Specification and Optimization
of
Analytical Data Flows

vorgelegt von
M.Comp.Sc
Fabian Hiiske
aus Soest

von der Fakultit IV - Elektrotechnik und Informatik
der Technischen Universitit Berlin
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr. Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Uwe Nestmann
Gutachter: Prof. Dr. Volker Markl
Prof. Dr. Odej Kao
Prof. Dr. Rainer Gemulla

Datum der wissenschaftlichen Aussprache: 14. Dezember 2015

Berlin 2016
D 83

ii

Acknowledgements

First and foremost, I would like to thank my advisor Volker Markl. I met Volker the first time
when I was an undergraduate student and pursuing a summer internship at the IBM Almaden
Research Center about ten years ago. This internship sparked my interest for computer science
research and database system building in particular. Since then, Volker has been my most impor-
tant mentor and encouraged and helped me to follow the academic path. When Volker became a
professor at TU Berlin he gave me the prime opportunity to join him as a Ph.D. student. In the
course of my Ph.D. studies Volker gave me both, guidance and freedom, to conduct my research
and lots of very valuable advice. Thank you Volker.

During my time as a Ph.D. student, many people accompanied and worked with me. I would like
to express my sincere gratitude to Stephan Ewen, Kostas Tzoumas, and Daniel Warneke. Work-
ing with Stephan, Kostas, and Daniel on the Stratosphere project and building a marvelous paral-
lel data processing system has taught me so much. I would like to thank my colleagues Alexan-
der Alexandrov, Christoph Boden, Max Heimel, Aljoscha Krettek, Marcus Leich, Alexander
Loser, Matthias Ringwald, and Sebastian Schelter from the Database Systems and Information
Management Group of TU Berlin, who helped me through advice, discussions, and collabora-
tion. Furthermore, I would like to thank my co-authors and fellow Ph.D. students Arvid Heise,
Mathias Peters, Astrid Rheinlidnder, and Matthias Sax for many ideas, discussions, and working
with me.

I would also like to express my gratitude to Odej Kao and Rainer Gemulla for serving as my
committee members.

Finally, I would like to thank my family. My parents Ilona and Friedel have always supported
me in any possible way. When I moved to Berlin to start my Ph.D. in June 2008, I was looking
for a room and met Henrike who subleased a room to me. Seven years have passed since then
and we are still living in the same apartment. In the meantime we have become parents of three
wonderful children. Thank you for everything you have done for me.

iii

v

Abstract

In the past, the majority of data analysis use cases was addressed by aggregating relational data.
Since a few years, a trend is evolving, which is called “Big Data” and which has several impli-
cations on the field of data analysis. Compared to previous applications, much larger data sets
are analyzed using more elaborate and diverse analysis methods such as information extraction
techniques, data mining algorithms, and machine learning methods. At the same time, analysis
applications include data sets with less or even no structure at all. This evolution has implica-
tions on the requirements on data processing systems. Due to the growing size of data sets and
the increasing computational complexity of advanced analysis methods, data must be processed
in a massively parallel fashion. The large number and diversity of data analysis techniques as
well as the lack of data structure determine the use of user-defined functions and data types.
Many traditional database systems are not flexible enough to satisfy these requirements. Hence,
there is a need for programming abstractions to define and efficiently execute complex parallel
data analysis programs that support custom user-defined operations.

The success of the SQL query language has shown the advantages of declarative query spec-
ification, such as potential for optimization and ease of use. Today, most relational database
management systems feature a query optimizer that compiles declarative queries into physical
execution plans. Cost-based optimizers choose from billions of plan candidates the plan with
the least estimated cost. However, traditional optimization techniques cannot be readily inte-
grated into systems that aim to support novel data analysis use cases. For example, the use of
user-defined functions (UDFs) can significantly limit the optimization potential of data analysis
programs. Furthermore, lack of detailed data statistics is common when large amounts of un-
structured data is analyzed. This leads to imprecise optimizer cost estimates, which can cause
sub-optimal plan choices. In this thesis we address three challenges that arise in the context of
specifying and optimizing data analysis programs.

First, we propose a parallel programming model with declarative properties to specify data anal-
ysis tasks as data flow programs. In this model, data processing operators are composed of
a system-provided second-order function and a user-defined first-order function. A cost-based
optimizer compiles data flow programs specified in this abstraction into parallel data flows.
The optimizer borrows techniques from relational optimizers and ports them to the domain of
general-purpose parallel programming models.

Second, we propose an approach to enhance the optimization of data flow programs that include
UDF operators with unknown semantics. We identify operator properties and conditions to re-
order neighboring UDF operators without changing the semantics of the program. We show how
to automatically extract these properties from UDF operators by leveraging static code analy-
sis techniques. Our approach is able to emulate relational optimizations such as filter and join
reordering and holistic aggregation push-down while not being limited to relational operators.

Finally, we analyze the impact of changing execution conditions such as varying predicate se-
lectivities and memory budgets on the performance of relational query plans. We identify plan
patterns that cause significantly varying execution performance for changing execution condi-
tions. Plans that include such risky patterns are prone to cause problems in presence of impre-
cise optimizer estimates. Based on our findings, we introduce an approach to avoid risky plan
choices. Moreover, we present a method to assess the risk of a query execution plan using a
machine-learned prediction model. Experiments show that the prediction model outperforms
risk predictions which are computed from optimizer estimates.

vi

Zusammenfassung

In der Vergangenheit wurde die tiberwiegende Mehrheit der Datenanalyseanwendungen durch
die Aggregation von relationalen Daten abgedeckt. Seit einigen Jahren entwickelt sich ein Trend
der “Big Data” genannt wird und der grole Auswirkungen auf den Bereich der Datenanalyse hat.
Im Vergleich zu bisherigen Analyseanwendungen, werden nun wesentlich groflere Datenmen-
gen mit deutlich aufwindigeren und vielfiltigeren Analysemethoden wie zum Beispiel Tech-
niken der Informationsextraktion, des Data Minings, und Verfahren des maschinellen Lernens
ausgewertet. Dabei werden auch Daten in die Analyse einbezogen, die weniger stark oder iiber-
haupt nicht strukturiert sind. Die Verdnderungen der Eigenschaften von Datenanalyseanwendun-
gen wirken sich auch auf die Anforderungen an Systeme zur Datenverarbeitung aus. Aufgrund
des gestiegenen Datenvolumens und des durch komplexere Analyseverfahren deutlich héheren
Berechnungsaufwands miissen Daten massiv parallel verarbeitet werden. Die gestiegene Vielfalt
von Analyseverfahren und die geringere Struktur der Daten erfordern hdufig den Einsatz von
benutzer-definierten Funktionen und Datenstrukturen. Viele traditionelle Datenbanksysteme
sind nicht flexibel genug, um diesen Anforderungen gerecht zu werden. Deshalb gibt es ein
grofBes Interesse an neuen Programmierabstraktionen mit denen komplexe und parallele Daten-
analyseanwendungen spezifiziert und effizient ausgefiihrt werden konnen.

