21 Influence of multiple trajectory segments on computation time (obstacle

crosses π multiple times). 123
7.22 Influence of multiple path segments πi that are intersected by a large

dynamic obstacle on computation time. 123
7.23 Influence of the detail-level of forbidden regions (which is equivalent to

the detail-level of the robot shape) on the computation time which shows
a significant impact. 124

LIST OF FIGURES xv

7.24 Circular arrangement of robots. 124
7.25 Influence of the number of nodes on the computation time while scheduling

a new action using a circular arrangement setting. 125
7.26 Influence of the number of free slots on the computation time while schedul-

ing a new action using the same circular arrangement setting. 125
7.27 Scheduling of dependent / periodic jobs. 126

8.1 Grid-oriented, spatially uniform distributed arrangement of nodes. 130
8.2 Simulation with 10 (50, 80) jobs per iteration, space constraints have been

randomly generated in x ∈ [0, 100], y ∈ [0, 100] while assuming a fictive
time window t = [0,∞]. 132

8.3 Simulation with 10 (20, 80) jobs per iteration, space constraints have been
randomly generated in x ∈ [0, 100], y ∈ [0, 100]; time constraints have
been generated in t ∈ [0, 3600]. 133

8.4 Scenario 1: System utilization u, uj , um in interval [0s, 4000s] and accep-
tance rate with 200 jobs and 1 node. 136

8.5 Scenario 2: System utilization u, uj , um in interval [0s, 4000s] and accep-
tance rate with 800 jobs and 4 nodes. 138

8.6 Scenario 3: System utilization u, uj , um together with job acceptance-
rate and fraction of reduced physical movement with 400 jobs as a func-
tion of the amount of nodes (1-400), using space and time constraints
(tmin, tmax ∈ [0s, 500s], g ∈ (x ∈ [0, 100], y ∈ [0, 100]). 139

8.7 Scenario 4: System utilization u, uj , um together with job acceptance-
rate and fraction of reduced physical movement with 800 jobs as a func-
tion of the amount of nodes (1-400), using space and time constraints
(tmin, tmax ∈ [0s, 500s], g ∈ (x ∈ [0, 100], y ∈ [0, 100]). 139

8.8 Explanation of world set-up and schedule visualization. 141
8.9 Visualization of scenario progress. 142
8.10 Alternating schedule of n1 while time progresses. 143
8.11 Visualization of scenario progress. 146
8.12 Alternating schedule of nodes while time progresses. 147
8.13 Visualization of scenario progress. 148
8.14 Alternating schedule of nodes while time progresses. 148
8.15 Coordinated 4 robot movement. 152
8.16 Robot sequentially executes a set of actions while moving around the ob-

stacles. 153
8.17 3-sided observation application on the testbed with 3 robots (maintaining

formation). 156
8.18 3-sided observation application on the testbed with 3 robots (changing

formation). 157
8.19 Movement accuracy and memory footprint. 159

A.1 Hardware . 165

xvi LIST OF FIGURES

B.1 Cover showing two-dimensional bar code (encoded id 1) and rectangle
which is used for re-localization as well as determining orientation. 167

B.2 Testbed with 5 designated positions. 168
B.3 Accuracy of calculating position information of the robots (x and y di-

mension as well as Euclidean distance is considered separately). 169
B.4 Accuracy of calculating heading information of the robots based on orien-

tation of the localized rectangle in the RGB image. 169

C.1 Threshold value λ. 171
C.2 Traces of the robot showing the accuracy of the movement based on dif-

ferent threshold values λ. 172
C.3 Related movement characteristics as a function of the threshold value. . . 174
C.4 Efficiency E as trade-off between maximum and average deviation from

track and required time t. 175

List of Definitions

1 Local Operating System . 17
2 Swarm Operating System . 18
3 Physical World . 18
4 Physical Entity . 18
5 Cyber World . 18
6 Physical Event . 18
7 Cyber Event . 18
8 Physical Movement . 18
9 Virtual Movement . 18
10 Physical Swarm . 18
11 Virtual Swarm . 18
12 Systemic Description . 18

13 ResourceHost . 35
14 SwarmCapability . 35
15 SwarmResource . 35
16 SwarmApplication . 36
17 SwarmAction . 36
18 Spatio-Temporal Constraints . 36
19 SwarmActionSuite . 36
20 Lib . 38
21 Driver . 38
22 Schedulability . 46
23 Executability . 46

24 Timed Petri net (TPN) . 83
25 State of a TPN . 83
26 Time Marking . 84
27 Maximal Step . 85
28 Firing . 85
29 Time Elapsing . 86

xvii

List of Tables

4.1 Constraint types. 37

5.1 Parameter set-up. 71
5.2 Auxiliary functions. 71
5.3 Utilizations of robot r and system utilization u. 71

7.1 Successors and reachability-set. 100
7.2 Action specifications. 106
7.3 Implicit action specifications. 107

8.1 Simulation results. 137
8.2 World set-up: 1 node and 1 dynamic obstacle Om. 141
8.3 Action specifications: 7 actions before and behind Om. 142
8.4 World set-up: 6 nodes forming triangles. 144
8.5 Action specifications: 42 actions forcing triangle formations. 145
8.6 World set-up: 4 nodes arranged on the testbed. 149
8.7 Action specifications: 40 actions with spatio-temporal constraints. The

spatial constraint g defines the center of a surrounding 16× 16 square. . . 151
8.8 World set-up: 3 nodes arranged on the testbed. 155
8.9 Action specifications: 18 actions forcing triangle formations. 158

xix

List of Listings

4.1 Capability temperature sensor. 40
4.2 Capability LED switcher. 40
4.3 Generated dispatcher for TempSensor. 41
4.4 Generated dispatcher for LED. 41
4.5 Generated minimal-stub for temperature measurement. 42
4.6 Generated minimal-stub for LED switcher. 42
4.7 Simple application. 44
4.8 Simple application extended by spatio-temporal constraints. 44
4.9 Example with event-listener. 50
4.10 2 depending actions and the use of event handler. 51
4.11 Simple application extended by event handler. 52
4.12 Simple application extended by event handler. 53
4.13 Actions with mixed dependencies. 55
4.14 Reschedule ActionSuite. 57

xxi

Chapter 1

Introduction

Based on emergent behavior, natural swarms that consist of ants, termites or birds
are a fascinating phenomenon. Those systems are surprisingly robust due to massive
redundancy. There is a broad field of research targeting bio-inspired approaches which
are based on locality and simplicity. This thesis focuses on a paradigm of programming
swarms of mobile robots on a systemic level. In the next section, the current state of the
technological evolution is presented.

1.1 Past, Present and Future

Evolution describes the change of things. Different disciplines and different scientists
interpret the term in a slightly divergent manner. In biology, for instance,

“evolution is concerned with inherited changes in populations of organisms
over time leading to differences among them” [38].

Different perceptions lead to different definitions of the term as shown in [38]. In
information technology, evolution is concerned with the development of technology. In [5]
and [6], a detailed description of the technological evolution is given that analyzes the
stages ranging from tools over machines to automation. However, making a large step
towards the present and only allowing a glance in the last century, a strong technological
development is noticeable: The first transistor was presented in 1947. 24 years later, Intel
launched the 4004 processor which already contained 2, 300 transistors and was built
according to the 10, 000 nm manufacturing process. In 2014, Intel presented the 18-core
Xeon Haswell-E5 processor which featured 5, 560, 000, 000 transistors and was based on
the 22 nm process. This rapid development including strong processing power, extremely
small manufacturing process resulting in very small dies, low energy consumption and
economical reasonable prices had a strong influence on the economy as well as social life.

“With unit cost falling as the number of components per circuit rises, by 1975
economics may dictate squeezing as many as 65,000 components on a single
silicon chip”

1

2 CHAPTER 1. INTRODUCTION

was stated in [61] by Gordon E. Moore in 1965. He predicted that the number of
transistors on a single die would double every year for the next 10 years. This prediction
has become famous and is well known as “Moore’s Law”. Though, later on, the doubling
period got larger and varied between 18 and 24 months, a roughly linear correlation is
still observable. Some authors interpret Moore’s Law not only in the original sense, but
rather as

“a metaphor for anticipated rapid rates of change-not only in semiconductors,
but in economic and social contexts” [89].

The end of Moore’s Law has been predicted several times in the past as well as the
present. The law has now been valid for 50 years. As stated in [98], Moore predicts the
end of the law by 2025. Certainly, there are limitations given by physics. If this will be
the reason, or, as other authors assume

“In fact, economics may constrain Moore’s Law before physics does–an ob-
servation that others have called Moore’s second law ” [89]

remains an open topic from nowadays perspective. However, besides the tremendous
increase of transistors on a single die, is the tremendous increase of devices worldwide.
Statistics show that there are already more mobile devices on the planet than human
beings worldwide. In 2014, 7.7 billion mobile devices have been recorded. Predictions say
that in 2018 an amount of 12.1 billion mobile devices will be reached while the number
of worldwide mobile users will be 6.2 billions [99]. That indicates an amount of two
mobile devices per user. This statistic considers only mobile devices such as phones and
tablets. The Wireless World Research Forum (WWRF) forecasts an even higher number
of wireless devices. Their global technology vision states that

“7 trillion wireless devices serving 7 billion people by 2017” [101].

This prediction has also been picked up by the TerraSwarm Research Center whose
center mission is to enable distributed sense-control-actuate applications executed on a
swarm platform using an universal system architecture. Their vision is a TerraSwarm:

“Some industry observers predict that in ten years there will be thousands of
smart sensing devices per person on the planet [..] (yielding a “tera-swarm”); if
so, we will be immersed in a sea of networked real-world interface devices” [49].

Going one step further, the plethora of devices will not only surround human beings.
Instead, there are

“devices that are embedded in the environment around us and on or in our
bodies” [50].

1.2. MOTIVATION 3

The robot market is also in a growing phase. The IEEE Spectrum showed in [20] that
there was a total robot population of 4.5 million in 2006 (3.5 million service robots and
0.95 million industrial robots). In 2008, the number had almost doubled and reached
8.6 million (7.3 million service robots and 1.3 million industrial robots). The statistics
originate from the International Federation of Robotics (IFR).

Another indicator that the development, production and the application of robots
is an ongoing process is shown by the recent behavior of two large industrial compa-
nies: Amazon presented the conceptual idea of their drone-based system Amazon-Prime-
Air [11] in 2013 while Google acquired its eighth robotic company—Boston Dynam-
ics [78]—in the same year [88].

1.2 Motivation

Since numerous heterogeneous stationary as well as mobile devices equipped with a vari-
ety of sensors and actuators exist, new kinds of applications are feasible. Devices range
from deeply embedded sensors and actuators over wearable devices to fully autonomous
robots. Together, they form distributed sensing and actuating platforms that are highly
interconnected. Based on different device manufacturers and system developers, a variety
of different hardware, different system software with different system interfaces exists,
exposing heterogeneity.

Plenty of applications require access to specific sensors and actuators in order to
collect data (e.g., wind speed, temperature, humidity, seismographic activity, ..). Exam-
ples include: Traffic management systems that require access to traffic data and weather
data. Flood prediction systems that require access to weather data and data about the
water level of a certain river section. Long-term bridge monitoring systems that require
access to traffic data, weather data and seismographic data. Robot-based exploration or
observation systems that require access to specialized cameras and probes.

All these applications have in common that they require context awareness concerning
physical space and time since their functional outcome heavily depends on these context
parameters. Considering the above mentioned applications, there is a noticeable fraction
of the applications that require similar or even the same sensors and actuators:

• Tsunami early warning systems that use pressure sensors in the ocean.

• Marine biologist that are interested in monitoring water temperature, current and
salinity in order to make statements about marine life.

• Beach water quality monitoring to prevent people from going into water with bac-
terial contamination.

Current approaches tend to set up their own infrastructure (interconnected hardware
components) that are perfectly tailored to solely run one application.

Instead of following this approach, virtualization techniques can be used in order to
allow multi-program operation on the same physical infrastructure. This way, hardware

4 CHAPTER 1. INTRODUCTION

resources are shared among the applications by executing them in a time multiplex man-
ner. This result in a significant reduction of deployment and maintenance costs. In order
to achieve this, a system is presented in this thesis that manages and coordinates its
resources. Applications are scheduled and managed by the system. Application develop-
ers profit from this approach since the system hides all heterogeneity, is responsible for
resource management, synchronization and coordination and provides one clear defined
interface against which applications are implemented.

1.3 Thematic Demarcation

In order to state the field of investigation, this section gives a coarse overview of related
research disciplines.

Internet of Things The Internet of Things (IoT) is a network of physical objects
that are interconnected and are uniquely identified. Those objects are equipped with a
variety of sensors and actuators. Such devices can be remotely accessed and are able
to exchange data. “According to the Cisco Internet Business Solutions Group (IBSG),
IoT is simply the point in time when more “things or objects” were connected to the
Internet than people.”1 According to this definition, the IoT was born between 2008 and
2009. Already in 1988, Mark Weiser mentioned the vision of Ubiquitous Computing and
presented this vision in an article in 1991 in which he stated that “in the 21st century
the technology revolution will move into the everyday, the small and the invisible” [103].

Cyber-Physical Systems There are many different definitions of cyber-physical sys-
tems (CPS). Yet, the question remains open if there will be a commonly acknowledged
definition. CPS is often referred to as the next generation of embedded systems where,
in contrast to embedded systems, the focus is not on the computational part but rather
on the intense link, so the network, that connects local computing components. A well
known definition for CPS originates from Edward Lee who said that “Cyber-Physical
Systems [..] are integrations of computation with physical processes. Embedded com-
puters and networks monitor and control the physical processes, usually with feedback
loops where physical processes affect computations and vice versa.” [48]. Designing such
cyber-physical systems is a challenging task [47, 48].

New markets arise which also include the biological sector: “The trend in healthcare
is cyber-biological systems where devices outside and implanted in the human body wire-
lessly communicate with physical systems.”2 In [76], principles about body-area networks
and the human intranet are presented.

1Cisco IBSG, 2011.
2IEEE Austin COMSOC/SP Meeting about Big Data, Cyber-Biological Systems, and Pattern Recog-

nition which was scheduled on Sep. 25, 2014. Speaker: Choudur K. Lakshminarayan, Principal Scientist,
HP Software Research.

1.4. SHORTCOMINGS OF CURRENT APPROACHES 5

Swarm Intelligence Swarm intelligence is the collective behavior of decentralized sys-
tems that are based on self-organization. They are also referred to as systems that are
inspired by biology since their behavior originates from nature [8]. These approaches
are characterized by simplicity, locality and dynamics: they follow simple rules, per-
form only local interaction and are designed for large networks with highly dynamic
behavior. Those algorithms are, for instance, Ant Colony Optimization (ACO), Particle
Swarm Optimization (PSO), Artificial Bee Colony Algorithm (ABC) or Artificial Im-
mune Systems (AIS). There is also a Multi-Swarm Optimization algorithm—a variant of
the original PSO—which creates multiple sub-swarms, each of which is responsible for
a certain region. This variant is used for optimization on multi-modal problems with
multiple optima. Although the last algorithm implies to create sub-swarms, all these
algorithms are designed in order to use the entire swarm. It is not intended to use a
composition of algorithms on the same swarm.

Swarm Robotics “The swarm robotics inspired from nature is a combination of swarm
intelligence and robotics” [96]. The intention of swarm robotics is to use bio-inspired
swarm algorithms in order to coordinate multirobot systems. They can grow up to enor-
mous size and can still be efficiently coordinated. Due to the decentralized organization,
the system is very scalable and robust. Swarm robots are intended to be simple and cost-
saving. Ant robots are a special case of swarm robots. The intention of ant robots can
be interpreted as a light version of swarm robots as they are even smaller and cheaper.
Ant robots belong to the field of micro-robots.

A plethora of divergent approaches can be found in literature. However, most swarm
approaches have in common that they execute one application or one algorithm on the
swarm. This thesis does not target bio-inspired algorithms. It targets cyber-physical
systems with a major focus on swarms of mobile robots. Therefore, this thesis presents
an approach that is based on a swarm operating system that serves as a mediation layer
between the swarm components (devices) and the application space. The system allows
to execute multiple, independently developed applications in isolation from each other.

1.4 Shortcomings of Current Approaches

There are many projects, research communities and approaches that deal with CPS,
swarms and robots. However, there are still shortcomings:

Real space-time programming Nowadays, a plethora of programming abstractions
exists. There are query-based abstractions for sensor networks and also abstractions
that implement the notion of space. However, none of the abstractions support real
(physical) space-time programming such that applications can be made context-aware
by annotating parts of the application with spatio-temporal constraints (absolute and
relative constraints). Furthermore, the abstractions do not feature a transaction seman-
tic that enables guaranteed execution of a set of instructions on distributed resources

6 CHAPTER 1. INTRODUCTION

of the swarm. Resources are not addressed on a systemic level. Furthermore, as also
Mottola and Picco state “[..] none of the programming solutions considered in our survey
specifically addresses applications with mobile nodes or sinks. The requirements to meet
in these scenarios are, however, quite different from the challenges in static applications.
Location is usually of paramount importance, [..]. Therefore, programmers must im-
plement, on a per-application basis, mechanisms such as neighbor discovery as well as
store-and-forward mechanisms. Ideally, higher-level programming abstractions should be
developed to shield programmers from these aspects.” [64].

Systemic description Swarming or flocking often addresses certain formations that
occur as emergent behavior based on simplicity and locality. Formations may have several
intentions, e.g., uniform observations or measurements. Performing an observation task,
it might be useful or even necessary to exactly specify such a formation. A systemic
description is needed that allows to specify where and when certain instructions shall be
executed and using what kind of resource.

Mobile cyber-physical operating system The number of devices that are inter-
connected by communication infrastructures increases rapidly. Different device manu-
facturers, different (local) operating systems with different system interfaces form het-
erogeneous distributed systems. Distributed applications and algorithms have to cope
with the heterogeneous world. A cyber-physical operating system that hides all hetero-
geneity beyond the system interface, performs all resource allocation and management
and uses time-multiplexing in order to share hardware resources among the requesting
applications is still missing. Distribution, concurrency and motion shall be concurrent.
Furthermore, the local operation of a device in terms of using its sensors and actuators
together with its movement should also be completely managed by the operating system.

Automatic resource movement Mobile systems such as mobile robotic systems re-
quire collision-free path planning (a coordination in physical space and time). This
produces spatio-temporal trajectories. Control algorithms are required in order to op-
erate the robots actuators to follow the spatio-temporal trajectory. The planning as
well as the control algorithm have to take the devices’ capabilities into account, e.g., a
wheel-based robot has a different movement and steering behavior than an unmanned
aerial vehicle (UAV) or an underwater vessel. Also, external physical incidents have to be
considered, e.g., strong current or wind have potential impact on the respective device.
A management and control component as part of a cyber-physical operating system for
mobile devices is a necessity for spatio-temporal applications.

All addressed issues are still missing and are essential building blocks for the vision
of an autonomous swarm system.

1.5. CONTRIBUTION OF THIS THESIS 7

1.5 Contribution of this Thesis

In order to address the shortcomings of current approaches, the contribution of this thesis
is based on three major parts: a programming model for CPS, a modular architecture for
a cyber-physical operating system and a space-time scheduler.

Programming Model for CPS In order to program applications for the swarm that
have access to physical space and time, a suitable model is presented. A swarm applica-
tion consists of actions which are interactions with the physical world by means of sensors
and actuators. An action can be made context-aware by assigning spatio-temporal con-
straints to it. An action is then scheduled and managed by the cyber-physical operating
system. In particular, the space-time scheduler—a core component of the operating
system—is responsible for scheduling the action in space and time. Due to the con-
straints, the classical sequential workflow of an application is mixed up. A blocking
execution semantic is not desirable. Therefore, the programming model is asynchronous
and event-based in order to avoid blocked passages. Concurrent and distributed pro-
gramming is often error-prone. Thus, the model allows the programmer to implement
applications in a sequential manner (providing necessary transparencies), and translates
the program into a concurrent and distributed application at runtime.

Cyber-Physical Operating System A dedicated cyber-physical operating system
for the swarm is required that is perfectly tailored to execute such swarm applications.
Therefore, the second part of this thesis deals with the design of a distributed system
architecture. A strong emphasis is put on the mobility of its components. The design
follows a service-oriented architecture approach. Based on modularity, new algorithms
and functionality can be easily added and existing ones can be quickly exchanged. This
is necessary in order to integrate new features (e.g., by incorporating additional sensors
and actuators) and to deploy new control algorithms. The architecture’s components are
loosely coupled and use message passing to exchange information. A prototype has been
developed which implements the designed swarm architecture.

Space-Time Scheduler The core component of the cyber-physical operating system
is the space-time scheduler. Its task is to perform the resource management by allocating
and releasing system resources in a timely manner. The scheduler has global knowledge
about the world which consists of static and dynamic obstacles. Static obstacles are
presented as arbitrary polygons that are time-invariant, i.e., their physical location does
not change over time. Dynamic obstacles, in contrast, are entities that move over time.
Therefore, their location is a function of time. Dynamic obstacles can be non-controllable
entities whose space-time behavior is well known (a satellite on its orbit) or controllable
entities that are managed by the operating system (a mobile robot). The scheduler
schedules all actions from the set of active applications in space and time. In order to
avoid collisions, the scheduler uses the concept of forbidden regions which are spatio-
temporal blockings of a dedicated path.

8 CHAPTER 1. INTRODUCTION

1.6 Structure of the Thesis

The thesis is structured as follows: In Chapter 2 the current state of the art of swarm
oriented projects is given. Chapter 3 presents the swarm idea as used in this thesis. The
programming model is described in Chapter 4. The system architecture is presented in
Chapter 5. Chapter 6 describes a modeling approach of group scheduling in space and
time. Chapter 7 introduces the core-component of the swarm system, the space-time
scheduler. Chapter 8 presents an evaluation of this work and Chapter 9 concludes this
thesis.

Chapter 2

Related Work

This chapter shows the state of the art in swarm oriented projects. Section 4.2, section 6.2
and section 7.2 show additional related work in particular research fields (programming
abstractions, Petri nets and scheduling), that have been required in order to realize this
thesis.

2.1 Swarm-bots

The Swarm-bots project1 targeted to investigate approaches to self-organizing and self-
assembling technologies [59, 18]. The project addresses approaches inspired by nature,
e.g., social insects [9]. The body of the robot called s-bot has a diameter of 116 mm [60].
The robot features a 400 MHz Intel XScale CPU running Linux and is equipped with
64 MB RAM [58]. The robot has several sensors, e.g., infrared, humidity, temperature,
ambient light, accelerometers, microphones, camera for omnidirectional vision. In addi-
tion, the robot is equipped with a 3 axis gripper side arm together with several RGB
LEDs. The robot uses a combined drive called treels which is a composition of tracks
and wheels. Using the gripper which is mounted on a rotatable turret, the robot is able
to grab other robots in its proximity at a dedicated position—a specific hook—and so
connect robots in a secure way. This way, the robots form chains [66, 87] similar to
rope teams in climbing sports. Doing so, the robots secure each other while overcoming
obstacles.

2.2 I-Swarm

The I-Swarm (Intelligent Small World Autonomous Robots for Micro-manipulation)
is a European research project that started in January 2004 and lasted until June
2008 [90, 105]. The project aims to develop large-scale miniature robots. The swarm
is expected to contain 1000 robots with a size of 3 × 3 × 3 mm [10] that should be

1Project has been sponsored by the Future and Emerging Technologies program of the European
Commission, 2001 - 2005.

9

10 CHAPTER 2. RELATED WORK

produced using mass production technologies. Solar cells are used in order to operate
the robots. Communication is performed using infra-red LEDs and photodiodes in four
different directions. The communication range is very low resulting in only regional in-
formation exchange targeting only a few robots. The robot is equipped with an ASIC
based on a DW8051 core. Algorithms that have been developed during the project have
been simulated while in the end of the project the actual hardware (the robot) was not
completely operational [21]. In order to control large-scale swarms, the project aims to
invent decentralized algorithms that are characterized by simplicity and only local inter-
actions as found in nature. Using bio-inspired approaches virtual pheromones are used
in order to perform local communication which is also known as stigmergy [7, 53]. There
are different applications for this approach including collective exploration, shortest path
finding and task allocation [39].

2.3 Swarmanoid

The Swarmanoid project2 is the successor of the Swarm-bots project and, hence, uses
the gathered results. The project has investigated a novel distributed robotic system
that consists of heterogeneous robots that are able to connect in order to provide new
capabilities to the system. There are three types of robots: eye-bots, hand-bots and foot-
bots. All of them feature the same following hardware components: they are equipped
with a 533 MHz i.MX31 ARM 11 CPU with 128 MB RAM and 64 MB Flash [17]. The
foot-bot is an improved robot platform of the s-bot from the Swarm-bot project. The
foot-bot has a diameter of 13 cm and is 28 cm tall. Its drive is also based on treels
and reaches a maximum velocity of 30 cm/s. It is equipped with a docking ring and a
gripping mechanism that allow multiple foot-bots to connect together.

The hand-bot is equipped with two large grappler in order to grab objects or to
climb vertically. It has no motion capabilities and, therefore, grounded movement is only
possible by connecting the hand-bot to other foot-bots. The diameter of the robot is
between 41 - 47 cm (depending on arm positions) and 29 cm high. The robot is, in
addition, equipped with a rope launcher on the top that catapults a magnet which allows
to connect to ferromagnetic ceilings in order to lift up the robot.

The eye-bot is a flying platform with a diameter of 50 cm and a height of 54 cm that
consists of a 4× 2 co-axial rotor system. It is equipped with a ceiling attachment system
in order to attach it to the ceiling and save energy. The eye-bot has a camera and is able
to provide a bird’s eye view in order to coordinate movement in 3D. Compared to the
I-Swarm, the size of the swarm is rather small with about 60 robots in total.

2Project has been funded by the Future and Emerging Technologies program of the European Com-
mission, 2006 - 2010.

2.4. SWARMROBOT 11

2.4 SwarmRobot

The swarmrobot.org3 project is an open-hardware microrobotic project for large-scale
artificial swarms [42]. The intention of the project was to build a platform in order to
simulate swarm behavior using real robots named Jasmine. In order to reach general
acceptance and create incentives of the platform, the robots consist of cost-effective
hardware components and appropriate software libraries enable quick implementation of
user-specified swarm algorithms. The robots themselves have been manufactured with
a size of 26 × 26 × 26 mm and are, hence, approximately 9 times larger than compared
with their counterparts from the I-Swarm project. The robots feature 2 kB RAM, 24
kB Flash ROM and a 1 kB nonvolatile EEPROM. They are equipped with 2 DC motors
(forward and backward rotation) enabling a maximum velocity of 500 mm/s.

A couple of experiments have been performed on the Jasmine microrobots. In [43],
an approach of collective energy homeostasis in a large-scale microrobotic swarm is pre-
sented. An intelligent docking station as well as a suitable on-board recharging elec-
tronics enable the robots to autonomously perform a recharge process. They show how
to increase collective efficiency (avoid low energetic robots) by using collective decision
making.

2.5 Symbrion & Replicator

The Symbrion & Replicator projects4 are based on knowledge acquired from previous
research: the I-Swarm project and the open-source project SwarmRobot.

The Symbrion (Symbiotic evolutionary robot organisms) and Replicator (Robotic
evolutionary self-programming and self-assembling organisms) projects [44] consist of
large-scale swarms of robots featuring sensors and actuators to interact with the physical
world. Both projects are based on bio-inspired approaches featuring self-X properties.
The systems are highly dynamic and so, if advantageous, the robots can aggregate into
a symbiotic organism that is, in this form, better suited to solve a task in the current
situation while sharing resources such as energy.

Aggregating into a higher symbiotic organism requires precise control of actuators of
the individuals. In [52], different controller types required for actuation based on bio-
inspired and evolutionary approaches are presented. The aggregation process requires
mechanical assembly of the individuals units. In [45], scout and backbone robots featuring
different capabilities are presented. It is shown how these robots can mechanically be
connected. Based on the connection and the joints different kind of organism shapes are
possible. A grand challenge is proposed in which 100 robots should survive autonomously
for 100 days while necessary power sockets are mounted in areas which are not reachable
for a single unit. Only using collective behavior and adopting into a higher symbiotic
organism enables power supply.

3Project has been cross-funded by several other grants, amongst others by the I-Swarm and the
Symbrion & Replicator projects.

4Projects have been funded by the European Commission, 2008 - 2013.

12 CHAPTER 2. RELATED WORK

2.6 Kilobot

The Kilobot [84] is a swarm robot which puts a high emphasis on the development of
very low cost units in order to enable large-scale swarms consisting of up to 1000 devices.
It uses cost-efficient components such that the total costs of the hardware are less than
$15 and “takes 5 minutes to assemble” [80, 81]. With 33 mm, the diameter of the robot
is a little bit larger compared to the Jasmine swarmrobot, but costs only approximately
a tenth of the Jasmine which is priced at $130.

Several experiments have been performed on Kilobot swarms. In [85], a distributed
algorithm called DASH5 has been presented. The algorithm has been extended to S-
DASH6 by including automatic scalability [86]. The algorithm requires to specify an
arbitrary geometric shape, e.g., a cube, a triangle, a star. Using the user-specified shape
(spatial constraints) the Kilobot swarm iteratively approaches the shape and “fills” it.
Seed robots are used in order to define the origin and orientation of the coordinate
system, i.e., the spatial points where the shape starts [83]. The algorithm is based on
only local interactions between the robots. Using edge following and gradient formation,
robots move in close proximity along the “edge” of other robots keeping a fixed distance
d to others (the robots move iteratively) towards the so called source robot which has a
gradient value of 0. Afterwards, the robot “enters” the user-specified shape and positions
itself based on higher gradient values. In [82], an approach is shown in order to collectively
transport complex objects. An experiment shows 100 Kilobots collectively performing
the transportation task.

2.7 iRobot-SwarmBot

The SwarmBot is a trademark of the iRobot company. Its size is approximately 13×13×
13 cm and, hence, belongs to the fraction of larger robots. It is equipped with a 40 MHz
ARM CPU and 648 KB RAM. For the drive, the robot uses 2 electric engines. Further-
more, the robot features light sensors, a camera and bump sensors. For communication,
the robot uses the ISIS infra-red communication system [54].

In [55, 56], an approach for dynamic task assignment using the iRobot SwarmBot
based on swarm algorithms is presented. Tasks are assigned to sub-groups of robots that
collectively perform the task. The authors show four different algorithms and evaluate
their behavior concerning dynamic task assignment.

2.8 The TerraSwarm Project

In [49], the TerraSwarm Research Center proposes a distributed operating system that
serves as a mediation layer between applications and distributed resources such as sen-
sors, actuators, storage and computing. It has to cope with distribution, heterogeneous

5Distributed self-assembly and self-healing (DASH).
6Scalable, distributed self-assembly and self-healing (S-DASH).

2.8. THE TERRASWARM PROJECT 13

and shared resources as well as dynamic situations (mobility, connectivity) while provid-
ing context awareness. The presented approach does not feature autonomous resource
movement that is based on spatio-temporal trajectories that are automatically computed
from the system based on a resource usage of applications.

Chapter 3

Swarm Idea

This chapter describes the overall idea and vision of a large distributed sensing and
actuating platform. Once established, new kinds of applications are possible. As a moti-
vation, some exemplary applications are presented within this chapter and a classification
of different application categories is shown. This chapter serves as a motivation for the
remaining chapters.

3.1 Mobile Distributed Systems

Mobile distributed systems can be characterized by the degree of control these systems
have about their own mobility:

The first class of devices, comprising for example smartphones and netbooks, cannot
actively influence their location and motion as people usually carry them in their daily
life. Thus, each device may be at a different location (with individual heading and
speed) connected to different networks by links of variable quality. Moreover, these
characteristics usually change unpredictably over time.

The second class of mobile devices exhibits an invariant movement and is, thus,
deterministic. An example for this class are satellites located in an earth orbit moving
on predetermined trajectories around the planet. Together with all applying forces such
as gravity and friction, their location is a well defined and predictable function of time.

The third class is composed of devices such as mobile robots designed to play soccer
that are able to move on their own and to individually control their movement. Their
location is bound by the playing field on which they move in a coordinated manner.
However, as soccer robots may make autonomous decisions, the speed and heading will
be hardly predictable by an external entity without complete system knowledge.

15

16 CHAPTER 3. SWARM IDEA

Swarm Operating System
local
OS

local
OS

local
OS

local
OS

local
OS

local
OS

local
OS

local
OS

Application

USV
UAV
UGV

local
OS

Figure 3.1: Role of the swarm operating system which serves as a system layer.

As one common characteristic, all those devices (independent of their class) are able
to achieve an emergent behavior by cooperation and interaction. Applications aiming for
such behavior usually focus on the collective rather than on the individual single device.
This view is called a system view, in contrast to a node view, where each member of a
group is targeted separately. A system view is advantageous since it reduces the need to
think of and deal with concurrency which is inherently error-prone. For that reason, many
approaches for distributed systems aim to hide distribution and thereby concurrency.

3.2 The Approach

The term globalization is a well known concept that is present in many disciplines such
as politics, economy, academia and technology. It describes the process of higher (global)
integration. The Internet has already connected people worldwide. Information can be
exchanged in seconds. A plethora of applications that use the Internet, e.g., telephone
programs such as Skype, induce the feeling of being in proximity although the physical
distance might be several thousands of kilometers. Initially launched in 1969 with only
four nodes, the predecessor of the infrastructure known today as Internet was called the
Arpanet. An impressive statement—that has become true from nowadays perspective—
is the vision of the “Galactic Network” that has been forecasted by Joseph Licklider in
1962. According to recent statistics of 2015, over 3 billion people, which is nearly 50%
of the global population, are connected to the Internet.

Automation is the technology of tomorrow which emphases concepts such as the
Semantic Web, Smart Cities and Smart Factories. Imagine a future in which programs
can be implemented or services can be accessed which leads to cyber-physical interactions.
The net or a subnet becomes a large distributed sensing and actuating platform as shown
in Figure 3.1. The following is especially designed for the category of mobile robots, i.e.,
mobile sensor-and-actuator networks. Programs can be implemented in a conventional
manner which leads to coordinated robot actions.

3.3. DEFINITIONS 17

Imagine a swarm of a plethora of heterogeneous mobile robots consisting of UAVs1,
UGVs2, USVs3 and ROVs4 featuring different sensors and actuators and, thus, different
capabilities. The system has very precise knowledge about all its resources, i.e., the
service that the resources provide. All these robots require fine-grained control algorithms
for their actuators, e.g., in order to move along a pre-defined trajectory or to control the
motion of robot arms with mounted sensors. Furthermore, dedicated drivers must be
available in order to access specific sensors. Since this requires expert knowledge in the
respective problem domain, this thesis presents a programming model that provides the
following features:

• High Level Instructions: The system provides high level instructions and in-
troduces an abstraction that hides complexity (distributed control of sensors and
actuators) beyond the systems interface.

• Context Awareness: Using spatio-temporal constraints, the programmer can
assign runtime parameters to code fragments which specify the physical location
and time at which the execution shall take place.

• Transparencies: Application development is facilitated by introducing suitable
transparencies: the programmer is able to assign physical space constraints, but
is released from selecting a suitable robot candidate. Thus, location transparency
is provided. Furthermore, concurrency and distribution transparency enable to
program in a sequential manner without the need to cope with race conditions and
synchronization.

• Neither Quantitative nor Qualitative Allocation: The quantitative and qual-
itative allocation is performed by the swarm operating system depending on the
applications’ resource requests, the capabilities of the resources and the availability
of resources.

• Collision-Free Trajectories: Multiple robots that move in the same physical
space have to be carefully coordinated. In addition, if task execution is timely
restricted, a spatio-temporal collision-free trajectory planning is required. This
aspect is also completely hidden from the programmer.

3.3 Definitions

In order to establish a clear separation between the used terms, a few definitions are
given in the following:

Definition 1 (Local Operating System) Local operating system refers to a standard
operating system such as Linux, Windows, TinyOS, Contiki or Reflex.

1Unmanned aerial vehicle
2Unmanned ground vehicle
3Unmanned surface vehicle operating on the surface of the water
4Remotely operated underwater vehicle

18 CHAPTER 3. SWARM IDEA

Definition 2 (Swarm Operating System) The swarm operating system defines the
system software that is required in order to manage and coordinate the swarm.

Definition 3 (Physical World) The physical world is every process that happens in
the real world.

Definition 4 (Physical Entity) A physical entity is an object which has a certain ge-
ometry and is part of the physical world.

Definition 5 (Cyber World) The term “cyber world” defines all computation which is
executed on hardware. The cyber and physical world are disjoint.

Definition 6 (Physical Event) Every happening in the physical world is reflected as
a physical event. A happening is defined as a state change. A state change could be,
for instance, a relocation of a physical entity. A relocation can be measured in different
ways: RFID tags that are attached to this entity and are scanned in order to determine
the location. Also, GPS modules can be used. In [70], drifters5 are applied in order to
determine the location and geometry of an oil spill [71].

Definition 7 (Cyber Event) A cyber event is a happening in the cyber world. A phys-
ical event can be reflected as a cyber event and vice versa. A spatio-temporal event model
for CPS has been presented in [95].

Definition 8 (Physical Movement) Physical movement defines the motion of a phys-
ical device.

Definition 9 (Virtual Movement) The term “virtual movement” defines the “motion”
of a virtual entity, e.g., a program. Virtual movement is existent if the program executing
device physically moves itself or if the program is migrated to another device.

Definition 10 (Physical Swarm) The term “physical swarm” refers to the sum of
physical computing devices that are part of the swarm.

Definition 11 (Virtual Swarm) A virtual swarm is an execution context of a swarm
application. In particular, it is a time-varying mapping of application parts to devices.
A virtual swarm exists as long as the corresponding application exists.

Definition 12 (Systemic Description) The term “systemic description” defines the
system-wide addressing, allocation and usage of system resources without the need to know
where these resources are available and how to access them. Thus, location-, distribution-,
concurrency- and motion-transparency is provided. Furthermore, a systemic description
can include spatio-temporal constraints in order to constrain instructions in an absolute
or relative manner.

5Drifters are oceanographic floating devices equipped with sensors that move along with the current.

3.4. EXAMPLE APPLICATIONS 19

3.4 Example Applications

In the following sections, some exemplary applications will be presented:

3.4.1 Stationary Monitoring

An application that uses stationary monitoring is defined as performing one or more
interactions with the physical world at the same location, e.g., taking a picture of a point
of interest. This could be a single instruction or periodically repeated. In this case, the
application stays virtually over the physical location while the executing devices may
change over time. In case of UGVs, the simplest schedule would include only one robot
that, once positioned correctly, stays at that location until the application is finished.
The schedule may also incorporate multiple robots such that each of the robots takes
over a part of the execution. The same holds for certain UAVs, e.g., quadrocopter which
are able to “stay” over a certain location. Usually, UAVs that are constructed using
wings are not able to stay over a certain location; they are rather required to fly along
trajectories. In this case, trajectories have to be computed that cross the point of interest
several times at certain points in time. Considering another class of devices (satellites),
the situation changes again since such devices orbit, on a predefined trajectory, a planet.
Their location is, thus, a function of time. A stationary application needs to be migrated
each time the satellite leaves a certain space.

3.4.2 Shore Monitoring

In the second example, the goal is to monitor the shore line, e.g., for detecting contam-
ination due to an oil spill. For this, a series of observations shall be performed which
is shown in Figure 3.2 indicated by the observation spots. The application consists,
therefore, of four instructions with at least spatial constraints. If necessary, temporal
constraints can be assigned in addition in order to express temporal dependencies. By
simply adding temporal constraints, the execution order and multiplicity can be easily
modified. Possible configurations are, for instance, all monitoring shall be performed at
the same point in time, sequentially according to a certain order or multiple times.

Depending on the constraints and the number and current position of robots, different
solutions for this problem are possible. If the temporal constraints demand a simultane-
ous execution, then multiple robots are required. If the temporal constraints are given
in increasing order or no temporal constraints are specified, this enlarges the solution
space. Discarding all temporal constraints allows a one robot solution. As shown in
Figure 3.2(a), the robot moves along the trajectory and executes all instructions in a
sequential manner. An advantage of this solution is that only one robot is required. The
disadvantage is that the larger the distances are the more time and energy is required.
Thus, instead of physically moving the robot along the trajectory, the application moves
virtually by “migrating” from robot to robot as shown in Figure 3.2(b). This also allows
any arbitrary constraint configuration as long as enough robots are present and are able
to reach the observation spots in time.

20 CHAPTER 3. SWARM IDEA

Observation Spot

UGV at time t0, t1, t2, t3

(a) Physical movement (one robot)

Virtual Movement
Physical Movement
Coast-line

(b) Virtual movement (four robots)

Figure 3.2: Monitoring multiple points along a trajectory.

3.4.3 Exploration

This application shows a robot based exploration scenario. Since every robot has its
capabilities and properties, not all robots are able to perform every task. Usually, UGVs
are much slower than UAVs. In addition, UGVs are limited by their ground movement
ability. The more rough a terrain is the more complicated is the crossing. So each robot
has its intended use.

Figure 3.3 shows the cooperation between multiple different robot types in order to
reach a common goal. Implementing this application manually requires precise domain
knowledge for the different robot types and their application. All these issues are com-
pletely transparent for the programmer when using the systemic approach presented in
this thesis.

3.4.4 Object Monitoring

In this application, an object (e) shall be monitored from three different sides at the same
point in time and with the same distance as depicted in Figure 3.4. Doing this manually
would require to select a subset of robots, move and position them correctly. Afterwards,
a synchronization must be triggered in order to establish a common knowledge among
each other in order to start taking the pictures.

Finally, the pictures have to be collected in order to perform some processing with
them. This is already an error-prone approach since it involves not only distribution
and concurrency, but also real time and space. Furthermore, in case of a robot failure, a
suitable error handling must be triggered.

3.4. EXAMPLE APPLICATIONS 21

Virtual Movement
Observation Spot

USV
UAV
UGV

Coast-line
Rough Terrain

Figure 3.3: Exploration by different robot types.

The new feature in this example is that the task requires a space-time rendezvous.
Furthermore, the object of interest is dynamic and moves over time. Since the intention
of this application is to monitor the object, this can be done by simply specifying a
systemic description using spatio-temporal constraints. The spatial constraints are given
by

∀i ∈ {0, 1,2} ∃j = (i+ 1) mod 3 |
dist(pi, pj) == D1 ∧
dist(pi, e) == D2

In order to enforce a simultaneous execution, the following temporal constraints are
required:

∀i ∈ {0, 1,2} ∃ti == T

The parameters T,D1 and D2 are intervals that indicate acceptable values. The
constraints state that each picture (pi) that shall be taken must have pairwise the same
distance to each other (dist(pi, pj)). In order to satisfy these constraints, the robots
must obtain the formation of an equilateral triangle. Furthermore, the distance between
each robot and the observed object (e) shall also be the same (dist(pi, e)). Using the
parameters D1 and D2, the triangle formation can be scaled. After specifying the spatial
constraint, the temporal constraint forces the simultaneous execution.

Using this systemic description, neither quantitative nor qualitative aspects have
to be specified and the solution emerges implicitly. Furthermore, since the object is
capable of moving—either actively or passively—the formation will transparently follow

22 CHAPTER 3. SWARM IDEA

D1
e

D1

D1

D2

D2
D2

UAV

UGV
Observation
Observation Objecte

Figure 3.4: 3-sided observation by different robot types.

e

UAV

UGV Observation

e

Object at time t0, t1e e
Movement

Figure 3.5: Observation of moving object by different robot types.

e

UAV

UGV
Observation
Observation Objecte

D1

D2

D2

D2

D1

D1

Figure 3.6: Remapping: changing the involved robots while maintaining the observation.

the object based on the systemic description as depicted in Figure 3.5. As given by
Definition 4 and Definition 6, a physical entity can be tracked by either using a GPS
module which is connected to the entity or in case of the oil spill by specific floating
devices that periodically report GPS coordinates. As given by Definition 11, a remapping
can be performed, i.e., the involved robots change over time while maintaining the desired
formation as shown in Figure 3.6.

3.5. APPLICATION CLASSIFICATION 23

Space

Time

independent invariant variant

in
d

e
p

e
n
d

e
n
t

in
v
a
ri

a
n

t
v
a
ri

a
n

t

monitoring / time series
(periodic / aperiodic)

rendezvous points / joint work
(simultaneous)

parallel /
distributed

computation

Figure 3.7: Classification of swarm applications.

3.5 A Classification of Applications based on the Space and
Time Dimensions

In this section, classes of applications are considered. There are different kinds of
applications—those that require context awareness since their functionality heavily de-
pends on context and those that have no relation to context.

