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Abstract

Since the first decade of the 21st century, improvements in computer performance are
no longer achieved through increasing clock rates but parallelization and specialization.
As a result, heterogeneous many-core systems are becoming more and more common.
Leaving their niche in highly specialized computing, they have to be supported by a
general purpose operating system. A major part of the support that has to be delivered
will be done by the process scheduler as it has to tailor the task order and placement to
those systems. Current approaches to scheduler architecture are not capable of coping
with the resulting challenges. In particular, the state of the art falls short to provide
ways and means to react to new developments in hardware technology quickly and lacks
the capability to enable the adaptation of the scheduler to the changed environment.
Therefore, the original contribution to the knowledge of this dissertation is a new
approach to the architecture of the operating system’s process scheduler.

This dissertation introduces a component-based approach to the process scheduler
architecture that allows the decomposition of the scheduling problem into distinct parts
rather than the monolithic approach as it is state of the art. Components are connected
through Pipes that are an advanced form of runqueues suitable for the component-based
approach. Besides Pipes, information is distributed among the components through a
publish–subscribe-based message system. Components can change the order of tasks and
distribute or merge tasks from or to several pipes. This allows a flexible scheduler design
both during development and runtime: The developer can reuse existing components
and build new schedulers from existing implementations. Through the explicit layout of
the components code-paths, possible bottlenecks become easier to identify compared to
a monolithic approach. Through the separation, it is also feasible to change the entire
scheduling policy during runtime. This enables an optimal shaping of the scheduler to
the needs of the current working set and the properties of the underlying hardware
architecture.

The components are embedded into a framework that allows a comprehensible devel-
opment of schedulers that scale even in many-core systems. The framework approach
permits the integration into several runtime systems without changing the actual sched-
uler implementation. This dissertation proves the feasibility through integrating the
framework into major open source kernels: Linux and FreeBSD. Based on this exemplary
implementation, the properties of the approach are evaluated. The studies show that the
component-based scheduler framework is scalable for hundreds of cores, the overhead is
quantified and the benefits of having well-defined interfaces are demonstrated. Finally,
the advantages of a dynamic adaptation of scheduling strategies at runtime are shown.
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Zusammenfassung

Leistungssteigerungen in Computern werden seit dem ersten Jahrzehnt des 21. Jahr-
hunderts nicht mehr durch fortlaufende Erhöhung der Taktfrequenzen erreicht, sondern
durch zunehmende Parallelisierung und Spezialisierung. Auf Grund dessen gewinnen he-
terogene Many-Core-Systeme zunehmend an Bedeutung. Somit müssen auch zunehmend
Betriebssysteme Unterstützung bieten. Eine wichtige Rolle hierbei wird die Prozessab-
laufplanung und -zuordnung spielen, die für diese Systeme angepasst werden müssen.
Aktuelle Architekturen für die Implementierung der Prozessablaufplanung können mit
den resultierenden Herausforderungen nicht Schritt halten. Insbesondere ist es beim
aktuellen Stand der Technik nicht möglich, auf Innovationen im Hardwarebereich rasch
zu reagieren und die Prozessablaufplanung an die neuen Gegebenheiten anzupassen.
Aus diesem Grund besteht der Beitrag zur Wissenschaft dieser Dissertation in einer
neuartigen Architektur für die Prozessablaufplanung.

Diese Arbeit präsentiert einen neuen komponenten-basierten Ansatz zur Architektur der
Prozessablaufplanung, welcher die Aufteilung des Planungsalgortithmuses in Komponen-
ten erlaubt. Komponenten werden durch Pipes verbunden, welche eine Weiterentwick-
lung der bisher verwendeten Runqueues darstellen. Ferner werden Informationen unter
den Komponenten durch ein publish-subscribe-basiertes Nachrichtensystem verbreitet.
Komponenten können die Reihenfolge und die Verteilung der eingehenden Prozesse
auf die ausgehenden Pipes bestimmen. Der Entwickler kann bestehende Komponenten
wiederverwenden und neue Prozessablaufplanungsimplementierungen aus bestehenden
erzeugen. Die vorgestellte Architektur erlaubt das einfache Auffinden von Flaschen-
hälsen durch ein expliziteres Layout des Prozessplaners verglichen zum monolithischen
Ansatz. Ferner erlaubt die Architektur durch ihre expliziten Schnittstellen die Änderung
der Planungsimplementierung zur Laufzeit. Der Prozessablaufplaner wird hierdurch op-
timal auf die Gegebenheiten des Systems angepasst.

Die Komponenten sind in ein Framework eingebettet, welches die transparente Ent-
wicklung von Prozessplanungsimplementierungen ermöglicht. Der framework-basierte
Ansatz erlaubt die einfache Einbindung bestehender Implementierungen ohne größere
Änderungen in verschiedenen Laufzeitumgebungen. Diese Dissertation demonstriert die
Machbarkeit des Ansatzes durch die Integration in zwei der größten offenen Betriebssys-
temkerne: Linux und FreeBSD. Basierend auf dieser Beispielimplementierung werden
im Verlauf dieser Arbeit die Eigenschaften des Ansatzes evaluiert und diskutiert. Die
Arbeit zeigt, dass der Ansatz für hunderte von Rechenkernen skaliert, sie quantifiziert
den Overhead des Ansatzes und stellt die Vorteile wohl definierter Schnittstellen in
diesem Anwendungsbereich am Beispiel vor. Schlussendlich werden die Vorzüge des
Wechselns der Planungsstrategie zur Laufzeit dargestellt.
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CHAPTER1
Introduction

1.1 Motivation

Computer technology is one of the most influential inventions in human history and
a central driving force behind innovation in the 20th and early 21st centuries. It was
indispensable for several scientific and technological breakthroughs like space explo-
ration, gene sequencing, and the creation of the Internet to name only a few. The most
valuable property, which made the computer successful, is its programmability. This
distinguishes the computer from all other tools humans invented. From the beginning,
it did not serve a specific purpose but could be used ubiquitously. This implicates that
a computer cannot fulfill a meaningful purpose on its own; it needs a programming to
do so.
In the early days of computer history when computers were slow and had only basic
input and output systems, the programming was entered by a human manually. The
programs back then were not interactive and did not depend on each other. So the
operator could decide in which order the programs were run. As computing time was
extremely precious, this order was based on a given schedule that was created based
on different factors, e.g., importance, job submission order, or costs. When computers
became faster, the manual program input was replaced by punched cards. The job
scheduling was now given by order of the programs in the punched cards stack but did
not differ much from the manual input.
With the introduction of personal computers, a new challenge was introduced. Now, the
work consisted not only of jobs that had to be executed without additional input from
the beginning to the end, but the user interacted with it. This led to the introduction of
multitasking, where two or more jobs run concurrently on one machine. In the beginning,
it was limited to cooperative multitasking, where a job or application voluntarily cedes
processing time to another. This made it necessary to introduce a new facility to the
system: the process scheduler. It decides which program is served next as soon as another
program releases the processor. With increasing computational power, the concept of
cooperative multitasking evolved into preemptive multitasking, where a program no
longer needs to release the processor voluntarily but can be forced to release it by the
operating system. With this evolution, the process scheduler is not only responsible for
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2 1 Introduction

deciding which program to run next, when consulted, but also which share of processing
resources gets allocated to every executed program.
Today, the scheduler is an indispensable component of nearly every operating system and
fundamentally determines the general behavior of the operating system itself and the
whole system overall, e.g., it decides whether the system is more suited for embedded,
desktop, server, or mainframe requirements. With the omnipresent use of computer
technology, the diversity and complexity of scheduling algorithms also increased over
time. The diversity, too, grew by the fact that single computer systems are not sufficient
to solve more complicated problems or sustain service for a large user base.
Without exaggeration, it can be stated that the scheduler is a fundamental component in
system software design to unfold the computational power of future systems. However,
the design and implementation of scheduling policies is a complicated process. Most
operating systems have grown over many years and do not use modern software design
methods. An accelerating pace of changes in the hardware architecture and rising degree
of concurrency make the task of developing future scheduling strategies even harder.

1.2 Future Challenges

Operating system design has been facing more and more challenges in the recent years.
They stem from the increasing pace and fundamental changes in innovation in informa-
tion technology, especially computer architecture. This section gives an introduction to
those challenges.

1.2.1 Hardware Innovation

In computer technology, innovation cycles are becoming shorter and shorter, which can
be attributed to the exponential growth in informatics. This can be traced back to
Moore’s law [112] and is further elaborated by Kurzweil [93] in the Law of Accelerating
Returns. This was no issue for system software design as long as performance growth
was achieved by increasing clock rates. It was not necessary to adapt the system software
widely to make the additional power accessible to the user. However, this paradigm
radically changed around the year 2003 when processor designs hit the power wall [70].
As the increase of clock rates flatlined (cf. Fig. 1.1b), the performance improvements
were still significant even though not as high as between the years 1986 and 2003 (cf.
Fig. 1.1a). Since 2003, performance improvements through increased clock rates were
only marginal. Now, the main performance growth was achieved through other means.
The first of those was moving from single-core to multi-core CPUs. At first, this did not
pose an issue for the operating systems, as the multi-core model was already known from
multiprocessor systems in high-performance computing environments. Early multi-core
CPUs even had a similar architecture as multiprocessor systems. However, multi-core
systems evolved and became diverse, which made it more challenging for the operating
system to manage them.
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Figure 1.1: Comparison between processor performance and clock rates since
the late 1970s. The performance of the different systems is plot-
ted in relation to the VAX-11/780 based on the SPEC bench-
mark [S40]. The machines were benchmarked with the current
SPEC versions of their time. The performance of newer machines
is estimated through a scaling factor between the different SPEC
versions.



4 1 Introduction

One example of that issue was the introduction of the Bulldozer microarchitecture
by AMD in 2011. Bulldozer CPUs were unique compared to other CPUs back then,
because, unlike in a real multi-core CPU, two Bulldozer cores shared one floating-point
unit. Because the Bulldozer based CPUs were designated as desktop CPUs, one of
the main operating systems running those CPUs was Microsoft Windows. However,
because of the unique architecture, using Windows together with a Bulldozer based CPU
resulted in performance issues with multi-threaded applications [7]. The issue could be
traced back to the Windows process scheduler that treated every processing unit as an
independent physical core, which they were not because of the shared floating-point
unit. Even though the product was already publicly available in October 2011 and
undoubtedly even earlier to Microsoft, they released the first scheduler fix [108] only in
December 2011. Even worse, this patch did not fix the problem and had to be withdrawn.
A functional patch was only released in January 2012 [109, 110]. This example is just
one brief episode giving an idea of the challenges operating systems in general and the
process scheduler, in particular, will face in the future due to changing architectures.
However, more significant changes in hardware architecture can be expected in the
future. Based on Amdahl’s law [5] and its extension for multi-core systems [73], the
performance improvement through additional cores cannot be maintained indefinitely.
Therefore, new fundamentally different architectures have to be employed, if performance
improvements are still to be achieved. The Intel Tera-Scale research program [79] for
example gave first insights how such architectures could look like. Since then, many
new system architectures emerged.

1.2.2 Heterogeneous Systems

Another challenge in scheduler design are heterogeneous systems. In such a system,
the cores or Processing Elements (PEs) of the system have different properties. The
degree of heterogeneity can range from very low like, e.g., minor differences in energy
consumption to very high like, e.g., differences in the programming model or even special
purpose PEs. Depending on the degree of heterogeneity, issues of different severities
can arise.

The following example illustrates the struggle in scheduler design again, this time origi-
nating from the emergence of heterogeneous systems. The fast rise of mobile computing
in the recent years lead to new requirements in CPU design [104], which is especially
the need to conserve energy. First, it was countered with microarchitectures optimized
for high efficiency, e.g., maximizing the number of Floating-Point Operations per Sec-
ond (FLOPS) per Watt. The most prominent example of this effort is the ARM archi-
tecture developed by ARM Holding. However, with the rising computational demand
of mobile applications, a specialized microarchitecture was not any longer sufficient to
keep the balance between high efficiency and peak performance. For this reason, ARM
introduced the big.LITTLE architecture, which was announced in October 2011 [8].
The big.LITTLE concept combines highly energy efficient low-performance cores with
energy demanding high-performance cores in one multi-core CPU. It is an example
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of a heterogeneous multi-core system even though the degree of heterogeneity is very
low as the cores have the same instruction set and mainly differ in performance. The
performance difference poses a challenge for the scheduler as a past common assumption
in multi-core scheduler design was that cores are similar and therefore interchangeable.
This disruption led to the fact that a scheduler for the Linux kernel – which is the main
system software running this sort of CPUs – that can handle all cores at the same time
was only available in July 2013 [67]. The changes necessary to the Linux scheduler were
so severe that it remained until 2015 only available for the kernel that was stable in
July 2013.

Again, this is only one brief episode of challenges in the scheduling of heterogeneous
systems. For example, recent research has shown that even small differences in hardware
architecture have to be considered by the scheduler to reach optimal performance [33].
However, other more disruptive challenges regarding heterogeneity are present today or
will arise in the future. For example, certain computational problems can benefit from
processing accelerators that yield a better performance both in absolute processing time
and energy consumption per solved problem [23, 68, 75, 106, 167]. Graphics Processing
Units (GPUs) can be considered as such a processing accelerator. With the availability
of the Compute Unified Device Architecture (CUDA) [S9] in 2007 and Open Computing
Language (OpenCL) [S29] in 2009, General-Purpose Computing on Graphics Processing
Units (GPGPU) [168] that uses GPUs as processing accelerators became widely avail-
able. GPGPU has a completely different computing and programming model compared
to general purpose PEs [151]. However, from the resource perspective of the operating
system, those devices are not significantly different from general purpose CPUs: They
consist of PEs that can be used by different tasks in a time division manner. Therefore,
processing accelerators should be managed and assigned by a process scheduler. Cur-
rently, the management is realized through specialized libraries often in the user space
and has only limited scheduling capabilities. However, the scheduling and sophisticated
management of processing units for GPGPU are ongoing research, e.g., Bautin et al. [21]
or Kato et al. [88, 89].

Besides GPUs, several other kinds of accelerators exist with different programming
models. On the one side of the spectrum, there is, for example, the Intel Many Integrated
Core (MIC) architecture [42, 49], which is marketed under the name Intel Xeon Phi.
Even though the first generation of the MIC architecture was released entirely and
the second one partially as dedicated processing accelerator, it has a programming
model that is very similar to the model of multi-core CPUs. On the other side of the
spectrum, there are Application-Specific Integrated Circuits (ASICs) that have little
to none programmability and are heavily tailored to special purposes like e.g. data
compression [173], mining of crypto currencies1 [26, 27], machine learning [86], or image
processing [111].

1 The money supply of a crypto currency is controlled by a cryptographic algorithm with a high
computational complexity rather than a central bank [66].
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1.2.3 Reconfigurable Computing

With the challenges pointed out in the previous subsections, the scheduling problem
became more complex but remained mostly the same: several tasks with different
requirements had to be assigned over time to a fixed number of PEs with specific
capabilities. The hardware architecture is static and does not change during the runtime
of the system. With Field-Programmable Gate Array (FPGA) technology,2 this might
change drastically in the near future. Today, FPGAs are commonly used as processing
accelerators as mentioned in Section 1.2.2 or as co-processors to achieve hard real-time
through jitter and latency reduction. In those scenarios, FPGAs are statically configured
and do not change their functionality during runtime. Therefore, in those scenarios, they
are not different from specialized PEs. However, this limitation is not necessary, because
they can be reconfigured with almost no limitation during runtime. Considering this
aspect, the scheduling problem becomes entirely different from many points of view.

A logic block or even a Lookup Table (LUT) might be considered as the smallest PE
of a FPGA. A FPGA has hundreds of thousands of those, which is an order of 100 or
1000 more than PEs in a many-core chip. This turns the scheduling problem towards
a continuous problem rather than a discrete one. First because of the sheer number,
and second because single LUTs, contrary to other PEs, cannot fulfill computations
completely on their own. Furthermore, many side conditions have to be considered. In
practice, as a LUT virtually cannot process data on its own, several adjacent LUTs have
to be combined. Moreover, certain timing conditions have to be met also influencing
the number of LUTs needed and have to be taken into account during the scheduling
decision. In addition to simple logic blocks, modern FPGAs incorporate specialized
processing blocks like Digital Signal Processors (DSPs) or I/O blocks that have to be
considered as well when assigning the resources of a FPGA.

Today, FPGAs can still be considered a niche product in servers and especially worksta-
tions and desktops. This might change soon as Intel, by far one of the biggest suppliers
for data center processors, will integrate FPGA technology in its server processors [30].
Also, with the Zynq series [180], Xilinx combines established and widely used ARM
cores tightly with their FPGA technology. This will make FPGAs more widely available
and therefore another processing resource for the operating system to manage. The
benefits of such systems are discussed, e.g., by Chung et al. [38].

The management of FPGAs in the operating system was already suggested by Breb-
ner [29] in 1996. Since then, several projects emerged with the goal of making FPGAs
readily available to the user. Such projects are BORTH [145] that supports hardware
tasks abstracting the hardware configuration as Unix process or ReconOS [99] that
enables a programming model for a FPGA similar to POSIX Threads (Pthreads).

2 For details on FPGA technology itself refer to, e.g., Compton and Hauck [40].
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1.2.4 Dark Silicon

The notion of dark silicon was introduced by Esmaeilzadeh et al. [53]. In their 2011
paper, they project that multicore microchips produced with a 8 nm process required
more than 50 % of the chips’ transistors to be powered off at all time. The powered off
part of a chip is denoted as dark silicon. The reason for that restraint is the same as
the introduction of multi-core and heterogeneous systems, the breakdown of Dennard
scaling [43] beginning in the mid of the first decade of the 21st century. Dennard scaling
states that the total chip power for a given die size stays the same in each process
generation. However, this statement holds no longer as transistor energy efficiency only
improves by a factor of 1.4 every two years while transistor density continues to improve,
following Moors law, by a factor of two in the same time frame [158]. A consequence of
this development is the possibility that in the future energy will be by far the biggest
constraint regarding chip design in contrast to the die area and transistor count in the
past.
The previous sections of this dissertation already discussed initial approaches to reduce
the impact of the breakdown of Dennard scaling. However, those approaches will most
likely not overcome the necessity that certain parts of a chip have to be dark and even
further specialized in the future [cf. 159]. This development has a significant impact on
the operating systems scheduler. Even though today certain power constraints have to
be considered, with dark silicon the whole problem becomes much more complicated.
Whereas today the power management can be seen as a micromanagement problem as
only the overall system energy consumption is important, in the era of dark silicon the
scheduler has to do micromanagement to ensure that the microchips of a system are
not overheating and that the system can still unfold its full processing power potential.

1.2.5 Virtualization

Virtualization is another answer to the increasing computational power of modern
hardware. As modern servers are often not fully utilized by a single service, for economic
reasons it makes sense to run several services on one machine. However, contrary to multi-
tasking, different services need different runtime environments. Furthermore, especially
in the context of cloud computing, various services from different clients have to be
fully isolated from each other. Another benefit of virtualization is that running services
can be seamlessly migrated to a new host with minimal interruption.
Regarding the process scheduling, virtualization introduces another challenge, as the
virtual machine brings its own scheduler that is completely isolated from the host
scheduler,3 interference between these two can be expected. Even when the virtual
machines’ scheduler tries to achieve the same optimization goal as the host, taking
actions to achieve this might interfere with the steps taken by the host’s scheduler. This
is because, today, the host and guest scheduler are completely separated and do not
share information.
3 An exception is operating-system-level virtualization that uses the host scheduler.
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With increasing degree of heterogeneity and new computational approaches as described
in the previous sections, the question arises how the guest of a virtual host can benefit
from those improvements. It is plausible to assume that in such a situation it becomes
even more viable to provide additional information both to the guest and host scheduler
to reach an optimal scheduling decision.

1.2.6 Complexity

The growing complexity of operating systems in general and schedulers in particular
paired with low-level programming languages with small expressiveness resemble another
challenge in scheduler development. The scheduler subsystem e.g. of the Linux Kernel
v4.4 alone consists of approximately 16,500 lines of low-level C code and is tightly
coupled to the rest of the kernel that has about 150,000 lines of code excluding device
drivers. Besides the technological changes described in the previous subsections, the
increasing complexity of scheduler designs can be found due to economic and convenience
reasons.
In the past, operating systems were tailored to a specific application domain like embed-
ded, desktop, or server systems. Today, one operating system is used in multiple domains.
Take for example Windows. At the end of the 1990s, there were three operating system
lines each with a distinct kernel: Windows 9x for desktop environments, Windows NT
for workstations and servers, and Windows CE for embedded and later also mobile
devices. With the introduction of Windows 10, Microsoft started using one operating
system kernel for all of those domains. The same trend can be observed for the Linux
kernel that is also used for many different domains ranging from high performance and
supercomputing down to embedded devices. This trend makes it necessary to have a
kernel that can fulfill all the specific needs of the different domains, therefore, increasing
code complexity.

1.2.7 Monopolization

The last major challenge in scheduler development was indirectly already shown in the
example in Section 1.2.2 with the big.LITTLE architecture. So far, there is only one
notable effort to enable an adapted scheduling to this platform for the Linux kernel
but no other operating system. The reason can be easily concluded when examining
the number of active committers to several open source operating systems as depicted
in Table 1.1. It can be observed that Linux has by far the most contributors and
therefore is the most likely platform when adapting new technologies. It even wins
more developers year by year than other platforms have developers at all. This would
not be an issue if implementations from one operating system could easily be used in
another operating system. However, most implementations are extremely specific to
the operating system they are developed for. Therefore, porting a feature from one
operating system to another mostly means a complete rewrite or at least a significant
effort.
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Table 1.1: Number of committers per year for selected open source operating systems
between 2010 and 2015. The numbers were acquired from the respective
source code repositories.

Operating System
or Kernel

Year
2010 2011 2012 2013 2014 2015

Linux 2757 2852 2934 3237 3548 3656
FreeBSD 195 193 205 205 201 183
NetBSD 138 128 126 113 114 103
DragonFly BSD 4 22 28 31 30 25
Haiku 43 51 78 61 66 56
Barrelfish –† 14 19 18 13 12
Minix 11 15 19 28 26 15
GNU Hurd 14 14 15 8 12 10
GNU Mach 4 10 11 9 7 9
† Source code history not available prior to 2011.

1.3 About this Dissertation

The thesis that this dissertation supports is:

To harvest the capabilities of future computer systems to their fullest extent,
a novel dynamic approach to scheduler architecture is needed that is capable
of being integrated into legacy operating systems.

The previous sections have shown that operating system development in general and
process scheduler development in particular, are facing many challenges while, at the
same time, they have to be highly innovative to enable operating systems to fulfill
their purpose as an intermediary between the hardware and the user applications. This
dissertation means to overcome those obstacles for the process scheduler and puts the
developer in a position where he or she can apply their knowledge to the fullest extent.

To achieve that goal, the development process has to become more transparent. Today’s
operating system schedulers of well established operating systems are scattered all over
the operating system code with unmentioned interdependencies, written in low-level
programming languages, and have poorly documented interfaces. All this has to change
to enable a fast and prospering innovation process. Furthermore, the implementations
have to be testable in a convenient way, allowing a fast prototyping and straightforward
way to try new ideas. The latter one is inevitable for the future because the increasing
pace of architecture changes will require new possibly bold approaches to process
scheduling where a development and real life testing process lasting several months
simply cannot be afforded.
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Based on the increasing complexity of system architectures, the scheduler developer
cannot be an expert on both architectural properties and specifics of several different
operating systems. That means that the development process should be as independent
as possible from the runtime system; yet, the developer should be able to test his or
her approach in well established operating systems. To test the implementation easily
not only in a simulated environment but also on the desired target systems will give
an estimate whether it is worth optimizing the implementation for the target system.
Finally, to further speed up the development process, the reuse of existing and upcoming
implementations has to be increased and promoted. With constantly changing archi-
tectures, a developer has to rely on previously found solutions to specific problems and
should not be bothered with reimplementing them. Instead, he or she has to be enabled
to reuse the existing solution in the new scheduling approach in an easy way.
With these properties fulfilled, it will be possible to design holistic schedulers that are
entirely optimized for the specific system. It will no longer be necessary to conduct
scheduling tasks in the user space, especially regarding processing accelerators. The
operating system will, again, be in charge of the complete resource management of the
machine.
This dissertation proposes a Component Based Scheduling (CoBaS) framework for fast
prototyping of new scheduler algorithms. The framework is not limited to a specific
architecture and does not use a greenfield approach. Instead, it fits into the existing
runtime environments. It enables the scheduler developer to quickly try new ideas both
in artificial as well as real life environments overcoming the limitations mentioned above.

1.4 Contributions

The contributions of this dissertation fall into four areas:
Heterogeneous Many-Core Support: The proposed scheduler framework provides
an infrastructure to build schedulers for heterogeneous many-core architectures. By
design, it can be scaled to a significant number of cores and can handle different archi-
tectural characteristics.
Adaptability: Changes to the system architecture during runtime might become com-
mon in the future. CoBaS can support this by changing the scheduler during runtime.
Both the structure of the scheduler and the scheduling policies can be modified without
rebooting the system. Distinct resource managers for specialized PEs are no longer
necessary.
Composition: Scheduling policies can be composed of independent components. This
dissertation discusses what components are composable based on their functionality
and gives a classification of the components used for the CoBaS framework.
Runtime System Independence: Through a case study, this dissertation shows
that the proposed framework is mostly independent of the runtime system. Existing
components can be reused beyond the boundaries of a specific runtime system.
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1.5 Outline of the Dissertation

The remainder of the dissertation is structured as follows: The next chapter delves fur-
ther into the functional challenges that were initially laid out by this chapter. Chapter 3
continues to deduce requirements based on the discussion of the first two chapters of
this dissertation that have to be addressed to tackle the outlined challenges. Following,
Chapter 4 presents work related to this dissertation. It, on the one hand, presents
previous research that tried to tackle some of the challenges discussed and, on the other
hand, presents technology relevant to this dissertation. Chapter 5 introduces the CoBaS
framework that tackles the challenges discussed in the previous chapters. This includes,
in particular, those problems not addressed by previous research. The subsequent Chap-
ter 6 gives an initial theoretical evaluation of the CoBaS framework before Chapter 7
presents a prototypical implementation of the CoBaS framework in detail. The following
Chapter 8 presents an extensive practical evaluation of the CoBaS architecture based
on the prototype. Chapter 9 concludes this dissertation. It revisits the contributions
claimed in Section 1.4, discusses the strengths and weaknesses of this work, and gives
directions for future research. In addition, Appendix A gives further technical details of
the CoBaS prototype implementation and Appendix B records detailed data generated
from the experiments in Chapter 8.

The bibliography consists of two parts. The first part contains literature that is refer-
enced throughout this dissertation. The second part contains references to software or
software projects. To distinguish between references to these two parts, references to
software are prefixed with an S.





CHAPTER2
Analysis of the

Functional Challenges

The introduction gave an extensive overview of challenges that designers of system
software in general and the developer of process schedulers, in particular, are facing.
However, every area was only discussed briefly. This chapter discusses the functional
challenges in more detail, especially with respect to the process scheduler. It covers
the execution granularities of applications in the broadest sense in the first section.
Section 2.2 gives more detailed insights of the execution environments and the challenges
that arise from them. Section 2.3 discusses to what extent a scheduler has to be flexible
and dynamic to changes in the system. Section 2.4 concludes this chapter with further
considerations regarding process scheduling.

2.1 Execution Granularity

A system that is supposed to process several computational tasks is faced with the
question in what granularity these should be managed and executed. This section
shortly discusses the different approaches that are relevant today. However, it only gives
a short introduction to the different concepts as a more detailed discussion would go
beyond the scope of this dissertation. For more detailed explanations, please refer to
the respective references mentioned throughout this sections.

2.1.1 Batch Jobs

Batch processing is the simplest and oldest form of multi-program execution and assumes
that data is processed without any user interaction. In batch processing, jobs are assigned
to a queue. The computer executes the jobs in the queue one by one. Each of these
jobs is entirely independent of the others and runs from the beginning to the end
without interruption or user interaction. Even though already introduced in the 1950’s,
batch processing is still used today, for example in mainframe systems [51, pp. 273–290].
However, the idea of batch processing is also still realized in other operating systems
like, e.g., Linux (cf. Section 4.3.1).

13
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2.1.2 Processes

As described above, batch processing is not intended for interactive program execution
and assumes that tasks are executed from the beginning to the end. This made it
complicated to implement multi-tasking as a task cannot be interrupted. That problem
leads to the introduction of the concept of a process. Compared to a batch job, a process
represents not only the program code and input data but also the current state of the
job [147, pp. 130f.]. With further advancements in memory architecture, each process
was assigned a dedicated address space, which is the only address region a process
can access. Therefore, the kernel gets widely protected against direct manipulation by
processes and processes are protected from each other as well. Saving the job state
made it possible to interrupt a process at any point in execution and no longer rely on
cooperative multitasking, which required the program to yield the CPU.

2.1.3 Threads

Further advancements in computer architecture and software engineering lead to a point
where several parts of a program could be executed concurrently. Therefore, a program
did no longer necessarily consist of only one set of instructions that had to be processed
sequentially, but several sets of instructions that could be executed concurrently or even
in parallel in the case of multi-core systems. However, as mentioned in Section 2.1.2,
processes are only allowed to communicate and share data with each other through the
help of the kernel as they are protected from each other. This separation is feasible for
programs that do not share any or very little data but leads to a significant overhead
if several processes belong to one program, thus possibly sharing a significant amount
of data.
To solve this issue, the concept of threads or light-weighted processes was introduced.
Threads, usually, reside in a process, so one process can have one or several threads.
Still, every thread has its state, but the threads in one process share their address
space. This sharing allows direct communication between the threads without the
involvement of the kernel. Threads can be implemented in user space, making them
opaque for the operating system, or can be supported by the kernel. In the latter case,
the operating system can handle the scheduling of the threads, whereas in the former
case the scheduling has to be performed entirely by the user space code, often trough
a library like, e.g., Pthreads [161]. A more detailed discussion of both threads per se
and user and kernel space implementation is done, e.g., by Stallings [147, pp. 177f.].

2.1.4 Virtual Machines

Even though virtualization was already introduced in the mainframe domain in 1967
with the IBM System/360 Model 67 [178, p. 57], it became mainstream in the 1990’s
with commodity hardware. Virtual machines can be managed either by a dedicated
hypervisor (type-1 hypervisor) or by an operating system acting as a hypervisor (type-2
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Figure 2.1: Simple relation between virtual machines, processes, and threads.

hypervisor) [127]. However, the impact on the scheduling problem of virtual machines
is only minor regarding the differences between type-1 and type-2 hypervisors. Note
that the overall scheduling problem might become more complex having a mixture of
user processes and processes belonging to the hypervisor.

The scheduling of virtual machines on a single host can be compared to the scheduling of
processes. In type-2 hypervisors, virtual machines are often treated as such (cf. Fig. 2.1).
For example, the Kernel-Based Virtual Machine (KVM) [S23] assigns to every virtual
core a dedicated thread. With virtual machines running an operating system that
possibly runs several tasks itself, a parallel can be drawn to processes that run several
threads. However, virtual machines have additional requirements regarding scheduling,
especially in a multi-core context. As the guest does not know that it is virtualized, it
assumes that all of its cores are available the whole time. If this assumption gets violated,
the guest suffers from severe performance degradation. Therefore, hypervisors prefer to
schedule all PEs of a virtual machine at the same time [140, 174]. Furthermore, virtual
machines are completely opaque to the hypervisor, where threads are sometimes visible
to the operating system. This opaqueness makes the scheduling more complicated as
the host cannot leverage knowledge of task relations inside the guest. Current research
shows that this knowledge could improve the overall system scheduling [34].

Looking at virtual machines from a broader perspective shows another scheduling
problem. Contrary to processes in general,4 virtual machines can be migrated from
one computer to another while executing. Migration can increase both reliability and
scalability of virtual machines. They can be, for example, evacuated from a host when
it is failing or going towards an overload situation. Especially the latter scenario is a
typical scheduling problem as a certain number of virtual machine hosts (PEs) have to
be assigned to virtual machine guests (jobs) with different properties.

4 Note that the live migration of processes between different hosts is ongoing research [S8] especially
in the context of operating-system-level virtualization.
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Figure 2.2: Nested virtual machines.

2.1.5 Granularity Relations

The discussion above already implied a relation between the various degrees of gran-
ularity. Figure 2.1 illustrates that threads are commonly encapsulated in processes
and processes might be encapsulated in a virtual machine. However depending on the
underlying hardware architecture or Instruction Set Architecture (ISA) respectively,
this relation can be nested as depicted in Fig. 2.2. The virtual PEs are embedded in
threads of the host operating system. Therefore, a thread can, as of today, opaquely hold
other processes and threads. The simple configuration in Fig. 2.1 already is a challenge
regarding the scheduling [34], where a situation as illustrated in Fig. 2.2 makes the
situation even more complex from the perspective of process scheduling.

2.2 Execution Environment

The future challenges for scheduling arising from changes in hardware architecture were
already introduced in Section 1.2. This chapter discusses the actual implications for the
scheduler that results from such changes in detail. At this point, naturally, only certain
developments can be considered. Figure 2.3 depicts a fictional architecture incorporating
several components that poses challenges for the scheduler and scheduling policies in
the future. This design can be considered as a kind of worst case scenario for current
runtime systems. It combines several challenges in one system:

– Many-Cores
– Heterogeneity
– Specialized computing elements
– Reconfigurable computing
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Figure 2.3: The fictional Metropolis architecture [144], depicting several ar-
chitectural challenges that are or will become relevant for future
scheduler and scheduling policies.

2.2.1 Many-Cores

In literature, there is no precise definition for many-core systems; however, it is widely
accepted that systems with several tens or more cores can be considered as such a
system (cf. Vajda [171, p. 3]). Increasing the number of cores on one chip above a
certain level introduces new challenges for the hardware developer. On the one hand,
it must be ensured that the cores have some way to interact with each other. On the
other hand, every core has to have appropriate access to memory to work to its full
potential. As the memory bandwidth cannot be scaled infinitely, caches become more
important.

Interconnects

The interaction between different PEs on a chip can be achieved by various means. The
four most fundamental ways are depicted in Fig. 2.4. The most basic one is a shared
bus that connects every PE to the memory and to one another (cf. Fig. 2.4a). Such an
architecture allows the communication between cores through the memory or directly.
An example is the front side bus. The programming and resource allocation for those
kind of multi-core systems is very simple. However, having a common bus for several
cores communicating with each other directly or indirectly through memory introduces
a critical bottleneck. Therefore, this interconnect architecture scales only for a very
limited number of cores and will most likely not be found in future many-core systems.
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Figure 2.4: Multi-Core interconnect architectures

A more sophisticated approach is the crossbar interconnect (cf. Fig. 2.4b). This inter-
connect allows the direct communication between different cores or memory controllers
depending on the particular architecture. An example for multi-core systems utilizing
a crossbar is the SPARC architecture [166]. In this specific architecture, the crossbar
only connects the cores to the memory and not the cores to one another. Compared to
the shared bus, the crossbar approach does not show a severe performance degradation
when the number of cores rises. Still, it remains a relatively simple programming model
as every core has a similar connection to the memory or the other cores. However, the
crossbar architecture will probably only have limited use for many-core systems as the
hardware complexity of the crossbar itself rises significantly with the complexity of both
wiring and switching being O(n2), where n is the number of elements connected to the
crossbar.

Another approach for on-chip interconnects is a ring (cf. Fig. 2.4c). The ring inter-
connect, for example, is used in Intel’s MIC architecture [37]. With the ring-based
interconnect, the communication of a PE is limited to its direct neighbors. As a conse-
quence, to communicate with non-neighboring elements, several hops are necessary. This
topology results in different communication times between cores and memory controllers
depending on the distance. In contrast to the previously presented interconnects, the
ring architecture is suitable for a many-core system, e.g., the MIC architecture having
up to 61 cores [81].
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Figure 2.4d depicts the on-chip interconnect approach of a mesh. The mesh is the most
commonly used topology for a Network on Chip (NoC). Examples for such interconnects
in the multi- and many-core area are the Adapteva Epiphany multi-core architecture [50]
or the announced EZChip TILE-Mx processor [47]. The mesh approach is very scalable
and most likely to be used for future many-core architectures. However, other topologies
for a NoC are researched and discussed, e.g., by Sewell et al. [142]. Depending on the
concrete topology of the NoC, the communication between cores becomes even more
complex as there are now potentially several ways to reach another PE. The main
challenge is to find a process placement, scheduling, and communication routing with
as little congestion on the links as possible at the same time.

Another aspect that has to be taken into account regarding the different interconnects
is the memory. The memory is either directly connected to the PEs or it is connected
to controllers that are attached to the interconnects as separate elements. In both
scenarios with a sophisticated interconnect, a Non-Uniform Memory Access (NUMA)
behavior will be most likely. For the scheduler, NUMA introduces another degree of
complexity as the scheduling does not only have to consider the optimal placement
regarding communication between PEs but also regarding the access to the working set
that is held in memory.

Caches

The memory wall [179] already poses a challenge for single-core systems as the computa-
tional power rises much faster than the memory bandwidth. With multi- and many-core
systems, the situation becomes increasingly problematic as the memory bandwidth de-
mand rises even faster. The common approach to solve the issue of insufficient memory
bandwidth is the use of caches. The use of caches in multi-core systems, yet, introduces
a new challenge to the hardware designer stemming from the fact that caches create a
copy of data. If two copies exist and they are modified by different cores, data inconsis-
tencies most certainly occur. To avoid inconsistencies, hardware designers today try to
maintain cache coherency, meaning the modification of data at one point is reflected
on other copies.

Even though many of today’s many-core architectures employ a cache coherent, shared
memory model like [16, 47, 80] and it is argued that cache coherency will not vanish [100],
examples exist or are researched that do not employ cache coherence [165] or ensure
cache coherency only amongst a particular group of PEs [61]. Having such islands of
coherency makes the task scheduling even more challenging. The scheduler has to assess
which task groups and possibly tasks of that task group profit most from placing them
on such an island. It can be expected that the impact to performance is significant
regarding this placement.
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2.2.2 Heterogeneity

The aspect of heterogeneity in computer architecture covers a wide range. It can range
from a difference in performance characteristics between cores over different instruction
sets to entirely different programming models. This heterogeneity also leads to various
challenges regarding the design of a scheduling policy. Those differences will be dis-
cussed subsequently based on three examples, representing a limited selection of what
is possible.

Heterogeneous Performance

Heterogeneity regarding performance is mostly caused by the need to conserve energy
while still maintaining performance capabilities when needed or during the absence of
strict energy limitations. Such a system, in the simplest case, consists of one or more
Low Performance Cores (LPCs) and one or more High Performance Cores (HPCs).
The LPC shows a better energy efficiency than the HPC, which is achieved, for ex-
ample, by using transistors with a higher energy efficiency [117] or by a more efficient
microarchitecture [9].

Such a system can run with an unoptimized scheduler. However, it will result in a bad
performance regarding both computation and energy. A low priority background task
might get scheduled on a HPC, thus wasting energy, and highly computational intensive
tasks are possibly scheduled on a LPC, resulting in a slow program progress. Therefore,
an adapted scheduling policy is needed. The decision whether to run a task on a LPC or
HPC is not trivial as previous research shows [115, 138]. It depends on many different
factors, e.g., whether the system is running on battery, what the tasks characteristics
are, or which tasks might be relevant to the user. The situation becomes increasingly
complex as the number of efficiency domains rises.

Heterogeneous Instruction Set Architectures

Heterogeneity regarding the ISA means that the cores of a multi- or many-core system
have different instruction sets. This heterogeneity can, again, be introduced to conserve
energy, but the reasons can also be more diverse. For example, it is possible that a
certain number of cores can only be reached with a simplified or reduced instruction
set on the limited chip area or that the ISA is optimized for certain tasks. An actual
example of such a system is the Parallela platform [119], which combines a dual-core
ARM A9 processor with an Epiphany processor that consists of 16 or 64 cores that can
only execute the entirely different Epiphany instruction set.

This kind of heterogeneity introduces the same challenges as systems with heterogeneous
performance do; yet, it also introduces new challenges beyond the aforementioned. Today,
it is common that the core that needs to have assigned a new task also executes the
scheduler logic. With a different instruction set, this becomes difficult or even impossible.
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Take for example a dual-core system with two distinct ISAs α and β. As it is a multi-core
system, some load balancing or task distribution has to be conducted. So, either there is a
load balancer code path that can be executed by both cores or the load balancing is only
performed on one core or ISA respectively. The former approach is very challenging, as it
requires two sets of code and, even more critical, the same representation of the processed
data. This might be difficult or even impossible depending on the actual differences
of the two ISAs. Potentially simpler is the second solution where the load balancing
is only conducted on one core or ISA. Still, the challenge exists that information and,
therefore, data, in possibly different representations have to be exchanged between the
two architectures.

Heterogeneous Programming Models

The most extreme case for heterogeneous systems are systems that have very different
programming models for their cores. This is a reality today, for example, in GPGPU
programming. There, the host uses a Single Instruction, Single Data (SISD) or Multiple
Instruction, Multiple Data (MIMD) programming approach whereas the GPU uses a
Single Instruction, Multiple Data (SIMD) programming approach.5 Different program-
ming models make it particularly difficult to schedule tasks as some of the cores might
not even be able to execute the scheduler code, which is, for example, the case with
GPGPU programming. Furthermore, the PEs have different requirements regarding the
computation granularity. For example, saving the register set of a GPU for a task switch
became only available with the latest generation of GPUs and is not very sophisticated.

2.2.3 Specialized Computing Elements

Specialized computing elements are hardware that is designed to fulfill a very particular
purpose like graph reduction, encryption, or hashing. It is disputable whether they
can be considered as PEs or have to be treated as special I/O devices. They cannot
execute a complete task and are used from a coding point of view in a very small part
of a program. Still, the execution time of a task might have a significant percentage
dedicated to the specialized computing element depending on the complexity of the
function it realizes.

Today, it is not clear how specialized computing elements will evolve and how much
autonomy they will have. Currently, they commonly need a conventional PE that feeds
them data into and instructs them how to process it. So, it is possible that they will be
handled like Direct Memory Access (DMA) controllers today, but also that they have
to be considered by the scheduler like any other PE.

5 Refer to Flynns Taxonomy [57] for explanation of the programming models.
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2.2.4 Reconfigurable Computing

Reconfigurable computing is mainly based on FPGA technology. Section 1.2.3 already
discussed their properties. This section takes a closer look at the requirements aris-
ing from the design of scheduling policies. First, FPGAs can be used like specialized
computing elements, which were discussed in the previous subsection. However, as the
designation of reconfigurable computing implies, they can be reconfigured to fulfill dif-
ferent purposes at runtime. For example, a FPGA can be changed from being a graph
reduction processor to an encryption processor.

However, the capabilities and possible applications of FPGA technology go far beyond
that. It is also possible to create complete Central Processing Units (CPUs) in a FPGA.
So, a possible scenario, for example, could be a heterogeneous system regarding the
ISAs of its cores with an additional FPGA. The FPGA could be configured to act as a
CPU of a certain ISA depending on the current task requirements. Take, for example,
again the situation with two ISAs α and β. Now, if the scheduler detects a high load
on the core that executes ISA β, it could reconfigure the FPGA from acting as a CPU
running ISA α (Figure 2.5a) to act as a CPU that executes ISA β (Figure 2.5b). As
even current FPGAs are so big that they can implement more than one CPU core, the
situation can get increasingly complex. Take the same example, but the FPGA is able
to act not only as a CPU executing ISA α or β, but, for instance, as two cores of ISA α
and four cores of ISA β. This capability would result in many different configurations,
making it necessary for the scheduler to be highly adaptive.

Another application for FPGA technology could be the augmentation of existing in-
struction sets with new instructions that are executed in hardware in the FPGA. With
this approach, a new complex instruction is created that would originally need several
instructions of the native ISA.

During the execution of the task with the new instruction, the process will run partially
on the FPGA, if it is or will be configured to execute the new instruction for the task. If
it is not available, the execution can fall back with, e.g., a trap to the original code with
several instructions. Again, this technique introduces new challenges for the scheduler.

FPGA

Core 0
ISA α

Core 1
ISA β

(a) Initial configuration with two cores and
two ISAs.

FPGA

Core 0
ISA β

Core 1
ISA β

(b) Reconfigured FPGA with two cores and
one ISA.

Figure 2.5: System reconfiguration due to a changed load situation.
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It has to decide when to execute such a task based on the current configuration of the
FPGA, whether it is worth to reconfigure the FPGA for the current task set, and manage
the utilization of the FPGA by several tasks. Again as in the CPU example above,
several new instructions can be created in the FPGA concurrently. The augmentation
of existing ISAs with specialized instructions was researched for example by Pittman
et al. [126]. The resulting scheduling problem was discussed by Sheldon and Forin [143]
on the example of the NetBSD [S28] operating system.
Besides the impact of the specialized hardware configuration for the task, the scheduler
has to take into account the time to reconfigure the FPGA and possibly weigh up
the reconfiguration against the processing of data on the FPGA. This consideration
becomes even more complex as the reconfiguration time is not constant and depends
on many aspects like the actual FPGA technology, vendor, or the size of the area that
has to be reconfigured. The reconfiguration time is already identified as an issue having
hardware supported tasks and ranges today in a magnitude of hundreds of microseconds
(cf. Duhem et al. [48]).

2.3 Scheduler Flexibility

The scheduler flexibility considers how good the scheduler can react to changes in the
requirements. Literature traditionally defines static and dynamic scheduling, where
the former one is, today, almost exclusively relevant in real-time scheduling (cf. Ra-
mamritham and Stankovic [129]). A static scheduling policy is the least flexible of all
scheduling policies. It requires that all tasks and PEs are known before the runtime of
the system. The schedule is created offline and then hard coded to the system. Such a
policy cannot handle the introduction of new tasks or changes regarding the PEs, e.g.,
a core fails and can no longer execute tasks. Even though such a scheduling approach
is very limited, it is common in embedded and real-time environments, because it is
simple to implement and easy to analyze.
Dynamic scheduling is common to most modern operating systems. It determines the
task order at runtime and allows the creation and the removal of processes at runtime as
well. Furthermore, current dynamic scheduling policies can compensate the removal or
addition of cores, which is, from an architectural point of view, not complicated. Failed
cores, for example, can just be ignored in future scheduling decisions and new cores
can easily be added to the list of available PEs. Note that the exact implementation of
this behavior is, depending on the actual operating system architecture, not necessarily
simple.
With new architectures, as described earlier, the flexibility of dynamic scheduling will
not be enough. The limits are already assessable looking at the challenges introduced
by heterogeneous many-core systems. Even though it is possible to create a standard
dynamic scheduling policy for heterogeneous multi-core systems, this needs specific
tailoring to the particular system. Even though it is often feasible to parametrize those
scheduling policies, this might not be sufficient for future architectures. Parametrization
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is only feasible to a certain extent as long as the systems do not differ severely. For
example, for a heterogeneous system with differences in processing efficiency of the PEs,
it is feasible to be able to parametrize the number of efficiency domains or the exact
impact on energy consumption. However, it would be unrewarding to simply parametrize
difference in programming models as this would result in the main differences in the
handling of the task.