Der Erfolg der Anfragesprache SQL hat die Vorziige von deklarativer Anfragespezifikation,
wie zum Beispiel Optimierungspotenzial und Benutzerfreundlichkeit, deutlich gezeigt. Heute
nutzt nahezu jedes relationale Datenbanksystem einen Anfrageoptimierer der deklarative Anfra-
gen in physische Ausfithrungspléne iibersetzt. Kosten-basierte Optimierer sind in der Lage aus
Milliarden von moglichen Pldnen einen effizienten Plan auszuwi#hlen. Allerdings lassen sich
traditionelle Optimierungsmethoden nicht ohne weiteres in Systeme integrieren, die neuartige
Anwendungsfille von Datenanalyse unterstiitzen wollen. Zum Beispiel kann der Einsatz von
benutzer-definierten Operationen das Optimierungspotenzial sehr stark reduzieren. Dariiberhin-
aus sind selten detaillierte Datenstatistiken verfiigbar, wenn grofle unstrukturierte Datensitze
analysiert werden. Fehlende Statistiken haben hédufig ungenaue Kostenschitzungen des Opti-
mierers und somit die Auswahl von suboptimalen Ausfiihrungspldnen zur Folge. In dieser Ar-
beit adressieren wir drei Herausforderungen im Kontext der Spezifikation und Optimierung von
parallelen Datenanalyseprogrammen mit benutzer-definierten Funktionen.

Zunéchst stellen wir ein paralleles Programmiermodell mit deklarativen Eigenschaften vor um
Datenanalyseprogramme als Datenflulprogramme zu spezifizieren. In diesem Modell bestehen
Datenverarbeitungsoperatoren aus einer system-eigenen Funktion zweiter Ordnung und einer
benutzer-definierten Funktion erster Ordnung. Ein kosten-basierter Optimierer iibersetzt Daten-
fluBprogramme, die in unserem Programmiermodell definiert wurden, in parallele Datenfliif3e.
Unser Optimierer baut auf viele Techniken der relationalen Optimierung auf und iibertrigt sie in
die Domine von universellen parallelen Programmiermodellen.

vii

Zweitens prisentieren wir einen Ansatz zur Verbesserung der Optimierung von Datenflu3pro-
grammen, die benutzer-definierte Operatoren mit unbekannter Semantik enthalten. Wir iden-
tifizieren Eigenschaften von Operatoren und Bedingungen, um die Reihenfolge von benach-
barten benutzer-definierten Operatoren zu verdndern ohne die Semantik eines Programms zu
andern. Wir zeigen wie diese Eigenschaften fiir benutzer-definierte Operatoren vollautomatisch
mit Hilfe von statischer Codeanalyse aus deren Quellcode extrahiert werden konnen. Mit un-
serem Ansatz konnen viele relational Optimierungen wie zum Beispiel die Optimierung der
Reihenfolge von Filtern, Joins und Aggregationen emuliert werden ohne jedoch auf relationale
Operatoren beschrinkt zu sein.

Drittens analysieren wir den Einfluf} von sich verdndernden Ausfithrungsbedingungen wie zum
Beispiel variierenden Pradikatselektivitdten und verfiigbaren Hauptspeichermengen auf die Lauf-
zeit von relationalen Ausfithrungsplidnen. Wir identifizieren Planeigenschaften, die deutliche
Laufzeitschwankungen auslosen konnen. Im Fall von ungenauen Optimiererschidtzungen kon-
nen Pline, die diese Eigenschaften enthalten, ein sehr groB3es Risiko darstellen. Wir prisentieren
einen Ansatz, um die Auswahl von riskanten Plidnen zu vermeiden. Dariiberhinaus stellen wir
eine Methode vor, um das Risiko von Ausfiihrungspldanen mit Hilfe eines maschinell-gelernten
Modells vorher zusagen. Unsere Evaluation zeigt, dass mit unserem Vorhersagemodell das
Risikopotenzial eines Plans besser abgeschitzt werden kann als mit Hilfe eines kosten-basierten
Optimierers.

viii

Contents

[L__Introduction

M2

Scopeof Thesis|

[1.2.1 Abstractions for Parallel Data Analysis Tasks|

[1.2.2 Optimizing Data Flows with UDF Operators|

[1.2.3 Assessing the Risk of Relational DataFlows|

13

Contributions of Thesis and Impact.

2 Background|

2.1 Parallel Data Flow Processors|

[2.1.1 Principles of Parallel Data Processing| .
[2.1.2 Parallel Relational Database Systems| .
[2.1.3 MapReduce Systems|
[2.1.4 General Parallel Data Flow Systems| . .

[2.1.5 Comparing Parallel Data Processing Systems|

o)

Optimization of Parallel Data Flows|

[2.2.1 Optimization of Relational SQL Queries|
[2.2.2 Optimization of Plain MapReduce Jobs|

[2.2.3 Optimization of Higher-Level Programming Abstractions|.

. ummary| 000 e e

3 Abstractions for Parallel Data Flows|

B

3.1.2 Operators|

3.1.4 PACT Programs|

B2

The Optimization of PACT Programs|.

[3.2.1 Execution Strategies|
[3.2.2 Interesting Properties|

O NN B R =

11

12
14
16
24
27
30
30
34
37
42

43
45
45
46
48
48
52
52
53
55
56

X

|4.2.2 Reordering MapReduce Programs|
4.2.3 Reordering Binary Second-Order Functions|
4.2.4 Possible Optimizations|
|4.3 Obtaining Reordering Information with Static Code Analysis|
4.3.1 Estimating Read Sets| 0.
[4.3.2 Estimating Write Sets|
|4.3.3 Estimating Output Cardimnality Bounds|.
4.3.4 Guaranteeing Safety|,
4.4 Plan Enumeration|o

[4.5.1 Experimental Setup|. o
4.5.2 Evaluation Programs| L 0.
4.5.3 Experiments|

Assessing the Risk of Relational Data Flows|

[5.1 Analyzing the Performance of Query Plans for Changing Execution Conditions|
[5.1.1 Performance of Operators|
[5.1.2 Impact of Operator Order on Plan Performance|
[5.1.3 Performance of Analytical Query Plans|
[5.1.4 Identified Risky Plan Features|