Figure 3.7 shows a classification of possible types of applications that has been first
presented in [33]. Applications can be classified according to their relation to space
(physical coordinate on a surface):

• Independent: The application has no notion of space. A typical example could be
a parallel or distributed computation problem, for instance, computation of prime
numbers or the Mandelbrot set.

• Invariant: The application is bound to exactly one location and stays virtually
over that point, e.g., monitoring of the water level of a certain river section.

• Variant: The application is bound to multiple locations, e.g., monitoring the wind
speed along the shore, monitoring the current along an underwater slope, exploring
an unknown region or detecting changes in tectonic plate movements along a fault.

The same classification can be done for time:

• Independent: The application has no notion of time. Examples are the same as
for space-independent ones.

24 CHAPTER 3. SWARM IDEA4 · L. Mottola and G.P. Picco

WSN

Applications

Interaction

Pattern
Goal Space Time

Many-to-many

One-to-many

Many-to-one

Global

Regional

Periodic

Event-triggered

Sense-only

Sense-and-react

Mobility

Mobile nodes

Static

Mobile sinks

Fig. 1. A taxonomy of WSN applications.

sensor

sink

(a) Sense-only.

sensor

actuator

1 2

route to 1

route to 2

(b) Sense-and-react.

Fig. 2. Network architecture in sense-only and sense-and-react applications.

sibly along multiple hops, to a single base station—typically much more powerful
than a WSN node—that acts as data sink by centrally collecting the data.

Along with sense-only scenarios, a new breed of applications emerged where
WSN nodes are equipped with actuators. In wireless sensor and actuator networks
(WSANs) [Akyildiz and Kasimoglu 2004], nodes can react to sensed data, therefore
closing the control loop. The resulting sense-and-react pattern drastically affects
the application scenario. Indeed, in principle the data sensed can still be reported
to a single sink that hosts also the control logic and issues the appropriate com-
mands to the actuators. However, to reduce latency and energy consumption, and
to increase reliability by removing the single point of failure, it is advisable to move
the application and control logic inside the network [Akyildiz and Kasimoglu 2004].
This results in a radically different network architecture, illustrated in Figure 2(b),
where sensor nodes need to report to multiple receivers. The system becomes
heterogeneous, in contrast with the mostly homogeneous architectures employed in
sense-only scenarios. Moreover, the application behavior also changes. Applications
tends to be stateful, i.e., determined by the current conditions and past evolution
of the system, in contrast with the mostly stateless behavior of sense-only applica-
tions. Also, multiple activities must be carried out simultaneously, e.g., to control
actuators installed in different parts of the system as in Heating, Ventilation, and
Air-Conditioning (HVAC) systems in buildings [Deshpande et al. 2005].

ACM Journal Name, Vol. V, No. N, Month 20YY.

Figure 3.8: WSN applications, after Mottola and Picco [64].

• Invariant: The application shall be executed at one certain point in time. This
may require multiple executing components. If space is independent, an application
could be a friend finder where multiple people want to meet at a given point in
time but the meeting point itself is not important. If space is invariant, then
space matters additionally. An application that is space variant would be the
simultaneous observation of a point of interest.

• Variant: This class of applications is bound to multiple points in time which is
typical for a time series.

In fact, it is possible to combine classes. For instance, a time series of seismographic
measurements in an earthquake region belongs to a class where each entry in the time
series is time-invariant and space-variant while the series itself is time-variant.

3.6 Dimensions for WSN Applications

In a survey about programming wireless sensor networks (WSN) [64], the authors have
produced a taxonomy of wireless sensor network applications as a result of analyzing
WSN applications as depicted in Figure 3.8. This taxonomy has, beside space and
time, additional dimensions such as goal, interaction pattern and mobility. Using the
programming model that is presented in Chapter 4, different types of applications can be
developed allowing combinations of the dimensions shown in Figure 3.8. In the following,
a summary of the dimensions and their application for the swarm programming model is
given. The concrete realization of the dimensions in the programming model is presented
in Chapter 4.

Goal The goal defines the applications behavior. WSN applications have first become
popular by deploying sense-only applications. The intention was to gather data using

3.7. CONCLUSION 25

multiple sensor nodes, route this data to a common sink and gather it for an offline
analysis, afterwards. The second type were so called sense-and-react applications. In
this scenario, new kind of applications emerged since applications were now able to sense
data and react to it using actuators.

A swarm application can be implemented either as sense-only application or as a
sense-and-react application.

Interaction Pattern The interaction pattern defines the communication behavior of
the application. A one-to-many interaction pattern states, e.g., to send one instruction to
multiple nodes in order to request or change a certain behavior. Many-to-many describes
the interaction which involves multiple senders and multiple listeners. This occurs in
applications which have multiple data sinks. Typically, the many-to-one interaction
pattern describes sense-only applications since data is measured locally at each node and
then sent to a dedicated sink for post-processing.

Depending on the intention of a swarm application and how the application is imple-
mented, all three interaction patterns are possible.

Mobility The mobility addresses the degree of freedom of the executing nodes. A static
node is typically a sensor that is mounted at a fixed position and, therefore, does not
move over time. This is the most common scenario for WSN. Going one step further and
allowing mobility, mobile nodes are able to change their position by physical movement.
In addition, data sinks can also be mobile resulting in mobile sinks.

Similar to the two previously mentioned dimensions, the programming model sup-
ports all three mobility types, whereat the emphasis is laid on the mobility part.

Space With space, the authors distinguish between the applications execution scope.
A global scope indicates that the applications is executed system-wide, i.e., on every node
in the network. In contrast, regional refers to a certain region, i.e., a subset of nodes in
the network that execute an application.

Swarm applications can be arbitrary developed so that every allocation partition, i.e.,
every allocation of nodes, is possible.

Time With time, the authors distinguish between the execution semantic: while pe-
riodic indicates a periodically executed application, event-triggered defines the state in
which the application is able to react to certain events.

Swarm applications can be developed using both ways. It is also possible to combine
them by executing certain instructions periodically and some others event-based.

3.7 Conclusion

Due to the increasing amount of heterogeneous devices, this chapter presents the ap-
proach of a swarm operating system that hides all heterogeneity beyond the system’s
interface and is responsible for resource management.

26 CHAPTER 3. SWARM IDEA

Cyber-physical systems require to cope with real space and time, in addition to con-
currency and distribution, which make application development even more complicated.

Using the concept of systemic descriptions, application development is strongly facil-
itated and enables the programmer to specify spatio-temporal conditions. Based on this
approach new kinds of applications are possible and have been presented in this chapter
together with a classification of applications based on the space and time dimensions.

Chapter 4

Swarm Programming Model

After stating the vision of the swarm approach, new kinds of applications are possible.
Such applications require a new, suitable programming abstraction. Thus, this chap-
ter introduces a programming abstraction for cyber-physical systems. The emphasis is
put on facilitating application development by relieving the programmer of error-prone
aspects such as distribution, concurrency and motion. The abstraction should enable
the programmer to specify what shall be done (the objective of a program or a part of
it) rather than how it is achieved (every step that finally results in the solution of the
objective). A program consists of high level instructions with input/output behavior.
Those actions serve as basic building blocks and can be arbitrarily stuck together. Their
execution context can be controlled by attaching spatio-temporal constraints.

4.1 Introduction

Since the invention of the computer, suitable abstractions have always been an important
field of research. Abstractions are useful and sometimes even necessary in order to reduce
complexity by dividing the problem space into smaller sub-problems, each of which is
solved by a separate piece of code. The resulting functionality of that piece of code is
provided to a layer on a higher level. In software development, it is recommended to
keep the software modular such that each module addresses a clear defined problem and
provides a clear defined functionality. This principle is also called separation of concerns
and was first mentioned in [16].

Each module must have a clear defined interface in order to use the module’s function-
ality. For instance, a suitable abstraction for communication in a software system should
provide an interface with send and receive operations. This features transparency of the
underlying communication system which may use different hardware components in or-
der to establish wired or wireless communication. A well defined and well known model
for communication systems is the OSI reference model [108], which has been invented in
order to achieve interoperability. The model was originally designed with seven layers,
each of which has a clear defined responsibility. Nonetheless, modularity also demands
for code reuse. A suitable abstraction including an interface with suitable operations

27

28 CHAPTER 4. SWARM PROGRAMMING MODEL

must be invented such that the underlying implementation is both well optimized and
exclusively reused by invoking its well defined operations. If, for some reason, the in-
terface using developer requires more or different functionality other than provided by
the interface, which leads to a (partial) re-implementation, states a non-well designed
abstraction. Partial re-implementation is an error-prone concepts that should be, in any
case, avoided.

Numerous programming languages based on different programming paradigms have
been invented which provide individual levels of abstractions.

This chapter is organized as follows: Section 4.2 shows the state of the art of existing
programming models. In order to design a new programming model for the swarm, Sec-
tion 4.3 lists different language aspects for wireless sensor network programming abstrac-
tions. A selection of language aspects is chosen which influences the design of the pro-
gramming model for the swarm. On this basis, Section 4.4 introduces the swarm model,
which is the basic principle for this thesis, on a rather coarse-grained level. The model
is further divided into the capability/driver-model (Section 4.5) and the application/lib-
model (Section 4.6). All remaining chapters refer to different aspects that are stated in the
swarm model. Section 4.7 shows how parts of the application code that is programmed
using the application/lib-model are transformed into a dependency graph. Finally, Sec-
tion 4.8 summarizes this chapter.

4.2 Related Work

There are different kinds of programming abstractions for distributed, concurrent and
parallel systems as well as for sensor networks. Detailed surveys are provided in [94, 64].
Following a holistic approach, nesC [23], which is an extension to C, is a programming
language for deeply networked systems which was created for TinyOS. Programs are
built from components that have internal concurrency. While nesC is a node-level lan-
guage (code is written for an individual node), Pleiades [46] provides an abstraction
to implement a central program that has access to the entire network (also known as
macroprogramming [104]). SpatialViews [65] is an extension to Java which allows to
define virtual networks that are mapped to physical nodes according to their physical
location and the services they provide. Execution is distributed among the nodes in the
virtual network performed by code migration. Furthermore, it is possible to constrain
execution based on timing restrictions.

In [12], a programming and execution environment for micro-aerial vehicle swarms
is presented. Applications are a composition of low level drone behaviors and high level
goals that are submitted by a user for execution on the swarm. The approach is behavior-
based and, in contrast to the work presented in this thesis, does not feature the concept
of application constraints in order to define spatial and temporal conditions.

4.3. LANGUAGE ASPECTS 29

4.3 Language Aspects

When designing programming abstractions for WSNs, different language aspects have to
be considered and carefully selected. In [64], the authors have analyzed WSN applications
and the applied programming abstractions. As a result, they produced the taxonomy
that is shown in Figure 4.1.

On a coarse-grained level, programming abstractions are often categorized as either
to use the concept of node-centric programming—programming based on the nodes per-
spective including communication—or macroprogramming—programming the network
rather than the individual nodes. In order to provide a more detailed analysis about
the kind of programming abstraction, the authors lists different language aspects in their
taxonomy. These language aspects are described in the following. Afterwards, a compo-
sition of language aspects are selected which state the foundation of the programming
abstraction for mobile robot swarms as presented in Section 4.4, which is one of the
major contributions of this thesis.

4.3.1 Language Aspect Dimensions

A major issue in distributed systems is communication. Therefore, the taxonomy lists
three aspects of communication: the communication scope, the type of addressing and
communication awareness.

Scope The communication scope addresses the type and range of communication. In
particular, it defines the reachability of arbitrary nodes from a dedicated node in a
network. The authors further subdivided scope into three subgroups:

• Physical neighborhood Programming abstractions that allow physical neighborhood
communication only allow to communicate with other nodes that are in direct radio
range and thus, communication is limited to physical proximity.

• Multi-hop group Multi-hop significantly extends the communication range of the
physical neighborhood approach by allowing communication amongst nodes that
are in the same group that are several hops away from each other. Multi-hop group
communication can be further subdivided into the following two categories:

– Connected Connected describes the property that all nodes that are in the
same group must be directly connected to each other. Therefore, every node in
that group can reach any other node in the same group by only communicating
over nodes also belonging to that group.

– Non-connected Non-connected described the property that a group must not
necessarily be connected, i.e., a node can communicate with another node of
the same group by using other nodes that do not belong to that group.

• System-wide This enables communication system-wide, i.e., all possible subsets of
nodes are able to communicate with each other.

30 CHAPTER 4. SWARM PROGRAMMING MODEL

12 · L. Mottola and G.P. Picco

Computation

Scope

Programming

Paradigm

Data Access

Model

Language

Physical

neighborhood

System-wide

Connected

Non-connected

Local

Group

Global

Hybrid

Database

Data sharing

Mobile code

Message

passing

Multi-hop

group

Explicit

Implicit

Imperative

Sequential

Event-driven

Physical

Logical

C
o

m
m

u
n

ic
a

ti
o

n

Awareness

Scope

Addressing

Declarative

Rule-based

SQL-like

Special-purpose

Functional

Fig. 6. A taxonomy of language aspects in WSN programming abstractions.

For each dimension of classification, we illustrate its meaning first in abstract
terms, and then by focusing on a representative approach taken from the state of
the art. The style of presentation is made concrete by relying on code fragments
and by concisely reporting key implementation details.

5. PROGRAMMING WIRELESS SENSOR NETWORKS: LANGUAGE ASPECTS

Figure 6 provides an overview of the language dimensions in our taxonomy. We
classify the various approaches based on the constructs that allow to express com-
munication and computation, on how these are framed into a data access model, and
on the more traditional dimension related to the programming paradigm adopted.

The communication dimension is particularly important. In most applications,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Figure 4.1: A taxonomy of language aspects in WSN programming abstractions (after
Mottola [64]).

4.3. LANGUAGE ASPECTS 31

Addressing The second dimension describes the addressing which states the way a
node is identified in the network. There are two categories:

• Physical Physical addressing means that a node is addressed by a static identifier
that does not change over time, e.g., a MAC address or a physical memory cell.

• Logical Logical addressing usually occurs as an abstraction of the physical address-
ing by introducing an abstract identifier that is mapped to a node but with the
characteristic that the mapping may change over time, i.e., the logical identifier
points to a different node. This usually facilitates application development since
certain complexity is hidden from the programmer and a larger degree of trans-
parency has been established. In terms of memory cells, a logical address is an
abstraction of the physical cell. A mapping function performs the translation from
logical addresses to physical ones which is performed in paging [97].

Another example, not for memory cells, but for sensor nodes, is the concept of
logical neighborhoods, which has been presented in [62, 63]. Here, the approach is
to define a logical neighborhood based on static, e.g., sensor type or dynamic, e.g.,
sensor readings, characteristics. Once defined, the programmer interacts with the
logical neighborhood and not with the physical devices. The underlying runtime
system is responsible for creating a mapping between both. The mapping can
change over time, e.g., based on different sensor readings which is transparent for
the programmer.

In abstract regions [104] the concept is to create so called abstract regions that
contain up to k-nearest neighbors around a certain node. Application program-
mers program the entire region rather than programming an individual node. The
authors show a suitable example in order to track objects using the approach of
abstract regions.

Awareness The third dimension in the communication aspect targets the awareness
which states if programmers are aware of the communication or if the communication
itself is transparent for the programmer. Awareness is divided into the two categories:

• Explicit Explicit communication describes that the programmer is completely aware
of communication. In this case, programmers are responsible for the message gen-
eration as well as sending and receiving the message. This comprises, amongst
others, the serialization and deserialization of messages, generating header infor-
mation as well as interpreting header fields when receiving a message, calculating
and attaching checksums, segmenting data into several message chunks as well as
performing a reassembly. Furthermore, the programmer is responsible for handling
asynchronous message delivery and, therefore, the programmer is responsible for
establishing the correct message order and address fault tolerance.

• Implicit Implicit communication describes a higher level of abstraction by intro-
ducing transparency such that all the mentioned issues are hidden behind a certain

32 CHAPTER 4. SWARM PROGRAMMING MODEL

level of abstraction. The programmer is not even aware of communication, e.g.,
remote procedure calls (RPC) appear to the programmer as simple method invo-
cation although the underlying framework has to perform all the message-based
communication which either addresses in full or in partial the issues stated above,
depending on the level of abstraction that the framework uses. An example for im-
plicit communication is applied in the approach of abstract regions [104], in which
programmers store and retrieve data items in shared variables. A shared variable
is comparable to a tuple space. Dedicated get- and put-operations are provided to
the programmer which perform the required message exchange and, thus, commu-
nication is transparent.

Computation Scope The computation scope defines the scope in which computation
takes place. In particular, the scope describes the set of nodes that are affected by
executing a single instruction. The computation scope is divided into the following three
categories:

• Local Local states the situation in which only one node is involved in the execution
of the instruction.

• Group The group scope describes that an execution of a single instruction leads to
an execution on each node in the group and, thus, provides a higher abstraction
compared to only local instruction execution.

• Global An instruction execution leads to a global execution, i.e., each node in the
network executes the same instruction.

Data Access Model Besides computation and communication, a major aspect re-
mains in the programming abstraction of how data is accessed. In the following four
different approaches are described:

• Database. In the database oriented data access model, the network is treated as a
global relational database. Programmers create SQL-like queries in order to request
data. The statements are sent across the network where each node evaluates the
statement locally and sends back its result. This is a simple, yet powerful, approach,
designed to gather data in, especially, static sensor networks.

• Data sharing. Data sharing describes the concept of remotely accessible variables
or tuples. The most well known approach are tuple spaces which allow to store and
retrieve data in/from the tuple space.

• Mobile code. In contrast to data sharing in which data is usually accessed remotely,
mobile code migrates the code that requests access to data onto the node on which
the data resides, e.g., mobile agents. Thus, data is accessed locally.

• Message passing. Data is accessed by message exchange.

4.3. LANGUAGE ASPECTS 33

Programming Paradigm The programming paradigm has a large influence on the
model elements of the programming abstraction and, thus, on how the application is
developed. The data flow and flow control significantly depends on the programming
paradigm.

• Imperative. Probably the most applied and well known paradigm is imperative
programming. The programmer uses explicit instructions in order to change the
program’s state. Every step of an algorithm has to be mapped to instructions of the
respective imperative programming language. The programmer has to explicitly
specify how the program operates. Two sub-categories can be identified:

– Sequential. Sequential programming is characterized by only having one thread
of control. This thread sequentially executes the program’s instructions. Do-
ing so, facilitates programming since the programmer does not have to take
error-prone aspects such as concurrency and synchronization into account.

– Event-driven. In event-driven programming the control flow is mostly deter-
mined by events. The programmers install event handler in order to listen to
events, e.g., a certain threshold has been exceeded. If an event occurs, the
programmer is notified and is able to handle the event.

• Declarative. In the declarative programming paradigm, the programmer specifies
the goal (what should be achieved) and not how it is achieved. This should support
programmers in order to concentrate on the program’s logic and minimize side
effects. Declarative programming can be further subdivided:

– Functional. Functional-based programming is based on evaluating mathemati-
cal functions. Common representatives of this category are, e.g., Mathematica
or Haskell.

– Rule-based. A rule-based system describes a system which contains if then
else-statements. An example is an expert system. Rule-based systems are
often used in artificial intelligence.

– SQL-like. In this case, SQL-like queries are applied in order to gather data.

• Hybrid. Hybrid approaches combine both imperative and declarative programming
paradigms by mixing code implemented in an imperative way with declarative
aspects.

4.3.2 Language Aspect Selection

When designing a new programming abstraction, a careful selection of language aspects
has to be taken into account. A main requirement for the programming model for swarms
of mobile robots is to provide high level instructions such that the programmer is relieved
from most complexity. The following explains the composition of language aspects that
have been selected as a basis on which the programming model for swarms should be
established:

34 CHAPTER 4. SWARM PROGRAMMING MODEL

Scope. The communication scope is set to system-wide and therefore, any subsets
of nodes shall be able to communicate with each other. This is an important criteria
since the programmer shall not care about communication at all. Instead, given the
systemic description, it is up to the system to establish and handle communication. The
programmer does not even take notice that a dedicated physical device exists. Indeed, the
programmer is somehow aware that physical units exist that execute the code since this
is simply required in a cyber-physical system, but the number, position and especially
the technical properties of the devices are completely transparent for the programmer.

Addressing. The next communication dimension is addressing. As stated before, ad-
dressing can occur using a physical address or a logical address. While the physical
address is static, i.e., the physical address always points to the same physical unit, there
is a mapping from logical addresses to physical that may change over time. Similar to
the concept of logical neighborhoods [62, 63] or abstract regions [104], the programming
model for swarms of mobile robots used in this thesis is also based on logical addressing
by specifying constraints which represent a logical unit and is then mapped to a physical
device.

Awareness. The third dimension of communication targets awareness which can be
further distinguished in implicit or explicit awareness. Since most complexity shall be
hidden from the programmer, the goal is to keep communication implicit.

Computation Scope. As scope for computation, the programming model shall sup-
port both local and group computation. Therefore, it shall be possible to express an
instruction for a single node as well as defining groups or formations similar to the con-
cept of abstract regions but using spatio-temporal constraints.

Data Access Model. Data is accessed using message passing. However, this mostly
done by underlying runtime system. Therefore, the programmer simply uses local method
invocations in order to obtain data.

Programming Paradigm. The applied programming paradigm uses imperative pro-
gramming for implementing the application’s logic in an object-oriented way. Time and
space aspects are specified as side conditions. In order to fulfill the conditions, a spatio-
temporal coordination problem has to be solved which is transparent for the programmer.
Therefore, time and space conditions are induced in a declarative manner leading to a
hybrid approach.

4.4 Swarm Model

In order to support the development of applications according to the classification (Fig-
ure 3.7, page 23) while providing context awareness inside the application and guaran-
teeing important transparencies in distributed systems such as location-, motion- and

4.4. SWARM MODEL 35

Systemic Description
of Application

Capability Description
of Resources

Capabilities

ResourceHost

SwarmResources

ActionSuite

SwarmApplication

SwarmAction

Application Model System Model

Lib Driver

Figure 4.2: Swarm model.

distribution-transparency, the following swarm model as depicted in Figure 4.2 is pre-
sented. The model consists of a system model and an application model :

4.4.1 System Model

The system model addresses system developers who intend to extend the system by new
capabilities or devices. The system model describes the capabilities and properties that
the system provides. Each device has its own description of capabilities and properties
that contribute to the global system. A capability uses up to multiple SwarmResources.
A resource can be for instance {Camera: Resolution: 1024x768, Color: RGB, FPS: 25}
or {Temperature-Sensor: Range: [-50, +50], Resolution: 0.1}. A capability is defined as
a certain functionality that requires resources, e.g., take picture or measure temperature.
Here, a 1:1 mapping between the capabilities and the resources exists. But there are
also capabilities that require multiple resources, e.g. take video requires a camera and
a microphone resource in order to deliver the audio and visual elements. Capabilities
are implemented and accessible by a dedicated driver. A property describes the devices
geometry, e.g., the shape of a robot and its maximum velocity. Stationary devices have
a velocity of 0.

Definition 13 (ResourceHost) A resource host is a device with certain capabilities
and a description about its geometry.

Definition 14 (SwarmCapability) A capability is a well defined functionality that the
system provides. Capabilities are associated with a certain resource host and can be
accessed and used by applications.

Definition 15 (SwarmResource) A swarm resource is a physical resource, e.g., a sen-
sor or an actuator with certain properties which is accessed and used by one or several
capabilities.

36 CHAPTER 4. SWARM PROGRAMMING MODEL

4.4.2 Application Model

The application model describes the programming paradigm that is based on a systemic
description in order to develop swarm applications. The application model addresses
application programmers who intend to develop new applications for the swarm. In the
following, three programming entities are introduced that state the model: SwarmAp-
plication, SwarmAction and ActionSuite. For simplicity, the terms application, action
and suite are used synonymously in this thesis to SwarmApplication, SwarmAction and
ActionSuite.

Definition 16 (SwarmApplication) An application is called SwarmApplication if it
is a program implemented using this application model and executed on the swarm system.

Definition 17 (SwarmAction) A SwarmAction is a certain instruction which is stated
or issued by the application programmer. An action has to be mapped to a capability for
execution. Each action is executed concurrently and independent of other actions. Fur-
thermore, an action is executed on the “next suitable” resource host where the respective
capability is hosted. Thus, a set of actions may be arbitrarily distributed among several
nodes in a network. Actions may have input and output parameters in order to control
the effect of an action or obtain its produced result. As basic building blocks, actions can
be stuck together by connecting their inputs and outputs.

Definition 18 (Spatio-Temporal Constraints) Using the concept of spatio-temporal
constraints, the execution of an action can be restricted in space and time. Constraints
can be used in an absolute or relative manner.

Definition 19 (SwarmActionSuite) A SwarmActionSuite is a container for actions
that logically belong together, i.e., a set of actions that fulfill a certain objective. Each
action must be assigned to a particular SwarmActionSuite. All actions in the same suite
may have arbitrary relative dependencies among each other. No dependencies between
two actions of two different suites are allowed. Thus, all depending actions must reside
in the same suite. If two actions are independent of each other, they can either reside in
the same suite or in different suites.

A SwarmApplication consists of multiple actions that are executed concurrently and
independently and, if required, also in a distributed manner. All actions reside in a
dedicated suite which allows intra-suite, but not inter-suite dependencies. Dependencies
occur when input and output values of different actions are stuck together.

According to the imperative programming paradigm, an algorithm can be explicitly
programmed using this application model by issuing actions and combining them in a
certain manner. A simple program could be, for instance, to measure the temperature at
a certain location and switch a control lamp to red in case a given threshold is exceeded.
According to the programming model, first the actions have to be identified. In this case,
there are two actions: a (measure temperature) and b (switch on LED).

4.4. SWARM MODEL 37

Constraints spatial temporal logical
absolute x x
relative x x x

Table 4.1: Constraint types.

Next, both actions have to be connected, e.g., b.in = a.out. This forms a logical
dependency b → a (b depends on a). Based on the dependency, b requires data pro-
duced by a. If both actions reside in the same address space1, this is trivial by simply
communicating using shared memory.

However, if both actions are executed on different machines, data has to be exchanged
using message passing. This is completely transparent in the programming model. The
programmer only has to connect both actions and the underlying runtime system is
responsible for exchanging data, either using shared memory or using message passing.
Thus, communication is hidden behind the system’s interface.

According to the declarative programming paradigm, certain side conditions can be
assigned to actions that constrain their execution. This is done using spatio-temporal
constraints that express a certain intention without stating how this is achieved. Spatio-
temporal constraints are subdivided into the following categories as shown in Table 4.1.

There are three types of constraints: logical, spatial and temporal. The types can
further be subdivided into absolute and relative constraints. A logical constraint rep-
resents simple dependencies between actions. Connecting input and output of actions,
e.g., b.in = a.out, forms logical dependencies that express predecessor-successor rela-
tions. This constraint type can only be used in a relative manner since it has to depend
on another action.

A spatial constraint defines a physical space window in which the execution shall
take place, e.g., a ∈ [p1, p2], with p1, p2 being physical coordinates that span the space
window. This constraint type can be both absolute and relative. While a ∈ [p1, p2] is
used in an absolute manner, b ∈ a + ∆s

o states a relative spatial constraint depending
on the absolute spatial constraint of a. Using relative constraints, the original spatial
constraint is translated using the offset ∆s

o: [p1, p2] is translated to [p1 +∆s
o, p2 +∆s

o] as
depicted in Figure 4.3(a).

A temporal constraint defines a time window in which the execution shall take place,
e.g., a ∈ [t1, t2], with t1, t2 being absolute points in time. Temporal constraints can also
be specified in a relative manner: b ∈ a + ∆t

o. The original temporal constraint [t1, t2]
is translated using the offset ∆t

o: [t1, t2] is translated to [t1 +∆t
o, t2 +∆t

o] as depicted in
Figure 4.3(b).

There is a static and a dynamic application model. The static model requires that all
actions have been specified together with the spatio-temporal constraints before runtime
of the program. In this case, the resource usage is static, i.e., the system knows already
before runtime when and what kind of resources are requested.

1Actions are located in the same process address space, but might appear in different threads.

38 CHAPTER 4. SWARM PROGRAMMING MODEL

x

y

a

b

(a) Spatial constraints.

t
a b

(b) Temporal constraints.

Figure 4.3: Spatio-temporal constraints.

An offline scheduling could be applied before runtime which checks resource avail-
ability and is, therefore, able to allocate resources in advance, resulting in guaranteed
resources. The drawback of the static version means less degree of freedom for the
programmer since all possibly required resources have to be carefully considered before
runtime. In the dynamic version dedicated mechanisms are provided that allow to re-
act to certain circumstances. Therefore, programmers obtain full control of application
behavior.

4.4.3 lib/driver-Concept

The set of available actions as well as the suites are encapsulated in the system library.
The library (such as, e.g., the libc for the C programming language) provides a set of
operations and data structures in order to program applications for the swarm. Those
operations include system calls that enable to access capabilities (realized by drivers) in
system space from user space.

Figure 4.4 shows the lib/driver concept which is divided into three layers: the core-
system, pluggable capabilities and the application space. There is no direct coupling
between a lib and a driver. The scheduler, which is a core-service of the runtime system,
decouples invocations from the lib-side to the driver in space and time. The core-system
is thereby the layer which represents the base system. The proxy and skeleton are the
respective communication endpoints. They are responsible for serializing and deserializ-
ing remote procedure calls and performing the communication by message passing. The
system can be extended by new capabilities and simply plugged in by using the exist-
ing stubs and skeletons. Thus, the second layer (pluggable capabilities) is extendable by
new features. Capability developers only need to implement the functionality of the new
capability which is then plugged into the system as driver.

Definition 20 (Lib) The set of all actions in user-space together with the ActionSuite
and dedicated data structures that the programmer is able to use is defined as the lib.

Definition 21 (Driver) A driver is the counterpart for a particular action, i.e., the
implementation which actually performs the action.

4.5. CAPABILITY/DRIVER-MODEL 39

Application

Driver

Action
Proxy

Resource
Skeleton

Scheduler

Lib

Core-
System

Pluggable
Capabilities

Application
Space

Figure 4.4: lib/driver-concept using loose coupling.

4.5 Capability/Driver-Model

New capabilities can be added “on the fly”. System developers are able to add new
features to the system by implementing new capabilities. Those can be added during the
runtime of the system. Each resource host may have an arbitrary amount of capabilities.

4.5.1 Development

When developing new capabilities, the following steps have to performed:

1. The new capability has to be developed by simple functions.

2. A suitable counterpart (the stub) which is then a part of the swarm system library
(lib) is automatically generated based on the capability description together with
code connecting the capability to the system.

3. The capability is then deployed on dedicated nodes.

4. The system loads the new capability and plugs it in as driver.

Using separation of concerns, a capability developer only has to develop the desired
functionality without addressing, e.g., communication. All communication, invocation
and management tasks are performed by the core-system.

Listing 4.1 shows a simple capability: a temperate sensor. A capability must be
inherited from the base class SwarmCapability. The two shown methods init() and
destroy() are invoked once (at start time as well as in the shut down phase) in order to
initialize and close resources. All functionality is implemented using simple functions that
have to be declared with the @Function annotation in order to make it accessible from
application space. In this example, one function (measureTemp()) has been implemented,
i.e., accessing the local resource, obtaining the value, etc.

The second capability is an LED switcher as shown in Listing 4.2. The requester of
this capability specifies an input value, the color, that an LED has to be adopted.

40 CHAPTER 4. SWARM PROGRAMMING MODEL

1 pub l i c c l a s s TempSensor extends SwarmCapability {
2

3 pub l i c void i n i t () { /∗ c on f i gu r e . . ∗/ }
4 @Function
5 pub l i c double measureTemp () { /∗ f unc t i on . . ∗/ }
6 pub l i c void des t roy () { /∗ shut down . . ∗/ }
7 }

Listing 4.1: Capability temperature sensor.

1 pub l i c c l a s s LED extends SwarmCapability {
2

3 pub l i c void i n i t () { /∗ c on f i gu r e . . ∗/ }
4 @Function
5 pub l i c void toggleLED (Color c) { /∗ f unc t i on . . ∗/ }
6 pub l i c void des t roy () { /∗ shut down . . ∗/ }
7 }

Listing 4.2: Capability LED switcher.

4.5.2 Code Generation

After the functionality is implemented, some additional code is required in order to
connect the capability to the system. This is automatically generated. Listing 4.3 shows
the generated execute() method that is responsible for dispatching between different
functions of the same capability.

Each capability has an execute() operation that is, when needed, invoked by the
core-system. Using the getJob() operation, further context data which is required for
the current invocation is provided. The data structure SwarmJob contains all necessary
input parameters: the function to execute as well as input parameters for the function
itself. In order to provide the output of this driver implementation to the requester, the
result is set using setResult().

All communication, i.e., serialization and deserialization as well as message passing,
is performed by the resource skeleton as depicted in Figure 4.4. The return value of
the execute() method indicates the state of the execution of the driver functionality:
success or error.

Listing 4.4 shows the generated code for the LED capability. Using getParamValue(),
the input value is obtained. Both listings only show the generated code for dispatching,
i.e., the code implemented by the programmer is neglected here.

Based on the capability implementation, the corresponding lib is generated as shown
in Listing 4.5. For each function in the capability, a separate action is generated. The new
action type must be inherited from SwarmAction which provides necessary management
functions. Before the generation takes place, the capability is parsed for all functions
that are declared within the particular class.

Each generated action becomes typed based on its return value of the respective func-
tion, if non-void. This type indicates the output of this action. In addition, the typifica-

4.5. CAPABILITY/DRIVER-MODEL 41

1 pub l i c c l a s s TempSensor extends SwarmCapability {
2

3 pub l i c boolean execute () {
4 SwarmJob job = getJob () ;
5

6 switch (job . getFunct ion ()) {
7 case MEASURE_TEMP:
8 double temp = measureTemp () ;
9 job . s e tRe su l t (temp) ; // output

10 break ;
11 }
12 // return true i f s u c c e s s
13 }
14 }

Listing 4.3: Generated dispatcher for TempSensor.

1 pub l i c c l a s s LED extends SwarmCapability {
2

3 pub l i c boolean execute () {
4 SwarmJob job = getJob () ;
5

6 switch (job . getFunct ion ()) {
7 case TOGGLE_LED:
8 // obta in ing input parameters
9 Color c = (Color) job . getParamValue (0) ;

10 toggleLED (c) ; break ;
11 // return true i f s u c c e s s
12 }
13 }

Listing 4.4: Generated dispatcher for LED.

tion is used in order to create typed future objects as described in Section 4.6.7 (page 50).
The constructors are generated as follows: the first parameter is the SwarmActionSuite
as to which an instance of this action belongs. The second parameter allows spatio-
temporal constraints in order to restrict execution in space and time.

However, in general, there are four constructors that will be generated: one that
supports only spatial constraints, one that supports only temporal constraints, one that
supports both and one that supports no constraints. For simplicity, the other constructors
are neglected here. By viewing this generated code, it becomes obvious that, although
the action is a temperature measurement and, thus, the measured temperature value is
the only point of interest here, the stub does not provide such a return value. All output
values are provided using event handlers which are explained in Section 4.6.

Listing 4.6 shows the generated code for the second capability, the LED switcher.
Since toggleLED(..) requires an input parameter, the color that changes the state of
the resource, the constructor obtains an additional parameter: the color. By instantiat-
ing this class, the programmer has to specify the color that the LED should adopt. The

42 CHAPTER 4. SWARM PROGRAMMING MODEL

1 pub l i c c l a s s MeasureTempAction
2 extends SwarmAction<Double> {
3

4 pub l i c MeasureTempAction (SwarmActionSuite as ,
5 Const ra in t s . . . c) {
6 super ("TempSensor" , as , c) ;
7 }
8 }

Listing 4.5: Generated minimal-stub for temperature measurement.

1 pub l i c c l a s s ToggleLEDAction extends SwarmAction {
2

3 pub l i c ToggleLEDAction (SwarmActionSuite as , Const ra in t s . . . c ,
4 SwarmDataObject<Color> p1) {
5 super ("LED" , as , c) ;
6

7 t h i s . addParam(p1) ;
8 }
9 }

Listing 4.6: Generated minimal-stub for LED switcher.

remaining code is generated the same way as for the temperature measurement. The
generated code shows that the input parameter (the Color object) has been wrapped
into a SwarmDataObject<T>—a container class which is necessary for the internal man-
agement; T defines its type. The class SwarmDataObject<T> can not be instantiated
since it is abstract. There are three inherited classes: SwarmDirectDataObject<T>,
SwarmTransferDataObject<T> and SwarmExpressionDataObject<T>. The former one
contains an explicit value while the second one only contains a reference to the actual
value. This semantic allows the creation of future objects. The latter one allows the
creation of conditional statements as shown in Section 4.6.7 (page 50).

4.5.3 Lifecycle

After the development of a new capability, it can be plugged into the system. This starts
the capability lifecycle which is shown in Figure 4.5 and consists of three stages:

• init: The core-system invokes the init() method of the driver. During init, the
required resources can be loaded, configured and checked if they function properly.
In case of a successful initialization phase, the driver becomes registered in order
to allow the scheduler to manage it. Each capability is initialized only once.

• execute: In case of a service request, the core system invokes the execute() method
which leads to an execution of the driver functionality. Depending on the requester,
the result is handled accordingly by sending it to respective destinations. The driver
is usable as long as no destroy() has been triggered.

4.6. APPLICATION/LIB-MODEL 43

Driver

execute()

Core-
System init()

destroy()

Figure 4.5: Capability lifecycle.

• destroy: If the capability should be removed from the system, the destroy()
method is invoked. This unloads and closes all used resources.

The init() and destroy() method are optional and can be omitted by the program-
mer. Adequate default values are supplied in this case.

4.6 Application/Lib-Model

Similar to capabilities, new applications can be developed and deployed at any time. The
core-system does not need to be stopped for that. The following shows some example
applications.

4.6.1 Development

Developing SwarmApplications, the programmer should consider the following steps:

1. Logically specify the application’s objective.

2. Split the resulting problem (in order to reach the objective) into actions.

3. Link depending actions (connecting input / output of actions).

4. Assign spatio-temporal constraints if necessary.

5. Put depending actions into the same action suite.

6. Install event-handlers if dynamic behavior is required.

Listing 4.7 shows a simple SwarmApplication that performs a plain temperature
measurement. In line 4 the action suite is created. In line 5 the temperature measurement
action is created. The first parameter is the action suite, i.e., action a belongs to suite
as. Finally, in line 6, the operation schedule() is invoked on as which leads to a system
call of the underlying runtime system which schedules the action by allocating a suitable

44 CHAPTER 4. SWARM PROGRAMMING MODEL

resource. After invoking the schedule operation, the state of the suite becomes “pending”,
i.e., a temporary state which is explained in detail in Section 4.6.5. Any additional
invocation of schedule() is refused by the system. As explained in Section 4.6.2, adding
more actions or constraints to the suite is still enabled. The call to schedule() is
asynchronous. In particular, the invocation generates a dedicated message and sends it
via message passing to the internal scheduler. Thus, the operation returns immediately
without any result. This is done to avoid blocked procedures. As no spatio-temporal
constraints have been specified in Listing 4.7, the temperature measurement could take
place at any location.

1 pub l i c c l a s s AppTempMeasurement extends SwarmApp {
2

3 pub l i c void main (S t r ing [] argv) {
4 SwarmActionSuite as = new SwarmActionSuite (t h i s) ;
5 SwarmAction a = new MeasureTempAction (as , . . , n u l l) ;
6 as . s chedu le () ;
7 }
8 }

Listing 4.7: Simple application.

If the dimensions of the network are very large in terms of physical space, measuring
the temperature somewhere is usually useless. Therefore, Listing 4.8 shows how con-
straints are created. Line 1 creates an absolute space constraint that spans a rectangle
between the points (x1, y1) and (x2, y2). Depending on the semantic of the application,
it might also be necessary to create a temporal constraint (line 2), e.g., measure tem-
perature at certain points in time or perform multiple measurements with some interval
in-between. In this example, the action a shall be executed in the time interval [t1, t2].

1 Spa t i a lCon s t r a i n t s sc = new Abso luteRectang leConst ra ints (x1 , y1 , x2 , y2) ;
2 TemporalConstraints tc = new Abso lute Interva lTempora lConstra ints (t1 , t2) ;
3 SwarmAction a = new MeasureTempAction (as , . . , sc , t c) ;

Listing 4.8: Simple application extended by spatio-temporal constraints.

4.6.2 SwarmActionSuite Interface Operations

The programmer has different options in order to interact with the system. As shown
in Listing 4.7 and Listing 4.8, the programmer is able to create new actions and let
the system schedule them. If an already scheduled action becomes obsolete, e.g., due
to a changing environment, the programmer can react accordingly by unscheduling or
rescheduling a dedicated action. The programmer has access to the following system
operations which are available at every instance of a SwarmActionSuite:

• schedule(): Schedules all actions that are contained in the ActionSuite in space
and time. The suite may contain an arbitrary amount of actions.

4.6. APPLICATION/LIB-MODEL 45

• unschedule(): An unschedule operation requests the scheduler to remove all ac-
tions that are contained in this action suite by unscheduling them, i.e., performing
a deallocation of allocated resources.

• reschedule(): If actions shall be added to an existing and already scheduled suite
or spatio-temporal constraints shall be either modified or new constraints shall be
added to existing or new actions, then the suite needs to be rescheduled. In this
case, the programmer has to invoke the reschedule operation which requests the
rescheduling of this suite.

In some scenarios, e.g., the three-sided observation which has been introduced in
Section 3.4.4, implementing a certain aspect, in this case the three sided coordination,
scheduling only one action is not sufficient, but rather a set of actions needs to be
scheduled in order to reach a certain objective or partial objective. The outcome is a
binary function:

f(x) =

{
1, pictures taken = 3
0, pictures taken < 3

Only if all three actions—that take one picture each—have been executed not violat-
ing their constraints, the outcome is 1, 0 otherwise. Thus, partial execution of a set of
logically grouped actions is not desired by the programmer. In order to support a sim-
ple mechanism that enables the programmer to specify logically grouped action sets in
which the programmer is interested in the common execution of all actions, the concept
of contracts is introduced in Section 4.6.3. Each of the presented interface operations
creates, when successful, a contract.

4.6.3 Contracts

A contract is an agreement between two parties that, once concluded, both sides have to
stick to the conditions which are part of the contract. The concept of contracts is used
here in order to create conditions between the user program and the underlying system.
The advantage of using contracts is to have clear defined regulations: a program benefits
from a contract since it has, once successful created, guaranteed resources which it can use
and, hence, concepts such as the three-sided observation (Section 3.4.4) become feasible.
On the other side, the system clearly knows where and when a resource is accessed and
by which application, so accounting is performed precisely which is explained in the
following.

Since the swarm system is used by multiple parties and to establish a certain level of
fairness, a simple cost model can be assumed:

An application has to pay for the usage of a resource. The more resources are used,
the more expensive it gets. Thus, the application’s behavior, in terms of resource usage,
shall be minimalist in relation to achieving its objective: the application should not use
more resources than necessary. This situation is realizable with contracts. A contract
states quantitative and qualitative aspects about the resource usage. After the contract

46 CHAPTER 4. SWARM PROGRAMMING MODEL

executability

no schedule
found

schedule()
operation
invoked

voting phase
triggered

init

scheduledscheduling

committedaborted
vote for
commit

vote for
abort

voting

schedulability

schedule
found

cre
a
te

 co
n
tra

ct

co
n
tra

ct e
sta

b
lish

e
d

Figure 4.6: Contract creation lifecycle state space.

has been concluded, the application as well as the system are aware of the costs that
originate from using the resources. The “trading” takes place when the contract is actually
applied, i.e., the resources are used. This avoids that applications try to claim to much
resources.

The system provides that all its system operations which are presented in Section 4.6.2
are contract-based, i.e., the application obtains guaranteed resources. Each of the opera-
tions start a new contract and first check if the contract can be realized from the system’s
side (sufficient resources). If successful, the contract is created. This is explained in detail
in Section 4.6.4.

4.6.4 Contract Creation Lifecycle

Every contract creation phase has a lifecycle. Figure 4.6 shows the state space of the
lifecycle. The call to schedule() is asynchronous and message passing is used in order
to communicate with the scheduler. Once the scheduler has obtained a suite with all
containing actions and their dependencies, it starts to schedule them in space and time.
Since a new contract shall be created, the non-schedulability of one action leads to an
abort of the entire suite, i.e., all actions that belong to the same suite will also be aborted.
During contract creation, the following two predicates have to be checked and verified in
order to successfully create the contract:

Definition 22 (Schedulability) The scheduler checks general schedulability of the ac-
tions contained in the ActionSuite (short: sched()). So, the scheduler checks if all required
resources can be made available under the given spatio-temporal constraints (this also in-
cludes physical movement). In case the scheduler successfully found a schedule, then the
suite is called schedulable. Otherwise the suite is not schedulable.