In case simple parametrization is not sufficient, an adaptive scheduling approach is nec-
essary. An adaptive approach allows significant changes to the scheduler and scheduling
policy during runtime. The adaption process can also include the injection of new code
paths on demand. It enables the runtime system to change the scheduler whenever
necessary and creates new possibilities regarding scheduling optimization. For example,
it would be possible to ship a computation accelerator with its own specifically tailored
scheduling policy and integrate that policy into the runtime systems’ native scheduler.

2.4 Further Considerations

Besides the main challenges discussed in the previous sections, other problems exist
that cannot be classified. Following, those challenges are discussed briefly.

2.4.1 Self and Foreign Hosted Scheduling

The task assignment to PEs can, in general, happen in two ways. Either the PE selects
the process that it wants to execute next from the ready list by itself, or it is assigned
a new task by another PE. In a single-core system, of course, only the former approach
is feasible as no other PE can perform the selection. Because several current operating
systems evolved from a single core operating system, the choice of the next task by the
PE itself is a very common approach. The task assignment by another PE is mostly
found when the PE itself is not capable of executing the scheduler routine, which is the
case, for example, with GPGPU computing.

Decentralized scheduler implementations can be considered as a hybrid approach to self
and foreign hosted scheduling. Within this method, every PE gets assigned a certain
number of tasks by a load balancing mechanism that can be executed by the PE itself
or by another PE. The PE then selects only tasks from the set of tasks it was previously
assigned.

2.4.2 Multikernel Operating Systems

The multikernel approach was proposed by Baumann et al. [20] to cope with some of
the upcoming challenges presented, among other things, in Section 1.2. Baumann et al.
described a new architecture for operating systems that considers many-core systems
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rather as a network than a system with shared resources. Even though a system running
a multikernel operating system has shared resources and communication capabilities,
e.g., through shared memory, the operating system will allow communication between
cores only through explicit message passing. It is argued that such an architecture is
more apt for many-core systems. This claim can be backed by the fact that some of the
current many-core architectures use a NoC to communicate. This makes it natural to
construct the operating system from the beginning with such a network in mind.
Baumann et al. argue that a multikernel operating system is independent of the under-
lying communication architecture [20, pp. 38f.(9f.)], which would, in theory, mean that
such an operating system could use many different communication methods, e.g., shared
memory or a NoC. The approach is very close to cluster operating systems that also
manage a bigger number of PEs, often through message passing. However, nodes with
more than one PE each are not considered as multiple systems, whereas in a multikernel
operating system, every PE is managed by one kernel individually. Another aspect of
multikernel operating systems are heterogeneous ISAs, which are not considered by
cluster operating systems. Besides the Barrelfish operating system [S2], which is one of
the first multikernel operating systems, Popcorn Linux was introduced lately [17]. It
can also be seen as a multikernel operating system. However, it does not consider every
core strictly as a single system but mostly as individual ISA domains.
The research regarding the scheduler architecture for such systems is still limited. Pe-
ter [125, Ch. 3] describes the scheduling in the Barrelfish operating system. With the
current implementation, task placement and scheduling are divided. While the task
placement is conducted in a centralized manner, the scheduling itself is carried out on
every core individually.

2.4.3 Cross-Cutting Concerns

Concerns in software design are, in general, everything that has to be considered during
the design including features, nonfunctional requirements, design idioms, and imple-
mentation mechanisms [135]. Software engineering tries to separate the concerns and
assigns them to distinct design entities like, e.g., modules [121]. This approach can also
be observed in operating systems, where, for example, the process scheduler is often
a distinct subsystem. However, this separation of concerns [77] is not always possible.
Cross-cutting concerns [90] exist that are a common challenge in software architecture
in general and system software architecture in particular.
Take the example of hard realtime requirements. Figure 2.6 depicts a common system
stack with the hardware, the operating system with its various subsystems, and the
application. The concern hard real-time cannot be addressed by a single layer in this
exemplary stack. All parts have to be aware of it. The hardware has to be deterministic,
the operating system has to be real-time capable, and the application has to provide
information like, e.g., its runtime and deadline to enforce a real-time scheduling. For the
operating system to be real-time capable, most of its subsystems have to be real-time
capable as well. For example, the hardware abstraction layer has to have deterministic
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Figure 2.6: Hard real-time as an example for a cross-cutting concern.

code paths, the process scheduler has to employ a real-time scheduling algorithm, and
the handler for, e.g., timers has to execute with an upper bound of time. Real-Time is
one extreme example that touches all layers of the operating system. However, other
concerns exist that touch only a subset. Take for instance the work by Richling et al. [133]
or Schönherr et al. [141]. They have shown that the cross-cutting concern of energy
consumption can be handled by a closer integration of the scheduler and the systems
energy governor, while also improving system performance.

As cross-cutting concerns due to their nature have to be handled in different parts
of a system, it will not be possible to have a solution regarding these issues that
is restricted to the scheduler. In general, two options exist to handle cross-cutting
concerns: integration and information distribution. Integration would be contradictory
to the concept of separation of concerns and is, therefore, often not applicable. Hence,
most of the time information distribution and communication between several software
entities is the only solution.



CHAPTER3
Requirements for a Future

Scheduler Architecture

After discussing the problem domain covered by this dissertation in the previous chap-
ters, this chapter substantiates the requirements that a novel scheduler architecture
has to consider. Not every requirement can be tracked down to a single problem or
issue, most of them will rather relate to several ones at the same time. The following
sections are naming the requirements that have to be considered with a new approach
to scheduler architecture.

3.1 Flexible Task Model

A future scheduler architecture has to be as general as possible regarding the task
model. This requirement stems from two facts: First, the tendency that single operating
systems are used across several application domains and, second, the differing execution
models of PEs and processing accelerators. A flexible task model is a key to enabling
the operating system to manage arbitrary PEs and accelerators.

Regarding the application domain and the utilized scheduling policies, different proper-
ties of a task are relevant. For example, a First-Come, First-Served (FCFS) algorithm
would require the arrival time of a task, while a Shortest Remaining Time (SRT) based
algorithm needs information about the remaining runtime. This means that a suitable
scheduler architecture should not limit the developer regarding the management of
such properties. Therefore, an approach is needed that allows a dynamic definition and
introduction of relevant properties.

The execution model has to be general in a way that it does not matter how and where a
task is running. The runtime system will decide how it uses the scheduling decision and
puts it into action. The scheduler only has to decide which task will be most suited to
the current situation when queried by the runtime system. That especially rules out one
assumption made by operating system schedulers today, namely that the scheduling for
each independent PE happens on that PE itself. Processing accelerators often cannot
compute a schedule on their own and therefore a decision has to be made for them,
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e.g., by a general purpose PE. Furthermore, a rising number of cores might enable the
possibility of dedicated scheduling cores or even dedicated schedulers in hardware based
on FPGA technology.

3.2 Scalability and Contention

Scalability is, in general, a desired property for most kinds of software; however, for
the process scheduler, it is an indispensable property. The processing time spent in
the scheduler is lost for the actual computational tasks assigned to the system. A
scheduler that does not scale would increase the amount of processing time lost and
might even slow down the whole system. Two aspects are relevant toward the scalability
of the scheduler. The first aspect is determined by the complexity of the scheduler
implementation and the second one by possible contentions in the implementation.
For the scope of this dissertation, the scalability of the architecture and the scalability of
the underlying scheduling algorithm has to be separated. The complexity of a specific
scheduling algorithm can de facto not be improved by the given architecture itself.
However, on the other side, the architecture should also not worsen the complexity by
enforcing its structure. Yet, the most determining factor besides the computational
complexity, especially in a many-core system, regarding scalability is contention. The
main cause for contentions in the process scheduler are shared data structures that are
accessed and modified by several or all PEs of the system. This could be, for example,
a shared runqueue. To be able to create a scalable scheduler for many-core systems,
it is necessary for a future scheduler architecture to make it possible to implement
scheduling policies that minimize the degree of contention.

3.3 Adaptability

Future performance improvements might only happen through specialization; therefore,
it can be expected that the scheduler has to be specialized to certain workloads especially
with a very heterogeneous system. Hence, a scheduler architecture should support
changes to the scheduling policy during runtime. As both hardware configuration and
workload scenarios become more unpredictable, it will not be sufficient to have a limited
selection of scheduling algorithms that can be chosen from at runtime, but it must be
possible to add new policies during runtime as well. Taking reconfigurable computing
with FPGA technology into account, this property becomes indispensable. Hardware
reconfiguration becomes only meaningful when the operating system can adapt to the
new system as well.
A second aspect that makes adaptability indispensable for future systems is availability.
An adaptable system can also increase the availability of a system. This feature is
helpful in two scenarios. On the one hand when the need for a bug fix occurs and on the
other hand in large scale computers with multiple tenants. With an adaptable system,
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a faulty scheduler implementation could be replaced during runtime, thus removing the
requirement to reboot the system and increasing its availability. While in the latter
scenario as, e.g., in HPC, the scheduler could be adapted for every customer without a
time consuming reboot and reconfiguration of the whole infrastructure.

3.4 Runtime System Independence

The requirement of runtime system independence is mainly based on the insights of
Section 1.2.7. From the perspective of a single operating system, the independence
of the scheduler implementation seems unnecessary. However, looking at the bigger
picture, having a runtime system independent scheduler would make it much easier for
specific system software projects with a smaller community and smaller workforce to
profit from innovations of bigger projects with a bigger workforce. Also, the creation
of new projects would be easier as an existing, well-tested scheduler implementation
could serve as a solid foundation. This could increase the pace of the overall innovation
process, which would be beneficial to all new, small, and big software projects. Moreover,
it would be helpful to keep up with changes in hardware architecture as developers and
researchers might concentrate on vital tasks instead of low-level problems.

Another argument for runtime system independence stems from the research point of
view. With an independent scheduler architecture, it is easier to identify the properties
of a scheduler policy and separate it from the effects of a specific runtime system. It
would be possible to evaluate the same implementation in several runtime systems and,
through statistics, obliterate the biases introduced by the specific runtime system.

3.5 Reusability

As future systems become more complex, future scheduling policies might become much
more sophisticated as well. Particularly in heterogeneous systems, different PEs might
require different scheduling strategies. Therefore, it will be infeasible to have a single
homogeneous scheduling strategy for the whole system. To simplify the development of
such scheduling policies, the reuse of existing scheduling implementations is desirable.
This would dramatically increase the pace of innovation as existing implementations
could be combined to form a holistic scheduler for the whole system. Also, reusability re-
duces development costs and testing efforts as existing, known to work implementations
can be used.

In the ideal case, a new scheduler for a very heterogeneous system could be constructed
with little implementation effort. It should be possible to take existing implementations
for scheduling strategies peculiar to the used PEs and to combine them to an entirely
new scheduler. That way, it is possible to create a scheduler that is suited and perfectly
tailored to the specific system.
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3.6 Information Distribution

As the heterogeneity in a system rises, so does the need for information to achieve
the scheduling goals. The same applies to an increased degree of virtualization that
potentially requires the exchange of information between the virtual machines’ require-
ments and the host systems’ scheduler. Therefore, a flexible infrastructure is needed
in a future scheduler architecture that supports the propagation of information. This
is valid for all three kinds of communication: inside the scheduler subsystem, from the
runtime system to the scheduler, and from the scheduler to the runtime system.

An information distribution infrastructure might also tackle the issue of cross-cutting
concerns. Cross-cutting concerns influence, by definition, several or all parts of a sys-
tem. To avoid a tight integration and keep the independence of specific subsystems, a
communication infrastructure is needed. Even though the overhead introduced by the
communication and coordination might be significant, the separation of concerns might
still be more desirable to secure maintainability and testability as will be shown in the
next sections.



CHAPTER4
Related Work

This chapter discusses related work and technology relevant to this dissertation. The
chapter is divided into three sections. The first section gives an overview mainly on
other scheduler frameworks that have goals similar to this work. Section 4.2 discusses
research focusing on changing the scheduling policy or modifying an operating system
kernel at runtime. The last section gives a brief insight on scheduler interfaces that
have to be taken into consideration when designing a scheduler framework for modern
operating systems.

4.1 Scheduler Frameworks

This section presents related work that describes a scheduler framework or similar
approaches. Each sub-section is dedicated to a different research approach, with the
exception of the last subsection that discusses the heterogeneity problem in distributed
computing.

4.1.1 Bossa

The Bossa project started with the introduction of the Bossa language by Barreto and
Muller [19], which was first intended as a Domain Specific Language (DSL) to develop
real-time schedulers and later extended to a framework for general purpose process
scheduling. The research is mainly driven by programming language aspects. Barreto
and Muller based their DSL on the insights of their previous paper that pointed out
the limited code reuse and the problem of limited extensibility in operating system
development [113]. Barreto and Muller emphasize that experimentations with operat-
ing systems even in microkernel architectures are tough, because existing scheduler
implementations are spread over the whole kernel and written in low-level languages
that make the understanding of the code difficult and the implementation error prone.
The proposed scheduler DSL enforces a fixed process state model, uses queues as the
data structure to hold existing tasks and implicitly assumes a computer model that is
a single core machine. Bossa uses events to propagate information from the kernel to
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the Bossa runtime system and from the runtime system to the scheduler descriptions,
which is discussed thoroughly in [95]. Lawall et al. [94] also examine the theoretic exten-
sion of the Bossa language to support some modularity that allows creating scheduler
families that share common properties. The Bossa project in its entirety is presented
and summarized in [96] and [114].

Bossa was implemented for the Linux kernel versions 2.4.20, 2.4.24, and 2.6.11 [S4].
It is claimed that the approach should be feasible for other operating systems, yet,
the proof is still to be delivered. Furthermore, the Bossa framework does not take
into account many-core systems, heterogeneity regarding the underlying hardware, or
dynamic changes to the system architecture.

4.1.2 Hierarchical Loadable Schedulers

The Hierarchical Loadable Schedulers (HLS) framework strongly focuses on real-time
scheduling. It was originally introduced by Regehr [131][132] for the Windows 2000
kernel and ported to the Linux kernel v2.4 by Abeni and Regehr [2][S21]. Its main
goal is to extend the general-purpose operating system with general, heterogeneous
hierarchical process scheduling and enable easy prototyping of real-time schedulers. The
heterogeneous aspect of this approach does not regard heterogeneity of the underlying
hardware but takes into account the scheduling strategies for different processes.

The general architecture of HLS is depicted in Fig. 4.1. The hierarchical scheduler
infrastructure (HSI) acts as glue logic between the operating system and the HLS
framework. Inside the framework, there are different loadable schedulers that are each
connected to a top and a bottom scheduler. The upper termination of the hierarchy
lies in the HSI. Every physical processor represents one of these connections, hence in
an n processor system n such connections exist. The lower termination of the hierarchy
is also located in the HSI. Here, every task is assigned one connection. When a task is
selected for a processor, the hierarchy is traversed from the top to the bottom, ending
at the task that is supposed to be dispatched next.

HLS does not completely remove the existing scheduler in a legacy operating system
but relies on it. Furthermore, it was not designed for multi- or even many-core systems
as it uses a single scheduler lock and the hierarchy of scheduling policies is iterated in a
serialized manner. This means that only one processor can run the scheduler code at a
time [131, pp. 36f.], which represents a significant bottleneck, especially in a many-core
system.

Abeni and Regehr also emphasize the necessity to enable simple development of schedul-
ing policy implementations. For that purpose, besides the Windows and Linux kernel
implementation of HLS, they provide a simulator to test the scheduling algorithms in
the user space. They acknowledge that their simulator is limited regarding multi-core
operations [2, p. 4].



4.1 Scheduler Frameworks 33

Fixed Priority

Real-Time Time-Sharing

bot. bot. bot.

top

Hierarchical Scheduler Infrastructure

User Space
Kernel Space

timer
expirations

thread
dispatches

Thread 1 Thread 2 Thread 3

Notifications: block, unblock, create, delete

Applications

HLSCtl()

Figure 4.1: The general architecture of the HLS framework [131, p. 35]. Three
schedulers – Fixed Priority, Real-Time, and Time-Sharing – are
loaded into the hierarchical scheduler infrastructure (gray). Three
tasks are assigned to the schedulers. The communication flow to
and from the framework is indicated through dashed arrows.

4.1.3 SF3P

Gomez et al. [65] present the SF3P framework that also uses a similar hierarchical
scheduling approach as the HLS framework presented in the previous sub-section. How-
ever, the main focus of Gomez et al. is the prototyping of real-time scheduling algorithms.
In their work, they derive an interface for scheduler implementations tailored to the
real-time domain. Based on this interface, they build a scheduling framework for the
userland. In their evaluation of their approach, Gomez et al. implemented a prototype
of their framework on top of a POSIX layer.

The SF3P approach shares the same drawbacks regarding the scope of this dissertation
as the HLS framework. Moreover, they demonstrated the feasibility of their approach
only in the userland on top of the POSIX layer. This design decision makes it easier
for them to realize their goals; however, it strongly tailors their approach to the POSIX
standard.
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4.1.4 The Flux OS Toolkit

The Flux OS Toolkit was introduced in 1997 by Ford et al. [58]. The authors identified
the main challenge in operating system design by the specifics, complexity, and miss-
ing documentation of existing kernel implementations that hinder the exploration of
new ideas and the creation of simple research prototypes. To tackle this problem, the
authors created a toolkit that consists of several components offering common oper-
ating system functionalities like, e.g., process management, memory management, or
file system support. They further argue that it is not always necessary to implement
certain functionalities, but that they can be reused from different existing operating
systems. However, those implementations might not be well documented, and the im-
plementations are hardly integrable in another code basis. Ford et al. identified as
those functionalities the file system, the networking stack,user space and generic device
drivers that are used from NetBSD, FreeBSD, and Linux respectively. To still make
them usable in the Flux OS Toolkit, they embedded every component in glue code that
is compatible with the rest of the toolkit.
The Flux OS Toolkit is a collection of libraries and wrapper functions and cannot
offer the functionality of a framework. The main goal is to support the building of an
operating system from scratch and not specifically the reuse of an implementation in
multiple systems. The challenges of current and future system architectures are not
considered either explicitly or implicitly.

4.1.5 The S.Ha.R.K. Soft and Hard Real-time Kernel

The S.Ha.R.K. Soft and Hard Real-Time Kernel was proposed by Gai et al. [62] and
was actively developed until 2008 [S38]. S.Ha.R.K. provides a generic real-time kernel
that handles the resource management through Modules. When a task is created, it
can specify its requirements dependent on their task model through Quality of Services
(QoSs). A Generic Model Mapper iterates over the Modules until it can find one that
can satisfy the requested QoS. The task is then assigned to that Module, and the QoS
parameters are converted by a QoS Mapper to a Module specific representation. The
QoS Mapper is specific to and provided by every Module individually. The whole process
is outlined in Fig. 4.2.
When the kernel needs to schedule a new task to a CPU, it iterates over all scheduling
Modules in a fixed order. Each Module has its private ready-list, and if a task is ready
to be scheduled, it will be reported to the kernel during the iteration. This means that
the tasks from the second Module only have a chance to be scheduled when the first
Module has no runnable tasks at that point. Modules in general and scheduling related
Modules, in particular, can be added to S.Ha.R.K. during runtime.
S.Ha.R.K. is tailored to the specific needs of real-time scheduling and does not consider
many-core systems or heterogeneous architectures. Furthermore, the integration of
S.Ha.R.K. in existing systems is questionable as it has a very specific task and scheduler
model.
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Figure 4.2: The interaction between the Model Mapper and the QoS Mapper
in the S.Ha.R.K. soft and hard real-time kernel [62, p. 202(4)].
During task creation, a model is selected for each task based on
their requested QoS. When a Module fulfills the requested QoS,
the QoS mapper converts the requirements to the model specific
data structure.

4.1.6 ExSched

ExSched was introduced by Åsberg et al. [11]. The goal of ExSched is to provide a
framework to develop real-time schedulers while being minimally invasive to the existing
system. It is available for VxWorks version 6.6 and the Linux kernel v2.6.36 [S13]. The
architecture of the ExSched framework for the Linux kernel is illustrated in Fig. 4.3. In
Linux, ExSched is loaded as a kernel module, while in VxWorks it is directly integrated
into the kernel. ExSched utilizes the existing scheduler. In Linux, for example, it uses
the SCHED_FIFO priority of the real-time scheduling class. A user space application
can load a new scheduling policy implementation and control the behavior of ExSched
through a given user space library.

Even though ExSched simplifies the implementation of new scheduling policies in the
real-time domain, it is bound to the limitations and enforcements of the existing sched-
uler. For example, ExSched under Linux is bound to the constraints and properties
of the decentralized scheduler approach used in the Linux kernel. Also, the approach
is strongly tailored to the requirements of real-time scheduling and does not consider
general purpose scheduling.
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Figure 4.3: The ExSched Framework for Linux [11, p. 242(3)].

4.1.7 Group Scheduling

The concept of group scheduling was introduced by Aswathanarayana et al. [12] and
is located in the real-time domain. The approach assumes that certain task groups
have the need for common scheduling decisions. Therefore, in the model developed by
Aswathanarayana et al., tasks are assigned to a certain group with a certain schedul-
ing decision function. Furthermore, each scheduling group can be a member of another
scheduling group. Hence, a hierarchical scheduling structure is possible. When a schedul-
ing decision has to be made, for a particular group the assigned scheduling decision
function is invoked. In case the function does not come to a result, the default operating
system scheduler is used as a fallback. In their work, Aswathanarayana et al. briefly
present two implementations of the group scheduling approach: one on the kernel level
for the Linux kernel and one as middleware solution. An implementation for the Linux
kernel of the group scheduling approach is pursued further by Watkins et al. [175]. They
present an implementation of the group scheduling approach as a flexible scheduling
framework for the real-time Linux patch [136, S34]. Watkins et al. extend the real-time
scheduling strategy introduced by the real-time Linux patch through group scheduling
capabilities.
The concept of group scheduling presents another approach to employ different schedul-
ing strategies for various requirements. However, the approach is strongly tailored to
the real-time domain and falls short to provide features for general purpose scheduling.
Furthermore, the kernel-based approach to enable group scheduling is strongly related
to the Linux scheduling architecture.

4.1.8 Scheduling in Distributed Computing

With an increasing number of cores and heterogeneity, the traits of former distributed
systems can be found in nowadays individual machines. Therefore, it is worthwhile to
look briefly into research in that area. Regarding the process scheduling, prior research
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exists that looked into the challenge of heterogeneity in distributed computing. Two ex-
amples are the SmartNet scheduling framework introduced by Freund et al. [59] and the
unified resource scheduling framework introduced by Alhusaini et al. [4]. The emphasis
of both research projects lies on the heterogeneity of the resources of the computing
hosts. Both Freund et al. and Alhusaini et al. show that the overall performance of the
whole distributed system can vastly improve when optimizing the task assignments.

Drawing a parallel to the current development in computer architecture, it can be
expected that the situation in a single computer might become the same as described by
Freund et al. and Alhusaini et al. for distributed systems. Therefore, enabling a similar
approach as they did with distributed systems in a single machine can be expected
to yield similar results. However, as they only present a very high-level abstraction to
scheduling, their approach cannot be applied entirely to the process scheduling of a
single machine.

4.2 Scheduler Adaptability

This section discusses scientific research, existing operating systems, and technology
regarding the adaptation of the process scheduler during runtime. Section 4.2.5 demon-
strates also how important it is to avoid system rebooting. Therefore, the adaptation
of the scheduler during runtime might not only be necessary due to dynamic changes
of the underlying hardware, but also for other reasons.

4.2.1 User-Level Threads

User-Level Threads (ULTs) are, in contrast to Kernel-Level Threads (KLTs),6 com-
pletely managed in user space. Examples for ULTs are GNU Portable Threads [S17],
Green Threads [172, Ch. 6], or Fibers [56]. ULTs are encapsulated inside KLTs and can
especially employ their own scheduling strategy. However, they suffer various drawbacks
as the kernel has no knowledge of the existence of ULTs. The most noteworthy trait is
the issue of I/O-operations when, e.g., the KLT gets blocked because of an operation
of one of the ULTs. This means that also otherwise runnable ULTs inside the KLTs
get blocked. Some of the issues raised by this kind of behavior are tackled by Scheduler
Activations [6].

Even though it allows a custom scheduling of the threads inside KLTs, the approach
of ULTs is not suited for the purpose of this dissertation. It is not possible to change
the overall system behavior with ULTs. The behavior of the system is still determined
by the scheduling of the KLTs, and the introduction of ULTs can be seen as hierar-
chical scheduling. It is neither possible in any way to handle changes in the hardware
architecture with ULTs.
6 In literature, KLTs are also referred to as kernel-supported threads or lightweight processes [147,

p. 184].
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4.2.2 DAMROS Reflective Scheduler

DAMROS is an acronym for Dynamically Adaptive Micro-Reflective Real-Time Op-
erating System and was developed by Patil and Audsley [122]. DAMROS realizes the
idea of a reflective operating system the general architecture of which is depicted in
Fig. 4.4a. The system consists, apart from the core, of several system modules that sup-
port reflection. These modules are, e.g., the scheduler or memory management system.
The behavior of those modules can be influenced by the applications. Each module has
a Base-Level Code that represents the default behavior. This behavior can be changed
through the reflection of the application via the reflection aware Base Kernel Core.

Based on this architecture, Patil and Audsley research the scheduler as a Reflective
System Module. The resulting scheduler is depicted in Fig. 4.4b. The Base-Level Code,
in this case, is a round-robin scheduling. As Meta-Level Code, it has a rSchedule called
scheduling implementation that can change its behavior based on the reflection of
the running applications. It can, for example, postpone energy demanding tasks when
the system has little battery life left or help an application meeting its deadline by
an adapted task order. This is realized by, e.g., user-defined scheduling policies. The
changes to the scheduling are done mainly on a per application basis. That means an
application can control how itself and its children are scheduled. However, it cannot
influence how other applications are scheduled. Therefore, this approach has its main
scope not on the whole system but rather on specific applications.

Application 1 Application 2 • • • Application i

Base Kernel Core
(supports Reflection)

Reflective
System

Module 1

Reflective
System

Module 2
• • •

Reflective
System

Module n

Reflection Interface

Reflection Interface

(a) General structure of the reflective op-
erating system.
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reify install code
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(b) Scheduler system module in the reflec-
tive operating system.

Figure 4.4: Architecture of a reflective operating system [122].
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4.2.3 The SPIN Operating System

The SPIN operating system was introduced by Bershad et al. [22]. SPIN is designed as
an extensible operating system. The extensibility also covers the thread management.
SPIN does not provide a specific thread model but can by extension handle arbitrary
models. “In SPIN, an application can provide its thread package and scheduler that
is executed within the kernel.” [22, p. 274(8)] However, in SPIN there is also a global
scheduler that runs beneath the application specific schedulers.
Even though SPIN is an interesting example for an extensible kernel, it cannot handle
the issues covered by this dissertation. As with ULTs, the overall system behavior
cannot be influenced by the task-specific schedulers.

4.2.4 Vassal

Vassal is an extension to the Windows NT 4.0 kernel that allows the dynamic loading
and unloading of scheduling policies. It was introduced by Candea and Jones [35]. The
architecture of Vassal and its integration into Windows NT 4.0 is depicted in Fig. 4.5. In
Vassal, the implementations of the scheduling policies are treated like device drivers, and
they are loaded and unloaded like drivers as well. The loaded schedulers register with
the Vassal Dispatcher. Threads are assigned to one of the scheduling policies. Vassal
is coexisting with the default Windows NT scheduler. The different loaded schedulers
form a hierarchy inside which the default Windows NT scheduler is at the bottom.
When a new task has to be dispatched, the loaded schedulers are queried by a Request
Decision until a runnable task is found.
Candea and Jones acknowledge that their approach has some limits, especially employing
different scheduling strategies in parallel. Their implementation, for example, is only able
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Figure 4.5: The Vassal architecture and its integration into Win-
dows NT 4.0 [35, p. 6].
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to have one scheduler loaded at a time. Furthermore, they argue that having multiple
schedulers loaded at the same time might lead to problems when the schedulers have
conflicting goals. The issue of having a multi-core system is not discussed by Candea
and Jones.

Even though the Vassal extension is a good example for loadable schedulers, it is very
limited regarding its flexibility as it still requires the native scheduler. Based on that
design decision, the loaded schedulers are limited to a centralized scheduling approach.
Furthermore, the approach cannot handle changes to the system architecture as the
default scheduler is simply augmented with additional scheduling policies.

4.2.5 Kernel Live Patching

Certain application scenarios make it necessary to reduce the downtime of a system
to a minimum. For example, a Service-Level Agreement (SLA) of 99.9999% results in
a maximum downtime of the system of 31.5 seconds per year. In most cases, this is
not even close to the reboot time of the system and bringing up all the services costs
additional time. The importance of minimizing the unavailability of systems is backed
by the fact that much literature exists that aims at system administrators to achieve
that goal, e.g., Binnie [25]. For avoiding restarting a system due to the operating system
kernel having to be patched, three approaches were developed to patch the Linux kernel
during runtime.

Ksplice

Ksplice [10] allows the live patching of a Linux kernel by comparing the binary objects
of the original and patched kernel on a by-function granularity. This will extract the
differing functions and enable the creation of a patch for the running kernel. The patch
is applied with the help of a kernel module by replacing the old function through a
jump instruction to the new function. To avoid data corruption, the stop_machine
function [S24, kernel/stop_machine.c] of the Linux kernel is used putting a core
basically in a shutdown state no longer executing any tasks. Ksplice works fully auto-
matically except for semantic changes to data structures. These require custom code to
be handled. Ksplice was successfully used to apply several security patches to running
Linux kernels. It also allows further patching of previously patched kernels; however, a
rollback mechanism is not provided. Ksplice is limited to the x86 architecture.

kpatch

Another tool for live patching the Linux kernel is kpatch [S22]. Instead of comparing
binaries, it can work on source diffs. It also uses the stop_machine function to ensure
consistency. To apply the patch to the running Linux kernel, kpatch uses the ftrace
facility [S15] of the Linux kernel. Ftrace is originally intended to profile the kernel.
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Figure 4.6: The kpatch kernel live patching mechanism [82].

When activated, it is called at the beginning of every kernel function by replacing a
previously inserted noop operation with a function call. This facility is reused by kpatch
to introduce the replacement function (cf. Fig. 4.6). Kpatch allows the rollback of an
applied patch by simply removing this code path again. However, with kpatch, it is not
possible to apply patches that rely on changes to the kernel’s internal data structures.

kGraft

The kGraft [152] live patching facility uses the same ftrace facility as kpatch to inject
the patched code; however, contrary to Ksplice and kpatch, it does not require to stop
the kernel for a short time through stop_machine. Instead, it uses two universes – the
unpatched and the patched one – and migrates the existing tasks to the new reality
when they leave the kernel space the next time (cf. Fig. 4.7). kGraft patches can be
generated both from C source code and from object code.

4.3 Scheduler Interfaces

This section discusses details on the scheduler implementation of Linux and eCos. It
gives a better understanding of how the state of the art schedulers are realized in
different application domains.

4.3.1 Linux Scheduling Classes

The scheduler subsystem of the Linux kernel [S24] uses the concept of Scheduling Classes.
A Scheduling Class can implement a certain scheduling algorithm in the boundaries of
the Linux scheduler architecture. It has to comply to a certain programming interface.7

7 For details on the interface refer to kernel/sched/sched.h Lines 1172–1231 in [S24].
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Figure 4.7: The kGraft kernel live patching mechanism [124]. Patched func-
tions in the kernel are executed when the new universe flag of
a user process is set, otherwise the old, buggy function is still
used.

Currently, this means a decentralized scheduler with individual runqueues for every
core and a centralized load balancing for the whole system. Every Scheduling Class has
its runqueue. The Scheduling Classes are linked in the manner of an unidirectional list.
Every time the scheduler subsystem has to determine the next task, the Scheduling
Class at the head of the list is invoked and the task selected by the algorithm of that
Scheduling Class is dispatched. If the runqueue of the first Scheduling Class is empty,
the subsequent Scheduling Class in the list is invoked and so on.

The current version of the Linux kernel implements five different scheduling classes,
which are linked as depicted in Fig. 4.8. The Scheduling Classes are compiled into the
Linux kernel and cannot be changed during runtime. Each task can be assigned to
a Scheduling Class. However, the functionality of the scheduling classes is limited to
the scheduling model of the Linux kernel, hence resulting in a decentralized scheduling
approach. It is, for instance, not possible to realize a centralized scheduler through
the means of a Scheduling Class. Evidence for that is the centralized BFS by Koli-
vas [91] that implements an alternative scheduling algorithm for the Linux kernel. It
is based on the Earliest Eligible Virtual Deadline First algorithm [150] and Staircase
Deadline scheduler [92]. Kolivas refrains from using the Scheduling Class Application
Programming Interface (API) as it is not possible to implement the algorithm with the
restriction of that API.
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Figure 4.8: Sequence of Scheduling Classes in the Linux kernel v4.4. The
Stop Class is used to overwrite any scheduling to shut down the
machine or hot-plug a CPU. The Deadline class implements the
Earliest Deadline First scheduling policy [97] with a Constant
Bandwidth Server [1]. The Real-Time scheduling class follows the
UNIX specification for real-time process scheduling [161]. The
Completely Fair scheduling class implements the Completely Fair
Scheduling policy [85]. The Idle-Task class is solely responsible
for the dispatching of the idle task.

4.3.2 The eCos Scheduler

The eCos operating system [S12], like most other real-time operating systems, employs
a priority-based scheduler by default. However, it is designed in a way that the scheduler
implementation and therefore the scheduler algorithm can easily be replaced. For this
purpose, eCos uses the inheritance feature of the C++ programming language. A new
scheduler implementation is simply a child class of the main Scheduler class.8 As in
Linux, the scheduler cannot be exchanged during runtime. Even if that feature existed,
it would be of limited use as eCos is not designed as a very dynamic system and has
very limited user space capabilities. As a real-time operating system, it is focused on a
fixed functionality.

Further limitations arise from the scheduler interface. Even though it allows a free
implementation, the developer is very limited as in Linux he or she is bound to the
scheduler architecture enforced by eCos. The interface does not allow an easy extension
for acquiring additional information that might be useful to the scheduler or information
that should be given from the scheduler to the operating system.

8 For details on the class interface refer to packages/kernel/v3_0/include/sched.hxx in the source
package in [S12].
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4.4 Summary

The assessment of the related work has shown that the challenges in process scheduler
architecture have been identified as a research area before. One of the main goals of
the research efforts was the simplification of the scheduler design process. The prior
work reached that goal to a certain degree, but always in a limited scope. The most
noteworthy missing feature in such architectures is the support for many-core systems
and the possibility to build scalable schedulers for such systems. Moreover, the previous
work covers heterogeneous system only to a very limited extent.

The necessity to change fundamental parts of the operating system was also the object
of prior research. As with the general scheduler architecture, the related work falls
short to tackle many-core systems. The presented work regarding kernel live patching
identified the problem of changing data structures that are actively used by the system.
This is a special issue for the scheduler and not tackled by prior work regarding dynamic
scheduling architectures.



CHAPTER5
A Component-Based

Scheduler Framework

Chapters 1 and 2 have outlined the challenges process scheduler design is facing and from
that, Chapter 3 deduced requirements necessary to be addressed by a future scheduling
architecture. The previous chapter has shown that the current state of the art falls
short of addressing all the issues at the same time. For this reason, this dissertation
introduces a novel approach to the architecture of process schedulers – the Component-
Based Scheduler (CoBaS) framework. Figure 5.1 illustrates the overall architecture of
the framework. It is designed as main scheduling facility for a runtime system like, in
most cases, an operating system. However, the framework can schedule arbitrary task
sets that fall into the task model outlined later in this chapter and is, therefore, not
necessarily limited to operating systems. It can be used in every system that needs task
management. The CoBaS framework consists of five major elements:

– Components that are enforcing the scheduling policies and enable to control
the scheduling (cf. Section 5.2).

– Pipes that are an extension to the concept of runqueues and transport tasks
from one Component to another (cf. Section 5.3).

– A Notification System that distributes events inside the framework on pub-
lish–subscribe based messaging pattern (cf. Section 5.4).

– A Runtime System Adapter that connects the runtime system independent
parts of the CoBaS framework to the surrounding runtime system (cf. Section 5.5).

– Topologies that determine the layout and connection of Components to Pipes
(cf. Section 5.6).

The framework does not have a general restriction how the tasks have to look like. They
can be jobs, processes, threads, or whole virtual machines as described in Section 2.1.
Through the standardized interfaces inside the framework, the Components are highly
reusable and independent of the surrounding runtime system. Hence, the implementation
of a scheduling policy within the CoBaS framework can be used in every system that
integrates the framework. Furthermore, the encapsulation of the scheduling policy
enforcement in Components allows the dynamic creation, deletion, and exchange of
Component instances even during runtime. This approach allows the scheduler to be
adapted to changes in the scheduling goals or even the underlying system architecture.

45
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Figure 5.1: Overview of the CoBaS architecture.

This chapter describes the CoBaS architecture in detail. It starts with the presentation
and discussion of the system model that was used to create the framework. The Sections
from 5.2 up to 5.6 are discussing the different elements of CoBaS in detail. Section 5.7
explains the interaction between the elements of the CoBaS framework with the help of
examples to give a better understanding of the architecture and the interaction of the
different parts of the framework among each other. Section 5.8 continues with a discus-
sion on composability in the context of the CoBaS framework. Section 5.9 concludes
this chapter with a discussion on the design rationales of the CoBaS framework, which
focuses on the decision to use the component and the framework approach. Note that
the concepts presented in Sections 5.1.2, 5.2, 5.3 and 5.5 of this Chapter were previously
published in parts in Busse et al. [32].

5.1 System Model

The model that is the foundation for the CoBaS framework can be subdivided into two
parts: a task model and a scheduler model. The task model describes the properties
of tasks the CoBaS framework can handle, while the scheduler model describes the
scheduling process.

5.1.1 Task Model

Starting points for the task model are the traditional two- and three-state task models as
described in literature (cf. Stallings [147, Ch. 3] and Tanenbaum [157, Ch. 2]). The two-
state model is very limited and does not allow preemption. Therefore, it is only suitable
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Figure 5.2: The classical three-state task model. Tasks can be blocked be-
cause of the interaction with other tasks.

for batch processing granularity as described in Section 2.1.1 and not sufficient for the
purpose of this dissertation. The three-state model (Fig. 5.2) is a further generalization
of the two-state model that is not only suited for the batch processing granularity, but
also for the other granularities as discussed in Sections 2.1.2 to 2.1.4.

However, it is questionable whether this rather simple academic model is also suitable
for complex real-world systems. Take for example the task state machine of the μITRON
system (Fig. 5.3). Although it has a READY state that is equivalent to the ready state
of the three-state model and a RUNNING state that is equal to the running state of the
three-state model as well, no single state can be identified as blocked state and a task
can exit from a waiting state in contrast to the classical three-state model. Similar
differences can be found looking at other legacy systems’ task states, e.g., in UNIX
systems (cf. Bach [13, p. 148]) or Windows (cf. Stallings [147, p. 200]).

To obtain a holistic task model for CoBaS, it is necessary to be independent of the
actual state machine of the tasks. Looking closer at both the simplified three-state task
model and the real-world examples reveals that the scheduler does not necessarily need
all information in that task model. The only challenging part in task scheduling is the
question which task to transit from the ready to the running state and vice versa. In
the simple three-state model, the transitions from the ready to the blocked state and
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Figure 5.3: μITRON task states and transitions [139, p. 54].

from the blocked to the ready state are a given fact and not based on a decision. When
a resource needed by the running task is not available, it is not questionable whether it
gets blocked or not because there is no alternative. The same applies to the unblocking.
Unlike the dispatching, the tasks do not get unblocked based on policy but on the fact
that resources become available.

For more complex task state models, this reasoning might not be so obvious as there is
a category of transitions that are not necessarily intrinsic but driven by a policy. Take
for example the swap out of tasks, where the task is moved from main to secondary
memory. This decision is based on policy. However, the memory management subsystem
and not the scheduler subsystem is responsible for this decision. From the scheduler’s
point of view, the task is missing a resource, i.e. memory, to progress. The same line of
argument can be applied to other properties. Take for example the SUSPENDED state of
the μITRON state model. There, the task is forcefully denied the CPU, which can be
modeled as a logical resource: Permission to be dispatched. This approach allows the
same approach for tasks that are supposed to be put in the SUSPENDED state as it does
for swap out tasks.
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Figure 5.4: The CoBaS task state model.

Based on this insight, only the two transitions between the ready and the running state
remain to be considered for the scheduler. The CoBaS framework uses an enhanced
three-state task model as illustrated in Fig. 5.4. The framework only considers tasks
that are assigned to it by the runtime system. Those tasks are either running, meaning
they are currently processed by a PE similar to the classical three-state model or they
are schedulable, meaning they can be dispatched to a PE. The latter state differs from
the classical ready state as all tasks that are not blocked or currently executed are ready.
With CoBaS, the runtime system can decide whether it wants a task to be considered
for scheduling no matter if it is dispatchable or not. Tasks transit from the ready to the
running state through dispatching and from the running to the ready state through
relinquishment or preemption of the PE. The third state in the CoBaS model is the
unconsidered state that, from the perspective of CoBaS, collects all the tasks that are
not to be considered for the scheduling. The runtime system can put every task in
that state if it comes to the conclusion that the task should not be considered by the
scheduling algorithm. It has to be emphasized that the CoBaS framework only considers
tasks in the schedulable and running state. Every task in the unconsidered state is not
known to the framework and therefore not considered for scheduling.

Besides the changes to the meaning of the states, the CoBaS model introduces additional
state transition to be as versatile as possible. With the CoBaS model, a task can be
destroyed from every state, eliminating the need to dispatch a task before destroying
it. Furthermore, the runtime system can remove a task from the schedulable state at
any time, for any reason it deems necessary.
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Figure 5.5: The CoBaS scheduler model.

5.1.2 Scheduler Model

After defining a task model, a scheduler model can be built that can accept such tasks
and is suited for this dissertation. The model is depicted in Fig. 5.5. The scheduler can
be queried for a task for a specific PE and will output a task for that PE. Furthermore,
the scheduler can receive information and events from the system that may influence
its scheduling decision. Those events could be for example a frequency change of a PE,
the change from permanent to battery power, or reaching a critical temperature in the
system. Also, the scheduler is informed about task state transitions over that interface
and the system informs the scheduler that it has dispatched a task or that a task should
no longer be considered for scheduling. On the other hand, the scheduler can notify the
system about certain events like, e.g., an overload situation on a specific PE.
Even though the model is very simple, it is very flexible as it can be used to process
every kind of information relevant to the scheduler or the system, while still fulfilling
the main task of a scheduler: selecting tasks for specific PEs.

5.2 Components

Components are the core of the CoBaS framework and the means used to enforce
scheduling policies. Components can order and filter tasks. An initial simple example is
given in Fig. 5.6. In the example, Component A reorders the incoming task set, while
Component B refines the ordered task-set by filtering.

Component A
(e.g. Round-Robin)

Component B
(e.g. Energy Supervisor)

⟨τA, τB , τc, τd⟩ ⟨τc, τA, τd, τB⟩ ⟨τc, τd⟩

Figure 5.6: Example of task ordering and filtering by CoBaS Components.
A task set is ordered by Component A. The ordered task set is
further refined by Component B through filtering, in this case
by filtering out the tasks identified by an uppercase letter index.
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CoBaS differentiates between Components and Component instances. While the Com-
ponent is the implementation, several instances of one Component can exist during
runtime. For the remainder of this dissertation, the notion Component is used for
both Components and Component instances. If a differentiation between those two is
necessary and not obvious, it is pointed out.
Besides their direct functionality, Components serve three main purposes: Separation of
concerns, workload distribution, and reusability. A Component is a stateless entity that
holds instructions to perform a certain functionality like, e.g., task ordering or filtering.
When using a Component, a Component instance has to be created that is stateful
and can be executed by the runtime system. How Components serve their purpose is
discussed subsequently.

5.2.1 Separation of Concerns

Why the component approach allows a separation of concerns shall be explained on the
example of a decentralized multi-core scheduling with support for affinities to PEs and a
round-robin policy for each PE. With a traditional scheduler architecture, the scheduler
logic would be implemented as one entity. For example, the FreeBSD operating system
uses a scheduling approach very similar to that, except that it also supports priorities.
In the given example, three concerns can be identified:

– Load-Balancing for all PEs.
– The Assignment of an affinity to every task.
– A round-robin policy on each PE.

Each of these concerns can be handled by an individual Component or, to be more
exact, by instances of Components. The resulting scheduler is depicted in Fig. 5.7
on the example of a quad-core system. It consists of a Component instance that can
assign an affinity to every task, an instance that enforces the load-balancing between
PEs with the support of the Affinity Component instance, and finally n instances of a
Component that applies a round-robin policy, in the quad-core example n being four.
The interaction between the Components is explained in detail later on in Section 5.7.

Load-
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Round-
Robin

Round-
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Round-
Robin

Round-
Robin

Affinity
PE 0

PE 1
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Figure 5.7: Separation of concerns for a multi-core scheduler.
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Figure 5.8: Code path separation for a heterogeneous system with dissimilar
scheduling requirements.

5.2.2 Code Path Separation and Workload Distribution

Having a heterogeneous many-core system that, for example, consists of two parts –
one part a classical flat multi-core topology and one a mesh-based many-core topology
(cf. Fig. 2.3 on page 17) requires, possibly fundamentally, different scheduling strategies
for the different parts. The state of the art approach to scheduler design would result in
one scheduler implementation that needs to handle both scheduling approaches. Even
though a differentiation in the code paths for the different architectures might exist, it
would be hard to distinguish.
The component-based approach allows a much easier differentiation and division between
the different scheduling strategies and therefore code paths. Figure 5.8 illustrates this
separation on the example mentioned above: A shared load-balancing Component would
assign the tasks either to the flat multi-core part of the heterogeneous processor or the
mesh-based many-core part. The assigned tasks would then be scheduled based on the
most efficient policy for the respective topologies.
The decomposition of the scheduler implementation in distinct Components also allows
an easier to comprehend workload distribution. Assuming that the scheduler logic is
executed by several PEs in parallel, bottlenecks are likely to occur and become more
likely the more PEs try to run the scheduler at the same time. For example in the
scheduler layout in Fig. 5.8, it can be reasoned that the Task Distributor might become
a bottleneck because both parts of the heterogeneous system have to access it, while the
dedicated implementations for the distinct scheduling policies can be accessed in parallel.
How such contention is handled in CoBaS is discussed thoroughly in Section 6.1.

5.2.3 Reusability

Reusability consists of two aspects: The reuse of one scheduler implementation in
different runtime systems and the reuse of existing parts of a scheduler implementation
in the implementation of a new policy. The CoBaS framework allows both. The reuse
between different runtime systems is given by the framework approach. A runtime
system has to be adapted only once to the framework and can then use every scheduler
implementation that was programmed against the framework’s API.
The component approach also allows a broader reuse of existing parts of the scheduler.
The round-robin Component from the example mentioned above can, for instance, be
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Figure 5.9: Reuse of a single Component implementation in different sched-
uler and scheduling approaches.

used in different scenarios like a simple single-core scheduling (Figure 5.9a), a cen-
tralized multi-core scheduler (Figure 5.9b), a hierarchic scheduler (Figure 5.9c), or a
decentralized scheduler (Figure 5.9d). Compared to the state of the art approach to
scheduler implementation, the reuse is promoted by the clear functional distinction
between individual Components.