5.2 Defining Plan Risk and Using it for Safe Plan Choices|.
[5.2.1 Defining a Risk Score for Execution Plans|.
15.2.2 Using Plan Risk Scores to Compute Risk-weighted Plan Costs|

5.3 Predicting Risk Scores for Execution Plans|
15.3.1 A Machine Learning Approach for Plan Risk Prediction|

71
73
76
76
78
81
86
87
88
89
92
93
94
97
97
98
100
105
107

177

X1

1 Introduction

Contents
M1 MoGvation] . .« « v v v vttt et et et e ettt e 1
[[2 Scopeof TheSis|. . .« « v v v v vt it e et et ettt ettt e 4
[1.2.1 Abstractions for Parallel Data Analysis Tasks| 4
[1.2.2 Optimizing Data Flows with UDF Operators| 5
[I.2.3 Assessing the Risk of Relational Data Flows| 6
(1.3 Contributions of ThesisandImpact] 6
(.4 Outlineof Thesisl 9

1.1 Motivation

“Big Data” is a topic that is popular nowadays and raises many expectations [145]. As with most
trends, there is no consensus of what Big Data actually means and there are several perspectives
on it, including ecological, social, legal, and of course technological views. In a nutshell, Big
Data describes the idea to extract valuable information from very large and diverse data sets. This
is similar to the mission statement of data mining. What makes a difference though, is the size,
diversity, and origin of the analyzed data and the context in which the analysis is performed. The
amount of available data in many domains is exploding due to excessive collection of machine-
generated, sensor-collected, and user-generated data [20} 24, 145] 46 165 [188]. One aspect of the
Big Data trend is to combine data sets from such diverse sources to extract previously unknown
information. Often, Big Data projects aim to optimize existing processes, give guidance for
complex decisions, or enable new services. Given the relevant data sets with the sufficient
size and quality and the right data analysis tools, significant improvements are possible. For
example, the efficiency of logistics can be improved by analyzing GPS traces of trucks, adapting
their routes, and reducing their fuel consumption [157]. Other use cases include predicting
shortage of supplies, optimizing manufacturing processes, utilization of shared resources, and
analyzing scientific data from astronomy, biosciences, or geosciences [20, 24, 45]]. The ability
to quickly analyze vast amounts of data will empower future scientific breakthroughs and will
be a significant advantage of enterprises over competitors that lack this capability.

1 Introduction

From a technological point of view, Big Data challenges traditional data management in several
ways. Most obviously, the amount of data to be analyzed is constantly growing at high rates.
Data sets are produced by humans (e. g., social media interactions, clickstreams, and open data
collections such as Wikipedia or OpenStreetMap), collected by machines and sensors (e. g., net-
work monitoring, RFID tracking, traffic monitoring, and GPS position recording), or generated
from scientific experiments (e. g., particle research, genome sequencing, climate simulations)
[L, [7]. At the same time the cost for storing data is decreasing, making it affordable to store
large amounts of data to analyze it later. Also the characteristics of the data that is analyzed has
changed. While in the past, data analysis was mostly performed on structured data sets, new use
cases include the processing of graph-structured, semi-structured, and unstructured data, such
as text or image data [46, [148]]. However, not only the data which analyzed changes. Also the
techniques and methods to analyze this data have become more complex and demanding. While
in the past data was commonly analyzed using relational queries, today information extraction,
text mining, data mining, and machine learning techniques and algorithms are commonly ap-
plied. These methods are for example used to extract structured information from text, cluster
data points, or compute predictions or classification models [63} 148}, [152]]. Due to the variety
of data formats and the diversity of analytical tasks, data analysis applications often cannot be
realized by exclusively using domain-specific languages but commonly require some kind of
custom implementations.

Big Data analytics pose a number of requirements on systems that aim to support these kinds of
workloads. First of all, Big Data processing systems need to be able to run complex analytical
tasks on large amounts of data. This demands for large capacities of I/O and compute resources.
A common approach to address this requirement is distributed and parallel processing. As many
data sets are expected to grow over time, data processing systems need to be able to flexibly
scale with increasing data set sizes. In addition to parallel execution, data processing systems
need to focus on efficiency to reduce the demand for compute resources and consequently for
power and cooling. Ease of use is another important aspect for data processing systems and
places requirements on the abstractions to define data processing tasks. A good abstraction
hides unnecessary complexity from users, but is expressive enough to enable all relevant use
cases. Since parallel computing is challenging and requires excellent programming skills to deal
with communication, concurrency and fault tolerance, abstractions to hide these complexities
have become important. Declarative programming models are a natural fit for such abstrac-
tions. When compiling a declarative program into an executable program, a compiler often
can choose from several equivalent execution strategies with different execution performance.
Hence, the compilation task is an optimization problem to identify the most efficient execution
strategy. Declarative specification eases program development, since the difficult choice of an
efficient execution strategy is left to the system’s compiler [97, [186]]. This improves developer
productivity and also lowers the requirements on the skill set of developers. Moreover, program
optimization decouples the program specification from the data to process and the execution en-
vironment because an optimizer can choose the best plan depending on the current situation. In

1.1 Motivation

fact, the declarative query language SQL with the underlying relational algebra and the sophis-
ticated query optimizers are among the reasons for the success of relational database systems.
While SQL is a good abstraction for traditional analytical tasks, today’s use cases demand for
custom data types and user-defined functions which must be supported as first class citizens by
programming abstractions of Big Data processing systems.

Until a few years ago, parallel relational database systems (RDBMS) have been the predominant
solution to process large amount of data. However, these systems do not address all require-
ments discussed before. Parallel RDBMSs are tailored towards the relational data and process-
ing model. Tasks that fall into this domain can be efficiently processed. Relational database
systems offer a declarative programming model (SQL) and have sophisticated query optimizers
that compile complex queries into efficient execution plans. Hence, users with little background
on query processing can state complex queries which can be efficiently executed. However, tasks
that process unstructured data or require complex custom code are not so easy to realize, if at
all [[65]]. In addition, parallel RDBMSs are typically rather costly solutions. This is due to high
licensing costs, which often depend on the size of the data sets or amount of compute resources
used by the database. Such licensing terms can cause high costs for systems that are intended
to store and process large amount of data. Furthermore, parallel database systems often require
special hardware setups, are hard to scale-out, and need to be maintained by skilled database
administrators [14]).