Definition 23 (Executability) Schedulability is a necessary condition for executabil-
ity (short: exec()). Executability is the state in which all nodes (which are involved in
the distributed execution of the ActionSuite) jointly voted for commit and, thus, state

4.6. APPLICATION/LIB-MODEL 47

that they are able to execute their assigned actions. The voting protocol is explained in
Section 5.5.1.

• init: If a new contract shall be created, its initial state is the init state. A call
to schedule() triggers the scheduling of all actions that are part of that suite. If
the scheduler found a schedule that incorporates all actions, then the state changes
from init to scheduled. However, if no schedule could be found then the state is
changed to aborted. The scheduling is successful if all actions in that suite could
be assigned to resources satisfying the constraints. If at least one action could not
be scheduled, then the entire scheduling for that suite fails. In the aborted state,
the creation of a new contract has failed. In the scheduled state, the predicate
schedulability becomes true.

• scheduled: The scheduled state reflects that a given set of actions has been suc-
cessfully scheduled, i.e., there are sufficient resources available for all actions in the
suite. As stated in Definition 22, schedulability does not guarantee that the set of
actions in the suite are also executable (Definition 23). A distributed voting phase
is triggered in order to determine if a schedulable suite is also executable. The
voting operation results either in the aborted or in the committed state.

• aborted: If a suite is either not schedulable (due to insufficient system resources) or
it is schedulable, but not executable, then the state is set to aborted. The aborted
state reflects that the contract has been canceled, i.e., all contained actions have
either already been canceled or they are in the canceling process.

• committed: Once a suite is schedulable and executable, i.e., all participating nodes
have commonly agreed to execute the actions, the suite is committed which indi-
cates success. As a result, the respective contract has been created.

4.6.5 SwarmActionSuite Lifecycle

An ActionSuite has different states. The state space is shown in Figure 4.7. A transition
from one state of the state space to another is triggered by invoking one of the interface
operations described in Section 4.6.2. Section 4.6.4 shows the lifecycle that has to be
performed in order to create a new contract. This involves to check schedulability and ex-
ecutability of all actions in a suite. Therefore, it is called contract creation lifecycle while
this section shows the different states of the suite itself. The operations shown in Fig-
ure 4.7 (re-/un-/schedule) go through the entire contract creation lifecycle, respectively.
The following describes the different states that the suite can adopt:

• init: Once created, a suite is in its init state. In its init state, actions can be added
to the suite and constrained with spatio-temporal constraints. Once done, a call to
schedule triggers the contract creation lifecycle as described in Section 4.6.4. In
case the contract creation fails, the state changes from init to aborted. If a contract
has been created, the state changes to scheduled.

48 CHAPTER 4. SWARM PROGRAMMING MODEL

fail

cc

success
init scheduled

<committed>
schedule

ce
reschedule

unschedule

unscheduled
<committed>

aborted

finished

execute

cc

cc

ce

cr
fail

success
acca

ce

fail

success

cc: create contract
ce: contract established
cr: (old) contract restored
ca: contract aborted
ac: apply contract

aborted

executability

no schedule
found

schedule()
operation
invoked

voting phase
triggered

init

scheduledscheduling

committedaborted
vote for
commit

vote for
abort

voting

schedulability

schedule
found

cre
a
te

 co
n
tra

ct

co
n
tra

ct e
sta

b
lish

e
d

contract creation

Figure 4.7: ActionSuite lifecycle state space.

• aborted: The aborted state is a final state, which indicates that no contract has
been created.

• scheduled: The scheduled state is a state in which a schedule has been already
committed and, thus, a contract has been created. Dedicated system resources are
granted and allocated to this suite. The system can not revoke a contract. However,
from the scheduled state three further transitions are possible: unschedule, resched-
ule and execute. While the former two operations have to be explicitly triggered
by the programmer, the latter is implicitly triggered by the system. At every point
in time only one transition can be active. Adding new actions, modifying existing
constraints or adding new constraints to a suite requires a rescheduling. Perform-
ing a rescheduling tries to establish a new contract with the system by replacing
the current one. This can, therefore, be also interpreted as a re-negotiation about
system resources. The scheduler attempts to find a new schedule that considers
the modified actions and constraints. In case of success, a new contract is created
which replaces the current one. If the scheduling fails, the new contract can not
be created. In this case, the current contract is simply restored or remains active.
Independently of the result the transition reschedule always changes the state from
scheduled to scheduled and, thus, a rescheduling always leads to a committed and
active schedule.

• unscheduled: In the scheduled state the transition unschedule starts an attempt
to free all allocated system resources of the suite. The scheduler is requested
for performing the deallocation. If possible all actions become unscheduled and
are removed from the current schedule which indicates success. This changes the
state from scheduled to unscheduled. Doing so, a new contract that replaces the

4.6. APPLICATION/LIB-MODEL 49

current one is established. The new contract is the zero contract in which no
conditions are listed and, thus, both parties have no obligations. Unscheduled is a
final state. If the unscheduling fails, e.g., time has already progressed such that the
remaining time for performing the unscheduling process including the notification
of the involved nodes is too short, the unscheduling fails. In this case, the current
contract is restored and the scheduled state remains active with all obligations that
have been concluded.

• finished: From the scheduled state using the execute transition changes the state to
finished by applying the contract. This transition is chosen implicitly and cannot
be forced by the programmer. Since all actions in a suite in the scheduled state
have certain execution context parameters (concrete points in time and physical
machines) those actions will be executed according to the schedule. Once executed,
the state changes from scheduled to finished. This is the final state of a suite. The
suite then has been successfully executed.

4.6.6 Event Model

In order to be aware of state changes or obtaining output values of actions, the program-
mer can install event handlers on different levels. There are event handlers that indicate
the progress state of contracts as well as ActionSuites. Since actions are executed asyn-
chronously, it is also necessary to install event handlers on the action level in order to
read output values. The event handlers are shown in Listing 4.9. There are different
event listeners on three different application levels:

• Action-Level: It is possible to install listeners on different levels. On a fine-grained
level, listeners can be installed for every action that has been created. There are two
kinds of action listeners: SwarmActionListener and SwarmActionResultListener.
The former one only provides the OnFinish() event handler. SwarmActionResult-
Listener is inherited from SwarmActionListener and extends it by adding the
OnData() event handler. The OnFinish(..) handler is invoked if the associated
action has been executed. By installing the SwarmActionResultListener, it re-
quests the output of the action to be sent to this node, i.e., the one where the
code is currently executed. OnData(..) is invoked with the respective data. This
has no influence on others actions that depend on this action. In this case the
data is sent to both data sinks. Since installing the SwarmActionResultListener
explicitly requests data, this should only be done when needed in order to avoid
additional communication.

• ActionSuite-Level: After the schedule() system call is invoked, four types of
events can occur. The suite produces no data, and, thus, the events notify about
the current state of the suite’s lifecycle including the contract creation lifecycle.
By installing the SwarmActionSuiteListener, the program can be notified in the
following way: Once the action suite is scheduled OnScheduled(..) is invoked.
That is when the scheduler checked schedulability and, hence, the state changes

50 CHAPTER 4. SWARM PROGRAMMING MODEL

1 Act ionSui te as = new Act ionSui te () ;
2 Action a = new Action () ;
3

4 a . addAct ionLis tener (new SwarmActionResultListener () {
5 pub l i c void OnFinish (UUID jobId) { }
6 pub l i c void OnData(Object data) { }
7 }) ;
8

9 as . addLis tener (new SwarmActionSuiteListener () {
10 pub l i c void OnScheduled (ScheduleResu l t r s) { }
11 pub l i c void OnCommit(UUID t i d) { }
12 pub l i c void OnAbort (UUID t i d) { }
13 pub l i c void OnFinish (UUID t i d) { }
14 }) ;
15

16 as . s chedu le () ; // system c a l l

Listing 4.9: Example with event-listener.

to scheduled. If no schedule could be found and the state changes to aborted,
OnAbort() invoked. If schedulability and executability is guaranteed, the contract
is established and the state changes to committed which leads to an invocation
of OnCommit(). However, since reschedule() and unschedule() go through the
exact same lifecycle for creating a new contract, the order in which the event
handler are invoked does not change. For instance both operation first lead to
an invocation of OnScheduled in case of success. The provided parameters then
include the current context information about the new schedule which is either an
updated schedule or the zero schedule. In case that all actions in the suite have
been executed, the state changes to finished and OnFinish(..) is invoked.

• Application-Level: On a coarse-granular level, it is possible to install the OnApp-
Finish(..) listener. This listener is called when all application threads and action
threads have been executed. If the application goes into this state, the creation of
additional actions is forbidden.

4.6.7 Dependent Actions

Until now, the shown examples only contained one action. In most cases the application
consists of more than one action. An example could be to measure the temperature
and switch an LED that indicates if the temperature has exceeded a certain threshold—
a simple sense-and-react application. For this, two capabilities are needed that have
been introduced in Section 4.5 (page 39). This could be simply done by using the
programming model and creating two actions a and b where b depends on a as shown
in Listing 4.10. The first action (a) measures the temperature. Using the event model,
an event listener is installed on action level in order to obtain the output value, i.e., the
measured temperature value. OnData(..) delivers that value. After the value is obtained

4.6. APPLICATION/LIB-MODEL 51

1 pub l i c c l a s s TempControl extends SwarmApp {
2

3 pub l i c void main (S t r ing [] argv) {
4 SwarmActionSuite as = new SwarmActionSuite (t h i s) ;
5 SwarmAction a = new MeasureTempAction (as , . .) ;
6

7 a . addAct ionLis tener (
8 new SwarmActionResultListener () {
9 pub l i c void OnFinish (UUID jobId) { }

10 pub l i c void OnData(Object data) {
11 handleData (data) ;
12 }
13 }) ;
14 as . s chedu le () ;
15 }
16

17 pr i va t e void handleData (Object data) {
18 SwarmActionSuite as = new SwarmActionSuite (t h i s) ;
19 Color c = (data < THRESHOLD) ? GREEN : RED;
20 SwarmDataObject s =
21 new SwarmDirectDataObject<Color >(c) ;
22 SwarmAction b = new ToggleLEDAction (as , . . , s) ;
23 as . s chedu le () ;
24 }
25 }

Listing 4.10: 2 depending actions and the use of event handler.

(line 11), the method handleData(..) creates the second action. Here, another suite is
created to which b is added. Depending on the result of a—if the value is under a given
threshold—the color of the LED is switched. Since the programming model is based on
asynchronous actions and asynchronous system calls, there is no blocking behavior in
the execution phase. After invoking the schedule operation on as which contains a, the
method returns immediately and the thread which executes the main program is done.
The second action is created after a has been executed. Installing an event handler for
action b, on suite level or on application level is possible, though not necessary.

The example shows the usage of two separate suites, i.e., two contracts are created.
Since it is possible that the contract creation fails due to insufficient system resources
the following scenarios are possible:

• Two contracts are created (a and b are executed)

• No contract is created (neither a nor b are executed)

• One contract is created (a is executed, but not b)

Since the creation of b requires that a has been successfully executed, creating only
a contract for b is not possible. However, if the programmer intends that both actions

52 CHAPTER 4. SWARM PROGRAMMING MODEL

1 pub l i c c l a s s TempControl extends SwarmApp {
2

3 pub l i c void main (S t r ing [] argv) {
4 SwarmActionSuite as = new SwarmActionSuite (t h i s) ;
5 SwarmAction a = new MeasureTempAction (as , . .) ;
6 SwarmAction b = new ToggleLEDAction (as , . . ,
7 a . getResu l tRe f ()) ;
8

9 as . s chedu le () ;
10 }
11 }

Listing 4.11: Simple application extended by event handler.

are executed, both actions have to reside in the same suite as depicted in Listing 4.11.
Putting both actions in the same suite provides the following advantages:

• Less code: the programmer has to implement less code in contrast to the version
shown in Listing 4.10.

• Less communication: the output of a is directly sent to b.

• No event handler: no event handler has to be installed which results in a simple
sequential program implementation.

In this example, both actions are created at the same time. Since the actual result
of a has not been obtained yet, b gets a reference rather than the actual value. The
method getResultRef() is implemented in the base class SwarmAction. The return
value is a SwarmTransferDataObject<Double> which is typed at runtime based on its
instantiation, i.e., the respective action. Since the method is invoked on a, this method
will return a proxy for a Double-value (according to the generated stub in Listing 4.5).
This concept is related to the concept of futures [4].

By invoking the schedule operation, both actions are scheduled with the side con-
dition that b logically depends on a. In this case, the result of a is directly sent to b.
This scenario requires a modification of the presented driver from Section 4.5 since the
driver currently awaits a color as input. A subsequent driver modification is not desired.
Therefore, in the third variant, the concept of conditional statements is introduced.

Listing 4.12 shows an example in which a conditional statement is created (lines 6
and 7). The statement is created on action a and is interpreted as follows:

if (a < THRESHOLD) THEN color = GREEN ELSE color = RED

Using lazy evaluation, the statement is not evaluated after creation, but exactly
before execution of b. This concept enables to implement such logic constructs inside the
application and, hence, from the application programmer, but postpone the evaluation.
Furthermore, no driver modifications have to be performed.

Spatio-temporal constraints have been omitted for simplicity so far. According to
Listing 4.8 (page 44), all actions can be further constrained.

4.6. APPLICATION/LIB-MODEL 53

1 pub l i c c l a s s TempControl extends SwarmApp {
2

3 pub l i c void main (S t r ing [] argv) {
4 SwarmActionSuite as = new SwarmActionSuite (t h i s) ;
5 SwarmAction a = new MeasureTempAction (as , . .) ;
6 SwarmExpressionDataObject<Color> e =
7 a . c r ea t eExpre s s i on ("<" , THRESHOLD, GREEN, RED) ;
8

9 SwarmAction b = new ToggleLEDAction (as , . . , e) ;
10

11 as . s chedu le () ;
12 }
13 }

Listing 4.12: Simple application extended by event handler.

4.6.8 Application Lifecycle

Applications consist of concurrent actions as described in Section 4.4.2 (page 36). The
execution model is comprised of a main-thread (the thread which executes sequentially
the program’s instructions) and up to several action-threads (threads that execute actions
concurrently). The execution model is hidden from the programmer.

Each of the threads has its own lifecycle. The composition of lifecycles forms the
application lifecycle as shown in Figure 4.8. The lifecycle starts in the init-state of
the main-thread. Once the instructions in the application are being executed, the state
changes from init to local computation.

In this state, new actions can be spawned. If so, a new ActionSuite is created (con-
taining up to multiple actions) and scheduled by the system scheduler. The dashed
arrows indicate the spawning of a new action. The state of the current thread does not
change. It creates another thread with a new spawned state.

If all instructions of the main-thread have been executed, the state changes from local
computation to local computation finished. In this state, the application “waits” for its
termination. If no actions have been spawned or all of them are already executed, then
the state changes to Application finished. This is a final state and marks the application
as completely executed.

Besides the main-thread an arbitrary amount of actions-threads may exist (locally
or distributed across the network). All actions have their own states. Once an action is
spawned, it will be executed, at some point in time. This changes the state to execute.
If all actions in the same suite are executed, the state changes to ActionSuite finished.
If all ActionSuites have been executed, the state changes to All ActionSuites finished. If
the main-thread is also in its local computation finished state, then the state changes to
Application finished which indicates that the application is completely executed.

54 CHAPTER 4. SWARM PROGRAMMING MODEL

All
ActionSuites
finished

ActionSuite
finished

execute
Actions in

ActionSuite

spawn new
ActionSuite

Application
finished

local
computation
finished

init
local

computation

Main-Thread

Action-Thread(s)

Figure 4.8: Application lifecycle state space.

4.7 Dependency Graph Generation

The specification of actions together with their associated constraints and interconnec-
tions form dependencies. Referring to the lib/driver model (Section 4.4.3), the depen-
dency management as well as sanity checks are a part of the lib and, thus, are performed
locally.

A dependency graph is generated in which each action is represented as a vertex with
its absolute temporal and spatial constraints as properties. In particular, for each con-
straint type a dedicated directed, acyclic dependency graph is generated. Since there are
three types (logical, spatial, temporal), three graphs are created: the spatial and tempo-
ral graph additionally have weighted edges. All of them reside in the SwarmActionSuite
and are created upon instantiation. The following explains the three dependency types:

• Logical dependency: A logical dependency is created if an action shall depend on
an already existing action. A logical dependency is written as b →l a and states
that the output of a is required as input for b. There are two operations that create
a logical dependency:

– b = new SwarmAction(.., a.getResultRef())
creates b→l a.

– b.addLogicalDependency(a)
creates b→l a.

• Temporal dependency: A temporal dependency specifies a temporal relation be-
tween two actions: b

t∗−→t a. In this case, b shall be executed t∗ time units after a
with t∗ > 0. A relative time constraint is added by:

– b.addTimeConstraint(a, new SimpleTime(5))
creates b

5−→t a.

4.7. DEPENDENCY GRAPH GENERATION 55

• Spatial dependency: A spatial dependency specifies a spatial relation between two

actions: b
(x,y)−−−→s a. In this case, b shall be executed x space units in x- and y space

units in y-direction apart from a. For this, the city block distance2 is used.

– b.addSpaceConstraint(a, new CityBlockDistance(5,-5))

creates b
(5,−5)−−−−→s a.

All three graphs must be acyclic. Each of the above mentioned instructions triggers
a checking of all three graphs. In case a cycle has been detected the last modification is
reverted and the constraint is rejected.

4.7.1 Scheduling a New ActionSuite

In the following, the construction of the dependency graphs are explained according to
a small example. Listing 4.13 shows the creation of six actions (a, .., f). In this
example, it is abstracted from the concrete action type and instead it is only referred to
as SwarmAction. Every suite must have at least one independent action. Here, action
a is independent since it does not depend on other actions. They are also called root
actions. The composition of action a, .., f (line 4-10) lead to the generation of the

2City block distance is also called Manhattan distance or taxicab metric is a rectilinear distance (L1

distance or ℓ1 norm).

1 SwarmAction a , b , c , d , e , f ;
2 SwarmActionSuite as = new SwarmActionSuite (t h i s) ;
3

4 a = new SwarmAction (as) ;
5 b = new SwarmAction (as , a . getResu l tRe f ()) ;
6 c = new SwarmAction (as , a . getResu l tRe f ()) ;
7 d = new SwarmAction (as , b . getResu l tRe f () , c . getResu l tRe f ()) ;
8

9 e = new SwarmAction (as) ;
10 f = new SwarmAction (as , e . getResu l tRe f ()) ;
11

12 a . addTimeConstraint (new TimeInterval (1240 , 1260)) ;
13 a . addSpaceConstraint (new Rectangle (10 ,10 ,20 ,20)) ;
14

15 b . addSpaceConstraint (a , new CityBlockDistance (5 ,−5)) ;
16 c . addSpaceConstraint (a , new CityBlockDistance (5 , 5)) ;
17 e . addSpaceConstraint (a , new CityBlockDistance (15 ,0)) ;
18

19 c . addTimeConstraint (b , new SimpleTime (0)) ;
20 f . addTimeConstraint (e , new SimpleTime (5)) ;
21

22 as . s chedu le () ;

Listing 4.13: Actions with mixed dependencies.

56 CHAPTER 4. SWARM PROGRAMMING MODEL

c

b

a d e f

(a) Logical dependencies between actions (a, .., f).

c

b

a e
(5,5)

(5,-5)

(15,0)

(b) Spatial dependencies between actions (a, .., f).

c

b

e ff50

(c) Temporal dependencies between actions (a, .., f).

c

b

a d e f

(d) Meta graph of actions (a, .., f).

Figure 4.9: Dependency graphs for actions (a, .., f).

logical dependency graph which is depicted in Figure 4.9(a). The graph is not connected.
Figure 4.9(b) shows the relative spatial dependencies between the actions. They are
expressed using the city block distance (line 15-17).

Finally, Figure 4.9(c) shows the relative temporal dependencies. Action b and c are
constrained to be executed at the same point in time, but at different locations. Using
this set up all actions have to reside in the same suite. Figure 4.9(d) shows the combined
(meta) graph which includes all dependencies.

4.7.2 Rescheduling an Existing ActionSuite

In the init state (Section 4.6.5, page 47), the only allowed operation is schedule() which
requests the scheduling of the suite. After the invocation, the suite is in a pending state.
A modification of constraints and/or actions of a suite is allowed at any time. System
calls are disabled in the pending state. Once the suite is in scheduled <committed> state,
the operations reschedule() and unschedule() become available.

Listing 4.14 shows a code fragment which is an extension of Listing 4.13. In line 3 a
new action g is added which creates a logical dependency to e. Afterwards, the action

4.7. DEPENDENCY GRAPH GENERATION 57

1 SwarmAction g ;
2

3 g = new SwarmAction (as , e . getResu l tRe f ()) ;
4

5 as . remove (d) ; // removes ac t i on d
6

7 f . addSpaceConstraint (e , new CityBlockDistance (5 ,−5)) ;
8 g . addSpaceConstraint (e , new CityBlockDistance (5 , 5)) ;
9

10 g . addTimeConstraint (f , new SimpleTime (0)) ;
11

12 as . r e s chedu l e () ; // r e s chedu l i ng

Listing 4.14: Reschedule ActionSuite.

d together with its logical dependencies to b and c is removed. The updated logical
dependency graph is depicted in Figure 4.10(a). In lines 7 and 8, a new relative spatial
constraint is added for f and g, respectively. The updated spatial dependency graph
is depicted in Figure 4.10(b). In line 10 a new relative temporal constraint is added
which creates a dependency from g to f expressing that both actions shall be executed
at the same point in time. The updated temporal dependency graph is depicted in
Figure 4.10(c).

Finally, in line 12, reschedule() is invoked which requests a rescheduling of this
suite if the suite is in scheduled <committed> state only. As long as the operation is not
completed, the suite is again in a pending state. System calls are, thus, disabled again.
The impact of the operation is either that a new contract is created which comprises the
modifications of the suite or the old contract is restored in case of non-schedulability.

An action can only be removed from a suite if no other action depend on it. Therefore,
the attempt of removing a (as.remove(a)) would not succeed since other actions (b,
c and e) depend on it as depicted in the combined (meta) graph in Figure 4.10(d).
Cascading removal of actions is by design not supported.

However, a great advantage in using contracts here is that the programmer is aware
that, at least, one contract is obtained after the operation has been completed.

4.7.3 Unscheduling an Existing ActionSuite

If a contract for a given suite shall be removed, the suite must also be in scheduled <com-
mitted> state. If so, the operation unschedule() requests the removal of all scheduled
actions. If this succeeds, all contained actions are removed from the internal schedule,
the contract is discarded and the suite gets into the unscheduled <committed> state. The
entire suite including the dependency graphs is marked for removal.

58 CHAPTER 4. SWARM PROGRAMMING MODEL

c

b

a e

f

g

(a) Logical dependencies between actions (a, .., g).

c

b

a e
(5,5)

(5,-5)

(15,0)

f

g(5,5)

(5,-5)

(b) Spatial dependencies between actions (a, .., g).

c

b

0 e
5 f

g

0

(c) Temporal dependencies between actions (a, .., g).

c

b

a e

f

g

(d) Meta graph of actions (a, .., g).

Figure 4.10: Dependency graphs for actions (a, .., g).

4.8 Conclusion

This chapter presented the swarm programming model. After showing the state of the
art of programming models, Section 4.3 discussed language aspects in wireless sensor
networks whereas Section 4.3.1 focused on different dimensions and Section 4.3.2 stated
which language aspect dimensions shall be considered for designing the new programming
abstraction for the swarm. Section 4.4 - 4.6 explained the core of the programming
model while Section 4.7 showed how dependencies are handled internally when using the
interface operations. This chapter is concluded by stating a summary about the features
of the programming model:

• No blocking: The entire model is designed such that no blocking procedure calls
appear. Executing actions as well as performing system calls are asynchronous.

• Distribution transparency: Each action may be executed on different nodes which
might be even necessary according to given spatio-temporal constraints. However,
this is fully transparent for the application programmer.

4.8. CONCLUSION 59

• Concurrency transparency: The concept of threads and concurrent execution is
hidden from the programmer and suitable event handlers are provided in order to
obtain status information or data produced by actions.

• Implicit communication: All communication is hidden from the programmer and
deeply buried inside the system.

• Systemic description: Using the programming model, the programmer is able to
specify

– What shall be done: a certain objective which is expressed as a composition
of single instructions (actions) that are grouped into suites according to their
dependencies.

– Where and when it shall be done: declarative annotated side conditions which
state the execution context using spatio-temporal constraints

• Resource reservation: Based on the concept of contracts, the programmer is able
to perform resource reservation according to the spatio-temporal constraints in
advance. The system either confirms or rejects a contract.

• Rebooking: If already obtained, a contract can be arbitrarily modified which ex-
presses the dynamic of the approach. Modifying a contract requires, first, a modifi-
cation of the specification and, second, an approval of the system. Once confirmed,
the new contract is established.

• Transparent movement: If an application requires that robots have to move in phys-
ical space, the movement (steering, navigation) is completely transparent. Also,
the type of robot (flying, floating, grounded) is transparent.

• Less Code: Only few lines of source code are sufficient in order to program certain
functionality as expressed in the examples in this chapter. The error-proneness is
strongly reduced.

Chapter 5

Swarm Runtime System

In order to execute swarm applications, a dedicated distributed infrastructure is required.
This chapter addresses this issue and presents a service-oriented architecture for the
swarm runtime system. There are two types of services: local services are executed
on every node that is part of the system and are required for local node management,
i.e., accessing sensors and actuators. Global services are executed on some node of the
system and are used for global system management which includes resource allocation
and scheduling. As usual in computer systems, a certain allocation of resources produces
a load of the system, i.e., a characteristic that states to which extent the resources of
the system are being utilized. Therefore, this chapter also introduces metrics in order to
determine the system’s utilization.

5.1 Introduction

In order to support the execution of swarm applications developed according to the pro-
posed programming model, a distributed swarm infrastructure is required that provides
efficient, non-conflicting resource allocation and management as well as synchronization
and coordination.

This chapter is organized as follows: Section 5.2 introduces the concept of swarm
virtualization and action management. Section 5.3 presents the distributed architecture
of the runtime system. Section 5.4 defines the system utilization. In Section 5.5 the
operation of the system including an applied variant of the two-phase commit protocol is
presented. Section 5.6 shows the system interface. Finally, Section 5.7 summarizes this
chapter.

5.2 Action Management and Swarm Virtualization

In order to enable multi-program operation on the swarm, virtualization on resource
level is used. A programmer has no direct access to a physical resource. Actions require
certain resources for a particular amount of time. Programmers create actions (with

61

62 CHAPTER 5. SWARM RUNTIME SYSTEM

spatio-temporal constraints) on virtual resources. A virtual resource is mapped to a
physical resource at runtime by the system scheduler. Given a set of actions on virtual
resources (from possibly multiple applications), the scheduler computes a spatio-temporal
mapping from virtual to physical resources. A physical resource is, hence, used in a time
sharing manner.

The sum of all actions on virtualized resources at a given point in time is called the
virtual swarm which is the execution context of the application. In particular, a virtual
swarm is a time-varying mapping of actions on virtualized resources to physical resources
as shown in Figure 5.1.

As an improvement, actions can be merged into one in order to reduce the overall
system utilization. Two actions can be merged if

• They request a compatible capability.

• The intersection set of the respective constraints is not the empty set. For this two
intersection sets have to be created: a temporal and a spatial one.

In the following, two actions a and b are considered with the following specifications:

• capa {TempSensor: Resolution: 0.1}, ta ∈ [0, 10] ∧ la ∈ [(0, 0), (10, 10)].

• capb {TempSensor: Resolution: 0.5}, tb ∈ [2, 7] ∧ lb ∈ [(2, 2), (8, 8)].

Both actions request the same capability (capa and capb), a temperature sensor, but
with different configurations (different resolutions). The timing constraints of the actions
are given by ta and tb. The spatial constraints are given by la and lb. Before two actions
are merged, the following rules have to be checked:

(∃cap∗|cap∗ ⊆ capa ∧ cap∗ ⊆ capb) (5.1)

(∃t∗|t∗ ⊆ ta ∧ t∗ ⊆ tb) (5.2)

(∃l∗|l∗ ⊆ la ∧ l∗ ⊆ lb) (5.3)

First, the compatibility of capabilities has to checked (Rule 5.1). A compatible capa-
bility is, hence, cap∗ = {TemperatureSensor: Resolution: 0.1} since this capability has
a more fine-grained resolution which also satisfies the needs of action b. Next, Rule 5.2
checks the temporal constraints: two actions can be merged if the intersection set is
not the empty set. The intersection is: t∩ = ta ∩ tb = [0, 10] ∩ [2, 7] = [2, 7]. Finally,
Rule 5.3 checks the spatial constraints by creating the intersection set: l∩ = la ∩ lb =
[(0, 0), (10, 10)] ∩ [(2, 2), (8, 8)] = [(2, 2), (8, 8)].

Since cap∗, t∗ ∈ t∩ and l∗ ∈ l∩ exist, the two actions a and b can be merged into a
new action c: capc = cap∗, tc = t∩ and lc = l∩.

Depending on the constraints, it is possible that a merged action c is not schedulable
but the original actions a and b are schedulable. This is due to shrinking the solution

5.3. ARCHITECTURE 63

Application

Swarm RuntimeCapability Capability

ActionSuite

Merging

Application Application

Merging

VirtualSwarm
VirtualSwarm VirtualSwarm

UAV UGV

Actions

Figure 5.1: Action management and swarm virtualization.

space. In that case, the merged action c is discarded and the original actions a and b are
“restored” and scheduled separately.

The example depicted in Figure 5.1 shows three applications creating six actions in
total that are distributed across four suites. Since each application has its own virtual
swarm, there are also three virtual swarms depicted. Two pairs of actions could be
merged into one, respectively, resulting in a total of five actions that are mapped to
physical resources.

5.3 Architecture

Figure 5.2 shows the system architecture which consists of system services (used for global
system management) and node services (used for local node management). Services
provide necessary functionalities in order to operate the system. They are loosely coupled
and are kept modular, enabling interchangeability. In Section 5.3.1 the local system
services and in Section 5.3.2 the global system services are explained.

5.3.1 Local System Services

The set of local system services are executed on every node that is participating in the
(distributed) swarm system. The following explains the individual services in detail.

NodeManager

The node manager is the central management service on each node and has several respon-
sibilities. If a new application shall be executed, it is first sent to the LoadBalancer which

64 CHAPTER 5. SWARM RUNTIME SYSTEM

Client
Interface

Local
Call

Message
Passing

Locating
System

S
w

a
rm

 R
u

n
ti

m
e
 S

y
s
te

mLocProvider

LoadBalancer

Job
Scheduler
Trajectory
Planner <

sc
h
e
d
u
le
>Scheduler

NodeMgr
ActionCtrl

Job
TaskMgr

App lib

driver

S
y
s
te

m
 S

e
rv

ic
e
s

N
o
d

e
 S

e
rv

ic
e
s

MotionCtrl
Job

control
algorithms

System
Shell

CommCtrl

DependencyRslv
SwarmCtrl

ContractMgr

Figure 5.2: Architecture of the swarm runtime system.

decides on which node the application is started. According to the result, the respective
node manager (on the node chosen by the load balancer) informs the TaskManager which
starts the application. As the central management service, the node manager is respon-
sible that the schedule for this node is kept. Therefore, it may temporarily interrupt a
running application in case the system load is high.

If new jobs have been scheduled by the Scheduler, they are transferred via the Swarm-
Ctrl. There are two possible types of jobs: movement jobs and action jobs. The former
one is forwarded to the MotionCtrl while the latter one is forwarded to the ActionCtrl.
In particular, the node manager owns a local run-queue and acts as a dispatcher: all
jobs in the queue are ordered according to its attached timestamp which states at which
point in time the respective action shall be executed. The first element is popped from
the queue (depending on the timestamp) and handed over to the respective service which
then starts to execute it. Due to the time-based execution semantic, the system idles in
the period between the current point in time and the point in time when the next job
has to be executed.

SystemShell

The system has a command line interpreter in order to interact with the system, obtaining
system states and starting new applications.

5.3. ARCHITECTURE 65

ActionControl

The action control is responsible for driver management. The corresponding lifecycle
has been explained in Section 4.5.3. The node manager instructs the action control,
if a new action shall be executed. The action itself contains information about which
system capability shall be used. The action control dispatches to the respective driver
which executes it. If return values are provided, then the action control triggers the
node manager to send the data to a certain target, as specified by the program logic (see
Section 4.6).

MotionControl

The motion control is responsible for movement. Movement is defined here as the change
in position of the current node. The local nodes give up their autonomy and are con-
trolled by the system instead. Arbitrary movement is, thus, not allowed. Two things
are necessary: first, the node has to know the exact route (where to go) and, second, it
needs to know its current location.

The motion control becomes active when a new job arrives from the node manager.
The job contains a spatio-temporal trajectory which is a set of space-time points (x, y, t).
The motion control has access to multiple control algorithms. In order to follow the
trajectory, the elected algorithm is responsible for fine-grained control of the actuation
system of the node, e.g., for some UGVs, the actuation system is comprised of wheels.
For each device class a suitable control algorithm has to be available in order to steer the
node. The different velocities, necessary to follow the trajectory, are implicitly derived,
based on the space-time points.

There are different options in order to obtain the current location: based on odom-
etry, context information such as location and heading is estimated based on a starting
location using sensors, e.g., wheel rotation for wheel-based robots. GPS can be used
complementary in order to reach a higher precision. However, the architecture presented
in this thesis shows the use of an external locating system that computes the location and
heading of the robots. The locating system is explained in the appendix (Chapter B).

TaskManager

The task manager monitors and manages all local services. If a new application shall be
started (as instructed by the node manager), it loads the respective code, e.g., from disk
and starts the local execution by jumping to the application’s entry point. The execution
takes place in a different thread of control that is managed by the task manager.

CommCtrl

As a central element for communication, the communication control establishes the con-
nections between the node and system services. In Figure 5.2, solid arrows indicate
regular (local) method invocations. All local services simply use method invocation
while system services are distributed across the network and, therefore, communication

66 CHAPTER 5. SWARM RUNTIME SYSTEM

with them requires message passing (dashed arrows). Each node has one communication
control that handles all necessary data exchange.

5.3.2 Global System Services

The global system services are distributed across the network. They communicate using
message passing. The following explains the global services in detail.

LoadBalancer

The load balancer is responsible for distributing the load across the nodes. In particular,
if a new application is started, the load balancer assigns the application to the node
with the lowest future load. The calculation of the load (node utilization) is explained
in Section 5.4. Currently, the load balancer decides based on the absolute utilization u;
with ur being the utilization of robot r. If a new application is submitted for execution,
the load balancer determines the node r∗ which has the minimum utilization ur∗ : ur∗ :=
min(ur1 , ur2 , ..urn).

Movement and action jobs are node-specific and can not be assigned to other nodes
since they have been scheduled to dedicated nodes based on the attached spatio-temporal
constraints. Depending on application behavior, there might be some nodes involved in
heavy computation while others might be more in idle state. This situation occurs, e.g.,
when required resources are only available on particular nodes. Hence, the load balancer
obtains its importance since it redirects applications to nodes with fewer (future) load.
Applications themselves have no execution restriction according to space and time; this
is only valid for the contained actions.

Space-Time Scheduler

The scheduler is the core-service and is responsible for scheduling all actions together with
their spatio-temporal constraints in space and time. In particular, a call to schedule()
triggers the scheduler. The scheduler receives an action suite with actions and constraints
and tries to find a mapping of all contained actions to nodes under consideration of the
constraints in order to create a contract (Section 4.6.3). The scheduler is comprised of
three components, the DependencyRslv, the JobScheduler and the PathPlanner.

DependencyRslv The dependency resolver is the first stage that is addressed when
a schedule operation is triggered. As described in Section 4.7, each action suite contains
a dependency graph. The responsibility of the dependency resolver is to produce a
topological sorting on the elements of the dependency graph. This determines the order
in which the actions are scheduled.

JobScheduler The job scheduler is the second stage. According to the topological
sorting, the elements are successively transferred to the job scheduler. Each time the job
scheduler is invoked, it evaluates the action together with its constraints (including the

5.3. ARCHITECTURE 67

required capability) and uses a heuristic in order to pick a robot and proposes it as a
candidate to the trajectory planner.

TrajectoryPlanner The trajectory planner is the final stage which checks schedula-
bility of the action on the proposed robot candidate by calculating a spatio-temporal
trajectory. It must be assured that the spatio-temporal trajectory is collision-free from
static as well as dynamic obstacles. Furthermore, the trajectory must have been calcu-
lated such that the robot is able to reach the final destination and execute the action
without violating any of the attached constraints. Overall schedulability of an entire
action suite is checked if all individual actions of that suite are schedulable.

SwarmControl

The swarm control is the mediator between the individual nodes and the system sched-
uler. In particular, it obtains scheduled jobs from the scheduler. The jobs are enqueued
in a local run-queue and sent to the respective nodes.

As described in Section 4.6.4, after the scheduler has successfully checked schedu-
lability, executability has to be checked as well before a new contract is created. The
responsibility of the ContractMgr is, hence, to check executability and, if successful, a
new contract is created. As a result the respective application is notified. The protocol
which checks executability is introduced in Section 5.5.1. The period in which executabil-
ity has to be checked is also called uncertainty period since it is not clear during this time
if a new contract is created or not. Avoiding inconsistencies between parts of the system,
the scheduler internally uses the concept of alternatives which temporarily includes an
alternative schedule: one schedule reflects the situation in which the new contract is
created and the other schedule reflects the situation in which the contract is not created.
In both cases—either executability is granted or not—the scheduler has to be notified in
order to commit one of the schedule alternatives and discard the other one.

The responsibility of notifying the scheduler to either commit or discard a schedule
lies in the swarm control.

LocationProvider

The location provider is a simple component that provides context parameters (physi-
cal coordinates, heading, robot identification number) of all nodes that are part of the
presented swarm system in this thesis. It obtains such parameters by an external locat-
ing system that is explained in the appendix (Chapter B). It delivers the values to the
respective nodes. Those values are requires by the motion control. Using decentralized
locating, e.g., GPS, would even simplify the architecture since each node would know its
current location.

68 CHAPTER 5. SWARM RUNTIME SYSTEM

5.4 System Utilization

At each point in time, a robot is in one of the following states exclusively1:

• execution mode: a robot is currently involved in the execution of a job.

• movement mode: a robot is currently performing movement, i.e., the robot is in a
movement process in order to execute a job at a particular position.

• idle mode: in idle mode the robot is neither in execution nor in movement mode
and, thus, “idles” at its current position.

The system has a utilization u(t1, t2) with [t1, t2] being the time interval in which u
is calculated; t2 > t1. Each utilization is normalized: u ∈ [0, 1]. The length of the time
interval is defined by ∆t := t2 − t1. The system utilization u is defined as a function of
the utilizations of the individual nodes:

u(t1, t2) :=
u1(t1, t2) + u2(t1, t2) + ..+ un(t1, t2)

n
(5.4)

with ur being the local utilization of robot r. There are different utilization functions
that express different utilization types:

5.4.1 Job Utilization

The job utilization ujr(t1, t2) defines the utilization of robot r based on action jobs in
the time interval [t1, t2]. In particular, it expresses the fraction in which the robot is
occupied based on action jobs that have to be executed. The utilization is given by

ujr(t1, t2) :=

∑
j∈Jr | j∈[t1,t2] dur(j)

∆t
(5.5)

For the calculation all jobs j ∈ Jr of robot r are considered that will be executed in
the time interval [t1, t2]. The function dur(j) delivers the duration of job j. If a job lies
partially in the interval, then dur(j) delivers only the fraction that is inside [t1, t2].

5.4.2 Motion Utilization

The motion utilization umr (t1, t2) defines the utilization of robot r based on movement
jobs in the time interval [t1, t2]. In particular, it expresses the fraction in which the robot
is occupied based on movement. The utilization is given by

umr (t1, t2) :=

∑
m∈Mr | v(m)>0 dur(m)

∆t
(5.6)

In order to calculate umr (t1, t2) all movement jobs of robot r are considered that will be
executed in the time interval [t1, t2]. A movement job m ∈Mr contains a spatio-temporal

1This assumption is made due to hardware-specific reasons (CPU with single core) of the testbed.

5.4. SYSTEM UTILIZATION 69

trajectory which may consist of multiple segments (m1,m2,m3, ..)2. Each segment may
have different velocities v: v(mi). The function dur(m) delivers the time that is required
in order to perform the movement. If m contains segments, then the duration is computed
for each segment: dur(m) = dur(m1) + dur(m2) + .. + dur(mn). The duration is only
considered if v > 0:

dur(m) =

{
0, if v(m) = 0

dur(m), otherwise
(5.7)

5.4.3 Relative Motion Utilization

The relative motion utilization um
∗

r (t1, t2) defines the utilization of robot r based on
movement jobs in the time interval [t1, t2] while considering the actual velocity. The
motion utilization, umr (t1, t2), in contrast, treats the velocity as a binary function—v = 0
or v > 0. Only segments which state a velocity v > 0 are considered. The relative motion
utilization um

∗
r (t1, t2) considers all velocities and expresses to which extent the robot’s

capacity is used3. The relative motion utilization is given by

um
∗

r (t1, t2) :=
len(m)

∆t · vmax
(5.8)

The function len(m) delivers the total length of the trajectory of m (physical length).
The denominator, ∆t · vmax expresses the maximum physical path length that the robot
is able to move during the time interval given by [t1, t2] with ∆t = |t2 − t1|. The value
of um

∗
r indicates the ration between the effective covered distance and the maximum

theoretic distance.

5.4.4 Utilization

The utilization ur(t1, t2) defines the combined utilization of both ujr(t1, t2) and umr (t1, t2)
with respect to robot r. The utilization is given by

ur(t1, t2) := ujr(t1, t2) + umr (t1, t2) (5.9)

5.4.5 Relative Utilization

The (relative) utilization u∗r(t1, t2) defines the combined utilization of both ujr(t1, t2) and
um

∗
r (t1, t2) with respect to robot r. The utilization is given by

2This section describes utilizations based on job-level. A movement job m contains a spatio-temporal
trajectory whose concrete computation is not addressed here, but given in a later chapter.

3Future work might address to reschedule nodes with small utilizations um∗
r (t1, t2) (low velocities)

in order to schedule more action jobs if the motion utilization um
r (t1, t2) itself is high. The relative

motion utilization plays an important role when energy-aware scheduling is considered. In this case, a
trade-off between energy consumption and high velocities has to be found. Energy-aware scheduling is
not considered in this thesis and is, hence, declared as future work.

70 CHAPTER 5. SWARM RUNTIME SYSTEM

m1

t0

trajectory m

10

job am2 m3

2 4 6 8

job a freefree

Figure 5.3: Schedule of robot r.

u∗r(t1, t2) := ujr(t1, t2) + um
∗

r (t1, t2) (5.10)

5.4.6 Idle Time

The idle utilization uir(t1, t2) defines the fraction in which the robot idles and, thus, is
free. Idling indicates that the robot is neither executing a job nor performing movement.
The idling utilization is given by

uir(t1, t2) := 1− ur(t1, t2) (5.11)

5.4.7 Relative Idle Time

The relative idle utilization ui
∗
r (t1, t2) indicates the fraction of available capacities. In

relative idle time a motion that is performed with a velocity v < vmax is interpreted
as a special case of idle time since the robot has more capacity than actually used. If
uir(t1, t2) > ui

∗
r (t1, t2), this indicates that the robot does not constantly move with vmax.