5.3 Pipes

Pipes are one of two interfaces that are connecting Components to other Components or
the framework. Components, as described above, are manipulating task sets by ordering
or filtering of tasks. Those ordered and filtered task sets have to be handed over from
one Component to another to compose several Components to a complete scheduler
implementation. In current systems, tasks are managed in runqueues [147, Ch. 9][157,
Ch. 2][S14, sys/sys/runq.h][S24, kernel/sched/sched.h]. However, for the CoBaS
system, this data structure is both ineffective and not sufficient.
For the CoBaS framework, the concept of runqueues is extended to Pipes. A Pipe
contains, besides a list of tasks assigned to the Pipe, a list of added and removed tasks,
a list of moved tasks, a hook for the connected Component, and a lock (Fig. 5.10). When
a task is added to or removed from the Pipe, the change will not only be applied to the
task list but also noted in a dedicated list. This will take the burden from the receiving
Component to determine the difference of the previous configuration of the task list to
the current, which has, for example for the Hunt–McIlroy algorithm, a complexity of
O(m · n · log n) where m and n is the length of the input lists [76]. The same goes for
changes to the task list that only change the relative order but do not add or remove a
task. The reason to differentiate between these two kinds of changes is that it has no
significant overhead to distinguish between in the Pipe but might introduce a significant
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Component
Instance A

Component
Instance B

Figure 5.10: The structure of a CoBaS Pipe. The Pipe manages tasks in
three distinct lists: A list for all tasks in the Pipe (green), a list
with the tasks added and removed since the last access of the
receiving Component (red), and a list with tasks rearranged
since the last access of the receiving Component (blue).

computational overhead when handled in the Component as the two types of changes
would have to be separated again if only one kind is needed. Furthermore, this allows an
optimization of the Pipe structure. When, for example, a task is first added to the Pipe
and later removed before the receiving Component instance reacts on these change, the
two operations can cancel each other out. Besides the task management, the Pipe holds
a hook for the connected Component. With this hook, one Component instance can
hand over the flow of the scheduler execution to the next Component instance.

5.4 Notification System

To decide on the task order, a scheduling algorithm needs additional information about
the system state as discussed in Section 5.1. The CoBaS approach assumes that changes
to the scheduling decision are mainly event based, for example, the system changes
from main power to battery operation, a timer runs out, the priority of a task changes,
or a new PE arrives. Furthermore, the system is supposed to be dynamic and different
Components should work together without necessarily knowing each other. To meet
these requirements, CoBaS uses a topic-based publish-subscribe communication.9

Components and other elements of the CoBaS framework can both subscribe to topics
and publish notification for topics. The CoBaS framework incorporates a Broker that
manages all subscriptions and distributes events to the subscribed Components. The
indirect communication pattern of publish-subscribe is not always sufficient for the
communication of the framework. Certain aspects and information are at a certain
location and might need to be queried by a Component or the framework itself. Therefore,
the concept of a Topic Responder is introduced. The framework allows exactly one
Component to register as a responder for a certain topic. This Component will answer
to every query for the registered topic. The framework is limited to one responder to
keep the Broker as simple as possible. More than one responder for one topic would
raise the question on folding or reduction of the results collected from the responders.
9 For more details on the publish-subscribe communication pattern refer to, e.g., Eugster et al. [54].
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5.5 Runtime System Adapter

The Runtime System Adapter is the link between the actual runtime system and the
CoBaS framework. It is unique to every runtime system and allows the runtime system
to use the framework as well as allowing the framework to access facilities of the runtime
system like e.g., memory management or logging facilities.

To work properly, an actual implementation of the CoBaS framework will need a certain
set of functionalities. For instance, as it is designed in a dynamic way, it needs to offer
some memory allocation functionality. The Runtime System Adapter has to realize this
feature by either implementing a memory management algorithm itself or by forwarding
memory allocation and deallocation requests to the surrounding runtime system.

The other way around, the Runtime System Adapter has to transform particular runtime
system calls to, e.g., CoBaS notifications. Take for example the priority of a task in
a priority-based scheduling policy. The priority can be set by a userland application
via a system call. The system call would then be redirected to the Runtime System
Adapter, which creates a notification that is submitted to the CoBaS framework. This
approach is most feasible for information that is not part of the legacy system. Another
method can be used for information or functionality that exists in the legacy system
but is now handled by the CoBaS framework like, e.g., the creation of the new task.
As this function might not only be used in system calls but also by other legacy code,
the best approach is to provide the function in the Runtime System Adapter and link
the existing code against the function in the Adapter. Finally, because of the flexible
structure of CoBaS, it is also possible to directly interact with the framework bypassing
the Runtime System Adapter. A notification in CoBaS can be created in the userland
and, through a system call, directly inserted into the framework. All three interactions
are illustrated in Fig. 5.11 on the next page on the example of an operating system
with strict division between user and kernel space.

5.6 Topologies

To obtain a functional scheduler, CoBaS Components have to be instantiated and, where
necessary, connected to Pipes. This goal is achieved with CoBaS Topologies. In general,
Topologies can be considered as a set of rules how Components are instantiated and
connected to each other. Furthermore, Topologies are responsible for assigning the entry
and exit points of tasks into and out of the framework. The Topology decides to which
Pipe a submitted task is added or from which Pipe a requested task for a PE is taken.
Depending on how flexible they are regarding changes, Topologies can be divided into
three groups: Static Topologies, Dynamic Topologies, and Adaptive Topologies. Note
that the flexibility only reflects how well a scheduler can react to changes in the system,
but not how well a system can handle heterogeneity.
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Listing 5.1: Example algorithm of a static Topology.

Precondition: |P E| is the number of PEs in the system.

1: function BuildTopology
2: for i← 1 to (2 · |P E|+ 1) do
3: pi ← new pipe
4: end for
5: c1 ← LoadBalancing(p1 · p(2·|P E|+1))
6: for i← 2 to (|P E|+ 1) do
7: ci ← RoundRobin(pi, pi+|P E|)
8: end for
9: end function

5.6.1 Static Topologies

The simplest Topologies in CoBaS are Static Topologies. Static Topologies are part of
the final system and configure the Component layout once at boot-time and will leave
it untouched. Take the example of a decentralized multi-core scheduler for n PEs with
load-balancing and a round-robin policy for the tasks assigned to each PE. Figure 5.12
depicts this scheduler Topology and Listing 5.1 shows the algorithm used to create this
Topology. When the CoBaS framework is initialized, the code is executed. Based on
the number of advised PEs, which is either given for the Topology or obtained from the
runtime system via the Runtime System Adapter, the Topology computes the number
of required Pipes, allocates, and initializes them (Lines 2 to 4). If, for example, the
runtime adapter would report 4 PEs, the Topology would instantiate p = 2·|PE|+1 = 9
Pipes. Next, the Topology creates one Load-Balancing instance (Line 5) and as many
instances of the Round-Robin Component (Lines 6 to 8) as the number of PEs. During
creation, it assigns the Pipes to the proper Components. Note that in Listing 5.1 it
is assumed that the order of arguments of the Component instantiation implies which
Pipe has which purpose.

Load-
Balancing

Round-
Robin

Round-
Robin

Round-
Robin

Round-
Robin

p1

p2

p3

p4

p5

p6

p7

p8

p9

Figure 5.12: Example for a static Topology generated by Listing 5.1 with
four PE.
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Figure 5.13: Changes in a dynamic Topology.

5.6.2 Dynamic Topologies

In contrast to static Topologies, dynamic Topologies can react to changes of the running
system. Take the example above, but now the system starts with only two PEs and two
more PEs will come up later through, e.g., CPU hotplugging (Figure 5.13). The initial
scheduler is created as described above. However, the dynamic Topology is capable
of reacting to the newly arriving PE. The runtime system adapter, for example, can
create a notification once a new PE arrives. The Topology will change the scheduler
layout accordingly, for instance by creating new Pipes and round-robin Components
for the arrived PE and by replacing the existing two-output load-balancing instance by
a four-output load balancing instance. Note that in CoBaS several possibilities exist to
cope with this problem that is not only limited to the Topology. For example, also a
static Topology could have been used and the arriving of new cores could be handled
by the load-balancing Component.

5.6.3 Adaptive Topologies

For future systems, even Dynamic Topologies might not be sufficient. Take for example
a system to which a processing accelerator like, e.g., a neural net engine is added. This
would make it necessary to transform the CoBaS layout as depicted in Fig. 5.14. The
initial Topology with the gray background had to be extended to the whole Topology
that can distinguish different ISAs and is able to assign the task to the right Sub-
Topology. Even though it is possible to achieve this with a dynamic Topology in general,
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it would be necessary to predict all possible system changes and program the dynamic
Topology accordingly. As this is infeasible, CoBaS offers Adaptive Topologies, which has
two different forms: Runtime System Controlled and Runtime System Assisted.

Runtime System Controlled

The active CoBaS Topology can be controlled from user space to make changes to the
scheduling policy. Take the example above: A user space daemon could monitor the
system for changes relevant to the scheduling. Once it detects a change, it can proactively
reconfigure the current Topology. In the example, it would create an instance of the ISA-
Splitter Component, the round-robin Component, and connect the Pipes accordingly.
The request goes through the Runtime System Adapter, as the call to CoBaS might
be implemented as, e.g., a system call. The actual implementation depends strongly on
the runtime system.

Static Topologies can always be converted to user space assisted dynamic Topologies
as they only set up the CoBaS layout once. The situation is more complicated for
dynamic Topologies as the changes triggered from user space might interfere with the
Topology logic and invalidate assumptions it made. However, in certain situations, it is
also possible. Take, again, the example: The general processing cores can be managed
by a dynamic Topology, which is not necessarily influenced by changes induced from
user space, hence making the old Topology a subset of the new one (cf. Fig. 5.14).

Initial TopologyAdapted Topology

ISA
Seperation

FCFS

Load-
Balancing

Round-
Robin

Round-
Robin

Round-
Robin

Round-
Robin

Figure 5.14: Example for an Adaptive Topology. Due to the introduction
of a computation accelerator, the initial Topology in the gray
box is no longer sufficient. It is extended towards the adapted
Topology in the green box that includes the initial Topology.
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Runtime System Assisted

The CoBaS architecture allows the Topology logic to be changed during runtime. As
Topologies, as well as the Components, are only loosely coupled to the system, they can
be easily swapped. This process needs assistance from the runtime system to induce
the new Topology. In the example above, the vendor of the processing accelerator could
ship a scheduler layout that has the necessary changes. During the initialization of the
processing accelerator, the new Topology could be loaded, while replacing the old one.
Another approach than shipping a separate scheduler Topology could be the extraction
and patching of the existing Topology. Compared to the runtime system controlled
approach, this method has the benefit that, e.g., a user space tool could try and evaluate
several new scheduler Topologies and finally submit the best one to the framework.

5.7 Scheduling Example

To achieve a better understanding of the interaction of the different elements of the
CoBaS framework and how it forms a complete scheduler, this section shows how a
simple CoBaS scheduler implementation behaves regarding different scheduler tasks.
The example is based on a dual-core system that is supposed to have a priority based
scheduling on the first core for compute intensive tasks and a round-robin scheduling
on the second core for interactive tasks. The CoBaS Topology that can enforce such
behavior could consist of the following Component instances. Note that this Topology
is only one way to implement a scheduler in CoBaS with the behavior as described:

– A load-balancing instance that distributes the work among the two cores.
– A priority instance that applies a priority based policy on the first core.
– A round-robin instance that enforces a round-robin policy on the second core.
– A Component that assigns a PE affinity to every task.
– A Component that assigns a priority to every task.

Figure 5.15 shows the layout of such a scheduler. For a better understanding, the tasks
are referred to in the figures as well as in the subsequent text through pictograms of
colored balls, e.g., . Component instances are depicted as yellow boxes, whereas the
Broker of the CoBaS framework is illustrated as blue box. The Component instances
of the load-balancer, round-robin policy enforcement, and priority policy enforcement
are connected by Pipes that are holding references to the submitted tasks. A table in
every figure summarizes the properties of each task before the changes depicted in that
figure. On the first PE, the task is running, while the second PE is currently idle. The
Runtime System Adapter is left out from the figures for an improved comprehensibility.
Every event that does not originate from a Component is assumed to originate from
or have as a target the Runtime System Adapter or the framework itself. The figures
in this section show the state of the system at a certain point in time. That means in
particular that most tasks are referenced by multiple Pipes at once. For example in
Fig. 5.15, the task is referenced by three Pipes: the initial Pipe and the two Pipes
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connected to the round-robin policy Component. Even though from a conceptional
point of view the tasks are handed over from one Pipe to another, to be able to avoid
unnecessary re-computations of the whole task sets on every change, every Pipe can
hold its state and therefore reference to a task. This does not limit the framework as it is
still possible to do the computation at every change if that is desired. However, it is also
possible to only consider changes. The examples given in the subsequent sub-sections
are based on the idea to only consider changes and therefore, only changes are applied
to the Pipes through the steps explained in the examples.
Sections 5.7.1 to 5.7.4 explain the simulation of the following list of events that happen
successively after the initial situation depicted in Fig. 5.15:

– The next task for the second PE is requested from the CoBaS framework and
subsequently dispatched by the runtime system.

– A new task is submitted to the scheduler.
– The priority of one of the tasks is changed.
– The affinity to a certain PE of one task is changed.

Task Affinity Priority Status

PE 1 and 2 default ready
PE 1 lower ready

– – –
PE 1 default ready

PE 1 and 2 lowest ready
PE 2 default ready

PE 1 and 2 high ready
PE 1 highest on PE 1

AffinitiesPriorities

Load-
Balancing

Priority
Policy

Pipe assigned
to PE 1

Round-
Robin
Policy

Pipe assigned
to PE 2

CoBaS Broker

Figure 5.15: The initial state of the CoBaS scheduling example. Tasks are
depicted as colored balls. Different balls with the same color
indicate references to the same task. Yellow boxes are depict-
ing Components instances. The blue box represents the Broker
that is an integral part of the framework. The Runtime System
Adapter is not illustrated for a better comprehensibility. Note
that the figure depicts the state of the whole system at a certain
point in time. That means in particular that most tasks are
referenced by multiple Pipes at once.
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5.7.1 Example for a Task Selection

In the first operation of the example, the runtime system queries the CoBaS framework
for the next task that is supposed to run on the second PE and dispatches it to that PE.
For that purpose, the runtime system invokes a function in the Runtime System Adapter
that selects the task. In the example, the Runtime System Adapter takes the first task
from the Pipe that is designated to the PE in question. For the example, this is the
far right lower Pipe. Therefore, the Runtime System Adapter will report the task to
the runtime system ( 1 in Fig. 5.16). The task is then dispatched on the second PE,
which results in a notification on the DISPATCH topic generated by the Runtime System
Adapter ( 2 in Fig. 5.16). The framework is by default subscribed to the DISPATCH topic
as it always triggers a change in an initial Pipe ( 3 in Fig. 5.16). However, also other
Components could be interested in dispatch events; therefore, the event is processed
through the CoBaS notification system. The Runtime System Adapter removes the task
from the initial Pipe and triggers a Pipe update ( 4 in Fig. 5.16). This Pipe update and,
therefore, the task removal is propagated through the pipeline: The Load-Balancing
Component removes the tasks from its outgoing Pipes and triggers a Pipe update on
its own ( 5 in Fig. 5.16). The same happens in the Round-Robin Policy Component
( 6 in Fig. 5.16), which finalizes the process of task selection and dispatching.

Task Affinity Priority Status

PE 1 and 2 default ready
PE 1 lower ready

– – –
PE 1 default ready

PE 1 and 2 lowest ready
PE 2 default ready

PE 1 and 2 high ready
PE 1 highest on PE 1

AffinitiesPriorities

4 update_pipe()

Load-
Balancing

Priority
Policy

Round-
Robin
Policy5 update_pipe() 6 update_pipe()

1
task selection

for PE 2

3 notify(DISPATCH,⟨ ⟩)

CoBaS Broker

2 notify(DISPATCH,⟨ ⟩)

Figure 5.16: Example for the task selection by the CoBaS framework. The
next task for the second PE is requested by the runtime system
and subsequently dispatched.
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5.7.2 Example for a Task Submission

In this example, a new task is submitted to the scheduler. The framework is notified
about the task transmission via the Runtime System Adapter ( 1 in Fig. 5.17). The
notification is forwarded to the framework ( 2 in Fig. 5.17) that puts the newly created

task in the first Pipe of the Topology and causes a Pipe update that triggers the load-
balancing Component instance ( 3 in Fig. 5.17). Again like in the previous example
regarding the task removal, in this example, the task addition is propagated through
the pipeline. However, additional steps are necessary to do so. To assign the newly
added task to one of its outgoing Pipes, the load-balancing Component has to acquire
the affinities of the tasks as it might be supposed to run on a certain PE. In order
to do so, it sends a request for the AFFINITY topic to the Broker ( 4 in Fig. 5.17).
During the instantiation of the Component instance, the affinities instance has registered
for that topic as the responder, therefore the Broker will forward this request to it
( 5 in Fig. 5.17). The affinity Component will then reply with the default affinity,
which allows the task to run on every PE, as no specific affinity was submitted for
the task ( 6 in Fig. 5.17). The reply is then forwarded further by the Broker to
the originating Component instance ( 7 in Fig. 5.17). The load-balancing instance
can then assign the new task to one of its outgoing Pipes. It selects the lower Pipe
that is connected to the round-robin Component, which causes a Pipe update for the
round-robin Component ( 8 in Fig. 5.17). The change in its incoming Pipe makes the
round-robin Component change its outgoing Pipe by appending the new tasks to the

Task Affinity Priority Status

PE 1 and 2 default on PE 2
PE 1 lower ready

– – –
PE 1 default ready

PE 1 and 2 lowest ready
PE 2 default ready

PE 1 and 2 high ready
PE 1 highest on PE 1
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Round-
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Policy8 update_pipe() 9 update_pipe()

7 reply(AFFINITY,⟨ ,1&2⟩)

4 request(AFFINITY,⟨ ⟩)

5 request(AFFINITY,⟨ ⟩)

6 reply(AFFINITY,⟨ ,1&2⟩)

CoBaS Broker

1 notify(ADMIT,⟨ ⟩)

2 notify(ADMIT,⟨ ⟩)

Figure 5.17: Submission of a new task to the CoBaS framework.
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existing ones. This operation, again, results in a Pipe update. As in the first step of
the operation of the example, the update has no effect as the outgoing Pipe of the
round-robin Component is the last one of the Pipeline ( 9 in Fig. 5.17).

The example would work the same way for a task that is not newly created but woken
up after it was, e.g., blocked. The only difference is that the affinities Component might
have already stored information about the task. As a result, it has to be submitted to
the other outgoing Pipe of the load-balancing Component.

5.7.3 Example for a Change of a Task Priority

The third operation in the example changes the property of one of the tasks. The
priority of the task is changed from the default priority to the high priority level.
The initial notification that triggers the change of priority comes from the Runtime
System Adapter ( 1 in Fig. 5.18). The change could, for example, be initiated from user
space either through a dedicated system call that is translated by the Runtime System
Adapter to a notification or through a user space tool that can send notifications
through a generic system call to the scheduler. In the example, both the Priorities
Component and the Priority Policy Component are subscribed to the PRIORITY topic.
The Priorities Component keeps track of all priorities of all processes, so it is natural
that it is subscribed to that topic. The Priority Policy Component is subscribed to
the topic, as a priority change might require an immediate change to the outgoing

Task Affinity Priority Status

PE 1 and 2 default on PE 2
PE 1 lower ready

PE 1 and 2 default ready
PE 1 default ready

PE 1 and 2 lowest ready
PE 2 default ready

PE 1 and 2 high ready
PE 1 highest on PE 1
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Balancing

Priority
Policy

Round-
Robin
Policy

2b notify(PRIORITY,⟨ ,high⟩)

2a notify(PRIORITY,⟨ ,high⟩)

CoBaS Broker

1 notify(PRIORITY,⟨ ,high⟩)

Figure 5.18: Change of the priority property of a task.
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Pipe. Because of the subscriptions, the Broker distributes the notifications to those
two Components ( 2a and 2b in Fig. 5.18). The order of delivering the notifications is
not deterministic. As the task is currently not in the Pipes of the Priority Policy
Component, the notification will simply be dropped by that Component. The Priorities
Component will save the change for the specified task. As both the Load-Balancing
and the Round-Robin Policy Component are not influenced by the priority, the change
has no impact of the current task order in the system.

5.7.4 Example for a Change of a Task Affinity

The last operation of the example changes the affinity of the task. The initial step is
the same as in the example above: A notification with the modification of the affinity
from both PEs to an affinity towards only the first core is sent to the CoBaS Broker
( 1 in Fig. 5.19). Both the Affinities Component as well as the Load-Balancing Compo-
nent are subscribed to the AFFINITY topic. Again, the distribution of the notification by
the Broker to the subscribed Components is not deterministic ( 2a and 2b in Fig. 5.19).
The Affinities Component will save the new affinity for the task the same way as
the Priorities Component saved the task’s priority in the operation above. However,
contrary to the example above, the Load-Balancing Component does not simply drop
the notification as the task is in one of its Pipes. It conducts a migration of the task

Task Affinity Priority Status

PE 1 and 2 default on PE 2
PE 1 lower ready

PE 1 and 2 default ready
PE 1 default ready

PE 1 and 2 high ready
PE 2 default ready

PE 1 and 2 high ready
PE 1 highest on PE 1

AffinitiesPriorities

Load-
Balancing

Priority
Policy

3 task migration

5 task removal propagation

8 task addition propagation

7 update_pipe() 9∗ update_pipe()

Round-
Robin
Policy4 update_pipe() 6 update_pipe()

2b notify(AFFINITY,⟨ ,PE 1⟩)

2a notify(AFFINITY,⟨ ,PE 1⟩)

CoBaS Broker

1 notify(AFFINITY,⟨ ,PE 1⟩)

Figure 5.19: Change of the affinity property of a task. Note that the steps
for the acquisition of the priority of the task prior to step 9∗ are
not shown. Refer to Section 5.7.2 for details on that process.
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from the lower of its output Pipes to the upper one ( 3 in Fig. 5.19). This action results
in a Pipe update to both output Pipes subsequently ( 4 and 7 in Fig. 5.19) that is
propagated through the connected Component instances ( 5 and 8 in Fig. 5.19). The
Round-Robin Policy Component simply removes the task from its output Pipe and trig-
gers an update on that Pipe ( 6 in Fig. 5.19). However, the Priority Policy Component
needs to query for the priority of the task, which works analogously to the request
of the affinity from the Load-Balancing Component presented in Section 5.7.2. As the
process was already described, it is not depicted in Fig. 5.19, but only the resulting
Pipe update is shown ( 9∗ in Fig. 5.19).

5.8 Composition

To obtain a working and sensible scheduler, CoBaS Components cannot be combined
arbitrarily. Sometimes, those Components cannot be used together in a Topology at
all; sometimes, they can only be utilized in a certain manner. Take for example a
Component that enforces a FCFS policy and another Component that applies the
Last-Come, First-Served (LCFS) policy. In a single-core system, these two Components
cannot be combined in a meaningful way, as an instance of one of these Components
will always change the order in a way that does not comply with the policy of the other
Component. However, in a multi-core system, instances of these two Components can
co-exist in a sensible manner, when used on different cores.

This section first discusses general considerations regarding optimization goals for
scheduling and the composition of partial solutions for those aims. The second part
shows how CoBaS Components can be classified and composed based on these consid-
erations.

5.8.1 Composability

Composition is a technique that allows finding a solution for a problem by solving
distinct aspects of that problem and combining those solvers to find the best overall
option. The basis for this approach is the assumption that it is easier and more efficient
to concentrate on different aspects of the whole problem in each component and optimize
the partial solution. Looking only at one aspect at a time allows a better comprehension
and therefore a potentially better solution.

However, applying this technique requires certain degrees of freedom to solve the prob-
lem and can be considered a combinatorial problem. If two components use the same
degree of freedom, they can come to contradicting decisions how to use it, making
a composition suboptimal or even impossible. Take the following abstract scheduling
example: A system requires the optimization towards two goals X and Y. This could
be, for example, responsiveness and energy efficiency. Assume a certain task set τ0 . . . τn

with n ∈ N to be scheduled. Furthermore, two value functions |τi|X and |τi|Y that
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calculate a value for each task regarding the goals are given. The parameter pi is the
position of task i in the computed schedule, e.g., for the next task pi = 0, for the second
next task pi = 1, and so on. Moreover, a task can be selected to be never scheduled,
resulting in pi = ∅:

|τi|X =
{

i · 2pi if pi ̸= ∅
−∞ if pi = ∅ and |τi|Y =

{
−i · pi if pi ̸= ∅
−∞ if pi = ∅

The total value functions of the computed schedule regarding the goals X and Y for
this example are defined as:

|X| =
n∑

i=0
|τi|X and |Y| =

n∑
i=0

|τi|Y

The value function for the whole system regarding the computed schedules is defined
in this example as Π = |X| + |Y| and the optimization goal is max {Π}. The optimal
schedule for this problem is τ0 → τ1 → . . . → τn−1 → τn.
Now let us assume the problem gets decomposed in two components, one finding the
optimal schedule for X and one for Y so that max {|X|} and max {|Y|} holds. For
X, this is the same solution as above, however, for Y the optimal solution would be
τn → τn−1 → . . . → τ1 → τ0. Because the two results are completely contradicting,
it is not possible to compose these two solutions. Looking closer at the two value
functions for the optimization goals, it can be seen that the value function for Y is
strictly dominated by the value function of X, therefore, an optimization towards Y is
in general not possible. This example is one extreme of the composition problem. The
other extreme would be that both optimizations come to the same result, which is, for
example, the case when the value function for Y is changed to Z as following:

|τi|Z =
{

i · pi if pi ̸= ∅
−∞ if pi = ∅

The value functions |X| and |Z| are only a linear combination of each other as |X| = 2·|Z|.
In such a case, the composition of two components optimizing for each goal separately
is trivial as they should come to the same solution. The following paragraphs discuss
the cases that lie between these two border cases in more detail.

Absolute Decisions

Some optimization goals may require that tasks are never scheduled, as, for example,
a task is not suited to run on a specific PE or the energy budget does not allow the
execution right now, or that a task needs to be executed at a certain point, e.g., next,
to improve responsiveness of the system. Take the following example that depicts the
former of the two situations above. In the task set τ0 . . . τn with n ∈ N, the subset
τk . . . τn with k ∈ N ∧ k < n is currently not suited to be executed. It shall be modeled
through the optimization goal A with the following value function:

|τi|A =
{

0 if pi ̸= ∅
−∞ if pi = ∅

}
∀i < k and |τi|A =

{
−∞ if pi ̸= ∅
0 if pi = ∅

}
∀i ≥ k
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The optimization goal A is indifferent regarding the schedule for task τ0 through τk−1,
however, it requires tasks τk through τn never to be scheduled. A component optimizing
for this goal requires a solution that simply excludes tasks τk through τn and does not
have to care about the order of the other tasks.
Now assume that schedule shall not only be optimized regarding the goal A, but also
regarding X from above. Having two distinct components, each optimizing regarding
one of those two goals can be composed without any restriction in a subsequent order
to achieve the optimal schedule.

Degrees of Freedom

As discussed above, the composition also depends on the degrees of freedom. Again,
the impact is explained via an example. Take a system that consists of two PEs 0 and 1
and a new optimization goal M that depends on the assigned PE ci because the system
might, e.g., be heterogeneous:

|τi|M =
{

1 if ci = 0
0 if ci = 1

}
∀i ∈ {x|x (mod 2) = 0}

|τi|M =
{

0 if ci = 0
1 if ci = 1

}
∀i ∈ {x|x (mod 2) = 1}

Again as above, a component that optimizes for this goal can be combined with a
component that optimizes for goal X. In this example, the reason lies in the fact
that the criterion for optimality only depends on the degree of freedom regarding the
assignment to a PE or the order respectively. This allows a sequential composition of
those two components. The order is, again, not relevant as long as the component only
touches one of the degrees of freedom, i.e., does not change the task order when it
assigns tasks to a PE.
In current multi- and many-core systems, only two degrees of freedom exist: task
order and assignment to PE. However, by the wider introduction of FPGA technology,
additional degrees of freedom can emerge regarding the scheduling (cf. Section 2.2.4).

Decision Refinement

Certain situations exist that allow a composition even though two optimization goals
are bearing the same degree of freedom. An example is a priority based scheduling like
the ULE scheduler [134]. It consists of two aspects: Each task is assigned to a priority
group that is scheduled subsequently, beginning with the highest priority. Inside the
priority groups, another scheduling scheme is applied regarding a specific optimization
goal. This would result in the following model with the target P representing the priority
and the goal I representing the scheduling inside the groups:

|τi|P =
{

(i mod 3) · pi if pi ̸= ∅
−∞ if pi = ∅ and |τi|I =

{
−i · pi if pi ̸= ∅
−∞ if pi = ∅
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To achieve the scheduling described above, a particular composition is required. First,
the component that enforces P has to be applied to the task set. It will group the
incoming tasks in three groups:

τ0 → · · · → τ⌊ n
3 ⌋·3i → τ1 → · · · → τ⌊ n

3 ⌋·3j+1 → τ2 → · · · → τ⌊ n
3 ⌋·3k+2

∀i ∈ N ∧
⌊

n
3

⌋
· 3i ≤ n and ∀j ∈ N ∧

⌊
n
3

⌋
· 3j + 1 ≤ n and ∀k ∈ N ∧

⌊
n
3

⌋
· 3k + 2 ≤ n

Because the goal P is indifferent to the order of tasks inside the groups, the optimization
of I can be applied to each cluster:

τ0 → · · · → τ⌊ n
3 ⌋·3i  

|
max{|I|}

|

→ τ1 → · · · → τ⌊ n
3 ⌋·3j+1  

|
max{|I|}

|

→ τ2 → · · · → τ⌊ n
3 ⌋·3k+2  

|
max{|I|}

|  
τ⌊ n

3 ⌋·3i → · · · → τ0 →
  
τ⌊ n

3 ⌋·3j+1 → · · · → τ1 →
  
τ⌊ n

3 ⌋·3k+2 → · · · → τ2

5.8.2 Component Classification

Components in CoBaS can be classified based on their functionality and the consider-
ations of the section above. A Component does not necessarily only belong to one of
those classes, but can also have properties of multiple classes at the same time.

Task Filtering Components

Task Filtering Components are enforcing absolute decisions as discussed above. They
have one incoming Pipe and one outgoing Pipe. They do not change the order of the
incoming tasks but remove tasks from the pipeline (Figure 5.20a). A Task Filtering
Component can be integrated into every pipeline without restriction. However, it should
be noted that the composition of multiple Task Filtering Components in one pipeline
can lead to the removal of all tasks in the current scheduling epoch. The occurrence of
such a situation is not caused by the composition itself but results from the fact that
the resulting schedule is the one satisfying all specified optimization goals.

Task Ordering Components

Every Component that relies on defining a certain task order to create a solution par-
ticipates in the class of Task Ordering Components. These Components are connected
to one input pipe and one output pipe. They apply certain rules to the set of current
tasks that result in a certain task order to be submitted to the outgoing pipe or pipes
(Figure 5.20b). A task ordering pipe can, for example, apply the FCFS policy to a task
set.
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Filtering
Component

τ0, τ1, τ2, τ3, τ4 τ0, τ1, τ4

(a) Task Filtering Component

Ordering
Component
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(b) Task Ordering Component

Distributing
Component

τ0, τ1, τ2, τ3, τ4

τ0, τ1

τ2

τ3, τ4,

(c) Task Distributing Component

Consolidating
Component

τ0, τ2, τ3, τ1, τ4

τ0, τ1

τ2

τ3, τ4,

(d) Task Consolidating Component

Figure 5.20: Component classes in CoBaS.

Task Distributing Components

Components belonging to the class of Task Distributing Components make use of the
spatial aspect of process scheduling. They split one incoming Pipe to several outgoing
Pipes while maintaining the relative order between Tasks (Figure 5.20c). An example
for a Task Distributing Component would be a load balancing implementation that
distributes the tasks among PEs or a Component that sorts tasks according to their
priority.

Task Consolidating Components

Task Consolidating Components have different functionality from Task Distributing
Components. They merge several Pipes (Figure 5.20d). Task Consolidating Components
do not only touch the spatial but also the temporal aspect of scheduling as a new task
order has to be defined on the outgoing pipes.

Task Annotating Components

Components of the task annotating class are not necessarily connected to any Pipe.
They store information about tasks that might be relevant to other Components or the
rest of the system. The former information could be, for example, the priority of a task
or the ISA it can be executed on, the latter information could be the number of task
switches since the system start or the current system load.
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5.9 Design Rationales

The two primary architectural decisions in the CoBaS architecture are the use of
the framework and the component approach. After describing and discussing such
an approach in the scope of this dissertation, this section gives more insights about
the rationales to use these two methods and discusses them. In particular, they are
compared to possible alternatives.

5.9.1 On Frameworks and Libraries

Frameworks as a design pattern first became prominent in the late 1980s [45, 84]. Today,
they are widely used for a huge variety of purposes, like application software [S7, S26,
S31], web applications [S1, S11, S33], or big data processing [S19], to name just a few.

Tahchiev et al. are defining a framework as follows:

“ A framework is a semi-complete application. A framework provides a reusable,
common structure to share among applications. Developers incorporate the
framework into their application and extend it to meet their specific needs.
Frameworks differ from toolkits by providing a coherent structure, rather
than a simple set of utility classes.

Tahchiev et al. [156, p. 4] ”
Another definition for frameworks, in general, is given by Gamma et al.:

“ The framework dictates the architecture [ . . . ] It will define the overall
structure, its partitioning into classes and objects, the key responsibilities
thereof, how the classes and objects collaborate [ . . . ] A framework predefines
these design parameters so that you, the application designer/implementer,
can concentrate on the specifics of your application. The framework captures
the design decisions that are common to its application domain. Frameworks
thus emphasize design reuse over code reuse, though a framework [ . . . ] you
can put to work immediately.

Gamma et al. [64, pp. 26f.] ”
By these definitions, it seems feasible that the framework approach is perfectly suited to
the challenges addressed by this dissertation. The application in this context is the task
or process scheduler of an arbitrary runtime system like an operating system. The user
of the framework is the developer, implementing a scheduling policy for that runtime
system. As it is feasible to apply the framework approach to the scheduling problem,
the traits of the framework approach are beneficial to tackle the problem of process
scheduling. The usage of a framework will allow a more structured approach to scheduler
design and enable an easier reuse of existing scheduler designs in other runtime systems.
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Further benefits of the framework approach that are desirable for the purpose of this
dissertation are noted by Gamma et al.: “Not only can you build applications faster as
a result, but the applications have similar structures. They are easier to maintain, and
they seem more consistent to their users” [64, p. 27].

Even though the framework approach appears to be fitting, the alternative has to be
considered; that would be a library. Libraries, in general, are collections of implementa-
tions for certain functionalities that can be used in user applications. A library offers
a well-defined interface to fulfill the desired purpose. An example is the C standard
library [128] that implements commonly used functions like string handling, mathe-
matical functions, or standard in- and output. For the in- and output example, the C
standard library acts as an adapter between the C programs and the operating sys-
tem. This exemplifies the relation between Libraries and programming patterns. The
Library implementation uses the programming pattern to solve the problem. However,
an arbitrary implementation of the C standard library does not necessarily address the
problem for every environment. For example, there are distinct implementations of the
C standard library for the Windows [S6], Linux [S16], and BSD operating systems [S5]
that are not interchangeable even though they implement the same functionality and
use the same programming pattern regarding the access of C programs to operating
system services.

As libraries are mostly a collection of implementations of common algorithms, they do
not give the developer any kind of structure on how to solve a problem. Furthermore,
they often are very fine grained regarding their functionality. For that reason, they are
inferior for the purpose of this dissertation compared to frameworks. For developers,
they would only offer algorithms for common problems but no facility to embed their
work into. Moreover, it would be difficult to create an adaptive scheduler only based
on libraries.

Another perspective regarding the difference between libraries and frameworks is the
inversion of control [cf. 55]. With libraries, the programmer using the library is in
control of the execution flow; the programmer’s code calls the library functions. With a
framework, it is usually the other way around. The framework uses and calls the code
provided by the programmer. Therefore, the framework is in control of the execution
flow. Regarding the proposed CoBaS architecture, this characteristic is not an obvious
reason for a decision. The CoBaS approach can be seen from two perspectives: the
developer of new scheduling policies and the runtime system itself. From the viewpoint
of the scheduler developer, the framework approach seems more suitable as the main
goal is to determine the task order. From the perspective of the runtime system, the
CoBaS framework itself can be considered as a library as it is invoked by the runtime
system and implements a functionality needed by the runtime system. However, as the
main focus of this dissertation is the creation of an architecture to create schedulers for
future systems, the interest of the scheduling developer is also in focus.
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Figure 5.21: Relation between structured, modular, object-oriented, and
component-oriented programming [60, p. 19].

5.9.2 On Components, Interfaces, Objects, and Modules

The CoBaS framework as described in this chapter uses a component based approach.
The basic idea of Component-Oriented Programming (COP) dates back to McIlroy [105]
with a discussion in 1968. He advocated a software design principle that is comparable
to industrial mass production, where component producers create generic components
that are sold to application developers who compose those pre-made components to full
applications for the end-user market. According to Szyperski [153, p. 8], components
can be considered the software equivalent to what Integrated Circuits (ICs) are in
hardware. There is no general definition for a software component, however, Szyperski
and Messerschmitt [154] are listing five properties for a software component:

– multiple-use
– non-context-specific
– composable with other components
– encapsulated (cannot be modified or, typically, even examined)
– a unit of independent deployment and versioning.

In the beginning, COP was considered an alternative approach to Object-Oriented Pro-
gramming (OOP). An example of this effort is the Objective-C programming language,
even though it is mostly considered object-oriented today. The modern view on COP is
a higher-level programming paradigm that uses OOP as well as modular programming
to construct composable components (cf. Figure 5.21).

The subsequent sections are discussing properties of further programming approaches
and why they were discarded for the purpose of this dissertation.
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Interface-Based Programming

The idea of interfaces in software development can be traced back to Dijkstra [46] and
Parnas [120]. Before the introduction of the concept of OOP, interfaces were used to
distinguish a module or software component description from the actual implementation.
In many programming languages, this difference became explicit in a way that interface
descriptions are placed in separate files with distinct file extensions differentiating
between the module description and implementation e.g. *.ads and *.adb in Ada,
*.def and *.mod in Modula-2, or *.c and *.h in C. Interfaces enabled reusability of
existing implementation since it was unambiguous how to use a certain implementation.

The term interface-based programming was coined mainly by Pattison [123] and was
thoroughly discussed by Steimann and Mayer [149]. Even though with the introduction
of OOP the modularity aspect of interface-based programming was replaced by the class
concept, interface-based programming did not become obsolete. On the contrary, it is
heavily used in OOP languages and interfaces are even types on their own in languages
like Java or C .

Even though the interface-based programming would allow composition in general, it
falls short for other aspects necessary for the purpose of this dissertation. For example,
it makes no statement regarding the management of the functional implementation
itself and therefore how to handle, e.g., different versions of an implementation or how
to encapsulate functionality. The last aspects would make it hard to create reusable
entities of scheduling policy implementations.

Object-Oriented Programming

OOP is the next evolutionary step in programming languages after procedural program-
ming. Instead of handling data and procedures or processing instructions separately,
OOP bundles them in objects. The structure of objects is described by classes. Therefore,
objects are instances of classes. This structure significantly improves the modularity
and reusability of the code. The concept of inheritance, which is very common in OOP,
creates a hierarchy in the code and increases reusability even further.

The idea of OOP was introduced with the SIMULA programming language [74], even
though first ideas of objects and object-orientation were already available in the LISP
programming language [102, 103]. A general overview on design patterns in OOP is
given by Gamma et al. [64]. The most popular programming languages today are
object-oriented [169].

Even though intended for reusability and modularity, OOP is sometimes criticized for
not reaching that goal [36]. Particularly in respect to operating systems, it is also
argued that OOP programming is an inferior approach. Raymond [130, pp. 101–103]
argues in the UNIX context that OOP has strong incentives for the programmer to
introduce thick abstraction layers that destroy transparency. This claim can be backed
by the fact that operating systems that offer an object-oriented interface to the userland
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use a procedural programming language for the kernel. Examples are Windows NT
derivatives [S41], OS X [S10], the Be operating system [S3]. However, several operating
systems use an OOP language for the kernel like eCos [S12] or Haiku [S20], which
succeeded the Be operating system.

For the purpose of this dissertation, OOP alone falls short to enable composition of
different aspects of the scheduler. Furthermore, as OOP focuses on encapsulation of
complete entities in classes, this approach is not optimal for the given problem as not
all areas of the scheduling can be seen as such an entity.

Modular Programming

The concept of modular programming became prominent with the first, and only, na-
tional symposium on modular programming [18]. Today, the idea of modular program-
ming is widely spread and available on most higher-level programming languages. Mod-
ular programming introduces the concept of modules10 that offer a certain functionality.
In contrast to a simple library, modules offer their service through an interface (cf. Sec-
tion 5.9.2), therefore hiding details of the data processing inside the module.

Even though the modular approach comes close to fulfilling the requirements necessary
for the goals of the dissertation, it lacks the notion of types that would significantly
limit an actual implementation of the proposed framework.

10In some programming languages e.g. Go [S18], the term package is used instead of module.





CHAPTER6
Qualitative Evaluation

The previous chapter described the CoBaS framework and gave an example how the
different parts of the framework interact with each other. Furthermore, it discussed
the component and framework approaches themselves. This chapter is dedicated to a
qualitative evaluation of the features and resulting properties of the CoBaS architecture
regarding the challenges researched by this dissertation. This discussion will demonstrate
how the design decisions of the architecture support the development and prototyping for
various scheduling policies for heterogeneous many-core systems. The initial qualitative
considerations in this chapter will be completed by quantitative evaluation in the further
course of this dissertation in Chapter 8.

6.1 Schedule Computation and Scalability

Even though the scheduler does not contribute to the progress of the computational
tasks, it requires processing time to come to a scheduling decision. On a single-core
system, it is evident where this computation is performed. However, on a multi- or even
many-core system this decision is not so obvious. As a prototyping and research facility,
the CoBaS framework supports as many of the suitable solutions as possible, which is
discussed in the following sections.

6.1.1 Decentralized Scheduling

In decentralized scheduling, each PE manages its task set individually with a given
policy. This allows a high scalability as every PE is mostly independent of the others and
potential bottlenecks are avoided. Yet, load balancing has to be employed to distribute
the tasks to the cores, which might result in wasted performance as recently shown by,
e.g., Lozi et al. [98]. Such a scheduling scheme can be employed with CoBaS in two
ways as described subsequently.

77
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Multiple Pipes

As a CoBaS Component is, in general, not limited by the number of incoming pipes, it
can be designed in a way that it has as many incoming pipes as the system has PEs.
These pipes can be accessed in parallel without blocking one of the PEs. Depending
on the inner workings of the Component, several PEs can execute the code path of the
Component without being blocked as well letting them pass the Component quickly (cf.
Fig. 6.1a). For, e.g., the load balancing Component, that might be the usual case when
there are no significant changes to the load and the re-admitted task gets assigned to
its previous PE. However, especially during task migration between different output
Pipes, this approach might result in contention (cf. Fig. 6.1b).

Postponed Pipe Updates

Instead of having multiple incoming queues, lock contention can be reduced by decreas-
ing the locking time. This can be achieved by postponing the update of outgoing pipes.
As the changes to a Pipeline become only relevant when a PE that is dependent on
this pipeline requires the assignment of a new task, the update of that pipeline can be
postponed. This reduces the time a pipe is locked and therefore decreases the risk of
lock contention. It is also possible to combine both approaches – multiple Pipes and
postponed Pipe updates – to even further reduce the possibility of lock contention.

PE 2

PE 1

(a) No contention inside the Component as
both PE 1 and 2 can execute the Compo-
nent code concurrently.

PE 2

PE 1

(b) Contention inside the Component during,
e.g., task migration between the outgo-
ing Pipes. PE 1 has to wait for PE 2 to
finish accessing both the upper and lower
outgoing Pipe.

Figure 6.1: Component with multiple incoming and outgoing Pipes. The
PE 1 and 2 are executing the Component’s code path at the
same time.
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Figure 6.2: A hierarchical scheduler Topology. The upper part of the hierar-
chy is only accessed by PE 1 and 2, while the lower part is only
accessed by PE 3 and 4.

6.1.2 Centralized Scheduling

In contrast to the decentralized scheduling, the whole task set is managed by every PE
with the centralized scheduling approach. This method has the advantage that it is
not prone to the risk of, e.g., inefficiencies in load balancing. However, it introduces a
bottleneck as every PE runs through the same code in the same dataset resulting in
possible contention with a rising number of cores on that data set. Still, for a small
number of cores, this approach is superior to the decentralized scheduling approach [115].

This scheduling architecture is also supported by CoBaS. For a simple topology with
only one Component that has one incoming and several outgoing Pipes, this is evident.
Even the example given in Section 5.7 resembles a centralized scheduling approach,
because in the example, outgoing Pipelines from the load balancing Component get
updated the moment they are modified.

6.1.3 Hierarchical Scheduling

As both centralized and decentralized scheduling have their advantages and disadvan-
tages, it might be beneficial to employ hierarchical scheduling approaches that combine
these two. This scheme is also supported by CoBaS as illustrated in Fig. 6.2. The
scheduler implementation can be partitioned in such a way that certain parts will be
only used by a certain set of PEs. In the example, the upper part of the Topology is
solely executed by PE 1 and 2 and the lower part solely executed by PE 3 and 4.
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6.1.4 Foreign Scheduling

For general purpose PEs like, e.g., CPUs, it is common that the PE does not only
execute the tasks, but also runs the scheduler logic. This is not possible for processing
accelerators like, e.g., GPUs and might also be an inferior solution for many-core systems.

Processing accelerators are optimized for and restricted with regard to a certain kind
of computation. This makes them unusable to enforce a scheduling policy most of the
time. The schedule for this sort of PE is computed on a different, general purpose PE
that is capable of executing the scheduler logic. Tasks are then deployed from that
foreign PE to the special purpose PE.

In the case of many-core systems having hundreds or thousands of cores, this approach
might also become feasible for general purpose PEs. In such a system, the computational
power of one PE might become negligible compared to the whole system. Therefore, it
might be possible to dedicate a single core just to the scheduler logic. This has several
benefits. It reduces the overhead on the other cores as they do not have to be interrupted
periodically.11

6.2 Non-Cache-Coherent or Distributed Memory

The challenges of none-cache-coherent systems and systems with distributed memory
were discussed in Section 2.2. The CoBaS architecture can support such systems in
several ways. The first and straight forward way is when the foreign scheduling scheme
described in Section 6.1.4 is employed. As the whole scheduler logic would run on one
distinct PE, the lack of cache coherency would not involve the CoBaS framework at all
or only the Runtime System Adapter. However, as already discussed in Section 6.1.4,
this approach is only feasible for systems within which the number of PEs exceeds the
number of tasks or when the scheduler has to be invoked only rarely.