MapReduce [64] and distributed file systems [92] have been designed to overcome some of the
limitations of parallel RDBMSs. Distributed file systems scale to thousands of commodity hard-
ware servers, reliably store large amounts of unstructured data, and offer high I/O performance.
The MapReduce programming model supports custom data types and user-defined functions and
hides the complexity of parallel programming from the user, such as network communication,
concurrent programming, and fault tolerance. However, MapReduce’s design focuses more on
scalability and fault-tolerance than on resource and programmer efficiency. MapReduce is a
low-level programming model that requires imperative programming and does not offer declar-
ative task specification and optimization. While relatively simple processing tasks can be easily
implemented, complex data analysis jobs are cumbersome to express in MapReduce and require
comprehensive system insight and programming experience. This deficiency led to the design
and implementation of higher-level languages and programming models on top of MapReduce
such as Pig [[169], Hive [[198]], Jaql [28]], and Cascading [44]. These languages and programming
models offer more declarative programming abstractions that include primitives such as joins,
filters, and aggregations and compile queries or programs into MapReduce programs. Hence,
they significantly ease the implementation of complex analysis tasks which are executed in a
massively parallel and fault-tolerant fashion using MapReduce. Essentially, Pig, Hive, Jaql, and
Cascading leverage MapReduce as an execution engine similar to how relational database sys-
tems use their engines to execute SQL queries. However, using MapReduce as an execution
engine comes at cost of processing efficiency compared to the execution engines of relational
database systems [[173}[194].

1 Introduction

Given the shortcomings of current systems to define and execute complex analytical tasks on
large amounts of data, there is a need for a system that provides declarative task specification,
optimization, and efficient parallel execution.

1.2 Scope of Thesis

This thesis focuses on challenges and problems related to the specification and optimization of
parallel data flow programs. In this section, we define the scope of our contributions and briefly
discuss their context.

1.2.1 Abstractions for Parallel Data Analysis Tasks

The success of relational database systems is, among other reasons, due to the powerful com-
bination of a declarative query language (SQL) and sophisticated query optimization and com-
pilation technology. When stating queries, users describe the desired result without defining
how the result should be computed. This separation of logical task description and physical
execution also allows for parallel execution of SQL queries. Due to its clean abstraction and
ease of use, SQL has become the de-facto standard to interact with database systems. However,
SQL builds on a small set of relational operators and was designed for well-structured relational
data. Although, most database systems offer interfaces for user-defined functions, these are of-
ten too restrictive and hard to specify. With the growing number of Big Data analysis use cases,
data analysis tasks commonly include heterogeneous, non-relational data and cannot be easily
specified with SQL [163} 148, [152].

As a consequence, alternative programming models have been defined to cope with the new
challenges. The most prominent representative of Big Data programming abstractions is MapRe-
duce [64]. MapReduce offers two parallelization primitives, Map and Reduce, which process
user-defined data types by calling user-defined functions. These parallelization primitives and
MapReduce’s execution model enable parallel execution of MapReduce programs and allow the
developer to focus on application logic instead of issues related to parallel programming which
are transparently handled by MapReduce. The templates of the user-defined functions and data
types are generic such that a wide variety of data processing tasks can be realized using the
MapReduce programming model. MapReduce’s execution model is fixed, i. e. each MapReduce
job is executed exactly the same way. By combining user-defined processing and automatic par-
allelization, MapReduce addresses several needs of Big Data processing and has become very
popular. However, some analysis tasks cannot be easily defined using MapReduce and need to
be forced into the programming model [65]]. Moreover, often implicit knowledge about the fixed
execution model is required to define tasks or to enable more efficient execution. This clearly
contradicts with the motivation of declarative task specification. Higher-level languages such

1.2 Scope of Thesis

as Pig [169], Hive [198]], Jaql [28]], and Cascading [44] have been designed to overcome this
limitation of MapReduce. Queries or programs specified in these higher-level abstractions are
compiled into MapReduce programs. Hence, they offer a convenient interface to specify paral-
lel data analysis tasks. However, higher-level programming abstractions on MapReduce suffer
from MapReduce’s fixed execution model which can lead to inefficient execution plans with
high resource consumption especially for more complex analysis tasks.

Neither SQL, MapReduce, nor higher-level languages on MapReduce fulfill the requirements for
a Big Data programming model. While SQL offers declarative query specification and efficient
execution, it lacks extensive support for user-defined data types and functions. On the other
hand, MapReduce is built around user-defined data types and functions, but does not offer a
declarative task specification. Higher-level languages and programming models such as Pig,
Hive, or Cascading offer declarative abstractions, user-defined functions, and massively parallel
execution. However, they are limited by inefficiencies of MapReduce execution model.

1.2.2 Optimizing Data Flows with UDF Operators

Query optimization is a key technology to improve the performance and efficiency of data pro-
cessing systems [[12, 18,189, 101|186, 187, 213]]. In relational DBMSs, the choice of the query
execution plan can result in a difference in execution time of multiple orders of magnitude
[83, (186} [191]]. Especially the order of operators can have a significant impact on the perfor-
mance of an execution plan. For large-scale systems that concurrently execute multiple analysis
jobs and process large amounts of data, suboptimal plan choices can waste valuable compute
resources, such as I/O operations and CPU cycles, and significantly impact the overall perfor-
mance of a system.

The characteristics of Big Data applications include heterogeneous data and complex analytical
tasks such that data analysis programs often include user-defined functions. However, user-
defined functions pose a big challenge for data flow optimization because their semantics are
not known by the processing system. Optimizing queries with UDFs has been extensively re-
searched in the context of relational DBMS [53, 118! [119]]. However, the UDF interfaces that
are offered by today’s MapReduce-inspired systems are more generic compared to those offered
by RDBMS because they have less well-defined semantics and operate on data without explicit
schema information [64]. There have been approaches to optimize the execution of MapReduce
programs by tuning the parameters of the MapReduce execution engine [122]] or replacing file
scans with index scans [42]]. We are not aware of any optimization methods to improve the order
of operators with MapReduce-style user-defined functions.

1 Introduction
1.2.3 Assessing the Risk of Relational Data Flows

The execution time of a data flow program depends on the program itself, the data to process,
and the execution environment. Cost-based data flow optimizers rely on information about the
query, the data, and the execution environment that is available at optimization time to estimate
the cost of execution plans and pick the one with the least estimated costs. The accuracy of the
available information is important for the effectiveness of this approach. Missing or inaccurate
information can result in choosing execution plans that consume more compute resources and
have significantly worse performance than other plans [131} (158,164} [176].

Lack of information at optimization time is a major challenge in cost-based optimization [17}
99, 102, [159]. Compared to relational database systems, this problem is even bigger in the
context of Big Data analysis systems. Traditional DBMSs collect basic statistics such as table
cardinality when data is loaded and more detailed statistics as for example attribute histograms
when requested by the user or automatically at runtime [[130, (135} [176]. In contrast, detailed
statistical information about the data is often not available in today’s data analysis environments
because ad-hoc data is read from distributed file systems or processed by user-defined functions
with unknown semantics at runtime. Furthermore, processing tasks contain UDFs with unknown
complexity and are executed on large, possibly virtualized, clusters.