In general, uir(t1, t2) ≥ ui
∗
r (t1, t2) holds. The relative idling utilization is given by

ui
∗
r (t1, t2) := 1− u∗r(t1, t2) (5.12)

5.4.8 Example

Figure 5.3 shows an example schedule of robot r. The schedule contains one trajectory
m and one job a. The trajectory consists of three segments (m1,m2,m3). The maximum
velocity is given by vmax = 2. Table 5.3 shows the different utilizations as a function
of the time interval given by [t1, t2] (Table 5.1 shows the parameter setup and Table 5.2
shows auxiliary functions). Since there is only one robot the system utilization u is equal
to the (relative) utilization of robot r. The scenario is set up as follows (Table 5.1): The
first trajectory segment m1 has a physical length of 1 (len(m1)). The movement along
m1 takes 1 time unit (dur(m1)) while moving with a constant velocity of 1 (v(m1)). The
second segment m2 has a physical length of 0 (len(m2)), i.e., r is not moving (v(m2) = 0).
After a duration of 3 time units (dur(m2)), the robot continues moving along the third
segment m3 for 1 time unit (dur(m3)) with a velocity of 2 (v(m3)). Trajectory segments
with a velocity of 0 may appear due to several reasons, e.g., the current path is blocked
for a given amount of time and, hence, the robot has to wait until the path becomes free
again.

5.5. SYSTEM OPERATION 71

m1 m2 m3

len(..) 1 0 2
dur(..) 1 3 1
v(..) 1 0 2

Table 5.1: Parameter set-up.

dur(a) ∆t dur(m) len(m)

[0, 10] 2 10 2 3
[3, 7] 1 4 1 2

Table 5.2: Auxiliary functions.

ujr umr um
∗

r ur u∗r uir ui
∗
r u

[0, 10] 0.2 0.2 0.15 0.4 0.35 0.6 0.65 0.4 (0.35)
[3, 7] 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.5 (0.5)

Table 5.3: Utilizations of robot r and system utilization u.

5.5 System Operation

Using the system shell (Section 5.3.1), new applications can be started and system states
as well as utilizations introduced in Section 5.4 can be monitored. If an application is sub-
mitted for execution, the load balancer determines a suitable node and the node manager
starts initiating the execution by jumping to its entry point as described in Section 5.3.1.
Once a new application is started, its lifecycle is initiated and traversed as introduced
in Section 4.6.8. If the execution of the application’s code reaches an instantiation of an
action suite, then its lifecycle is initiated as explained in Section 4.6.5. An invocation of
one of the schedule() operations (Section 4.6.2) of an action suite results in serializing
and sending the associated actions together with the dependency graph (Section 4.7) to
the scheduler by message passing. This initiates the contract creation lifecycle as de-
scribed in Section 4.6.4. The scheduler schedules the actions under consideration of the
spatio-temporal constraints and the dependency graph in space and time as explained
in Chapter 7. Once the scheduler has produced a schedule for the action suite (sched()
holds), the result is handed over to the swarm control in order to communicate and as-
sign the generated individual jobs to the respective nodes. Although the scheduler has
already calculated and assigned actions to nodes, this has still to be communicated over
the network (via message passing) to the nodes which inevitably consumes time. If real-
time communication is possible, firm statements about the worst case message delay can
be assumed. This upper time bound for communication can simply be incorporated in
the entire workflow (ranging from the scheduling to finally inform the nodes). However,
in a scenario in which mobile robots communicate using wireless multihop networks, it
is hard to guarantee hard real-time communication. Therefore, an upper bound for the
message delay can not be assumed. Since all actions in the action suite shall be executed

72 CHAPTER 5. SWARM RUNTIME SYSTEM

SwarmCtrl Space-Time
Scheduler

Voting
Request

NodeMgr NodeMgr NodeMgr
voting voting

Runtime
System

scheduleApp

(a) Voting phase.

SwarmCtrl Space-Time
Scheduler

NodeMgr NodeMgr NodeMgr

Runtime
System

commit commit abort

abortApp

(b) Commit phase.

Figure 5.4: Variant of two-phase commit protocol.

(according to the spatio-temporal constraints), executability (exec()) has to be checked in
addition which requires to incorporate a distributed voting phase, i.e., all nodes involved
in the execution of an action suite are informed and perform a voting.

5.5.1 Variant of Two-Phase Commit Protocol

In order to decide executability, a variant of the two-phase commit protocol (2PC) [37]
is applied as depicted in Figure 5.4. The swarm control sends all jobs scheduled by
the scheduler to the involved nodes and requests the nodes to perform a local voting
(Figure 5.4(a)). This starts the voting phase. A node must vote to commit if the
execution of the job is possible. In the case that the node is not able to execute the job
(due to insufficient resources or too late arrival of messages), it is allowed to reject the
job by voting with abort.

The variant of the two-phase commit protocol operates according to the original 2PC
in two stages: first, in the voting phase, the nodes perform a voting. Only if all nodes
vote to commit, the transaction is globally committed. If at least one node has voted
to abort, the entire transaction is aborted. Once a node has voted for commit or abort
it has to stay with its vote. After all votings from the nodes have been collected, the
coordinator (swarm control) makes a decision. In the second stage, the coordinator tells
all participating nodes if the global transaction should be committed or aborted. If at
least one abort is received, the entire transaction is aborted.

The period between the local vote and the final decision is called uncertainty period.
During that time a node can not unilateral commit or abort since it does not know the
global decision. Timeouts are used in the second phase if a commit / abort message from
the coordinator got lost which triggers a retransmit. This works for transient errors. The
disadvantage of the two-phase commit protocol is that permanent errors, i.e., the message
never arrives, requires user interaction. There is no default value that could simply be
adopted. There are variants of that protocol such as the three-phase commit protocol
(3PC) [92] and the enhanced three-phase commit protocol (E3PC) [41]. They improve
the original 2PC protocol to a certain extent. Both variants create quorums in case of
failures in order to make further progress. While the 3PC can only make progress in case
of one failure, the E3PC proposes that a quorum always makes progress. However, since

5.5. SYSTEM OPERATION 73

d

b

r1 a fork point

Figure 5.5: Spatio-temporal fork point.

the work of this thesis is based on space and time, the following situation could occur:
A robot r1 has already two confirmed scheduled jobs (a, b) as depicted in Figure 5.5.

Its current schedule is s1 = {a, b} which states that r1 first has to move to a and
afterwards to b. A new action d shall be scheduled. The scheduler has computed a new
schedule s∗1 = {a, d, b}. The predicate sched(d) is true. The new job d is scheduled
between both other actions. The resulting spatio-temporal trajectories are (a → d →
b). After sched(d) holds, exec(d) has to be verified as well before the action is finally
committed for execution. Therefore, the new schedule s∗1, which shall replace s1, is sent to
r1 initiating the voting phase. The message that carries s∗1 is defined as ms∗1

. Depending
on the arrival time tarr(ms∗1

) of ms∗1
at r1 and the time at which r1 has arrived at the

fork point tfp, the following situations can occur:

• tarr(ms∗1
) > tfp: In this case, the message arrives too late, i.e., r1 had no informa-

tion of the new job d as it left the “fork point”. In this scenario, the fork point is
not really a fork point since r1 was not aware that it was a fork point. Since the
entire system is strictly space and time based (this applies also to the trajectory
(a→ b)), sched(d) is true, but exec(d) is false (the robot cannot go back in time).
In this case, the robot has to reply to the voting request with an abort message.

• tarr(ms∗1
) <= tfp: In this case, the message arrives either in time or ahead of time

concerning the fork point. The robot has a chance to take the detour (a→ d→ b)
and execute d. In this case, r1 votes for commit.

Using the classic 2PC, the uncertainty period starts right after the robot has voted
and ends at the point in time when the global commit or abort message, which has been
sent by the coordinator, is received. In the following this interval is given by [tup1 , tup2].
During that time participants can not unilateral commit or abort since they do not
know the global decision of the coordinator. Assuming the case that the message arrived
not after the fork point: tarr(ms∗1

) <= tfp. The point in time at which the global
commit / abort message arrives is tarr(mc/a). The following order on the timestamps
of the events hold: tarr(ms∗1

) < tup1 < tarr(mc/a) < tup2 . The order indicates that first
the voting request is received which initiates the uncertainty period. After the global
decision message is received, the uncertainty period is terminated. Using the classic 2PC
the following situations can occur:

74 CHAPTER 5. SWARM RUNTIME SYSTEM

• tarr(mc/a) <= tfp: In the case, the message containing the global decision arrives
ahead of time or in time, i.e., before or at the point in time when r1 has reached
the fork point, then r1 moves to d in case the global decision is a commit or moves
to b if the global decision is an abort.

• tarr(mc/a) > tfp: In this case, r1 reaches the fork point during the uncertainty
period. Since the entire system is based on space and time, the robot has to make
a decision in which direction it will continue to move. If the robot has voted for
abort, then the route over d is not possible either way, independent of the global
decision message. In case r1 has voted for commit, the global decision might be
also a commit or an abort. This situation is not determinable.

Therefore, the 2PC protocol is modified as follows: After a node has voted for commit
or abort, it has to stick to its vote, i.e., if r1 has decided to commit, it will move along the
trajectory a→ d→ b and will execute d. Otherwise it moves directly to b (abort vote).
Only in case that all participating robots have commonly voted for commit the designated
application that has issued the scheduling is notified accordingly (5.4(b)). This has the
advantage that the system is completely autonomous; no user interaction is required. If
one node votes for abort and the others vote for commit, then swarm control triggers
an unschedule() operation immediately in order to discard the respective actions and
correct the trajectory respectively. The unschedule operation only involves one action,
e.g., if x nodes have voted for commit, then x individual unschedule operations for the
nodes will be performed. If an unschedule operation is triggered while the robot is already
on its way, the trajectory cannot be changed. It is still possible that simply the job is
not executed. However, from the application’s point of view (in user space) the action
suite has an all-or-nothing semantic since either all values are provided or none of them.
Applying the simple cost model that has been introduced in Section 4.6.3, as incentive an
application only has to “pay” for resources if a contract is actually applied, i.e., sched()
and exec() are both true and no re- or unscheduling has been performed.

If event handlers are installed (Section 4.6.6), the verification of sched() and exec()
together with the respective results are provided for the application in order to react to
the state changes.

5.5.2 Control Flow

This section describes the control and message flow of scheduling a new action suite
including the role and intention of the involved components. Figure 5.6 shows the order
and the amount of messages that have to be sent in order to (successfully) schedule the
action suite. Each node, that is involved in the entire process, is marked with a different
color in Figures 5.6 and 5.7.

As explained in Chapter 4, the library (lib) is used in order to create new actions.
Figure 5.6 presents the execution of an application. Using the lib, a new action is created
and the schedule operation is invoked. In order to communicate with the scheduler, a
dedicated component (SchedulerProxy) is used that creates the respective messages and

5.5. SYSTEM OPERATION 75

SwarmApp lib Scheduler
Proxy

Scheduler
Wrapper

Scheduler SwarmCtrl NodeMgr ActionCtrl MotionCtrl

createAction

schedule
scheduleRequest

schedule compute

sendTransaction
scheduleSuccess

actionSuiteScheduledonScheduled
assignJob enqueueJob

jobEnqueued

enqueueTrajectory

trajectoryEnqueued
vote commit

commit

commit
move

execute

jobDone
jobDone

onFinish jobCompleted

committed
actionSuiteCommittedonCommit

onAppFinish

appFinished

scheduleSuccess

Legend

Method Invocation

Message Passing

Separate SwarmNodes

jobDone

Figure 5.6: Successfully scheduling of an ActionSuite.

SwarmApp Scheduler
Proxy

Scheduler
Wrapper

Scheduler SwarmCtrl NodeMgr ActionCtrl NodeMgr ActionCtrl

schedule
scheduleRequest

schedule compute

sendTransaction

scheduleSuccess
allScheduledonScheduled

assignJob

enqueueJob

jobEnqueued
vote commit

partialCommit

partialCommit

scheduleSuccess

enqueueJob

jobFailed

message delay

vote abort

partialAbort

assignJob

abortJob
abortJob
aborted

transactionFailed
failureonAbort

Legend

Method Invocation

Message Passing

Separate SwarmNodes

sendTransaction

vote commit
commit

commit

unschedule
compute

partialAbort

unschedule

Figure 5.7: Failure during scheduling of an ActionSuite.

76 CHAPTER 5. SWARM RUNTIME SYSTEM

uses the CommCtrl for sending the messages. The schedule operation returns after the
message has been sent producing asynchrony. Each node uses the CommCtrl for sending
and receiving messages. The component has been omitted for clarity. The counterpart
for the SchedulerProxy is the SchedulerWrapper which is a wrapper component around
the Space-Time Scheduler. The component receives messages and invokes the respective
operations on the scheduler. In this case, it invokes the schedule operation with the
associated action suite. After the schedule has been computed, the SchedulerWrapper
obtains the result and sends a message (containing the result) to the SwarmCtrl. At
the same time, it sends a second message back to SchedulerProxy which informs the
application that the suite is marked as scheduled (invoking the onScheduled listener).

The computed schedule is a (distributed) transaction. The SwarmCtrl sends each
node that is involved in the transaction a message which contains the node-specific in-
formation of the schedule and starts the variant of the two-phase commit protocol (Sec-
tion 5.5.1). Once a NodeMgr has received its specific part of the schedule, it delivers the
contained jobs to the ActionCtrl and MotionCtrl, initiating the local voting.

In Figure 5.6, a commit vote is assumed. Hence, the NodeMgr sends a commit mes-
sage back to the SwarmCtrl which performs some local accounting (according to the
variant of the two-phase commit protocol). The message is forwarded to the Scheduler-
Wrapper which invokes the respective operation, i.e., a commit here. If all nodes have
voted for commit (according to the variant of the two-phase commit protocol), then the
SwarmCtrl sends a message back to the SchedulerProxy in order to notify that the trans-
action has been committed for execution which leads to an invocation of the onCommit
listener.

Concurrent to the described control and message flow, at some point in time (accord-
ing to the calculated schedule), the MotionCtrl and the ActionCtrl become active and
execute their associated jobs. In case of success, the NodeMgr produces a last notifica-
tion message and sends it to the SwarmCtrl which performs some local accounting again.
The message is forwarded to the SchedulerProxy which invokes the onFinish listener. In
case, all action suites have been executed, the final listener onAppFinish is invoked.

In Figure 5.7, a scenario is presented that shows an error during the control and
message flow. The schedule (computed by the Scheduler) involves two nodes. The
SwarmCtrl generates two messages accordingly and sends them to the respective nodes.

One of the messages arrives in time at the node and is enqueued locally. A commit
message is sent back to the SwarmCtrl which leads to a partial commit. However, the
other message for the second node is delayed. Hence, the message arrives too late such
that the movement or action job can not be enqueued (Section 5.5.1). As a consequence,
the NodeMgr has to vote with abort. This leads to a global abort of the transaction,
i.e., the application is notified and onAbort is invoked. The SwarmCtrl has to instruct
the SchedulerWrapper in order to perform two operations: first, a partial abort has to
be performed and, second, an unschedule operation has to be performed. This opens a
second transaction. Hence, the SchedulerWrapper informs the SwarmCtrl which informs
the respective NodeMgr in order to unschedule the previously committed job. After this
transaction is committed by discarding the the job, the first transaction is “rolled back”.

5.6. SYSTEM INTERFACE 77

Application

suitesuite

<Internal System Interface>

<System Statistics Interface>
System

reschedule

schedule

unschedule

suite

unschedule
schedule

reschedule

Figure 5.8: System interface.

5.6 System Interface

The system provides different types of interface operations used by different units of the
system. Figure 5.8 shows the arrangement of interface operations.

5.6.1 External System Interface

The external interface operations are designed for applications. These operations are
accessible by invoking the correspondent interface operations of the action suite as de-
scribed in Section 4.6.2 (page 44).

• schedule(): Schedules all actions of an ActionSuite in space and time under con-
sideration of the spatio-temporal constraints and inter-action dependencies.

• reschedule(): Reschedules an existing and already scheduled ActionSuite. This
allows modification of the spatio-temporal constraints of the actions.

• unschedule(): If already scheduled actions of an ActionSuite have become obsolete
for some reason, unschedule removes them from the global schedule and frees system
resources.

5.6.2 Internal System Interface

As described in Section 5.5 (page 71), the external system interface operations trigger to
check the predicate sched(). Afterwards, exec() has to be verified as well. Depending on
the result, the system automatically invokes one of the following operations and commits
or aborts an open transaction:

78 CHAPTER 5. SWARM RUNTIME SYSTEM

• commit(tid): Commits the open transaction tid.

• commit(tid, r): Partially commits the transaction tid for robot r.

• abort(tid): Aborts the open transaction tid.

• abort(tid, r): Partially aborts the transaction tid for robot r.

5.6.3 System Statistics Interface

The system statistics interface allows access to obtain the system load information which
has been defined in Section 5.4. This information is required by the load balancer.

• calcJobLoad(r, from, to): Calculates the job load of robot r in the interval
[from, to].

• calcMotionLoad(r, from, to): Calculates the motion load of robot r in the in-
terval [from, to].

• calcLoad(r, from, to): Calculates the load of robot r in the interval [from, to].

• calcIdle(r, from, to): Calculates the idle fraction of robot r in the interval
[from, to].

• calcRelativeMotionLoad(r, from, to): Calculates the relative motion load of
robot r in the interval [from, to].

5.7 Conclusion

Executing (distributed) applications according to the programming model (Chapter 4),
requires a suitable distributed infrastructure. This chapter has presented an architecture
for a distributed swarm operating system which consists of (local) node services and
(global) system services.

The former ones are executed on each node that is participating in the distributed
swarm system. The services are required for operating the local node. The node manager
is the central local management instance. It delegates incoming jobs (action jobs and
movement jobs) to the respective services: action and motion control.

The latter ones are used in order to operate the system, i.e., resource allocation and
management which is performed by the core-service: the space-time scheduler. In order to
assure consistency in a distributed system, a variant of the two-phase commit protocol has
been introduced which is implemented in the swarm control service. Combining features
from both services allow to provide advance resource reservation. This is a feature of the
programming model: application programmers are able to use this mechanism in order
to create contracts with the system. This assures guaranteed spatio-temporal resource
allocation.

5.7. CONCLUSION 79

A utilization refers to as a measure used in order to derive the degree of free capacities.
In this chapter, metrics have been introduced which define the parameters necessary in
order to calculate the system’s utilization. The system utilization is comprised of the
utilization of the local nodes. Each (node) utilization is influenced by the assignment of
action jobs and movement jobs. A relative utilization function is considered in addition
which states the relation between average velocity and maximum (feasible) velocity. The
utilization measure is used by the load balancer in order to distribute the load among
the nodes.

Chapter 6

Group-Scheduling Problems
(Offline)

Given a set of applications that spawn spatio-temporal actions, a mapping of actions to
execution units of the runtime system is required. This chapter addresses the problem
of spatio-temporal group scheduling. The technique presented in this chapter is suitable
for offline scheduling problems. The scheduling problem is modeled using Timed Petri
nets. Afterwards, an optimal schedule can be found by translating the modeled problem
into a shortest path problem.

6.1 Introduction

The mapping of tasks (actions) to nodes remains one major objective. In this section,
the problem of spatio-temporal group scheduling is addressed. Petri nets [73] are a well-
known method to model dynamic systems with discrete states. They are well suited for
modeling the concurrent behavior of distributed systems.

The remainder of this chapter is structured as follows: Section 6.2 shows related work
in this field. In Section 6.3, assumptions of the world and the problem statement are
presented. Section 6.4 introduces Timed Petri nets which are used in order to model
the problem as described in Section 6.5. Section 6.6 presents a solution to the problem
and shows how a schedule with minimal makespan is calculated by mapping the modeled
problem to the shortest path problem. A case study including an evaluation of the
approach is given in Section 6.7. Finally, Section 6.8 concludes this chapter.

6.2 Related Work

There are numerous Petri net publications with diverse fields of investigation [100]. The
original Petri net does not include a notion of time. However, there are a number of
extensions to Petri nets enabling them to deal with time. Probably the two most fa-
mous approaches are Time Petri nets [57] and Timed Petri nets [79] (TPN), also called

81

82 CHAPTER 6. GROUP-SCHEDULING PROBLEMS (OFFLINE)

Figure 6.1: Examples for discrete topologies.

Duration Petri nets (DPN). Besides discrete Petri nets, e.g., TPN and DPN, there are
also Continuous Petri nets [13] and Hybrid Petri nets [3] which are typically used in
order to model a system which has a discrete part (e.g., Boolean state variable) and a
continuous part (e.g., real number indicating liquid flow). Hybrid Petri nets including
Timed Hybrid Petri nets are presented in [14]. Many applications of Petri nets target
scheduling problems, e.g., deadlock avoidance, performance evaluation, or feasibility of
real-time and non-real-time problems or workflow scheduling [106]. There is also work
that uses dynamic programming [107] to solve an assembly line scheduling problem de-
scribed by Petri nets as well as a shortest/longest path problem used to find optimal
real-time schedules [74]. However, none of the publications in the Petri net literature
deals with spatio-temporal group scheduling.

6.3 Assumptions and Model

A task γ is denoted as a tuple (d, p, p′, ρ,Γ′). The parameters have the following intention:
d indicates the duration of the task, p and p′ are the beginning and ending locations1

of the task, respectively. A task may also be bound to a fixed location—in that case p
and p′ are identical. Therefore, this model even allows movement and task execution at
the same time2. A task can be executed jointly, i.e., multiple robots are required for the
execution; ρ <= |Υ| denotes the number of required robots and |Υ| denotes the total
number of robots. Tasks may have predecessors Γ′; all predecessors have to be executed
prior to γ.

The physical space of the world is assumed to be 2D. The resulting surface is dis-
cretized and mapped to a specific topology as shown in Figure 6.1. Using space dis-
cretization forms cells. Each cell c ∈ C in the topology indicates a space in which an
arbitrary amount of robots can be placed. The amount a of robots per cell can change
over time: a(c, t) ∈ {x ∈ N | 0 ≤ x ≤ |Υ|} and for each t holds:

∑
c∈C a(c, t) = |Υ|.

The topology specifies the geometry of the surface, the discretization (cell shape) and
the multiplicity of movements. A robot can change its location by moving in discrete
steps to a neighboring cell along the indicated arrows. In analogy to the discrete space
model, a simplified discrete time model is also used:

1Location defines a physical coordinate in real space.
2Due to hardware-specific reasons (CPU with single core) of the testbed, the assumptions in Sec-

tion 5.4 are different than stated here.

6.4. TIMED PETRI NETS 83

time progresses in time steps. The movement model is based on a binary state: a
robot moves or does not move.

At each time step, a robot has different options if it is not already involved in a
movement process or a task execution: the robot stays locally in the cell (idle), it moves
along one of the arrows to a neighboring cell or it starts a task execution which may
involve movement additionally.

A set Γ of tasks is given. The goal is to find a spatio-temporal schedule with minimal
makespan such that these tasks γi ∈ Γ are executed according to their requirements.

6.4 Timed Petri Nets

This section introduces and describes the formalism of Timed Petri nets which is used
in the remaining sections of this chapter. The formalism has been published in [29] and
states a modification of the original definition which has been published in [75]. Timed
Petri nets has been chosen since it allows to model timely behavior which is a necessity
in space-time scheduling.

The following notation is used: N+ = N\{0} is the set of natural numbers N without
0; Q is the set of rational numbers; dom(f) and codom(f) is the domain resp. codomain
of a function f . M(m,n) is a matrix with m rows and n columns. For a matrix M , M (i)

denotes the i-th row of M , starting with 0. M (,j) denotes the j-th column of M , starting
with 0 and M (i,j) denotes the i-th row and j-th column of M .

Definition 24 (Timed Petri net (TPN))
A TPN or DPN is a graph N = (P, T, F, V,D), where

• P, T, F are finite sets with P ∩ T = ∅, P ∪ T ̸= ∅, F ⊆ (P × T) ∪ (T × P) and
dom(F)∪cod(F) = P ∪T , where the elements p ∈ P are called places, the elements
τ ∈ T are called transitions, and the elements of F are called arcs.
• V : F → N+ is a weight of the arcs.
• D : T → N+ is a duration function. D(τ) denotes the delay of transition τ.

Definition 25 (State of a TPN) The state of a TPN is a tuple S = (m,h), where

• m : P → N is called a marking of the net. The marking assigns to each place p a
number of tokens denoted by m(p).

• h : T → N is a transition clock vector. The notation h(τ) describes the clock vector
of the transition τ.

A TPN has a dedicated state (m0, h0), called initial state. In an initial state, h0 is always
the zero vector. When the dynamics of a TPN is considered (see below), the initial state
serves as a starting point of all considerations.

To any transition τ ∈ T belongs a pre-set •τ and a post-set τ•, that are given as
•τ = {p | p ∈ P ∧ (p, τ) ∈ F}, and τ•= {p | p ∈ P ∧ (τ, p) ∈ F}, respectively. Each
transition τ ∈ T induces the markings τ− and τ+, defined as follows:

84 CHAPTER 6. GROUP-SCHEDULING PROBLEMS (OFFLINE)

Figure 6.2: Example net, τ<t> denotes firing time t of τ.

τ− = (v1, . . . , v|P |)
T | vi =

{
V (pi, τ) if (pi, τ) ∈ F

0 else

τ+ = (v1, . . . , v|P |)
T | vi =

{
V (τ, pi) if (τ, pi) ∈ F

0 else
Then ∆τ denotes the difference τ+ − τ−. A transition τ is enabled at marking m iff

τ− ≤ m and h(τ) = 0.
In order to introduce a state equation later, the definition of a marking is extended

to a time marking :

Definition 26 (Time Marking) A time marking µ ∈ M(|P |, d) is a matrix with d =
max{D(τi)|i ∈ {1, .., |T |}} + 1, where each row represents a specific place p. Each column
denotes a (partial) marking of a place for different time steps. The first column represents
the present (at time t), i.e., equals the current marking. The second one denotes partial
changes (i.e., future additions from time elapsing) in the net at t + 1 (not the marking
at t+ 1). The third column then represents partial changes at t+ 2 and so on.

There is a mapping S → µ and a mapping µ→ m. However, no mapping µ→ S exists.
Figure 6.2 shows an example net. It is assumed that the net is in an initial state.

Then the time marking µ0 is given by

µ0 =

⎛⎜⎜⎝
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

⎞⎟⎟⎠.

Next, TPN’s dynamics are considered. A TPN can change its state by firing and by
time elapsing. Elements that have been changed by firing are denoted with the symbol
^ (e.g., m̂) and elements that have been changed by time elapsing are denoted with the
symbol ˜ (e.g., m̃). Since a TPN is enforced to progress, the maximal step is introduced.

6.4. TIMED PETRI NETS 85

Definition 27 (Maximal Step) B ⊆ T is called a maximal step at the marking m
(resp. at time marking µ, since m = µ(,0)) with the transition clock vector h iff∑

τ∈B
τ− ≤ m (6.1)

∀τ, τ ∈ B → h(τ) = 0 (6.2)

¬∃B∗((B ⊂ B∗) ∧ (B∗ satisfies (6.1) and (6.2))) (6.3)

If at least one enabled transition exists, transitions of the TPN must fire. Only
maximal steps fire in a TPN. If there are more than one maximal step that may fire,
one of them is selected arbitrarily. The example net shown in Figure 6.2 with the initial
marking m0 has four maximal steps:

B1 = {τ1, τ5}
B2 = {τ1, τ8}
B3 = {τ4, τ5}
B4 = {τ4, τ8}

Definition 28 (Firing) A TPN with the time marking µ and with a maximal step B
that becomes enabled at time t will change its state in the following way.

m̂ = m−
∑
τ∈B

τ− (6.4)

∀τ ∈ B, ĥ(τ) = D(τ) (6.5)

∀k ∈ {1, . . . , d}, µ̂(,k) = µ(,k) +

⎧⎪⎨⎪⎩
− ∑

τ∈B
τ− iff k = 0∑

τ∈B|D(τ)=k

τ+ else
(6.6)

The example net (Figure 6.2) has four possible maximal steps on µ0. Let µ1 be the
time marking which the net reaches after firing B2, i.e., µ0

B2−→ µ̂1. This leads to

µ̂1 =

⎛⎜⎜⎝
0 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 0 0

⎞⎟⎟⎠, m̂1 =

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠, and ĥ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
0
0
0
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

86 CHAPTER 6. GROUP-SCHEDULING PROBLEMS (OFFLINE)

B2 indicates firing of τ1, τ8 which involves removing tokens from p1 and p4 at time t.
Thus, the first column of µ̂ contains only zeros (tokens “reside” in the transitions). The
duration of τ8 is one time unit. Thus, at t+1 (second column) one token is released and
put on p3. The duration of τ1 is four time units (longest firing duration of all T) and,
therefore, at t+ 4 (fifth column) the remaining token appears on p2.

For the elapsing of time, a specific matrix called progress matrix Q is used. The
progress matrix Q ∈M(d, d) is of the form

Q =

⎛⎜⎜⎜⎜⎝
1 0 .. 0 0
1 0 .. 0 0
0 1 .. 0 0
: :
0 0 .. 1 0

⎞⎟⎟⎟⎟⎠
Definition 29 (Time Elapsing) Given a TPN with a marking m̂, a clock vector ĥ,
and a time marking µ̂. When one time unit elapses, the values change in the following
way:

m̃ = m̂+
∑

τ∈T |ĥ(τ)=1

τ+ (6.7)

h̃ = max(ĥ− 1, 0) (6.8)
µ̃ = µ̂ · Q (6.9)

By applying this to the example, the following is obtained:

µ̃1 =

⎛⎜⎜⎝
0 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 0 0

⎞⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎝
1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝
0 0 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎠, m̃1 =

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠, and

h̃1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

6.5 Translating Model into TPN

This section explains how spatio-temporal group scheduling problems using Timed Petri
nets (Section 6.4) given the assumptions from Section 6.3 are modeled. The model

6.5. TRANSLATING MODEL INTO TPN 87

(a) Topography model.

...

...

...

...

(b) Extended model with waiting transitions τw.

Figure 6.3: Simple and extended grid topology model.

consists of two parts: the first part shows the modeling of the topology of the world
which includes movement abilities. The second part addresses the modeling of tasks.
Finally, both parts are composed together.

The physical space of the world is discretized into cells. Each cell is modeled by
a single place of the TPN. Possible movements between cells are modeled by timed
transitions as shown in Figure 6.3. The firing time (duration in which the token is kept
in the transition) states the time required in order to move from one cell to the next one.
The movement time between two cells c1 and c2 must not be symmetric: as shown in
Figure 6.3(a)3, different topographical models can be supported. Due to this topography,
moving from c1 to c2 might be faster based on terrain characteristics than taking the
return path.

Robots are modeled as tokens in the net. The number of robots in a cell is translated
into the same number of tokens and put into the respective places of the TPN. The
result of translating the grid, shown in Figure 6.1 (Section 6.3), into a TPN is depicted
in Figure 6.3(b). Inner cells4 have four movement possibilities to adjacent cells indicated
by the timed transitions.

A TPN is forced to progress, i.e., enabled transitions are required to fire (according
to Definition 27 and Definition 28). According to this behavior, a robot would be forced
to move. Therefore, additional waiting transitions τw are introduced and modeled at
each place as shown in Figure 6.3(b). This allows to wait at a current place.

It is possible that multiple robots are positioned in the same place. Since a firing
transition is blocked during firing, it is impossible that multiple robots (> 1) perform
the same action (moving, waiting). Therefore, multiple waiting and moving transitions

3Example net shown in Figure 6.2 from Section 6.4 which has been mapped onto the topography.
4There are border and inner cells in the grid: the former are located on the border and have either

two or three movement possibilities to adjacent cells while the latter have four movement possibilities.
Each grid has exactly four corner (border) cells with a degree of two.

88 CHAPTER 6. GROUP-SCHEDULING PROBLEMS (OFFLINE)

(a) A simple task.

2

(b) Dependencies between tasks.

Figure 6.4: Task modeling.

have to be modeled. Since the overall net is conservative (number of robot tokens does
not change over time), the needed number of transitions for each place and movement
is equal to the total number of robots. Figure 6.3(b) shows only one waiting and one
moving transition, the remaining ones are omitted for simplification.

A simple task is modeled by two places and one transition as shown in Figure 6.4(a).
The duration of the task execution is denoted by d1. Hence, d1 is assigned to the timed
transition τ

γ
1 between both places and states the execution time.

The two places are denoted by pγ1,s and pγ1,f which reflect the status of the task, i.e.,
a token on pγ1,s marks the task as “ready to run” while pγ1,f states that the task has been
executed. In order to distinguish model elements (places and transitions) from the space
model and the task model, the index γ is used for all task-oriented elements.

Location-independent tasks are modeled as a triple: (pγi,s, τ
γ
i , p

γ
i,f), with i as task id,

s and f mark the start and final state of the task, respectively. The number of tokens
on pγ1,s states the multiplicity of task execution. If a task is location-dependent, i.e,. the
task has to be executed at a certain location, then the task model has to be connected
to the space model as indicated by the dashed lines in Figure 6.4(a). The task execution
starts at place pi and ends at place pj . This modeling technique allows to move and
execute the task at the same time if i ̸= j. With the parameter ρ, the number of robots
which are required for the joint execution can be specified.

Figure 6.4(b) shows the modeling of three dependent tasks τ
γ
1 , τ

γ
2 and τ

γ
3 with dura-

tions d1, d2 and d3. Task τ
γ
3 depends on task τ

γ
1 and τ

γ
2 . In order to model predecessor

/ successor relations, joint places are introduced: a joint place is a common place of a
predecessor task i and a successor task j by replacing pγi,f and pγj,s by pγj . Only if both
tasks (τγ1 and τ

γ
2) have been executed and the place pγj is marked with two tokens, the

task τ
γ
3 can be executed. The multiplicity of the arc (pγj , τ

γ
3) has to be marked with 2

or, in general, with the number of preceding tasks.

6.5. TRANSLATING MODEL INTO TPN 89

...

...

...

...

Figure 6.5: Modeling a complete scheduling problem.

After modeling the physical space as well as the tasks, both parts can be composed
together in one TPN as shown in Figure 6.5. For clarity, multiple waiting and movement
transitions have been omitted. The final model shows four tokens and, hence four robots.
If ρ = 2, the task τ

γ
1 can be executed immediately since the robots have already been

positioned correctly (at place p1). However, if ρ = 4 requires the two robots on place
p1 to use the waiting transitions until the other remaining ones have arrived. During
that time, the other two robots have to take the shortest path in the grid, i.e, the city
block distance, to place p1. If at least ρ tokens are on place p1, the transition pγ1 becomes
enabled and due to the maximal step semantic, pγ1 fires accordingly and keeps ρ tokens for
a duration of d1 time units in the transition. Afterwards, the place pγ1,f becomes marked
with a token indicating that the task has been executed and ρ tokens are placed on p3.
Since the execution of τγ1 incorporates movement, d1 must be large enough in order to
move to place p3, i.e., d1 must reflect the movement as well as the task execution time.
This has to be checked at modeling time.

The overall goal is to execute all real-space-time tasks according to their requirements.
This is represented in this model by a marking of the net in which all places pγ∗,f of these
tasks are marked. Additionally, the time required to reach such a marking, starting at
some initial marking, should be minimized.

90 CHAPTER 6. GROUP-SCHEDULING PROBLEMS (OFFLINE)

6.6 Schedule with Minimal Makespan

A schedule with minimal makespan is defined as an assignment of tasks to nodes that
minimizes the overall time for executing all tasks (optimal schedule concerning time).
After this schedule is found, there exists no other schedule with a smaller makespan.
The schedule can be found by translating the problem into a shortest path problem on
a graph:

For this, the state space graph is spawned. Every node in the graph represents a
state and the edges indicate the possible transitions5 from one state to another state.
The edges are weighted according to the time required in order to obtain the new state.
A particular state is called goal state which indicates a marking in which all places pγ∗,f
are marked with a token. This state reflects that all tasks have been executed. Finding
the shortest path (minimal time) from the initial state to the goal state, represents the
schedule, i.e., the sequence of robot movement together with task execution given as a
sequence of maximal step firing.

In Section 6.4, the TPN’s state is defined as s = (m,h). In the following an extended
state ξ = (µ, h) is used which applies time markings instead of markings. Using ξ the
state equation given in [75] can be applied in order to calculate future markings:

µi+∆t = µi · Q∆t + C ·Ψσ (6.10)

with

Ψσ =
∆t∑
j=1

B(j) · Q∆t−j (6.11)

The parameters in Equation 6.10 and 6.11 have the following meaning:

• C is the (timed) incidence matrix C ∈ M(|P |, |T | · d)6. An incidence matrix
consists of submatrixes C(k) ∈ M(|P |, d) with k ∈ {1, .., |T |}. Given the example
shown in Figure 6.2, the matrix is of the form: C ∈ (4, 8 · 5) = (4, 40). Each
submatrix C(k) corresponds to one transition τk and indicates the impact of that
transition, i.e., τ−, τ+ together with the timed behavior (how long the tokens are
kept in the transition). Therefore, C contains all timed information of the impact
of firing transitions.

• B(j) is the bag matrix for the jth step of the firing sequence σ. In Definition 27,
the maximal step B has been introduced. A firing sequence is called σ = (B1,B2, ..)
which shows a firing sequence of maximal steps. B is the bag matrix B ∈ (d·|T |, d)
of the maximal step B. Similar to C, B also consists of |T | = 8 submatrixes. If
B1 = {τ1, τ5}, then the 1st and the 5th submatrix consists of diagonal 1s. All other
positions in these submatrixes (including the other submatrixes) remain 0.

5Transitions define here the possible state change.
6The parameter d is given by Definition 26.

6.6. SCHEDULE WITH MINIMAL MAKESPAN 91

• Ψσ is the (timed) Parikh matrix which includes the bag matrix B and the progress
matrix Q. Summarizing the equations, the bag matrix B indicates the maximal
step B and, thus, states which transitions in the net shall fire. The firing sequence
σ include the information when a maximal step shall fire (ordering of firing). C
contains all information what happens to the net (impact) if a given maximal step
fires (put tokens into transitions and release tokens from transitions). Last, but
not least, the main characteristic of a TPN is its timed behavior. Hence, Q is used
in order to state the time elapsing.

In [75], the correctness of Equations 6.10 and 6.11 are shown. With the help of (6.10)
and (6.11), the extended state space is spawned. The shortest path to a goal state has
to be found, i.e., a state with a time marking

µx =

⎛⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ . . .
∗ ∗ ∗ . . .
∗ ∗ ∗ . . .
∗ ∗ ∗ . . .
∗ ∗ ∗ . . .
1 ∗ ∗ . . .

⎞⎟⎟⎟⎟⎟⎟⎠

p1
p2
p3
p4
pγ1,s
pγ1,f

(6.12)

Considering the example grid of Figure 6.2 again and attaching one simple task
model (as given in Figure 6.4(a)), the resulting composed net has six places in total
(p1, .., p4, p

γ
1,s, p

γ
1,f). Since, this model has only one task, the goal state is defined by a

marking of the net in which exactly one token is placed on pγ1,f . As a consequence if pγ1,f
is marked with a token, then by definition pγ1,s is marked with zero tokens. Tokens on
other places (p1, .., p4) do not matter. The marking µx shows the goal state.

Performing an analysis of the net, it might be possible that the goal state with time
marking µx is not reachable. This might happen due to two reasons: there are insufficient
resources for task execution or due to structural problems, i.e., circular task dependencies
or tasks in disconnected areas of the topology.

In the former, non-reachability based on insufficient resources can be detected in
advance: let be ρmax = max(ρi) and nγ the number of tasks. In particular, in case
of dependent tasks, nγ denotes the number of tokens required for modeling the tasks,
i.e., dependent tasks do not count since they are not modeled using a separate token.
If |µ0| < nγ + ρmax, then no goal state is reachable. Considering the example net of
Figure 6.2 and an attached task as shown in Figure 6.4(a) with ρmax = 1, then the
number of robot tokens is two and nγ = 1. The inequality (|µ0| < nγ + ρmax ⇔ 3 < 2) is
not true and, therefore, a goal state exists which is true in this case. If ρmax > 2, then no
goal state is reachable. If there are at least ρmax tokens in the topology (space) model,
then a goal state is always reachable. This holds for the timeless as well as for the timed
net since waiting transitions τw enable to stay at a certain position.

In the latter, structural problems, i.e., circular task dependencies as well as tasks in
disconnected areas of the topology have to be avoided at modeling time. This can be
done manually while creating the model or afterwards based on model checking.

92 CHAPTER 6. GROUP-SCHEDULING PROBLEMS (OFFLINE)

ξ0

ξ21
ξ212

ξ3212
..

.. ..

..

..

..

ξ2

ξ321
ξ32

ξ3

..

ξ3211

..

Figure 6.6: Shortest path in reachability graph.

Next, the conservativeness is analyzed. The marking m of the net is not conservative.
Considering only the marking, tokens are kept arbitrary times (as stated by the timed
transition τ) in the transition. Due to τ− and τ+ tokens are removed from and added to
the marking. This might lead to non-conservativeness (mi ̸= mj) for a marking mi and
mj with i ̸= j. However, the net is conservative with respect to the time marking µ:

∀µ, |µ| =
|P |∑
i=1

d∑
j=1

µi,j = const (6.13)

The state space of time markings is finite. Each clock vector h(τ) can only have the
values 0, . . . , D(τ), i.e., the clock vector state space is finite, too. Since both elements are
finite, the overall state space which consists of the combined (extended) state ξ = (µ, h)
is also finite.

A schedule with minimal makespan can be found by finding the shortest path in the
state space to a goal state by applying the usual algorithms, e.g., Dijkstra’s algorithm [15].
Figure 6.6 depicts the shortest path in the reachability graph. The graph consists of all
states that are reachable from a given initial state, i.e., given by the initial marking of the
net. Imagine, there are two firing sequences of transitions σ1 and σ2. The initial state
is given by ξ0. The sequence σ1 generates, amongst others, the following states: ξ2, ξ21
and ξ212. The sequence σ2 generates: ξ3, ξ32, ξ321 and ξ3211. The firing sequence σ1 and
σ2 lead to the same state (ξ212 and ξ3211). For simplicity, it is assumed that each state
change costs 1 time unit7. Therefore, the path created by σ1 is shorter in terms of time
than the path created by σ2. In this case, the shortest path algorithm uses relaxation in
order to update the distance information (time distance).

The complexity depends on two aspects: the spawning of the state space, which has
an exponential complexity, and the shortest path algorithm, which has a polynomial (or
better, depending on the actual algorithm) complexity in the number of states. The
overall complexity is dominated by the spawning of the state space.

7Based on the modeling, the duration of state change corresponds to the duration of the timed
transition.

6.7. CASE STUDY 93

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 2 4 6 8 10 12 14 16 18

S
ta

te
s

Grid-size (i x i)

Figure 6.7: States depending on grid-size with 2 robots and 1 task.

6.7 Case Study

For the evaluation, a case study has been performed. As stated in Section 6.6, the
computation of the schedule with minimal makespan is comprised of two stages: first,
the reachability graph which consists of the states of the net is spawned and second,
the shortest path from the initial state to the goal state of the graph has to be found.
The computation of the reachability graph has an exponential complexity in the number
of robot tokens and places of the topology (space) model in the net. Petri nets are
used to model concurrent behavior. In this approach, tokens “move” around in the net
independent of other tokens. Spawning the state space has to take this into account
resulting in the high complexity. Modeling tasks requires to add “task-specific” tokens
that indicate the state of the task (ready, executed). These dedicated tokens have to stay
in the task-specific model and, hence, are not comparable with robot tokens that stay in
the topology (space) model. Due to the complexity, the case study is limited to rather
small test cases.

The topology (space) model is discretized into a 12×12 grid. Two robots and five tasks
are modeled. Three tasks are coupled by a precedence, the other tasks are independent.
Four tasks need one robot for execution, the remaining one requires two robots. Based on
the task specification, three tokens are required in order to model the tasks (independent
as well as dependent ones). Two additional tokens are required in order to model the
robots resulting in a total of five tokens: the initial marking is |µ0| = 5, nγ = 3 and
ρmax = 2. The inequality |µ0| < nγ + ρmax is not true and, therefore, a goal state is
reachable.

94 CHAPTER 6. GROUP-SCHEDULING PROBLEMS (OFFLINE)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100000 200000 300000 400000 500000

F
re

q
u
e
n
c
y

States

Figure 6.8: State distribution on a 12x12 grid with 2 robots and 5 tasks.

The execution locations of the tasks as well as the initial positions of the robots are
generated randomly. A random terrain is assumed defined by the following distribution
for movement transitions: 50 % of the transitions have 1 time unit, 12.5 % have 2 and
another 12.5 % have 3 time units. The remaining 25 % simulates obstacles indicating no
possible movement.

The simulations have been performed with INA (Integrated Net Analyzer) [72]. In
total, 1000 simulations were conducted. The computer which have been used for the
simulations were equivalent to a standard workstation with Intel Core i7 (Nehalem)
CPU with 2.66 GHz and 6 GB RAM. The execution time of a single run on the machine
on a single core took up to several hours depending on the grid-size and the number of
robot tokens in the net.