Also, a distributed scheduling for a non-cache-coherent or distributed memory system
can be employed. Both the notification and Pipe system can easily be implemented on
a message based semantic, making cache coherency and shared memory not mandatory.
As notifications are messages by definition, it is evident that they can be transported
through, e.g., a NoC. However, it is important to mention that the payload of the
notification has to be accessible in the receiving core, i.e., pointers that are only valid
on the remote core have to be avoided. As for Pipes, it is not obvious, but also feasible.
All operations on the Pipes can be restricted to a certain set, which can then be used
for a proxy pattern so that the main data can be held on the remote core.

Special care has also to be taken regarding the Topologies. As Component instances
may have private data, single Component instances cannot be accessed by cores that do
not have shared access to that data. Assume, e.g., a system every core of which has its
11A similar approach is already employed in current operating systems when only one task is assigned

to a core [116].
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(b) Topology for a distributed memory system with
two PEs.

Figure 6.3: Example for a CoBaS based scheduler with distributed memory.

private memory and data sharing outside this scope is realized only through message
passing. In that system, every Component instance has to be assigned to exactly one
core. As a consequence, that would mean that the Load-Balancing Component used in
the example in Section 5.7 would not be possible and that the whole Topology would
need to be decentralized.
An example for coping with this challenge in CoBaS is outlined in Fig. 6.3. Assume
a simple system consisting of two cores each with private memory and connection
only through message passing (Figure 6.3a). To avoid data sharing in Components
among the two cores, each Component instance is only accessed by one core. In the
example, each core is assigned a Decentralized Load-Balancing Component that ensures
the load-balancing among the two cores and a Round-Robin Component that enforces a
round-robin scheduling policy on each core (Figure 6.3b). Over- or underload situations
could be signaled by the load-balancing Components via a notification. In an overload
situation, the load-balancing Component can submit tasks to the Pipe that is connected
to the remote load-balancing Component causing the task to be dispatched on the
remote core the next time it is scheduled. Note that the migration of the task context
is not within the scope of the CoBaS framework.

6.3 Adaptability

It was already pointed out in Section 5.6.3 how the CoBaS architecture reacts to
changes in the hardware configuration through adaptive Topologies. This section shows
in more detail how this goal is accomplished by the properties and features of the CoBaS
framework on a sophisticated example. Take for example a CPU that has an additional
FPGA fabric on die like the Xilinx Zynq [180] or the upcoming Intel Broadwell EP Xeon
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processors with Altera Arria 10 GX FPGA on package [69]. Assume further that the
FPGA part of such a CPU is programmed with two additional cores that can execute
different ISAs α and β to, e.g., execute proprietary legacy binaries that are not available
for the ISA of the hard wired cores. Also, the system is running an operating system
supporting several ISAs like, e.g., Popcorn Linux [17].

A possible scheduler layout for such a system with CoBaS is depicted in Fig. 6.4. The
figure follows the same notion as in Section 5.7; however, not every task has its distinct
color but the colors represent the ISA a task belongs to:

– Tasks that can only be execute on the native cores: .
– Tasks that can only be executed on an ISA α core: .
– Tasks that can only be executed on an ISA β core: .

In the current situation, the FPGA is configured with one core for ISA α and β each
and the system has two native cores. The scheduler consists of an ISA Distributor that
distributes the tasks according to their ISA: the native tasks in the upper output Pipe
of the ISA Distributor, the ISA α tasks in the middle Pipe, and the ISA β tasks in the
lower Pipe. The native tasks are balanced among the two native cores and scheduled in a
round-robin manner, whereas the none-native tasks are also scheduled in a round-robin
manner but need no load-balancing as there is only one core for each.

As there are no tasks for ISA α in the current situation, the respective core is under-
utilized. The underutilization causes the ISA Distributor to create a notification ( 1
in Fig. 6.4a) that is forwarded to the Runtime System Adapter by the CoBaS Broker
( 2 in Fig. 6.4a). Furthermore, the ISA Distributor detects an overload situation at the
core for ISA β that causes it to generate a notification as well ( 3 in Fig. 6.4a) that is
also forwarded to the Runtime System Adapter ( 4 in Fig. 6.4a).

Depending on how the FPGA is managed by the system, several possibilities exist to
react to this situation. The FPGA could be managed by the runtime system itself, the
Runtime System Adapter, or even by a Component. Regardless of this, we assume that
the FPGA will be reconfigured based on the notifications of the ISA Distributor in a
way that it no longer has one core for ISA α and β each but only two cores for ISA β.
This change can be announced to an Adaptive Topology that will modify the scheduler
layout as depicted in Fig. 6.4b. As for ISA β now also two cores are available, it will
create a new instance of the same Load-Balancing Component as for the native cores
and a second Round-Robin Component instance. It can also remove the Round-Robin
instance responsible for the ISA α core as it is currently not needed.

This example shows how the characteristics of reusability and adaptability in CoBaS
can realize a reaction to changes to the underlying hardware architecture. Note that
this is only one example for handling the situation with CoBaS. Among other possible
changes, the ISA Distribution Component instance could also have been replaced by
one only differentiating between the currently available ISAs.
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modified by a Dynamic or Adaptive Topology.

Figure 6.4: Scheduler modification caused by hardware changes.
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6.4 Hardware Assisted Scheduling Acceleration

So far, this dissertation considered FPGAs only as a processing resource that has to
be managed by the scheduler. However, due to its versatile nature, it can be used to
accelerate the scheduler execution itself and several hardware schedulers or hardware
accelerated schedulers have already been proposed [3, 31, 63, 71, 72]. With the broader
introduction of FPGA technology into commodity hardware, it can be expected that this
approach might become widespread. Therefore, the support for this kind of technology
is desirable for the CoBaS architecture.
The Component-Based approach already has a functional separation and encapsulation
of certain aspects of the scheduler implementation. With its well-defined interface, a
CoBaS Component can be expected to be easily implemented in hardware with a very
thin software layer. Take again, for example, the Zynq All Programmable System on Chip
(SoC) [180] that combines two general purpose processing cores with a FPGA fabric
and a shared memory between the cores and the FPGA. Using such an architecture, it
is plausible that a hardware accelerated Component can be constructed. An example
for such a Component is depicted in Fig. 6.5. The task list of the incoming Pipe is
mapped to a memory region that is accessible by the FPGA. The hardware logic can
check this memory for changes. Alternatively, the FPGA could also be triggered by
a Pipe update through a thin software layer. The scheduling algorithm can then be
performed in hardware by the FPGA. However, submitting the changes to the task set
to the outgoing Pipe is not as straight forward as with a software based Component as
the FPGA cannot execute the framework API. This means that the FPGA either needs
to create the necessary data structures in memory by itself, which could be provided
via a hardware macro, or it requires the assistance of a general purpose PE to update
the outgoing pipe.

Task Set
Added Tasks

Moved Tasks

FPGA

Logic

Software Layer

Notification Notification

Task Set
Added Tasks

Moved Tasks

Figure 6.5: Hardware accelerated CoBaS Component.
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Accessing the notification system of CoBaS needs more software support. The access has
two aspects, outgoing notifications and requests and incoming notifications and replies.
The incoming data flow can be handled by a thin software layer on its own. When
the Broker delivers a notification or reply, it can invoke the software layer that, e.g.,
modifies the state of an incoming line of the hardware Component or a memory address
that is monitored by the Component. The realization of the outgoing data flow is more
complicated. As the Broker needs to be executed to distribute the events, it needs a
general purpose PE to do so. To achieve this goal, the hardware Component could
assemble the notification or request in memory and trigger an inter-processor interrupt
on a general purpose PE that submits the notification or request to the Broker.

Having a Component constructed in Hardware has some similarities to implementing
the Components in a programming language different to that of the framework itself.
This problem is discussed in more detail during the quantitative evaluation, specifically
in Section 8.9.





CHAPTER7
CoBaS Implementation

Chapter 5 described and discussed the design and architecture of the CoBaS framework.
Even though the approach is reasonable from an architectural point of view, it remains
questionable whether it can be built that way and is suited for real-world scenarios. To
analyze the properties of the CoBaS architecture, a prototype was implemented that is
described in detail in this chapter.
Before the implementation of the CoBaS prototype could begin, a programming lan-
guage had to be selected to implement it. Because the application domain of CoBaS
extends widely to operating systems, the considered languages had to have solid support
for bare metal programming. This requirement narrowed down the number of possible
languages significantly and especially ruled out a significant number of the currently
most popular languages like Java, C , Python, or Go. For the implementation, the
languages Ada, C, C++, and Rust were considered as they are most common languages
under the remaining suitable languages.
The programming of the CoBaS prototype started in late 2012. At that point, the Rust
programming language was still very young, and the definition of the language itself
was still in a flow. It only became stable in mid-2015 [162]. Therefore, Rust was ruled
out as the main programming language for the prototype even though a reevaluation
today might come to a different assessment. The remaining programming languages
were considered equally suitable to implement the prototype. However, as CoBaS is
intended not only for the domain of operating systems, the integrability of other systems
had the next highest priority when choosing the programming language. Regarding
that, C and C++ are a better choice compared to Ada as most other programming
languages have extensive support to incorporate legacy C code and with that also C++

code (e.g. [155, Annex B.2][S35, Sec. 5.9]). This left the choice between C and C++ only.
As most operating system kernels today are implemented in C, the selection for CoBaS
was also C over C++ as it promised to make it easier to integrate early stages of the
prototype into the existing systems without the additional obstacles of differences in
programming languages. Also, C promised to be a good starting point if a more mature
framework should be migrated to a more modern language like Rust later on.
Based on this consideration regarding the programming language, the CoBaS prototype
was implemented using C. The implementation can roughly be divided into the following
parts that are discussed in the subsequent sections:

87
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1. The framework itself that is independent of the underlying runtime system.
2. The runtime adapters that integrate the framework into the runtime system.
3. Topologies that describe a scheduling policy based on CoBaS components.
4. The management of Components in the CoBaS framework.

Moreover, a list of implemented Components for the prototype and their functionality
is described in detail in Appendix A.

7.1 Framework Implementation

The framework implementation itself is the heart of the CoBaS prototype. However,
discussing every detail of the framework implementation thoroughly would go far be-
yond the scope of this dissertation. Therefore, this section will focus on the two most
important elements of CoBaS: The message broker and the pipe system.

7.1.1 Message Broker

The CoBaS Message Broker manages all topics and subscriptions as described in Sec-
tion 5.4. As CoBaS is a dynamic system, topics can be defined not only at compile
time, but also during runtime. To make CoBaS aware of a new topic, each topic has
to be registered with the framework before it can be used. To manage the topics, the
framework stores several properties of each topic including:

– A unique identifier to avoid collisions and, if needed, distinguish between versions.
– A simple identifier that serves as a name for the topic.
– Descriptive information about the topic in a human readable form.
– A registration counter that ensures that the topic is not removed from the system

while it is still needed.
– The Component instance for the topic that response to it.
– The callback that is invoked for the topic.

Apart from this information, each topic has a concrete structure for the notification
payload. However, this structure is opaque to the CoBaS framework and therefore
neither announced to the framework nor managed by it.

Every topic is assigned both a simple and a unique identifier. For performance reasons,
the topics are stored rather in an array than in a list. The simple identifier is used as
the index for that list. As the array has a limited size that will in most use-cases be
below 1000 entries, the simple identifier has the same limited value space. This makes
the simple identifier unfeasible for a unique identification of the topic. Furthermore,
it makes it also impossible to differentiate between different versions of notification
payload structures that belong to this topic. The unique identifier allows the framework
to run additional checks, whether the published event fits the currently registered topic
or not and it prevents the use of the simple identifier for two different topics.
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Listing 7.1: Example for a Topic definition in CoBaS.
1 #ifndef TOPIC_AFFINITY_H_
2 #define TOPIC_AFFINITY_H_
3
4 #include <fw_cpumask.h>
5
6 #define FW_TOPIC_AFFINITY 16 /** Topic ID */
7 #define FW_TUUID_AFFINITY 468608183 /** Topic UUID */
8 #define FW_TNAME_AFFINITY "AFFINITY" /** Topic Name */
9 #define FW_TDESC_AFFINITY "Task Affinities" /** Topic Description */

10
11 typedef struct fw_task fw_task_t;
12
13 typedef struct fw_affinity_msg {
14 fw_task_t *task; /**< The affected task. */
15 fw_cpumask_t mask; /**< The tasks (new) affinity. */
16 } fw_affinity_msg_t;
17
18 #endif /* TOPIC_AFFINITY_H_ */

Once a topic is registered, Components can subscribe to that topic or register as a
unique identifier (cf. Section 5.4). The framework creates a list of subscriptions for every
registered topic. Each subscription includes a reference to the subscribing component
instance and a reference to the callback function the instance used for notification of
events of that topic. When a notification arrives for a particular topic, the framework
iterates over the subscription list and invokes every callback that is assigned to that
specific subscription. The responder functionality works the same way. However, only
one component instance can register as a responder for each topic.

Again, because CoBaS is a dynamic system, topics cannot only be introduced to the
framework, but also removed again at runtime. To assure that the system does not
become inconsistent by deleting a topic that is still in use, the implementation tracks
the components that need the topic and only removes it when no component is left that
might use the topic.

An example for a topic definition is given in Listing 7.1. The topic is used to notify
the framework about the affinity of a task or to retrieve it through the responder
infrastructure. The simple identifier is given in Line 6 and the unique identifier in
Line 7. Line 8 defines a human readable string representation of the topic and Line 9
gives a short description of the Topic. The Topic specific argument is defined in Lines 13
to 16. As explained above, this definition is only used by the Components that are
related to the Topic and is opaque to the CoBaS framework. In this specific example, the
Topic message contains a reference to a task (Line 14) and a CPU mask (Line 15). The
shown message is used for both notifications and requests. In the case of a notification,
the task field contains the task of which the CPU affinity of which is changed and the
affinity field the new affinity. In the case of a request, the requesting instance will set the
task reference to the task it wants to retrieve the affinity from. The request responder
will set the affinity and send the message back to the requesting instance.
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Figure 7.1: Example for referencing tasks in CoBaS pipes. Component in-
stances are depicted as boxes and tasks as colored balls. Each
pipe has a dedicated list hook in every task’s TCB that is used
when the task is referenced. For comprehensibility, only the hooks
for the task list are shown. An excerpt of the red tasks’ TCB,
which is referenced by four pipes, is depicted as an example.

7.1.2 The Pipe System

The pipe concept was introduced in Section 5.3. The first issue that had to be solved
is that every task can be referenced by multiple pipes. This matter arises mostly from
the limited capabilities of the C language. To avoid the definition of a new list type
and the corresponding list operations for every data type that might be stored in a list,
CoBaS uses the same generic list approach as it is used, e.g., in the Linux kernel [cf.
28, pp. 87–89]. However, the genericness of the approach comes with the drawback
that the linked data structure needs to have a hook for being linked into a list. This
is not an issue if an element can only be part of one list at a time, but if it can be
part of several lists at a time, it needs as many hooks as there are lists it might be
linked into at the same time. For the pipe system, this means every task needs three
hooks for every pipe in the system as it might be referenced by every Pipe. For that
purpose, the CoBaS Thread Control Block (TCB) has list hooks for every possible pipe.
It could be argued that this leads to a big memory consumption as every pipe causes
an additional memory consumption of, e.g., 24 Byte in a 64-Bit system for the three
list hooks. However, as the number of pipes scales with the size of the system regarding
the number of cores, the system will also scale in memory to serve the cores. Therefore,
memory consumption will be no issue at that point. Figure 7.1 shows how a task is
referenced by several pipes using the hooks in its TCB. For simplification, only the
hooks for the task lists are shown.
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/*****************
* CoBaS component
*****************/
do_somthing() {

foo();
...
fw_malloc();
...
bar();

}

component.c

/*****************
* OS independed
* implemenation
* for CoBaS
*****************/

fw_malloc() {
os_malloc();

}

framework.c

/*****************
* Linux specific
* implemenation
*****************/

os_malloc()
{

kmalloc();
}

linux.c

/*****************
* FreeBSD specific
* implemenation
*****************/

os_malloc()
{

malloc();
}

freebsd.c

/*****************
* Implementation
* without OS
* specific support
*****************/
os_malloc()
{

find_mem();
reserve();

}

other.c

File selection by
build flow or linker.

Figure 7.2: General function wrapping in CoBaS on the example of memory
allocation. Function parameters and return values are neglected
for better readability. This figure only illustrates the idea, the
actual wrapper functions are more comprehensive.

Apart from the task sets that are relevant to the connected component instances, every
pipe consists of further elements to ensure the functionality of the CoBaS framework.
They hold references to the components they are connected to. This allows an easier
management of the system, especially when component instances are dynamically added
or removed.

7.2 Runtime System Adapters Implementation

The CoBaS framework itself is independent of the runtime system. However, to be usable
in an actual runtime system, a Runtime System Adapter, as discussed in Section 5.5, is
needed. This section discusses the technical details and challenges that occurred when
implementing these Runtime System Adapters. The implementation details presented
in this section were previously published in parts in Busse et al. [32].

7.2.1 Adapting CoBaS to the Runtime System

To adapt CoBaS to the runtime system, the concepts of wrapper functions and libraries
are used, which are similar to the adapter and façade pattern in object-oriented program-
ming – hence the name Runtime System Adapter. The idea of the pattern is outlined
with an example for CoBaS in Fig. 7.2. All runtime independent functions of the CoBaS
prototype are decorated with fw_, where all runtime dependent functions are decorated
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Listing 7.2: Example of a function definition for runtime system dependent
calls. The definition is only used when not superseded by a
preprocessor macro defined for the target system. In addition, it
serves as documentation for the function and its type signature.

/**
* \brief Writes the C string pointed by format to the kernel log.
*
* Writes the C string pointed by format to the kernel log. If format includes
* format specifiers (subsequences beginning with %), the additional arguments
* following format are formatted and inserted in the resulting string replacing
* their respective specifiers. Refer to ISO 9899 Section 7.21.6.3 for details.
*
* @param format C string that contains the text to be written to the kernel log
* @param ... (additional arguments) Depending on the format string, the

function may expect a sequence of additional arguments.
* @return On success, the total number of characters written is returned.
*/

#ifndef os_printf
int os_printf(const char* format, ...);

#endif

with os_. The decorators were also introduced to avoid the pollution of the namespaces
as C does not support automatic function name mangling. The latter functions are not
intended to be used by the CoBaS user, but only by the framework itself. The example
shows how the develper accesses the fw_malloc function, which, in this example, is part
of the framework library set. The fw_malloc then relies on the os_malloc function.
The os_malloc function can and will most likely be different for every operating system.
In the example, in, e.g., Linux, it would call the kmalloc function and in FreeBSD the
malloc function respectively. It is not unlikely that certain functionality that is required
by CoBaS is not given in the target runtime system. In those cases, the functionality
has to be programmed for the target system. For example, in a runtime system that
does not have a memory management feature, the functionality might be implemented
in the os_malloc function itself. During compilation, only the source file fitting to the
target runtime system is considered by the build flow, ensuring that only the suitable
code paths are incorporated into the binary. The set of all runtime dependent functions
represents the interface that needs to be satisfied to use CoBaS.

Some functions do not necessarily need an explicit wrapper. Take for example the
printing of kernel messages. This function often has an identical signature as the
standard C printf function [cf. 78, Sec. 7.21.6.3]. As a result, it is possible to simply
link the runtime system dependent function symbol against the function of the runtime
system. This linking can be achieved through preprocessor macros. Still, this approach
is only feasible for some runtime systems and functions. For that reason, preprocessor
constructs such as the one shown as an example in Listing 7.2 are used. It checks if
the runtime system dependent function is already defined as preprocessor symbol and,
therefore, another existing function to link against. If so, the native function will be
linked as described. If not, it will define a function prototype, and a dependent function
has to be available at the latest during the final linking. If this function was not
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implemented for the target system, the linking will fail by intention as the functions are
vital for CoBaS. The construct also serves as documentation. An ordinary preprocessor
macro does not include types for the function signature, which would make it difficult
to implement the Runtime System Adapter. The checking construct shows the type
signature for every interface function and its purpose. This information is indispensable
when adapting CoBaS to a new runtime environment.
A similar approach is used for some specific types. A few types have to be mapped
to the native types, for example the type that describes the size of memory spaces.
In some systems, this is not only specific to the runtime system, but even to the
target architecture. Take for example the size_t type in Linux. On most 32 Bit
architectures, it is defined as an unsigned int, while on most 64 Bit architectures it
is defined as an unsigned long.12 An exception to that is the SuperH architecture,
where the size_t is defined as a long unsigned int.13 To keep CoBaS both platform
and architecture independent, the CoBaS size_t equivalent fw_size_t is wrapped to
the runtime systems type. With Linux, the preprocessor first replaces every fw_size_t
declaration with size_t and then subsequently with the target architecture specific
type, e.g., unsigned int.

7.2.2 Adapting the Runtime System for CoBaS

Incorporating CoBaS into a runtime system has two facets: Either it is intended to be
used for a whole new system or it is to be integrated into an existing system. Even
though the general approach for integration does not differ much, the latter scenario
potentially requires more implementation effort as the legacy system needs to be adapted.
The reason is that an existing system might have several dependencies regarding the
scheduler. For example, in the FreeBSD kernel, the locking of, e.g., drivers is partially
realized through the run queue lock, which is not available when using CoBaS. Another
example are task dependencies during the bootstrapping of the system. Further problems
might occur when the functionality of CoBaS is, especially in an early phase of adaption,
not as wide as the original scheduler. In this study, this has been particularly true for
the Linux kernel, which has a very sophisticated scheduler.
Also in both scenarios, the task-related information that is typically held in the TCB
might not all fall into the responsibility of CoBaS. Examples are information regarding
the virtual memory mapping, file system handlers, or debug information unrelated to
process scheduling. For that reason, the CoBaS prototype realizes the coexistence of the
runtime system’s TCB with the CoBaS internal TCB. In order to do that, the CoBaS
TCB is linked into the runtime system TCB and vice versa as depicted in Fig. 7.3.
The link to the runtime system’s TCB is another example of a type that is mapped
to the target runtime system’s type as described in the previous section. Besides these
issues, the only access interface of the runtime system to CoBaS is the publish–subscribe
interface and a call to request a new task for a specific PE.
12cf. include/uapi/asm-generic/posix_types.h in [S24]
13cf. arch/sh/include/uapi/asm/posix_types_64.h in [S24]
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Figure 7.3: Implementation for the coexistence of the CoBaS and runtime
system TCB. The CoBaS TCB holds a link to the runtime system
TCB and vice versa. The TCB contains links to the Component
instance specific TCBs. All grey parts of a data structure are
opaque to the CoBaS prototype.

7.3 Topology Implementation

Section 5.6 described why topologies in CoBaS are necessary to obtain a working
scheduling policy. Topologies can be divided into three categories: Static topologies,
dynamic topologies, and adaptive topologies. This section will describe how the three
kinds of topologies are realized in the CoBaS prototype.

7.3.1 Static Topologies

Static topologies are the initial topologies for every system using CoBaS. When a system
is started, an initial topology is needed to bootstrap the system. Static topologies can
be widely considered as equivalent to the state of the art of implementing scheduling
policies. Several static topologies were implemented to test and evaluate the prototype.
In the current version of the CoBaS prototype, static topologies are described by explicit
programming. However, the definition process of the prototype is designed in a way
that a DSL or GUI based definition can be easily developed.
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7.3.2 Dynamic Topologies

With a dynamic Topology, the system can react to events in the system as, e.g., the
arrival of a new PE as described in the example in Section 5.6.2 on Page 58. The
implementation for that scenario can rely on the notification system of the CoBaS
framework. The same way Components can subscribe to a Topic, a Topology can
subscribe to it. For instance, the example from Section 5.6.2 can be implemented in
a way that the Topology subscribes to an event that announces a new PE. When
it receives the notification, it can reconfigure the Topology the way it is depicted in
Fig. 5.13 on Page 58.

7.3.3 Adaptive Topologies

The current CoBaS prototype supports runtime system controlled adaptive Topologies
in a way that it allows the replacement of Component instances through the user
space. Two steps are necessary to achieve this. First, the old Component instance
has to be removed and, second, the new instance has to be created. To do that in
a consistent way, it has to be assured that no Pipe update or notification gets lost.
The approach to achieve that for the Pipes is straight forward as every Pipe has a
separate lock. Therefore, the Pipes that are concerned with the reconfiguration are
locked and a Pipe update is triggered on each to ensure that no Pipe updates are
pending. For the notification system, the approach is slightly more complicated. To
ensure consistency, a readers–writer lock was employed in the notification system, where
the normal operations act as readers and the reconfiguration process acts as a writer.
This ensures that an arbitrary number of tasks can use the CoBaS Broker during normal
operations, but only one reconfiguration is possible and the reconfiguration does not
interfere with normal operations. It has to be noted that with this implementation,
during the reconfiguration of the Topology, the whole notification system is stalled.
However, this is not an issue as long as the reconfiguration happens not very frequently.

Once the system is in that safe state, the replacement process starts. Besides creating
the new instance and removing the old instance, the Component specific parts of the
TCB have to be considered. As the framework does not know what the TCB looks, the
Component instances have to be involved. Before the old Component instance is removed
from the system, the destructor for the Component specific TCB that may be defined
by each Component is invoked for each task in the system. For the new Component
instance, the same is done for its constructor of its Component specific TCB, if defined
by by the new Component. Once these steps are completed, the replacement process is
finalized by adding all tasks that are in the ingoing Pipes of the new instance as new
tasks, so they are initially processed by the new Component instance and all locks are
freed so that normal operations can continue.
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7.4 Component Management

The three most interesting aspects of the component system of the prototype are the
loading of a component during runtime, the initialization of Components, and the
instantiation of component instances. The actual components that were implemented
for the prototype are summarized in Appendix A.1.

7.4.1 Component Loading

The loading of components has two general scenarios: Either the component is already
statically built into the system, or the component is loaded during runtime. This problem
is similar to loadable kernel modules. Therefore, some techniques from that area were
reused and adapted for CoBaS. The loading of components in the former scenario is
trivial, as the components can simply be linked into the final binary. However, the latter
scenario requires more effort.

To load a Component, it is first needed in compiled binary format. For the prototype,
the Executable and Linking Format (ELF) [164, 170] was chosen as it is a format that
is widely used. A framework function was implemented that takes such an ELF binary
as an argument together with some meta information like, e.g., the size of the binary
blob. To load the Component, memory is allocated in an executable memory region
and the executable code is copied from the ELF file into that memory region. However,
the code is not executable yet, as the symbols in the code have to be resolved. In order
to do so, the addresses of the symbols have to be known to the CoBaS framework. As
the framework offers only a limited set of functions to components, the mapping is
built into the framework itself. Once the symbols are resolved in the binary code, the
component can be initialized and is available to be used in a Topology.

7.4.2 Component Initialization

The initialization of components is necessary so that the framework knows about the
existence of and ways to handle the respective components. Contrary to the loading,
the initialization of components is trivial for components loaded at runtime as it is
evident that the loaded component also has to be initialized. The more challenging
part is the initialization of built-in components. As the built-in components are only
linked into the final binary, the rest of the CoBaS functions does not necessarily have
knowledge of their existence. To avoid changes to the CoBaS framework itself every
time a component is added or removed from the linking phase, another technique from
the area of loadable kernel modules was adapted.

The CoBaS prototype offers a preprocessor macro that takes a function pointer as an
argument. The components can specify their distinct initialization function through
this macro. The preprocessor macro then creates a variable that holds the address of
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Runtime System Binary
(e.g. vmlinux for Linux)

__cobas_components_init_start

af_init()

lb_init()

rr_init()

__cobas_components_init_end

affinity.c

/***************************
* Component Implmentation
***************************/

int af_init() {
/*************************
* Inititalization code
* for the component
*************************/

fw_component_register(...);
}

fw_component_init(af_init);

load_balancing.c

/***************************
* Component Implmentation
***************************/

int lb_init() {
/*************************
* Inititalization code
* for the component
*************************/

fw_component_register(...);
}

fw_component_init(lb_init);

round_robin.c

/***************************
* Component Implmentation
***************************/

int rr_init() {
/*************************
* Inititalization code
* for the component
*************************/

fw_component_register(...);
}

fw_component_init(rr_init);

Linker

iteration
during CoBaS
initialization

Figure 7.4: Pointers to the initialization functions of built-in components
are assembled in an array by the linker during the final linking
of the operating system’s kernel. The initialization functions are
marked by the developer as such.

the initialization function and assigns a special linker attribute to it. During the linking
phase of the runtime binary, all those variables are subsequently placed in the data
section of the kernel binary, and the begin and end address of this array are assigned
to a variable. During the initialization of CoBaS itself, it can iterate over this area
using the supplied variables and call every initialization function of every component
compiled into the kernel. The whole procedure is summarized in Fig. 7.4.

7.4.3 Component Instantiation

During its initialization, every component announces a constructor function to the
CoBaS framework, which can be used to create new instances. These functions take
two arguments. An ID that is unique and will identify the instance in the future and
a pointer to a data structure. As the framework itself does not necessarily need to
know how the component works, the type of the pointer is opaque and can even be
empty. However, ordinarily, the pointer will point to a structure that, e.g., includes the
pipes that are connected to this component. The constructor of the component checks
whether the supplied structure is valid and will initialize and return a pointer to a new
instance of that component.





CHAPTER8
Quantitative Evaluation

After the qualitative evaluation of the CoBaS approach in Chapter 6, the CoBaS
prototype presented in the previous section also allows a quantitative evaluation that
is presented in this chapter. The goal of the quantitative evaluation is to further
substantiate the claims of this dissertation stated in the introduction and refined by
the requirements discussed in Chapter 3. For that purpose, several case studies and
experiments have been performed. This chapter presents them and substantiates, namely,
the following claims in the subsequent sections:

– It is possible to build a process scheduling framework that is suitable for multiple
runtime systems. (Section 8.1)

– The maintainability of the CoBaS framework itself is feasible for multiple runtime
systems and versions. (Section 8.2)

– Different execution models can be handled by the CoBaS approach. (Section 8.3)
– The CoBaS framework scales for many-core systems. (Section 8.5)
– The overhead introduced by the CoBaS approach is not prohibitive. (Section 8.6)
– The CoBaS approach can be used in real world scenarios. (Section 8.7)
– An adaptable scheduler can improve the system performance. (Section 8.8)
– The component approach allows different programming schemes for the scheduling

policy implementation. (Section 8.9)

Aside from the CoBaS related studies and experiments, Section 8.4 introduces a new
tracing technique that was developed in order to be able to perform the detailed tracing
necessary for the evaluation in Sections 8.5 through 8.9.

8.1 Runtime System Independence

To demonstrate and measure the degree of runtime system independence, CoBaS was
integrated as the main process scheduling facility into the Linux and FreeBSD kernel.
Several considerations are the foundation for this decision. First, only free and publicly
available operating systems were considered. This ensures that the findings of this
study can be widely published and reproduced. Second, the operating systems should
be relevant to productive use, which shows that CoBaS is feasible for real world systems.
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Third, if possible, the operating systems should cover different application domains.
Finally, the selected operating systems should differ with regard to the complexity of
their scheduler subsystem.

The Linux kernel is by far the most prominent and widely used open source kernel.
Its applicability reaches from small embedded systems, over desktops, to large super-
computing environments. Its code base is freely available, and it has over 3500 active
developers (cf. Table 1.1 on Page 9).

Even though the FreeBSD kernel is used in far fewer systems and has a much smaller
base of active developers, it is still one of the most important open source kernels apart
from Linux. This stems mostly from the fact that the licensing of the FreeBSD [cf. 160]
kernel is not as restrictive as the licensing of the Linux kernel [cf. 148]. Because of this,
the FreeBSD kernel is a popular choice for closed systems like the Playstation 4 [146].
Apart from closed systems, FreeBSD is a favorable choice for storage solutions because
it has the best support for ZFS14 after the proprietary implementation of the Solaris
operating system.

8.1.1 Using CoBaS as Process Scheduler for an Operating Sys-
tem

Integrating CoBaS into an existing operating system can in most cases be considered
more challenging than using CoBaS for a new operating system.15 The reason is that
the scheduler is often highly integrated into the rest of the system. This is even true
for microkernel operating systems, as even there the scheduler is part of the kernel and
not placed in the user space as a separate entity.

The approach for integrating CoBaS into an existing operating system can be gen-
eralized and was applied to both the Linux and FreeBSD kernels: First, the current
scheduler subsystem was thoroughly analyzed regarding its structure and integration
into the kernel. This is necessary as the runtime system might have several assumptions
concerning the properties of the scheduler implementation that are neither documented
nor explicitly stated. Then, the existing scheduler logic was completely removed, leav-
ing only empty function bodies as stubs for functions that are called from outside the
scheduler. The same applies to global variables and structures that are used outside
the scheduler subsystem.

In an operating system, particular attention has to be paid to the locking. Unlike
in user space, the Coffman conditions [39] can hold regarding the CPU and, e.g., a
lock in kernel space. In user space, only the conditions mutual exclusion, hold and
wait, and circular wait hold regarding the CPU as the operating system can preempt
every user process through a hardware interrupt, i.e., by a timer. In kernel space, the
condition no preemption can also hold since the operating system cannot preempt itself

14ZFS is a filesystem designed for high performance, reliability, and capacity [118, pp. 24ff.].
15Exceptions are operating systems like, e.g., eCos that are designed to support a custom scheduler.
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Table 8.1: Size of the Runtime System Adapter for the FreeBSD kernel in
lines of code.

Language Files Blank Comment Code
C 3 192 592 670
C Header 2 50 86 169∑

5 242 678 839

in certain circumstances. For example, assume that the operating system executes code
in a system call triggered from the userland; then, the execution jumps to another part
of the code to handle an interrupt. If both contexts try to use the same resource, e.g.,
a lock, a deadlock situation occurs. The interrupt handler will never give up the CPU
as it attempts to acquire the lock, whereas the other kernel code cannot release the
lock as it does not assigned the CPU to progress further. The issue is discussed in more
detail by Russell [137].

8.1.2 Integrating CoBaS into the FreeBSD Kernel

FreeBSD uses the ULE scheduler [134] as its main process scheduler even tough the
traditional BSD scheduler [cf. 101, pp. 16f.] is also still available. The scheduler can be
selected during compile time of the kernel. The ULE scheduler implementation consists
of approximately 2900 lines of code. The implementation of the ULE scheduler was
stripped down to use the CoBaS scheduler framework as main process scheduling facility.
The size of the resulting Runtime System Adapter is summarized in Table 8.1. Besides
the Runtime System Adapter, some minor changes had to be included in the kernel
tree, namely seven lines of code in the linker script and another 50 lines of code in the
kernel Makefile to include the CoBaS sources during the build process.

It has to be noted that the support for dynamic Component loading and replacement
as described in Section 7.4 is ongoing work for the Runtime System Adapter of the
FreeBSD kernel, hence not yet completed and considered in Table 8.1.

8.1.3 Integrating CoBaS into the Linux Kernel

Contrary to FreeBSD, the default Linux process scheduler supports several scheduling
policies as already described in Section 4.3.1. Furthermore, it offers much more features
than the FreeBSD scheduler, including, i.e., control groups16 or NUMA aware process
scheduling. Because of this, the code base of the Linux scheduler is much bigger than
the FreeBSD scheduler. The implementation of the Linux scheduler is split into several

16Control groups is a functionality that allows the assignment of resources and the limitation of the
use of resources, e.g., the CPU for particular groups of processes [cf. 107].



102 8 Quantitative Evaluation

Table 8.2: Size of the Runtime System Adapter for the Linux kernel in lines
of code.

Language Files Blank Comment Code
C 5 448 1123 1547
C Header 3 155 324 323
make 1 31 12 92
Assembly 1 0 4 8∑

10 634 1463 1970

files roughly consisting of the kernel/sched/core.c file, which contains the basic
infrastructure for process scheduling and several files implementing the actual scheduling
policies. To replace the vanilla scheduler with CoBaS, the kernel/sched/core.c with
approximately 8600 lines of code was stripped down and used as a basis for the wrapper
logic. The source files that are implementing the actual scheduling policies were dropped
and completely ignored for the CoBaS integration. The size of the resulting Runtime
System Adapter is summarized in Table 8.2. In addition to theses files, some minor
changes were applied to the kernel tree to be able to select either the vanilla scheduler
or the CoBaS framework as main scheduling facility.

8.1.4 Discussion

The case study presented in this section shows that it is possible to create a scheduler
framework suitable for multiple runtime systems. Furthermore, it gave insights on the
necessary steps and the complexity of creating a Runtime System Adapter for a specific
runtime system and integrating CoBaS into that runtime system. It can also be assessed
that the effort for creating a new Runtime System Adapter strongly depends on the
complexity of the runtime system or, to be more precise, on its scheduler subsystem.
The Runtime System Adapter for the FreeBSD kernel is much smaller and less complex
compared to the one for the Linux kernel. This resembles the complexity of the individual
schedulers available for both systems.

8.2 Maintainability

Creating a new feature for an operating system automatically raises the question of
maintainability. In general, internal kernel APIs are not necessarily stable between
individual revisions, making it often necessary to adapt features to new kernel versions.
Even though CoBaS was designed to improve the maintainability of policy implemen-
tations, the framework itself has to be maintained to be compatible with new versions
of the intended target operating system. For this dissertation, the maintainability of
CoBaS was researched using the exemplary implementations for Linux and FreeBSD.
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Table 8.3: Number of changes in the Linux kernel’s Runtime System Adapter
due to new kernel versions.16

Linux Kernel
Version Delta

Changes
Files Insertions Deletions

v3.9 → v3.10 1 52 1
v3.10 → v3.11 0 0 0
v3.11 → v3.12 0 0 0
v3.12 → v3.13 2 21 263
v3.13 → v3.14 2 30 4
v3.14 → v3.15 1 0 10
v3.15 → v3.16 2 6 2
v3.16 → v3.17 1 6 0
v3.17 → v3.18 2 33 0
v3.18 → v3.19 2 5 4
v3.19 → v4.0 1 54 24
v4.0 → v4.1 1 1 1
v4.1 → v4.2 2 57 10
v4.2 → v4.3 1 1 1
v4.3 → v4.4 3 245 49

Table 8.4: Number of changes in the FreeBSD kernel’s Runtime System
Adapter due to new kernel versions.16

FreeBSD Kernel
Version Delta

Changes
Files Insertions Deletions

v9.2 → v9.3 2 24 24
v9.3 → v10.0 1 9 9
v10.0 → v10.1 1 9 9
v10.1 → v10.2 0 0 0
v10.2 → v10.3 1 1 0

The development of the CoBaS framework started in 2013 when the Linux kernel v3.9
and FreeBSD kernel v9.2 were the most recent versions. As the study of CoBaS stretched
over three years, new and improved kernel versions became available. At the time of
writing, this meant v4.4 for Linux as the latest long term support version released on
January 10th 2016 and for FreeBSD v10.2 published on March 28th 2016. This made it
possible to research the maintainability of CoBaS for 15 kernel revisions for Linux and
four kernel revisions for FreeBSD. The summarized code statistics for both adaptations
are presented in Tables 8.3 and 8.4 respectively. The Linux example shows that the

16The statistics were obtained from the CoBaS source code repository using git with the ’git diff
--stat [old] [new]’ command.
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changes are limited to a few lines of code. Only the moves from v3.12 to v3.13 and
from v4.3 to 4.4 are standing out with more than 100 changes. Looking closer at those
changes shows that the adaptation for v3.13 made it possible to remove several lines of
code from the framework as they were also moved to a different part of the vanilla kernel,
making them not necessary anymore in the frameworks code base. The move from v4.3
to v4.4 was more challenging, though, as some scheduler logic was restructured. This is
also reflected in the amount of time it took to adapt to the new versions. The stepwise
adaptation from v3.9 to v4.3 took approximately 10 working hours in total, whereas
the further adaptation for the kernel v4.4 alone took another 30 woking hours.
For FreeBSD, the changes on the Runtime System Adapter are even more marginal.
Looking into detail shows that they are almost not existing. Contrary to the Linux
kernel, the FreeBSD kernel source of v10.0 is not a direct ascendent of v9.3 as they
were developed in parallel. Because of that, v9.3 already included changes not present
in v10.0, which made it necessary to revert changes to the Runtime System Adapter.
This reversion accounts exclusively for the nine insertions and deletions reflected in
Table 8.4. As the changes from v9.3 were later on applied to v10.1, the modification of
the Runtime System Adapter had to be introduced yet another time, resulting, again,
in the nine insertions and deletions. Migrating the CoBaS framework from FreeBSD
v9.2 to v10.3 including the intermediate versions took less than two working hours.
It has to be noted that the dynamic Component loading and replacement as described
in Section 7.4 was not yet implemented during the adaptation for newer kernel releases.
Still, even with additional work possibly stemming from these code paths, it is safe to
say that maintaining CoBaS over several kernel releases is both feasible and possible.

8.3 System Heterogeneity

As previously discussed, current and future systems most likely have to rely on hetero-
geneity to reach the desired processing performance. To enable the operating system
to manage all PEs, no matter how diverse they are, the scheduler subsystem has to
be as generic as possible. The case study presented in this section demonstrates how
the CoBaS framework handles this heterogeneity. For the remainder of this section, the
notion native or native PE will refer to the part of the system that boots it and is the
main processing facility. The notion foreign or foreign PE will refer to every processing
not conducted by the native part. Such a foreign PE could be, for example, a processing
accelerator like a GPU.
In order to demonstrate that and how the CoBaS framework can handle tasks that are
not native to the main system architecture, the Topology as depicted in Fig. 8.1 was
created similar to the example discussed in Section 5.6.3 on Page 59 (Fig. 5.14). The
Topology can be subdivided into two parts: one for the native part of the system and one
to support the foreign part. The elements of the Topology for the native part employ a
simple decentral multi-core scheduling. It consists of an instance of the Load Balancing
Component and several Head Queue Component instances, one for each native PE.
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Furthermore, the Topology has an instance of the Affinity Component that stores the
affinity of every task for each PE. It is used by the Load Balancing Component to
determine which outgoing Pipes are suitable for each task. All of the used components
are described in more detail in Appendix A.1.

Concerning the foreign part of the system, the Topology includes an ISA Demux Com-
ponent. The ISA Demux Component examines the ISA requirements of every ingoing
task and assigns it to an outgoing Pipe fitting this requirement. The ISA requirement
itself is stored by an instance of the ISA Tagging Component. The tasks for the foreign
PE are scheduled in a first come first served manner by an instance of the FCFS Com-
ponent. As illustrated by Fig. 8.1, the Topology also includes an instance of a TCB
Entry Component (cf. Appendix A.1). For this case study, it held the thread context
for the foreign PE. Note that it would have also been possible to implement this data
structure in the Runtime System Adapter; however, to show examples of the capabilities
of the component approach, the realization through a CoBaS Component was chosen.

The foreign PE element was emulated through a Linux kernel module executing the
algorithm in Listing 8.1. The kernel module requests a task from the CoBaS framework
for the foreign PE (Line 2). If a task is available, the framework will return it, the module
informs the framework about the dispatching (Line 4), acquires the task context from
the TCB Entry Component (Line 5), and starts processing it (Line 6). If no task is
available, the module sleeps for one second before retrying (Line 16). After finishing a
process run, the module checks if the task is finished. If not, it is resubmitted to the
framework (Line 8). If the task is finished, the module checks if it was a standalone task.
If this is the case, the task gets completely removed from the system (Line 10), if it is
not the case, the ISA requirement is reset (Line 12) and the task is resubmitted to the
framework (Line 13). To emulate the processing in a processing accelerator, the kernel
module simply uses a busy wait loop. Therefore, the task context is also unpretentious.

Native SchedulingSupport for a
Foreign PE

ISA
Demux

FCFS

ISA Tagging

TCB Entry

Load-
Balancing

Head
Queue

Head
Queue

Head
Queue

Head
Queue

Affinity

Native PE 0

Native PE 1

Native PE n-1

Native PE n

Foreign PE

Used by the
Built-In

Scheduling

Used by the
External PE
Emulation

• • • • • • • • •

Figure 8.1: Topology supporting a foreign PE besides the native ones. The
Topology supports an arbitrary number of native PEs.
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Listing 8.1: Algorithm for the external PE emulation.

1: while keep processing data do
2: task ← Schedule(Foreign PE)
3: if task ̸= ∅ then
4: Notify(DISPATCH, ⟨task⟩)
5: context ← Request(TCB, ⟨task⟩)
6: Process(context)
7: if context not finished then
8: Notify(RELINQUISH, ⟨task⟩)
9: else if task is standalone then

10: Notify(EXIT, ⟨task⟩)
11: else
12: Notify(ISA, ⟨task, native⟩)
13: Notify(RELINQUISH, ⟨task⟩)
14: end if
15: else
16: Sleep(1000 ms)
17: end if
18: end while

It simply consists of the number of processing iterations, a relative value for the length
of the busy wait loop, and the information whether the task is a standalone task or not;
therefore, whether it has to be scheduled again on the real PE after finishing or not.

The functionality of this scheduling Topology was validated with two experiments. In the
first experiment, several standalone tasks were created by the userland and submitted
to the scheduler. The execution of those tasks was verified through the kernel log. In
the second experiment, a task was created that assumed the need for the external PE
at some point of the execution. Therefore, it changes its ISA requirement at a certain
point of execution, yields from the current native PE, and gets processed by the external
processing emulation. After that, the task was resubmitted to the native scheduling
path and finished its execution.

This case study has shown an example that the CoBaS architecture can handle arbitrary
tasks for non-native tasks. The emulated processing can, from a high-level point of view,
easily be replaced by an actual processing accelerator. This case study forewent to
explore an actual implementation as it is mainly an implementation challenge and
promises no new insights from the architectural or scientific points of view.

In combination with the dynamicity aspects of the CoBaS architecture, the capabilities
demonstrated in this section would also allow to deliver processing accelerators together
with a scheduling implementation. Even though this is already happening today, those
schedulers are either realized in user space or as a dedicated subsystem in the kernel.
CoBaS would allow to integrate the specific scheduling policy into the main process
scheduler subsystem. As a result, the operating system has, again, full control of all
PEs and optimizations regarding the scheduling of multiple processing accelerators and
PEs might be possible.
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8.4 High Precision Kernel Tracing

The remaining case studies presented in this chapter require a detailed analysis of the
runtime behavior of the CoBaS prototype. Such an analysis can be performed either in
a simulated environment or a real runtime system like e.g. Linux. The former approach
has the benefit that it allows a very detailed analysis and every aspect of the execution
can be controlled. However, it has the drawback that the results are strongly depending
on the model used to create the simulator. In particular, the runtime system simulation
approach might fall short to analyze or show certain aspects as the model is not a
complete representation of the real system. Furthermore, the results might have a bias
also caused by an inaccurate modeling of a real runtime system. To avoid these issues,
the experiments presented in the remainder of the chapter use the Linux kernel as
runtime system.