An important observation is that not all plans are equally sensitive to lacking information [17}
60, 99,100, 204]]. While some plans heavily rely on incorrect assumptions of the optimizer due
to missing information and exceed the expected execution time by orders of magnitude, other
plans might tolerate faulty assumptions with little impact on their performance. Especially plans
which “aggressively” aim to leverage assumed data characteristics such as small cardinalities of
intermediate results can easily degrade.

Assessing and reasoning about the sensitivity of execution plans with respect to imprecise opti-
mizer information is a hard and not extensively researched topic.

1.3 Contributions of Thesis and Impact

This thesis discusses approaches to specify, automatically optimize, and efficiently execute par-
allel data processing tasks. It also addresses the problem of suboptimal optimizer plan choices
due to inaccurate optimizer estimates. We present our contributions in detail in Sections [3] A
and [5and summarize them in the following.

In Chapter [3| we propose the PACT programming model to define parallel data flows. PACT
is a generalization of the MapReduce programming model with declarative properties. It mod-
els programs as directed acyclic graphs and features parallelizable user-defined functions and

1.3 Contributions of Thesis and Impact

custom data types. We develop methods to optimize PACT programs, which are based on tech-
niques from relational query optimization, such as cost-based optimization and interesting prop-
erty reasoning. While the PACT programming model is similar to other high-level programming
abstractions such as Cascading [44] or Pig [[169], the optimization differs because programs are
not translated into MapReduce jobs but into data flows which are similar to execution plans of
relational database systems. We show that the PACT programming model considerably eases
the definition of advanced data analysis tasks and significantly improves their performance com-
pared to MapReduce implementations. This work is a step towards closing the gap between
declarative and efficient RDBMS and massively parallel and expressive MapReduce-based sys-
tems. PACT is a core component of Stratosphere [10], a system for massively parallel data
analytics. The contributions of Chapter 3] are joint work with Stephan Ewen.

In Chapter[d] we develop optimization techniques to reorder user-defined operators in data flows.
We present and prove sufficient conditions to reorder two successive UDF operators of PACT
programs. Our conditions evaluate certain properties of the user-defined functions and are ap-
plicable to many systems that support MapReduce-style UDFs. We leverage static code analysis
techniques to automatically extract the required properties from UDFs and design an algorithm
to enumerate equivalent data flows by swapping subsequent operators. The implementation of
our optimization techniques is based on the Stratosphere system. The evaluation shows that our
approach is able to perform important optimizations known from relational query optimization
including filter and projection push-down, join reordering, and holistic aggregation push-down,
while not being limited to relational operators. Some contributions of Chapter 4] are joint work
with co-authors of the corresponding publication [[129]. The conditions for reordering UDF op-
erators were defined and proven in collaboration with Mathias Peters and Matthias Sax. Astrid
Rheinldnder and Matthias Sax contributed to the evaluation of the approach.

In Chapter [5] we perform an extensive experimental study to analyze the impact of inaccurate
estimates on the quality of optimizer plan choices. For this study we execute 306 different
execution plans for 14 analytical queries under varying execution conditions and measure their
execution time. We analyze the resulting data and identify operators and plan patterns that
are sensitive to changing execution conditions. We find that predicting the sensitivity of an
execution plan is not possible by looking at individual operators but requires a holistic view at
the plan. We propose a risk score to assess the sensitivity of query execution plans with respect
to varying execution conditions and show how it can be used to avoid risky plan choices. Using
the data obtained from the experimental study, we develop a method to predict the risk score
of query execution plans based on a machine-learned regression model. The evaluation shows
that our machine learning approach outperforms predictions based on optimizer estimates. To
the best of our knowledge, this work is the most extensive study to analyze plan robustness
and the first approach to predict the robustness of query execution plans using machine learning
techniques.

1 Introduction

Parts of this thesis have been published as follows:

Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl, and Daniel
Warneke. Nephele/PACTs: A programming model and execution framework for web-
scale analytical processing. In SoCC ’10: Proceedings of the ACM Symposium on Cloud
Computing 2010, pages 119-130, New York, NY, USA, 2010. ACM.

Alexander Alexandrov, Dominic Battré, Stephan Ewen, Max Heimel, Fabian Hueske,
Odej Kao, Volker Markl, Erik Nijkamp, and Daniel Warneke. Massively parallel data
analysis with PACTs on Nephele. In PVLDB, 3(2):1625-1628, 2010.

Alexander Alexandrov, Stephan Ewen, Max Heimel, Fabian Hueske, Odej Kao, Volker
Markl, Erik Nijkamp, and Daniel Warneke. MapReduce and PACT - Comparing data
parallel programming models. In BTW, pages 25-44, 2011.

Fabian Hueske, Mathias Peters, Matthias Sax, Astrid Rheinldnder, Rico Bergmann, Al-
joscha Krettek, and Kostas Tzoumas. Opening the black boxes in data flow optimization.
In PVLDB, 5(11):1256-1267, 2012.

Fabian Hueske, Aljoscha Krettek, and Kostas Tzoumas. Enabling operator reordering in
data flow programs through static code analysis. In XLDI Workshop, affiliated with ICFP,
2012.

Fabian Hueske, Mathias Peters, Aljoscha Krettek, Matthias Ringwald, Kostas Tzoumas,
Volker Markl, and Johann-Christoph Freytag. Peeking into the optimization of data flow
programs with MapReduce-style UDFs. In 29th IEEE International Conference on Data
Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages 1292-1295, 2013.

Fabian Hueske and Volker Markl. Optimization of massively parallel data flows. In
Large-Scale Data Analytics, pages 41-74. Springer New York, 2014.

Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag, Fabian
Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, Felix Naumann,
Mathias Peters, Astrid Rheinldnder, Matthias Sax, Sebastian Schelter, Mareike Hoger,
Kostas Tzoumas, and Daniel Warneke. The Stratosphere platform for big data analytics.
The VLDB Journal, pages 1-26, 2014.

The results of this thesis have been adopted by the research community and are published as open
source software. The PACT programming model [23] is a core component of the Stratosphere
system [10] and serves as a basis for several publications [34, 43| 80, 117} 139|140, 149, 180,

182].

The Apache Flink project [|84] is a fork of the Stratosphere system and evolved into a top-level
project of the Apache Software Foundation in 2014. By now, Apache Flink is a very active
open source project with a steadily growing community and experiences lots of interest. Several

1.4 Outline of Thesis

companies are using Apache Flink in production. Multiple open source projects integrate with
Apache Flink and use it as an execution engine, such as Apache Mahout [[156]], Cascading [44],
and Apache MRQL [165].