Figure 6.7 shows the number of states as a function of the grid-size (i× i). The num-
ber of places is given by |P | = i2. As depicted, the number of states grows polynomially
in the grid-size by keeping the number of robots and tasks constant. In Figure 6.8 the
distribution of generated states for the reachability graph is shown for the full configu-
ration.

6.8 Conclusion

This chapter has presented an approach for offline scheduling by Timed Petri nets. The
approach consists of two model elements: the topology (space) model reflects topograph-
ical characteristics and the task model states task-specific characteristics. It has been

6.8. CONCLUSION 95

shown how tasks, robots and the topology of the physical world are modeled and trans-
lated into a TPN. The model enables to bind task execution to physical locations and
specify the multiplicity of robots required to execute the task jointly. Furthermore, it
has been shown how dependencies between tasks are modeled.

In order to execute the tasks, an assignment and a coordination of robots in space
and time are required. The overall goal is to find a schedule with minimal makespan that
incorporates all tasks. The presented solution is to analyze the TPN, spawn the state
space and create the reachability graph in order to find the shortest path to a goal state.
The goal state defines a dedicated marking of the net that reflects that all tasks have
been executed. The shortest path represents the minimal order of states and, hence, the
minimal order of transition firing in order to reach the goal state. This represents the
schedule with minimal makespan.

The case study showed a long runtime of the simulations. Therefore, the approach
fits as an offline scheduler. Although, the approach finds the schedule with minimal
makespan, an online scheduler has to perform significantly faster. Therefore, suitable
algorithms are required in order to establish fast online scheduling decisions.

Chapter 7

Swarm Space-Time Scheduling
(Online)

The core-component of the runtime system is the space-time scheduler that is responsible
for resource management. Given a set of spatio-temporal actions and a set of mobile
robots that move through physical space, a main objective remains in finding a mapping
of actions to robots. This chapter addresses the scheduling problem and provides a
solution that is based on the path-velocity decomposition. The outcome of the scheduler
is a schedule that assigns actions to robots under consideration of the spatio-temporal
constraints. If movement is necessary for the execution of the respective action, then
the scheduler computes collision-free spatio-temporal trajectories for the robots in order
to arrive at the desired locations in time. The scheduler is an online scheduler that
schedules sets of actions at runtime and merges the computed schedule into the global
system schedule. The collision avoidance addresses both static and dynamic obstacles.
The scheduler consists of two components: a job scheduler that uses a heuristic and
performs a coarse-grained scheduling and a trajectory planner that takes the output of
the job scheduler and computes spatio-temporal trajectories.

7.1 Introduction

The scheduling which includes the computation of collision-free, spatio-temporal trajec-
tories remains a major challenge which requires an online-scheduler that schedules the
actions in space and time under consideration of the spatio-temporal constraints.

This chapter is structured as follows: Section 7.2 shows related work in this field. In
Section 7.3, assumptions and the model of the world and the scheduler is shown. The
scheduler is composed of two components: The job scheduler is presented in Section 7.4
and the trajectory planner is described in Section 7.5. An evaluation of the scheduler
together with the produced results are presented in Section 7.6 and include a complexity
analysis as well as benchmark results. Finally, Section 7.7 summarizes this chapter.

97

98 CHAPTER 7. SWARM SPACE-TIME SCHEDULING (ONLINE)

7.2 Related Work

In [24], a fast scheduling algorithm called Tercio is presented that assigns tasks with
spatio-temporal constraints to agents. A task sequencer is used that computes a schedule
in polynomial time for multi-agent systems. The authors are able to satisfy upper and
lower bound temporal deadlines as well as spatial restrictions.

In [2], the Law Enforcement Problem (LEP) is presented. This problem shows police-
men on their patrol that have to react to incidents (tasks) that also have to be addressed
by multiple policemen. They present the FMC_TA algorithm that is based on a heuristic
which best utilizes the capacity of the team for the LEP.

Both approaches (Tercio as well as FMC_TA) also schedule spatio-temporal tasks in
space and time. The main difference to the approach presented in the following is that
Tercio as well as FMC_TA are based on a task model that clearly states the execution
location. Furthermore, none of the approaches computes spatio-temporal trajectories.

In general, one has to distinguish between path coordination and path planning.
In the latter a path is not a priori computed. The resulting path planning problem
(PPP) addresses the problem of computing collision-free paths in Cartesian space. Path
coordination, in contrast, addresses the problem of coordinating robots while they move
along a predefined path in order not to collide.

The path coordination problem was considered in [67], where a coordination diagram
is presented that avoids collisions and deadlocks of two robot manipulators. Later, [91]
extended this approach by addressing the path coordination problem in order to avoid
collisions with several robots.

The approach presented in this thesis is based on the Path-Velocity-Decomposition
as presented in [40] that decomposes the problem into the PPP and the velocity plan-
ning problem (VPP). The main reason for performing the decomposition is to face the
complexity of the problem. In general, “the complexity of the PPP is exponential in the
number of degrees of freedom, which for a point robot is the same as the dimension of
the space in which the robot is embedded. For instance, in 3D space, a point robot has
three degrees of freedom.” [40]. Decomposing the problem from 3D space-time (x×y× t)
which means O(n3) to two times 2D reduces the complexity to O(2n2).

There are several revisions of the original approach presented in [40]: In [19], a pri-
oritized planning scheme is proposed that introduces robot priorities. In [102], priorities
are combined with the potential field method for conflict resolution. A decentralized
approach that also uses priorities is presented in [1].

In [22], the approach is extended by introducing alternative routes from a start point
to a target point that are adjacent paths. The switching from one path to an adjacent
path also allows spatial collision avoidance of dynamic obstacles and not solely temporal
collision avoidance by velocity profile adjustment. It considers multiple spatial paths
and, thus, avoids the problem of the single spatial path approach.

7.3. ASSUMPTIONS AND MODEL 99

7.3 Assumptions and Model

This section states assumptions and presents the model of the world and the scheduler.

7.3.1 The Model of the World

The world is the geometry in which all entities reside. The world is mapped to a 2-
dimensional surface1 which represents the physical space. A third dimension which in-
dicates the time is added. All entities have their own geometry which is represented
as a 2D-polygon and a description of their temporal behavior. An entity can be either
static or dynamic. The first one is time-invariant and, thus, the temporal behavior has
no influence on the physical location. Dynamic entities are able to change their physical
location over time. A function f : T → R2 describes the spatio-temporal relation.

R denotes the set of mobile robots (dynamic entities) and Os denotes the set of static
obstacles (static entities). From the “perspective” of a robot ri, all other robots R\{ri}
are considered as dynamic obstacles Om.

7.3.2 Actions and ActionSuites

An action a ∈ A is defined as a tuple (g, tmin, tmax, d). The first element states the
geometry g that consists of 2D points that mark the space window on a plain surface. The
time-window is denoted by tmin and tmax. Together (g, tmin, tmax) describe the space-
time-window in which a shall be executed while d denotes the worst-case execution time.

If an action ai depends on another action aj , then this is denoted as: ai → aj ; if
aj || ai, then aj , ai are independent, with i ̸= j. In the following, a dependency graph2

(Figure 7.1(a))—showing inter-dependencies among actions—and an execution graph3

(Figure 7.1(b))—showing the order of execution of actions—are considered. The two
functions succ(..) and reach(..) that are introduced in the following are operations on
the execution graph.

c

b

a

d

(a) Dependency graph.

c

b

a

d

Root
Actions

(b) Execution graph.

Figure 7.1: Dependent jobs.

1For simplicity and due to the hardware equipment of the testbed (Appendix A), the model is based
on two space dimensions. However, the approach presented in this thesis does also work with three
dimensions.

2“→” means “depends on”: a2 → a1 means a2 depends on a1.
3“→” means “proceeds”: a1 → a2 means a1 proceeds a2 or a2 succeeds a1 (used to model data flow

from a1 to a2).

100 CHAPTER 7. SWARM SPACE-TIME SCHEDULING (ONLINE)

Action succ(..) reach(..)

a – –
b a a
c a a
d c c, a

Table 7.1: Successors and reachability-set.

A function succ(a) delivers all successors of a (based on the topological sorting of the
execution order of actions). If ai → aj , then succ(aj) = ai. A function reach(a) delivers
all actions that are reachable from a (reachability-set of a). An action ai is reachable
from aj if ai ∈ succ(aj) or transitive if ai ∈ succ(ak) ∧ ak ∈ succ(aj). Table 7.1
shows the direct successors and the reachability-set of the actions shown in Figure 7.1.

An ActionSuite as ∈ AS is defined as a container for actions. An action a is assigned
to exactly one suite: if a ∈ asi, then ∀asj ∈ AS : a /∈ asj , with i ̸= j. Each action
has to belong to a suite: ∀a ∈ A : a ∈ AS. All depending actions have to reside
in the same suite. However, it is also possible to put non-depending actions in the same
suite.

If ai → aj or aj → ai, with i ̸= j, then ai, aj have to reside in the same suite as. If
ai || aj , then ai, aj can either reside in the same suite or in different suites. There shall be
no inter-suite dependencies between two suites asi and asj : ∀aasik ∈ asi, ∀aasjl ∈ asj :
aasik || aasjl . Since the dependency graph shown in Figure 7.1(a) is connected, all contained
actions (a, b, c, d) have to reside in the same suite.

An action ari is considered a root action if there is no other action arj such that
ari ∈ reach(arj), with i ̸= j. Let Ar

as be the set of root actions of suite as. Each action
that is reachable from Ar

as has to be in the same suite, i.e., ∀ar ∈ Ar
as : reach(ar) ⊆ as.

The execution graph (Figure 7.1(b)) has two root nodes (b, d) since they never appear in
any reachability-set (Table 7.1).

The elements of a suite as together with their dependencies form a directed, acyclic
graph. The graph can be either connected or disconnected. A topological sorting on the
graph is performed which generates the order in which the actions are scheduled (starting
with root actions).

As explained in Section 4.6.3 (page 45) and Section 4.6.4 (page 46), a contract is
created for every suite between the system and the application if sched() and exec() are
successfully checked. A contract provides guaranteed resource allocation.

7.3.3 Transaction-based Scheduling

As introduced in Section 4.6.2 (page 44), an ActionSuite as has three operations in
order to interact with the swarm runtime system: schedule(), reschedule() and
unschedule().

A transaction is a set of actions that logically belong together and, thus, are grouped
together. Spatio-temporal constraints and logical dependencies describe the relations

7.3. ASSUMPTIONS AND MODEL 101

job a job bmove a b

t

blank blank

now

free freeused used

Figure 7.2: Local schedule Si of a robot.

among the actions as well as relations to space and time. Each of the system op-
erations starts a new distributed transaction Tx. Tx consists of all actions that be-
long to as: Tx = {a1, a2, .., an}. A contract is only created if all actions of Tx are
successfully scheduled (sched() and exec() holds): ∀a ∈ Tx | sched(a) ∧ exec(a). If
∃a ∈ Tx | ¬sched(a)∨¬exec(a), then Tx is aborted and no contract is issued. In case a
partial assignment of actions to nodes has already been performed, the system attempts
to unschedule them.

However, the objective of the scheduler is to compute a schedule for Tx that maps the
actions a1, a2, .., an to the robots under consideration of the spatio-temporal constraints
of a1, a2, .., an. Actions are scheduled sequentially and in the order of the topological
sorting. The topological sorting depends on the set of root actions Ar

as, the inter-action
dependencies and the spatio-temporal constraints.

The scheduler computes for each action a a job (p, t, r): p ∈ g is the execution location,
t ∈ [tmin, tmax − d] is the start time and r ∈ R is the executing robot. If r is not already
at position p, then the scheduler computes a collision-free, spatio-temporal trajectory in
order to move r to p. The trajectory consists of linear segments and is given by a list of
spatio-temporal points [(x1, y1, t1), (x2, y2, t2), .., (xm, ym, tm)], where a segment is defined
by a pair of points [(xi, yi, ti), (xi+1, yi+1, ti+1)]. Let x⃗ = (x, y), then ∆x⃗i = x⃗i+1 − x⃗i
and ∆ti = ti+1 − ti, ti+1 > ti holds. The robot moves along the trajectory with velocity
v = |∆x⃗|

∆t ; the velocity is constant for a segment, but different segments may have different
velocities: [v1, v2, vm−1].

Let Sg = {S1,S2, ..,Sk} be the global schedule, then Si is the local schedule for robot
ri; k = |R|. The initial schedule is the empty schedule: S = {}. A schedule S consists of
jobs: Si = {j1, j2, .., jl}. A job can be either a spatio-temporal action (ja) or a spatio-
temporal trajectory (jt). Figure 7.2 shows a simple schedule that consists of two actions
and one movement job.

If a spatio-temporal action (ja) has been successfully scheduled and committed, then
ja is included in the schedule Si. No modification of ja is allowed afterwards, unless
explicitly requested by unschedule(..) or reschedule(..). In contrast, all spatio-temporal
trajectories are replaceable if they do not violate the following two conditions:

A spatio-temporal trajectory (jt) is not replaceable if jt or a part of it is already in
the frozen horizon (definition is given in the following). Second, jt is not replaceable if
it interferes with spatio-temporal actions (ja) such that the execution of ja cannot be
guaranteed. Hence, the movement job a→ b in Figure 7.2 is arbitrarily replaceable if it
has no influence on the execution of job a and b.

Free slots of a schedule S are defined as the gaps before, between or after spatio-
temporal actions by omitting all movement jobs. Blank slots indicate blank gaps in

102 CHAPTER 7. SWARM SPACE-TIME SCHEDULING (ONLINE)

job c job dmove c d

job a job bmove a b

now

r1

r2

t

free

blank

blank

frozen horizon used free

blank

blank

Figure 7.3: Global schedule Sg with frozen horizon fh.

between action or movement jobs. If there are no movement jobs, then the set of free
slots and the set of blank slots are equal. Otherwise, the size of a blank slot is less or
equals to the size of a free slot. Figure 7.2 has two free slots: one between a and b and
one after b. It is assumed that a is scheduled for now such that there is no gap before a.

If a new action z with time constraints shall be scheduled, the time window must be
large enough in order to execute z with duration d not violating the time constraints:
tcurr+d ≤ tmax; tcurr defines the current point in time. The computation of the schedule
as well as sending the message with the schedule information (ja, jt) to robot r requires
time. Let tsched be the duration for the computation of the schedule and tmsg be the
duration for sending the message to r. Since time progresses constantly, the frozen
horizon (fh) is a time interval in which no modification of the global schedule Sg is
allowed as depicted in Figure 7.3. The duration of fh is defined by tfh and the interval
is dynamically adjusted to [tcurr, tcurr + tfh], with tfh ≥ tsched + tmsg. Due to fh, the
condition above (tcurr + d ≤ tmax) must be adjusted to tfh + d ≤ tmax.

Determining tsched and tmsg accurately depend on context data; these include the
number of dynamic and static obstacles, their shape detail-level, the number of spatio-
temporal trajectory segments and the current workload of jobs. This could be done
approximately. However, tsched and tmsg are estimated during system execution. In
order to determine tsched, the duration of each invocation of the scheduler is measured
and an estimate based on the time the scheduler takes for computation is computed.
Determining tmsg requires to estimate the average message delay. Since the message that
contains the schedule information (ja, jt) has to be acknowledged by robot r, tmsg is
estimated by measuring the roundtrip time and dividing it by 2 in order to obtain the
simple message delay. This is performed iteratively each time the scheduler is invoked.

In the following, the size of a robot is shrunk to a point in 2D while all obstacles
are buffered according to the robot’s original size. This approach (Cspace approach) has
been presented in [51].

7.4 Job Scheduling

The task of the scheduler is to schedule actions in space and time and assign them to
robots. Let Tx = {a} be a transaction that consists of only a single action a. Algorithm 1
shows the main steps the scheduler performs in order to schedule a. The function takes a
as input and computes a spatio-temporal action job (ja) and a spatio-temporal trajectory
(jt).

7.4. JOB SCHEDULING 103

Algorithm 1 Job scheduling: Schedule single job
Input: Action a = (g, tmin, tmax, d)
Output: Job ja = (p, t, r), job jt = [(x1, y1, t1), ..]

function Schedule_Single(a)
while loc← next_location(a.g) do

slots← find_slots(loc, a.tmin, a.tmax, a.d)
while slots ̸= [] do

slot← min_detour(slots)
(ja, jt) = plan_job(loc, slot, a)
if ja ̸= null then

return (ja, jt)
end if
slots = slots\{slot}

end while
end while

end function

7.4.1 Location Sampling

In order to find a location p ∈ g, the function next_location(..) recursively samples a new
location candidate p∗ ∈ g \ {Os}. A sample is an interior point of g \ {Os} as depicted in
Figure 7.4(a) and, thus, must not lie in an obstacle (p∗ /∈ Os). If the scheduler was unable
to schedule a using p∗, then g is sub-divided into up to four sub-areas g1, .., g4 by drawing
a vertical and horizontal line through p∗ as depicted in Figure 7.4(b). Afterwards, the
same procedure is repeated on g1, .., g4. The algorithm terminates if either a valid sample
has been found or a maximum sample-depth sd has been reached. Since each area has an
infinite amount of points, sd prevents the algorithm from going into an endless loop. If
sd is reached, the location sampling fails and, thus, the computation of the schedule fails.
If a valid sample has been found, then next_location(..) returns that sample candidate.

x

y

y1

y*

y2

x1 x* x2

(a) Interior point.

x

y

y1

y*

y2

x1 x* x2

(b) Sub-dividing area.

Figure 7.4: Location sampling.

104 CHAPTER 7. SWARM SPACE-TIME SCHEDULING (ONLINE)

schedule new job a3

job a1 job a2

tmax

job a3move a1 a3 move a3 a2

tmin

job a1 job a2move a1 a2

t

t

t1 t2

Figure 7.5: Job scheduling.

7.4.2 Determine Slot Candidates

Initially, the local schedule of each robot is the empty schedule: S = {}. During system
execution, the scheduler assigns new actions to robots such that S ̸= {}. Gaps in-between
action jobs mark available (free) slots (movement jobs omitted).

If the scheduler assigns an action to a robot, the path that the robot has to move in
addition is defined as detour since it produces additional effort for the robot. Figure 7.5
shows the transition of modifying the schedule. The scheduler checks if a new job a3
can be assigned to a robot that already has scheduled actions (a1, a2). The free slot in-
between is defined by the interval [t1, t2]. The execution location of job ai is defined by
x⃗ai . The current trajectory must be adapted such that the robot does not move straight
from x⃗a1 → x⃗a2 . The new trajectory which considers a3 is then from x⃗a1 → x⃗a3 → x⃗a2 .
For performance reasons, the job scheduler is based on a heuristic, i.e., all obstacles are
neglected here (static and dynamic) and it is assumed that the robot is able to move
directly from x⃗ai to x⃗aj . Thus, the distance between two execution location x⃗ai and x⃗aj
is calculated by the Euclidean distance: s = ||x⃗ai − x⃗aj ||.

In order to schedule the new action a3, the scheduler computes all possible slots
(find_slots(..), Algorithm 1) from all robots that match with the temporal constraints
of the action and uses loc as execution location of a3: x⃗a3 = loc.

The scheduler marks a slot as a candidate if the following conditions hold: The robot
is able to move from x⃗a1 to x⃗a3 (s1) and execute a3 not violating the deadline given by
tmax:

tmax − t1 ≥
s1

vmax
+ d (7.1)

The job a3 can be executed and the robot is able to move from x⃗a3 to x⃗a2 (s2) such
that the execution start time of a3 is after tmin:

t2 − tmin ≥
s2

vmax
+ d (7.2)

The length of the free slot is sufficient in order to move to x⃗a3 , execute a3 and move
to x⃗a2 :

t2 − t1 ≥
s1 + s2
vmax

+ d (7.3)

7.4. JOB SCHEDULING 105

1 2 3 4 5 6 7

1
2
3
4
5

x

y r2r1

(a) Initial situation.

10 20 30 40 50 60 70
t

10 20 30 40 50 60 70
t

r1

r2

(b) Local schedule S1 and
S2 of r1 and r2.

1 2 3 4 5 6 7

1
2
3
4
5

x

y r2r1

A
P

a1

a2
a3

s1

s2

(c) Schedule a3.

Figure 7.6: Schedule new action.

Finally, find_slots(..) returns a set of valid slots. In order to select the slot which
causes minimal additional movement, min_detour(..) returns the slot with the minimal
detour. The detour is defined as the way that the robot has to move in addition:

∆s := (s1 + s2)− s12 (7.4)

The original distance between x⃗a1 and x⃗a2 is given by s12 and ∆s states the additional
way. In case of an empty schedule, s12 and s2 are both zero and, thus, ∆s = s1 holds.

Figure 7.6 shows an example with two robots r1 and r2. The initial situation is
depicted in Figure 7.6(a): r1 already has three scheduled jobs and r2 has two scheduled
jobs (a1 and a2). Figure 7.6(b) shows the local schedule of both robots; for simplicity,
all movements jobs have been omitted here and, instead, only free slots are shown.

Now, a new action a3 shall be scheduled (Figure 7.6(c)). The spatial constraints of
a3 are x = [4, 6], y = [2, 4] and the temporal constraint is given by t = [10, 60]. The
duration d of a3 is 10 and the maximum velocity of both robots is set to: vmax = 0.5.
The location candidate is set to loc = (5, 3)4. For r2 the detour over a3 involves the two
segments s1 =

√
8 and s2 =

√
8. The total detour is then s1 + s2 ≈ 5.66 and takes 11.32

time units. The original distance is s12 = 4 and the additional way is then ∆s := 1.66.
The time required for moving along s1 and s2 takes 11.32 time units. The time for
executing a3 takes 10 time units which requires in total 21.32 time units. The only free
slot that satisfies the conditions given in Equation 7.1 to 7.3 is the one provided by r2
and, thus, the scheduler assigns a3 to r2. In the interval [10, 60], r1 has only free slots of
20 time units length.

Since the job scheduler is based on a heuristic, the schedule might not be feasible.
Thus, the trajectory planner uses the proposed slot and checks feasibility by considering
static as well as dynamic obstacles and computes a collision-free spatio-temporal trajec-
tory (plan_job(..)). If a3 could not be scheduled under the current variable assignment,
the scheduler discards the current slot and checks the next one. If none of the slots could
be taken, the scheduler picks another location point and repeats the procedure.

4Based on the location sampling, this is the first candidate which is checked. If no schedule can be
found, a new location is sampled.

106 CHAPTER 7. SWARM SPACE-TIME SCHEDULING (ONLINE)

c

b

a

d

(a) Dependency graph.

c

b

a

d

(b) Execution graph.

Figure 7.7: Scheduling of dependent jobs.

7.4.3 Dependent Jobs

If a transaction consists of multiple dependent jobs, then the scheduler schedules the
actions in Tx according to their dependencies. For this a topological sorting of the
actions is performed. A dependency could be data that one action generates while a
second action requires this data as input. Let Tx = {a, b, c, d} and its elements have
the following dependencies: a→ b and a→ c→ d. Table 7.2 shows their specifications.
Figure 7.7 shows the resulting dependency and execution graph respectively.

Action tmin tmax d

a 20 100 5
b 0 100 5
c 0 50 5
d 10 100 10

Table 7.2: Action specifications.

Due to the specifications, certain variable assignments are not possible and, thus, the
specifications have to be further pruned. The pruned action specifications are shown in
Table 7.3. Equation 7.7 and Equation 7.8 state how the new values for tmin (t′min) and
tmax (t′max) are recursively computed. For this, two auxiliary functions (α(..) and β(..))
are defined that determine the earliest possible finishing time and the latest possible
start time of action s. Two other functions dep(..) and dep−1(..) are introduced: dep(s)
returns all other actions that s depends on and dep−1(s) returns all actions that depend
on s. The operation α(dep(s)) is defined by applying the function α(..) on each element
of dep(s). The same holds for β(..) and dep−1(s).

α(s) := max
[
α(dep(s)) ∪ {s.tmin}

]
+ s.d (7.5)

β(s) := min
[
β(dep−1(s)) ∪ {s.tmax}

]
− s.d (7.6)

s.t
′
min := α(s)− s.d (7.7)

s.t
′
max := β(s) + s.d (7.8)

7.4. JOB SCHEDULING 107

In order to determine a.t
′
min, α(a) − a.d has to be computed. For this, all actions

that a depends on have to be considered: dep(a) = {b, c} and, then, the same has to be
done for b and c (dep(b) = {} and dep(c) = {d}). Finally, a.t′min := 25 is obtained as
listed in Table 7.3.

Next, it is shown how d.t
′
max is computed: For this, β(d) has to be computed and all

actions that depend on d: dep−1(d) = {c} have to be considered. Due to the recursion,
β(c) and, finally, β(a) have to be computed. After computing the respective values,
β(d) = 35 is obtained. After adding the duration of d, d.t′max := 45 is obtained as listed
in Table 7.3.

Action t
′
min t

′
max d

a 25 100 5
b 0 95 5
c 20 50 5
d 10 45 10

Table 7.3: Implicit action specifications.

Based on the topological sorting of the jobs, there are different orders in which the
jobs can be scheduled: d, c, b, a or d, b, c, a. In order to obtain the highest probability that
the given jobs are schedulable, a higher priority is given to jobs with an earlier deadline.
Thus, the jobs will be scheduled in this order: d, c, b, a. Each job is, thereby, scheduled
as a single job by the function Schedule_Single(..).

7.4.4 Periodic Jobs

Jobs can also be scheduled periodically, but with a fixed amount of repetitions. Periodic
jobs are given as a tuple (g, t0, dp, d). Similar to the scheduling of single jobs, periodic
jobs also have a duration d and a geometry g in which the job shall be executed. The
temporal restrictions are changed to an initial start time given by t0 and a period given
by dp, with dp > d. During each period, one job has to be executed. Each job ji
(i ∈ {1, .., n}) has a time window given by [ti−1, ti − d], with ti := t0 + i · dp.

The spatial constraint of a periodic job is fixed and given by g. However, as a feature,
it is possible to set a flag that requests the scheduler to reuse the first location that is
found in g for all instances of the periodic job. If the flag is not set, the scheduler is
forced to find a new location for each instance of the periodic job in g.

7.4.5 Transactions

As already mentioned, a transaction-semantic is supported. If one action out of a set of
actions in a transaction is not schedulable, then none of the actions will be scheduled. If
a transaction Tx shall be scheduled, then the scheduler tries to find a suitable schedule
that assigns all actions in Tx to robots. In case the scheduler found a suitable schedule
STx for Tx, then this schedule is marked as pending in the global schedule Sg. Pending
is defined as a state in which system resources are already allocated, but have not finally

108 CHAPTER 7. SWARM SPACE-TIME SCHEDULING (ONLINE)

Alternative

d

b

r1

r2

c
a

collision
avoidance

(a) 1 path alternative.

d

b

r1

r2

c
a

e
Alternative

(b) 2 path alternatives.

d

b

r1

r2

c
a

e

(c) 2x path alternatives.

LOCKED

d

b

r1

r2

c
a

(d) Lock segment.

d

b

r1

r2

c
a

(e) Partial commit.

Figure 7.8: The transaction-semantic causes path alternatives while scheduling new jobs.
During the uncertainty period alternatives are locked.

been committed. After the schedule is computed, all nodes that are involved in the
distributed transaction are notified. Each node that receives a message decides locally if
it accepts or rejects the job. The job can only be rejected if the node is unable to execute
the job. In case the node accepts the job, then it is merged into its local schedule Si.

If, finally, all nodes participating in the distributed transaction have commonly voted
for commit, then the scheduler commits Tx. This transforms the state of STx from
pending to committed. In case at least one node has voted for abort, then STx is
aborted, i.e., all jobs in Tx are unscheduled and STx is marked as aborted.

The period that starts right after STx is computed and messages are sent in order to
notify the involved nodes and a commit or an abort is issued, is called uncertainty period
since STx can neither be unilateral committed nor aborted. The notification phase is
asynchronous, in order to not block the scheduler and instead enable the scheduling of
new jobs. As already mentioned, the scheduling of a job includes the computation of a
spatio-temporal trajectory.

During the uncertainty period a trajectory can be committed or aborted. If new jobs
are scheduled concurrently, the scheduler can not modify a schedule that is still pending
due to possible inconsistencies. Figure 7.8(a) shows the situation in which two robots
(r1, r2) already have committed jobs: Each robot has a local schedule (S1, S2), with
S1 = {a, b} and S2 = {c}. A new job d is scheduled, assigned to r1 and STx is marked
as pending. Let S∗1 = {a, d, b} be the new schedule that shall replace S1. During the
uncertainty period both schedules have to be maintained. This is due to the following
reason: If, while STx is still pending, a new job e shall be scheduled (which opens a

7.5. TRAJECTORY PLANNING 109

second transaction STx2), both schedules, S1 as well as S∗1 have to be taken into account
in order to avoid robot collision as depicted in Figure 7.8(b). Therefore, S∗1 is defined as
an alternative path for r1. The alternative remains valid as long as no commit or abort
has been issued. Here it is assumed that e is assigned to r2. So, the alternative schedule
for r2 is S∗2 = {e, c}. Since, STx is still pending, the computation of the new spatio-
temporal trajectory for the alternative schedule S∗2 has to take the other schedule S1 as
well as its alternative S∗1 into account. As shown in Figure 7.8(b), a collision avoidance
is performed for the two trajectories a→ b and a→ d→ b of r1.

If e shall also be assigned to r1 and shall be executed after a, but before b, this would
require to compute two additional path alternatives as shown in Figure 7.8(c): One for
S1 denoted by S∗∗1 and one for S∗1 denoted by S∗∗∗1 :

S1 = {a→ b}
S∗1 = {a→ d→ b}
S∗∗1 = {a→ e→ b}
S∗∗∗1 = {a→ d→ e→ b}

The amount of path alternatives grows exponentially in the number of new jobs that
arrive during the uncertainty period (2x). In order to avoid that, the trajectory segment
that is part of STx is locked until a decision is made as depicted in Figure 7.8(d). If,
finally, a commit or abort is issued, one of the path alternatives is removed as depicted
in Figure 7.8(e). This also includes the removal of the trajectory lock.

7.5 Trajectory Planning

The trajectory planning is based on the path-velocity-decomposition which has been
presented in [40]. The resulting problem is a trajectory planning problem (TPP). The
TPP is split into the static path planning problem (PPP) and the dynamic velocity
planning problem (VPP) (cf. [40]). This approach is adjusted in order to check and
guarantee schedulability of a job by calculating a collision-free spatio-temporal trajectory.

The objective of the trajectory planning is to move a robot from an initial point
(x⃗I , tI) ∈ R2×T to a target point (x⃗F , tF) ∈ R2×T without collision with other obstacles
O. Obstacles are represented as time dependent polygons that are implemented as time
dependent point sets O : T → P(R2). All obstacles are buffered according to the robots’
geometry (in case of a circle the radius is chosen for buffering) while all robots are shrunk
and represented as time dependent points x⃗π : T → R2.

The spatial path planning computes a continuous path π ⊂ R2 that starts at x⃗I and
ends at x⃗F , where π is the spatial trajectory that the robot has to follow; π is represented
as point set.

The temporal path planning computes a temporal trajectory that states at what point
in time the robot has to move along the segments of the spatial trajectory. Therefore, π
is parametrized in dependence of the radian measure s of the path: x⃗π(s). The location

110 CHAPTER 7. SWARM SPACE-TIME SCHEDULING (ONLINE)

(a) Shortest path. (b) Lines of sight.

Figure 7.9: Spatial path planning.

function x⃗π : S → x⃗ maps s to a point in (x, y)-space that is on the path π. The task is
to find a time-based mapping s : T → S for s with S = [sI , sF] being the radian interval
of the path π. The spatio-temporal trajectory is then defined by x⃗π(t) = (x⃗π ◦s)(t). The
goal of the temporal planning is to find a mapping x⃗π : T → π between time t and the
points of the path π such that collisions with dynamic obstacles are avoided.

7.5.1 Spatial Path Planning

The PPP targets the problem of finding the shortest path between two points. Time is
neglected in this step. The result of the spatial path planning is the path π that connects
x⃗I and x⃗F by avoiding collisions with static obstacles Os. In 2D space, the shortest path
between two points which does not intersect any polygons, is a composition of segments,
which connect a subset of vertices of the obstacles. As depicted in Figure 7.9(a), the
path is along the vertices of the obstacles. In order to find the shortest path, a weighted
graph is constructed that contains x⃗I , x⃗F and the vertices V of the obstacles. The set of
edges is defined by all pairs of vertices that are visible to each other. Vertex v1 is visible
by vertex v2 if the line segment [v1v2] does not intersect with an obstacle (Figure 7.9(b)).
The weight of the edge is defined by the Euclidean distance. The shortest path in the
graph that connects x⃗I and x⃗F is the path π.

7.5.2 Temporal Path Planning

After π is calculated, the temporal path planning addresses the VPP and is, thus, re-
sponsible for computing a temporal path in order not to collide with dynamic obstacles
Om. Dynamic obstacles are represented as polygons that move over time. In order to
calculate the velocity profile, the concept of forbidden regions is used—spatio-temporal
regions in s × t-space which are occupied by a dynamic obstacle. A forbidden region is
always associated with a particular x× y-path π and defines at which time intervals π is
blocked. The location function x⃗π(s) uses s as arc length parameter. A computation of
a velocity profile s : T → S that has no intersection with forbidden regions in s× t-space
avoids collisions with all dynamic obstacles by adjusting the velocity. The result of the
temporal planning is a new path σ = {(s(t), t)|t ∈ T)} that is computed similar to the
PPP. The computation of σ has to take the following two conditions into account:

7.5. TRAJECTORY PLANNING 111

vmax > 2

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

s

t t2

(ts2
+d)

t2-

(sI,tI)

(a) Graph construction.
1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

s

t

vmax > 2

(sF,tF,1)
(sF,tF,2)

(sF,tF,3)

(sF,tF,4)

(sI,tI)

s = sF

(b) Finishing s× t points.
1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

s

t

vmax > 2

(sF,tF,4)

(sI,tI)

(c) Pruning of the graph.

Figure 7.10: Temporal path planning with vmax = 2 represented by dashed lines.

ti < tj , with i < j (7.9)

According to physical laws, time progresses constantly and, thus, the robot is not
able to move back in time. Second, the robot has a maximum velocity which it can not
exceed; (si, ti) is a vertex of the graph that the robot visits before moving on to (sj , tj).⏐⏐⏐⏐sj − si

tj − ti

⏐⏐⏐⏐ ≤ vmax (7.10)

Similar to the PPP, a graph is constructed, as shown in Figure 7.10(a), that connects
the vertices of the forbidden regions in s × t space. All vertices of the graph that are
visible to each other are interconnected by edges. Each edge has a weight that indicates
the time required to move from one endpoint of the edge to the other endpoint. There are
upper bounds in time for calculating the temporal path since a slot has a given length.
When calculating the temporal path for the path from x⃗a1 to x⃗a3(s1), then the upper
time boundary is set to t2 − (ts2 + d) with ts2 being the time for moving back from x⃗a3
to x⃗a2(s2). However, when computing the temporal path for the path represented by
s2, then the time boundary is set to t2 which indicates the end of the free slot. If the
computed temporal path exceeds the boundary, then it is not possible to find a valid
temporal path for the spatial path π that avoids collisions with dynamic obstacles and
satisfies the spatio-temporal constraints of the action.

For the graph construction in Figure 7.10(a), a maximum velocity of vmax = 2 is
assumed. All edges that indicate vmax are dashed. In order to compute a temporal path
that states the earliest arrival time at a given destination, additional vertices have to be
added to the graph: The first vertex (sI , tI) represents the initial situation and is set to
(0, 0). Next, up to multiple vertices sF , tF,∗, representing final situations, are added.

The path is chosen that has the earliest arrival time, i.e., the minimum of all tF,∗.
The vertices (sF , tF,∗) are on the line s = sF as depicted in Figure 7.10(b). A vertex
on the line s = sF is called final vertex (sF , tF,∗) and is included in the graph if it is
possible to connect a vertex of the graph with sF , tF,∗ by a vmax edge. All pairs of vertices
that are connected by an edge must be visible to each other. Hence, three additional

112 CHAPTER 7. SWARM SPACE-TIME SCHEDULING (ONLINE)

1

1

x

y

(a) x× y component π

1 2 3

1

2

3

4

5

s

t

(b) s× t component σ

0

0.5

1

0

0.5

1
0

2

4

6

xy

t

(c) x× y × t trajectory τ

Figure 7.11: Example: trajectory planning.

vertices (sF , tF,1), (sF , tF,3) and (sF , tF,4) have been included. The vertex (sF , tF,2) would
be considered the optimal vertex since it would be reachable in the minimum possible
amount of time (robot moves constantly with vmax).

However, since the second dynamic obstacle crosses the path π, the vertex (sF , tF,2)
is not reachable and, thus, has to be discarded. The vertex (sF , tF,1) is not reachable
since this would require a velocity of vmax > 2. Finally, (sF , tF,3) is not reachable
since the second dynamic obstacle blocks the path π. The vertices (5, 3) and (5, 6) are
reachable. However, the vertices (7, 3) and (7, 6) are not reachable since this would
require to progress on the path π in zero time which is not possible. Therefore, the only
reachable vertex is (sF , tF,4).

As depicted in Figure 7.10(b), the resulting graph is a directed, weighted and po-
tentially disconnected one. In order to find the shortest path, all sub-graphs of the
graph that are not reachable by the initial vertex (sI , tI) are removed. The resulting
pruned graph is shown in Figure 7.10(c). In order to determine σ, the shortest path in
the pruned graph that connects the initial vertex (sI , tI) with one of the final vertices
(sF , tF) is computed. This path results in the earliest arrival time of the robot at the
destination. Using the spatial path π and the temporal path σ, the spatio-temporal
trajectory τ = {(x, y, t)|t ∈ T ∧ x⃗π(t) = (x, y)} in x× y × t space is computed.

Figure 7.11 shows the computation of the different trajectory components: First,
Figure 7.11(a) shows the computation of the spatial path π in x × y space. The path
starts in (0, 0) and ends in (1, 0). The detour over (0, 1) and (1, 1) is due to an obstacle
that blocks the direct path. The visualization of obstacles is neglected here. After π is
computed, the velocity profile is adjusted by computing the temporal path σ in s × t
space as depicted in Figure 7.11(b). Finally, the resulting trajectory τ in x× y× t space
is composed as shown in Figure 7.11(c).

7.5.3 Forbidden Regions

In order to compute the temporal path σ, forbidden regions have to be computed first.
Forbidden regions are caused by dynamic obstacles Om that cross the spatial path π as
depicted in Figure 7.12(a). The crossing of π by Om causes a spatio-temporal blocking of

7.5. TRAJECTORY PLANNING 113

x

y

(a) Om crosses path π

s

t

tF

t2

t1

tI s1 s2 sFsI

(b) Forbidden region

s

t

n

m

(c) n×m tiles

Figure 7.12: Computing forbidden regions.

(a) Regular case. (b) Parallel case. (c) Stationary case.

Figure 7.13: Cases for computing forbidden regions.

π that is represented by the forbidden region as shown in Figure 7.12(b). The blocking
occurs in the interval given by [s1, s2] and [t1, t2]. The solid line shows the temporal
path σ. A forbidden region is iteratively computed for each dynamic obstacle and finally
combined. Similar to the robot, each dynamic obstacle also follows a trajectory that
consists of linear segments. The computation of the region is done segmentally. Assuming
n spatial path segments of the robot and m trajectory segments of the obstacle creates
n×m tiles as depicted in Figure 7.12(c) where each tile shows a part of the entire region.

Let x⃗ri := (xri , y
r
i)

T be the i-th vertex of the robot path π and (xmj , ymj , tmj) be the j-th
vertex of the obstacle’s trajectory. The i-th robot segment defines the radian interval:
Si := [sri , s

r
i+1] ∋ s. The j-th obstacle segment defines the time interval: Tj := [tmj , tmj+1] ∋

t. Then v⃗mj :=
(∆xm

j ,∆ymj)T

∆tmj
is defined as the velocity of the obstacle during the j-th

trajectory segment5.
In order to compute a tile of the forbidden regions, the following three cases as

depicted in Figure 7.13 have to be distinguished:

• In the regular case, neither ∆x⃗ri nor ∆v⃗j are zero and they are linear independent:
det

[
∆x⃗ri ∆v⃗j

]
̸= 0⃗ as shown in Figure 7.13(a).

5∆ is defined as the difference of two adjacent values: ∆(·)i := (·)i+1 − (·)i

114 CHAPTER 7. SWARM SPACE-TIME SCHEDULING (ONLINE)

x

y

Figure 7.14: Extended velocity vector v⃗ intersects π.

• In the parallel case, the velocity vector v⃗mj is parallel to the segment x⃗ri :
det

[
∆x⃗ri ∆v⃗j

]
= 0⃗ ∧ x⃗ri ̸= 0⃗ as shown in Figure 7.13(b).

• In the stationary case, the robot segment has no length:
x⃗Ri = 0⃗ as shown in Figure 7.13(c).

In the following, the regular case is described since it is the most common case. In the
regular case, the forbidden region is created by transforming the vertices of the polygon
Om(tmj). As depicted in Figure 7.14, one obstacle point P is considered which has the
velocity v⃗. There will be an intersection of the extended velocity vector and the path π
at a certain point (in space) s and at a certain point in time t. The value of t is computed
by dividing the distance d by the absolute velocity v⃗.

Alternatively, the segment and the negative velocity vector can be considered as a
base of the s × t-space as depicted in Figure 7.15(a). Using this base, (s, t)-coordinates
can be transformed to (x, y) coordinates:[

x− xri
y − yri

]
= (s− sri) · e⃗s − (t− tmj) · v⃗mj (7.11)

e⃗s :=
∆x⃗r

i
||∆x⃗r

i ||
is defined as the unit vector of the robot segment. This equation can be

transformed to [
x− xri
y − yri

]
=

[
e⃗s − v⃗mj

] [s− sri
t− tmj

]
(7.12)

in order to transform polygons to the s× t-space. Since the polygon does not always
entirely cross the robot segment as shown in Figure 7.15(b), it has to be cropped (Fig-
ure 7.15(c)). The crop boundary is defined by the robot segment Si and the time interval
Tj . The crop boundary sets the geometry for the current tile.

Figures 7.16 and 7.17 show an example of computing forbidden regions with multiple
segments: two robot segments and three trajectory segments of the obstacle Om. Fig-
ure 7.16 shows the movement of the robot and the movement of the obstacle Om. The

7.5. TRAJECTORY PLANNING 115

x

y

(a) s× t-base.

x

y

(b) x× y-space.

s

t

t2

t1s1 s2

(c) s× t-space.

Figure 7.15: Cropping forbidden region.

segments are considered separately: the 0th robot segment defines the radian interval
S0 := [s0, s1] and the 1st robot segment defines the radian interval S1 := [s1, s2]. The
values are calculated as follows:

si :=

i−1∑
k=0

||x⃗rk+1 − x⃗rk|| (7.13)

According to Equation 7.13, the values for s0, s1 and s2 are calculated as follows:

s0 = 0

s1 = ||x⃗r1 − x⃗r0|| =
√
72

s2 = ||x⃗r1 − x⃗r0||+ ||x⃗r2 − x⃗r1|| =
√
72 + 9.

The three trajectory segments of the obstacle Om define the time interval Tj : T0 :=
[t0, t3], T1 := [t3, t3 + t∗5] and T2 := [t3 + t∗5, t3 + t∗5 + t∗7].

The obstacle Om starts its movement at time t0. At time t1 it intersects the path π
in the (radian) interval [s0x, s0y]. The intersection can be calculated using the extended
velocity vector of the first trajectory segment of Om. At time t2, the obstacle has fully
crossed the path π. At time t3, Om has reached the end of its first segment. Om continues
directly moving along its second segment which crosses π again in the (radian) interval
[s1x, s

1
z]. At time t3 + t∗4, the first intersection with π (in S1) is at s1y. At time t3 + t∗5, the

obstacle Om has reached the end of its second segment and has not fully crossed π yet (it
is positioned on π). The intersection with π is in the interval [s1x, s1z]. From this position,
Om continues directly (at time t3 + t∗5) by moving along the third segment which starts
on π. At time (t3+ t∗5+ t∗6), Om has fully left π and at time (t3+ t∗5+ t∗7), Om has reached
its final destination. The resulting two forbidden regions are shown in Figure 7.17. Since
there are two robot and three trajectory (of Om) segments, the s× t diagram has 2× 3
tiles with respective crop boundaries.