Using a real runtime system instead of a simulated poses several other difficulties. The
most noteworthy is the acquiring of the tracing data itself. The operating system is
usually involved with tracing and profiling of executed code. A common approach when
tracing the execution of the operating system is in-system tracing that uses different
kinds of hooks in the operating system kernel. The most generic of these approaches
is ftrace, which is embedded in the upstream kernel. It allows the tracing of arbitrary
functions through the same technique used for live patching with kpatch and kGraft
(see Section 4.2.5). When the tracing is active, at the beginning of traced functions,
the execution flow is redirected to the ftrace infrastructure to log the execution and
possibly perform further tracing steps. Other, more sophisticated, tracing frameworks
like perf [S30], extended Berkeley Packet Filter (eBPF) [41], SystemTap [52, S39], or
LTTng [44, S25] exist that allow an even more specific tracing and more extensive
analysis. However, all in-system tracing facilities have an intrinsic drawback. They
introduce an additional bias as they change the execution timing through their overhead
(cf. Weaver [176, 177] and Section 8.5.3). This overhead becomes an issue especially with
short functions. The tracing overhead becomes the dominant factor in the execution
time, making the results useless for the analysis. Furthermore, the changes in execution
time also become an issue for real-time sensitive executions. For example, the scheduler
might rely on a periodic timer interrupt to determine the end of a time slice. When the
execution of certain functions is prolonged by the tracing, the scheduling behavior might
become completely different as the timing relations change. Another issue regarding
in-system tracing arises from the amount of tracing data. When tracing the kernel in a
stress situation, the trace can become huge in the order of several hundred megabytes
per traced core and second. This data has to be stored. As the secondary storage, today,
rarely exceeds a throughput of gigabytes per second, the data has to be stored in main
memory or some tracing samples have to be dropped to not exceed the throughput
of the secondary storage. Relying on main memory for the storage of the data limits
the time span that can be traced. Finally, the main issue of in-system tracing, namely
needing support by the operating system, cannot be entirely avoided. Therefore, for
example, certain functions in the Linux kernel are not traceable by ftrace.
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Simulation Host
gem5 Simulator

Traced
Kernel

CPU Mem.I/O Trace
Core 1 Trace

Core 2

Trace
Core 4Trace

Core 3

Trace Core 1
Timestamp: Function (Duration)

3499669678000: __schedule (16500)
3499669694500: rcu_note_context_switch (12500)
3499669707000: __schedule (8500)
3499669715500: _raw_spin_lock_irq (9000)
3499669724500: __schedule (25500)
3499669750000: fw_notify (9500)
3499669759500: _raw_read_lock (8000)
3499669767500: fw_notify (13500)
3499669781000: __fw_block (6500)
3499669787500: _raw_spin_lock (8000)
3499669795500: __fw_block (7000)
3499669802500: fw_notify (14500)
3499669817000: __schedule (15000)
3499669832000: fw_schedule (9500)
3499669841500: topo_get_termination (9000)
3499669850500: fw_schedule (4500)
3499669855000: _raw_spin_lock (8000)
3499669863000: fw_schedule (3000)
3499669866000: fw_pipe_clean (29000)
3499669895000: fw_schedule (3000)
3499669898000: fw_list_empty (7500)
3499669905500: fw_schedule (14000)

• • •

__switch_to
Calls: 1
Time: 105.50 · 103

Avg.: 105.50 · 103

topo_get_termination
Calls: 1
Time: 9.00 · 103

Avg.: 9.00 · 103

fw_list_empty
Calls: 1
Time: 7.50 · 103

Avg.: 7.50 · 103

fw_notify
Calls: 2
Time: 528.00 · 103

Avg.: 264.00 · 103

rcu_note_context_switch
Calls: 1
Time: 12.50 · 103

Avg.: 12.50 · 103

term_pipe_update
Calls: 1
Time: 84.50 · 103

Avg.: 84.50 · 103

finish_task_switch
Calls: 1
Time: 44.00 · 103

Avg.: 44.00 · 103

__fw_block
Calls: 1
Time: 21.50 · 103

Avg.: 21.50 · 103

fw_schedule
Calls: 1
Time: 116.50 · 103

Avg.: 116.50 · 103

__fw_dispatch
Calls: 1
Time: 415.00 · 103

Avg.: 415.00 · 103

depth_pipe_update_stage_0
Calls: 1
Time: 302.50 · 103

Avg.: 302.50 · 103

__schedule
Calls: 1
Time: 988.00 · 103

Avg.: 988.00 · 103

[72.89%]
Calls: 1
Time: 302.50 · 103

Avg.: 302.50 · 103

[10.68%]
Calls: 1
Time: 105.50 · 103

Avg.: 105.50 · 103

[11.79%]
Calls: 1
Time: 116.50 · 103

Avg.: 116.50 · 103

[78.60%]
Calls: 1
Time: 415.00 · 103

Avg.: 415.00 · 103

[7.73%]
Calls: 1
Time: 9.00 · 103

Avg.: 9.00 · 103

[4.07%]
Calls: 1
Time: 21.50 · 103

Avg.: 21.50 · 103

[6.44%]
Calls: 1
Time: 7.50 · 103

Avg.: 7.50 · 103

[4.45%]
Calls: 1
Time: 44.00 · 103

Avg.: 44.00 · 103

[53.44%]
Calls: 2
Time: 528.00 · 103

Avg.: 264.00 · 103

[1.27%]
Calls: 1
Time: 12.50 · 103

Avg.: 12.50 · 103

[27.93%]
Calls: 1
Time: 84.50 · 103

Avg.: 84.50 · 103

Figure 8.2: Process of the simulation-based kernel tracing. The tracing data
is collected by the gem5 simulator per core. The simulation trace
is transformed to a call-graph (right page) that can be simplified
to reliably identify critical code paths.
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Figure 8.2 continued.
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As theses issues would hinder a thorough evaluation of the CoBaS prototype, another
approach was developed for this dissertation that combines the benefits of both in-system
tracing and a runtime system simulation. This method uses a simulation of an entire
system including the CPU, caches, memory, timers, and all other hardware features.
The simulator executes the Linux kernel with the CoBaS prototype as main scheduling
facility. With the support of the simulator, the execution of the operating system can be
traced on an instruction level without interference. The resulting execution trace was
then processed to recreate the call-graph. This step is necessary as the simulator has no
knowledge about the call relation in the simulated machine since it lacks information
about the location of the stack inside the simulated machine. It has to be emphasized
that this approach needs a simulated machine and not a virtualized machine. Even
though it is possible to track the execution flow in the virtual machine from the outside
with, e.g., a debugging facility, this debugging would also influence the timing behavior
as the virtualized timers for the virtual machine would still progress.

To implement this tracing and profiling, the gem5 simulator [24] was used. Two main
considerations lead to the use of gem5 : First, gem5 is a well-established tool in the re-
search community regarding the low-level simulation of an entire system with extensive
tracing and profiling support and, second, gem5 is free and open-source allowing uncom-
plicated extension and reuse for further research and researchers. The gem5 simulator
permits the simulation of a full system, therefore, it cannot only provide a simulation
environment for an operating system, but also arbitrary bare metal applications. This
allows the approach, presented in this section, also to be applied to such applications.
The gem5 simulator allows, furthermore, the simulation of a significant number of cores.
The number of cores is conceptually only limited by the simulated hardware. For exam-
ple, the x86 simulation is limited to 254 cores as the simulated Advanced Programmable
Interrupt Controller (APIC) provides only 254 interrupt lines for CPUs. Moreover, it
is possible to integrate a SystemC based hardware model into the gem5 simulator as
presented by, e.g., Jung [87]. This may allow the analysis of the scheduler behavior for
possibly emerging new hardware architectures.

The gem5 simulator has the capability to trace the execution of code using debug
symbols supplied at simulation start. When tracing is enabled, every time a new in-
struction is fetched, the simulator checks if the new instruction resides in the same
function of the previous function. If this is not the case, it creates a new entry in the
trace log. An example of the output is given in Fig. 8.2. Based on this call trace, the
call-stack is reconstructed, deducing information about the call relation of the different
functions. Once this information together with the timing simulation is collected, a
call-graph can be generated as depicted in Fig. 8.2. The nodes of the graph represent
the kernel functions and the edges function calls. Besides the number of calls for each
function, the total time in simulation ticks to finish each function is shown. The total
time incorporates both the time needed to execute the function itself and all functions
called by it. Furthermore, the average time in simulation ticks to execute every function
is given. Every edge shows the time the outgoing function spent in the target subgraph;
therefore, the difference between the time of all outgoing edges and the time given
for each function call is the time only spent in that function itself. The colors of the
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function nodes indicate the amount of time spent in the function in relation to the
total execution time of the functions in the top row of the graph. This makes it eas-
ier to identify critical code paths that are worth investigating for further optimization.
Some functions in the kernel, especially helper functions, are called very frequently from
various functions. As this can influence the comprehensibility of the graph, they are
filtered. In the filtered example graph in Fig. 8.2, the functions starting with fw_pipe_
and _raw_ were filtered. The runtime of the filtered function is still part of the total
runtime of the calling functions. Therefore, the critical code path stays recognizable.

The most significant drawback of the presented approach is the required simulation time.
Depending on the number of cores and activity in the simulated system on a current
simulation host, the simulation of one real time second can reach from minutes up to
days. The situation is aggravated by the fact that the gem5 simulator in its current
implementation only allows a sequential simulation and, therefore, cannot profit from
a multi-core system.

8.5 Scalability and Contention

The requirement of scalability was introduced in Section 3.2 and further elaborated in
Section 6.1. The goal of the experiment presented in this section is to show that it is
possible to build a scheduler with the CoBaS framework that can handle up to hundreds
of cores and does not suffer from contention. This claim is proven by quantifying the
impact of scalability and contention issues and that it is possible to eliminate them. The
measurements are acquired with a topology that is configurable regarding its input pipes
and the computation time of the scheduling algorithm. Configuring the topology with a
single input Pipe would resemble a system that is completely centralized and, therefore,
greatly suffers from contention. Configuring the topology with the same number of
input Pipes as PEs resembles a system with minimal potential for contention. It has to
be expected that, with a many-core system, the execution of several code paths of the
scheduler framework will be slowed down due to the higher degree of contention, whereas
this contention should significantly decrease with the fully scalable configuration.

8.5.1 Experimental Setup

The experiment described in this section uses the Topology depicted in Fig. 8.3. It
consists of one Load-Balancing Component that has p ingoing Pipes, where p is the
number of the PEs of the benchmarking machine. Furthermore, one instance of a Burn
Component is connected to every ingoing Pipe of the Load-Balancing Component in-
stance. The Burn Component instances are used to emulate the computational overhead
of a real scheduling algorithm. They use the function presented in Listing 8.2 to burn
CPU cycles through busy waiting that would, in a real, more sophisticated schedul-
ing algorithm, be used to compute the task order. The number of waiting cycles for
the Burn Components is adjustable through a notification. The Topology furthermore
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Listing 8.2: The loop used to emulate a workload.

for(int c=0 ; c<work_cycles ; c++) {
__asm__ __volatile__("");

}

includes an Affinity component that tracks the affinities of every task and is used by
the load-balancing component to determine feasible PEs. Finally, the Topology also
includes a Marker Component that has no functional purpose, but allows to place a
mark in the function call-graph of the kernel. All of the used components are described
in more detail in Appendix A.1.

The Topology used in this experiment is adaptive in a way that it allows to adjust the
number of active ingoing Pipes. The adaptation is triggered by a notification that can
set the number of utilized ingoing Pipes to an arbitrary number between 1 and n. That
means if the number of ingoing Pipes is set to 1 in the one extreme, all PEs have to
share the same Pipe for submitting tasks to the CoBaS framework, whereas, when in
the other extreme the number of ingoing Pipes is set to n, every PE has a dedicated
Pipe for task submission.

The experiments were conducted in two different environments: a simulated one and a
real system. The simulation scenario used the gem5 simulator with the tracing technique
presented in Section 8.4. The experiments with the real system were conducted on the
system summarized in Table 8.5. All experiments of this sections used the CoBaS
implementation for the Linux kernel v4.4. The real system used a Gentoo userland. The
simulated system used a fully automated, Busybox based userland that received the
experimental parameters through the kernel command line.

Load-
Balancing

Burn

Burn

Burn

Burn

PE 0
PE 1

PE n-1
PE n

• • •

Pipe 1

Pipe 2

Pipe p-1

Pipe p

•
•
•

Affinity Marker

Figure 8.3: The Topology used for the scalability evaluation of the CoBaS
framework. It can be adapted to use between 1 and p ingoing
Pipes, where p has to be equal or smaller the number of PEs.
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Table 8.5: System configuration used in the scalability experiments.

Architecture x86_64
Microarchitecture AMD Abu Dhabi
Model AMD Opteron 6386 SE
Clock Rate 2800 MHz
Sockets 4
NUMA-Nodes 8
PEs 64
Memory 128 GB

8.5.2 Experiment Execution

Figure 8.4 depicts an exemplary call-graph generated from one of the experiments
using the technique described in Section 8.4 as an orientation for further analysis. The
functions __schedule and activate_task are part of the Runtime System Adapter
for the Linux kernel. They are the main scheduling functions that are called by the
kernel. The activate_task function is called when a task gets either unblocked or is
woken up for the first time. The __schedule function is called by the Linux kernel
when a new task has to be selected for a specific PE. This can be the case when either
a task is blocked or a scheduler tick occurs and a task has to be relinquished. The
other functions depicted in Fig. 8.4 are all part of the framework. Most of the functions
are self-explaining by their name. The fw_notify function is the main interface of the
CoBaS Broker as all notifications are submitted via this function. As the call-graph
indicated, the notification system is also used by the CoBaS framework internally to
trigger task state transitions. Internal functions are prefixed with __fw, while functions
also available to Components are prefixed with fw. Functions that have another prefix
are part of a Component, i.e., burn_pipe_update is the Pipe update function of the Burn
Component and lb_pipe_update is the Pipe update function of the Load-Balancing
Component.

For the real system, the function tracer ftrace of the Linux kernel was used to acquire
the call-trace needed to create the call-graph. Even though ftrace is capable of collecting
more information about the function calls as it has access to the call stack, it has other
downsides compared to the gem5 traces. The first and most noteworthy difference is
that it cannot trace all functions in the Linux kernel as it is part of the kernel itself.
This applies especially to the central Linux scheduler function that is excluded from
ftrace. Therefore, it was not possible to track the whole scheduling code path, but still
the relevant parts for this experiment that lie inside the framework. Second, as the
measurements generate much information in a very short time, either the measurements
have to fit into main memory or certain function call events have to be dropped. As
the latter is not acceptable for the purpose of this experiment, the simulation time was
very limited. The third disadvantage of ftrace is that, caused by the mechanism used
for the tracing, every function call takes an additional amount of time as it needs to be
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recorded. This is particularly the case when looking at relatively short functions. This
impact can be significant as the recording of the function call can take several times
longer than the function execution itself.
With the gem5 simulator, five different configurations were simulated: a 16 core, a
32 core, a 64 core, a 128 core, and a 254 core x86-64 machine. 254 Cores represent the
current limit of the gem5 simulator as the used APIC only supports 256 interrupt lines,
two of which are already reserved. With each simulated machine size, the performance
was evaluated for 0, 500, 1000, and 2000 loop iterations in the Burn components. Each
loop iteration accounts for 2500 simulator ticks, five clock cycles of the simulated CPUs,
or 2.5 ns real time. Therefore, the real time delay is 0, 1.25 μs, 2.5 μs, and 5 μs respectively.
The same four experiments were conducted with the real machine and traced with ftrace.
To determine the scalability of the CoBaS framework, the scheduler subsystem needed
to be stressed during the measurement. To stress the scheduler subsystem, the hack-
bench benchmark was used. Note that hackbench was only used to generate a high load
on the scheduler subsystem and not for using it as benchmark measure. In both environ-
ments, the benchmark was run with 100 groups each with 20 senders and 20 receivers
communicating via pipes 100 times with each other resulting in 4000 tasks in total.
The call trace was marked via the Marker Component to indicate when the benchmark
started. That allows only to consider the function trace of the time the benchmark ran
and allows the analysis of the system in the high-stress situation without being biased
by the low load situation during the system boot.

8.5.3 Experimental Results

The results of the experiments for 64 PEs are presented in Fig. 8.5 for the gem5
experiments and in Fig. 8.6 for the real machine summarized in Table 8.5. The diagrams
present the runtime both in terms of simulation ticks (left y-scale of each diagram) and
the resulting real time (right y-scale of each diagram). For an improved readability, the
results for 16, 32, 128, and 254 PEs are moved to Appendix B.1 depicted in Figs. B.1
to B.3 on Pages 150 to 152. Because of the high computational complexity of the
simulation for the 254 PEs experiment, it was not possible to collect results for 2000 loop
iterations. The diagrams show the average number of cycles required to process the
respective functions. For each measurement, the average values are shown, as well as
the confidence interval for a confidence level of 95 % in a Student’s t-distribution. As
most of the confidence intervals are very small and therefore hard to illustrate, the data
collected during the experiments and used to generate the diagrams is summarized in
Appendix B.1 as well in the Tables B.1 to B.16 on Pages 154 to 167.
The results show that, as expected, when several cores try to access the same Pipe,
the system congests. In fact, the congestion is even so severe that once more than
32 PEs access one Pipe, it was not possible to gather meaningful measurements as
most of the time was spent in the scheduler, resulting in almost no progress of the
workload. Moreover, the results show that, in all functions depending on Pipe pro-
cessing (fw_dispatch, fw_relinquish, and fw_unblock), the overhead drops signifi-
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cantly because of the lock contention on the Pipes as soon as the number of Pipes
increases. In consequence, the same applies to the Runtime System Adapter functions
(activate_task and __schedule) that depend on those framework functions. The de-
gree of contention also depends on the time that is required for each Pipe update. For
example, with zero burn cycles, the contention already reaches a low level when less
than 16 PEs have to share one Pipe, whereas with 2000 burn cycles this process starts
below 8 PEs per Pipe.

At first sight, the results of the fw_admit function do not seem to fit the remaining
results. Even though it also depends on the processing inside the Pipeline, it only
shows indication of contention when 16 or more PEs are accessing the same Pipe in the
gem5 simulation, while in the real x86 system, the behavior seems to be promiscuous.
In the gem5 case, the results are explained by the inner workings of the hackbench
benchmark. It forks all children in the very beginning. That means that at that point
all other cores of the simulated machine are idle; there is no contention on the scheduler
system. Therefore, the task admittance does not compete with other PEs that want to
use the scheduler subsystem. The competition and therefore possible congestion starts
only after some time, when the benchmark has already spawned most of its children.
Besides the tasks spawned by hackbench, no significant number of other tasks is spawned
that might influence the results. That this reasoning is sound is backed by the fact
that not substantially more than 4000 task admittances are recorded in the task trace
(cf. Tables B.1 to B.16 in Appendix B.1).

The situation with the results gathered by the ftrace tool is different and a result of
the biggest drawback of the measurements collected by ftrace. Through the way it
works, ftrace introduces an additional noise into the measurements as it takes extra
time for every function to execute and finish. That can be observed when comparing
the relative distance of the curves in the diagrams in Figs. 8.5 and 8.6 with each other.
The distances for the ftrace results are much smaller than for the gem5 results. This
is caused by the ftrace overhead that makes the overhead posed by the Pipe functions
less significant. Because of that, the results for the fw_admit function in Fig. 8.6 show
more differences in the processing of the ftrace tracking than the differences caused by
the CoBaS framework.

The graphs in all but the fw_admit functions are not completely monotonic. This
can be explained by the fact that the runtime changes are based on lock contention
and, furthermore, the lock contention is not completely deterministic. It depends on
two or more PEs accessing the same mutual exclusive data or code path, which is a
random process. As a result with a small but none zero probability, it is possible that
the observed experiment is not close to the average and causes the spikes. However, as
the simulator itself is completely deterministic, it will create the same conditions that
lead to the results, therefore, repeating the experiment will not result in a different
measurement. This reasoning is backed by the results gathered on the real system that
does not suffer from that necessitarianism and does not show these severe spikes.
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8.5.4 Discussion of the Results

The experiments of this section have shown that a scheduler that suffers from contention
cannot be used in a system with dozens or hundreds of cores. With such a scheduler,
the system is completely occupied by the scheduling routine and cannot perform any
productive work. The situation greatly improves once it is possible for several PEs to
execute the scheduling code concurrently. The results indicate that it is possible to
build such a scheduler based on the CoBaS framework as the time spent in the scheduler
drops more than linear once a scalable topology is used. The experiments of this section
have shown that the CoBaS framework is capable of scaling for systems up to 254 cores
and they give no indication that a scaling beyond that number of cores is not possible.
Therefore, it can be concluded that CoBaS is suited for many-core systems and it is
possible to implement scalable schedulers regarding the number of cores with it.

8.6 Composition Overhead

The CoBaS framework allows the construction of a sophisticated scheduling policy from
several Components. However, having a processing of a complex algorithm distributed
among several Components introduces an overhead as information or, to be more precise,
the task orders have to be moved from one component to another. The goal of the
experiment presented in this section is to quantify this overhead. The quantification is
done by dividing an artificial computation that emulates a schedule computation among
several Component instances. The resulting processing time is then compared to the
processing time needed to perform the computation in a single Component instance.

8.6.1 Experiment Description and Setup

To determine the overhead of dividing a workload that emulates a scheduling algo-
rithm between several Component instances, a Topology as depicted in Fig. 8.7 was
created. To simulate the workload, an approach similar to the Burn Component from
the previous section was used. However, to be able to distinguish the different stages

Depth Depth Depth Depth• • •

Marker

Stage 0 Stage 1 Stage n-1 Stage n

Figure 8.7: Topology used for the evaluation of the composition overhead.
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of the Pipeline from one another, the Burn Component was extended in a way that it
can be configured during instantiation according to the supposed name of the update
function. This Component will be denoted as Depth Component. The experiment was
conducted with the gem5 simulator and hackbench as stress for the scheduler subsystem
also similar to the previous section. Pipeline depths reaching from one to six Compo-
nent instances were evaluated with various computation workloads for the emulated
scheduling algorithm. The processing times of the depth_pipe_update_stage_0 func-
tion were collected for all experiments as they do not only include the processing time
of the depth_pipe_update_stage_0 function itself, but also all subsequent component
instances. The Marker Component was also used in this experiment to narrow the trace
down to the time during the high-stress situation of the scheduler subsystem similar to
the previous section.

As the differences in processing time were expected to be very small, the experiments
were only conducted with the gem5 simulator as it allows a very precise quantification
of how much time was spent in which function. That would not have been the case
with in-system tracing approaches with the introduction of a bias. The simulated
system consisted of only one core as it is sufficient to determine the overhead. The
experiments used the same Busybox based userland as in the previous section as well as
the hackbench benchmark to stress the scheduler subsystem. However, only 25 groups
were used, reducing the number of threads to 1000. This was sufficient to stress the
scheduler of a single-core machine.

Again, similar to the previous section, an exemplary call-graph is given as an orienta-
tion in Fig. 8.8 generated from an experiment with four stages. The upper part of the
call-graph represents the framework function as explain in the previous section. The
lower part of the call-graph illustrates the chain of Pipe updates of the Depth Com-
ponent instances with their update functions depth_pipe_update_stage_0 through
depth_pipe_update_stage_4. Each task is handed through the different Depth Com-
ponent instances.

8.6.2 Experimental Results

The experimental results are summarized in Fig. 8.9. It shows the ratio between the
processing time of the various Pipeline lengths and the processing time with only one
Component instance in the Pipeline. The exact measurements are in the appendix in
Table B.20 on Page 171. The results in the appendix also show the overhead for no
workload, which poses the worst case scenario, as it cannot be illustrated in Fig. 8.9
with a logarithmic scale. Looking only at the Pipeline itself, without workload, the
Pipeline with six instances would also take six times the amount of time to complete.
However, as the Pipeline is not the only part involved in scheduling, this is not the
case for the measurements; therefore, in the worst case scenario with zero work, the
ratio is smaller. The experimental results also show that the additional processing time
with more instances becomes more and more insignificant the more work has to be
completed.
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Figure 8.8: Exemplary call-graph of the overhead experiment with four
stages.
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However, even in the worst case, the scheduler overhead is rather small putting it into
relation with the total runtime of the experiments. For example, the total runtime of
the experiment with zero work and six Pipeline stages was approximate 1.222 · 1012

simulation ticks. Taking the difference of the values from two processing stages in
Fig. 8.9, the composition overhead is the following (all times in simulation ticks):

total overhead ≈ 20.62 · 109 − 16.80 · 109

1.222 · 1012 − (20.62 · 109 − 16.80 · 109) ≈ 1.66 · 10−3 = 1.66 %�

Measuring this small overhead was mainly possible through the simulation of the system.
In a real system, the overhead would most likely be smaller than the measurement
uncertainty.
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8.6.3 Discussion of the Results

Looking at the overhead of dividing the task ordering among several Component in-
stances shows two different pictures. On the one side, for the relative processing time
in the scheduler itself, the partition can create a significant overhead. This is especially
true when having a scheduling algorithm with a low computational complexity dis-
tributed over several components. However, subdividing the algorithm between several
components also opens the opportunity of parallel execution that can lead to a reduced
contention in multi- and many-core systems as shown in the previous section. Moreover,
looking at the overall system, the overhead rather small as the scheduler contributes
only in a small fraction to the overall system load. Finally, it should be noted that the
used scenario poses a very high-stress situation for the scheduler that is probably very
rare in real world scenarios. Therefore, the results of this evaluation can be treated as
a worst-case approximation.

8.7 Performance Evaluation

While the previous experiments focused on the properties of the CoBaS framework
itself, this section evaluates the impact of CoBaS on real world scenarios. As most
benchmarks are sensitive to the actual employed scheduling policy, this section can only
give an idea how the CoBaS approach will perform in actual productive systems. Still,
it is possible to assess, whether it is feasible to use CoBaS in real world systems.

8.7.1 Experimental Setup

To evaluate the real world performance of CoBaS, a smaller machine compared to
Section 8.5 was used. The machine used in Section 8.5 is a module based CPU design17

with eight NUMA domains. Having only basic scheduling algorithms available for
CoBaS today, it can be expected to result in a poor performance that does not reflect

Table 8.6: System configuration used in the performance evaluation.

Architecture: x86_64
Microarchitecture: Intel Sandy Bridge
Model: Intel Core i7-2600
Clock Rate: 3400 MHz
Sockets: 1
NUMA-Nodes: 1
PEs: 8 (4 cores with SMT)
Memory: 8 GB

17Refer to Section 1.2.1 for issues regarding the scheduling on this particular design.
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shortcomings in the CoBaS architecture but in the used scheduling policy. In order to
reduce the impact of the scheduling policy, the machine summarized in Table 8.6 was
used. Even though it has Simultaneous Multithreading (SMT), it seems feasible that a
simple scheduling policy can manage the machine.
To benchmark the CoBaS framework, the Numerical Aero Dynamic Simulation (NAS)
parallel benchmarks suite [14, 15, S27] and hackbench benchmark were used. The NAS
benchmark suite consists of several micro-benchmarks resembling typical computational
problems appearing in science (Table 8.7). The benchmarks are available in increasing
problem sizes: S, W, and A through E. However, not every benchmark is available in the
bigger sizes. As they are only intended for test purposes, the small S and W input sizes
were not evaluated. Furthermore, because of the memory requirements of the larger
problem sizes, only problem sizes up to B for FT and MG, and problem sizes up to C for
the other benchmarks were measured. For the evaluation, an OpenMP implementation
of the benchmark suite was used (cf. Jin et al. [83]). The benchmarks were executed
with eight concurrent threads, matching the number of PEs of the machine.
The hackbench benchmark was already used in the previously presented experiments;
however, it was only used to create stress on the scheduler subsystem. In this evaluation,
it is used to benchmark the scheduler performance. As the benchmark outputs its
runtime with an accuracy of only 10 ms, the number of loops was raised to 10 000 from
the default of 100 to increase the benchmark’s runtime. The number of communication
groups varied between 1 and 256 with the number of groups being a power of two. This
results in 40 up to 10 240 concurrent threads.
The CoBaS scheduler used the Topology depicted in Fig. 8.10. As comparison, the
Completely Fair Scheduler (CFS) was benchmarked. A Gentoo userland was used with
a vanilla Linux kernel v4.4 for the CFS benchmarks and the modified Linux kernel v4.4
with the CoBaS prototype implementation for the CoBaS measurements. The execution
of each benchmark was repeated 50 times.

Table 8.7: Overview of the used NAS benchmarks.

Name Description Computational Challenge

BT Block Tridiagonal Floating point performance
CG Conjugate Gradient Irregular communication
EP Embarrassingly Parallel Floating point performance
FT Fast Fourier Transform Long-distance communication
IS Integer Sort Integer performance

LU Lower-Upper symmetric
Gauss-Seidel Regular communication

MG Multi Grid Regular communication
SP Scalar Pentadiagonal Floating point performance
UA Unstructured Adaptive Irregular communication
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8.7.2 Experimental Results

The results for the NAS benchmarks are summarized in Fig. 8.11 and the results for
the hackbench benchmark in Fig. 8.12. The mean of the absolute runtimes for the
benchmarks is summarized in Tables B.21 and B.22 in the appendix on Page 172
together with a 95 % confidence interval in a Student’s t-distribution.

The results show a slight speedup of the CoBaS based scheduler compared to the CFS for
the LU benchmarks with input size B. For all other evaluated benchmarks in the NAS
benchmark suite, a slowdown of up to 8 % can be observed. However, with exception
of the BT, CG, and UA benchmarks with input size A, the slowdown is close to or
even below 1 %. Looking even closer, the confidence intervals suggest that the difference
might not even be statistically relevant for most of the benchmarks. The situation
is different for the hackbench benchmark. There, the CoBaS scheduler experiences a
slowdown of approximately 15 % only for the smallest group size. For the other group
sizes, the CoBaS scheduler has a speedup factor of up to 1.8 compared to CFS.

8.7.3 Discussion of the Results

There is a mixed picture for the results. For the NAS benchmark, the CoBaS based
scheduler causes a slight performance degradation, while in the hackbench benchmark
it is superior. Based on the results, it can be concluded that it is possible to construct
a performant scheduler with the CoBaS architecture. However, the results also show
that the performance strongly depends on the actual scheduling policy. For example,
the performance degradations in the NAS benchmarks are most likely caused by the
inferior consideration of cache affinity of the CoBaS implementation compared to the
CFS. In order for a task to have the chance to have remaining data in the cache after re-
scheduling, the load-balancer implemented for CoBaS only tries to schedule an arriving
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Figure 8.10: Topology used for the CoBaS performance evaluation.



126 8 Quantitative Evaluation

BT CG EP FT IS LU MG SP UA

0.92

0.94

0.96

0.98

1

NAS Benchmark
Sp

ee
du

p
C

F
S

C
oB

aS

Input Size A
Input Size B
Input Size C

Figure 8.11: Speedup of the CoBaS scheduler in relation to the CFS sched-
uler for the NAS benchmark suite.

1 2 4 8 16 32 64 128 256

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Hackbench Groups

Sp
ee

du
p

C
F

S
C

oB
aS

40 80 160 320 640 1280 2560 5120 10240
Total Number of Threads

Figure 8.12: Speedup of the CoBaS scheduler in relation to the CFS sched-
uler for the hackbench benchmark. The lower x-axis is labeled
by the number of groups, while the labeling of the upper x-axis
shows the corresponding number of threads.



8.8 Scheduler Adaptation 127

task once at the PE it was executed last. The the CFS has a more sophisticated strategy
for that purpose that increases the chances to still find data in the cache. The hackbench
benchmark, contrary to the NAS benchmarks, has almost no cache dependencies and,
based on its simple communication pattern, profits most likely from the round-robin
scheduling policy. Furthermore, does the CoBaS scheduler implementation not consider
the special requirements for scheduling in an SMT system, where tasks scheduled on a
single SMT sibling can influence each other.

8.8 Scheduler Adaptation

The necessity for the scheduler to be adaptive to the system was specified in Section 3.3.
The argument primarily focused on the adaptability towards the system architecture.
This aspect was already partially discussed earlier in this chapter in Section 8.3. However,
the adaptability and reconfiguration of the scheduler also allow it to be adapted to
the workload. The goal of the experiment presented in this section is to show how an
adaptive scheduler can improve the system performance. The benefits are shown by a
workload that reconfigures the scheduling policy according to its needs.

8.8.1 Experiment Description and Setup

The experiment assumes a simple workload that works in two phases through a pro-
cessing pipeline, where each stage is an individual thread. First, it works through the
pipeline forward; the second thread waiting for the first one, the third for the second
and so on. In the second phase, the same pipeline is processed backward; the last thread
is waiting for the second last, the second last for the third last and so on. The threads
synchronize through a spinlock. The runtime of this workload is evaluated with three
different scheduling strategies. First, with the vanilla Linux scheduler that implements
the CFS strategy. Second, with a simple round-robin scheduling, using the CoBaS
framework. Moreover, third, with an adaptive scheduling in CoBaS that first employs
a FCFS scheduling strategy and is reconfigured to a LCFS strategy before the second
phase begins (cf. Fig. 8.13). The workload is executed on a single core; therefore, the
threads of the application are scheduled to the same PE. The experiment was conducted
with 1 to 128 threads and the resulting runtime was measured for 100 runs. The exper-
iments were carried out on the machine as the previous experiment (cf. Table 8.6 on
Page 123). However, SMT and dynamic frequency scaling were deactivated to minimize
the variances between measurements. A Gentoo userland was used with a vanilla Linux
kernel v4.4 for the CFS benchmarks and the modified Linux kernel v4.4 with the CoBaS
prototype implementation. The threads used the same loop as presented in Listing 8.2
in Section 8.5 on Page 112 to emulate a workload. Three workload scenarios were
evaluated: a small workload with 100 loop cycles, a medium workload with 106 loop
cycles, and a high workload with 109 loop cycles.
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8.8.2 Experimental Results

The experimental results are summarized in Fig. 8.14. The data acquired during the
experiment and used to generate the diagrams is summarized in the appendix in Ta-
ble B.23 on Page 173. The upper row of the Figure depicts the absolute runtimes of the
experiments for the three scheduling strategies and workloads per thread. The lower
row illustrates the ratio between the optimized scheduling policy and the two other
scheduling policies. Note that for the high workload experiment the results of the vanilla
Linux CFS scheduling and CoBaS Round-Robin scheduling are highly overlapping.

For the high-workload scenario, the optimized approach is strictly superior to the other
two scheduling approaches. In the two other scenarios, the situation is more diverse. The
first thing that is unusual are the results of the CFS policy for one processing thread. For
both the low and medium workload scenario, the runtime is several orders of magnitudes
lower than the other scheduling policies. Two reasons explain this behavior: First, CFS
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benchmark is exclusively executed on the PE 3 and subject to
the scheduling policy of the lower Component instance (green).
The scheduling policy is changed from Head Queue to FCFS
to LCFS and back to Head Queue
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is optimized for responsibility; therefore, the newly created task is instantly scheduled
to the CPU, whereas no such optimization exists in the CoBaS policies. Second, the task
creation process is faster in the vanilla Linux scheduler. As explained in Section 8.1.3, a
significant amount of code from the original scheduler, especially regarding task creation,
was reused for the CoBaS prototype, therefore adding only additional creation overhead.
However, the advantage of CFS vanishes already when considering two pipeline stages.
From that point on, CFS is at best equal to the other strategies.

Even though the optimized CoBaS scheduler shares the same task creation overhead with
the CoBaS round-robin scheduler, it performs worse for the lowest number of threads
both in the low and medium workload scenarios. This behavior can be explained by the
additional overhead required to reconfigure the scheduler Topology. In fact, for the low
workload scenario, this overhead is prevailing over the processing time up to 32 threads
for the low workload scenario as the total program runtime is constant until that point.
However, the optimized strategy is better than the two other strategies even with this
additional overhead.

8.8.3 Discussion of the Results

This experiment has given an example that shows that CoBaS can vastly improve the
processing time of specific workload scenarios. The optimized scheduling strategy makes
use of the property of CoBaS to be able to modify the scheduler at runtime. It has to be
emphasized that the used modification goes beyond a reconfiguration of the system as
the used scheduling strategies would not necessarily have to be already present in the
system. They could also have been loaded during the runtime of the system. With this
property, it would be possible to create and implement scheduling strategies specifically
tailored to concrete problems. It can be expected that this approach can be used in more
relevant and complex real-world scenarios that benefit from an optimized scheduling.

8.9 Foreign Language Components

Contrary to most other scheduler systems, CoBaS has a well-defined set of interfaces
that should make it easy to adapt it to specific runtime systems. However, the interface
set should also make it easier to implement Components in arbitrary languages. In
Section 6.4, it was already discussed how hardware-based Components might be inte-
grated into CoBaS with FPGA technology. The main goal of this section is to show
the feasibility to implement CoBaS Components with programming concepts different
from its main language. This section studies the integration of a Component written
in a language other than C or its relatives, namely Rust.

The Rust programming language was already discussed in the decision for the main
programming languages of the CoBaS prototype at the beginning of Chapter 7. Even
though it was discarded as main programming language there, it is still interesting
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as a study object for system programming. The purpose of this section is to research
the challenges when implementing a Component in Rust and evaluating the possible
overhead during execution. Therefore, Section 8.9.1 starts with an explanation of the
main steps to implement and obstacles that occurred when implementing a CoBaS
Component in Rust. Section 8.9.2 describes an experiment conducted to evaluate the
overhead of a Rust based component. Finally, the last subsection discusses the result
of the experiment in detail.

8.9.1 Implementation Details

Even though Rust was designed as system programming language and requires no special
runtime system, bare-metal support is limited, though it is steadily increasing. Also,
documentation regarding bare-metal implementations are still limited; yet, a simple
operating system – Redox [S32] – that was implemented in Rust and an example for
Linux kernel module written in Rust [S37] exist. Both examples were helpful to solve
technical problems creating a CoBaS Component in Rust like, e.g., how to compile and
link the code or how to handle the mapping of primitive variables or a void pointer.

The first challenge to implement a Component is the way it can access the functions
offered by the framework. As the interface of CoBaS for Components is limited and
well defined in the form of header files, it was possible to almost entirely automatically
generate the interface with rust-bindgen [S36]. One challenge using rust-bindgen was
that it parses all include files. The way the CoBaS prototype is built would also include
the source files of the runtime system. As the Component is supposed to be independent
of the runtime system, including an arbitrary one was not an option. Therefore, a new
zero runtime system target was introduced that maps functions and types to a default
value. With the zero target, it was possible to generate a binding that needed only
minimal manual adaption regarding the module that contains the primitive types.

Another challenge was the dependence of the CoBaS prototype on the C preprocessor.
The issue shall be explained on the example of a list. The CoBaS prototype uses
an implementation for generic lists in C that is also employed in the Linux kernel
as explained in Section 7.1.2. A structure is linked into a list by adding a list head
structure that contains the usual pointers one expects from a list element. The list is
then constructed by linking those list heads. To retrieve the actual data of a list element,
a preprocessor macro is used that calculates the address of the list element based on the
address of the list head and its position in the list element [cf. 28, pp. 87–89]. The offset
is computed by the preprocessor at compile time. This implementation of a list is both
efficient in performance and code reuse; however, it is not straightforward to be ported
to other programming languages. This became an issue in the Rust implementation
of a CoBaS Component as this facility is used, e.g., to retrieve the private part of the
TCB. There are two general ways to cope with the issue. The first one would be to call
a C function when a TCB has to be retrieved; the other one is to hand the offset over
during the instantiation of the Rust Component. As the position of the private TCB is
not supposed to change, the latter approach was chosen for locks.
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8.9.2 Experiment Description and Setup

To evaluate the overhead of a Rust based Component, two Components that perform
the minimal functionality of a CoBaS Component, namely moving tasks from an in-
going Pipe to an outgoing Pipe, were implemented both in C and Rust. The C-based
component is called Head Queue and the Rust based component is called Rusty. With
those two Components, a simple Topology as depicted in Fig. 8.15 was created that
uses a Head Queue instance for PEs with an even ID and a Rusty instance for PEs with
an odd ID. Furthermore, a Load-Balancing Component was used in conjunction with
an Affinity Component to distribute tasks among the PEs. A Marker Component was
used to mark the begin of the experiment in the call-trace. All of the used components
are described in more detail in Appendix A.1.

As the differences in processing time are expected to be very low, similar to Sections 8.5
and 8.6, the gem5 simulator was used to measure the execution time of the system
functions. A system with two cores was simulated resulting in a setup in which the
scheduling of the processes for the first core has to run through the Head Queue
Component and the one for the second core through the Rusty Component. To acquire
the call-graph, the scheduler subsystem was stressed in the same way as described in
Section 8.6.

8.9.3 Experimental Results

The experimental results are depicted as a call-graph in Fig. 8.16. The notation of the
graph is the same as described in Section 8.5. The function hq_pipe_update is the Pipe
update function of the Head Queue Component instance and the rust_pipe_update
function of the Rusty Component instance respectively. The results show that the
average execution of the Pipe update takes 24.64 % longer in the Rust based Component
than in the C based Component even though both Components perform the same task.

Load-
Balancing

Head
Queue

Rusty

Head
Queue

Rusty

• • •

PE 0

PE 1

PE n-1

PE n

•
•
•

Affinity Marker

Figure 8.15: Topology used for the evaluation of the Rust based Component.
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Even though this overhead seems very high at first glance, looking at the total times
relativizes that. As the total time that is covered by the call-graph is approximately
1.198 · 1012 simulation ticks, the total overhead regarding the entire system with kernel
and user space execution of the rust_pipe_update function is rather small and can be
quantified as following (all times in simulation ticks):

total overhead ≈ (367.53 · 103 − 294.87 · 103) · 7897
1.198 · 1012 ≈ 4.78 · 10−4 = 0.478 %�

Looking closer at the call-graph, the overhead can be split into several aspects. The first
one is the use of the Option type [163] that is frequently utilized in the Rust language as
return type if the return value is possibly undefined like, e.g., a NULL pointer. Accessing
the wrapped value requires an explicit unwrap function call that accounts for 5.44 % to
the execution time of the update function of the Rusty Component. The next cause for
the additional overhead can be identified by pointer arithmetic. In Rust, a call to the
offset function is necessary, which accounts, according to the call-graph, for another
2.31 % of the execution time of the update function. Even though in C this would also
require an addition or subtraction, it would not take 17 clock cycles compared to the
function call in Rust. Finally, the last visible overhead is introduced by an additional
function wrapping of a CoBaS call. As discussed above, Rust cannot make use of the
preprocessor. Therefore, some functions might have to be wrapped. For this experiment,
the lock and unlock functions were wrapped to assess the overhead. The call-graph
shows that it takes an additional 8000 simulation ticks or 16 clock cycles to acquire
the lock. The overhead for unlocking the spin lock cannot be precisely determined as
the unlocking logic was inlined into the wrapper function. However, the execution time
of the unlock wrapper takes less time than the call of the locking wrapper. This can
be explained by the fact that, through the inlining, the construction of a complete call
stack is avoided. The discussed functions only cover approximately half of the observed
overhead of the Rust based component. The remaining overhead can be explained by
the overhead introduced by building the call stack for the just discussed functions and
other Rust internals like a different switch case handling.

8.9.4 Discussion of the Results

The case study has shown how CoBaS allows the use of other programming functions
to easily implement partial scheduling decisions. Because of the limited framework
interface, it is easier to create a bridge between the framework written in C and a
foreign programming language. This separation makes it also plausible that a CoBaS
Component might be implemented in a FPGA. Even though the bridging introduces
some overhead, it might be worth accepting it as a more modern or domain specific
programming language might make the development less error prone, easier to test, and
easier to maintain.



CHAPTER9
Conclusions

This dissertation was set out to explore a novel approach to process scheduler design. The
introduction and problem analysis expressed the motivation for that research: Computer
architecture is changing dramatically and is becoming more and more heterogeneous,
while the pace of that change is increasing drastically. This introduces two challenges
at the same time that have contradicting solutions. On the one hand, the scheduler
has to evolve faster to keep up with the pace of changes; on the other hand, it has to
become more and more sophisticated to cope with complex architectures. These two
solutions are contradicting in a way that the development process is losing momentum,
when the system becomes bigger and more complex. Without changes to the scheduler
architecture as it is common today, it would not be possible to cope with the future
challenges.

With the CoBaS framework, this dissertation introduced a new architecture for process
schedulers that solves theses issues. The component-based architecture and dynamic
properties of the CoBaS framework enables developers and researcher to address the
challenges introduced by new hardware architectures and computing concepts in a
timely manner. The component-based approach also enables a high degree of reusability
that is even further improved by simple means to integrate the framework into existing
runtime systems. Using the framework approach makes it easier to use specific scheduler
implementations in multiple runtime systems, requiring only the port of the framework
and not of each individual scheduler implementation. The claims of the dissertation
were substantiated by an extensive qualitative and quantitative evaluation. They have
shown that the CoBaS architecture can scale for a high number of cores, has a justifiable
overhead regarding the whole system, and can compete in real world scenarios with a
native scheduler implementation.

This chapter concludes this dissertation. It starts in Section 9.1 by revisiting the claims
initially stated in Section 1.4 and verifying that each of them has been addressed.
Sections 9.2 and 9.3 are discussing strengths and weaknesses of the approach of the
CoBaS framework respectively. Finally, the last section concludes this dissertation by
discussing directions for future research.

135
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9.1 Contributions Revisited

The introduction outlined the four main contributions of this dissertation in Section 1.4.
This section revisits each of them and discusses them in the context of the previous
chapters. Every subsection addresses one of the contributions with a brief review.

9.1.1 Heterogeneous Many-Core Support

Heterogeneous many-core systems introduce two challenges for the scheduler: on the one
hand, the sheer number of cores, on the other hand, the different properties and execution
models. Section 8.5 has shown that the CoBaS framework scales even for hundreds of
cores. This suggests that it is feasible to implement meaningful scheduling algorithms for
many-core systems encapsulated in the CoBaS framework. The Topologies used in the
framework enable an easy identification of the information flow and the identification
of possible bottlenecks.

The generic task model of the framework keep the architecture inside the boundaries
of a specific execution model. This allows the management of arbitrary kinds of PEs.
The CoBaS architecture ultimately puts the operating system in a position where it
can finally manage all available resources by itself again.

9.1.2 Adaptability

Through its component based approach and its Topologies, the CoBaS framework is
highly adaptable to new requirements. The architecture allows to modify the scheduler
even at runtime. The benefits of this capability have been demonstrated through an
experiment that has shown that the adaptation of the scheduling policy can result in
a significant performance improvement. Furthermore, the reusable Components allow
the fast creation of a new scheduler through existing partial solutions. In combination
with its message broker system, the CoBaS architecture can react to changes both in
requirements and in hardware facilities.