1.4 Outline of Thesis

In the following we give the outline of this thesis. Chapter [2] discusses the background and re-
lated work for parallel data processing and optimization of parallel data flows. In Chapter [3| we
present our abstraction to specify parallel data processing tasks. Chapter 4| discusses the opti-
mization of data flows that embed MapReduce-style user-defined functions. Chapter [5|evaluates
the sensitivity of execution plans with respect to incorrect assumptions at optimization time and
presents an approach to avoid too risky execution plans. Finally, Chapter [f] concludes this thesis
and gives an outlook.

1 Introduction

10

2 Background

Contents
2.1 Parallel Data Flow Processors| 12
[2.1.1 Principles of Parallel Data Processing| 12
[2.1.2 Parallel Relational Database Systems| 14
[2.1.3 MapReduce Systems| L 16
[2.1.4 General Parallel Data Flow Systems| 24
[2.1.5 Comparing Parallel Data Processing Systems| 27
2.2 Optimization of Parallel DataFlows| 30
[2.2.1 Optimization of Relational SQL Queries|. 30
[2.2.2 Optimization of Plain MapReduce Jobs| 34
[2.2.3 Optimization of Higher-Level Programming Abstractions|. 37
.................................... 2

Analyzing more data than a single state-of-the-art computer is capable to store or to process
of is not a new requirement. In fact, the design of the first parallel relational database systems
started in the late 1970’s [67]. Since then, several commercial parallel database systems have
been built and constantly improved [21}, 22} 32} [187]]. The publication of Google’s MapRe-
duce framework in 2004 [64]] accelerated the evolution of parallel data processing systems and
triggered several new system designs.

In this chapter, we present the foundations and the state-of-the-art of parallel data processing and
data flow optimization. Section[2.T|introduces important concepts of parallel data processing and
presents different types of systems including parallel relational database systems, MapReduce-
based systems, and parallel data flow systems. Section [2.2] discusses the state-of-the-art in the
area of optimizing abstractions for parallel data analysis such as relational queries, MapReduce
programs, and higher-level programming abstractions. Finally, Section [2.3] summarizes this
chapter.

11

2 Background

2.1 Parallel Data Flow Processors

This section discusses parallel data processing systems. We briefly introduce the basic princi-
ples of parallel data processing and continue to present the evolution of parallel data process-
ing systems. We discuss three system families, namely parallel relational database systems,
MapReduce-based systems, and systems that execute generic parallel data flows. Finally, we
compare the advantages and shortcomings of these system families.

2.1.1 Principles of Parallel Data Processing

Processing data in parallel on multiple machines is not a new trend. At any point in time, there
have been applications that challenged the compute resources which were available in a single
state-of-the-art computer. Depending on the use case, CPU performance, main memory size,
storage capacity, or I/O bandwidth limit the performance of data analysis programs. One ap-
proach to overcome this limitation is to split the computation and let multiple machines collab-
oratively compute the desired result. By distributing computations to multiple machines, their
resources can be jointly utilized, resulting in improved performance. In order to enable parallel
data processing, some basic challenges need to be addressed. First, a data processing program
must be split into multiple individual computation tasks that can be distributed to machines.
Second, processes that participate in a parallel computation need a mechanism to communicate
with each other in order to exchange data and synchronize their operations. In this section, we
briefly discuss these two principled aspects of parallel data processinﬂ

Types of Parallelism There are basically two ways to split a data processing program into
individual parts that can be processed by different machines, task parallelism and data paral-
lelism [68]].

Data processing programs usually consist of several processing steps or operations. Figure[2.1(a)]
shows a program consisting of four steps, read input data (In), apply operation A (Task A),
apply operation B (Task B), and writing the result (Out). In task parallelism, a data processing
program is split along its processing steps into program fragments that are sent for execution to
different machines. Figure [2.1(b)|shows how the example program is split into four parts that
are processed by four machines (Node 1 to 4). This distribution of tasks to different machines
requires that the output of an operation must be transferred to the machine that applies the next
operation. In this setting, each machine applies its operation to the full data set, i.e., all data
items are routed through each machine.

Further important aspects include load balancing, fault-tolerance, and task scheduling. These aspects are more
application specific and discussed later in the context of individual systems.

12

2.1 Parallel Data Flow Processors

In contrast, data parallelism does not split the program into program fragments, but partitions
the data to process. Figure shows how the computation of the example program can be
parallelized and distributed to three machines using data parallelism. Each machine applies all
operations of the program to a subset of the overall data. Whether data needs to be exchanged
between processing machines depends on the characteristics of the program.

Comparing both types of parallelism, the maximum degree of parallelism for task parallelism
is limited by the complexity of the program, i.e., the number of operations. In contrast, data
parallelism is limited by the number of data items. Regarding load balancing, task parallelism
can suffer from tasks with different computational complexity, while data parallelism has to cope
with skewed data distributions. An important aspect of task parallelism are blocking operations
that consume the entire data set before they emit their result, such as a sort operation. In a
sequence of tasks, such blocking operations split a parallel program into pipelines of operations
that concurrently processes data. In practice, many analytical data processing systems use a
combination of task and data parallelism as shown in Figure Programs are split up into
groups of (pipelined) operators, each of which processing a subset of the overall data set.

Node 1 Node 2 Node 3
Out Out, Out, Outy Out; Out,
T T T T Node 2 T T Node 4
Task B Task B, Task B, Task B3 Task B Task B,
Task A Node 2 Task A Task A Task A, Task Aj Task A Task A,
T ’ T T T Node 1 T T Node 3
In In 1 In2 In3 In 1 In2

(a) Program (b) Task Parallelism (c) Data Parallelism (d) Hybrid Parallelism

Figure 2.1: Types of parallelism

Process Communication Processes that collaboratively execute a data analysis task and run
on multiple machines need to communicate with each other. This communication includes ex-
changing data and synchronizing their operations. There are three alternative architectural sys-
tem designs that enable inter-machine communication, namely shared-memory, shared-disk, and
shared-nothing 68| [171]]. Figure[2.2] depicts these designs.