116 CHAPTER 7. SWARM SPACE-TIME SCHEDULING (ONLINE)

x

y

Figure 7.16: Om has three trajectory segments (T0, T1 and T2) and crosses the path π
twice. The robot path has two segments (S0 and S1). The robot starts initially at location
x⃗0 = (4, 4) and proceeds towards x⃗2 = (10, 1) by taking the detour over x⃗1 = (10, 10).

s

t

Figure 7.17: Space-time diagram with 2 × 3 tiles (two space segments and three time
segments). The two crossings of Om with path π causes two forbidden regions. Due to
the different relative orientations of Om to the robot, the shape of the resulting forbidden
regions appear different.

7.5. TRAJECTORY PLANNING 117

7.5.4 Trajectory Planning

For the explanation of the trajectory planning, the example provided in Section 7.4.2
(page 104) is used. Algorithm 2 shows the trajectory planning of a single job. The
algorithm takes the location loc, a free slot slot and the single action a as input from
the job scheduler and computes (ja, jt). First, the algorithm computes two spatial paths
π1 and π2 where π1 is the path from x⃗a1 to x⃗a3 (approximated by the line segment s1)
and π2 is the path from x⃗a3 to x⃗a2 (approximated by the line segment s2) as shown in
Figure 7.6(c).

Second, the temporal paths for π1 and π2 are calculated and composed to the tra-
jectories τ1 and τ2, respectively. The computation of the temporal path σ1 along the
path π1 and the composition to trajectory τ1 are done by calc_trajectory(..). There are
two calc_trajectory(..) functions with different method signatures which are explained
in the following.

First, calc_trajectory(π1, slot.t1, a) computes σ1 for π1 and composes both to τ1.
The parameter slot.t1 states the earliest possible start time (of the current free slot)
(Figure 7.5) for σ1 and, therefore, for τ1. The third parameter is the job specification
a which is required to obtain tmin, tmax and d. This is necessary in order to arrive in
time at the respective location where the job shall be executed, i.e., not before tmin and
not after tmax − d. After computing τ1, the variable job is created which stores the job
information: the node which executes the job, the execution location (loc), the execution
start time (τ1.tfinish) which is the same point in time as the (timely) end of trajectory
τ1 and the duration d.

Second, calc_trajectory(π2, job.tfinish, slot.t2) computes σ2 for π2 and composes
both to τ2. The parameter job.tfinish = τ1.tfinish + a.d states the earliest possible start
time for σ2 and, therefore, for τ2. The third parameter slot.t2 states the end of the free
slot (Figure 7.5). Finally, update_trajectory(..) combines τ1 and τ2 to one trajectory τ .

Algorithm 2 Trajectory planning of a single job
Input: loc, slot, a
Output: job = (p, t, r), τ = [(x1, y1, t1), ..]

function Plan_Job(loc, slot, a)
node← slot.node
π1 ← calc_spatial_path(slot.x⃗start, loc)
π2 ← calc_spatial_path(loc, slot.x⃗finish)
τ1 ← calc_trajectory(π1, slot.t1, a)
job← (node, loc, τ1.tfinish, a.d)
τ2 ← calc_trajectory((π2, job.tfinish, slot.t2))
τ ← update_trajectory(node, τ1 ∪ τ2)
return (job, τ)

end function

118 CHAPTER 7. SWARM SPACE-TIME SCHEDULING (ONLINE)

s

t

(a) Scenario 1.

s

t

(b) Scenario 2.

s

t

(c) Ray projection.

s

t

(d) Graph construction.

Figure 7.18: Improvement of the original version by preferring high velocities and, thus,
minimizing overall movement time. The result is a higher utilization since robots are
able to perform other tasks while they wait for their next movement job.

7.5.5 Waiting Times

The trajectory planner chooses the earliest possible start time—that is the beginning of
a free slot—as starting point for the temporal trajectory planning before continuing with
the graph construction as described in Section 7.5.2. Dynamic obstacles that cross the
path π of a robot may cause a delay of the arrival time. Figure 7.18(a) shows a scenario
in which a dynamic obstacle with very low velocity crosses π. Analogously, this results
in an very long blocking of π. The trajectory planner computes a velocity profile that
indicates a linear correlation between the first robot segment that starts in sI and the
time that starts in tI . The resulting profile is a constant movement with very low velocity.
Figure 7.18(b) shows a scenario with two obstacles that also have slow velocities. There
are three main issues when assigning very low velocities to a robot:

The first problem is that not all arbitrary low velocities are physically possible. Sec-
ond, assigning a very low velocity to a robot creates exactly the same problem for other
robots since the currently observed robot appears as a dynamic obstacle to others and
blocks their path for a longer time. For explaining the third problem, the situation that
has been shown in Figure 7.5 is considered: A new job a3 shall be scheduled. If the con-
ditions given in Equations 7.1 - 7.3 are satisfied, the movement job a1 → a2 is discarded
and is replaced with the three jobs a1 → a3, a3, a3 → a2 which show the detour over
a3. Remembering the frozen horizon which was explained on the basis of Figure 7.3, the
scheduler is only able to modify the schedule if the jobs are beyond the frozen horizon.
In case a robot moves along path π with very low velocity, the following situation could
occur: the new job (a3) could be theoretically scheduled, but is now not schedulable since
the movement job a1 → a2 is already a part of the frozen horizon and, thus, a1 → a2
is locked (Section 7.3.3). In this case, the robot has to follow the current trajectory
segment. By minimizing the duration of the movement job by operating the robot with
approximately maximum velocity, the probability that a new job will be rejected based
on non-schedulability is decreased.

The advantage of scheduling the movement job as late as possible is that the probabil-
ity that the robot is able to execute more tasks is higher then when scheduling movement

7.6. EVALUATION 119

jobs as soon as possible. This is due to the fact that movement jobs can be arbitrarily
replaced as long as they are not part of the frozen horizon and do not violate other com-
mitted action jobs. A robot that moves from x⃗a1 to x⃗a2 in order to execute a2 tomorrow
can be arbitrarily rerouted before reaching x⃗a2 . A robot that already moved in the past
to x⃗a2 in order to execute a2 tomorrow can, indeed, also execute other jobs in-between,
but already wasted energy by moving to x⃗a2 . If, before executing a2, new jobs shall be
executed that are in physical proximity to x⃗a1 , then the robot has to move back to the
area of x⃗a1 and finally back to x⃗a2 which would be a large detour.

Figure 7.18(c) shows the ray projection phase that is necessary in order to perform
the graph construction that prefers high velocities. The process is reversed by starting
at the target point (sF , tF) and going backwards to (sI , tI). Rays are projected that
indicate maximum velocity edges from the vertices that represent the forbidden regions
backwards in negative t- and s-direction. The same is done for (sF , tF). In addition,
vertical lines are projected in positive t-direction that indicate waiting times for the
robot since they only make progress in t-direction, but not in s-direction. After the ray
projection, the navigation graph is constructed by starting in (sF , tF) and interpreting
the rays as edges and following them in order to reach (sI , tI). Since the construction
is reversed, all edges have to go in negative t-direction. All edges that go in positive
t-direction, those that are not reachable from (sF , tF) or those over which (sI , tI) can
not be reached are pruned as depicted in Figure 7.18(d). Finally, in order to determine
σ, the shortest path in the graph is computed that connects (sI , tI) and (sF , tF). The
resulting trajectory shows that the robot waits as long as possible at its current location
and then moves with maximum velocity to the next location.

Higher velocities indeed cause higher energy consumption. At this point, it is impor-
tant to state that—although energy consumption is an issue for mobile robots—energy
optimization is not addressed here.

7.6 Evaluation

The approach is evaluated by first performing a complexity analysis and, second, showing
benchmark results.

7.6.1 Complexity Analysis

First, the trajectory planner is addressed and, thus, the TPP. Afterwards, the complexity
of the job scheduler is analyzed. As this point, it is assumed to have no modifications
of static obstacles over time. The graph construction in order to solve the PPP needs
only to be done once and is not considered here. Let Os be the number of vertices
that represent static obstacles Os and, thus, also the number of vertices in the graph.
In order to compute the path π, Dijkstra’s algorithm is applied. Depending on the
actual implementation the algorithm has a polynomial (squared) or better (logarithmic)
complexity. Here, squared complexity is assumed: Os2. The path π of a robot consists
of segments. Let π indicate the number of segments.

120 CHAPTER 7. SWARM SPACE-TIME SCHEDULING (ONLINE)

When computing forbidden regions, the robot path π and the trajectories of the
dynamic obstacles Om have to be taken into account. The complexity of Om depends
linear on the polygon size6 of an obstacle, the number of trajectory segments of an
obstacle and the total number of obstacles. Since there is a linear correlation, Om is
defined as product and, in particular, the number of 3-dimensional vertices that represent
Om:

Assuming that Om consists only of one obstacle—a square—that has one trajectory
segment, then Om

k (t) defines the k-th obstacle of Om at time t. In this example, only
Om

0 (0) and Om
0 (1) are constructed. Both point sets consist of four vertices. The total

number of 3-dimensional vertices Om is, thus, eight.
The worst-case complexity when computing forbidden regions is: O(π·Om). However,

since a check of envelope intersection is performed before computing a frame of the
forbidden regions, in most cases, a decision can be made in advance if the current frame
will contain a forbidden region. Although this does not change the complexity, this check
significantly decreases the average computation time of calculating forbidden regions.

After the computation of the forbidden regions in s × t space, the navigation graph
is constructed in order to compute the temporal path σ and finally compose π and σ
together to the robot trajectory τ . Let Of be the total number of vertices of the forbidden
regions and, thus, also the number of vertices in the navigation graph. Constructing the
navigation graph requires pair-wise iterating over the vertices of the forbidden regions
which causes O(Of 2) complexity. Furthermore, visibility needs to be checked which
causes linear complexity. The combined complexity is: O(Of 3). Afterwards, the shortest
path is computed. For this Dijkstra’s algorithm is applied in order to find the shortest
path. Squared complexity is assumed again. The combined complexity for the TPP is:

O(Os2 +Om · π +Of 3) (7.14)

At first glance, Of 3 seems to be a very high complexity, but this complexity holds only
for vertices of the forbidden regions that are used in order to construct the navigation
graph. However, a forbidden region occurs only if obstacles cross the very particular
path of this one robot and at the same point in time. If no obstacles cross the path of
the robot, then there are no forbidden regions and, thus, no navigation graph has to be
computed. An important factor while operating a robot swarm is to be aware of the
amount of robots in a given area or, in particular, the density of robots. A too high
density increases the probability of potential collisions and as a consequence velocity
profiles have to be adapted which cause navigation graph constructions of larger size.

Next, the complexity of the job scheduler is addressed: First, the job scheduler picks
a location (next_location(..)) from the specified geometry of the action specification
(a.g). This requires to compute an area that is not covered by static obstacles. The
complexity is O(L ·Os), with L being the number of vertices that define the geometry g.
Furthermore, the computation of an interior point of the geometry causes an additional

6With polygon size, the minimal number of vertices that describe the polygon is stated.

7.6. EVALUATION 121

overhead of at maximum L · l which results in O(L ·Os +L · l); with l being the number
of location samples.

Next, find_slots(..) computes all free slots from all robots in the time window given
by tmin and tmax and checks the conditions given by Equations 7.1 - 7.3 which causes
O(|R| · k) complexity, with |R| being the number of robots and k the average amount of
free slots per robot. This has to be done l times and, thus, the complexity is given by
O(l · |R| · k). While checking the equations, find_slots(..) also computes ∆s.

K is defined as the number of slots that are computed by find_slots(..)—satisfying
Equations 7.1 - 7.3—with K ≤ |R| · k. All ∆s of all K slots are inserted in a red-black
tree which causes O(log(K)) complexity.

In order to start the trajectory planning, min_detour(..) gets and removes the slot
with the minimal detour from the red-black tree in O(log(K)). The current slot is
discarded and min_detour(..) gets and removes the next slot with minimal detour, if no
trajectory can be computed. This is repeated at most l ·K times resulting in O(l ·K ·
log(K)). Composing all parts together results in a total complexity of:

O
(
L ·Os+ l ·L+ l · |R| ·k+ l ·K · log(K)+ l ·K · log(K) ·

[
Os2 +Om · π +Of 3

])
(7.15)

Factoring out l results in

O
(
L ·Os + l ·

(
L+ |R| · k +K · log(K) +K · log(K) ·

[
Os2 +Om · π +Of 3

]))
(7.16)

This can be transformed to

O
(
L ·Os + l ·

(
L+ |R| · k +K · log(K) ·

[
Os2 +Om · π +Of 3 + 1

]))
(7.17)

This shows that the trajectory planner has a larger complexity than the job sched-
uler which is due to the heuristic that is used in the job scheduler. Next, benchmarks
are presented that also state that the job scheduler has only a small influence on the
complexity.

7.6.2 Benchmarks

Several benchmarks of the space-time scheduler have been performed. For the simula-
tions, a standard workstation with Intel Core i5 (Ivy Bridge) CPU with 3.2 GHz was
used.

Figure 7.19(a) shows a scenario in which multiple dynamic obstacles are crossing
the path π such that plenty of forbidden regions have to be computed. Figure 7.19(b)
shows the linear correlation between the number of dynamic obstacles and the time for
the computation of the collision-free trajectory τ . This was simulated with a maximum
number of 10,000 dynamic obstacles. The computation took around 400 ms.

In Figure 7.20(a), only one dynamic obstacle was simulated that was crossing the path
π. In this set-up the impact of the shape (number of vertices that describe the shape)
on the computation time is observed. The number of vertices is iteratively increased,

122 CHAPTER 7. SWARM SPACE-TIME SCHEDULING (ONLINE)

(a) Initial setup.

0 2000 4000 6000 8000 10000
0

100

200

300

400

obstacles

t /
 m

s

(b) Computation time.

Figure 7.19: Multiple obstacles crossing path π.

(a) Detailed shape.

0 2 4 6 8 10
0

200

400

600

vertices in x 105

t /
 m

s

(b) Computation time.

Figure 7.20: Impact of detail-level of obstacle on computation time.

i.e., the shape approximates a circle. Figure 7.20(b) shows the linear correlation between
the number of vertices that represents the obstacle and the computation time of the
scheduler. The most-detailed polygon was represented by 106 vertices. The computation
took around 700 ms.

In the scenario depicted in Figure 7.21(a), one dynamic obstacle was created that was
crossing the path π multiple times. Figure 7.21(b) shows the linear correlation between
the number of trajectory segments of the obstacle (which is equal to the number of
crossings) and the time for computing the schedule. This scenario was simulated with a
maximum of 1,000 crossings. The computation took around 130 ms.

It was simulated that the robot path π consists of multiple segments πi as shown in
Figure 7.22(a). A large dynamic obstacle crosses all path segments. Figure 7.22(b) shows
the linear correlation between the number of path segments and the time for computing
the schedule. This has been simulated with a maximum number of 10,000 segments
which took around 600 ms.

In Figure 7.23(a), four forbidden regions are simulated and successively approximated
the shape of the regions to a circle. Figure 7.23(b) shows the influence of increasing the

7.6. EVALUATION 123

(a) Multi-crossing.

0 200 400 600 800 1000
0

20

40

60

80

100

120

trajectory segments

t /
 m

s

(b) Computation time.

Figure 7.21: Influence of multiple trajectory segments on computation time (obstacle
crosses π multiple times).

(a) Multi-path.

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

path segments

t /
 m

s

(b) Computation time.

Figure 7.22: Influence of multiple path segments πi that are intersected by a large dy-
namic obstacle on computation time.

number of polygon vertices on the computation time. The maximum number of polygon
vertices per shape was 150 for each region. The computation took around 1200 ms.
The benchmark makes clear that there is a disproportional large relation between both
dimensions.

A scenario was created with n robots that have been arranged in a circle (Figure 7.24).
Then an action was scheduled that should be executed in the center of the circle. Fig-
ure 7.25(a) shows the computation time as a function of the number of involved nodes.
In this case, the first selected robot candidate was able to execute the job. The linear
correlation is due to the fact that during the trajectory planning all other remaining
robots are considered as dynamic obstacles and the planner iterates linearly over them.
The same simulation was performed again, but placing an external dynamic obstacle in
the center which did not move over time.7

Using a static obstacle instead, the job scheduler would have already been rejected
the jobs since no location candidate could be found which would result in a rather fast

7Or did not move during the time period while the simulation was running. The intention of that
behavior was chosen in order to examine the runtime impact of failing scheduling attempts since the
target destination was blocked.

124 CHAPTER 7. SWARM SPACE-TIME SCHEDULING (ONLINE)

t

s

(a) Detail-level of forbidden re-
gions.

0 50 100 150
0

200

400

600

800

1000

1200

vertices

t /
 m

s

(b) Impact on computation time.

Figure 7.23: Influence of the detail-level of forbidden regions (which is equivalent to
the detail-level of the robot shape) on the computation time which shows a significant
impact.

x

y

Figure 7.24: Circular arrangement of robots.

scheduling decision. However, this simulation should show the worst case performance,
i.e., the scheduler has to iterate over all location places, over all robots and all free
slots and compute spatio-temporal trajectories (performed by the trajectory planner)
including the calculation of forbidden regions. The trajectory planner has the dominating
complexity.

Each schedule attempt resulted in a fail since the external dynamic obstacle occupied
the place the entire time. Since the scheduler attempted to schedule every robot and
during each round all other robots have been considered as dynamic obstacles, the com-
plexity is squared in the number of robots as depicted in Figure 7.25(b). Non-schedulable
actions lead to higher computation times.

The scenario was modified again in order to measure the influence of free slots on the
scheduling. Figure 7.26(a) shows the linear correlation between increasing the number of
free slots and the time for computation. 10,000 was chosen as maximum number of free
slots and took around 45 ms of computation time. In order to find the minimal detour,
the job scheduler had to check all free slots. However, since this is done using a heuristic,

7.6. EVALUATION 125

0 200 400 600 800 1000
0

100

200

300

400

500

600

robots

t /
 m

s

(a) First attempt was successful.

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

robots

t /
 m

s

(b) All attempts fail.

Figure 7.25: Influence of the number of nodes on the computation time while scheduling
a new action using a circular arrangement setting.

0 2000 4000 6000 8000 10000
0

10

20

30

40

free slots

t /
 m

s

(a) First attempt was successful.

0 200 400 600 800 1000
0

50

100

150

200

free slots

t /
 m

s

(b) All attempts fail.

Figure 7.26: Influence of the number of free slots on the computation time while schedul-
ing a new action using the same circular arrangement setting.

this computation performs quite fast. In contrast, the slower trajectory computation has
only to be done once.

In the following, the scenario was modified again such that the scheduling of all free
slots will fail. In this case, the scheduler iteratively determined the minimal detour
and performed the entire trajectory planning with the new slot. Figure 7.26(b) shows
the result that also states a linear correlation although the trajectory planning had to
be repeated n times with n being the number of free slots. A decrease in the overall
computation time could be measured which is still linear. This is due to the fact that a
low detailed polygon shape is used which, again, has a strong influence on the runtime
behavior of the scheduler.

Finally, a simulation was performed in which the correlation between the number of
dependent jobs that shall be scheduled and the computation time was measured. In this
simulation, only one robot was used and the number of jobs was iteratively increased by
1,000. The dependencies of the jobs were given by a singly linked list. Figure 7.27(a)
shows the results which state a linear correlation. The computation time was 2 seconds
for scheduling 10,000 jobs. Due to the linear correlation, the scheduling of one job took
about 0.2 ms.

126 CHAPTER 7. SWARM SPACE-TIME SCHEDULING (ONLINE)

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

jobs

t /
 m

s

(a) Dependent jobs.

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

jobs

t /
 m

s

(b) Periodic: same loc.

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

jobs

t /
 m

s

(c) Periodic: different loc.

Figure 7.27: Scheduling of dependent / periodic jobs.

The same scenario was used in order to measure the computation time of the scheduler
by scheduling periodic jobs as shown in Figure 7.27. Again, the number of periodic jobs
was iteratively increased by 1,000. In Figure 7.27(b), the flag is set in order to use the
same location for each instance of the periodic job. In Figure 7.27(c), a new location
was computed for each instance of the periodic job. Comparing both results shows that
there is no noticeable difference in the computation time.

According to the complexity and due to the observations of the benchmark it is
important to keep the details of shapes of forbidden regions low. It is recommended to
use low detail shapes (bounding boxes for instance). This holds for all geometries.

7.7 Conclusion

In this chapter, an online-scheduler was presented to schedule spatio-temporal actions in
space and time. The algorithm follows a two-stage approach:

First, the job scheduler performs a coarse-grained planning that is based on a heuristic
and neglects all obstacles. Decisions are made based on proximity between the robot
and the action’s execution location by using the Euclidean distance. The job scheduler
proposes a free slot of a robot that is large enough in terms of time in order to move
the robot to the designated execution area and execute the action without violating the
spatio-temporal constraints. If necessary, the robot must be able to reach the execution
location of the next action without violating the spatio-temporal constraints of that
action.

Second, the trajectory planner takes the slot of the robot candidate as input and
computes a collision-free spatio-temporal trajectory to avoid collisions with static and
dynamic obstacles.

Due to the heuristic, the computation of the job scheduler is fast compared to the
trajectory planner. As shown in the evaluation, the computation of the forbidden regions
is expensive. A forbidden region will only appear if a dynamic obstacle crosses the path of
the robot. In order to check if a collision is possible, a first check of envelope intersection
of a robot segment and a trajectory segment of an obstacle is performed. If no envelope
intersection is possible, then the entire computation of the forbidden regions can already
be dropped for that particular segment. Another important factor that has a strong

7.7. CONCLUSION 127

impact on the computation time of the forbidden regions is the detail-level of the polygons
that represent the obstacles. If possible, it is recommended to approximate obstacles by
a rectangle (bounding box). In this case, only four vertices have to be projected on
the robot’s path along the extended velocity vector. Using coarse-grained rectangular
approximations reduces overall computation overhead, but shrinks the solution space.

128 CHAPTER 7. SWARM SPACE-TIME SCHEDULING (ONLINE)

Chapter 8

Evaluation

This chapter presents the evaluation of this thesis. In the evaluation, different scenarios
are constructed and their outcome is analyzed and explained.

8.1 Introduction

In this chapter the evaluation results are shown. The entire system is evaluated which is
comprised of the following aspects:

• The programming model (Chapter 4)

• The swarm runtime system (Chapter 5)

• The space-time scheduler (Chapter 7)

All scenarios in the evaluation have been performed by programming applications
consisting of suites and actions according to the programming model. The scheduler
scheduled all these actions in space and time according to the spatio-temporal constraints
and computed path alternatives. This chapter is split into three parts:

• A simulation (Section 8.2) which has evaluated the space-time scheduler and parts
of the swarm runtime system.

• A hybrid approach (Section 8.3) which has evaluated the entire stack ranging from
the programming model over the swarm runtime system to the space-time sched-
uler while movement itself is simulated. The runtime system performed the adapted
two-phase commit protocol by communicating with the involved nodes using mes-
sage passing and, finally, committed or aborted the (distributed) transaction and,
hence, removed one of the path alternatives. The execution of the scheduled and
committed applications have been performed distributed on several machines.

• An experimental part which has been performed on the testbed (Section 8.4) which
has evaluated the entire stack ranging from the programming model over the swarm

129

130 CHAPTER 8. EVALUATION

x

y

0

Figure 8.1: Grid-oriented, spatially uniform distributed arrangement of nodes.

runtime system and the space-time scheduler to localization (Appendix B) and mo-
tion control (Appendix C) of the robots (Appendix A). In addition to the evaluation
presented in Section 8.3 (hybrid approach), the scenarios in this part include real
robot movement on the testbed.

8.2 Simulation

This section presents the results of the simulations which have been performed by evalu-
ating the space-time scheduler and parts of the swarm runtime system. In Section 8.2.1,
virtual and physical movement are examined. The relation (fraction) between physical
and virtual movement is shown as a function of the number of nodes. According to the
approach presented in this thesis, the total physical movement can be strongly reduced
by scaling up the number of nodes. This leads to less movement and, therefore, less re-
source consumption, e.g., allows more jobs to be scheduled. Energy consumption is not
considered, but reducing the amount of physical movement, results in less energy con-
sumption, in general. In Section 8.2.2, the system utilization (Section 5.4) is examined.
The correlation between the job acceptance rate, the job load, the motion load and the
combined system load are shown as a function of the number of jobs and the number of
nodes. Furthermore, the ratio between schedulable jobs and required amount of nodes
is presented. Concrete spatial units (mm, m, ..) are neglected in the simulation. The
units are kept abstract.

8.2.1 Virtual Movement vs. Physical Movement

In this section, the ratio between virtual and physical movement is examined. In general,
it is hard to predict the behavior of applications since the application’s intention is
unknown. A random appearance of actions is assumed.

8.2. SIMULATION 131

The experiments1 have been performed on a world with the dimensions x = 100, y =
100. Nodes are shaped as a circle with a diameter of 1 and a speed of vmax = 1. The
experiments show the impact on virtual and physical movement as a function of the
amount of nodes in the world. During the set-up, the nodes are arranged using a spatial
uniform distribution as depicted in Figure 8.1.

One application is simulated that spawns a number of actions, each of which has a
duration of d = 1. The spatial constraint of each action is randomly generated inside
the world’s borders. Every action is put into a separate suite. The length of the virtual
movement is defined as

svirt =
n−1∑
j=1

||asj .x⃗a1 − asj+1.x⃗a1 || (8.1)

with n = 10, 50, 80. The length of the physical movement sphys is defined as the sum
over all robot trajectories.

All experiments have been performed 100 times. The generated plots show the fol-
lowing values as a function of the number of nodes:

• avg(virt) :=
∑100

i=1 svirt · 100−1

• avg(phys) :=
∑100

i=1 sphys · 100−1

• avg(fraction) :=
∑100

i=1
sphys
svirt

· 100−1

• fraction shows the quartiles, outliers and the median value of the relation between
physical movement (sphys) and virtual movement (svirt).

The experiments have been performed in two ways: only space constraints and with
space and time constraints.

Figure 8.2 shows experiments with only space constraints. The first plot schedules
10 jobs as a function of the number of nodes. The second one 50 and the third one
80 jobs. The value of avg(virt) scales approximately linear with the amount of actions
(n = 10, 50, 80): if n = 10 then avg(virt) is approximately 550. It is approximately 2750
(for n = 50) and 4400 (for n = 80). Therefore, each action “produces” a virtual movement
of approximately 55 space units which indicates the average Euclidean distance between
two adjacent actions. Since there are no time constraints, the scheduler assumes a fictive
time window: [0,∞]. The actions are scheduled as soon as possible which results in equal
length of svirt and sphys if only one node is present, i.e., the robot physically moves to
every x⃗ai in the order the actions are scheduled. This results in a fraction of 1. Increasing
the number of nodes results in a decreased physical movement as the actions are mapped
such that sphys is reduced. As a consequence, a decrease of sphys results in a decrease of
the fraction. Increasing the number of jobs results in a smaller variance as indicated by
the box plots.

1The term “experiment” is used here in the context of a certain simulation set-up.

132 CHAPTER 8. EVALUATION

0

0.2

0.4

0.6

0.8

1

1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400
0

1000

2000

3000

4000

5000
fra

ct
io

n
(p

hy
si

ca
l /

 v
irt

ua
l m

ov
em

en
t)

le
ng

th
 p

hy
si

ca
l,

vi
rtu

al
 m

ov
em

en
t

number of nodes

fraction
avg(fraction)

avg(virt)
avg(phys)

0

0.2

0.4

0.6

0.8

1

1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400
0

1000

2000

3000

4000

5000

fra
ct

io
n

(p
hy

si
ca

l /
 v

irt
ua

l m
ov

em
en

t)

le
ng

th
 p

hy
si

ca
l,

vi
rtu

al
 m

ov
em

en
t

number of nodes

fraction
avg(fraction)

avg(virt)
avg(phys)

0

0.2

0.4

0.6

0.8

1

1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400
0

1000

2000

3000

4000

5000

fra
ct

io
n

(p
hy

si
ca

l /
 v

irt
ua

l m
ov

em
en

t)

le
ng

th
 p

hy
si

ca
l,

vi
rtu

al
 m

ov
em

en
t

number of nodes

fraction
avg(fraction)

avg(virt)
avg(phys)

Figure 8.2: Simulation with 10 (50, 80) jobs per iteration, space constraints have been
randomly generated in x ∈ [0, 100], y ∈ [0, 100] while assuming a fictive time window
t = [0,∞].

8.2. SIMULATION 133

0

0.2

0.4

0.6

0.8

1

1.2

1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400
0

1000

2000

3000

4000

5000

fra
ct

io
n

(p
hy

si
ca

l /
 v

irt
ua

l m
ov

em
en

t)

le
ng

th
 p

hy
si

ca
l,

vi
rtu

al
 m

ov
em

en
t

number of nodes

fraction
avg(fraction)

avg(virt)
avg(phys)

0

0.2

0.4

0.6

0.8

1

1.2

1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400
0

1000

2000

3000

4000

5000

fra
ct

io
n

(p
hy

si
ca

l /
 v

irt
ua

l m
ov

em
en

t)

le
ng

th
 p

hy
si

ca
l,

vi
rtu

al
 m

ov
em

en
t

number of nodes

fraction
avg(fraction)

avg(virt)
avg(phys)

0

0.2

0.4

0.6

0.8

1

1.2

1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400
0

1000

2000

3000

4000

5000

fra
ct

io
n

(p
hy

si
ca

l /
 v

irt
ua

l m
ov

em
en

t)

le
ng

th
 p

hy
si

ca
l,

vi
rtu

al
 m

ov
em

en
t

number of nodes

fraction
avg(fraction)

avg(virt)
avg(phys)

Figure 8.3: Simulation with 10 (20, 80) jobs per iteration, space constraints have been
randomly generated in x ∈ [0, 100], y ∈ [0, 100]; time constraints have been generated in
t ∈ [0, 3600].

134 CHAPTER 8. EVALUATION

Figure 8.3 shows the simulations with space and time constraints. The temporal
constraints are randomly generated in the interval t ∈ [0s, 3600s], i.e., tmin, tmax are
both randomly generated. Therefore, also the length of the time window varies. In
general, the behavior looks similar, but there are some details that are different: In the
beginning (around up to 16 nodes) the fraction (physical / virtual movement) is smaller
when scheduling actions only with space constraints. Using spatio-temporal constraints
results in a larger fraction and, therefore, the amount of physical movement is larger.
Using only 1 node, the fraction might be even larger than 1. Increasing the number of
nodes (starting from approximately 25 nodes), the fraction and also the variance is even
smaller using spatio-temporal constraints.

The behavior is explained in the following starting with the one node scenario: when
scheduling a set of actions (a, b, c) using only space constraints in the order a, b, c and
assuming that no dynamic obstacle “delays” the execution start of one of the actions as
described in Section 8.3.1, the only possible schedule is (a, b, c) which always results in
svirt = sphys.

Incorporating temporal constraints enables all possible permutations (depending on
the constraint specification). If all temporal constraints are equal (tamin = tbmin =
tcmin ∧ tamax = tbmax = tcmax) as shown in Section 8.3.1, and assuming again that no
dynamic obstacle is present, the case can be mapped to the one where no temporal
constraints are present. Then the only possible schedule is given by (a, b, c). If all
temporal constraints are different, then any arbitrary permutation is possible: (a, b, c),
(a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a). However, the length of the virtual move-
ment svirt is given as defined in Equation 8.1. The length of the movement is, thus,
svirt := ||x⃗a − x⃗b|| + ||x⃗b − x⃗c|| given the assumption that the schedule operation is
invoked in the order (a, b, c). Depending on the temporal constraints, the computed
schedule may look like this: a, c, b. In this case (still assuming one node), the node’s
trajectory is given by a→ c→ b and sphys := ||x⃗a − x⃗c||+ ||x⃗c − x⃗b||. Assigning the fol-
lowing execution locations to the actions x⃗a = (10 10)T , x⃗b = (20 20)T and x⃗c = (30 30)T

results in the following length values: svirt := 2 ·
√
200, sphys :=

√
800 +

√
200 resulting

in a fraction > 1.

However, scheduling a set of spatio-temporal actions will probably generate gaps in
the schedule. These gaps can be filled with other actions that are “on the way”. The
more actions are scheduled, the more the probability increases that gaps are filled which
result in an even better relation between svirt and sphys. In the following, it is assumed
that the actions have been scheduled at the following times: ta = 0, tb = 100, tc = 50.

Now, a second application is executed that performs two schedule requests with ac-
tions d and e. The actions are scheduled at x⃗d = (12 12)T , x⃗e = (28 28)T at time
td = 25, te = 75. The virtual movement is given by s∗virt :=

√
512 and the nodes trajec-

tory is updated as follows: a → d → b → e → c. Since d and e are scheduled “on the
way”, the physical movement sphys remains unchanged. The combined virtual movement
is given as svirt + s∗virt := 2 ·

√
200 +

√
512. The resulting fraction is now < 1.

8.2. SIMULATION 135

8.2.2 System Utilization

In this section, the system utilization (Section 5.4) is examined. The following evaluation
has been performed on the one hand to examine the system utilization as a function of
the amount of jobs and on the other hand as a function of the amount of nodes. All nodes
are set up as in the previous scenarios: maximum speed of vmax = 1, shaped as a circle
with diameter of 1 using a spatially uniform distributed arrangement on a grid. The
world’s size is again set up with x = 100, y = 100. All actions have a duration of d = 1.
The spatial constraints are randomly generated inside the world’s border. The temporal
constraints are either set to the interval of t1 and t2 which is given in the following or
randomly generated in [t1, t2]. Actions are spatially uniformly distributed. The plots
show the following values:

• acceptance-rate: the rate indicates the fraction of accepted jobs in relation to the
total amount of jobs (accepted

accepted+rejected).

• job-load : uj(t1, t2) indicates the job load during that interval.

• motion-load : um(t1, t2) indicates the motion load during that interval.

• load : u(t1, t2) indicates the total load during that interval.

It is assumed that no time progresses during the simulation, i.e., the frozen horizon
as well as the present time are kept static. This does not influence the result or behavior
of the simulations since the simulations can be mapped to a scenario in which time
progresses and the values of t1 and t2 are set to be sufficient far into the future and all
generated jobs are also in the interval [t1, t2]. Doing so, it must be guaranteed that the
simulations finish before the present time of the scheduler reaches t1. Setting t1 = 0 and
allowing time to progress forces the scheduler to adjust t1 by setting it to its internal
present time reducing the interval length of t1 and t2 which leads to a modification of
the system utilization values.

In scenario 1 (Figure 8.4), the system utilization is measured in the interval t1 =
0, t2 = 4000s using only 1 node and iteratively increasing the number of jobs until
200, each of which has a duration of d = 1. The result is plotted in Figure 8.4(a)
based on scenario 1(a) in which time constraints are kept static (tmin = 0s, tmax =
4000s). Two phases can be noticed: in phase 1 ranging from 0 - 74 jobs the acceptance
rate is constantly 1 which states that all jobs have been successfully scheduled. As a
result, all loads are strictly increasing. After scheduling the 74. job, the load u reaches
approximately 1 and, therefore, the system is fully utilized. At this point in time all
utilizations have reached their maximum. The job load is uj = 74s

4000s = 0.0185 while the
motion load is um ≈ 0.9810 resulting in a total utilization of u ≈ 0.9995.

The second phase starts while job 75 is scheduled. From here on, the acceptance rate
is strictly decreasing since the system is not able to accept new jobs. As a consequence,
all utilization values maintain their values. It is important to add that the system is only
fully utilized in the interval of [0s, 4000s]. Extending the interval to [0s, 8000s] would
cut all system utilization values into halves.

136 CHAPTER 8. EVALUATION

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

ut
iliz

at
io

n

number of jobs

acceptance-rate
job-load

motion-load
load

(a) Scenario 1(a): Uniformly distributed space constraints; time constraints are kept static
(randomly generated in x ∈ [0, 100], y ∈ [0, 100]; tmin = 0s, tmax = 4000s).

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

ut
iliz

at
io

n

number of jobs

acceptance-rate
job-load

motion-load
load

(b) Scenario 1(b): Space and time constraints follow a uniform distribution
(randomly generated in x ∈ [0, 100], y ∈ [0, 100]; tmin and tmax ∈ [0s, 4000s]).

Figure 8.4: Scenario 1: System utilization u, uj , um in interval [0s, 4000s] and acceptance
rate with 200 jobs and 1 node.

8.2. SIMULATION 137

Scenario scheduled jobs acceptance rate u #nodes
scenario 1(a) 74 / 200 0.37 1 1
scenario 1(b) 122 / 200 0.61 0.91 1
scenario 2(a) 482 / 800 0.60 1 4
scenario 2(b) 733 / 800 0.92 0.83 4

Table 8.1: Simulation results.

In scenario 1(b), the temporal constraints are randomly generated in [0s, 4000s].
The measured values are plotted in Figure 8.4(b). The acceptance rate already starts
decreasing at the 35th job (uj ≈ 0.0085, um ≈ 0.3091, u ≈ 0.3176) while the system
utilization increases less strong compared to Figure 8.4(a). Higher numbers of scheduled
jobs correlate with higher utilization values which indicate that the system has less free
capacity. Hence, the probability that a new job gets scheduled decreases with the number
of already scheduled jobs. After the 200th job has been scheduled (last job according to
scenario 1), the utilization is uj ≈ 0.0305, um ≈ 0.8799, u ≈ 0.9104. The system is yet not
fully utilized and is able to accept more jobs. The acceptance rate is 0.61 which indicates
that in total 122 jobs have been successfully scheduled. In comparison, the acceptance
rate in scenario 1(a) (Figure 8.4(a)) is 0.37 resulting in 74 scheduled jobs. In scenario
1(b) shown in Figure 8.4(b), approximately 1.65 times more jobs could be scheduled. The
rejection of some jobs may have different causes, e.g., since the constraints are generated,
it is possible that multiple jobs have similar time constraints while the space constraints
are set in different regions such that the Euclidean distance exceeds a certain threshold
making it impossible to reach the next location using only a “one-node” set-up.

In the next scenario (Figure 8.5), the number of nodes is set to 4 and the amount
of jobs is set to 800. The remaining parameters are maintained. In Figure 8.5(a) the
measured values are presented in which the temporal constraints are set to: tmin =
0s, tmax = 4000s. In the beginning (until job 389), the system utilization values are
strictly increasing while the acceptance rate constantly remains 1. Scheduling job 390
starts the decreasing of the acceptance rate. The utilization at this point is given by
uj ≈ 0.0242, um ≈ 0.6885 and u ≈ 0.7127. Between job 390 and 542 the system
utilization is constantly increasing while the acceptance rate tends to go down, i.e.,
though the system accepts more jobs, the probability of acceptance goes down. After
scheduling job 542, the utilization is given as follows: uj ≈ 0.0298, um ≈ 0.9697 and
u ≈ 0.9995, the acceptance rate is approximately 0.8870. After that point, the probability
of accepting new jobs is approximately zero (acceptance rate decreases strongly). In the
end, the values are given by: uj ≈ 0.02995, um ≈ 0.9697 and u ≈ 0.9996. The acceptance
rate is approximately 0.6027 which states that 482 jobs have been scheduled.

Comparing scenario 1 and scenario 2 (see Table 8.1 for simulation results), it becomes
obvious that quadrupling the amount of nodes from 1 to 4 does not simply lead to accept
four times more jobs. In fact, it allows to accept even more since there is a non-linear
correlation. In scenario 1(a), 74 jobs have been scheduled successfully. In scenario 2(a),
482 jobs have been scheduled. Comparing those numbers, the amount of jobs that have

138 CHAPTER 8. EVALUATION

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

ut
iliz

at
io

n

number of jobs

acceptance-rate
job-load

motion-load
load

(a) Scenario 2(a): Uniformly distributed space constraints; time constraints are kept static
(randomly generated in x ∈ [0, 100], y ∈ [0, 100]; tmin = 0s, tmax = 4000s).

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

ut
iliz

at
io

n

number of jobs

acceptance-rate
job-load

motion-load
load

(b) Scenario 2(b): Space and time constraints follow a uniform distribution
(randomly generated in x ∈ [0, 100], y ∈ [0, 100]; tmin and tmax ∈ [0s, 4000s]).

Figure 8.5: Scenario 2: System utilization u, uj , um in interval [0s, 4000s] and acceptance
rate with 800 jobs and 4 nodes.

8.2. SIMULATION 139

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

ut
iliz

at
io

n

number of nodes

acceptance-rate
job-load

motion-load
load

fraction

Figure 8.6: Scenario 3: System utilization u, uj , um together with job acceptance-rate
and fraction of reduced physical movement with 400 jobs as a function of the amount
of nodes (1-400), using space and time constraints (tmin, tmax ∈ [0s, 500s], g ∈ (x ∈
[0, 100], y ∈ [0, 100]).

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

ut
iliz

at
io

n

number of nodes

acceptance-rate
job-load

motion-load
load

fraction

Figure 8.7: Scenario 4: System utilization u, uj , um together with job acceptance-rate
and fraction of reduced physical movement with 800 jobs as a function of the amount
of nodes (1-400), using space and time constraints (tmin, tmax ∈ [0s, 500s], g ∈ (x ∈
[0, 100], y ∈ [0, 100]).

140 CHAPTER 8. EVALUATION

been scheduled is approximately 6.5 times higher using 4 times more nodes. In scenario
2(b), the temporal constraints are randomly generated in [0s, 4000s] (Figure 8.5(b)).
Here, the acceptance rate remains 1 until job 427 and then goes down slightly while the
utilization increases. At this point the utilization is given by: uj ≈ 0.02662, um ≈ 0.4388
and u ≈ 0.4654. After job 800, the final values are: uj ≈ 0.0456, um ≈ 0.7863 and
u ≈ 0.8320 while the acceptance rate is 0.9160 which states that 733 jobs have been
scheduled. This is a gain of 1.52 times more jobs using scattered temporal constraints.

In the following two scenarios (scenario 3 and 4), the effect of increasing the number of
nodes on the system utilizations is examined. For this scenario 2 is modified as follows:
the number of nodes is iteratively increased starting with one up to 400 nodes. The
amount of jobs is set to 400 (scenario 3). The temporal constraints are modified and
randomly chosen in the interval [0s, 500s]. The system utilization is measured in the
same interval. Figure 8.6 shows the plotted values. The plot shows that up to 16 nodes
the system utilization u stays approximately constant at 1 while um together with the
fraction (sphyssvirt

) decreases and uj together with the acceptance rate increases. Increasing
the number of nodes leads to shorter node movement phases and, hence, more jobs can
be scheduled. There is a correlation between u, um, uj and the acceptance rate: until the
acceptance rate is less than 1 and the overall load u is approximately 1 (system is fully
utilized but does not have sufficient capacity to accept all jobs), uj increases while um

decreases when the number of nodes increases. This is due to shorter physical movement
resulting in a smaller fraction, i.e., the efficiency increases. Until 49 nodes, there is a
strong decrease in u, um as well as the fraction noticeable. Afterwards, an asymptotic
behavior of u, um, uj and the fraction regarding the node axis is observable. This means
that given the assumption of this scenario, an amount of 25 nodes is sufficient in order
to reach an acceptance rate of approximately 1.

In scenario 4, the set up is modified by increasing the number of jobs to 800. All other
parameters remain unaffected. Figure 8.7 shows the results. The behavior of the values
appear similar. In the beginning (up to around 25 nodes), the system utilization u, um

are shifted to the right while uj is stretched (larger increasing phase). The decreasing
phase is in both scenarios similar. The maximum acceptance rate of 1 is reached with 36
nodes (doubling the number of jobs requires 1.5 times more nodes). Independently on
the amount of jobs, is the behavior of the fraction curve.

In order to determine the suitable number of nodes, an estimation of the number
of actions together with an assumption of the spatio-temporal constraints has to be
performed. In particular, the frequency has to be analyzed (number of actions per time
frame).

8.3 Hybrid Approach

This section presents different scenarios with and without obstacles and examines the
system behavior. The experiments evaluate the system on a holistic level, excluding the
actual movement. The movement is simulated by simply following the spatio-temporal
trajectories as they have been computed by the scheduler. The runtime system performed

8.3. HYBRID APPROACH 141

x

y

(0,0)

(a) World with space di-
mensions x and y.

n1

n2

n3

movement jobs action jobs
present time time axis

(b) Visualization of the schedule of nodes n1, n2 and n3 with movement
and action jobs.

Figure 8.8: Explanation of world set-up and schedule visualization.