9.1.3 Composability

Composability is the foundation of the CoBaS framework with its component based
approach. Components in the CoBaS framework have two main facilities that enable
composition: Pipes and the Broker. Pipes allow a CoBaS Component to manipulate
the order of tasks and the assignment to a PE. Section 5.8 has given a dissection on
the properties of Components and a classification that gives a coarse reference whether
specific Components are composable with each other or not. It was especially the study
in Section 8.8 that has shown how a specific working set can profit from a composable
scheduler.
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The composability significantly facilitates the reuse of existing implementation parts.
Without composability, the reuse of existing implementations for CoBaS would be
limited to the whole scheduler implementation and not to smaller parts. The experiments
in Chapter 8, for example, greatly profited from the reuse of Components as only a
limited set of Components was necessary to conduct the experiments.

9.1.4 Runtime System Independence

The independence of a scheduler architecture from the underlying runtime system was
discussed in Section 3.4. The necessity for the independence stems mainly from non-
functional challenges like the implementation of a completely new operating systems.
This dissertation has shown that the introduced framework enables the use of existing
scheduler implementations in multiple operating systems. It was used in the Linux and
FreeBSD kernel as main scheduling facility and the adaptation effort was quantified in
means of lines of code.

The evaluation in Section 8.9 has also shown that, through its well defined interfaces,
the CoBaS framework can support foreign programming languages. This suggests that
it is on the one hand possible to create and integrate a DSL for the process scheduler
domain; on the other hand, it seems feasible to augment the process scheduler with a
hardware based acceleration through, e.g., FPGA technology.

9.2 Strengths of the Approach

The CoBaS architecture was designed to cope with the challenges process scheduler de-
sign is facing in the coming years. Its greatest strength is its flexibility and adaptability.
As discussed in the introduction on the example of the introduction of the Bulldozer
architecture by AMD (cf. Section 1.2.1) and the introduction of the big.LITTLE ar-
chitecture by ARM (cf. Section 1.2.2), system software developers struggle to keep up
with changes to hardware architecture. Today, performance gains are mainly achieved
due to an increased number of cores and specialization. Because of the end of Dennard
scaling and limitations through Amdahl’s law, the later option will become the vastly
dominating factor that enables future performance improvements. In order to use such
systems to their fullest potential, the operating system scheduler has to be tailored to
such architectures. With the CoBaS framework, the adaptation to such systems can be
easily facilitated as shown in the evaluation. A new scheduler can be created by reusing
parts of existing solutions. This permits the implementation of changes to the process
scheduler in a timely manner. Furthermore, the encapsulation of the scheduler logic
into a dedicated framework allows the development and implementation of scheduling
policies without extensive knowledge about the specific runtime system. This can make
it easier to test new scheduling approaches and compare them amongst each other in
research.
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The usage of explicit Topologies makes it, especially in the many core scenario, easier
to identify potential bottlenecks. The Topologies allow the explicit and visible assign-
ment of specific scheduling strategies to specific PEs. This does not only simplify the
development process, but also supports a better understanding of the whole scheduler
implementation.
Furthermore, the implementations for the CoBaS framework are portable between dif-
ferent runtime systems that support the CoBaS framework. This makes it easier for
smaller development projects to profit from advances in scheduler design and might
enable diversity among operating systems. Moreover, the framework approach enforces
much cleaner and more precise interfaces than the internal interfaces most current
operating systems provide. By decoupling the scheduler implementation from the un-
derlaying runtime system, the interfaces can be stable over a longer period of time.
This facilitates the development of new implementations and the comprehension of
exiting ones. The evaluation has also shown that the clean interface makes it straight
forward to implement the scheduler in a different programming language than that of
the runtime system. This paves the way for a scheduler implementation in a DSL or
with hardware acceleration.

9.3 Weaknesses of the Approach

The main weakness of CoBaS can clearly be identified in the additional overhead that the
framework introduces into the system. The overhead was quantified for the prototypical
implementation throughout Chapter 8. Even though it has been shown that the CoBaS
architecture scales even for many-core systems, an overhead remains that can, in general,
be considered proportional to the number of used processing instances. The overhead is
inherent to the system and cannot be eliminated as a separation and the introduction of
additional interfaces hinder a tight integration and optimization and always introduces
an overhead. Therefore, it remains to be seen whether the benefits like a cleaner design,
reuse, and flexibility outweigh the downsides of the additional overhead.
A minor weakness can be identified in the missing support for real-time systems. Guar-
anties for a deadline and a dynamic system are hard to bring in line as everything has
to be deterministic to give such guarantees. However, contrary to the overhead, the
dynamics are given by the system but do not necessarily have to be used. Therefore,
it might be possible to design a subset of the CoBaS architecture and its features that
can guarantee hard real-time.
A final constraint of the CoBaS approach might be the necessity to adapt an existing
operating system to it. This dissertation has discussed the necessary steps and quantified
the overhead to adapt both the Linux and FreeBSD kernel to use CoBaS as their
main scheduling facility. The necessary effort is undeniable, however, this effort is not
necessarily higher than implementing a distinguished scheduling algorithm and will pay
out as soon as another algorithm shall be used. This dissertation has also shown that
the overhead for maintaining the CoBaS integration is manageable.
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9.4 Future Directions

The current state of research to employ a general process scheduler architecture for
future systems can be seen as a first step towards a general tool for building such
schedulers. This section discusses further directions to advance the state of the art in
this area.

9.4.1 Communication Topologies

Section 2.2.1 of this dissertation has outlined different communication topologies that
are employed in multi- and many-core systems. Even though discussed on a theoretical
level in Section 6.2, the prototype built for this work does not yet support advanced inter
processor communication facilities. Consequently, the next step of research would be to
extend the prototype and employ CoBaS in a mesh based many-core system, potentially
with distributed or non-cache coherent memory and evaluate its scalability in such a
scenario. In that context, the extension of the single broker system as it is today towards
a multi broker system might become indispensable and another interesting research
object.

9.4.2 Topology Management

Another field of study regarding the CoBaS architecture can be identified as the manage-
ment of Topologies. Even though the management was defined and described in detail,
certain aspects, for example regarding the combination of existing Topologies, remain to
be investigated. This includes the question on how to automatically merge two existing
partial topologies, e.g., for different classes of PEs to a holistic scheduling Topology.
Furthermore, the definition of scheduler Topologies themselves can be considered an
object of research. In the current prototype, Topologies are defined programmatically
in C. The definition process might be simplified through a DSL tailored to that prob-
lem or even a Graphical User Interface (GUI) based approach that would improve the
comprehensibility, especially for complex scheduler layouts.

9.4.3 Scheduler Analysis

The experiments of Section 8.5 have shown that the scheduler can easily be congested
in a many-core system if not designed in a scalable way. However, the experiment has
also shown that not every PE needs its own code path. In order to design a scheduler
that is both scalable and does not use an unnecessary separation of code paths, tools
for analysis are necessary. The evaluation of this dissertation already made initial steps
towards a contention analysis in the scheduler code path through the call-graphs. Those
could be visualized in a Topology editor and make it easier to spot potential bottlenecks
in a many-core environment.
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9.4.4 Multi-Scheduler Environments

This dissertation has discussed the issue of scheduling in the context of virtual machines.
As the guest most of the time employs system software with its own process scheduling, it
is interesting to study the interaction between the host and the guest scheduler. Through
the communication infrastructure of the CoBaS framework, it might be possible for
both schedulers to interact with each other and, thus, create better overall scheduling
results. As the generic information distribution system of the CoBaS framework is, as
of today, unique to scheduler architectures, new opportunities for optimization might
emerge.

9.4.5 Security Aspects

This dissertation has also shown that the execution of certain workloads can be op-
timized by a custom scheduling policy. However, as this policy is provided by the
application level and executed in the kernel context, several security related issues arise.
The analysis of these attack vectors and how to improve the CoBaS Component in-
terface would be worth investigating in future work. Different scenarios with different
degrees of freedom exist. From the security perspective the simplest solution could be
an interface that only allows the application to chooses from a certain set of policies
that are put into action through the super-user or the operating system itself. A more
critical solution from a security point of view would be that the user can freely provide
his or her scheduler implementation. As the code is brought into execution inside the
kernel, this opens many security related issues. However, researching the attack vectors
might yield a solution between these two extremes.



APPENDIXA
CoBaS Components

This appendix summarizes details on CoBaS Components that were implemented
for the prototype and mainly used during the quantitative evaluation in Chapter 8.
Appendix A.1 gives an overview of all the implemented Components. Appendix A.2
presents the source code of the Pipe update functions of the Head Queue and Rusty
Components as used in particular in Section 8.9.

A.1 Implemented Components

Several components were implemented to test and evaluate the CoBaS prototype. These
components will be described subsequently. Besides a short description, the following
Component properties are summarized in an introductory box:

Ingoing Pipes The number of Pipes that can be connected as an input
to a Component instance. Non-Fixed numbers indicate
that the number of ingoing Pipes can be configured during
instantiation.

Outgoing Pipes The number of Pipes that are leaving the Component in-
stance. Non-Fixed numbers indicate that the number of
outgoing Pipes can be configured during instantiation.

Classification Classification of the Component according to Section 5.8.2.
Topic Subscriptions The list of topics the component subscribes to.
Topic Responder The list of topics the component acts as a Responder to.
Topic Dependencies The list of responders the component relies on.

141



142 A CoBaS Components

Head Queue Component (0x01)
Ingoing Pipes 1 Topic Subscriptions none
Outgoing Pipes 1 Topic Responder none
Classification Neutral Topic Dependencies none
The Head Queue Component is the simplest possible CoBaS Component that utilizes the
Pipe system. It consist of one ingoing and one outgoing Pipe. Its only functionality is to
forward all changes from the ingoing to the outgoing Pipe. It was used primarily for testing
and experimentation on the general functionality of the CoBaS framework. It was also
used to simulate a round-robin behavior as that is the default behavior of CoBaS when
new tasks are submitted to the framework.

First-Come, First-Served Component (0x02)
Ingoing Pipes 1 Topic Subscriptions none
Outgoing Pipes 1 Topic Responder none
Classification Ordering Topic Dependencies Lamport
The First-Come, First-Served Component enforces, as the name implies, a FCFS policy on
the in-going tasks. It requires that a responder for the Lamport topic as it uses a Lamport
time to determine the task order.

Last-Come, First-Served Component (0x03)
Ingoing Pipes 1 Topic Subscriptions none
Outgoing Pipes 1 Topic Responder none
Classification Ordering Topic Dependencies Lamport
The Last-Come, First-Served Component enforces, as the name implies, a LCFS policy on
the in-going tasks. It requires that a responder for the Lamport topic as it uses a Lamport
time to determine the task order.

Burn Component (0x04)
Ingoing Pipes 1 Topic Subscriptions Burn
Outgoing Pipes 1 Topic Responder none
Classification Neutral Topic Dependencies none
The Burn Component works similar to the Head Queue Component. However, in addition
it is possible to assign a number of cycles that are burned in a busy wait loop. This feature
was used to simulate more complex scheduling algorithms.
Each Component instance subscribes to the Burn topic that contains the number of cycles
that will be burned at each update. The Component uses the same busy wait function as
outlined in Listing 8.2 on Page 112. In the gem5 simulator, that results in 2500 simulator
ticks or five clock cycles of the simulated CPU per burn cycle.
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Depth Component (0x05)
Ingoing Pipes 1 Topic Subscriptions Burn
Outgoing Pipes 1 Topic Responder none
Classification Neutral Topic Dependencies none
The Depth Component works in a similar way as the Burn Component. However, it has
an adjustable name of the Pipe update function to allow the differentiation between the
update functions of different Component instances.

Rust Component (0x09)
Ingoing Pipes 1 Topic Subscriptions none
Outgoing Pipes 1 Topic Responder none
Classification Neutral Topic Dependencies none
The Rust Component has, by intention, exactly the same functionality as the Head Queue
Component. However, instead of being implemented in C as the rest of the CoBaS prototype,
the Rust Component is implemented in Rust.

Task Distributor Component (0x10)
Ingoing Pipes 1 Topic Subscriptions CPU_STATUS
Outgoing Pipes n ∈ N+ Topic Responder none
Classification Filtering, Distributing Topic Dependencies AFFINITY
A crucial part of a multi-core scheduler is the distribution of tasks to PEs based on their
affinity. In some operating systems like, e.g. Linux or FreeBSD, some specific tasks are
required to run on a certain CPU or required not to run on a certain CPU. Therefore, it is
not possible to activate additional cores in those systems without enforcing the affinity. The
Task Distributor Component performs that task and can be considered a very minimalistic
load balancing facility. It schedules all tasks on the first PE except the task has to run on
a specific PE or cannot run on the first PE.
The number of output Pipes are configured during the instantiation. The Component uses
the CPU_STATUS notification to keep track to which output Pipes tasks can be assigned. If a
task requires to be scheduled on a specific PE, but has not arrived yet, the Component will
withhold this task until the PE in question arrives. Furthermore, the Component depends
on a Component instance that can response to the AFFINITY topic in order to determine
the affinity of each task.
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Task Mux Component (0x11)
Ingoing Pipes m ∈ N+ Topic Subscriptions CPU_STATUS
Outgoing Pipes n ∈ N+ Topic Responder none

Classification
Filtering,
Distributing,
Consolidating

Topic Dependencies AFFINITY

The Task Mux Component works similarly to the Task Distributor Component. However,
instead of only one ingoing Pipe, it has a configurable number of ingoing Pipes that are
determined during the instantiation.

Load Balancer Component (0x12)
Ingoing Pipes m ∈ N+ Topic Subscriptions CPU_STATUS
Outgoing Pipes n ∈ N+ Topic Responder none

Classification
Filtering,
Distributing,
Consolidating

Topic Dependencies AFFINITY

The Load Balancer Component works similarly to the Task Mux Component. However,
it additionally employs a real load balancing algorithm. The algorithm checks the load
of the outgoing Pipelines and tries to achieve an equal distribution of the load among all
outgoing Pipes. The balancing algorithm has a complexity of O(n). The Load Balancer
Component implicitly assumes that the affinities are mapped 1:1 to its assigned outgoing
Pipes.

Advanced Balancer Component (0x13)
Ingoing Pipes m ∈ N+ Topic Subscriptions CPU_STATUS
Outgoing Pipes n ∈ N+ Topic Responder none

Classification
Filtering,
Distributing,
Consolidating

Topic Dependencies AFFINITY

The Advanced Balancer Component works similar to the Balancer Component. However,
it can be configured with a mapping of PE to outgoing Pipes. This feature can, for example,
be used for a hierarchical scheduling when several PEs are mapped to one outgoing Pipe.
This approach is illustrated in FigureA.1.

Advanced
Balancer

Pipe 0
PE 0

Pipe 1 PE 1, PE 2
Pipe 2

PE 3

PE 0 → Pipe 0
PE 1 → Pipe 1
PE 2 → Pipe 1
PE 3 → Pipe 2

Figure A.1: Mapping in the Advanced Balancer Component.
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ISA Demux Component (0x14)
Ingoing Pipes m ∈ N+ Topic Subscriptions ISA
Outgoing Pipes n ∈ N+ Topic Responder none
Classification Distributing Topic Dependencies ISA
The ISA Demux Component distributes a stream of incoming tasks to its outgoing Pipes
according to their ISA requirements. During instantiation, asides of the outgoing Pipes
themselves, the Component is supplied with a mapping which outgoing Pipe supports
which ISA. If a task is added, the Component will acquire the ISA requirement of the
task via the responder for the ISA topic. When the ISA requirement of a task is changed
while it is present in one of the outgoing Pipes, the Component will migrate it to a new,
fitting outgoing Pipes. If no fitting outgoing Pipe is available for a task to fulfill its ISA
requirement, an error will be reported.

CPU Affinity Component (0x20)
Ingoing Pipes none Topic Subscriptions AFFINITY
Outgoing Pipes none Topic Responder AFFINITY
Classification Neutral Topic Dependencies none
The Affinity Component can store a PE affinity for every task. The affinity can be retrieved
through the responder system.

Lamport Component (0x21)
Ingoing Pipes none Topic Subscriptions none
Outgoing Pipes none Topic Responder LAMPORT
Classification Neutral Topic Dependencies none
The Lamport Component creates a Lamport time stamp for every task. Each time a new
task is created, the time stamp is increased. Through the timestamp, it is possible to put
the task in a relation to the arrival in the system. The time stamp is retrieved through
the LAMPORT topic request.

Status Component (0x22)
Ingoing Pipes none Topic Subscriptions none
Outgoing Pipes none Topic Responder STATUS
Classification Neutral Topic Dependencies none
The Status Component is designed to retrieve several statics about the current state of
the scheduler framework, e.g., the load of all or a specific Pipe. It responds to the STATUS
topic request. The exact kind of information that shall be retrieved has to be specified in
the request message.
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TCB Entry Component (0x23)
Ingoing Pipes none Topic Subscriptions TCB
Outgoing Pipes none Topic Responder TCB
Classification Neutral Topic Dependencies none
The TCB Component can store a pointer in an arbitrary data set. The data set is assigned
through a notification. The retrieval of the data can either be requested through a shallow
copy, which is in general just the return of a reference, or a deep copy, which duplicates
the data in the response message.

Marker Component (0x24)
Ingoing Pipes none Topic Subscriptions TCB
Outgoing Pipes none Topic Responder none
Classification Neutral Topic Dependencies none
The Marker Component was designed as a tracking facility to create markings in the
call-trace of a system. The triggering of the Marker Component through a notification
will result in the execution of a code path that can be observed in the call trace of the
system. The notification for this component is intended to be generated in user space and
has no specific payload.

Termination Component (0xFD)
Ingoing Pipes 1 Topic Subscriptions none
Outgoing Pipes none Topic Responder none
Classification Neutral Topic Dependencies none
The Termination Component is a mandatory Component and used internally for the
framework. It is used as an endpoint for the Pipe update chain and its Pipe is used by the
scheduling function of the CoBaS framework to acquire tasks for specific PEs.
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A.2 Source Code Excerpts from the Prototype

Listing A.1: Pipe update function of the Head Queue Component.

1 static void hq_pipe_update(fw_component_inst_t *self, fw_pipe_t *pipe)
2 {
3 fw_task_t *pos, *n;
4 hq_private_data_t *pd = inst_data(hq_private_data_t);
5
6 fw_spin_lock(&pipe->lock);
7
8 fw_list_for_each_entry_safe(pos, n, (&pipe->tasks_changed),
9 pipe_pcb[pipe->id].changed) {

10 switch (pos->pipe_pcb[pipe->id].change_type) {
11 case ADDED:
12 fw_pipe_add(pd->out_pipe, pos);
13 break;
14 case REMOVED:
15 fw_pipe_remove(pd->out_pipe, pos);
16 break;
17 default:
18 break;
19 }
20 }
21
22 fw_pipe_clean(pipe);
23
24 fw_spin_unlock(&pipe->lock);
25
26 pd->out_pipe->out->ops.pipe_update(pd->out_pipe->out, pd->out_pipe);
27 }

Listing A.2: Pipe update function of the Rust based Component.

1 unsafe extern "C" fn rust_pipe_update(_self: *mut fw_component_inst_t,
2 _pipe: *mut fw_pipe_t) {
3 let ref private = *((*_self).inst_data as *mut RustyPrivate);
4
5 rust_lock_pipe((*private).input);
6
7 let start = (*private.input).tasks_changed.next;
8 let mut current = start;
9 while (*current).next != start {

10
11 let ref mut task = *((current as *mut u8).offset(private.c_offset) as *mut fw_task_t);
12
13 match task.pipe_pcb[(*private.input).id as usize].change_type {
14 fw_pipe_change::ADDED => {fw_pipe_add(private.output, task)},
15 fw_pipe_change::REMOVED => {fw_pipe_remove(private.output, task)},
16 fw_pipe_change::UNDEF => {}
17 }
18
19 current = (*current).next;
20 }
21
22 fw_pipe_clean(private.input);
23
24 rust_unlock_pipe(private.input);
25
26 (*(*private.output).out).ops.pipe_update.unwrap()((*private.output).out, private.output);
27 }





APPENDIXB
Quantitative Evaluation Data

This appendix records the data gathered in the experiments in Sections 8.5 to 8.8. The
columns designated as runtime depict the average runtime of the particular experiment
or function. The number of data points to create the average is either given in the tables
themselves or in the tables’ caption. All confidence intervals are given for a confidence
level of 95 % in a Student’s t-distribution.

B.1 Scalability and Contention
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Figure B.1: Results of the scalability experiments with 16 PEs using the
gem5 Simulator and four different workload emulations. The
average runtime of each function is given in simulation ticks (left
y-axis) and real time (right y-axis) as a subject to the number
of scheduling Pipes (cf. Section 8.5.3).



B.1 Scalability and Contention 151

10

100

activate_task

10

100

R
ea

lT
im

e
in

µ
s

__schedule

3.98

6.31

10

__fw_admit

1

10

100

R
ea

lT
im

e
in

µ
s

__fw_dispatch

10

100

__fw_reqlinquish

10

100
R

ea
lT

im
e

in
µ

s

__fw_unblock

1 2 4 8 16 32

107

108

Si
m

ul
at

io
n

T
ic

ks

activate_task

1 2 4 8 16 32

107

108

__schedule

1 2 4 8 16 32

106.6

106.8

107

Si
m

ul
at

io
n

T
ic

ks

__fw_admit

1 2 4 8 16 32

106

107

108

__fw_dispatch

1 2 4 8 16 32

107

108

Scheduling Pipes

Si
m

ul
at

io
n

T
ic

ks

__fw_reqlinquish

1 2 4 8 16 32

107

108

Scheduling Pipes

__fw_unblock

0 μs Workload 1.25 μs Workload 2.5 μs Workload 5 μs Workload

Figure B.2: Results of the scalability experiments with 32 PEs using the
gem5 Simulator and four different workload emulations. The
average runtime of each function is given in simulation ticks (left
y-axis) and real time (right y-axis) as a subject to the number
of scheduling Pipes (cf. Section 8.5.3).
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Figure B.3: Results of the scalability experiments with 128 PEs using the
gem5 Simulator and four different workload emulations. The
average runtime of each function is given in simulation ticks (left
y-axis) and real time (right y-axis) as a subject to the number
of scheduling Pipes (cf. Section 8.5.3).
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Figure B.4: Results of the scalability experiments with 254 PEs using the
gem5 Simulator and three different workload emulations. The
average runtime of each function is given in simulation ticks (left
y-axis) and real time (right y-axis) as a subject to the number
of scheduling Pipes (cf. Section 8.5.3).
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Table B.1: Scalability experiment results with 16 PEs and 0 μs Workload.
The mean runtimes and confidence intervals are given in mi-
croseconds (cf. Section 8.5.3).

Pipes
activate_task __schedule __fw_admit

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

1 2.449 ±4.83 · 10−3 25,867 2.107 ±1.66 · 10−2 40,731 2.275 ±2.89 · 10−4 4,003
2 2.394 ±2.94 · 10−3 26,170 2.039 ±1.49 · 10−2 41,014 2.275 ±2.89 · 10−4 4,003
3 2.382 ±2.45 · 10−3 26,554 2.014 ±1.43 · 10−2 41,431 2.275 ±2.89 · 10−4 4,003
4 2.369 ±1.88 · 10−3 26,341 2.003 ±1.40 · 10−2 41,199 2.275 ±2.89 · 10−4 4,003
6 2.365 ±1.79 · 10−3 26,473 2.000 ±1.42 · 10−2 41,346 2.275 ±2.89 · 10−4 4,003
8 2.359 ±1.42 · 10−3 25,796 2.003 ±1.43 · 10−2 40,670 2.275 ±2.89 · 10−4 4,003

10 2.359 ±1.31 · 10−3 26,084 2.003 ±1.40 · 10−2 40,792 2.276 ±6.28 · 10−4 4,003
12 2.357 ±1.20 · 10−3 26,281 1.993 ±1.38 · 10−2 40,969 2.276 ±6.28 · 10−4 4,003
14 2.357 ±1.20 · 10−3 26,036 2.009 ±1.43 · 10−2 40,673 2.276 ±6.28 · 10−4 4,003
16 2.355 ±1.03 · 10−3 26,513 1.996 ±1.41 · 10−2 41,233 2.276 ±6.28 · 10−4 4,003

Pipes
__fw_dispatch __fw_relinquish __fw_unblock

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

1 0.822 ±5.09 · 10−3 34,386 2.426 ±2.46 · 10−2 8,518 2.426 ±5.66 · 10−3 21,864
2 0.763 ±3.25 · 10−3 34,697 2.364 ±1.07 · 10−2 8,527 2.360 ±3.45 · 10−3 22,167
3 0.749 ±2.63 · 10−3 35,089 2.345 ±6.02 · 10−3 8,534 2.346 ±2.87 · 10−3 22,551
4 0.738 ±2.12 · 10−3 34,880 2.338 ±4.90 · 10−3 8,539 2.331 ±2.20 · 10−3 22,338
6 0.732 ±1.75 · 10−3 35,010 2.330 ±2.75 · 10−3 8,537 2.327 ±2.11 · 10−3 22,472
8 0.727 ±1.65 · 10−3 34,316 2.326 ±1.96 · 10−3 8,520 2.319 ±1.66 · 10−3 21,793

10 0.726 ±1.51 · 10−3 34,640 2.326 ±1.87 · 10−3 8,557 2.319 ±1.53 · 10−3 22,081
12 0.725 ±1.45 · 10−3 34,814 2.323 ±1.24 · 10−3 8,534 2.317 ±1.39 · 10−3 22,278
14 0.725 ±1.61 · 10−3 34,560 2.323 ±1.17 · 10−3 8,525 2.317 ±1.42 · 10−3 22,035
16 0.724 ±1.74 · 10−3 35,061 2.321 ±1.65 · 10−4 8,548 2.314 ±1.19 · 10−3 22,510

Table B.2: Scalability experiment results with 16 PEs and 500 μs Workload.
The mean runtimes and confidence intervals are given in microsec-
onds (cf. Section 8.5.3).

Pipes
activate_task __schedule __fw_admit

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

1 3.747 ±5.68 · 10−3 26,670 3.574 ±2.38 · 10−2 41,022 3.530 ±2.14 · 10−3 4,003
2 3.663 ±3.55 · 10−3 26,174 3.462 ±2.13 · 10−2 40,546 3.530 ±2.14 · 10−3 4,003
3 3.641 ±2.81 · 10−3 26,469 3.413 ±2.05 · 10−2 40,861 3.530 ±2.14 · 10−3 4,003
4 3.632 ±2.36 · 10−3 27,116 3.396 ±2.02 · 10−2 41,516 3.530 ±2.14 · 10−3 4,003
6 3.621 ±1.96 · 10−3 26,238 3.395 ±2.03 · 10−2 40,619 3.530 ±2.14 · 10−3 4,003
8 3.616 ±1.82 · 10−3 26,426 3.389 ±2.02 · 10−2 40,780 3.530 ±2.14 · 10−3 4,003

10 3.613 ±1.61 · 10−3 26,208 3.415 ±2.05 · 10−2 40,357 3.535 ±2.99 · 10−3 4,003
12 3.612 ±1.55 · 10−3 26,702 3.398 ±2.00 · 10−2 40,878 3.535 ±2.99 · 10−3 4,003
14 3.612 ±1.36 · 10−3 26,579 3.397 ±2.01 · 10−2 40,707 3.535 ±2.99 · 10−3 4,003
16 3.608 ±1.25 · 10−3 26,015 3.398 ±2.01 · 10−2 40,211 3.535 ±2.99 · 10−3 4,003

Pipes
__fw_dispatch __fw_relinquish __fw_unblock

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

1 2.174 ±8.54 · 10−3 35,287 3.728 ±2.78 · 10−2 8,617 3.730 ±6.60 · 10−3 22,667
2 2.065 ±6.12 · 10−3 34,790 3.632 ±1.08 · 10−2 8,617 3.633 ±4.13 · 10−3 22,171
3 2.037 ±5.36 · 10−3 35,062 3.608 ±7.01 · 10−3 8,593 3.606 ±3.27 · 10−3 22,466
4 2.025 ±5.10 · 10−3 35,711 3.602 ±6.07 · 10−3 8,595 3.595 ±2.72 · 10−3 23,113
6 2.011 ±4.79 · 10−3 34,831 3.585 ±3.31 · 10−3 8,593 3.582 ±2.27 · 10−3 22,235
8 2.008 ±5.03 · 10−3 34,998 3.582 ±3.27 · 10−3 8,574 3.577 ±2.14 · 10−3 22,425

10 2.003 ±5.00 · 10−3 34,805 3.577 ±1.93 · 10−3 8,597 3.572 ±1.82 · 10−3 22,205
12 2.004 ±4.99 · 10−3 35,294 3.576 ±1.82 · 10−3 8,594 3.571 ±1.79 · 10−3 22,701
14 1.999 ±4.90 · 10−3 35,155 3.574 ±1.51 · 10−3 8,577 3.571 ±1.50 · 10−3 22,576
16 1.996 ±5.05 · 10−3 34,636 3.572 ±7.78 · 10−4 8,622 3.567 ±1.36 · 10−3 22,012
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Table B.3: Scalability experiment results with 16 PEs and 1000 μs Work-
load. The mean runtimes and confidence intervals are given in
microseconds (cf. Section 8.5.3).

Pipes
activate_task __schedule __fw_admit

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

1 5.393 ±1.65 · 10−2 27,019 5.433 ±3.60 · 10−2 41,495 4.799 ±6.21 · 10−3 4,003
2 5.049 ±8.32 · 10−3 27,110 4.981 ±2.95 · 10−2 41,713 4.798 ±6.24 · 10−3 4,003
3 4.963 ±6.09 · 10−3 26,840 4.887 ±2.84 · 10−2 41,401 4.798 ±6.28 · 10−3 4,003
4 4.934 ±4.72 · 10−3 26,803 4.843 ±2.78 · 10−2 41,393 4.798 ±6.24 · 10−3 4,003
6 4.903 ±3.69 · 10−3 26,999 4.813 ±2.73 · 10−2 41,578 4.798 ±6.24 · 10−3 4,003
8 4.892 ±3.54 · 10−3 26,843 4.812 ±2.73 · 10−2 41,334 4.799 ±6.21 · 10−3 4,003

10 4.888 ±3.08 · 10−3 27,080 4.768 ±2.72 · 10−2 41,686 4.799 ±6.42 · 10−3 4,003
12 4.878 ±2.65 · 10−3 26,775 4.764 ±2.72 · 10−2 41,366 4.799 ±6.42 · 10−3 4,003
14 4.876 ±2.61 · 10−3 26,858 4.771 ±2.73 · 10−2 41,514 4.799 ±6.42 · 10−3 4,003
16 4.870 ±2.23 · 10−3 26,991 4.756 ±2.72 · 10−2 41,616 4.799 ±6.42 · 10−3 4,003

Pipes
__fw_dispatch __fw_relinquish __fw_unblock

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

1 3.947 ±1.97 · 10−2 35,743 5.230 ±3.74 · 10−2 8,724 5.442 ±1.91 · 10−2 23,016
2 3.516 ±1.23 · 10−2 35,808 4.971 ±1.66 · 10−2 8,698 5.038 ±9.63 · 10−3 23,107
3 3.420 ±1.10 · 10−2 35,541 4.911 ±1.09 · 10−2 8,701 4.937 ±7.04 · 10−3 22,837
4 3.380 ±1.03 · 10−2 35,515 4.896 ±9.14 · 10−3 8,712 4.904 ±5.41 · 10−3 22,800
6 3.346 ±9.53 · 10−3 35,725 4.860 ±5.90 · 10−3 8,726 4.867 ±4.18 · 10−3 22,996
8 3.324 ±8.70 · 10−3 35,570 4.844 ±4.36 · 10−3 8,727 4.854 ±4.01 · 10−3 22,840

10 3.314 ±9.64 · 10−3 35,765 4.844 ±4.53 · 10−3 8,685 4.849 ±3.43 · 10−3 23,077
12 3.313 ±9.65 · 10−3 35,424 4.838 ±3.85 · 10−3 8,649 4.837 ±2.90 · 10−3 22,772
14 3.309 ±9.70 · 10−3 35,553 4.835 ±3.64 · 10−3 8,695 4.835 ±2.85 · 10−3 22,855
16 3.304 ±9.82 · 10−3 35,651 4.828 ±2.60 · 10−3 8,660 4.828 ±2.36 · 10−3 22,988

Table B.4: Scalability experiment results with 16 PEs and 2000 μs Work-
load. The mean runtimes and confidence intervals are given in
microseconds (cf. Section 8.5.3).

Pipes
activate_task __schedule __fw_admit

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

1 25.261 ±2.05 · 10−1 41,070 31.973 ±3.09 · 10−1 58,960 7.525 ±8.64 · 10−2 4,016
2 8.311 ±2.71 · 10−2 27,621 8.588 ±5.37 · 10−2 42,712 7.371 ±1.75 · 10−2 4,003
3 7.970 ±2.07 · 10−2 28,041 8.270 ±5.04 · 10−2 43,080 7.371 ±1.75 · 10−2 4,003
4 7.733 ±1.46 · 10−2 27,595 7.939 ±4.64 · 10−2 42,616 7.371 ±1.75 · 10−2 4,003
6 7.588 ±1.20 · 10−2 26,788 7.769 ±4.51 · 10−2 41,822 7.371 ±1.75 · 10−2 4,003
8 7.536 ±1.14 · 10−2 27,688 7.721 ±4.45 · 10−2 42,685 7.371 ±1.75 · 10−2 4,003

10 7.485 ±8.21 · 10−3 27,453 7.722 ±4.43 · 10−2 42,253 7.388 ±1.91 · 10−2 4,003
12 7.506 ±9.86 · 10−3 27,863 7.741 ±4.43 · 10−2 42,655 7.388 ±1.91 · 10−2 4,003
14 7.445 ±6.97 · 10−3 27,507 7.658 ±4.35 · 10−2 42,328 7.388 ±1.91 · 10−2 4,003
16 7.419 ±5.83 · 10−3 27,755 7.626 ±4.33 · 10−2 42,587 7.388 ±1.91 · 10−2 4,003

Pipes
__fw_dispatch __fw_relinquish __fw_unblock

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

1 24.407 ±1.88 · 10−1 52,855 20.102 ±3.56 · 10−1 11,785 27.132 ±2.18 · 10−1 37,054
2 6.952 ±3.23 · 10−2 36,573 7.948 ±3.90 · 10−2 8,953 8.416 ±3.11 · 10−2 23,618
3 6.612 ±2.95 · 10−2 36,964 7.704 ±2.94 · 10−2 8,924 8.015 ±2.38 · 10−2 24,038
4 6.301 ±2.39 · 10−2 36,504 7.602 ±2.23 · 10−2 8,911 7.740 ±1.67 · 10−2 23,592
6 6.132 ±2.16 · 10−2 35,703 7.463 ±1.53 · 10−2 8,916 7.571 ±1.37 · 10−2 22,787
8 6.079 ±2.13 · 10−2 36,559 7.433 ±1.35 · 10−2 8,872 7.510 ±1.29 · 10−2 23,685

10 6.071 ±2.25 · 10−2 36,328 7.409 ±1.21 · 10−2 8,876 7.448 ±9.04 · 10−3 23,450
12 6.068 ±2.22 · 10−2 36,733 7.394 ±1.09 · 10−2 8,871 7.471 ±1.10 · 10−2 23,860
14 6.015 ±2.13 · 10−2 36,399 7.379 ±9.03 · 10−3 8,893 7.401 ±7.48 · 10−3 23,504
16 5.992 ±2.16 · 10−2 36,623 7.361 ±7.50 · 10−3 8,870 7.369 ±6.06 · 10−3 23,754
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Table B.5: Scalability experiment results with 32 PEs and 0 μs Workload.
The mean runtimes and confidence intervals are given in mi-
croseconds (cf. Section 8.5.3).

Pipes
activate_task __schedule __fw_admit

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

1 5.044 ±3.20 · 10−2 28,566 3.452 ±4.53 · 10−2 49,512 3.739 ±3.41 · 10−4 4,017
2 4.192 ±1.36 · 10−2 27,503 2.611 ±2.80 · 10−2 48,511 3.739 ±3.41 · 10−4 4,017
3 3.975 ±8.30 · 10−3 27,382 2.406 ±2.37 · 10−2 48,386 3.739 ±3.41 · 10−4 4,017
4 3.929 ±7.16 · 10−3 26,505 2.344 ±2.18 · 10−2 47,471 3.739 ±3.41 · 10−4 4,017
6 3.883 ±5.77 · 10−3 26,953 2.278 ±2.04 · 10−2 47,906 3.739 ±3.41 · 10−4 4,017
8 3.856 ±4.85 · 10−3 26,830 2.270 ±2.07 · 10−2 47,833 3.739 ±3.41 · 10−4 4,017

10 3.883 ±6.18 · 10−3 26,593 2.306 ±2.11 · 10−2 47,688 3.740 ±4.31 · 10−4 4,017
12 3.833 ±4.09 · 10−3 26,803 2.264 ±2.05 · 10−2 47,969 3.740 ±4.31 · 10−4 4,017
14 3.827 ±3.80 · 10−3 27,042 2.249 ±2.07 · 10−2 48,169 3.740 ±4.31 · 10−4 4,017
16 3.821 ±3.41 · 10−3 27,318 2.239 ±2.05 · 10−2 48,444 3.740 ±4.31 · 10−4 4,017
18 3.815 ±3.39 · 10−3 26,543 2.237 ±2.04 · 10−2 47,633 3.740 ±4.31 · 10−4 4,017
20 3.819 ±3.53 · 10−3 27,509 2.219 ±1.96 · 10−2 48,586 3.740 ±4.31 · 10−4 4,017
22 3.819 ±3.30 · 10−3 27,278 2.236 ±2.03 · 10−2 48,390 3.740 ±4.31 · 10−4 4,017
24 3.813 ±3.24 · 10−3 27,258 2.215 ±1.98 · 10−2 48,398 3.740 ±4.31 · 10−4 4,017
26 3.810 ±3.12 · 10−3 26,498 2.241 ±2.07 · 10−2 47,651 3.740 ±4.31 · 10−4 4,017
28 3.806 ±3.06 · 10−3 26,430 2.242 ±2.08 · 10−2 47,535 3.740 ±4.31 · 10−4 4,017
30 3.807 ±2.90 · 10−3 26,669 2.230 ±2.03 · 10−2 47,761 3.740 ±4.31 · 10−4 4,017
32 3.804 ±2.80 · 10−3 26,620 2.224 ±1.99 · 10−2 47,662 3.740 ±4.31 · 10−4 4,017

Pipes
__fw_dispatch __fw_relinquish __fw_unblock

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

1 2.181 ±3.07 · 10−2 37,308 4.893 ±1.26 · 10−1 8,742 5.204 ±3.67 · 10−2 24,549
2 1.273 ±1.58 · 10−2 36,167 4.203 ±5.69 · 10−2 8,665 4.215 ±1.58 · 10−2 23,486
3 1.054 ±1.02 · 10−2 36,067 3.980 ±3.60 · 10−2 8,686 3.961 ±9.66 · 10−3 23,365
4 0.979 ±8.31 · 10−3 35,144 3.946 ±2.58 · 10−2 8,640 3.908 ±8.40 · 10−3 22,488
6 0.926 ±6.71 · 10−3 35,578 3.864 ±1.48 · 10−2 8,625 3.853 ±6.75 · 10−3 22,936
8 0.903 ±7.47 · 10−3 35,468 3.837 ±1.03 · 10−2 8,638 3.822 ±5.68 · 10−3 22,813

10 0.919 ±6.69 · 10−3 35,197 3.901 ±1.25 · 10−2 8,604 3.854 ±7.25 · 10−3 22,576
12 0.879 ±5.17 · 10−3 35,422 3.809 ±5.85 · 10−3 8,621 3.795 ±4.80 · 10−3 22,786
14 0.869 ±5.12 · 10−3 35,670 3.807 ±5.16 · 10−3 8,628 3.788 ±4.45 · 10−3 23,025
16 0.868 ±5.46 · 10−3 35,945 3.801 ±4.16 · 10−3 8,627 3.781 ±3.99 · 10−3 23,301
18 0.863 ±5.45 · 10−3 35,125 3.797 ±3.49 · 10−3 8,582 3.774 ±3.99 · 10−3 22,526
20 0.865 ±4.81 · 10−3 36,108 3.817 ±5.23 · 10−3 8,600 3.779 ±4.12 · 10−3 23,492
22 0.862 ±5.44 · 10−3 35,878 3.795 ±3.29 · 10−3 8,600 3.778 ±3.86 · 10−3 23,261
24 0.854 ±4.31 · 10−3 35,849 3.793 ±2.88 · 10−3 8,592 3.771 ±3.80 · 10−3 23,241
26 0.854 ±4.76 · 10−3 35,127 3.791 ±2.43 · 10−3 8,629 3.768 ±3.67 · 10−3 22,481
28 0.849 ±4.67 · 10−3 35,028 3.788 ±1.95 · 10−3 8,599 3.763 ±3.61 · 10−3 22,413
30 0.850 ±4.58 · 10−3 35,256 3.790 ±2.27 · 10−3 8,588 3.765 ±3.41 · 10−3 22,652
32 0.847 ±5.08 · 10−3 35,212 3.785 ±2.12 · 10−4 8,592 3.761 ±3.30 · 10−3 22,603
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Table B.6: Scalability experiment results with 32 PEs and 500 μs Workload.
The mean runtimes and confidence intervals are given in microsec-
onds (cf. Section 8.5.3).

Pipes
activate_task __schedule __fw_admit

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

1 10.342 ±1.08 · 10−1 32,674 8.940 ±1.26 · 10−1 55,308 4.997 ±2.78 · 10−3 4,017
2 5.498 ±1.46 · 10−2 27,499 3.877 ±3.69 · 10−2 49,646 4.995 ±2.43 · 10−3 4,017
3 5.263 ±9.13 · 10−3 26,926 3.618 ±3.28 · 10−2 49,134 4.995 ±2.21 · 10−3 4,017
4 5.232 ±8.56 · 10−3 27,563 3.544 ±3.02 · 10−2 49,778 4.995 ±2.21 · 10−3 4,017
6 5.151 ±6.06 · 10−3 27,681 3.479 ±2.92 · 10−2 49,869 4.995 ±2.21 · 10−3 4,017
8 5.111 ±4.96 · 10−3 27,174 3.452 ±2.92 · 10−2 49,323 4.995 ±2.21 · 10−3 4,017

10 5.125 ±5.24 · 10−3 27,570 3.531 ±2.86 · 10−2 48,318 4.996 ±2.50 · 10−3 4,017
12 5.096 ±4.26 · 10−3 26,996 3.497 ±2.77 · 10−2 47,612 4.996 ±2.50 · 10−3 4,017
14 5.085 ±3.89 · 10−3 27,467 3.492 ±2.80 · 10−2 48,216 4.996 ±2.50 · 10−3 4,017
16 5.074 ±3.44 · 10−3 27,055 3.472 ±2.75 · 10−2 47,803 4.996 ±2.50 · 10−3 4,017
18 5.076 ±3.61 · 10−3 26,992 3.474 ±2.80 · 10−2 47,625 4.996 ±2.50 · 10−3 4,017
20 5.075 ±3.75 · 10−3 26,732 3.488 ±2.80 · 10−2 47,425 4.996 ±2.50 · 10−3 4,017
22 5.071 ±3.44 · 10−3 26,704 3.472 ±2.78 · 10−2 47,505 4.996 ±2.50 · 10−3 4,017
24 5.066 ±3.21 · 10−3 27,003 3.476 ±2.77 · 10−2 47,652 4.996 ±2.50 · 10−3 4,017
26 5.067 ±3.13 · 10−3 26,503 3.473 ±2.77 · 10−2 47,164 4.996 ±2.50 · 10−3 4,017
28 5.066 ±3.12 · 10−3 27,673 3.477 ±2.74 · 10−2 48,374 4.996 ±2.50 · 10−3 4,017
30 5.064 ±3.02 · 10−3 27,409 3.458 ±2.74 · 10−2 48,103 4.996 ±2.50 · 10−3 4,017
32 5.058 ±2.92 · 10−3 26,926 3.481 ±2.83 · 10−2 47,695 4.996 ±2.50 · 10−3 4,017

Pipes
__fw_dispatch __fw_relinquish __fw_unblock

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

1 7.777 ±1.03 · 10−1 41,850 7.810 ±1.93 · 10−1 9,176 11.039 ±1.20 · 10−1 28,657
2 2.675 ±1.95 · 10−2 36,265 5.564 ±6.30 · 10−2 8,766 5.530 ±1.69 · 10−2 23,482
3 2.420 ±1.72 · 10−2 35,636 5.286 ±3.95 · 10−2 8,710 5.256 ±1.06 · 10−2 22,909
4 2.362 ±1.58 · 10−2 36,311 5.246 ±2.96 · 10−2 8,749 5.218 ±9.96 · 10−3 23,546
6 2.269 ±1.43 · 10−2 36,385 5.138 ±1.77 · 10−2 8,704 5.123 ±7.05 · 10−3 23,664
8 2.226 ±1.42 · 10−2 35,875 5.106 ±1.37 · 10−2 8,702 5.076 ±5.79 · 10−3 23,157

10 2.216 ±1.33 · 10−2 36,296 5.169 ±1.74 · 10−2 8,726 5.092 ±6.10 · 10−3 23,553
12 2.191 ±1.22 · 10−2 35,703 5.079 ±1.04 · 10−2 8,708 5.058 ±4.98 · 10−3 22,979
14 2.188 ±1.27 · 10−2 36,177 5.072 ±9.89 · 10−3 8,711 5.045 ±4.53 · 10−3 23,450
16 2.171 ±1.25 · 10−2 35,772 5.061 ±8.99 · 10−3 8,718 5.033 ±4.01 · 10−3 23,038
18 2.172 ±1.30 · 10−2 35,663 5.056 ±8.23 · 10−3 8,674 5.034 ±4.26 · 10−3 22,977
20 2.176 ±1.25 · 10−2 35,413 5.082 ±8.72 · 10−3 8,681 5.034 ±4.39 · 10−3 22,715
22 2.173 ±1.37 · 10−2 35,435 5.053 ±8.20 · 10−3 8,732 5.030 ±4.02 · 10−3 22,687
24 2.164 ±1.21 · 10−2 35,693 5.052 ±8.26 · 10−3 8,690 5.024 ±3.74 · 10−3 22,986
26 2.163 ±1.27 · 10−2 35,193 5.051 ±8.17 · 10−3 8,690 5.025 ±3.66 · 10−3 22,486
28 2.167 ±1.29 · 10−2 36,410 5.048 ±7.92 · 10−3 8,738 5.024 ±3.62 · 10−3 23,656
30 2.163 ±1.33 · 10−2 36,097 5.048 ±7.97 · 10−3 8,688 5.021 ±3.51 · 10−3 23,392
32 2.160 ±1.36 · 10−2 35,625 5.042 ±7.65 · 10−3 8,700 5.014 ±3.40 · 10−3 22,909
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Table B.7: Scalability experiment results with 32 PEs and 1000 μs Work-
load. The mean runtimes and confidence intervals are given in
microseconds (cf. Section 8.5.3).