The shared-memory architecture enables machines to access the memory of remote machines
(Figure [26]. This allows machines to communicate by reading from and writing to
memory. A problem with this design are the differences in access latency and throughput, as
well as coordination of concurrent memory accesses (locking). In the shared-disk design [178]],
all machines access a shared persistent data store, such as a storage area network (SAN) as

13

2 Background

CPU, CPU, CPU; CPU, CPU, CPU;] Network \
| | | | | |
Network ‘ Memory, Memory, Men|10ry3 CPU; CPU, CPU3
| | | | | |
’ Shared Memory ‘ ’ Network ‘ Memory, Memory, Merr!ory3
|
Di|sk1 Di|sk2 Di1k3 Disk; Disk, Disks Di|sk1 Di|sk2 Dilk3
(a) Shared Memory (b) Shared Disk (c) Shared Nothing

Figure 2.2: System architectures for parallel data processing systems (c. f. [68]])

shown in Figure [2.2(b)] Similar to the shared-memory approach, concurrent data access must
be coordinated. Both approaches have limitations in setups that require massive scale-out to a
high number of machines. This is mainly due to the effort of coordinating a large number of
concurrent accesses to a shared resource. The predominant architectural design for parallel data
processing systems is the shared-nothing architecture (Figure [68]. In this architecture,
each machine accesses only its local disk storage and main memory and exclusively communi-
cates through network messages with other machines. Concurrent data accesses must only be
coordinated among processes which locally run on a machine.

Compute-intensive applications such as high performance computing (HPC) applications [61]
and specialized data analysis solutions, which can avoid (or significantly reduce) the overhead
of distributed locking, often chose shared-memory architectures [[155]. However, systems with
a focus on large-scale general-purpose data analysis applications are usually based on shared-
nothing architectures [[193]].

2.1.2 Parallel Relational Database Systems

Parallel relational database systems (RDBMS) are the first generation of systems for analyz-
ing large amounts of data. A parallel RDBMS provides a single-instance interface similar to a
stand-alone database system. However, the system is running on multiple machines that jointly
store and query data. The origins of parallel DBMS date back to the late 1970’s. Teradata and
Tandem [78, 210] were among the first commercial products pioneering parallel system archi-
tectures for database systems. First research prototypes following this design were Gamma [67]]
and Bubba [35]]. DeWitt and Gray [68]] give an overview of the state-of-art in 1990 and discuss
the advantages of parallel database systems over the database machine approach which relied on
specialized instead of commodity hardware. Since then, all major database vendors have added
a parallel database management system to their portfolio. Starting in the early 2000’s, a new

14

2.1 Parallel Data Flow Processors

generation of parallel database systems was designed which is focused on large-scale analyti-
cal workloads. Among these systems are Greenplum [201]], Aster Data [87]], and Netezza [62].
These systems are designed for massive parallelization with advanced fault tolerance mecha-
nisms and partially add support for more generic programming models than SQL.

In this section, we give a brief overview of the technology behind parallel RDBMSs. We focus
on technology and database systems for analytical workloads and do not include database sys-
tems and techniques for transactional workloads. We discuss the system architecture of parallel
RDBMSs, data storage techniques, and explain how queries are processed by these systems.

Data Storage in Parallel RDBMS Most parallel database systems follow the shared-nothing
system architecture, where each machine uses its local storage and memory for data processing.
The data which is stored in such a system needs to be distributed among all machines to be
processed in parallel [68| [143][161]]. The relational data model is a good fit for this requirement.
Relations can be easily split into horizontal partitions, i. e., each record of a relation is assigned
to exactly one partition. Each partition is assigned to one or multiple machines of the system.
The assignment of a record to a partition can be random, round-robin, or based on the value of an
attribute or a combination of attributes (range- or hash-partitioning). Depending on the chosen
partitioning method, the amount of data that needs to be transferred over the network to compute
the result of a query can vary by large factors. Therefore, the choice of partitioning methods can
have a significant impact on the performance of a system and should be chosen with respect to
the expected workload. For smaller relations it can be beneficial to fully replicate them to each
machine of the system and in order to avoid the shipping of much larger relations.

Query Processing in Parallel RDBMS SQL is a declarative query language. In contrast
to imperative programs, SQL queries describe the requested result instead of exactly specifying
the way to compute it. In order to evaluate a SQL query, a query compiler translates it into an
execution plan, which is executed. Due to the independence of query specification and execution
and the fact that relational expressions can be easily parallelized, SQL queries can be run on
stand-alone and parallel database systems without any modifications.

The execution plan of a SQL query is a data flow built from operators, where data flows from
one operator to another operator. Optimizing SQL queries for parallel execution builds on query
optimization techniques for stand-alone settings and extends these. An important characteristic
of optimization in both settings is pipelined execution. Pipelining has the goal to perform as
much processing as possible “on-the-fly” without the need to materialize data, i.e., write it to
disk. The most important difference to optimization in a non-parallel setting is the consideration
of data shipping costs, which can easily dominate the cost of query execution. Hence, query op-
timizers for parallel execution are guided by their cost models to reduce the amount of shipped

15

2 Background

data as much as possible by maximizing local processing on each individual machine. An impor-
tant technique is to leverage data locality through well-partitioned relations [[143]]. While filter
and projection operators can be locally executed on any partitioning, aggregations and joins re-
quire the system to organize data by their grouping or join attributes. An aggregation can be
locally executed if the data is hash- or range-partitioned on a subset of its grouping attributes.
An equi-join can be performed without communication if either both involved relations are par-
titioned on their join attributes (partitioned join) or one of both relations is fully replicated and
locally accessible at each partition of the other relation (broadcast join). Further techniques to
reduce the amount of shipped data include specialized physical operators, such as semi-joins or
partial aggregates [54. |143]. While these techniques can considerably reduce the need for data
shipping, complex queries can require to repartition the data once or multiple times. Finally, all
partial results need to be collected in order to return the result to the client. A major challenge
for parallel database systems is data skew. Non-uniform data distributions can significantly im-
pact the performance of a query, since the execution time of a query depends on the completion
of last parallel process [147].

2.1.3 MapReduce Systems

MapReduce systems evolved as the second generation of systems to analyze large amounts of
data. In 2003 and 2004, Google presented its framework for massively parallel data process-
ing consisting of the distributed Google File System (GFS) [92] and the processing framework
MapReduce (64, 165]. Google’s applications for MapReduce included processing of web crawls,
search index creation, and log file analysis. These kinds of analytical and data processing tasks
did not fit the predominant relational data and processing model well. Moreover, Google re-
quired a system that was able to cost-efficiently and reliably scale to thousands of machines.

Shortly after the publication of MapReduce, the Apache Hadoop [109] project started to imple-
ment a distributed file system and a MapReduce platform. The free availability of a MapReduce
system and its source code lead to numerous efforts in research, industry, and the open source
community. Today, Hadoop has become a standard for processing large amounts of data.

In this section, we introduce the basic concepts of the Google File System and MapReduce’s
programming and execution models. We also give a brief overview of different research and
open source efforts that were triggered by the publication of MapReduce focusing on aspects
that are relevant in the context of this thesis, i. €., specification and optimization data processing
tasks.