World set-up Description
Om

0

shape: (−0.5, 0), (−0.5, 3), (0.5, 3), (0.5, 0), (−0.5, 0)
path: (20, 1), (20, 5)
times: 2s, 45s

n1

shape: circle((0,−0.5), (−0.5, 0), (0, 0.5), (0, 5, 0))
position: (2, 4)
speed: vmax = 1

Table 8.2: World set-up: 1 node and 1 dynamic obstacle Om.

the adapted two-phase commit protocol by communicating with the involved nodes us-
ing message passing and, finally, committed or aborted the (distributed) transaction and,
hence, removed one of the path alternatives. The execution of the scheduled and com-
mitted applications have been performed distributed on several machines. Section 8.3.1
shows the system behavior when scheduling a set of actions while a slow dynamic ob-
stacle crosses the node’s path. Section 8.3.2 presents two applications that form two
triangles consisting of six nodes that “approach” each other based on the spatio-temporal
constraints of the actions. Using the approach presented in this thesis, both applications
could be successfully scheduled and executed by using virtual movement. Section 8.3.3
shows that, using the approach presented in this thesis, nodes can be navigated through
a tight labyrinth consisting of multiple static obstacles. Two actions are created and two
nodes are present in the world. The shortest paths for the nodes are computed to the
respective execution location of the actions which leads through the labyrinth.

All experiments that have been performed in this section are set up in a world with
an arrangement of the x and y axis as depicted in Figure 8.8(a). The schedule of the
nodes, which includes movement and action jobs, is visualized in Figure 8.8(b). Concrete
spatial units (mm, m, ..) are neglected again. The units are kept abstract.

142 CHAPTER 8. EVALUATION

Action d tmin tmax g
[in s] [in s] [in s] [rect((x1, y1), (x2, y2))]

a1 1 5 104 (24, 3), (25, 4)
a2 1 5 104 (8, 2), (9, 3)
a3 1 5 104 (10, 2), (11, 3)
a4 1 5 104 (12, 2), (13, 3)
a5 1 5 104 (14, 2), (15, 3)
a6 1 5 104 (16, 2), (17, 3)
a7 1 5 104 (18, 3), (19, 4)

Table 8.3: Action specifications: 7 actions before and behind Om.

n1 Om
0

a1

(a) Schedule a1

a2

(b) Schedule a2

a3

(c) Schedule a3

a4

(d) Schedule a4

a5

(e) Schedule a5

a6

(f) Schedule a6

a7

(g) Schedule a7

a7

(h) Execute a7

a1

n1

Om
0

(i) Pass Om
0

Figure 8.9: Visualization of scenario progress.

8.3.1 Slow Dynamic Obstacles and Waiting Times

As described in Section 7.5.5 (page 118), low velocities result in a bad system utilization.
In the following the improvement of using waiting times and preferring higher velocities is
demonstrated. Table 8.2 shows the world set-up given one dynamic obstacle Om

0 and one
node n1. The dynamic obstacle has a rectangular shape and appears at the coordinate
(20, 1) at time 2. It then continues moving with a constant speed of vOm

0
≈ 0.093 to

8.3. HYBRID APPROACH 143

n1

(a) Schedule a1

n1

(b) Schedule a2

n1

(c) Schedule a3

n1

(d) Schedule a4

n1

(e) Schedule a5

n1

(f) Schedule a6

n1

(g) Schedule a7

n1

(h) Execute a7

n1

(i) Pass Om
0

Figure 8.10: Alternating schedule of n1 while time progresses.

coordinate (20, 5). It arrives at t = 45. In this scenario, there are in total 7 actions that
will be scheduled. Table 8.3 states the actions’ specifications. The constraint g spans
a rectangular space window given by (x1, y1) and (x2, y2). The overall progress of the
scenario is visualized in Figure 8.9 while Figure 8.10 shows the adapted schedule of node
n1 while time progresses. Each action is scheduled separately, i.e., in a different action
suite. The first action a1 has to be executed spatially behind2 the dynamic obstacle Om

0

as depicted in Figure 8.9(a). Without using the waiting times, the robot would move
with constant low speed towards the execution location of a1. In this case, the robot
would not be able to accept new jobs in the meanwhile resulting in a bad job utilization
ujr (Section 5.4.1).

Using the waiting time, the robot will move with a high velocity and waits as long
as possible at its current location in order to possibly accept new jobs. While time
progresses, the actions a2, a3, .., a6 are scheduled iteratively, resulting in an adaption
of the schedule of n1 as shown in Figure 8.9(b) - Figure 8.9(g) and Figure 8.10(b) -
Figure 8.10(g), respectively. As a result, the system is able to accept all remaining 6
actions and schedules them before a1 since n1 has enough capacity in order to execute
them. This results in a modification of the original trajectory. As shown in Figure 8.9(g),
the robot passes Om

0 without a collision and still in time.

2In this case, it means spatially behind the dynamic obstacle as seen from the robot’s perspective.

144 CHAPTER 8. EVALUATION

nodes initial position speed
n1 position: (2, 1.5) vmax = 1
n2 position: (5, 10.5) vmax = 1
n3 position: (2, 19.5) vmax = 1
n4 position: (31, 1.5) vmax = 1
n5 position: (26, 10.5) vmax = 1
n6 position: (31, 19.5) vmax = 1

Table 8.4: World set-up: 6 nodes forming triangles.

8.3.2 Triangle Formations

This scenario illustrates the difference between virtual and physical movement. In order
to demonstrate this, two applications are requested to be scheduled. Table 8.4 describes
the arrangement of nodes. Nodes are shaped as circle again. Table 8.5 (page 145) states
the respective specifications of suites and actions together with their spatio-temporal
constraints. The duration is kept constant: d = 1.

Both applications (app1, app2) consist of 7 action suites denoted by asli (for app1)
and asri (for app2), i ∈ [1, .., 7]. Each suite contains exactly 3 actions a1, a2, a3 resulting
in a total amount of 2 · 7 · 3 = 42 actions. All actions have different spatio-temporal
constraints. Due to the specification of the spatio-temporal constraints, all actions in
the same suite lead to the formation of a triangle. For all actions in the suites asli with
i > 1, the temporal constraints are increased by (i−1) ·12s and the spatial x constraints
are increased by (i− 1) · 4.

For all actions in the suites asri with i > 1, the temporal constraints are increased by
(i− 1) · 12s and the spatial x constraints are decreased by (i− 1) · 4. Due to the spatial
constraints, the suite asl1 starts on the left side and “moves” to the right. Therefore,
the index l is used. The suite asr1 starts on the right side and “moves” to the left side.
Therefore, the index r is used.

The action suites are scheduled (and executed) in the following order: for i ∈
{1, 2, .., 7} : schedule(asli), schedule(asri). Figure 8.11(a) - Figure 8.11(i) (page 146) vi-
sualize the execution including the current formations of the nodes while Figure 8.12(a)
- Figure 8.12(i) (page 147) show the corresponding schedule. For simplicity, a formation
caused by an action suite asxy is denoted by xy as depicted in Figure 8.11. The two
applications app1 and app2 are visualized by the formations li and ri, respectively.

Figure 8.11(a) visualizes the execution of asr1. The suite asl1 has already been executed
previously. At the current point in time the formation is still maintained. Figure 8.11(b)
shows the execution of asl2. This continues in Figure 8.11(c) by previously executing
asr2 and then executing asl3. The two triangles represented by the suites of asl and asr

“approach” each other by moving the 3 nodes on the left (n1, n2, n3) as a group to the right
while the 3 nodes on the right side (n4, n5, n6) move as a group to the left. This behavior
changes in Figure 8.11(d) since the left most point of the triangle represented by asr3 is
now switched over from n5 to the right most node of the left group (n2). In Figure 8.11(e),

8.3. HYBRID APPROACH 145

App Suite Action tmin tmax g [rect(..)]
[in s] [in s] (x1, y1), (x2, y2)

app1

asl1

a1 5 6 (3, 1), (4, 2)
a2 5 6 (6, 10), (7, 11)
a3 5 6 (3, 19), (4, 20)

asl2

a∗1 a1.tmin + 12 a1.tmax + 12 a1.g.x+ 4
a∗2 a2.tmin + 12 a2.tmax + 12 a2.g.x+ 4
a∗3 a3.tmin + 12 a3.tmax + 12 a3.g.x+ 4

...
asl7 . . .

app2

asr1

a1 11 12 (28, 1), (29, 2)
a2 11 12 (25, 10), (26, 11)
a3 11 12 (28, 19), (29, 20)

asr2

a∗1 a1.tmin + 12 a1.tmax + 12 a1.g.x− 4
a∗2 a2.tmin + 12 a2.tmax + 12 a2.g.x− 4
a∗3 a3.tmin + 12 a3.tmax + 12 a3.g.x− 4

...
asr7 . . .

Table 8.5: Action specifications: 42 actions forcing triangle formations.

the triangle represented by asl4 is still formed by n1, n2, n3. In Figure 8.11(f), the triangle
represented by asr4 is now completely switched over to n1, n2, n3 while in Figure 8.11(g)
the formation (asl5) is carried out by n4, n5, n6. At this point in time both applications
have completely switched their executing devices which is completely transparent for the
application. How the robots are moving back towards their origin while executing the
remaining actions, is visualized in Figure 8.11(h) and Figure 8.11(i).

Figure 8.12(a) - Figure 8.12(i) depict the respective schedule at the specific points in
time, that is, when the respective action suite is executed. The 3 contained actions are
marked. The color is used to distinguish between both applications. Figure 8.12(a) shows
the execution of asr1 of app2 by the nodes n4, n5 and n6. Figures 8.12(b) and 8.12(c)
indicate the execution of asl2 and asl3 of app1 by the nodes n1, n2 and n3. Figure 8.12(d)
indicates the switching of nodes. Previously asr1 and asr2 have been executed by the
nodes n4, n5 and n6. Here, asr3 is executed by the nodes n2, n4 and n6. The last suite of
app1 that is executed by the nodes n1, n2 and n3 is asl4 (Figure 8.12(e)). Afterwards, all
remaining suites off app1 (asl5 − asl7) are executed by the nodes n4, n5 and n6 while all
remaining suites off app2 (asr4 − asr7) are executed by the nodes n1, n2 and n3.

This scenario illustrates the difference between virtual and physical movement. While
app1 strictly “moves” from the left side to the right and app2 “moves” strictly from the
right side to the left, the executing nodes move physically to approximately the center
of the map and then move back. So the physical movement is different from the virtual
movement.

146 CHAPTER 8. EVALUATION

n2

n3

n1 n4

n5

n6

(a) Execution of asr1

n2

n3

n1 n4

n5

n6

(b) Execution of asl2

n2

n3

n1 n4

n5

n6

(c) Execution of asl3

n2

n3

n1 n4

n5

n6

(d) Execution of asr3

n2

n3

n1 n4

n5

n6

(e) Execution of asl4

n2

n3

n1 n4

n5

n6

(f) Execution of asr4

n2

n3

n1 n4

n5

n6

(g) Execution of asl5

n2

n3

n1 n4

n5

n6

(h) Execution of asl6

n3

n1 n4

n5

n6

n2

(i) Execution of asr7

Figure 8.11: Visualization of scenario progress.

This happens due to the following reasons: first, the robots are on the same y-ordinate
which would result in a crash if they would continue moving. Initiating a detour around
the approaching ones would result in additional movement and might cause a temporal
constraint violation. Second, simply switching the mapping of actions to nodes results
in less physical movement. Third, there might be a large static obstacle that makes a
detour impossible. The “length” of the virtual movement states the “distance” that one
application travels and is defined as:

svirt =
m∑
i=1

n−1∑
j=1

||asj .x⃗ai − asj+1.x⃗ai || (8.2)

Here, m is defined as the number of actions in a suite and n is defined as the number
of suites per application. The physical movement sphys is defined as movement that
nodes perform. In this scenario, the total virtual movement of app1 is svirt = 3 · 24 = 72.
The same holds for app2: svirt = 72 which results in a total virtual movement of 144.

The physical movement is given by: sn1
phys = 25, sn2

phys = 29, sn3
phys = 25, sn4

phys = 17,
sn5
phys = 13 and sn6

phys = 17. This results in a total physical movement of 126 which is a
reduction of movement by 12.5 % or the absolute physical movement is 87.5 % of the

8.3. HYBRID APPROACH 147

n1
n2
n3
n4
n5
n6

(a) Execution of asr1

n1
n2
n3
n4
n5
n6

(b) Execution of asl2

n1
n2
n3
n4
n5
n6

(c) Execution of asl3

n1
n2
n3
n4
n5
n6

(d) Execution of asr3

n1
n2
n3
n4
n5
n6

(e) Execution of asl4

n1
n2
n3
n4
n5
n6

(f) Execution of asr4

n1
n2
n3
n4
n5
n6

(g) Execution of asl5

n1
n2
n3
n4
n5
n6

(h) Execution of asl6

n1
n2
n3
n4
n5
n6

(i) Execution of asr7

Figure 8.12: Alternating schedule of nodes while time progresses.

virtual movement. In this scenario, the journey has not been taken into account. The
journey is defined as the path that is required in order to move a robot to the location
of the initial action. When including the journey, the additional path length is added
in equal measure to the robots trajectory as well as to the virtual movement of the

148 CHAPTER 8. EVALUATION

n1

n2

a1

static
obstacles

(a) Schedule of a1

n1

n2

a1

a2

static
obstacles

(b) Schedule of a1, a2

Figure 8.13: Visualization of scenario progress.

n2

n1

(a) Schedule of a1

n2

n1

(b) Schedule of a1, a2

Figure 8.14: Alternating schedule of nodes while time progresses.

application. This might result in another fraction, but not in the order relation between
physical and virtual movement.

8.3.3 Obstacles

In this section, static obstacles are examined. Figure 8.13 visualizes the world with static
obstacles and 2 nodes. The world’s size3 is set to x = 25, y = 15. The 2 nodes are placed
on (2, 2) and (2, 6). Both nodes have a velocity of vmax = 1. Static obstacles are dark
shaded and form a small labyrinth. In this scenario, there are only 2 actions that are
scheduled: a1 with g = (20, 6), (22, 8), tmin = 2, tmax = 60 and a2 with g = (9, 7), (11, 9),
tmin = 2, tmax = 60. Both have a duration of d = 1. Action a1 first comes into the system
and is scheduled accordingly. Figure 8.13(a) visualizes the trajectory of the first node
(n1) that starts moving towards x⃗a1 . Figure 8.14(a) shows the current schedule. The
drawn trajectory depicts the shortest path between the node’s position and the target
given by x⃗a1 . In order not to collide with the obstacles, the trajectory is calculated by
moving very close to the obstacle, the nodes geometry is taken into account as described
in Section 7.5 and a sufficient distance is kept to the obstacles. Due to this fact, the node
is not able to move around the small squared obstacle located at position (11, 1), (12, 2).
The length of the trajectory is approximately 50. Since vmax = 1, the time required
for moving along the trajectory is also approximately 50s. 24 seconds after a1 has been
scheduled, a2 is comes into the system and is scheduled (Figure 8.13(b) and 8.14(b)).

3The modification of the world’s size has no influence on the simulation results. This setup was chosen
since this size was sufficient.

8.4. EXPERIMENTS ON TESTBED 149

The scheduler assigns a2 to the second node (n2). This is the only possible assignment
since the temporal constraint of a2 is given by tmin = 2, tmax = 60. At the point in time
when a2 arrives at the system, the remaining length of the trajectory that the node n1

has to move along is 26. Due to vmax, the remaining time is 26s. After arriving at x⃗a1 ,
a1 is executed for 1s. The trajectory length beginning in x⃗a1 and ending in x⃗a2 is 38 (if
n1 would move back to x⃗a2 after executing a1) and, hence 38s would be required for the
movement. The total required time is 65s (26s+ 1s+ 38s) from the point in time when
a2 enters the system. Since tmax is set to 60s, n1 is not able to execute a2. The only
possible candidate is n2.

8.4 Experiments on Testbed

This section presents different scenarios with and without obstacles and examines the
system behavior. The experiments evaluate the system on a holistic level including the
actual movement on the physical testbed. The robots are presented in Appendix A
(page 165) and are located using a ceiling mounted Kinect (Appendix B, page 167). The
movement is performed by the motion control component which has been introduced in
Section 5.3.1 (page 63). The actual control of the two electric engines (rotation speed) is
explained in Appendix C (page 171). The runtime system performed the adapted two-
phase commit protocol by communicating with the involved nodes using message passing
and, finally, committed or aborted the (distributed) transaction and, hence, removed one
of the path alternatives. Section 8.4.1 describes experiments with four robots on the
testbed. A set of 40 actions have been divided into 9 groups and scheduled accordingly.

World set-up Description
n1

shape: circle((0,−8), (−8, 0), (0, 8), (8, 0))
position: (1700, 1400)
speed: vmax = 100mm

s
n2

shape: circle((0,−8), (−8, 0), (0, 8), (8, 0))
position: (1700, 1000)
speed: vmax = 100mm

s
n3

shape: circle((0,−8), (−8, 0), (0, 8), (8, 0))
position: (1700, 600)
speed: vmax = 100mm

s
n4

shape: circle((0,−8), (−8, 0), (0, 8), (8, 0))
position: (1700, 200)
speed: vmax = 100mm

s

Table 8.6: World set-up: 4 nodes arranged on the testbed.

150 CHAPTER 8. EVALUATION

The result indicates the (coordinated) robot movement on the testbed. Section 8.4.2
describes experiments with three robots on the testbed. In total 18 actions have been
scheduled divided into 6 groups. Due to the spatio-temporal constraints, the robots
are forced to form a triangle that moves over the testbed. This experiment has been
performed in two ways: first, the triangle formation and the alignment is kept, i.e., each
node maintains it particular position in the triangle. In the second experiment, the
triangle rotates and, hence, the positions of the robots in the triangle change over time.
Section 8.4.3 presents experiments with one robot executing a set of actions. The required
movement formed a closed polygonal chain. The accuracy of movement is presented as
a function of the threshold value λ. Finally, the memory allocation has been examined.
Since, the experiments have been performed on the testbed, the applied spatial units are
in mm.

8.4.1 Four Robot Movement

In this scenario, the entire stack ranging from the programming model over the scheduling
to the real physical distributed execution is evaluated and presented as a proof-of-concept
of this work.

The testbed has a size of x = 2200 mm and y = 1600 mm. The world for the scheduler
is set accordingly. In the beginning there are no static obstacles. Table 8.6 states the
set-up of the four nodes, their geometry, initial position and speed.

Since there are four nodes in total, there are three dynamic obstacles in the world for
each node. The following scenario is cut into two parts: first, all four nodes are involved
in the execution of actions. In the second part, three robots are excluded from the system
and represent static obstacles. Figure 8.15 shows the first part of the scenario.

Actions are scheduled in groups in the following order (the order between groups as
well as inside the group matters):

• group1 : a1, a2, a3, a4

• group2 : a5, a6, a7, a8

• group3 : a12, a11, a10, a9

• group4 : a13, a14, a15, a16

• group5 : a17, a18, a19, a20

Table 8.7 states the specifications of the actions. The spatial constraint is defined
as a square: the respective points (x, y) define the center of the 16 × 16 square that
surrounds the point. Figure 8.15(a) depicts the initial line-up of the robots. The cover
is used for locating the robots. The location information is forwarded to the respective
system services. Figure 8.15(b) illustrates the scheduling of the first group of actions and
the assignments of jobs to nodes. Figure 8.15(c) shows the robots after moving to x⃗a1 -
x⃗a4 and executing the actions. In Figure 8.15(d), the groups 2, 3 and 4 are scheduled and

8.4. EXPERIMENTS ON TESTBED 151

Group Action d tmin tmax g
[in s] [in s] [in s] [in (x mm, y mm)]

group1

a1 1 5 19 (150, 190)
a2 1 5 19 (600, 190)
a3 1 5 19 (1150, 190)
a4 1 5 19 (1700, 190)

group2

a5 1 17.5 31.5 (150, 1400)
a6 1 17.5 31.5 (600, 1400)
a7 1 17.5 31.5 (1150, 1400)
a8 1 17.5 31.5 (1700, 1400)

group3

a9 1 21 35 (400, 1400)
a10 1 21 35 (950, 1400)
a11 1 21 35 (1500, 1400)
a12 1 21 35 (2050, 1400)

group4

a13 1 46.5 47.5 (400, 190)
a14 1 46.5 47.5 (950, 190)
a15 1 46.5 47.5 (1500, 190)
a16 1 46.5 47.5 (2050, 190)

group5

a17 1 59.5 60.5 (450, 800)
a18 1 59.5 60.5 (1050, 800)
a19 1 59.5 60.5 (1700, 800)
a20 1 59.5 60.5 (1700, 1250)

group6

a21 1 – – (1950, 800)
a22 1 – – (1700, 550)
a23 1 – – (1300, 800)
a24 1 – – (1050, 1050)
a25 1 – – (700, 800)
a26 1 – – (450, 550)
a27 1 – – (200, 800)

group7

a28 1 – – (450, 1050)
a29 1 – – (800, 800)
a30 1 – – (1050, 550)
a31 1 – – (1450, 800)
a32 1 – – (1700, 1050)

group8

a33 1 – – (1700, 400)
a34 1 – – (1500, 800)
a35 1 – – (650, 800)
a36 1 – – (450, 400)

group9

a37 1 – – (450, 1200)
a38 1 – – (880, 800)
a39 1 – – (1500, 800)
a40 1 – – (1700, 1200)

Table 8.7: Action specifications: 40 actions with spatio-temporal constraints. The spatial
constraint g defines the center of a surrounding 16× 16 square.

152 CHAPTER 8. EVALUATION

(a) Initial line-up

1 2 3 4
(b) Schedule group1

(c) Executing group1

5 9 6 10 7 11 8 12

13 14 15 16

(d) Schedule group2, 3, 4

(e) Executing group2, 3, 4

17 18 19

20

(f) Schedule group5

(g) Executing group5 (h) Final position

Figure 8.15: Coordinated 4 robot movement.

8.4. EXPERIMENTS ON TESTBED 153

21

22

2325

26

27

24

(a) Scheduling group6 (b) Executing group6

28

30

32

29 31

(c) Scheduling group7 (d) Executing group7

33

3435

36

(e) Scheduling group8 (f) Executing group8

37

38 39

40

(g) Scheduling group9 (h) Executing group9

Figure 8.16: Robot sequentially executes a set of actions while moving around the ob-
stacles.

154 CHAPTER 8. EVALUATION

the assignment of jobs to nodes including the trajectories are visualized. Figure 8.15(e)
demonstrates the execution and movement phase of group 2, 3 and 4. Figure 8.15(f)
depicts the scheduling of group5 and Figure 8.15(g) shows its execution. Figure 8.15(h)
illustrates the final positions.

In the second part, the nodes n2, n3 and n4 are excluded from the system and are
marked as static obstacles. Since node n1 is the only node, it has to execute all actions
and move around the obstacles. The following actions are scheduled in this order:

• group6 : a21, a22, .., a27

• group7 : a28, a29, .., a32

• group8 : a33, a34, a35, a36

• group9 : a37, a38, a39, a40

Figure 8.16 presents the execution of the groups 6 - 9 containing the actions a21 -
a40. Figure 8.16(a), 8.16(c), 8.16(e) and 8.16(g) once again show the scheduling of
the respective groups while Figure 8.16(b), 8.16(d), 8.16(f) and 8.16(h) visualize the
execution of the actions including the trace of the node movement. In Figure 8.16(a)
- 8.16(d), the scheduling was straight forward since the shortest route between two
adjacent actions did not lead through an obstacle. As a consequence, the robot moved
in straight lines from one spot to the next one. In Figure 8.16(e) - 8.16(h) half of the
adjacent actions have no line of sight since the direct path is blocked by an obstacle.
Therefore, the shortest path is achieved by moving around the obstacle.

8.4.2 Triangle Formation

In this scenario, the 3-sided observation application is chosen again, but executed on
the testbed. The experiments are split into two parts: in the first part, the formation
is maintained while in the second part the formation rotates 90 degrees clockwise. The
testbed once more has a size of x = 2200 mm and y = 1600 mm. Table 8.8 describes the
line-up of the 3 nodes n1, n2 and n3.

In the first part, 9 actions are scheduled that are arranged into 3 groups (group1
- group3). Table 8.9 states the spatio-temporal constraints of the respective actions.
Actions are scheduled in groups in the following order (the order between groups as well
as inside the group matters):

• group1 : a1, a2, a3

• group2 : a4, a5, a6

• group3 : a7, a8, a9

8.4. EXPERIMENTS ON TESTBED 155

World set-up Description
n1

shape: circle((0,−8), (−8, 0), (0, 8), (8, 0))
position: (2050, 675)
speed: vmax = 100mm

s
n2

shape: circle((0,−8), (−8, 0), (0, 8), (8, 0))
position: (2080, 170)
speed: vmax = 100mm

s
n3

shape: circle((0,−8), (−8, 0), (0, 8), (8, 0))
position: (1780, 425)
speed: vmax = 100mm

s

Table 8.8: World set-up: 3 nodes arranged on the testbed.

Figure 8.17(a) shows the initial line-up of the robots at the bottom right corner of
the testbed. Next, group1 is scheduled and assigned to the robots as depicted in Fig-
ure 8.17(b). As a result, the robots move to their scheduled positions (x⃗a1 - x⃗a3) (Fig-
ure 8.17(c)). The next set of actions (group2) is scheduled (Figure 8.17(d)) and executed
as indicated in Figure 8.17(e) at location x⃗a4 - x⃗a6 . Figure 8.17(f) shows the scheduling
of the last group (group3) while Figure 8.17(g) depicts the execution. Figure 8.17(h)
visualizes the final positions. During the first part the formation is maintained.

In the second part, the formation is shifted by rotating the formation clockwise by
90 degrees. The experiments have been performed by again setting up 9 actions in
total (a10, a11, .., a18). The actions are arranged in additional 3 groups. The actions are
submitted to the schedule in the following order:

• group4 : a10, a11, a12

• group5 : a13, a14, a15

• group6 : a16, a17, a18

Figure 8.18(a) illustrates the initial line-up of the 3 robots. Figure 8.18(b) shows
the scheduling of group4 and the assignment of the associated actions a10, a11, a12. The
group of actions is rotated 90 degrees clockwise compared to the initial line-up. The
arrows indicate the movement of the robots. Figure 8.18(c) demonstrates the execution
of actions while the robots have obtained the new formation. Figure 8.18(d) visual-
izes the scheduling of group5 and Figure 8.18(e) shows its execution and the formation
which is rotated by 180 degrees compared to the initial line-up. Figure 8.18(f) depicts
the scheduling of the last group (group6) and Figure 8.18(g) shows the execution. Fig-
ure 8.18(h) illustrates the final position. The first robot of the triangle (the top) is also
always rotating, starting with robot n3 over n1 and n2 back to n3 (Figure 8.18).

156 CHAPTER 8. EVALUATION

(a) Initial line-up

1

3

2

n1

n2

n3

(b) Scheduling group1

(c) Executing group1

n2

n3

4

5

n1

6

(d) Scheduling group2

(e) Executing group2

n1

n2

n3

7

8

9

(f) Scheduling group3

(g) Executing group3

n1

n2

n3

(h) Final positions

Figure 8.17: 3-sided observation application on the testbed with 3 robots (maintaining
formation).

8.4. EXPERIMENTS ON TESTBED 157

(a) Initial line-up

n1

n2

n3

10

12

11

(b) Scheduling group4

(c) Executing group4

n1

n2n3

13

15

14

(d) Scheduling group5

(e) Executing group5

n1

n2

n3

16

18

17

(f) Scheduling group6

(g) Executing group6

n2

n3

n1

(h) Final positions

Figure 8.18: 3-sided observation application on the testbed with 3 robots (changing
formation).

158 CHAPTER 8. EVALUATION

Group Action d tmin tmax g
[in s] [in s] [in s] [in (x mm, y mm)]

group1
a1 1 18 19 (450, 700)
a2 1 18 19 (450, 200)
a3 1 18 19 (200, 450)

group2
a4 1 27 28 (450, 1400)
a5 1 27 28 (200, 1150)
a6 1 27 28 (450, 900)

group3
a7 1 44.5 45.5 (2000, 1400)
a8 1 44.5 45.5 (2000, 900)
a9 1 44.5 45.5 (1750, 1150)

group4
a10 1 18 19 (175, 200)
a11 1 18 19 (675, 200)
a12 1 18 19 (425, 450)

group5
a13 1 30 31 (200, 1400)
a14 1 30 31 (200, 900)
a15 1 30 31 (450, 1150)

group6
a16 1 48 49 (2000, 1400)
a17 1 48 49 (1500, 1400)
a18 1 48 49 (1750, 1150)

Table 8.9: Action specifications: 18 actions forcing triangle formations.

As demonstrated in this scenario, the robots do not keep the formation the entire time
during movement as this is not explicitly stated by the programmer. The programmer
specifies spatio-temporal conditions expressed by the actions, the programmer does not
specify a formation though this is possible by creating actions such that the only possible
execution is to keep that formation (Section 8.3.2). However, in general, the formation
itself does not matter. What matters is the application’s intention and the resulting set
of spatio-temporal actions which produces a certain formation.

Due to flocking or swarming, formations of swarms in nature (consisting of birds, bees,
ants, etc.) are an emergent behavior caused by simple local decisions and keeping equal
distances to all neighbors in the individual’s proximity. This behavior is used in order to
coordinate the swarm, keeping it together and constituting it as one unit. Coordination
is performed on the individual’s level resulting in emergent behavior: flocking.

In the approach presented in this thesis, the coordination is done by the system
and, thus, the individual nodes are seen as executing components. Therefore, keeping a
formation the entire time is not necessary. It is not even intended. As in bio-inspired
swarms, a formation is the (emergent) result based on stigmergy in order to control the
swarm, here a formation is the produced result of a set of actions that are either explicitly
specified to construct that formation or are generated as a result of single incidents. In
other words: the formations is a runtime product of executing a set of applications
together with their spatio-temporal actions.

8.4. EXPERIMENTS ON TESTBED 159

2000160012008004000

1600

1200

800

400

0 X

Y

(a) Observation task

after VM init
0

5

10

15

20

25

30
Runtime System
glibj
JamVM
Kernel-Image

before VM init

MB

(b) Memory allocation

Figure 8.19: Movement accuracy and memory footprint.

8.4.3 Memory Usage and Movement Accuracy

In this section, the memory consumption of the runtime system is measured and the
accuracy of the movement of the robots in the testbed is presented.

In Figure 8.19(a), the accuracy of the robot’s movement is examined. Initially, one
robot is placed on the location (200, 200). Then 10 actions are scheduled. The spatio-
temporal constraints of the first 9 actions are arranged in increasing order, i.e., the spatial
(x and y) as well as the temporal constraints are in increasing order. The respective 9
locations x⃗a1 , x⃗a2 , .., x⃗a9 produce an arc between the coordinates (200, 200) and (2000,
1400). The last action was constrained such that the robot has to move back to its initial
location (x⃗a10 = (200 200)T). The accuracy of the movement is controlled by a threshold
λ that indicates the maximum allowed deviation between the robots current orientation
and the orientation to its next destination given by x⃗ai . Reaching the threshold λ, the
robot has to adjust its orientation in order to face its next destination. In this experiment,
the applied threshold value is iteratively increased starting from λ = 1◦ to finally λ = 11◦.
Initially, the value is set to 1◦ and the actions x⃗a1 , x⃗a2 , .., x⃗a10 are executed. After the
robot has reached its initial location, the threshold is increased to λ = 2◦ and ten new
actions are generated with increasing temporal constraints. This procedure is repeated
until the threshold has reached λ = 11◦ (last round). Figure 8.19(a) visualizes the traces
of the robot while executing the actions. A detailed analysis of this experiment is given
in Appendix C.

The devices do not feature a persistent storage and, therefore, all data is kept volatile
in main memory. Both types of used devices as introduced in Appendix A are equipped
with 64 MB SDRAM. Devices are started via net boot using TFTP. After the image
which contains the Linux kernel is loaded over the network, the device initiates the boot
sequence. When the system is up and running, the memory allocation is as follows: 7.5
MB is used by Linux. The experiments have been performed using the JamVM which

160 CHAPTER 8. EVALUATION

required 700 KB. The Java class library (glibj) required 5.2 MB4. After the runtime
system has been started, which includes the initialization of the Java virtual machine
and loading all necessary classes from the glibj, the memory consumption increases from
13.4 MB to 23.2 MB as depicted in Figure 8.19(b). 9.8 MB is used by the runtime system.

4Originally, the glibj has a size of 10 MB. The used version has been stripped in order to consume
less memory.

Chapter 9

Conclusion and Future Work

This chapter concludes the thesis and states future work in this research field.

9.1 Conclusion

This thesis presented an approach for the programming of swarms of, especially mobile,
devices on a systemic level. Error-prone aspects such as concurrency and distribution are
hidden beyond the system’s interface. The system’s capabilities can be accessed system-
wide by actions which are loosely coupled building blocks of a program. A notion of real
space and time is a necessity in cyber-physical systems which when have to be addressed
and handled explicitly by the programmer, further increases the complexity of application
programming. Therefore, the system provides context awareness for actions by attaching
spatio-temporal constraints (by the programmer). Furthermore, using the presented
programming abstraction allows the programmer to specify the applications intention
by giving a systemic description which states the spatio-temporal relations of resource
usage: runtime parameters specify when and where—the time interval and location space
in terms of physical coordinates—a certain action (what) has to be executed.

Using the approach presented in this thesis, application programming is strongly
facilitated: programmers neither have to cope with concurrency nor distribution. Con-
text awareness is achieved by simply assigning spatio-temporal constraints to actions.
Event-based programming enables sense-and-react behavior. All spatio-temporal rela-
tions are expressible using the programming abstraction, e.g., workflows, using logical
dependencies, simultaneous as well as before-after relations using temporal constraints.
Using spatial constraints, every desired arrangement of locations, e.g., normal / uniform
distribution, are programmable. Simple asynchronous and non-blocking system interface
operations enable the allocation, reallocation or release of resources. Actions that log-
ically belong together are encapsulated in suites in order to schedule them as a group.
If confirmed by the system, contracts enable guaranteed resource allocation making a
program more predictable.

All required movement of possibly multiple heterogeneous devices featuring different
movement capabilities (flying, floating, grounded) that is necessary for the (distributed)

161

162 CHAPTER 9. CONCLUSION AND FUTURE WORK

execution of the application is also completely transparent for the programmer. Before
execution, the scheduler of the system has to check if all requested resources will be
available according to the spatio-temporal constraints. This includes the computation
of collision-free spatio-temporal trajectories. The following voting and notification phase
assures that all participating nodes are informed in time.

Due to its modular architecture, the system is easily extensible. New nodes featuring
new capabilities can be plugged into the system. Doing so might require implementing a
device specific control algorithm for steering the device. This has to be done before the
respective node is added to the system. Once developed, the new control algorithm for
that device has to be registered such that the motion controller can simply invoke the
new control algorithm in order to reach points of the spatio-temporal trajectory.

If the device features capabilities (sensors and actuators), it must be assured that
suitable drivers are present by either using existing ones or implementing new ones.
Afterwards, the node can be started and will be under the control of the swarm system.

9.2 Future Work

There are several directions in which future work can lead. Scaling up the system by
increasing the number of nodes, the system performance is expected to go down since
the scheduler currently is implemented as a central service. As stated in [49, 101], a
“tera-swarm” is expected. Scaling up the system to such extent requires new mechanisms
for scheduling. Hierarchical and decentralized scheduling will be key technologies which
have to be investigated. The investigation should take the following into account:

• Hierarchical scheduling : the entire swarm is partitioned into cells. Each cell has its
fixed amount of resources, i.e., mobile and stationary devices equipped with sensors
and actuators. In a hierarchical organization, each cell has its own scheduler that
manages resources in that particular cell. The hierarchy can be organized based
on regions, e.g., the root node of the resulting tree represents the world while
the leaves point to the respective cells. All nodes on layers in-between represent
administrative regions, e.g., continents, countries, zones, etc. A request attempt
to schedule an amount of actions results in traversing the tree based on the spatial
constraints. Reaching the final leaf node points to the cell for which a local scheduler
is responsible. If a set of actions fall into more than one cell, then the parent
instance, that manages both cells, has to take care that the actions are scheduled in
the respective cells. A consensus protocol has to assure that all involved scheduling
instances finally adopt the same value (commit or abort the actions that they were
responsible for).

• Decentralized scheduling : in a completely decentralized world, each node has its
own scheduler. A schedule attempt is performed locally in two steps: first, the
node n1 computes a partial schedule for the respective action(s). In the second
phase, the partial schedule is merged into a global schedule data structure. If the
merging is collision-free, i.e., the global schedule could be updated with the partial

9.2. FUTURE WORK 163

scheduling without violating its integrity, the schedule attempt is considered to be
successful. In the other case, the merging produces a collision which might appear
if another node has already merged its partial schedule and n1 was not aware of.
In this case, n1 updates its local schedule by the portion of the global schedule
in which the collision took place and then starts over with step 1 by performing
the local scheduling again. Finally, in step 2 the merging will, at least with a
higher probability, result in a success. In order to reduce overall data transfer, the
global schedule can be partitioned along two dimensions: space and time. Only
the portion that is necessary, a cuboid along the treated space and time dimension,
is extracted and exchanged between the requesting node and the instance where
the global schedule or a partition of the global schedule is hosted. There are
different strategies that should be investigated and evaluated: the global schedule
itself is partitioned and distributed among the nodes preferable with backups of
the partitions. Parts of the schedule, cuboids, that span the area from the present
into the near future on the time dimension are periodically exchanged among the
nodes. In addition, locking strategies in contrast to lock-free approaches should be
monitored.

• Coarse-grained scheduling : the presented scheduling algorithm has to know the
spatio-temporal trajectories of all dynamic obstacles. As shown in the evaluation
of the scheduler section, the cost-intensive part of the scheduling is the VPP which
calculate the velocity profile along the trajectory in order to avoid collisions with
dynamic obstacles. For this, forbidden regions have to be computed which is very
cost-intensive. A solution for further improving the scheduler performance could
be to neglect the VPP and only address the PPP. This way, the mobile nodes
only have a coarse-grained path. When other dynamic obstacles are crossing their
path, the robots perform a local evasive maneuver in order to avoid collisions.
There are decentralized approaches in which all robots follow simple rules in order
to avoid collisions when they are on a collision course. This avoids additional
communication. There are also other approaches in which the entities negotiate
how they proceed in order not to collide. Performing coarse-grained scheduling can
be combined with the hierarchical or decentralized scheduling idea.

Besides the scheduling, there are other directions that should be addressed as well:

• Energy consumption : the scheduling prefers schedules which reduce overall move-
ment. Since the necessary engine control for movement is probably the biggest
impact factor on energy consumption, the scheduler somehow takes this into ac-
count by reducing the overall path length. However, energy consumption is not
explicitly addressed here. This should be done in the future by incorporating en-
ergy into the scheduler model which might have an influence on the velocity and
also on the assignments of jobs to nodes. Jobs that require longer paths for the
execution would probably be assigned to nodes with a higher energy level. The
scheduling should attempt to distribute the load according to the current energy
level(s).

164 CHAPTER 9. CONCLUSION AND FUTURE WORK

• Optimistic trajectory locking : during scheduling, certain trajectory segments are
locked in order to avoid the exponential growth of path alternatives. Though the
lock usually remains for only a short time, locking strategies, in general, have an
impact of the system performance. Since the locking during the uncertainty period
is, in general, short, the probability that the number of path alternatives explodes,
is probably small. Therefore, the system performance should be compared using
locking and using optimistic locking.

• Interval ActionSuite : as described in the programming model, an ActionSuite is
a container for actions. Invoking the schedule operation requests the scheduler to
schedule all contained actions. A contract is only created if the following holds for
all actions a in the ActionSuite as: ∀a ∈ as | sched(a) ∧ exec(a). This semantic
might be too strict for some purposes. Therefore, a more weakened semantic is
required that allows to specify a range [δ1, δ2] with δ1 being the minimum number
of actions that have to be scheduled in order to create a contract and δ2 being the
requested number of actions that shall be scheduled. This allows the programmer
to be more flexible during application development.

• Cost model : As already sketched in Section 4.6.3, a cost model is required and
should be investigated. A program causes costs according to its resource usage. It
might also be possible to assume that costs depend on the distance or the time a
robot has to travel. This way, the unschedule operation is useful since programmers
tend to free unused resources in order not to pay for them.

Appendix A

Used Hardware

For performing experiments and showing a proof-of-concept, a testbed has been set up
which consists of 40 mobile robots and 24 stationary boards (Figure A.1). The specifi-
cations are shown in the following table:

Robot Board
CPU & Memory

400 MHz ARM9 CPU 180 MHz ARM9 CPU
64 MB SDRAM 64 MB SDRAM

Sensors
13× infrared
6× ultrasound

Actuators
2 electric engines
(no step motors)
2 RGB LEDs 1 RGB LED

(a) Robot1-0 with Por-
tuxG20

(b) Portux920T

Figure A.1: Hardware

165

Appendix B

Locating System

The development of the locating system was only necessary in order to perform the
evaluation on the testbed and is, therefore, not a part of the contribution of the thesis.
The locating system has been developed as joint work with Christoph Brendel.

Figure B.1 shows an example of the cover for one of the robots. The cover has
two objects: a two-dimensional bar code which encodes 11 bits and a rectangular bar
arranged on the bottom. These two objects are examined and analyzed by the locating
system in order to calculate the robot’s identification number, the position and its current
orientation.

The locating system is based on a hamming code: Hamming(15, 11) with 11 data
bits and 4 parity bits resulting in a 15 bit code. Due to the requirement of distinguishing
up to 40 mobile robots, 6 data bits (26 = 64) are sufficient resulting in 64 ids necessary
in order to differentiate all robots. The resulting code is an 11 bit code consisting of 7
data bits (including one spare bit) and 4 parity bits.

1

Figure B.1: Cover showing two-dimensional bar code (encoded id 1) and rectangle which
is used for re-localization as well as determining orientation.

167

168 APPENDIX B. LOCATING SYSTEM

1

2 3

4 5

Figure B.2: Testbed with 5 designated positions.

In order to evaluate the accuracy of the locating system a test robot has been placed
on various positions on the testbed as shown in Figure B.2. For each of the positions
the following values have been computed: The relative deviation from the current (real)
position in x- and in y-direction as well as the (positive) Euclidean distance by using the
depth image (Figure B.3(a)), the RGB image (Figure B.3(b)) and finally by performing
a repositioning (Figure B.3(c)). All experiments have been performed 1000 times at each
location which is shown in Figure B.2.

The locating system uses a Microsoft Kinect and the computation is performed in
2 stages: First, the robots are located based on the depth sensor: using this sensor a
depth image is created which is transformed into a binary image. A predefined threshold
interval regulates the transformation process. All areas (in the depth image) that indicate
a height outside the threshold interval are marked black while all areas that indicate a
height inside the threshold interval are marked white. The latter ones mark the robots.
Since the robots have a circular geometry, OpenCV1 is used in order to detect circles in
the depth image which state their location. This step performs fast and efficient. The
accuracy is shown in Figure B.3(a). The maximum error is ≈ 40 mm.

Afterwards, the RGB image is used together with the (more) coarse-grained local-
ization information of the depth image in order to locate the robots in the RGB image;
in particular, not the entire RGB image is used for the localization, but only certain
sections that is where the robots are. Again, OpenCV is used in order to detect cir-
cles in the RGB image. The result of re-localization using the RGB image is shown in
Figure B.3(b). Comparing the maximum error of the re-localization with the result of
the depth image, there is no noticeable improvement. Hence, re-localization based on
circular contour detection is not appropriate.

Nevertheless, the RGB image is required to decode the bar code which is necessary in
order to obtain the robot’s identification number. The decoding requires to have precise
information of the position of the bar code. In order to determine that exact location of

1OpenCV (Open Source Computer Vision) is a free library which provides algorithms for computer
vision (mainly contours detection in images).

169
0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

(a) Programms 1

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

(b) Kreiserkennung im Tiefenbild

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

(c) Kreiserkennung im Farbbild

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

(d) Repositionierung

Abbildung 28: Auswertung der Positionbestimmung (Koordinaten)

30

0

10

20

30

40

50

60

70
1 2 3 4 5mm Pos.

(a) Programms 1

0

10

20

30

40

50

60

70
1 2 3 4 5mm Pos.

(b) Kreiserkennung im Tiefenbild

0

10

20

30

40

50

60

70
1 2 3 4 5mm Pos.

(c) Kreiserkennung im Farbbild

0

10

20

30

40

50

60

70
1 2 3 4 5mm Pos.