Pipes
activate_task __schedule __fw_admit

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

1 46.418 ±2.70 · 10−1 62,307 61.809 ±4.30 · 10−1 94,469 6.260 ±5.91 · 10−3 4,017
2 7.371 ±3.53 · 10−2 28,325 5.916 ±6.08 · 10−2 49,705 6.261 ±6.12 · 10−3 4,017
3 6.642 ±1.31 · 10−2 27,103 5.082 ±4.35 · 10−2 48,411 6.261 ±6.10 · 10−3 4,017
4 6.597 ±1.30 · 10−2 27,842 4.959 ±4.19 · 10−2 49,796 6.263 ±6.28 · 10−3 4,017
6 6.491 ±9.96 · 10−3 27,657 4.892 ±3.95 · 10−2 48,828 6.261 ±6.10 · 10−3 4,017
8 6.400 ±6.59 · 10−3 27,281 4.781 ±3.85 · 10−2 48,598 6.261 ±6.12 · 10−3 4,017

10 6.381 ±5.82 · 10−3 26,467 4.733 ±3.86 · 10−2 48,202 6.261 ±6.17 · 10−3 4,017
12 6.361 ±5.08 · 10−3 27,179 4.679 ±3.70 · 10−2 48,981 6.261 ±6.17 · 10−3 4,017
14 6.398 ±6.73 · 10−3 28,727 4.776 ±3.69 · 10−2 50,506 6.261 ±6.17 · 10−3 4,017
16 6.350 ±4.66 · 10−3 27,382 4.690 ±3.71 · 10−2 48,851 6.261 ±5.98 · 10−3 4,017
18 6.344 ±4.51 · 10−3 27,504 4.668 ±3.67 · 10−2 49,319 6.261 ±6.17 · 10−3 4,017
20 6.344 ±5.17 · 10−3 27,349 4.637 ±3.60 · 10−2 49,176 6.261 ±6.17 · 10−3 4,017
22 6.343 ±4.23 · 10−3 27,011 4.663 ±3.70 · 10−2 48,773 6.261 ±6.17 · 10−3 4,017
24 6.339 ±5.03 · 10−3 28,056 4.661 ±3.59 · 10−2 49,782 6.261 ±6.17 · 10−3 4,017
26 6.324 ±3.83 · 10−3 26,910 4.639 ±3.68 · 10−2 48,667 6.261 ±6.17 · 10−3 4,017
28 6.333 ±3.87 · 10−3 27,753 4.676 ±3.68 · 10−2 49,623 6.261 ±6.17 · 10−3 4,017
30 6.326 ±3.54 · 10−3 27,329 4.642 ±3.66 · 10−2 49,140 6.261 ±6.17 · 10−3 4,017
32 6.320 ±3.44 · 10−3 27,265 4.676 ±3.70 · 10−2 48,725 6.261 ±5.98 · 10−3 4,017

Pipes
__fw_dispatch __fw_relinquish __fw_unblock

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

1 46.008 ±2.43 · 10−1 81,361 46.186 ±5.13 · 10−1 19,055 49.136 ±2.75 · 10−1 58,290
2 4.806 ±4.55 · 10−2 37,219 7.186 ±8.52 · 10−2 8,894 7.501 ±4.07 · 10−2 24,308
3 3.954 ±2.71 · 10−2 35,887 6.676 ±4.68 · 10−2 8,785 6.654 ±1.52 · 10−2 23,086
4 3.888 ±2.83 · 10−2 36,672 6.561 ±3.60 · 10−2 8,832 6.598 ±1.51 · 10−2 23,827
6 3.725 ±2.47 · 10−2 36,422 6.427 ±1.98 · 10−2 8,765 6.475 ±1.16 · 10−2 23,640
8 3.639 ±2.53 · 10−2 36,072 6.389 ±1.47 · 10−2 8,791 6.370 ±7.63 · 10−3 23,264

10 3.593 ±2.41 · 10−2 35,248 6.441 ±1.39 · 10−2 8,781 6.348 ±6.76 · 10−3 22,450
12 3.576 ±2.34 · 10−2 35,963 6.347 ±1.04 · 10−2 8,786 6.324 ±5.90 · 10−3 23,164
14 3.610 ±2.25 · 10−2 37,540 6.337 ±7.77 · 10−3 8,814 6.367 ±7.74 · 10−3 24,710
16 3.563 ±2.41 · 10−2 36,152 6.325 ±6.36 · 10−3 8,770 6.311 ±5.35 · 10−3 23,365
18 3.551 ±2.32 · 10−2 36,307 6.320 ±5.51 · 10−3 8,805 6.304 ±5.17 · 10−3 23,487
20 3.527 ±2.17 · 10−2 36,117 6.338 ±6.93 · 10−3 8,769 6.303 ±5.96 · 10−3 23,332
22 3.531 ±2.36 · 10−2 35,785 6.312 ±5.88 · 10−3 8,775 6.302 ±4.85 · 10−3 22,994
24 3.535 ±2.20 · 10−2 36,858 6.312 ±5.50 · 10−3 8,803 6.298 ±5.77 · 10−3 24,039
26 3.530 ±2.37 · 10−2 35,657 6.305 ±4.58 · 10−3 8,747 6.280 ±4.37 · 10−3 22,893
28 3.539 ±2.38 · 10−2 36,570 6.300 ±3.65 · 10−3 8,817 6.291 ±4.40 · 10−3 23,736
30 3.520 ±2.37 · 10−2 36,150 6.302 ±3.76 · 10−3 8,823 6.282 ±4.08 · 10−3 23,314
32 3.527 ±2.42 · 10−2 36,033 6.297 ±4.15 · 10−3 8,768 6.276 ±3.90 · 10−3 23,248
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Table B.8: Scalability experiment results with 32 PEs and 2000 μs Work-
load. The mean runtimes and confidence intervals are given in
microseconds (cf. Section 8.5.3).

Pipes
activate_task __schedule __fw_admit

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

1 118.633 ±1.78 · 10−1 162,073 189.612 ±3.96 · 10−1 268,897 9.248 ±2.24 · 10−1 4,030
2 30.794 ±2.20 · 10−1 51,646 38.308 ±3.23 · 10−1 78,715 8.833 ±1.76 · 10−2 4,017
3 14.941 ±1.20 · 10−1 36,001 14.846 ±1.58 · 10−1 59,136 8.825 ±1.70 · 10−2 4,017
4 10.307 ±4.56 · 10−2 29,485 8.982 ±7.93 · 10−2 51,506 8.837 ±1.74 · 10−2 4,017
6 9.525 ±2.96 · 10−2 28,187 8.028 ±6.97 · 10−2 50,437 8.823 ±1.68 · 10−2 4,017
8 9.247 ±1.85 · 10−2 28,495 7.793 ±6.40 · 10−2 50,387 8.837 ±1.74 · 10−2 4,017

10 9.154 ±1.63 · 10−2 28,327 7.739 ±6.59 · 10−2 50,302 8.833 ±1.68 · 10−2 4,017
12 9.074 ±1.41 · 10−2 27,825 7.578 ±6.41 · 10−2 49,822 8.833 ±1.68 · 10−2 4,017
14 9.042 ±1.43 · 10−2 27,840 7.524 ±6.35 · 10−2 49,686 8.833 ±1.68 · 10−2 4,017
16 8.965 ±1.07 · 10−2 27,576 7.432 ±6.29 · 10−2 49,490 8.833 ±1.68 · 10−2 4,017
18 8.968 ±1.01 · 10−2 28,123 7.380 ±6.03 · 10−2 49,985 8.856 ±1.98 · 10−2 4,017
20 8.948 ±8.90 · 10−3 27,560 7.340 ±5.97 · 10−2 49,427 8.833 ±1.68 · 10−2 4,017
22 8.921 ±9.23 · 10−3 28,407 7.377 ±6.08 · 10−2 50,299 8.833 ±1.68 · 10−2 4,017
24 8.950 ±1.06 · 10−2 28,491 7.395 ±6.06 · 10−2 50,399 8.833 ±1.68 · 10−2 4,017
26 8.910 ±9.55 · 10−3 27,573 7.373 ±6.18 · 10−2 49,473 8.833 ±1.68 · 10−2 4,017
28 8.889 ±8.41 · 10−3 27,874 7.325 ±6.10 · 10−2 49,821 8.833 ±1.68 · 10−2 4,017
30 8.889 ±8.72 · 10−3 28,378 7.343 ±6.04 · 10−2 50,185 8.833 ±1.68 · 10−2 4,017
32 8.867 ±7.82 · 10−3 28,042 7.288 ±6.04 · 10−2 49,957 8.833 ±1.68 · 10−2 4,017

Pipes
__fw_dispatch __fw_relinquish __fw_unblock

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

1 122.481 ±1.24 · 10−1 255,005 126.184 ±1.91 · 10−1 92,932 121.375 ±1.60 · 10−1 158,043
2 31.039 ±2.15 · 10−1 65,589 27.263 ±4.22 · 10−1 13,944 32.596 ±2.31 · 10−1 47,629
3 13.282 ±1.26 · 10−1 45,982 12.231 ±1.81 · 10−1 9,982 15.657 ±1.33 · 10−1 31,984
4 8.126 ±6.55 · 10−2 38,617 9.844 ±6.39 · 10−2 9,133 10.485 ±5.22 · 10−2 25,468
6 7.207 ±5.64 · 10−2 37,259 9.357 ±4.96 · 10−2 9,073 9.588 ±3.42 · 10−2 24,170
8 6.895 ±5.12 · 10−2 37,520 9.164 ±3.21 · 10−2 9,025 9.260 ±2.12 · 10−2 24,478

10 6.805 ±5.48 · 10−2 37,349 9.385 ±3.61 · 10−2 9,022 9.153 ±1.87 · 10−2 24,310
12 6.712 ±5.38 · 10−2 36,840 9.020 ±2.71 · 10−2 9,015 9.061 ±1.62 · 10−2 23,808
14 6.636 ±5.32 · 10−2 36,850 8.974 ±2.48 · 10−2 9,010 9.023 ±1.64 · 10−2 23,823
16 6.546 ±5.27 · 10−2 36,559 8.954 ±2.31 · 10−2 8,983 8.933 ±1.21 · 10−2 23,559
18 6.492 ±4.89 · 10−2 37,097 8.946 ±2.44 · 10−2 8,974 8.932 ±1.13 · 10−2 24,106
20 6.433 ±4.73 · 10−2 36,560 8.990 ±1.86 · 10−2 9,001 8.914 ±1.00 · 10−2 23,543
22 6.502 ±5.05 · 10−2 37,383 8.901 ±1.52 · 10−2 8,976 8.882 ±1.04 · 10−2 24,390
24 6.500 ±4.95 · 10−2 37,464 8.905 ±1.85 · 10−2 8,973 8.915 ±1.21 · 10−2 24,474
26 6.503 ±5.19 · 10−2 36,562 8.901 ±1.59 · 10−2 8,990 8.869 ±1.08 · 10−2 23,556
28 6.443 ±5.04 · 10−2 36,865 8.877 ±1.54 · 10−2 8,991 8.845 ±9.41 · 10−3 23,857
30 6.424 ±4.96 · 10−2 37,363 8.882 ±1.58 · 10−2 8,985 8.845 ±9.77 · 10−3 24,361
32 6.393 ±4.98 · 10−2 37,007 8.860 ±1.41 · 10−2 8,967 8.818 ±8.74 · 10−3 24,027
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Table B.9: Scalability experiment results with 64 PEs and 0 μs Workload.
The mean runtimes and confidence intervals are given in mi-
croseconds (cf. Section 8.5.3).

Pipes
activate_task __schedule __fw_admit

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

2 32.816 ±2.31 · 10−1 53,824 30.529 ±2.82 · 10−1 99,799 6.899 ±7.75 · 10−2 4,063
3 16.565 ±1.36 · 10−1 42,072 11.192 ±1.38 · 10−1 83,486 6.658 ±4.07 · 10−4 4,003
4 10.430 ±7.79 · 10−2 33,685 5.391 ±7.28 · 10−2 74,091 6.658 ±4.07 · 10−4 4,003
5 8.247 ±4.11 · 10−2 30,797 3.599 ±4.76 · 10−2 70,801 6.658 ±4.07 · 10−4 4,003
6 7.981 ±3.66 · 10−2 30,907 3.383 ±4.39 · 10−2 70,626 6.658 ±4.07 · 10−4 4,003
7 7.386 ±2.45 · 10−2 28,323 2.895 ±3.87 · 10−2 68,681 6.658 ±4.07 · 10−4 4,003
8 7.463 ±2.56 · 10−2 29,416 3.045 ±3.81 · 10−2 69,325 6.658 ±4.07 · 10−4 4,003

10 7.203 ±2.14 · 10−2 29,029 2.919 ±3.60 · 10−2 64,996 6.658 ±3.44 · 10−4 4,003
12 7.074 ±1.66 · 10−2 29,151 2.787 ±3.17 · 10−2 65,044 6.658 ±3.44 · 10−4 4,003
14 6.953 ±1.37 · 10−2 27,943 2.674 ±3.19 · 10−2 64,224 6.658 ±3.44 · 10−4 4,003
16 6.935 ±1.34 · 10−2 27,830 2.695 ±3.36 · 10−2 64,613 6.658 ±3.44 · 10−4 4,003
20 6.855 ±1.08 · 10−2 28,449 2.628 ±2.98 · 10−2 64,197 6.658 ±3.44 · 10−4 4,003
24 6.844 ±1.03 · 10−2 28,438 2.645 ±3.26 · 10−2 64,394 6.658 ±3.44 · 10−4 4,003
28 6.820 ±9.27 · 10−3 28,961 2.622 ±2.93 · 10−2 64,726 6.658 ±3.44 · 10−4 4,003
32 6.779 ±7.94 · 10−3 28,766 2.584 ±2.98 · 10−2 64,762 6.658 ±3.44 · 10−4 4,003
36 6.770 ±7.78 · 10−3 28,268 2.580 ±3.17 · 10−2 64,890 6.658 ±3.44 · 10−4 4,003
40 6.769 ±7.95 · 10−3 28,310 2.597 ±3.09 · 10−2 64,249 6.658 ±3.44 · 10−4 4,003
44 6.765 ±7.46 · 10−3 29,199 2.615 ±3.10 · 10−2 65,116 6.658 ±3.44 · 10−4 4,003
48 6.740 ±6.89 · 10−3 27,991 2.569 ±3.22 · 10−2 64,530 6.658 ±3.44 · 10−4 4,003
52 6.744 ±6.94 · 10−3 28,344 2.588 ±3.15 · 10−2 64,326 6.658 ±3.44 · 10−4 4,003
60 6.713 ±5.43 · 10−3 28,228 2.505 ±2.89 · 10−2 64,982 6.658 ±3.44 · 10−4 4,003
64 6.707 ±5.33 · 10−3 28,118 2.525 ±2.88 · 10−2 64,345 6.658 ±3.44 · 10−4 4,003

Pipes
__fw_dispatch __fw_relinquish __fw_unblock

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

2 29.136 ±2.14 · 10−1 67,911 30.977 ±4.88 · 10−1 14,088 34.882 ±2.40 · 10−1 49,761
3 11.469 ±1.31 · 10−1 52,233 12.712 ±2.68 · 10−1 10,162 17.555 ±1.47 · 10−1 38,071
4 5.079 ±7.58 · 10−2 42,888 9.437 ±1.61 · 10−1 9,203 10.886 ±8.68 · 10−2 29,682
5 2.839 ±4.42 · 10−2 39,738 7.916 ±1.16 · 10−1 8,941 8.431 ±4.66 · 10−2 26,794
6 2.570 ±4.07 · 10−2 39,825 7.737 ±9.47 · 10−2 8,918 8.124 ±4.15 · 10−2 26,904
7 1.934 ±3.41 · 10−2 37,133 7.404 ±7.50 · 10−2 8,810 7.452 ±2.83 · 10−2 24,320
8 1.990 ±3.02 · 10−2 38,275 7.942 ±7.30 · 10−2 8,859 7.535 ±2.94 · 10−2 25,413

10 1.688 ±2.74 · 10−2 37,910 7.121 ±5.06 · 10−2 8,882 7.236 ±2.47 · 10−2 25,026
12 1.551 ±2.15 · 10−2 37,981 7.067 ±4.11 · 10−2 8,831 7.086 ±1.92 · 10−2 25,148
14 1.364 ±1.68 · 10−2 36,719 6.936 ±3.09 · 10−2 8,776 6.948 ±1.59 · 10−2 23,940
16 1.385 ±2.21 · 10−2 36,622 7.115 ±3.32 · 10−2 8,792 6.927 ±1.56 · 10−2 23,827
20 1.317 ±1.66 · 10−2 37,234 6.826 ±1.93 · 10−2 8,785 6.833 ±1.25 · 10−2 24,446
24 1.331 ±2.59 · 10−2 37,233 6.893 ±2.09 · 10−2 8,795 6.820 ±1.19 · 10−2 24,435
28 1.283 ±1.55 · 10−2 37,756 6.798 ±1.47 · 10−2 8,795 6.791 ±1.07 · 10−2 24,958
32 1.240 ±1.72 · 10−2 37,560 6.858 ±1.80 · 10−2 8,794 6.744 ±9.21 · 10−3 24,763
36 1.231 ±1.96 · 10−2 37,059 6.767 ±1.13 · 10−2 8,792 6.735 ±9.06 · 10−3 24,265
40 1.234 ±1.95 · 10−2 37,109 6.759 ±1.03 · 10−2 8,799 6.734 ±9.25 · 10−3 24,307
44 1.267 ±2.06 · 10−2 37,983 6.749 ±9.44 · 10−3 8,785 6.728 ±8.64 · 10−3 25,196
48 1.207 ±2.15 · 10−2 36,767 6.744 ±8.43 · 10−3 8,776 6.699 ±8.03 · 10−3 23,988
52 1.235 ±2.32 · 10−2 37,126 6.738 ±8.08 · 10−3 8,783 6.704 ±8.08 · 10−3 24,341
60 1.148 ±1.15 · 10−2 37,012 6.725 ±6.01 · 10−3 8,785 6.668 ±6.33 · 10−3 24,225
64 1.143 ±1.29 · 10−2 36,914 6.718 ±4.43 · 10−3 8,796 6.660 ±6.21 · 10−3 24,115
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Table B.10: Scalability experiment results with 64 PEs and 500 μs Work-
load. The mean runtimes and confidence intervals are given in
microseconds (cf. Section 8.5.3).

Pipes
activate_task __schedule __fw_admit

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

2 39.596 ±2.53 · 10−1 58,823 41.931 ±3.42 · 10−1 105,620 8.846 ±2.50 · 10−1 4,063
3 19.467 ±1.53 · 10−1 43,541 14.880 ±1.71 · 10−1 85,913 8.147 ±7.59 · 10−2 4,063
4 10.291 ±5.64 · 10−2 29,937 5.326 ±6.93 · 10−2 68,938 7.914 ±2.34 · 10−3 4,003
5 10.069 ±5.33 · 10−2 31,350 5.121 ±6.50 · 10−2 71,015 7.917 ±2.79 · 10−3 4,003
6 10.794 ±6.14 · 10−2 35,599 5.923 ±7.08 · 10−2 75,611 7.913 ±2.22 · 10−3 4,003
7 9.064 ±3.31 · 10−2 30,619 4.204 ±4.90 · 10−2 70,540 7.913 ±2.23 · 10−3 4,003
8 8.582 ±2.28 · 10−2 28,047 3.859 ±4.83 · 10−2 68,140 7.913 ±2.22 · 10−3 4,003

10 8.421 ±1.85 · 10−2 29,072 3.654 ±4.34 · 10−2 69,095 7.916 ±3.61 · 10−3 4,003
12 8.488 ±2.11 · 10−2 30,115 3.949 ±4.76 · 10−2 67,964 7.917 ±2.96 · 10−3 4,003
14 8.227 ±1.41 · 10−2 28,597 3.631 ±4.20 · 10−2 66,905 7.917 ±2.96 · 10−3 4,003
16 8.212 ±1.32 · 10−2 28,640 3.619 ±4.49 · 10−2 67,471 7.917 ±2.96 · 10−3 4,003
20 8.114 ±1.02 · 10−2 29,020 3.485 ±4.09 · 10−2 69,547 7.916 ±3.61 · 10−3 4,003
24 8.101 ±1.11 · 10−2 28,009 3.531 ±4.32 · 10−2 66,665 7.917 ±2.96 · 10−3 4,003
28 8.076 ±9.25 · 10−3 29,258 3.557 ±4.15 · 10−2 67,443 7.917 ±2.96 · 10−3 4,003
32 8.068 ±9.10 · 10−3 29,455 3.567 ±4.06 · 10−2 67,559 7.917 ±2.96 · 10−3 4,003
36 8.027 ±7.46 · 10−3 29,578 3.572 ±4.15 · 10−2 68,102 7.917 ±2.96 · 10−3 4,003
40 8.012 ±7.72 · 10−3 28,758 3.472 ±4.26 · 10−2 67,629 7.917 ±2.96 · 10−3 4,003
44 7.997 ±6.54 · 10−3 28,690 3.444 ±4.16 · 10−2 67,698 7.917 ±2.96 · 10−3 4,003
48 8.004 ±6.83 · 10−3 28,711 3.491 ±4.23 · 10−2 67,240 7.917 ±2.96 · 10−3 4,003
52 8.009 ±7.22 · 10−3 29,577 3.504 ±4.13 · 10−2 67,514 7.917 ±2.96 · 10−3 4,003
60 7.981 ±5.86 · 10−3 29,472 3.504 ±3.92 · 10−2 67,153 7.917 ±2.96 · 10−3 4,003
64 7.962 ±6.08 · 10−3 27,389 3.446 ±4.03 · 10−2 65,609 7.917 ±2.96 · 10−3 4,003

Pipes
__fw_dispatch __fw_relinquish __fw_unblock

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

2 38.286 ±2.44 · 10−1 75,406 39.819 ±5.09 · 10−1 16,583 41.828 ±2.61 · 10−1 54,760
3 15.454 ±1.57 · 10−1 54,340 15.829 ±3.10 · 10−1 10,799 20.581 ±1.64 · 10−1 39,478
4 5.173 ±6.71 · 10−2 39,069 10.751 ±1.66 · 10−1 9,132 10.604 ±6.40 · 10−2 25,934
5 4.913 ±6.50 · 10−2 40,473 9.436 ±1.23 · 10−1 9,124 10.331 ±6.02 · 10−2 27,347
6 5.639 ±6.90 · 10−2 44,945 9.509 ±1.14 · 10−1 9,347 11.107 ±6.82 · 10−2 31,596
7 3.753 ±4.53 · 10−2 39,658 8.876 ±8.47 · 10−2 9,039 9.184 ±3.77 · 10−2 26,616
8 3.239 ±4.50 · 10−2 36,975 9.248 ±7.66 · 10−2 8,928 8.639 ±2.64 · 10−2 24,044

10 3.052 ±4.21 · 10−2 37,978 8.396 ±4.99 · 10−2 8,907 8.448 ±2.13 · 10−2 25,069
12 3.214 ±4.89 · 10−2 39,066 8.391 ±4.43 · 10−2 8,951 8.521 ±2.42 · 10−2 26,112
14 2.872 ±3.90 · 10−2 37,491 8.230 ±3.81 · 10−2 8,894 8.223 ±1.63 · 10−2 24,594
16 2.867 ±4.83 · 10−2 37,556 8.382 ±3.31 · 10−2 8,916 8.206 ±1.52 · 10−2 24,637
20 2.790 ±4.18 · 10−2 37,927 8.118 ±2.25 · 10−2 8,907 8.091 ±1.18 · 10−2 25,017
24 2.732 ±4.43 · 10−2 36,908 8.162 ±2.15 · 10−2 8,899 8.077 ±1.29 · 10−2 24,006
28 2.701 ±3.91 · 10−2 38,159 8.057 ±1.59 · 10−2 8,903 8.047 ±1.07 · 10−2 25,255
32 2.707 ±4.01 · 10−2 38,384 8.103 ±1.71 · 10−2 8,929 8.038 ±1.05 · 10−2 25,452
36 2.682 ±4.00 · 10−2 38,500 8.026 ±1.13 · 10−2 8,922 7.990 ±8.61 · 10−3 25,575
40 2.653 ±4.43 · 10−2 37,631 8.009 ±8.92 · 10−3 8,873 7.973 ±8.95 · 10−3 24,755
44 2.660 ±4.45 · 10−2 37,566 8.010 ±9.65 · 10−3 8,876 7.956 ±7.58 · 10−3 24,687
48 2.649 ±4.39 · 10−2 37,631 8.003 ±8.73 · 10−3 8,921 7.964 ±7.92 · 10−3 24,708
52 2.662 ±4.32 · 10−2 38,472 7.997 ±8.15 · 10−3 8,896 7.970 ±8.33 · 10−3 25,574
60 2.589 ±3.52 · 10−2 38,392 7.984 ±6.28 · 10−3 8,920 7.937 ±6.76 · 10−3 25,469
64 2.564 ±3.79 · 10−2 36,250 7.976 ±4.73 · 10−3 8,863 7.915 ±7.11 · 10−3 23,386
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Table B.11: Scalability experiment results with 64 PEs and 1000 μs Work-
load. The mean runtimes and confidence intervals are given in
microseconds (cf. Section 8.5.3).

Pipes
activate_task __schedule __fw_admit

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

2 59.549 ±2.88 · 10−1 84,740 77.905 ±4.40 · 10−1 140,680 10.384 ±3.36 · 10−1 4,062
3 27.634 ±1.97 · 10−1 53,809 25.272 ±2.44 · 10−1 100,850 9.708 ±1.72 · 10−1 4,062
4 16.989 ±1.22 · 10−1 41,665 12.413 ±1.44 · 10−1 82,638 9.188 ±7.16 · 10−3 4,003
5 11.931 ±6.59 · 10−2 32,472 7.189 ±9.09 · 10−2 68,585 9.194 ±7.90 · 10−3 4,003
6 10.954 ±4.25 · 10−2 32,234 5.813 ±7.29 · 10−2 74,846 9.182 ±6.33 · 10−3 4,062
7 10.248 ±3.34 · 10−2 30,298 5.120 ±6.71 · 10−2 72,853 9.185 ±6.71 · 10−3 4,062
8 9.926 ±2.63 · 10−2 28,878 4.895 ±6.62 · 10−2 71,860 9.182 ±6.35 · 10−3 4,062

10 9.752 ±2.09 · 10−2 29,155 4.835 ±6.52 · 10−2 69,247 9.183 ±6.87 · 10−3 4,003
12 9.615 ±1.85 · 10−2 28,621 4.705 ±6.26 · 10−2 69,106 9.183 ±6.87 · 10−3 4,003
14 9.705 ±2.05 · 10−2 31,179 4.911 ±6.04 · 10−2 70,935 9.183 ±6.87 · 10−3 4,003
16 9.527 ±1.55 · 10−2 29,172 4.586 ±5.81 · 10−2 69,840 9.187 ±7.04 · 10−3 4,003
20 9.412 ±1.29 · 10−2 28,891 4.540 ±5.74 · 10−2 69,121 9.183 ±6.87 · 10−3 4,003
24 9.410 ±1.19 · 10−2 29,987 4.573 ±5.61 · 10−2 69,946 9.183 ±6.87 · 10−3 4,003
28 9.336 ±1.19 · 10−2 29,098 4.443 ±5.38 · 10−2 69,079 9.183 ±6.87 · 10−3 4,003
32 9.312 ±8.64 · 10−3 28,916 4.356 ±5.28 · 10−2 69,752 9.187 ±7.04 · 10−3 4,003
36 9.326 ±9.93 · 10−3 29,462 4.504 ±5.79 · 10−2 69,360 9.183 ±6.87 · 10−3 4,003
40 9.329 ±9.83 · 10−3 30,706 4.541 ±5.59 · 10−2 70,945 9.183 ±6.87 · 10−3 4,003
44 9.298 ±8.94 · 10−3 29,575 4.447 ±5.66 · 10−2 69,813 9.183 ±6.87 · 10−3 4,003
48 9.277 ±9.50 · 10−3 29,465 4.480 ±5.77 · 10−2 69,611 9.183 ±6.87 · 10−3 4,003
52 9.260 ±9.57 · 10−3 28,572 4.422 ±5.78 · 10−2 68,740 9.183 ±6.87 · 10−3 4,003
56 9.253 ±7.20 · 10−3 30,266 4.434 ±5.21 · 10−2 70,367 9.183 ±6.87 · 10−3 4,003
60 9.253 ±7.03 · 10−3 29,451 4.464 ±5.29 · 10−2 69,140 9.183 ±6.87 · 10−3 4,003
64 9.234 ±7.01 · 10−3 28,437 4.374 ±5.34 · 10−2 68,425 9.183 ±6.87 · 10−3 4,003

Pipes
__fw_dispatch __fw_relinquish __fw_unblock

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

2 62.783 ±2.77 · 10−1 112,575 65.813 ±5.32 · 10−1 27,834 61.975 ±2.92 · 10−1 80,678
3 25.232 ±2.06 · 10−1 67,015 24.607 ±4.13 · 10−1 13,205 29.047 ±2.07 · 10−1 49,747
4 12.890 ±1.37 · 10−1 52,007 14.942 ±2.42 · 10−1 10,342 17.767 ±1.33 · 10−1 37,662
5 7.197 ±9.33 · 10−2 41,854 11.198 ±1.43 · 10−1 9,381 12.263 ±7.42 · 10−2 28,469
6 6.142 ±8.00 · 10−2 41,445 10.615 ±1.17 · 10−1 9,210 11.156 ±4.80 · 10−2 28,172
7 5.371 ±8.04 · 10−2 39,416 10.226 ±9.27 · 10−2 9,117 10.359 ±3.82 · 10−2 26,236
8 4.959 ±7.95 · 10−2 37,927 10.719 ±8.94 · 10−2 9,048 9.994 ±3.03 · 10−2 24,816

10 4.785 ±8.05 · 10−2 38,179 9.807 ±6.64 · 10−2 9,025 9.788 ±2.41 · 10−2 25,152
12 4.608 ±7.83 · 10−2 37,653 9.723 ±5.59 · 10−2 9,032 9.632 ±2.14 · 10−2 24,618
14 4.720 ±7.14 · 10−2 40,310 9.584 ±4.28 · 10−2 9,131 9.728 ±2.34 · 10−2 27,176
16 4.444 ±7.25 · 10−2 38,186 9.683 ±3.53 · 10−2 9,014 9.527 ±1.78 · 10−2 25,169
20 4.338 ±7.13 · 10−2 37,890 9.420 ±2.69 · 10−2 9,000 9.394 ±1.49 · 10−2 24,888
24 4.339 ±6.92 · 10−2 39,046 9.460 ±3.35 · 10−2 9,059 9.391 ±1.37 · 10−2 25,984
28 4.208 ±6.54 · 10−2 38,114 9.346 ±2.12 · 10−2 9,017 9.307 ±1.37 · 10−2 25,095
32 4.157 ±6.59 · 10−2 37,903 9.384 ±1.85 · 10−2 8,987 9.278 ±9.95 · 10−3 24,913
36 4.285 ±7.58 · 10−2 38,500 9.320 ±1.98 · 10−2 9,038 9.295 ±1.14 · 10−2 25,459
40 4.272 ±7.04 · 10−2 39,741 9.304 ±1.91 · 10−2 9,035 9.298 ±1.12 · 10−2 26,703
44 4.235 ±7.37 · 10−2 38,583 9.299 ±1.81 · 10−2 9,009 9.262 ±1.03 · 10−2 25,572
48 4.241 ±7.51 · 10−2 38,452 9.296 ±1.99 · 10−2 8,988 9.238 ±1.09 · 10−2 25,462
52 4.207 ±7.60 · 10−2 37,563 9.281 ±1.78 · 10−2 8,991 9.219 ±1.11 · 10−2 24,569
56 4.111 ±6.18 · 10−2 39,284 9.265 ±1.54 · 10−2 9,019 9.210 ±8.23 · 10−3 26,263
60 4.130 ±6.33 · 10−2 38,479 9.260 ±1.53 · 10−2 9,029 9.210 ±8.06 · 10−3 25,448
64 4.105 ±6.63 · 10−2 37,428 9.251 ±1.49 · 10−2 8,991 9.188 ±8.08 · 10−3 24,434
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Table B.12: Scalability experiment results with 64 PEs and 2000 μs Work-
load. The mean runtimes and confidence intervals are given in
microseconds (cf. Section 8.5.3).

Pipes
activate_task __schedule __fw_admit

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

2 116.563 ±2.95 · 10−1 185,840 199.980 ±4.65 · 10−1 330,585 13.344 ±4.43 · 10−1 4,062
3 51.938 ±2.76 · 10−1 79,307 66.967 ±4.10 · 10−1 132,001 12.823 ±3.31 · 10−1 4,062
4 28.655 ±2.04 · 10−1 50,911 28.821 ±2.72 · 10−1 91,771 11.767 ±1.82 · 10−2 4,003
5 22.940 ±1.61 · 10−1 46,082 20.813 ±2.14 · 10−1 85,021 11.767 ±1.82 · 10−2 4,003
6 17.918 ±1.20 · 10−1 39,852 14.332 ±1.69 · 10−1 77,436 11.764 ±1.80 · 10−2 4,003
7 14.612 ±7.60 · 10−2 34,641 10.434 ±1.38 · 10−1 71,298 11.781 ±1.99 · 10−2 4,003
8 15.981 ±9.16 · 10−2 38,693 12.268 ±1.46 · 10−1 75,886 11.767 ±1.82 · 10−2 4,003

10 12.755 ±3.94 · 10−2 30,329 8.492 ±1.29 · 10−1 66,716 11.781 ±1.99 · 10−2 4,003
12 12.916 ±3.89 · 10−2 32,327 8.735 ±1.21 · 10−1 68,460 11.781 ±1.99 · 10−2 4,003
14 12.408 ±3.24 · 10−2 30,991 8.028 ±1.18 · 10−1 67,262 11.781 ±1.99 · 10−2 4,003
16 12.667 ±3.32 · 10−2 34,709 8.617 ±1.16 · 10−1 71,074 11.781 ±1.99 · 10−2 4,003
20 12.255 ±2.59 · 10−2 31,947 7.982 ±1.14 · 10−1 67,982 11.781 ±1.99 · 10−2 4,003
24 12.070 ±2.06 · 10−2 30,548 7.625 ±1.10 · 10−1 66,927 11.781 ±1.99 · 10−2 4,003
28 12.261 ±2.40 · 10−2 35,633 8.191 ±1.09 · 10−1 71,917 11.781 ±1.99 · 10−2 4,003
32 11.927 ±2.06 · 10−2 29,669 7.584 ±1.16 · 10−1 65,793 11.781 ±1.99 · 10−2 4,003
36 12.002 ±2.33 · 10−2 31,612 7.637 ±1.08 · 10−1 67,700 11.781 ±1.99 · 10−2 4,003
40 11.892 ±2.08 · 10−2 29,567 7.450 ±1.14 · 10−1 65,877 11.781 ±1.99 · 10−2 4,003
44 11.921 ±1.89 · 10−2 31,568 7.585 ±1.11 · 10−1 67,752 11.781 ±1.99 · 10−2 4,003
48 11.946 ±1.78 · 10−2 32,323 7.679 ±1.10 · 10−1 68,393 11.781 ±1.99 · 10−2 4,003
52 11.859 ±2.07 · 10−2 29,843 7.408 ±1.12 · 10−1 66,329 11.781 ±1.99 · 10−2 4,003
60 11.861 ±1.81 · 10−2 30,923 7.511 ±1.13 · 10−1 66,931 11.781 ±1.99 · 10−2 4,003
64 11.810 ±1.75 · 10−2 30,494 7.434 ±1.13 · 10−1 66,803 11.781 ±1.99 · 10−2 4,003

Pipes
__fw_dispatch __fw_relinquish __fw_unblock

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

2 135.658 ±2.36 · 10−1 301,314 135.829 ±3.63 · 10−1 115,474 118.822 ±2.92 · 10−1 181,778
3 56.932 ±2.84 · 10−1 103,491 57.085 ±5.61 · 10−1 24,184 54.001 ±2.83 · 10−1 75,245
4 28.119 ±2.33 · 10−1 64,300 27.879 ±4.25 · 10−1 13,389 30.046 ±2.16 · 10−1 46,908
5 20.904 ±1.95 · 10−1 57,947 20.052 ±3.19 · 10−1 11,865 23.952 ±1.72 · 10−1 42,079
6 15.070 ±1.78 · 10−1 50,419 15.922 ±2.25 · 10−1 10,567 18.553 ±1.31 · 10−1 35,849
7 11.435 ±1.65 · 10−1 44,360 13.980 ±1.83 · 10−1 9,719 14.929 ±8.51 · 10−2 30,638
8 12.688 ±1.58 · 10−1 48,825 15.299 ±1.87 · 10−1 10,133 16.416 ±1.01 · 10−1 34,690

10 9.407 ±1.71 · 10−1 39,722 12.909 ±1.47 · 10−1 9,393 12.849 ±4.51 · 10−2 26,326
12 9.380 ±1.57 · 10−1 41,839 12.746 ±1.05 · 10−1 9,512 13.023 ±4.40 · 10−2 28,324
14 8.696 ±1.60 · 10−1 40,351 12.373 ±9.59 · 10−2 9,360 12.448 ±3.69 · 10−2 26,988
16 8.988 ±1.48 · 10−1 44,251 12.660 ±9.70 · 10−2 9,543 12.730 ±3.73 · 10−2 30,706
20 8.485 ±1.53 · 10−1 41,324 12.195 ±7.51 · 10−2 9,378 12.270 ±2.94 · 10−2 27,944
24 8.236 ±1.49 · 10−1 39,882 12.251 ±7.81 · 10−2 9,334 12.060 ±2.34 · 10−2 26,545
28 8.402 ±1.42 · 10−1 45,103 12.038 ±5.30 · 10−2 9,471 12.269 ±2.69 · 10−2 31,630
32 8.156 ±1.64 · 10−1 38,931 12.071 ±6.15 · 10−2 9,262 11.896 ±2.36 · 10−2 25,666
36 8.071 ±1.47 · 10−1 40,946 11.955 ±5.08 · 10−2 9,334 11.981 ±2.65 · 10−2 27,609
40 8.103 ±1.62 · 10−1 38,829 11.974 ±6.36 · 10−2 9,262 11.855 ±2.39 · 10−2 25,564
44 8.013 ±1.52 · 10−1 40,943 11.933 ±5.73 · 10−2 9,376 11.888 ±2.15 · 10−2 27,565
48 8.034 ±1.49 · 10−1 41,708 11.951 ±5.94 · 10−2 9,386 11.916 ±2.01 · 10−2 28,320
52 8.015 ±1.58 · 10−1 39,124 11.909 ±5.12 · 10−2 9,281 11.817 ±2.37 · 10−2 25,840
60 8.008 ±1.59 · 10−1 40,244 11.866 ±4.46 · 10−2 9,321 11.819 ±2.06 · 10−2 26,920
64 7.968 ±1.60 · 10−1 39,788 11.831 ±4.25 · 10−2 9,294 11.761 ±1.99 · 10−2 26,491
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Table B.13: Scalability experiment results with 128 PEs and 0 μs Workload.
The mean runtimes and confidence intervals are given in mi-
croseconds (cf. Section 8.5.3).

Pipes
activate_task __schedule __fw_admit

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

4 107.985 ±2.58 · 10−1 178,505 138.345 ±4.10 · 10−1 349,629 15.505 ±5.73 · 10−1 4,127
5 77.607 ±2.36 · 10−1 137,027 85.081 ±3.46 · 10−1 262,230 14.275 ±3.56 · 10−1 4,127
6 56.512 ±2.30 · 10−1 99,495 51.003 ±2.88 · 10−1 202,477 13.200 ±1.59 · 10−1 4,126
7 43.899 ±2.10 · 10−1 80,109 33.358 ±2.32 · 10−1 173,240 13.046 ±1.29 · 10−1 4,127
8 36.582 ±1.94 · 10−1 69,022 24.452 ±1.99 · 10−1 158,171 13.044 ±1.25 · 10−1 4,127
9 29.806 ±1.73 · 10−1 58,498 17.103 ±1.63 · 10−1 144,510 12.783 ±6.53 · 10−2 4,127

10 26.763 ±1.60 · 10−1 54,644 14.018 ±1.43 · 10−1 140,409 12.791 ±6.49 · 10−2 4,127
12 22.249 ±1.27 · 10−1 50,895 9.811 ±1.06 · 10−1 134,998 12.707 ±5.03 · 10−2 4,127
14 20.138 ±1.15 · 10−1 47,469 8.191 ±9.72 · 10−2 130,793 12.644 ±2.95 · 10−2 4,127
16 17.511 ±9.17 · 10−2 42,206 6.211 ±8.04 · 10−2 124,088 12.604 ±1.88 · 10−2 4,127
20 15.399 ±6.79 · 10−2 38,401 4.571 ±6.28 · 10−2 120,959 12.605 ±2.06 · 10−2 4,126
24 14.834 ±5.59 · 10−2 40,077 4.317 ±5.66 · 10−2 123,135 12.601 ±2.15 · 10−2 4,127
28 14.014 ±4.58 · 10−2 36,956 3.630 ±4.84 · 10−2 119,135 12.613 ±2.28 · 10−2 4,126
32 13.814 ±4.28 · 10−2 36,641 3.557 ±4.59 · 10−2 118,086 12.584 ±1.32 · 10−2 4,127
40 13.224 ±3.45 · 10−2 34,090 3.122 ±4.46 · 10−2 116,633 12.575 ±9.48 · 10−3 4,127
48 13.080 ±3.08 · 10−2 35,057 3.135 ±4.21 · 10−2 116,934 12.567 ±6.07 · 10−3 4,126
56 12.880 ±2.75 · 10−2 34,156 2.942 ±4.15 · 10−2 116,948 12.566 ±5.29 · 10−3 4,127
64 12.748 ±2.43 · 10−2 34,833 2.941 ±4.09 · 10−2 117,243 12.567 ±4.45 · 10−3 4,127
80 12.689 ±2.25 · 10−2 35,561 3.017 ±4.45 · 10−2 117,734 12.562 ±4.55 · 10−4 4,126
96 12.588 ±2.15 · 10−2 33,675 2.867 ±4.54 · 10−2 115,988 12.568 ±5.34 · 10−3 4,127

112 12.489 ±1.93 · 10−2 33,619 2.899 ±4.99 · 10−2 114,858 12.569 ±5.35 · 10−3 4,127
128 12.419 ±1.69 · 10−2 33,926 2.686 ±3.23 · 10−2 114,390 12.562 ±3.14 · 10−4 4,127

Pipes
__fw_dispatch __fw_relinquish __fw_unblock

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

4 107.599 ±2.08 · 10−1 270,545 123.543 ±3.58 · 10−1 92,039 110.126 ±2.55 · 10−1 174,378
5 74.369 ±2.08 · 10−1 186,781 87.648 ±4.15 · 10−1 49,753 79.525 ±2.35 · 10−1 132,900
6 51.082 ±2.13 · 10−1 128,527 62.282 ±4.71 · 10−1 29,031 58.337 ±2.33 · 10−1 95,369
7 36.713 ±1.98 · 10−1 100,718 45.609 ±4.60 · 10−1 20,609 45.526 ±2.15 · 10−1 75,982
8 28.558 ±1.88 · 10−1 85,862 36.432 ±4.41 · 10−1 16,840 38.029 ±2.01 · 10−1 64,895
9 21.442 ±1.74 · 10−1 72,333 30.003 ±4.12 · 10−1 13,835 31.048 ±1.82 · 10−1 54,371

10 17.977 ±1.59 · 10−1 67,435 25.573 ±3.73 · 10−1 12,791 27.854 ±1.69 · 10−1 50,517
12 12.747 ±1.29 · 10−1 62,296 20.446 ±2.92 · 10−1 11,401 23.040 ±1.35 · 10−1 46,768
14 10.614 ±1.28 · 10−1 58,366 18.530 ±2.51 · 10−1 10,897 20.800 ±1.24 · 10−1 43,342
16 7.842 ±1.11 · 10−1 52,513 16.666 ±2.00 · 10−1 10,307 17.992 ±1.00 · 10−1 38,079
20 5.530 ±9.49 · 10−2 48,175 15.080 ±1.48 · 10−1 9,773 15.683 ±7.53 · 10−2 34,275
24 4.960 ±8.35 · 10−2 49,818 14.682 ±1.24 · 10−1 9,741 15.039 ±6.18 · 10−2 35,950
28 3.906 ±7.23 · 10−2 46,520 13.933 ±9.53 · 10−2 9,565 14.138 ±5.12 · 10−2 32,830
32 3.734 ±6.62 · 10−2 46,217 13.786 ±8.06 · 10−2 9,577 13.917 ±4.79 · 10−2 32,514
40 3.121 ±7.44 · 10−2 43,482 13.339 ±5.81 · 10−2 9,391 13.260 ±3.92 · 10−2 29,963
48 3.023 ±6.55 · 10−2 44,414 13.248 ±5.11 · 10−2 9,357 13.096 ±3.49 · 10−2 30,931
56 2.771 ±6.97 · 10−2 43,478 13.001 ±3.87 · 10−2 9,322 12.871 ±3.12 · 10−2 30,029
64 2.659 ±6.71 · 10−2 44,171 12.928 ±3.17 · 10−2 9,337 12.720 ±2.75 · 10−2 30,706
80 2.667 ±7.57 · 10−2 44,956 12.828 ±2.60 · 10−2 9,395 12.653 ±2.54 · 10−2 31,435
96 2.602 ±8.69 · 10−2 42,976 12.783 ±2.34 · 10−2 9,302 12.538 ±2.45 · 10−2 29,548

112 2.621 ±1.01 · 10−1 42,915 12.707 ±1.76 · 10−2 9,296 12.425 ±2.20 · 10−2 29,492
128 2.058 ±3.13 · 10−2 43,171 12.627 ±6.93 · 10−3 9,245 12.347 ±1.92 · 10−2 29,799
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Table B.14: Scalability experiment results with 128 PEs and 500 μs Work-
load. The mean runtimes and confidence intervals are given in
microseconds (cf. Section 8.5.3).

Pipes
activate_task __schedule __fw_admit

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

4 111.928 ±2.62 · 10−1 187,279 151.176 ±4.23 · 10−1 368,393 16.822 ±5.79 · 10−1 4,127
5 78.766 ±2.43 · 10−1 136,582 89.038 ±3.61 · 10−1 266,225 16.066 ±4.45 · 10−1 4,126
6 59.352 ±2.20 · 10−1 109,663 57.933 ±3.01 · 10−1 219,163 15.174 ±2.95 · 10−1 4,127
7 47.837 ±2.01 · 10−1 94,247 41.366 ±2.54 · 10−1 194,407 14.572 ±1.71 · 10−1 4,127
8 39.247 ±1.86 · 10−1 78,640 29.043 ±2.14 · 10−1 172,430 14.364 ±1.46 · 10−1 4,127
9 32.448 ±1.74 · 10−1 63,084 20.599 ±1.83 · 10−1 152,255 14.516 ±1.77 · 10−1 4,127

10 27.755 ±1.58 · 10−1 53,900 15.030 ±1.52 · 10−1 138,454 14.087 ±8.44 · 10−2 4,127
12 23.414 ±1.29 · 10−1 49,860 11.278 ±1.28 · 10−1 133,076 13.945 ±4.55 · 10−2 4,127
14 20.912 ±1.08 · 10−1 46,493 9.027 ±1.06 · 10−1 129,016 13.963 ±5.46 · 10−2 4,126
16 19.917 ±9.59 · 10−2 47,218 8.286 ±9.63 · 10−2 129,257 13.873 ±2.55 · 10−2 4,127
20 16.976 ±6.81 · 10−2 39,821 5.726 ±7.47 · 10−2 121,235 13.889 ±2.88 · 10−2 4,127
24 16.052 ±5.93 · 10−2 37,632 5.137 ±7.52 · 10−2 119,396 13.890 ±2.65 · 10−2 4,127
28 15.755 ±5.08 · 10−2 40,553 5.120 ±6.86 · 10−2 121,468 13.848 ±1.57 · 10−2 4,127
32 15.225 ±4.23 · 10−2 38,895 4.687 ±6.28 · 10−2 120,055 13.844 ±1.51 · 10−2 4,127
40 14.727 ±3.62 · 10−2 36,498 4.225 ±5.79 · 10−2 117,731 13.826 ±7.81 · 10−3 4,127
48 14.253 ±3.05 · 10−2 34,110 3.852 ±5.49 · 10−2 115,971 13.824 ±7.03 · 10−3 4,127
56 14.190 ±2.72 · 10−2 35,634 3.886 ±5.46 · 10−2 117,267 13.826 ±7.55 · 10−3 4,127
64 14.013 ±2.33 · 10−2 35,661 3.862 ±5.65 · 10−2 116,296 13.819 ±2.50 · 10−3 4,127
80 13.971 ±2.20 · 10−2 35,751 3.880 ±5.91 · 10−2 116,734 13.819 ±2.53 · 10−3 4,127
96 13.880 ±1.95 · 10−2 36,299 3.859 ±6.35 · 10−2 117,220 13.818 ±2.33 · 10−3 4,127

112 13.813 ±1.82 · 10−2 36,003 4.005 ±7.74 · 10−2 115,614 13.817 ±2.20 · 10−3 4,127
128 13.687 ±1.68 · 10−2 34,630 3.770 ±6.53 · 10−2 114,858 13.817 ±2.15 · 10−3 4,127

Pipes
__fw_dispatch __fw_relinquish __fw_unblock

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

4 116.531 ±2.16 · 10−1 290,437 124.430 ±3.40 · 10−1 103,158 114.023 ±2.59 · 10−1 183,152
5 79.426 ±2.23 · 10−1 188,055 86.841 ±4.02 · 10−1 51,472 80.672 ±2.43 · 10−1 132,456
6 57.406 ±2.18 · 10−1 142,417 64.257 ±4.35 · 10−1 32,754 61.031 ±2.22 · 10−1 105,536
7 43.659 ±2.06 · 10−1 118,818 50.057 ±4.27 · 10−1 24,572 49.312 ±2.05 · 10−1 90,120
8 33.316 ±2.00 · 10−1 97,472 39.019 ±4.14 · 10−1 18,832 40.576 ±1.91 · 10−1 74,513
9 25.814 ±1.97 · 10−1 78,197 33.141 ±3.98 · 10−1 15,114 33.653 ±1.82 · 10−1 58,957

10 19.736 ±1.78 · 10−1 66,846 26.354 ±3.49 · 10−1 12,947 28.838 ±1.67 · 10−1 49,773
12 15.178 ±1.69 · 10−1 61,759 22.162 ±2.90 · 10−1 11,899 24.218 ±1.38 · 10−1 45,733
14 12.061 ±1.46 · 10−1 57,741 19.770 ±2.36 · 10−1 11,248 21.537 ±1.17 · 10−1 42,367
16 10.744 ±1.30 · 10−1 58,172 18.533 ±2.00 · 10−1 10,954 20.445 ±1.03 · 10−1 43,091
20 7.490 ±1.15 · 10−1 49,945 16.562 ±1.48 · 10−1 10,125 17.280 ±7.50 · 10−2 35,696
24 6.660 ±1.30 · 10−1 47,539 15.938 ±1.29 · 10−1 9,908 16.265 ±6.60 · 10−2 33,505
28 6.307 ±1.09 · 10−1 50,563 15.398 ±1.05 · 10−1 10,011 15.919 ±5.61 · 10−2 36,426
32 5.606 ±1.02 · 10−1 48,828 15.115 ±8.28 · 10−2 9,933 15.336 ±4.70 · 10−2 34,768
40 5.020 ±9.87 · 10−2 46,168 14.651 ±5.94 · 10−2 9,670 14.789 ±4.06 · 10−2 32,371
48 4.493 ±9.53 · 10−2 43,651 14.498 ±4.96 · 10−2 9,541 14.259 ±3.46 · 10−2 29,983
56 4.503 ±9.76 · 10−2 45,244 14.272 ±3.86 · 10−2 9,610 14.185 ±3.07 · 10−2 31,507
64 4.405 ±1.04 · 10−1 45,257 14.196 ±3.33 · 10−2 9,596 13.986 ±2.63 · 10−2 31,534
80 4.410 ±1.13 · 10−1 45,329 14.087 ±2.51 · 10−2 9,580 13.938 ±2.49 · 10−2 31,624
96 4.426 ±1.27 · 10−1 45,870 14.042 ±2.18 · 10−2 9,571 13.835 ±2.20 · 10−2 32,172

112 4.782 ±1.67 · 10−1 45,528 13.971 ±3.93 · 10−2 9,527 13.760 ±2.06 · 10−2 31,876
128 4.410 ±1.38 · 10−1 44,069 13.901 ±3.55 · 10−2 9,441 13.617 ±1.90 · 10−2 30,503
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Table B.15: Scalability experiment results with 128 PEs and 1000 μs Work-
load. The mean runtimes and confidence intervals are given in
microseconds (cf. Section 8.5.3).

Pipes
activate_task __schedule __fw_admit

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

4 119.897 ±2.77 · 10−1 206,059 173.740 ±4.43 · 10−1 408,531 17.697 ±5.05 · 10−1 4,127
5 82.343 ±2.51 · 10−1 145,835 99.663 ±3.80 · 10−1 280,852 17.159 ±4.19 · 10−1 4,126
6 60.989 ±2.30 · 10−1 108,045 62.399 ±3.20 · 10−1 214,844 16.308 ±2.69 · 10−1 4,127
7 49.234 ±2.02 · 10−1 93,515 44.836 ±2.75 · 10−1 192,646 16.029 ±2.18 · 10−1 4,127
8 41.632 ±1.83 · 10−1 82,304 35.027 ±2.54 · 10−1 174,114 15.438 ±9.03 · 10−2 4,127
9 36.832 ±1.70 · 10−1 76,759 28.021 ±2.14 · 10−1 167,526 15.327 ±8.18 · 10−2 4,127

10 31.485 ±1.54 · 10−1 64,420 20.785 ±1.86 · 10−1 151,182 15.207 ±4.37 · 10−2 4,127
12 24.740 ±1.27 · 10−1 50,807 12.986 ±1.47 · 10−1 134,034 15.246 ±5.20 · 10−2 4,127
14 21.545 ±1.00 · 10−1 45,403 9.930 ±1.26 · 10−1 127,718 15.165 ±4.12 · 10−2 4,127
16 20.886 ±9.53 · 10−2 45,685 9.482 ±1.20 · 10−1 127,349 15.151 ±3.03 · 10−2 4,127
20 18.941 ±7.26 · 10−2 44,514 8.243 ±1.25 · 10−1 125,917 15.120 ±2.43 · 10−2 4,127
24 17.574 ±5.96 · 10−2 39,918 6.911 ±1.16 · 10−1 121,184 15.090 ±1.01 · 10−2 4,127
28 16.652 ±4.77 · 10−2 37,505 6.168 ±1.10 · 10−1 118,904 15.096 ±1.24 · 10−2 4,127
32 16.594 ±4.42 · 10−2 40,148 6.439 ±1.18 · 10−1 121,166 15.087 ±1.01 · 10−2 4,126
40 16.111 ±3.65 · 10−2 38,833 6.037 ±1.18 · 10−1 120,257 15.090 ±1.03 · 10−2 4,127
48 15.707 ±3.21 · 10−2 37,142 5.257 ±8.81 · 10−2 119,340 15.094 ±1.13 · 10−2 4,127
56 15.429 ±2.56 · 10−2 35,320 5.158 ±9.08 · 10−2 116,341 15.086 ±9.23 · 10−3 4,127
64 15.276 ±2.61 · 10−2 35,670 5.170 ±9.92 · 10−2 117,464 15.080 ±7.07 · 10−3 4,127
80 15.228 ±2.13 · 10−2 34,996 5.225 ±1.06 · 10−1 115,735 15.087 ±9.80 · 10−3 4,127
96 15.110 ±2.10 · 10−2 34,779 5.157 ±1.06 · 10−1 116,289 15.081 ±6.03 · 10−3 4,127

112 15.107 ±1.79 · 10−2 32,820 5.202 ±1.21 · 10−1 116,882 15.078 ±5.06 · 10−3 4,126
127 15.032 ±1.38 · 10−2 35,781 4.951 ±9.41 · 10−2 118,690 15.077 ±4.89 · 10−3 4,126
128 14.948 ±1.71 · 10−2 34,516 5.143 ±1.24 · 10−1 119,252 15.081 ±5.75 · 10−3 4,126

Pipes
__fw_dispatch __fw_relinquish __fw_unblock

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

4 129.530 ±2.34 · 10−1 332,447 134.016 ±3.47 · 10−1 126,389 121.939 ±2.75 · 10−1 201,932
5 86.919 ±2.39 · 10−1 204,405 91.556 ±4.10 · 10−1 58,573 84.193 ±2.51 · 10−1 141,709
6 61.201 ±2.37 · 10−1 142,257 66.103 ±4.44 · 10−1 34,212 62.715 ±2.32 · 10−1 103,918
7 47.714 ±2.38 · 10−1 119,338 51.764 ±4.37 · 10−1 25,825 50.718 ±2.06 · 10−1 89,388
8 39.043 ±2.52 · 10−1 103,302 42.744 ±4.49 · 10−1 21,000 42.965 ±1.88 · 10−1 78,179
9 32.495 ±2.12 · 10−1 94,647 38.225 ±4.15 · 10−1 17,890 38.005 ±1.76 · 10−1 72,632

10 25.753 ±2.07 · 10−1 79,500 30.804 ±3.75 · 10−1 15,080 32.549 ±1.60 · 10−1 60,293
12 17.773 ±2.05 · 10−1 63,151 23.846 ±3.11 · 10−1 12,344 25.529 ±1.36 · 10−1 46,680
14 14.072 ±1.96 · 10−1 56,713 20.896 ±2.57 · 10−1 11,310 22.132 ±1.08 · 10−1 41,276
16 13.195 ±1.86 · 10−1 56,830 19.763 ±2.27 · 10−1 11,145 21.405 ±1.03 · 10−1 41,558
20 11.510 ±2.21 · 10−1 55,325 18.549 ±2.18 · 10−1 10,812 19.280 ±7.90 · 10−2 40,387
24 9.929 ±2.23 · 10−1 50,202 17.496 ±1.87 · 10−1 10,284 17.809 ±6.58 · 10−2 35,791
28 9.032 ±2.24 · 10−1 47,594 16.716 ±1.58 · 10−1 10,089 16.792 ±5.33 · 10−2 33,378
32 9.105 ±2.38 · 10−1 50,347 16.612 ±1.51 · 10−1 10,199 16.715 ±4.90 · 10−2 36,022
40 8.666 ±2.48 · 10−1 48,935 16.241 ±1.58 · 10−1 10,103 16.180 ±4.07 · 10−2 34,706
48 7.366 ±1.81 · 10−1 47,008 15.912 ±1.05 · 10−1 9,867 15.732 ±3.60 · 10−2 33,015
56 7.196 ±1.93 · 10−1 45,141 15.651 ±9.75 · 10−2 9,822 15.422 ±2.89 · 10−2 31,193
64 7.391 ±2.19 · 10−1 45,489 15.555 ±8.64 · 10−2 9,819 15.249 ±2.95 · 10−2 31,543
80 7.566 ±2.37 · 10−1 44,781 15.475 ±1.09 · 10−1 9,785 15.194 ±2.41 · 10−2 30,869
96 7.455 ±2.41 · 10−1 44,531 15.386 ±8.79 · 10−2 9,752 15.061 ±2.38 · 10−2 30,652

112 7.998 ±2.95 · 10−1 42,508 15.317 ±1.09 · 10−1 9,687 15.058 ±2.04 · 10−2 28,694
127 6.986 ±2.12 · 10−1 45,550 15.193 ±5.54 · 10−2 9,768 14.974 ±1.56 · 10−2 31,655
128 8.047 ±3.03 · 10−1 44,281 15.208 ±7.80 · 10−2 9,766 14.877 ±1.94 · 10−2 30,390
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Table B.16: Scalability experiment results with 128 PEs and 2000 μs Work-
load. The mean runtimes and confidence intervals are given in
microseconds (cf. Section 8.5.3).

Pipes
activate_task __schedule __fw_admit

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

4 142.055 ±3.53 · 10−1 241,676 242.319 ±5.47 · 10−1 524,549 22.710 ±9.76 · 10−1 4,127
5 99.394 ±3.04 · 10−1 174,184 143.854 ±5.11 · 10−1 343,871 19.700 ±4.83 · 10−1 4,127
6 76.473 ±2.57 · 10−1 143,813 99.292 ±4.78 · 10−1 276,941 19.886 ±5.03 · 10−1 4,126
7 59.887 ±2.34 · 10−1 107,229 70.326 ±4.80 · 10−1 216,215 18.745 ±2.51 · 10−1 4,126
8 49.232 ±2.06 · 10−1 94,701 55.227 ±4.83 · 10−1 195,756 18.324 ±1.56 · 10−1 4,127
9 41.667 ±1.89 · 10−1 77,788 46.413 ±5.29 · 10−1 172,108 18.393 ±1.78 · 10−1 4,127

10 38.238 ±1.66 · 10−1 77,431 41.019 ±4.87 · 10−1 169,194 18.108 ±1.32 · 10−1 4,126
12 31.716 ±1.46 · 10−1 63,657 34.261 ±5.11 · 10−1 151,022 17.870 ±7.27 · 10−2 4,127
14 27.769 ±1.19 · 10−1 58,536 30.690 ±5.17 · 10−1 144,496 17.842 ±6.31 · 10−2 4,127
16 25.404 ±1.08 · 10−1 54,996 28.444 ±5.21 · 10−1 139,644 17.740 ±4.06 · 10−2 4,127
20 22.469 ±8.77 · 10−2 51,537 26.054 ±5.26 · 10−1 135,543 17.655 ±1.98 · 10−2 4,127
24 20.990 ±7.62 · 10−2 46,726 23.898 ±5.05 · 10−1 129,706 17.667 ±2.42 · 10−2 4,127
28 19.453 ±6.12 · 10−2 40,375 23.432 ±5.42 · 10−1 122,863 17.659 ±2.21 · 10−2 4,126
32 19.262 ±5.63 · 10−2 42,868 23.206 ±5.28 · 10−1 125,453 17.652 ±2.01 · 10−2 4,126
40 18.983 ±4.40 · 10−2 44,358 22.002 ±4.89 · 10−1 126,872 17.653 ±2.02 · 10−2 4,127
48 18.632 ±4.23 · 10−2 42,325 21.912 ±4.96 · 10−1 124,702 17.637 ±1.56 · 10−2 4,127
56 18.258 ±4.03 · 10−2 40,263 21.947 ±5.13 · 10−1 122,311 17.635 ±1.61 · 10−2 4,126
64 18.086 ±4.33 · 10−2 40,459 21.317 ±4.95 · 10−1 123,129 17.635 ±1.53 · 10−2 4,127
80 17.911 ±3.66 · 10−2 39,086 21.066 ±4.94 · 10−1 121,682 17.633 ±1.56 · 10−2 4,127
96 17.806 ±3.90 · 10−2 39,107 21.594 ±5.10 · 10−1 121,386 17.633 ±1.53 · 10−2 4,127

112 17.650 ±1.90 · 10−2 37,213 20.543 ±4.91 · 10−1 124,509 17.617 ±1.29 · 10−2 4,126
128 17.552 ±2.31 · 10−2 37,753 19.895 ±4.74 · 10−1 126,983 17.615 ±1.26 · 10−2 4,126

Pipes
__fw_dispatch __fw_relinquish __fw_unblock

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

4 170.613 ±3.31 · 10−1 443,916 173.067 ±4.28 · 10−1 202,240 144.081 ±3.54 · 10−1 237,549
5 118.175 ±3.87 · 10−1 265,193 118.439 ±5.33 · 10−1 91,009 101.280 ±3.05 · 10−1 170,057
6 90.329 ±4.30 · 10−1 200,275 89.866 ±6.25 · 10−1 56,462 78.097 ±2.59 · 10−1 139,687
7 73.173 ±5.25 · 10−1 142,878 68.384 ±7.28 · 10−1 35,650 61.485 ±2.37 · 10−1 103,103
8 62.795 ±5.95 · 10−1 122,187 55.906 ±8.31 · 10−1 27,487 50.591 ±2.11 · 10−1 90,574
9 58.506 ±7.36 · 10−1 100,041 49.366 ±9.95 · 10−1 22,254 42.921 ±1.95 · 10−1 73,661

10 52.542 ±6.95 · 10−1 98,076 41.912 ±8.78 · 10−1 20,646 39.322 ±1.71 · 10−1 73,305
12 49.233 ±8.17 · 10−1 80,903 34.851 ±9.04 · 10−1 17,247 32.626 ±1.53 · 10−1 59,530
14 46.585 ±8.73 · 10−1 74,571 31.161 ±9.01 · 10−1 16,036 28.472 ±1.26 · 10−1 54,409
16 45.394 ±9.17 · 10−1 69,873 28.785 ±9.08 · 10−1 14,878 25.975 ±1.15 · 10−1 50,869
20 43.937 ±9.77 · 10−1 65,544 25.603 ±8.22 · 10−1 14,008 22.838 ±9.44 · 10−2 47,410
24 42.566 ±9.87 · 10−1 59,984 23.804 ±7.30 · 10−1 13,260 21.261 ±8.29 · 10−2 42,599
28 45.573 ±1.13 · 100 53,172 23.131 ±7.73 · 10−1 12,799 19.606 ±6.78 · 10−2 36,249
32 43.889 ±1.09 · 100 55,728 22.085 ±6.87 · 10−1 12,861 19.382 ±6.21 · 10−2 38,742
40 40.717 ±9.97 · 10−1 57,231 20.946 ±5.74 · 10−1 12,874 19.068 ±4.82 · 10−2 40,231
48 41.574 ±1.03 · 100 55,057 20.705 ±5.70 · 10−1 12,734 18.688 ±4.67 · 10−2 38,198
56 43.048 ±1.09 · 100 52,783 20.406 ±5.83 · 10−1 12,521 18.277 ±4.48 · 10−2 36,137
64 41.948 ±1.07 · 100 52,975 19.511 ±4.64 · 10−1 12,517 18.086 ±4.82 · 10−2 36,332
80 42.264 ±1.08 · 100 51,446 19.464 ±4.79 · 10−1 12,361 17.892 ±4.09 · 10−2 34,959
96 43.308 ±1.11 · 100 51,492 19.422 ±4.85 · 10−1 12,385 17.775 ±4.36 · 10−2 34,980

112 43.940 ±1.14 · 100 49,512 19.382 ±4.87 · 10−1 12,299 17.602 ±2.14 · 10−2 33,087
128 43.071 ±1.12 · 100 50,021 18.463 ±3.43 · 10−1 12,267 17.492 ±2.58 · 10−2 33,627
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Table B.17: Scalability experiment results with 254 PEs and 0 μs Workload.
The mean runtimes and confidence intervals are given in mi-
croseconds (cf. Section 8.5.3).

Pipes
activate_task __schedule __fw_admit

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

12 130.244 ±2.89 · 10−1 259,055 164.441 ±4.17 · 10−1 591,294 33.176 ±1.20 · 100 4,251
16 84.496 ±2.64 · 10−1 157,360 77.510 ±3.35 · 10−1 366,784 25.753 ±2.49 · 10−1 4,251
20 60.602 ±2.39 · 10−1 101,226 39.268 ±2.54 · 10−1 271,648 24.195 ±4.78 · 10−4 4,003
24 48.240 ±2.15 · 10−1 76,642 24.622 ±2.19 · 10−1 233,505 24.195 ±4.78 · 10−4 4,003
32 38.826 ±1.67 · 10−1 63,164 14.981 ±1.62 · 10−1 211,793 24.195 ±4.78 · 10−4 4,003
48 30.866 ±1.11 · 10−1 51,427 8.244 ±1.09 · 10−1 197,011 24.195 ±4.78 · 10−4 4,003
64 28.063 ±7.91 · 10−2 49,401 6.425 ±8.37 · 10−2 192,480 24.195 ±4.78 · 10−4 4,003
80 27.004 ±6.40 · 10−2 50,255 5.756 ±6.53 · 10−2 192,603 24.195 ±4.78 · 10−4 4,003
96 26.095 ±5.31 · 10−2 47,710 5.042 ±5.78 · 10−2 190,520 24.195 ±4.78 · 10−4 4,003

112 25.593 ±4.56 · 10−2 47,501 5.357 ±1.10 · 10−1 194,383 24.195 ±4.67 · 10−4 4,003
128 25.250 ±3.82 · 10−2 47,290 4.488 ±5.27 · 10−2 193,168 24.195 ±4.67 · 10−4 4,003
160 24.966 ±3.39 · 10−2 46,065 4.331 ±5.17 · 10−2 194,433 24.195 ±4.67 · 10−4 4,003
192 24.653 ±2.68 · 10−2 46,203 4.088 ±4.82 · 10−2 193,080 24.195 ±4.67 · 10−4 4,003
254 24.222 ±1.15 · 10−2 47,080 4.033 ±4.99 · 10−2 193,489 24.195 ±4.67 · 10−4 4,003

Pipes
__fw_dispatch __fw_relinquish __fw_unblock

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

12 129.181 ±2.31 · 10−1 430,764 161.673 ±3.71 · 10−1 171,709 131.818 ±2.89 · 10−1 254,804
16 77.351 ±2.59 · 10−1 221,661 103.798 ±4.66 · 10−1 64,303 86.080 ±2.66 · 10−1 153,109
20 48.461 ±2.67 · 10−1 133,793 72.349 ±5.11 · 10−1 32,568 62.052 ±2.45 · 10−1 97,223
24 35.361 ±3.11 · 10−1 98,846 57.100 ±5.15 · 10−1 22,206 49.516 ±2.23 · 10−1 72,639
32 23.177 ±2.77 · 10−1 80,230 42.888 ±4.08 · 10−1 17,066 39.767 ±1.76 · 10−1 59,161
48 13.327 ±2.27 · 10−1 64,780 32.359 ±2.70 · 10−1 13,353 31.378 ±1.19 · 10−1 47,424
64 9.775 ±1.73 · 10−1 61,743 28.982 ±1.91 · 10−1 12,342 28.354 ±8.54 · 10−2 45,398
80 7.982 ±1.13 · 10−1 62,425 27.524 ±1.49 · 10−1 12,170 27.196 ±6.91 · 10−2 46,252
96 6.733 ±9.69 · 10−2 59,435 26.702 ±1.25 · 10−1 11,726 26.219 ±5.77 · 10−2 43,707

112 8.423 ±3.03 · 10−1 59,295 26.338 ±1.16 · 10−1 11,794 25.670 ±4.96 · 10−2 43,498
128 5.746 ±9.15 · 10−2 58,836 25.756 ±9.80 · 10−2 11,547 25.297 ±4.16 · 10−2 43,287
160 5.583 ±9.22 · 10−2 57,506 25.511 ±9.25 · 10−2 11,441 24.989 ±3.71 · 10−2 42,062
192 5.094 ±8.26 · 10−2 57,464 25.224 ±8.39 · 10−2 11,261 24.645 ±2.93 · 10−2 42,200
254 4.866 ±9.48 · 10−2 58,335 24.683 ±6.26 · 10−2 11,255 24.174 ±1.26 · 10−2 43,077
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Table B.18: Scalability experiment results with 254 PEs and 500 μs Work-
load. The mean runtimes and confidence intervals are given in
microseconds (cf. Section 8.5.3).

Pipes
activate_task __schedule __fw_admit

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

12 133.150 ±2.98 · 10−1 262,991 174.803 ±4.40 · 10−1 611,967 33.998 ±1.20 · 100 4,251
16 85.598 ±2.60 · 10−1 165,651 83.327 ±3.52 · 10−1 388,262 28.118 ±4.35 · 10−1 4,251
20 63.940 ±2.29 · 10−1 119,551 49.497 ±3.11 · 10−1 305,387 25.452 ±2.76 · 10−3 4,003
24 51.301 ±2.05 · 10−1 92,094 33.241 ±2.85 · 10−1 261,408 25.452 ±2.76 · 10−3 4,003
32 39.857 ±1.60 · 10−1 68,021 20.113 ±2.45 · 10−1 225,537 25.452 ±2.76 · 10−3 4,003
48 32.394 ±1.08 · 10−1 60,164 13.703 ±2.04 · 10−1 212,695 25.452 ±2.76 · 10−3 4,003
64 29.711 ±8.10 · 10−2 54,313 11.015 ±1.75 · 10−1 204,129 25.452 ±2.76 · 10−3 4,003
80 28.517 ±6.88 · 10−2 53,278 9.042 ±1.35 · 10−1 203,322 25.452 ±2.76 · 10−3 4,003
96 27.638 ±5.83 · 10−2 50,310 7.842 ±1.22 · 10−1 201,153 25.452 ±2.76 · 10−3 4,003

112 26.953 ±4.69 · 10−2 49,597 8.021 ±1.40 · 10−1 201,565 25.452 ±2.55 · 10−3 4,003
128 26.558 ±4.46 · 10−2 50,212 8.243 ±1.59 · 10−1 203,051 25.452 ±2.55 · 10−3 4,003
160 26.200 ±3.82 · 10−2 47,771 7.978 ±1.59 · 10−1 199,577 25.452 ±2.55 · 10−3 4,003
192 25.929 ±3.08 · 10−2 49,460 6.767 ±1.14 · 10−1 200,747 25.452 ±2.55 · 10−3 4,003
254 25.507 ±2.01 · 10−2 48,125 6.344 ±1.11 · 10−1 199,190 25.452 ±2.55 · 10−3 4,003

Pipes
__fw_dispatch __fw_relinquish __fw_unblock

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

12 140.384 ±2.73 · 10−1 447,138 158.481 ±3.58 · 10−1 184,150 134.732 ±2.98 · 10−1 258,740
16 85.036 ±3.06 · 10−1 235,759 103.246 ±4.48 · 10−1 70,109 87.064 ±2.63 · 10−1 161,400
20 60.990 ±3.81 · 10−1 159,199 75.659 ±4.98 · 10−1 39,648 65.226 ±2.33 · 10−1 115,548
24 47.815 ±4.43 · 10−1 119,483 60.444 ±5.21 · 10−1 27,391 52.427 ±2.11 · 10−1 88,091
32 35.105 ±5.00 · 10−1 87,047 44.079 ±4.55 · 10−1 19,026 40.709 ±1.67 · 10−1 64,018
48 26.025 ±4.80 · 10−1 75,556 34.360 ±3.30 · 10−1 15,392 32.839 ±1.14 · 10−1 56,161
64 21.527 ±4.40 · 10−1 68,445 30.813 ±2.42 · 10−1 14,132 29.999 ±8.68 · 10−2 50,310
80 17.062 ±3.39 · 10−1 66,727 28.878 ±1.82 · 10−1 13,451 28.716 ±7.40 · 10−2 49,275
96 14.920 ±3.19 · 10−1 63,118 28.025 ±1.46 · 10−1 12,808 27.777 ±6.30 · 10−2 46,307

112 15.974 ±3.88 · 10−1 62,349 27.644 ±1.51 · 10−1 12,753 27.034 ±5.08 · 10−2 45,594
128 16.878 ±4.53 · 10−1 63,058 27.075 ±1.29 · 10−1 12,846 26.604 ±4.84 · 10−2 46,209
160 16.807 ±4.67 · 10−1 60,326 26.783 ±1.43 · 10−1 12,555 26.218 ±4.16 · 10−2 43,768
192 12.634 ±3.10 · 10−1 61,817 26.500 ±1.06 · 10−1 12,358 25.920 ±3.35 · 10−2 45,457
254 11.911 ±3.11 · 10−1 60,134 25.917 ±7.05 · 10−2 12,009 25.461 ±2.19 · 10−2 44,122
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Table B.19: Scalability experiment results with 254 PEs and 1000 μs Work-
load. The mean runtimes and confidence intervals are given in
microseconds (cf. Section 8.5.3).

Pipes
activate_task __schedule __fw_admit

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

12 134.654 ±2.98 · 10−1 262,828 178.581 ±4.54 · 10−1 618,115 36.163 ±1.24 · 100 4,251
16 86.392 ±2.56 · 10−1 169,428 87.694 ±4.04 · 10−1 399,412 30.074 ±5.32 · 10−1 4,251
20 65.598 ±2.34 · 10−1 114,754 54.872 ±3.96 · 10−1 302,979 26.718 ±6.36 · 10−3 4,003
24 53.278 ±2.02 · 10−1 95,053 39.369 ±3.82 · 10−1 269,991 26.718 ±6.36 · 10−3 4,003
32 42.089 ±1.61 · 10−1 73,756 27.709 ±3.91 · 10−1 236,158 26.718 ±6.36 · 10−3 4,003
48 34.027 ±1.12 · 10−1 60,453 21.859 ±4.09 · 10−1 217,563 26.718 ±6.36 · 10−3 4,003
64 30.993 ±8.11 · 10−2 55,896 18.921 ±3.83 · 10−1 211,036 26.718 ±6.36 · 10−3 4,003
80 29.764 ±6.77 · 10−2 54,550 18.044 ±3.76 · 10−1 208,196 26.718 ±6.36 · 10−3 4,003
96 28.610 ±4.98 · 10−2 51,743 18.483 ±4.17 · 10−1 205,377 26.718 ±6.36 · 10−3 4,003

112 28.333 ±5.67 · 10−2 54,985 17.352 ±3.77 · 10−1 211,328 26.718 ±6.41 · 10−3 4,035
128 27.803 ±5.52 · 10−2 52,010 18.797 ±4.44 · 10−1 208,168 26.718 ±6.41 · 10−3 4,035
160 27.479 ±4.13 · 10−2 52,478 16.999 ±3.83 · 10−1 207,050 26.718 ±6.41 · 10−3 4,035
192 27.174 ±2.63 · 10−2 52,052 16.638 ±3.77 · 10−1 207,089 26.718 ±6.41 · 10−3 4,035
254 26.746 ±2.44 · 10−2 54,843 16.056 ±3.60 · 10−1 210,772 26.718 ±6.41 · 10−3 4,035

Pipes
__fw_dispatch __fw_relinquish __fw_unblock

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

12 144.580 ±3.06 · 10−1 451,360 157.503 ±3.64 · 10−1 188,533 136.226 ±2.98 · 10−1 258,577
16 91.638 ±4.31 · 10−1 242,619 102.333 ±4.79 · 10−1 73,191 87.793 ±2.58 · 10−1 165,177
20 70.820 ±5.74 · 10−1 156,357 75.949 ±5.63 · 10−1 41,604 66.956 ±2.38 · 10−1 110,751
24 58.634 ±6.68 · 10−1 125,077 61.208 ±6.07 · 10−1 30,025 54.397 ±2.07 · 10−1 91,050
32 50.285 ±8.43 · 10−1 95,191 45.932 ±6.07 · 10−1 21,437 42.921 ±1.68 · 10−1 69,753
48 47.016 ±1.03 · 100 77,742 36.530 ±5.83 · 10−1 17,289 34.496 ±1.19 · 10−1 56,450
64 43.403 ±1.03 · 100 71,719 32.507 ±4.69 · 10−1 15,823 31.273 ±8.67 · 10−2 51,893
80 41.905 ±1.02 · 100 70,017 31.097 ±4.54 · 10−1 15,468 29.955 ±7.27 · 10−2 50,547
96 45.668 ±1.19 · 100 66,709 30.039 ±4.58 · 10−1 14,967 28.719 ±5.38 · 10−2 47,740

112 41.256 ±1.05 · 100 70,081 29.612 ±3.96 · 10−1 15,096 28.411 ±6.10 · 10−2 50,950
128 47.612 ±1.29 · 100 66,966 28.735 ±3.74 · 10−1 14,956 27.844 ±5.98 · 10−2 47,975
160 41.782 ±1.09 · 100 67,297 28.457 ±3.39 · 10−1 14,819 27.492 ±4.47 · 10−2 48,443
192 41.110 ±1.09 · 100 66,733 28.299 ±3.41 · 10−1 14,681 27.162 ±2.85 · 10−2 48,017
254 38.461 ±1.02 · 100 69,627 27.390 ±2.25 · 10−1 14,784 26.698 ±2.63 · 10−2 50,808
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B.2 Composition Overhead

Table B.20: Overhead experiment results. The mean runtimes and confidence
intervals are given in microseconds (cf. Section 8.6.2).

Cycles
1 Stage 2 Stages 3 Stages

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

0 0.299 ±5.54 · 10−5 17,616 0.513 ±1.21 · 10−4 15,787 0.727 ±1.82 · 10−4 15,962
50 0.324 ±5.85 · 10−5 15,784 0.538 ±1.20 · 10−4 16,026 0.749 ±1.82 · 10−4 15,964

100 0.349 ±5.52 · 10−5 17,741 0.563 ±1.19 · 10−4 16,161 0.772 ±1.79 · 10−4 16,626
150 0.374 ±5.51 · 10−5 17,784 0.588 ±1.21 · 10−4 15,692 0.802 ±1.82 · 10−4 16,011
300 0.449 ±5.59 · 10−5 17,265 0.663 ±1.15 · 10−4 17,539 0.877 ±1.72 · 10−4 17,949
450 0.524 ±5.51 · 10−5 17,791 0.738 ±1.14 · 10−4 17,742 0.952 ±1.78 · 10−4 16,694
600 0.599 ±5.47 · 10−5 18,075 0.813 ±1.16 · 10−4 17,187 1.027 ±1.81 · 10−4 16,119
900 0.749 ±5.54 · 10−5 17,622 0.963 ±1.15 · 10−4 17,443 1.177 ±1.72 · 10−4 18,023

1,200 0.899 ±5.65 · 10−5 16,901 1.113 ±1.15 · 10−4 17,497 1.327 ±1.77 · 10−4 16,848
2,100 1.349 ±5.54 · 10−5 17,623 1.563 ±1.14 · 10−4 17,691 1.777 ±1.74 · 10−4 17,502
3,000 1.799 ±5.49 · 10−5 17,907 2.013 ±1.18 · 10−4 16,608 2.227 ±1.72 · 10−4 17,933
4,500 2.549 ±5.58 · 10−5 17,353 2.763 ±1.15 · 10−4 17,484 2.976 ±8.66 · 10−4 18,085
6,000 3.299 ±5.65 · 10−5 16,907 3.513 ±1.13 · 10−4 17,960 3.727 ±1.74 · 10−4 17,588
7,500 4.049 ±5.35 · 10−5 18,873 4.263 ±1.16 · 10−4 17,186 4.477 ±1.77 · 10−4 16,886
9,000 4.799 ±5.44 · 10−5 18,224 5.013 ±1.13 · 10−4 18,147 5.227 ±1.70 · 10−4 18,414

10,500 5.549 ±5.26 · 10−5 19,526 5.763 ±1.10 · 10−4 18,943 5.977 ±1.69 · 10−4 18,658
12,000 6.299 ±5.31 · 10−5 19,151 6.513 ±1.11 · 10−4 18,875 6.727 ±1.72 · 10−4 17,941
13,500 7.049 ±5.48 · 10−5 18,021 7.263 ±1.13 · 10−4 17,990 7.477 ±1.79 · 10−4 16,626
15,000 7.799 ±5.55 · 10−5 17,536 8.013 ±1.17 · 10−4 16,998 8.227 ±1.77 · 10−4 16,851
15,000 7.799 ±5.55 · 10−5 17,536 8.013 ±1.17 · 10−4 16,998 8.227 ±1.77 · 10−4 16,851
16,500 8.549 ±5.54 · 10−5 17,589 8.763 ±1.13 · 10−4 18,196 8.977 ±1.74 · 10−4 17,589
25,000 12.799 ±5.40 · 10−5 18,532 13.013 ±1.10 · 10−4 19,045 13.222 ±1.71 · 10−4 18,223

Cycles
4 Stage 5 Stages 6 Stages

Runtime 95% CI Samples Runtime 95% CI Samples Runtime 95% CI Samples

0 0.941 ±2.32 · 10−4 17,643 1.155 ±2.93 · 10−4 17,442 1.369 ±3.48 · 10−4 17,862
50 0.961 ±2.48 · 10−4 15,518 1.180 ±2.97 · 10−4 16,942 1.384 ±3.67 · 10−4 16,048

100 0.991 ±2.42 · 10−4 16,242 1.204 ±4.99 · 10−4 16,290 1.414 ±3.52 · 10−4 17,466
150 1.011 ±2.40 · 10−4 16,514 1.230 ±2.92 · 10−4 17,605 1.444 ±3.52 · 10−4 17,511
300 1.091 ±2.32 · 10−4 17,721 1.305 ±2.90 · 10−4 17,868 1.519 ±3.63 · 10−4 16,488
450 1.161 ±2.32 · 10−4 17,730 1.380 ±3.06 · 10−4 16,038 1.594 ±3.48 · 10−4 17,885
600 1.241 ±2.40 · 10−4 16,561 1.455 ±2.92 · 10−4 17,580 1.669 ±3.48 · 10−4 17,848
900 1.391 ±2.41 · 10−4 16,470 1.605 ±2.99 · 10−4 16,805 1.819 ±3.52 · 10−4 17,502

1,200 1.541 ±2.44 · 10−4 16,002 1.755 ±2.98 · 10−4 16,853 1.969 ±3.47 · 10−4 18,041
2,100 1.991 ±2.27 · 10−4 18,452 2.205 ±2.93 · 10−4 17,503 2.419 ±3.50 · 10−4 17,663
3,000 2.441 ±2.34 · 10−4 17,398 2.655 ±2.92 · 10−4 17,613 2.869 ±3.52 · 10−4 17,537
4,500 3.191 ±2.34 · 10−4 17,333 3.405 ±2.95 · 10−4 17,169 3.619 ±3.44 · 10−4 18,288
6,000 3.941 ±2.43 · 10−4 16,120 4.155 ±2.86 · 10−4 18,366 4.369 ±3.56 · 10−4 17,062
7,500 4.691 ±2.39 · 10−4 16,742 4.905 ±2.89 · 10−4 17,968 5.119 ±3.45 · 10−4 18,234
9,000 5.441 ±2.32 · 10−4 17,712 5.655 ±2.84 · 10−4 18,527 5.869 ±3.33 · 10−4 19,497

10,500 6.191 ±2.24 · 10−4 19,070 6.405 ±2.80 · 10−4 19,058 6.619 ±3.47 · 10−4 17,990
12,000 6.941 ±2.30 · 10−4 17,949 7.155 ±2.95 · 10−4 17,190 7.369 ±3.50 · 10−4 17,734
13,500 7.691 ±2.33 · 10−4 17,549 7.905 ±2.92 · 10−4 17,542 8.119 ±3.54 · 10−4 17,332
15,000 8.441 ±2.33 · 10−4 17,627 8.655 ±2.99 · 10−4 16,730 8.869 ±3.55 · 10−4 17,174
15,000 8.441 ±2.33 · 10−4 17,627 8.655 ±2.99 · 10−4 16,730 8.869 ±3.55 · 10−4 17,174
16,500 9.191 ±2.33 · 10−4 17,490 9.405 ±2.93 · 10−4 17,429 9.619 ±3.42 · 10−4 18,526
25,000 13.441 ±2.29 · 10−4 18,242 13.655 ±2.85 · 10−4 18,415 13.864 ±3.34 · 10−4 19,483
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Table B.21: Performance evaluation results for the NAS benchmark suite.

The mean runtimes and confidence intervals are given in seconds.
Each benchmark was repeated 50 times (cf. Section 8.7.2).

NAS
Bechmark

CoBaS CFS
RatioRuntime 95 % CI Runtime 95 % CI

BT A 14.84 ±2.09·10−2 14.51 ±1.71·10−2 0.97753
BT B 65.05 ±6.68·10−2 64.53 ±1.66·10−1 0.99208
BT C 265.02 ±9.59·10−2 264.12 ±1.96·10−1 0.99664
CG A 0.51 ±1.47·10−2 0.47 ±5.63·10−4 0.93149
CG B 21.15 ±3.37·10−2 21.00 ±2.33·10−2 0.99304
CG C 60.52 ±1.79·10−2 60.09 ±1.47·10−2 0.99295
EP A 2.14 ±1.74·10−3 2.13 ±2.21·10−3 0.99450
EP B 8.55 ±5.58·10−3 8.52 ±8.68·10−3 0.99661
EP C 34.19 ±2.44·10−2 34.07 ±2.39·10−2 0.99645
FT A 0.92 ±2.10·10−3 0.90 ±1.34·10−3 0.98517
FT B 11.72 ±2.29·10−2 11.62 ±1.21·10−2 0.99164
IS A 0.16 ±6.82·10−4 0.16 ±0.00·100 0.99626
IS B 0.72 ±1.60·10−3 0.71 ±1.36·10−3 0.99442
IS C 3.05 ±1.84·10−3 3.04 ±2.02·10−3 0.99816
LU A 9.07 ±1.60·10−2 9.01 ±2.64·10−2 0.99323
LU B 58.95 ±3.29·10−1 59.28 ±3.23·10−1 1.00556
LU C 384.93 ±5.99·10−2 383.93 ±1.12·10−1 0.99740
MG A 0.77 ±7.26·10−3 0.76 ±8.04·10−4 0.98395
MG B 3.60 ±1.32·10−2 3.57 ±3.68·10−3 0.99050
SP A 15.16 ±2.26·10−2 15.12 ±1.98·10−2 0.99782
SP B 100.61 ±1.37·10−1 100.55 ±1.14·10−1 0.99946
SP C 476.18 ±5.45·10−2 475.31 ±1.07·10−1 0.99818
UA A 12.73 ±3.25·10−2 12.31 ±1.77·10−2 0.96706
UA B 59.06 ±8.45·10−2 58.35 ±8.41·10−2 0.98789

Table B.22: Performance evaluation results for the hackbench benchmark.
The mean runtimes and confidence intervals are given in seconds.
Each benchmark was repeated 50 times (cf. Section 8.7.2).

Number
of Groups

CoBaS CFS
RatioRuntime 95 % CI Runtime 95 % CI

1 0.82 ±3.78·10−3 0.69 ±3.86·10−2 0.84677
2 1.23 ±3.95·10−3 1.24 ±5.14·10−2 1.00973
4 1.57 ±1.38·10−2 2.57 ±3.99·10−2 1.64459
8 2.73 ±8.45·10−3 4.85 ±7.60·10−2 1.77811
16 5.34 ±1.23·10−2 8.17 ±1.76·10−1 1.52895
32 10.46 ±1.79·10−2 13.74 ±2.32·10−1 1.31405
64 20.56 ±2.98·10−2 25.48 ±3.72·10−1 1.23945
128 40.72 ±3.84·10−2 45.74 ±3.81·10−1 1.12309
256 80.83 ±4.53·10−2 83.73 ±2.45·10−1 1.03586
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Table B.23: Adaptation experiment results. The mean runtimes and con-
fidence intervals are given in seconds. Each experiment was
repeated 100 times (cf. Section 8.8.2).

(a) Results for the round-robin scheduling policy.

Threads
Short Middle Long

Runtime 95% CI Runtime 95% CI Runtime 95% CI
1 4.34·10−3 ±1.70·10−4 4.32·10−3 ±1.59·10−4 6.40·10−2 ±0.00·100

2 5.24·10−3 ±1.47·10−4 5.08·10−3 ±1.31·10−4 1.81·10−1 ±1.21·10−4

4 6.41·10−3 ±2.17·10−4 1.15·10−2 ±1.77·10−4 5.94·10−1 ±4.97·10−4

8 2.57·10−2 ±6.73·10−4 3.68·10−2 ±7.42·10−4 2.13·100 ±7.96·10−4

16 1.11·10−1 ±1.23·10−3 1.63·10−1 ±2.14·10−3 8.08·100 ±2.04·10−3

32 4.72·10−1 ±2.06·10−3 6.99·10−1 ±4.51·10−3 3.14·101 ±5.54·10−3

64 2.45·100 ±8.67·10−2 2.94·100 ±1.64·10−2 1.24·102 ±1.63·10−2

128 1.16·101 ±9.13·10−2 1.16·101 ±7.09·10−2 4.92·102 ±4.60·10−2

(b) Results for the CFS policy.

Threads
Short Middle Long

Runtime 95% CI Runtime 95% CI Runtime 95% CI
1 3.00·10−5 ±4.42·10−5 1.01·10−3 ±1.98·10−5 6.01·10−2 ±9.22·10−5

2 1.31·10−2 ±1.74·10−3 1.43·10−2 ±1.55·10−3 1.78·10−1 ±6.25·10−4

4 3.67·10−2 ±4.91·10−3 3.57·10−2 ±4.71·10−3 6.04·10−1 ±2.44·10−3

8 1.01·10−1 ±1.16·10−2 1.16·10−1 ±1.13·10−2 2.18·100 ±5.60·10−3

16 3.55·10−1 ±3.06·10−2 3.30·10−1 ±3.50·10−2 8.01·100 ±1.28·10−2

32 1.24·100 ±1.04·10−1 1.09·100 ±9.45·10−2 3.07·101 ±2.77·10−2

64 4.62·100 ±3.49·10−1 4.40·100 ±3.39·10−1 1.20·102 ±7.80·10−2

128 1.79·101 ±1.32·100 1.79·101 ±1.31·100 4.73·102 ±1.96·10−1

(c) Results for the optimized scheduling policy.

Threads
Short Middle Long

Runtime 95% CI Runtime 95% CI Runtime 95% CI
1 8.23·10−3 ±4.90·10−4 7.98·10−3 ±4.60·10−4 6.71·10−2 ±5.56·10−4

2 7.50·10−3 ±3.48·10−4 7.70·10−3 ±2.88·10−4 1.27·10−1 ±3.45·10−4

4 7.92·10−3 ±2.83·10−4 1.02·10−2 ±2.34·10−4 2.45·10−1 ±4.09·10−4

8 7.52·10−3 ±3.06·10−4 1.35·10−2 ±3.23·10−4 4.84·10−1 ±5.59·10−4

16 8.49·10−3 ±4.77·10−4 2.22·10−2 ±4.16·10−4 9.60·10−1 ±8.49·10−4

32 7.65·10−3 ±4.56·10−4 3.63·10−2 ±4.58·10−4 1.91·100 ±1.28·10−3

64 1.49·10−2 ±1.16·10−3 7.09·10−2 ±9.82·10−4 3.83·100 ±2.25·10−3

128 3.16·10−2 ±2.82·10−3 1.45·10−1 ±2.70·10−3 7.69·100 ±3.98·10−3
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