(d) Repositionierung

Abbildung 29: Auswertung der Positionbestimmung (Abstand)

Programm 1
Kreiserkennung
im Tiefenbild

(Variante 1 und 2)

Kreiserkennung
im Farbbild

(Variante 1 und 2)

Repositionierung
(Variante 2)

Varianz 3,48 29,98 34,77 0,37
Standard-

abweichung 30,78 12,66 18,14 9,034

Abbildung 30: Varianz und Standardabweichung der ermittelten Position

31

(a) Circle contour detection in the depth image (left = x, middle = y, right = Euclidean distance).

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

(a) Programms 1

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

(b) Kreiserkennung im Tiefenbild

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

(c) Kreiserkennung im Farbbild

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

(d) Repositionierung

Abbildung 28: Auswertung der Positionbestimmung (Koordinaten)

30

0

10

20

30

40

50

60

70
1 2 3 4 5mm Pos.

(a) Programms 1

0

10

20

30

40

50

60

70
1 2 3 4 5mm Pos.

(b) Kreiserkennung im Tiefenbild

0

10

20

30

40

50

60

70
1 2 3 4 5mm Pos.

(c) Kreiserkennung im Farbbild

0

10

20

30

40

50

60

70
1 2 3 4 5mm Pos.

(d) Repositionierung

Abbildung 29: Auswertung der Positionbestimmung (Abstand)

Programm 1
Kreiserkennung
im Tiefenbild

(Variante 1 und 2)

Kreiserkennung
im Farbbild

(Variante 1 und 2)

Repositionierung
(Variante 2)

Varianz 3,48 29,98 34,77 0,37
Standard-

abweichung 30,78 12,66 18,14 9,034

Abbildung 30: Varianz und Standardabweichung der ermittelten Position

31

(b) Circle contour detection in the RGB image (left = x, middle = y, right = Euclidean distance).

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

(a) Programms 1

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

(b) Kreiserkennung im Tiefenbild

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

(c) Kreiserkennung im Farbbild

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

0
10
20
30
40
50

−10
−20
−30
−40
−50

1 2 3 4 5mm Pos.

(d) Repositionierung

Abbildung 28: Auswertung der Positionbestimmung (Koordinaten)

30

0

10

20

30

40

50

60

70
1 2 3 4 5mm Pos.

(a) Programms 1

0

10

20

30

40

50

60

70
1 2 3 4 5mm Pos.

(b) Kreiserkennung im Tiefenbild

0

10

20

30

40

50

60

70
1 2 3 4 5mm Pos.

(c) Kreiserkennung im Farbbild

0

10

20

30

40

50

60

70
1 2 3 4 5mm Pos.

(d) Repositionierung

Abbildung 29: Auswertung der Positionbestimmung (Abstand)

Programm 1
Kreiserkennung
im Tiefenbild

(Variante 1 und 2)

Kreiserkennung
im Farbbild

(Variante 1 und 2)

Repositionierung
(Variante 2)

Varianz 3,48 29,98 34,77 0,37
Standard-

abweichung 30,78 12,66 18,14 9,034

Abbildung 30: Varianz und Standardabweichung der ermittelten Position

31

(c) Rectangle contour detection in the RGB image (left = x, middle = y, right = Euclidean distance).

Figure B.3: Accuracy of calculating position information of the robots (x and y dimension
as well as Euclidean distance is considered separately).

8.2 Orientierungsbestimmung
Zur Auswertung der Orientierungsverfahren wurden die Roboter an 20 verschiedenen Po-
sitionen platziert und die Orientierung gemessen. Die beiden Diagramme in Abbildung 31
zeigen die Abweichung der vom Programm ermittelten Orientierung für die Verfahren aus
Variante 1 und 2. Tabelle 32 zeigt die Varianz und die Standardabweichung der geteste-
ten Verfahren. Beide Umsetzungen haben eine kleine Standardabweichung. Jedoch ist die
Varianz 1 deutlich größer als in Variante 2.

0 °

10 °

20 °

30 °

−10 °

−20 °

−30 °

8° 16° 27° 38° 43° 70° 80° 102° 127° 149° 154° 173° 205° 217° 233° 247° 264° 308° 323° 350°

(a) Orientierung mittels Variante 1 (Dreieck)

0 °

10 °

20 °

30 °

−10 °

−20 °

−30 °

8° 16° 27° 38° 43° 70° 80° 102°127°149°154°173°205°217°233°247°264°308°323°350°

(b) Ausrichtung mittels Variante 2 (Rechteck)

Abbildung 31: Auswertung der Orientierungsbestimmung

Variante 1 Variante 2

Varianz 10,70 0,30
Standard-

abweichung 4,00 0,91

Abbildung 32: Varianz und Standardabweichung der ermittelten Orientierung

32

Figure B.4: Accuracy of calculating heading information of the robots based on orienta-
tion of the localized rectangle in the RGB image.

170 APPENDIX B. LOCATING SYSTEM

the bar code, the robot is localized in the RGB image based on the rectangle below the
bar code (using the preliminary location information from the depth image). It turns
out that performing a rectangular contour detection is very accurate in OpenCV. This
enables to precisely decode the bar code since its position has a fixed offset from the
rectangle below. As a side product, since the robot has now been located precisely,
the robot’s preliminary position (which has been calculated using the depth image) is
updated accordingly.

As a result of the second step, the location information could be significantly improved
as shown in Figure B.3(c). The maximum error is now ≈ 16 mm. Using the precise
information of the location of the contour line, it is possible to calculate the orientation
of the rectangle. This orientation is also the orientation of the robot. The accuracy is
shown in Figure B.4. The maximum error of the orientation is approximately 5◦.

Appendix C

Motion Control

The development of the motion control was only necessary in order to perform the eval-
uation on the testbed and is, therefore, not a part of the contribution of the thesis. The
motion control has been published in [77].

In Section 8.4.3, a one-robot scenario has been introduced in which traces were shown
that have originated from moving the robot over the testbed. Using the threshold value
λ the accuracy of the movement is controllable. Accuracy is defined as the difference be-
tween the ideal trajectory (calculated by the scheduler) and the trajectory that the robot
actually moves along. Figure C.1 shows the allowed orientation of the robot influenced
by λ when moving to a certain destination.

Figure C.2 shows the traces of the robot influenced by λ. In total, eleven test runs
have been performed by starting with λ = 1◦ and iteratively increasing the value up
to λ = 11◦. As expected, the difference between the ideal trajectory and the actual
trajectory that the robot moved along becomes smaller by lowering λ. Setting λ = 1
(Figure C.2(k)), there is no difference noticeable.

It is desirable to have low λ values, but setting λ has a large impact on other movement
characteristics as shown Figure C.3. Figure C.3(a) shows the correlation between λ and
the time required for moving along the trajectory. The curves show a non-linear behavior.

λλ
robot

desti-
nation

Figure C.1: Threshold value λ.

171

172 APPENDIX C. MOTION CONTROL

2000160012008004000

1600

1200

800

400

0

(a) Threshold: λ = 11◦

2000160012008004000

1600

1200

800

400

0

(b) Threshold: λ = 10◦

2000160012008004000

1600

1200

800

400

0

(c) Threshold: λ = 9◦

2000160012008004000

1600

1200

800

400

0

(d) Threshold: λ = 8◦

2000160012008004000

1600

1200

800

400

0

(e) Threshold: λ = 7◦

2000160012008004000

1600

1200

800

400

0

(f) Threshold: λ = 6◦

2000160012008004000

1600

1200

800

400

0

(g) Threshold: λ = 5◦

2000160012008004000

1600

1200

800

400

0

(h) Threshold: λ = 4◦

2000160012008004000

1600

1200

800

400

0

(i) Threshold: λ = 3◦

2000160012008004000

1600

1200

800

400

0

(j) Threshold: λ = 2◦

2000160012008004000

1600

1200

800

400

0

(k) Threshold: λ = 1◦

2000160012008004000

1600

1200

800

400

0

(l) Threshold: λ = 1◦ − 11◦

Figure C.2: Traces of the robot showing the accuracy of the movement based on different
threshold values λ.

173

Setting λ = 1 or λ = 2 results in very long movement times. Analogously, the adopted
velocity as depicted in Figure C.3(b) is very low when adjusting small values for λ. It
increases by increasing λ. Increasing λ results in a higher inaccuracy of the movement
as shown in Figure C.3(c) and C.3(d) in terms of average and maximum deviation from
the ideal track.

In order to determine a suitable value for λ, Equations C.1 and C.2 show a trade-off
between the normalized time difference and the normalized deviation difference. The
result is the normalized efficiency E(λ) ∈ [0, 1]. The function t(λ) returns the time that
is required for moving along a path (line segment or arc) as a function of the threshold
value λ. The numerator tmax

1 indicates the longest temporal movement and is defined
as: tmax := max(∀λ ∈ Λ : t(λ)), with Λ ∈ {1, 2, .., 11}. The fraction t(λ)

tmax
∈ [0, 1] is a

function of λ and indicates the normalized time. There are two E functions: Emax and
Eavg.

Emax(λ) = 1−
(
p0

t(λ)

tmax
+ (1− p0)

δmax(λ)

δmax
max

)
(C.1)

Eavg(λ) = 1−
(
p0

t(λ)

tmax
+ (1− p0)

δavg(λ)

δavgmax

)
(C.2)

Emax computes the normalized efficiency based on the maximum deviation from
the track. The function δmax(λ) returns the maximum deviation from the track as a
function of λ for the line segment as well as for the arc. The numerator δmax

max
2 indicates

the maximum of all maximum deviations from all possible λ from the track and is defined
as: δmax

max := max(∀λ ∈ Λ : δmax(λ)), with Λ ∈ {1, 2, .., 11}. The fraction δmax(λ)
δmax
max

∈ [0, 1]
is a function of λ and indicates the normalized deviation. The parameter p0 is a weighting
factor enabling preferences (time or accuracy).

Eavg computes the normalized efficiency based on the average deviation from the
track. The function δavg(λ) returns the average deviation from the track as a function
of λ for the line segment as well as for the arc. The numerator δavgmax

3 indicates the
maximum of all average deviations from all possible λ from the track and is defined as:
δavgmax := max(∀λ ∈ Λ : δavg(λ)), with Λ ∈ {1, 2, .., 11}. The fraction δavg(λ)

δavgmax
∈ [0, 1] is a

function of λ and indicates the normalized deviation.
Figure C.4 shows the respective curves when setting p0 = 0.5. Figure C.4(a) shows

Emax and is based on the maximum deviation δmax from the track while Figure C.4(b)
plots Eavg and is based on the average deviation δavg from the track. Both curves have
a maximum at λ = 5◦ which states that independently of the applied efficiency function
(Emax or Eavg), both indicate a maximal efficiency using λ = 5◦ showing the best trade-
off between time and accuracy.

1Two tmax values are computed: one for the line segment and one for the arc.
2Two δmax

max values are computed: one for the line segment and one for the arc.
3Two δavgmax values are computed: one for the line segment and one for the arc.

174 APPENDIX C. MOTION CONTROL

Threshold λ in °

Ti
m

e
 i
n
 s

Arc
Line segment

(a) Decreasing time

Threshold λ in °

A
v
e
ra

g
e
 v

e
lo

ci
ty

 i
n

 m
m

/s

Arc
Line segment

(b) Increasing velocity

Arc
Line segment

Threshold λ in °

A
v
e
ra

g
e
 d

e
v
ia

ti
o
n
 f

ro
m

 t
ra

ck
 i
n
 m

m

(c) Increasing average deviation

Arc
Line segment

Threshold λ in °

M
a
x
im

u
m

 d
e
v
ia

ti
o
n
 f

ro
m

 t
ra

ck
 i
n
 m

m

(d) Increasing maximum velocity

Figure C.3: Related movement characteristics as a function of the threshold value.

175

1 2 3 4 5 6 7 8 9 10 11
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
Arc

Line segment

Combined

Threshold λ in °

N
o
rm

a
liz

e
d

 e
ffi

ci
e
n
cy

(a) Emax: based on maximum deviation δmax (Equation C.1)

Threshold λ in °

1 2 3 4 5 6 7 8 9 10 11
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
Arc

Line segment

Combined

N
o
rm

a
liz

e
d

 e
ffi

ci
e
n
cy

(b) Eavg: based on average deviation δavg (Equation C.2)

Figure C.4: Efficiency E as trade-off between maximum and average deviation from track
and required time t.

Bibliography

[1] Rachid Alami, Frédéric Robert, Félix Ingrand, and Sho’ji Suzuki. Multi-Robot
Cooperation through Incremental Plan-Merging. In IEEE International Conference
on Robotics and Automation, pages 2573–2579. IEEE Computer Society, 1995.

[2] Sofia Amador, Steven Okamoto, and Roie Zivan. Dynamic Multi-agent Task Allo-
cation with Spatial and Temporal Constraints. In Proceedings of the 2014 Interna-
tional Conference on Autonomous Agents and Multi-agent Systems, AAMAS ’14,
pages 1495–1496, Richland, SC, 2014. International Foundation for Autonomous
Agents and Multiagent Systems.

[3] Jean Le Bail, Rene David, and Hassane Alla. Hybrid petri nets. In European
Control Conference, pages 1472–1477, Grenoble, 1991.

[4] Henry C. Baker, Jr. and Carl Hewitt. The incremental garbage collection of pro-
cesses. In Proceedings of the 1977 Symposium on Artificial Intelligence and Pro-
gramming Languages, pages 55–59, New York, NY, USA, 1977. ACM.

[5] Masse Bloomfield. Mankind in Transition: A View of the Distant Past, the Present,
and the Far Future. Masefield Books, 1993.

[6] Masse Bloomfield. The Automated Society. Masefield Books, 1995.

[7] Eric Bonabeau. Editor’s Introduction: Stigmergy. Artificial Life, 5(2):95–96, Apr
1999.

[8] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. From Natural to Artificial
Swarm Intelligence. Oxford University Press, 1999.

[9] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press, Inc., New York, NY, USA,
1999.

[10] Raimon Casanova, Angel Dieguez, Andreu Sanuy, Anna Arbat, Oscar Alonso, Joan
Canals, Manel Puig, and Josep Samitier. Enabling swarm behavior in mm3-sized
robots with specific designed integrated electronics. In IROS, pages 3797–3802.
IEEE, 2007.

177

178 BIBLIOGRAPHY

[11] CBS Interactive Inc. Amazon unveils futuristic plan: Deliv-
ery by drone, December 2013. http://www.cbsnews.com/news/
amazon-unveils-futuristic-plan-delivery-by-drone/.

[12] Karthik Dantu, Bryan Kate, Jason Waterman, Peter Bailis, and Matt Welsh. Pro-
gramming Micro-aerial Vehicle Swarms with Karma. In Proceedings of the 9th ACM
Conference on Embedded Networked Sensor Systems, SenSys ’11, pages 121–134,
New York, NY, USA, 2011. ACM.

[13] Rene David and Hassane Alla. Continuous petri nets. In 8th European Workshop
on Application and Theory of Petri Nets, Zaragoza, 1987.

[14] Rene David and Hassane Alla. On hybrid petri nets. Discrete Event Dynamic
Systems, 11(1-2):9–40, January 2001.

[15] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[16] Edsger W. Dijkstra. On the role of scientific thought. In Selected Writings on
Computing: A Personal Perspective, pages 60–66, New York, NY, USA, 1982.
Springer-Verlag.

[17] Marco Dorigo, Dario Floreano, Luca Maria Gambardella, Francesco Mondada, Ste-
fano Nolfi, Marco Birattari, Anders Christensen, Nithin Mathews, Rehan O’Grady,
and Vito Trianni. Swarmanoid: A novel concept for the study of heterogeneous
robotic swarms. IEEE Robotics Automation Magazine, 20(4):60 – 71, December
2013.

[18] Marco Dorigo, Elio Tuci, Roderich Groß, Vito Trianni, Thomas Halva Labella,
Shervin Nouyan, Christos Ampatzis, Jean-Louis Deneubourg, Gianluca Baldas-
sarre, Stefano Nolfi, Francesco Mondada, Dario Floreano, and Luca Maria Gam-
bardella. The SWARM-BOTS Project. In Erol Sahin and William M. Spears, ed-
itors, Swarm Robotics, volume 3342 of Lecture Notes in Computer Science, pages
31–44. Springer, 2004.

[19] Michael Erdmann and Tomas Lozano-Perez. On multiple moving objects. Algo-
rithmica, 2:1419–1424, 1986.

[20] Erico Guizzo. World robot population reaches 8.6 million. IEEE Spectrum, April
2010. http://spectrum.ieee.org/automaton/robotics/industrial-robots/
041410-world-robot-population.

[21] Ramon Estaña, Marc Szymanski, Lutz Winkler, and Heinz Wörn. I-Swarm.
In Jahresbericht des Instituts für Prozessrechentechnik, Automation und Robotik,
pages 16–17, 2008. http://rob.ipr.kit.edu/downloads/Forsch_JB_2008.pdf.

 http://www.cbsnews.com/news/amazon-unveils-futuristic-plan-delivery-by-drone/
 http://www.cbsnews.com/news/amazon-unveils-futuristic-plan-delivery-by-drone/
 http://spectrum.ieee.org/automaton/robotics/industrial-robots/041410-world-robot -population
 http://spectrum.ieee.org/automaton/robotics/industrial-robots/041410-world-robot -population
http://rob.ipr.kit.edu/downloads/Forsch_JB_2008.pdf

BIBLIOGRAPHY 179

[22] Thiery Fraichard and Christian Laugier. Path-Velocity Decomposition Revisited
and Applied to Dynamic Trajectory Planning. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, pages 40–45, Atlanta, GA (USA),
May 1993.

[23] David Gay, Philip Levis, Robert von Behren, et al. The nesC language: A holistic
approach to networked embedded systems. SIGPLAN Not., 38(5):1–11, May 2003.

[24] Matthew Gombolay, Ronald Wilcox, and Julie Shah. Fast scheduling of multi-
robot teams with temporospatial constraints. In Proceedings of Robotics: Science
and Systems, Berlin, Germany, June 2013.

[25] Daniel Graff, Helge Parzyjegla, Jan Richling, and Matthias Werner. Verteilte ak-
tive Objekte für verteilte mobile Systeme. In Axel Küpper and Jörg Roth, edi-
tors, Tagungsband zum 7. GI/ITG KuVS-Fachgespräch "Ortsbezogene Anwendun-
gen und Dienste", pages 55–62. Logos Verlag Berlin GmbH, September 2011.

[26] Daniel Graff, Jan Richling, Tammo M. Stupp, and Matthias Werner. Context-
Aware Annotations for Distributed Mobile Applications. In Dimitrios Soudris Wolf-
gang Karl, editor, ARCS’11 Workshop Proceedings: Second Workshop on Context-
Systems Design, Evaluation and Optimisation (CoSDEO 2011), pages 357–366.
VDE, February 2011.

[27] Daniel Graff, Jan Richling, Tammo M. Stupp, and Matthias Werner. Distributed
Active Objects – A Systemic Approach to Distributed Mobile Applications. In Roy
Sterrit, editor, 8th IEEE International Conference and Workshops on Engineering
of Autonomic and Autonomous Systems, pages 10–19. IEEE Computer Society,
April 2011.

[28] Daniel Graff, Jan Richling, and Matthias Werner. Concepts for Swarm System
Software. In ESWeek: First International Workshop on the Swarm at the Edge of
the Cloud (SEC 2013), September 2013.

[29] Daniel Graff, Jan Richling, and Matthias Werner. Modeling Group Scheduling
Problems in Space and Time by Timed Petri Nets. Fundamenta Informaticae,
122(4):297–313, January 2013.

[30] Daniel Graff, Jan Richling, and Matthias Werner. Programming and Managing the
Swarm – An Operating System for an Emerging System of Mobile Devices. In Kai
Lin, Heng Qi, Keqiu Li, Ivan Stojmenovic, Albert Zomaya, Hongyi Wu, Song Guo,
and Symeon Papavassiliou, editors, 9th IEEE International Conference on Mobile
Ad-hoc and Sensor Networks (MSN 2013), pages 9–16. IEEE Computer Society,
December 2013.

[31] Daniel Graff, Jan Richling, and Matthias Werner. jSwarm: Distributed Coordina-
tion in Robot Swarms. In CPSWeek: Robotic Sensor Networks (RSN 2014), April
2014.

180 BIBLIOGRAPHY

[32] Daniel Graff, Daniel Röhrig, Rico Jasper, Helge Parzyjegla, Gero Mühl, and Jan
Rabaey. Operating System Support for Mobile Robot Swarms. In CPSWeek:
Second International Workshop on the Swarm at the Edge of the Cloud, Seattle,
Washington (USA), April 2015.

[33] Daniel Graff, Daniel Röhrig, and Reinhardt Karnapke. On the Need of Systemic
Support for Spatio-Temporal Programming of Mobile Robot Swarms. In 11th IEEE
International Conference on Mobile Ad-hoc and Sensor Networks (MSN 2015).
IEEE Computer Society, December 2015.

[34] Daniel Graff, Daniel Röhrig, and Reinhardt Karnapke. Systemic Support for
Transaction-Based Spatial-Temporal Programming of Mobile Robot Swarms. In
40th IEEE Conference on Local Computer Networks Workshops (LCN Workshops),
pages 730–733, Clearwater Beach, Florida (USA), October 2015. IEEE.

[35] Daniel Graff, Tammo M. Stupp, Jan Richling, and Matthias Werner. Using Timed
Petri Nets to Model Spatial-temporal Group Scheduling Problems. In Marcin
Szczuka, Ludwik Czaja, Andrzej Skowron, and Magdalena Kacprzak, editors, Con-
currency, Specification & Programming (CS&P) 2011, pages 160–168, September
2011.

[36] Daniel Graff, Matthias Werner, Helge Parzyjegla, Jan Richling, and Gero Mühl.
An Object-Oriented and Context-Aware Approach for Distributed Mobile Appli-
cations. In Michael Beigl and Francisco J. Cazorla-Almeida, editors, ARCS’10
Workshops Proceedings: First Workshop on Context-Systems Design, Evaluation
and Optimisation (CoSDEO 2010), page 191–200. VDE, February 2010.

[37] Jim Gray. Notes on data base operating systems. In Operating Systems, An Ad-
vanced Course, pages 393–481, London, UK, UK, 1978. Springer-Verlag.

[38] Brian K. Hall and Benedikt Hallgrímsson. Strickberger’s Evolution. Jones &
Bartlett Learning, LLC, 2011.

[39] Heiko Hamann and Heinz Wörn. An Analytical and Spatial Model of Foraging in
a Swarm of Robots. LNCS 4433, Swarm Robotics - 2nd SAB 2006 International
Workshop, Rome, Italy, pages 43–55, 2007.

[40] Kamal Kant and Steven W. Zucker. Toward Efficient Trajectory Planning: The
Path-Velocity Decomposition. The International Journal of Robotics Research,
5(3):72–89, September 1986.

[41] Idit Keidar and Danny Dolev. Increasing the resilience of distributed and replicated
database systems. Journal of Computer and System Sciences (JCSS), 57(3):309–
224, 1998.

[42] Serge Kernbach. Swarmrobot.org - Open-hardware Microrobotic Project for Large-
scale Artificial Swarms. CoRR, abs/1110.5762, 2011.

BIBLIOGRAPHY 181

[43] Serge Kernbach and Olga Kernbach. Collective energy homeostasis in a large-scale
microrobotic swarm. Robotics and Autonomous Systems, 59(12):1090–1101, 2011.

[44] Serge Kernbach, Eugen Meister, Florian Schlachter, et al. Symbiotic robot organ-
isms: REPLICATOR and SYMBRION projects. In Proceedings of the 8th Work-
shop on Performance Metrics for Intelligent Systems, PerMIS ’08, pages 62–69,
New York, NY, USA, 2008. ACM.

[45] Serge Kernbach, Oliver Scholz, Kanako Harada, Sergej Popesku, Jens Liedke, Raja
Humza, Wenguo Liu, Fabio Caparrelli, Jaouhar Jemai, Jiri Havlik, Eugen Meister,
and Paul Levi. Multi-robot organisms: State of the art. CoRR, abs/1108.5543,
2011.

[46] Nupur Kothari, Ramakrishna Gummadi, Todd Millstein, et al. Reliable and ef-
ficient programming abstractions for wireless sensor networks. SIGPLAN Not.,
42(6):200–210, June 2007.

[47] Edward A. Lee. Cyber-physical systems – are computing foundations adequate?
In Position Paper for NSF Workshop On Cyber-Physical Systems: Research Moti-
vation, Techniques and Roadmap, October 2006.

[48] Edward A. Lee. Cyber Physical Systems: Design Challenges. Technical Report
UCB/EECS-2008-8, EECS Department, University of California, Berkeley, Jan
2008.

[49] Edward A. Lee, John D. Kubiatowicz, Jan M. Rabaey, et al. The TerraSwarm
Research Center (TSRC) (A White Paper). Technical Report UCB/EECS-2012-
207, EECS Department, University of California, Berkeley, Nov 2012.

[50] Edward A. Lee, Jan Rabaey, David Blaauw, Kevin Fu, Carlos Guestrin, Bjorn
Hartmann, Roozbeh Jafari, Doug Jones, John Kubiatowicz, Vijay Kumar, Rahul
Mangharam, Richard Murray, George Pappas, Kris Pister, Anthony Rowe, Alberto
Sangiovanni-Vincentelli, Sanjit A. Seshia, Tajana Simunic Rosing, Ben Taskar,
John Wawrzynek, and David Wessel. The swarm at the edge of the cloud. Design
& Test, IEEE, 31(3):1–13, June 2014.

[51] Tomás Lozano-Pérez. Spatial planning: A configuration space approach. IEEE
Transactions on Computers, C-32:108–120, 1983.

[52] Marc Szymanski, Lutz Winkler, Davide Laneri, Florian Schlachter, Anne C. van
Rossum, Thomas Schmickl, and Ronald Thenius. SymbricatorRTOS: A Flexible
and Dynamic Framework for Bio-Inspired Robot Control Systems and Evolution.
In IEEE Press, editor, IEEE Congress on Evolutionary Computation (IEEE CEC-
2009), Trondheim, Norway, May 18-21, pages 3314–3321, 2009.

[53] Leslie Marsh and Christian Onof. Stigmergic epistemology, stigmergic cognition.
Cogn. Syst. Res., 9(1-2):136–149, March 2008.

182 BIBLIOGRAPHY

[54] James McLurkin. Stupid Robot Tricks: A Behavior-Based Distributed Algorithm
Library for Programming Swarms of Robots. S.M. thesis, Massachusetts Institute
of Technology, 2004.

[55] James McLurkin and Daniel Yamins. Dynamic task assignment in robot swarms.
In Robotics: Science and Systems Conference, Cambridge, MA, USA, 2005.

[56] James Dwight Mclurkin, IV. Analysis and Implementation of Distributed Al-
gorithms for Multi-robot Systems. PhD thesis, Cambridge, MA, USA, 2008.
AAI0821012.

[57] Philip Merlin. A Study of the Recoverability of Communikation Protocols. PhD
thesis, University of California, Irvine, CA, USA, 1974.

[58] Francesco Mondada, André Guignard, Michael Bonani, Daniel Bär, Michel Lauria,
and Dario Floreano. Swarm-bot: from concept to implementation. In IROS, pages
1626–1631. IEEE, 2003.

[59] Francesco Mondada, André Guignard, Alexandre Colot, Dario Floreano, Jean-
Louis Deneubourg, Luca Gambardella, Stefano Nolfi, and Marco Dorigo. Swarm-
bot: A new concept of robust all-terrain mobile robotic system, 2002.

[60] Francesco Mondada, Giovanni C. Pettinaro, André Guignard, Ivo W. Kwee, Dario
Floreano, Jean-Louis Deneubourg, Stefano Nolfi, Luca Maria Gambardella, and
Marco Dorigo. Swarm-bot: A new distributed robotic concept. Auton. Robots,
17(2-3):193–221, 2004.

[61] Gordon E. Moore. Cramming More Components onto Integrated Circuits. Elec-
tronics, 38(8):114–117, April 1965.

[62] Luca Mottola and Gian Pietro Picco. Logical neighborhoods: A programming
abstraction for wireless sensor networks. In Phillip B. Gibbons, Tarek Abdelzaher,
James Aspnes, and Ramesh Rao, editors, Distributed Computing in Sensor Systems,
volume 4026 of Lecture Notes in Computer Science, pages 150–168. Springer Berlin
Heidelberg, 2006.

[63] Luca Mottola and Gian Pietro Picco. Programming wireless sensor networks with
logical neighborhoods. In Proceedings of the First International Conference on
Integrated Internet Ad Hoc and Sensor Networks, InterSense ’06, New York, NY,
USA, 2006. ACM.

[64] Luca Mottola and Gian Pietro Picco. Programming Wireless Sensor Networks:
Fundamental Concepts and State of the Art. ACM Comput. Surv., 43(3):19:1–
19:51, April 2011.

[65] Yang Ni, Ulrich Kremer, Adrian Stere, et al. Programming ad-hoc networks of
mobile and resource-constrained devices. SIGPLAN Not., 40(6):249–260, June
2005.

BIBLIOGRAPHY 183

[66] Shervin Nouyan and Marco Dorigo. Chain Based Path Formation in Swarms of
Robots. In Marco Dorigo, Luca Maria Gambardella, Mauro Birattari, Alcherio
Martinoli, Riccardo Poli, and Thomas Stützle, editors, ANTS Workshop, volume
4150 of Lecture Notes in Computer Science, pages 120–131. Springer, 2006.

[67] Patrick A. O’Donnell and Tomás Lozano-Pérez. Deadlock-free and collision-free
coordination of two robot manipulators. In IEEE Robotics and Automation Con-
ference, pages 484–489, 1989.

[68] Helge Parzyjegla, Arnd Schröter, Anselm Busse, Daniel Graff, Alexej Schepeljanski,
Jan Richling, Matthias Werner, and Gero Mühl. Rebeca - eine autonome Publish/-
Subscribe Middleware. Praxis der Informationsverarbeitung und Kommunikation
(PIK), 2011.

[69] Helge Parzyjegla, Arnd Schröter, Daniel Graff, Anselm Busse, Alexej Schepeljanski,
Jan Richling, Matthias Werner, and Gero Mühl. Autonomy Features and Feature
Composition in REBECA. In ICAC’11. ACM, June 2011.

[70] Eloi Pereira, Pedro Marques, Clemens Krainer, Christoph M. Kirsch, Jose Mor-
gado, and Raja Sengupta. A Networked Robotic System and its Use in an Oil Spill
Monitoring Exercise. In Swarm at the Edge of the Cloud Workshop (ESWeek’13),
volume 2, pages 1–2, Montreal, QC, Canada, 2013.

[71] Eloi Pereira, Camille Potiron, Chirstoph M. Kirsch, and Raja Sengupta. Modeling
and controlling the structure of heterogeneous mobile robotic systems: A bigactor
approach. In 2013 IEEE International Systems Conference (SysCon), pages 442–
447, Orlando, FL, USA, April 2013. IEEE.

[72] Peter H. Starke, Humboldt-Universität zu Berlin, Institut für Informatik, Lehrstuhl
für Automaten- und Systemtheorie. Integrated Net Analyzer INA. http://www2.
informatik.hu-berlin.de/~starke/ina.html.

[73] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Universität Bonn,
Institut für Instrumentelle Mathematik, Bonn, 1962.

[74] Louchka Popova-Zeugmann and Matthias Werner. Extreme runtimes of schedules
modelled by time petri nets. Fundamenta Informaticae, 67:163–174, 2005.

[75] Louchka Popova-Zeugmann, Matthias Werner, and Jan Richling. Using state
equation to prove non-reachability in timed petrinets. Fundamenta Informaticae,
55:187–202, 2002.

[76] Jan M. Rabaey. The Human Intranet–Where Swarms and Humans Meet. Pervasive
Computing, IEEE, 14(1):78–83, January 2015.

[77] Pavel Rabov and Daniel Graff. Ein modulares Framework für adaptive Bewegungss-
teuerungen für mobile Roboter zur Ausführung ortsbezogener Anwendungen. In

http://www2.informatik.hu-berlin.de/~starke/ina.html
http://www2.informatik.hu-berlin.de/~starke/ina.html

184 BIBLIOGRAPHY

Jörg Roth Gerald Eichler, Volkmar Schau, editor, 11.GI/ITG KuVS-Fachgespräch.
Ortsbezogene Anwendungen und Dienste. Logos Verlag Berlin, September 2014.

[78] Marc Raibert. BigDog, the Rough-Terrain Quadruped Robot. In Myung J. Chung,
editor, Proceedings of the 17th IFAC World Congress, 2008, volume 17.

[79] Chander Ramchandani. Analysis of asynchronous concurrent systems by Timed
Petri Nets. Project MAC-TR 120, MIT, Massachusetts Institute of Technology,
Cambridge, MA, USA, February 1974.

[80] Michael Rubenstein, Christian Ahler, Nick Hoff, Adrian Cabrera, and Radhika
Nagpal. Kilobot: A low cost robot with scalable operations designed for collective
behaviors. Robotics and Autonomous Systems, 62(7):966 – 975, 2014. Reconfig-
urable Modular Robotics.

[81] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. Kilobot: A low cost
scalable robot system for collective behaviors. In ICRA, pages 3293–3298. IEEE,
2012.

[82] Michael Rubenstein, Adrian Cabrera, Justin Werfel, Golnaz Habibi, James
McLurkin, and Radhika Nagpal. Collective transport of complex objects by sim-
ple robots: Theory and experiments. In Proceedings of the 2013 International
Conference on Autonomous Agents and Multi-agent Systems, AAMAS ’13, pages
47–54, Richland, SC, 2013. International Foundation for Autonomous Agents and
Multiagent Systems.

[83] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-
assembly in a thousand-robot swarm. Science, 345:795–799, August 2014.

[84] Michael Rubenstein and Radhika Nagpal. Kilobot: A Robotic Module for Demon-
strating Behaviors in a Large Scale (210 Units) Collective. In Radhika Nagpal
Kasper Stoy and Wei-Min Shen, editors, IEEE 2010 International Conference on
Robotics and Automation Workshop, Modular Robotics: State of the Art, pages
47–51, Anchorage, Alaska, May 2010.

[85] Michael Rubenstein and Wei-Min Shen. Scalable self-assembly and self-repair in a
collective of robots. In IROS, pages 1484–1489. IEEE, 2009.

[86] Michael Rubenstein and Wei-Min Shen. Automatic Scalable Size Selection for the
Shape of a Distributed Robotic Collective. Taipei, Taiwan, October 2010.

[87] Erol Sahin, Thomas H. Labella, Vito Trianni, Jean louis Deneubourg, Philip Rasse,
Dario Floreano, Luca Gambardella, Francesco Mondada, Stefano Nolfi, and Marco
Dorigo. SWARM-BOT: Pattern Formation in a Swarm Of Self-Assembling Mobile
Robots. In Proceedings of the IEEE International Conference on Systems, Man
and Cybernetics, Hammamet, pages 6–9. IEEE Press, 2002.

BIBLIOGRAPHY 185

[88] Samuel Gibbs. What is boston dynamics and why does google want robots? The
Guardian, December 2013. http://www.theguardian.com/technology/2013/
dec/17/google-boston-dynamics-robots-atlas-bigdog-cheetah.

[89] Robert R. Schaller. Moore’s law: Past, present, and future. IEEE Spectr., 34(6):52–
59, June 1997.

[90] Jörg Seyfried, Marc Szymanski, Natalie Bender, Ramon Estaña, Michael Thiel,
and Heinz Wörn. The I-SWARM Project: Intelligent Small World Autonomous
Robots for Micro-manipulation. In Erol Sahin and William M. Spears, editors,
Swarm Robotics, volume 3342 of Lecture Notes in Computer Science, pages 70–83.
Springer, 2004.

[91] Thierry Siméon, Stéphane Leroy, and Jean-Paul Laumond. Path coordination for
multiple mobile robots: a resolution-complete algorithm. IEEE T. Robotics and
Automation, 18(1):42–49, 2002.

[92] Dale Skeen. A Quorum-Based Commit Protocol. In 6th Berkeley Workshop on Dis-
tributed Data Management and Computer Networks, pages 69–80, February 1982.

[93] Tammo M. Stupp, Daniel Graff, Anselm Busse, and Jan Richling. Ein Taskmodell
für Raum-Zeit-Scheduling. In Tagungsband zum 9. GI/ITG KuVS-Fachgespräch,
September 2012.

[94] Ryo Sugihara and Rajesh K. Gupta. Programming Models for Sensor Networks:
A Survey. ACM Trans. Sen. Netw., 4(2):8:1–8:29, April 2008.

[95] Ying Tan, Mehmet C. Vuran, and Steve Goddard. Spatio-temporal event model
for cyber-physical systems. In Distributed Computing Systems Workshops, 2009.
ICDCS Workshops ’09. 29th IEEE International Conference on, pages 44 –50, 2009.

[96] Ying Tan and Zhong yang Zheng. Research advance in swarm robotics. Defence
Technology, 9(1):18 – 39, 2013.

[97] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, Upper
Saddle River, NJ, USA, 3rd edition, 2007.

[98] The Economist. The end of moore’s law, April 2015. http://www.economist.com/
blogs/economist-explains/2015/04/economist-explains-17.

[99] The Radicati Group, Inc. Mobile statistics report, 2014-2018, Febru-
ary 2014. http://www.radicati.com/wp/wp-content/uploads/2014/01/
Mobile-Statistics-Report-2014-2018-Executive-Summary.pdf.

[100] University of Hamburg, Faculty of Mathematics, Informatics und Natural Sci-
ences Department of Informatics, TGI Group. Petri Nets World. http://www.
informatik.uni-hamburg.de/TGI/PetriNets.

 http://www.theguardian.com/technology/2013/dec/17/google-boston-dynamics-robots -atlas-bigdog-cheetah
 http://www.theguardian.com/technology/2013/dec/17/google-boston-dynamics-robots -atlas-bigdog-cheetah
 http://www.economist.com/blogs/economist-explains/2015/04/economist-explains-17
 http://www.economist.com/blogs/economist-explains/2015/04/economist-explains-17
 http://www.radicati.com/wp/wp-content/uploads/2014/01/Mobile-Statistics-Report-2 014-2018-Executive-Summary.pdf
 http://www.radicati.com/wp/wp-content/uploads/2014/01/Mobile-Statistics-Report-2 014-2018-Executive-Summary.pdf
http://www.informatik.uni-hamburg.de/TGI/PetriNets
http://www.informatik.uni-hamburg.de/TGI/PetriNets

186 BIBLIOGRAPHY

[101] Mikko A. Uusitalo. Global Vision for the Future Wireless World from the WWRF.
In IEEE Vehicular Technology Magazine, volume 1, pages 4–8, 2006.

[102] Charles W. Warren. Multiple Robot Path Coordination Using Artificial Potential
Fields. In IEEE International Conference on Robotics and Automation, pages 500–
505, Cincinnati, OH (USA), 1990.

[103] Mark Weiser. Human-computer interaction. chapter The Computer for the 21st
Century, pages 933–940. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1995.

[104] Matt Welsh and Geoff Mainland. Programming sensor networks using abstract
regions. In Proceedings of the 1st Conference on Symposium on Networked Systems
Design and Implementation - Volume 1, NSDI’04, pages 3–3, Berkeley, CA, USA,
2004. USENIX Association.

[105] Heinz Woern, Marc Szymanski, and Joerg Seyfried. The I-SWARM project. In
The 15th IEEE International Symposium on Robot and Human Interactive Com-
munication, pages 492–496. IEEE, September 2006.

[106] Zhijiao Xiao and Zhong Ming. A method of workflow scheduling based on colored
petri nets. Data Knowl. Eng., 70:230–247, February 2011.

[107] Shang-Tae Yee and Jose A. Ventura. A dynamic programming algorithm to de-
termine optimal assembly sequences using petri nets. International Journal of
Industrial Engineering - Theory, Applications and Practice, 6(1):27–37, 1999.

[108] Hubert Zimmermann. Innovations in internetworking. chapter OSI Reference
Model—The ISO Model of Architecture for Open Systems Interconnection, pages
2–9. Artech House, Inc., Norwood, MA, USA, 1988.

	Title Page
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Definitions
	List of Tables
	List of Listings
	1 Introduction
	1.1 Past, Present and Future
	1.2 Motivation
	1.3 Thematic Demarcation
	1.4 Shortcomings of Current Approaches
	1.5 Contribution of this Thesis
	1.6 Structure of the Thesis

	2 Related Work
	2.1 Swarm-bots
	2.2 I-Swarm
	2.3 Swarmanoid
	2.4 SwarmRobot
	2.5 Symbrion & Replicator
	2.6 Kilobot
	2.7 iRobot-SwarmBot
	2.8 The TerraSwarm Project

	3 Swarm Idea
	3.1 Mobile Distributed Systems
	3.2 The Approach
	3.3 Definitions
	3.4 Example Applications
	3.4.1 Stationary Monitoring
	3.4.2 Shore Monitoring
	3.4.3 Exploration
	3.4.4 Object Monitoring

	3.5 Application Classification
	3.6 Dimensions for WSN Applications
	3.7 Conclusion

	4 Swarm Programming Model
	4.1 Introduction
	4.2 Related Work
	4.3 Language Aspects
	4.3.1 Language Aspect Dimensions
	4.3.2 Language Aspect Selection

	4.4 Swarm Model
	4.4.1 System Model
	4.4.2 Application Model
	4.4.3 lib/driver-Concept

	4.5 Capability/Driver-Model
	4.5.1 Development
	4.5.2 Code Generation
	4.5.3 Lifecycle

	4.6 Application/Lib-Model
	4.6.1 Development
	4.6.2 SwarmActionSuite Interface Operations
	4.6.3 Contracts
	4.6.4 Contract Creation Lifecycle
	4.6.5 SwarmActionSuite Lifecycle
	4.6.6 Event Model
	4.6.7 Dependent Actions
	4.6.8 Application Lifecycle

	4.7 Dependency Graph Generation
	4.7.1 Scheduling a New ActionSuite
	4.7.2 Rescheduling an Existing ActionSuite
	4.7.3 Unscheduling an Existing ActionSuite

	4.8 Conclusion

	5 Swarm Runtime System
	5.1 Introduction
	5.2 Action Management and Swarm Virtualization
	5.3 Architecture
	5.3.1 Local System Services
	5.3.2 Global System Services

	5.4 System Utilization
	5.4.1 Job Utilization
	5.4.2 Motion Utilization
	5.4.3 Relative Motion Utilization
	5.4.4 Utilization
	5.4.5 Relative Utilization
	5.4.6 Idle Time
	5.4.7 Relative Idle Time
	5.4.8 Example

	5.5 System Operation
	5.5.1 Variant of Two-Phase Commit Protocol
	5.5.2 Control Flow

	5.6 System Interface
	5.6.1 External System Interface
	5.6.2 Internal System Interface
	5.6.3 System Statistics Interface

	5.7 Conclusion

	6 Group-Scheduling Problems (Offline)
	6.1 Introduction
	6.2 Related Work
	6.3 Assumptions and Model
	6.4 Timed Petri Nets
	6.5 Translating Model into TPN
	6.6 Schedule with Minimal Makespan
	6.7 Case Study
	6.8 Conclusion

	7 Swarm Space-Time Scheduling (Online)
	7.1 Introduction
	7.2 Related Work
	7.3 Assumptions and Model
	7.3.1 The Model of the World
	7.3.2 Actions and ActionSuites
	7.3.3 Transaction-based Scheduling

	7.4 Job Scheduling
	7.4.1 Location Sampling
	7.4.2 Determine Slot Candidates
	7.4.3 Dependent Jobs
	7.4.4 Periodic Jobs
	7.4.5 Transactions

	7.5 Trajectory Planning
	7.5.1 Spatial Path Planning
	7.5.2 Temporal Path Planning
	7.5.3 Forbidden Regions
	7.5.4 Trajectory Planning
	7.5.5 Waiting Times

	7.6 Evaluation
	7.6.1 Complexity Analysis
	7.6.2 Benchmarks

	7.7 Conclusion

	8 Evaluation
	8.1 Introduction
	8.2 Simulation
	8.2.1 Virtual Movement vs. Physical Movement
	8.2.2 System Utilization

	8.3 Hybrid Approach
	8.3.1 Slow Dynamic Obstacles and Waiting Times
	8.3.2 Triangle Formations
	8.3.3 Obstacles

	8.4 Experiments on Testbed
	8.4.1 Four Robot Movement
	8.4.2 Triangle Formation
	8.4.3 Memory Usage and Movement Accuracy

	9 Conclusion and Future Work
	9.1 Conclusion
	9.2 Future Work

	A Used Hardware
	B Locating System
	C Motion Control