Google File System The Google File System is a distributed file system that was specifically
designed to run on large clusters of unreliable commodity hardware and to support large-scale

16

2.1 Parallel Data Flow Processors

data processing tasks [92]. Due to these requirements, it differs from previous designs for dis-
tributed file systems.

GFS follows a master-slave architecture with a centralized GFS master and multiple GFS chunk
servers. The GFS master is responsible for storing metadata, such as the file system directory
structure, file storage locations, and access permissions. GFS chunk servers store the actual
data which is written to and read from the file system. Clients connect to the master to look
up file locations at the GFS master and coordinate reading and writing directly with the chunk
servers.

GFS was optimized to serve large files of multiple gigabytes. Files are split into fixed-sized
chunks. These chunks are distributed and replicated over all chunk servers of the file system. A
chunk server stores its chunks on its local file systems. The GFS paper [92] mentions a default
chunk size of 64 megabytes and a default replication of three. This design has several benefits.
First, a file can be read in parallel by concurrently reading multiple of its chunks from different
chunk servers. Thereby, the I/O bandwidth of all involved hard disks and servers is combined.
Second, replication ensures fault-tolerance. In case some machines or disks fail, other replicas
of the lost chunks are available and can be used to restore the replication level. However, GFS
does not perform well for random access read and write operations. The open source project
Apache Hadoop [109]], implements its Hadoop distributed file system (HDFS) after the design
blueprint of Google’s GFS paper.

MapReduce Programming Model The MapReduce programming model is centered around
two parallelization primitives, Map and Reduce. Map and Reduce are second-order functions. A
data processing task is specified as two user-defined first-order functions (UDFs), one for Map
and one for Reduce. These UDFs are executed in parallel on different subsets of the processed
data set. Hence, MapReduce leverages the principle of data parallelism to scale-out data pro-
cessing, similar to parallel RDBMSs. In addition, MapReduce uses task parallelism to distribute
the computation of Map and Reduce functions.

MapReduce’s data model differs from the relational model. A data set is represented as a bag
of key-value pairs. Each pair represents a data item and consists of a key and a value element.
Both, key and value can be of user-defined types. The only requirement for key and value types
is serializabilty because the processing system needs to be able to write data to and read data
from hard disk and network connections. In addition, key types must also provide methods for
comparison and hashing. Hence, keys and values can be atomic data types, such as Integers
or Strings, but also more complex data structures, such as annotated text documents or objects
representing geographic locations. Compared to relational database systems, MapReduce’s data
model is more flexible and enables the processing of complex, heterogeneous data sets.

In addition to user-defined data types, a data processing task also consists of two user-defined
functions, a Map UDF and a Reduce UDF, which are called by the corresponding second-order

17

2 Background

parallelization function, Map or Reduce. The function signatures of both UDFs are shown in the
following.

mapUDF (k1,vi) — [(k2,v2)]
reduceUDF (ky, [v2]) — [(k3,v3)]

A MapReduce program is works as follows. First, the input of the program, a bag of key-value
pairs of type (k;,v1), is processed by the Map function. The function calls its UDF exactly once
for each key-value pair (kj,v;) of its input bag. The Map UDF may produce arbitrary many
key-value pairs of a possibly new type (kz,v2), i.e., neither the key nor the value type needs
to be preserved. Subsequently, the Reduce function processes the output of the Map function
and calls its UDF exactly once for each distinct key of Map’s output data set. With each call,
Reduce provides the distinct key of type k, and a list of all values of type v, which are associated
with the distinct key to its UDF. The Reduce UDF may as well produce an arbitrary number of
key-value pairs of a new type (k3,v3). All UDF invocations are independent from each other,
which is a crucial requirement for data parallelism. It is important to note that the parallelization
primitives Map and Reduce do not exactly correspond to their counterparts, which are known for
functional programming languages. Due to the focus on user-defined functions and data types,
MapReduce is a versatile programming model and many data processing tasks can be intuitively
expressed this way.

The MapReduce programming model is also flexible in its choice of data sources. A MapReduce
program requires an input format that provides the key-value pairs, which are processed by the
Map function. The programming model does not restrict the source from which data can be
read or the method to create pairs. Hence, input formats can read data from any data source,
such as a file system, a relational database, a distributed hash-table, or any other data source.
However in order to enable parallel execution, the input format needs to be able to read different
subsets or partitions of a data set in parallel. Each subset or partition of the input data is called
an input split. An input format needs to provide a list of input splits for its input. Finally, a
MapReduce program requires an output format to emit the result of a MapReduce program. The
output format defines the data store and format of a program’s output.

The performance of a MapReduce program depends to a large extent on the amount of data
that is transferred over the network in order to group the data by key as required by the Reduce
function. The MapReduce programming model offers an additional optional Combine function
to reduce the data that needs to be shipped over the network. The Combine function is applied
after the Map function and partially aggregates data that is local on a machine by the Reduce key.
Whether or not a Combine function can be used depends on the characteristics of the Reduce
function, i.e., the Reduce function needs to be commutative and associative. The signature of
the Combine function is

combineUDF (kz,[v2]) — [(k2,v2)].

18

2.1 Parallel Data Flow Processors

The Combine function must preserve its input types and must not modify the key. Usually,
Combine functions return a single key-value pair for each group of input pairs.

Putting all pieces together, a MapReduce program looks as follows.

InputFormat — [(ki,v1)]
[(k1,v1)] = Map(mapUDF) — [(k2,v2)]
[(k2,v2)] — Combine(combineUDF) — [(k2,v2)]
[(k2,v2)] — Reduce(reduceUDF) — [(k3,v3)]
[(k3,v3)] — OutputFormat

The most important feature of the MapReduce programming model is its abstraction of data
parallelism. Due to the functional origin of the parallelization primitives Map and Reduce, the
user is not involved in any issues related to parallel execution. The user only provides a Map
UDF and a Reduce UDF and the execution system guarantees to call these UDFs with the correct
subsets of key-value pairs. Thereby, the mode of operation of the execution system is transparent
to the user. Since all UDFs operate on independent subsets of the data, these calls can be carried
out in parallel.

MapReduce Execution Model Similar to GFS, the MapReduce processing system follows
a master-worker architecture. A single master and multiple workers are running on a compute
cluster. Each worker offers a number of slots to execute tasks. The number of slots offered
by a worker depends on the hardware resources of the machine it is running on, such as CPU
cores and main memory. The master orchestrates the execution of a MapReduce program and
schedules processing tasks to slots. For execution, the master generates M input splits based on
the input format and M Map tasks to process the input in parallel. Each input split corresponds
to one Map task. The number of Reduce tasks can be configured by the user.

All MapReduce jobs are executed with exactly the same processing strategy. Figure [2.3] depicts
MapReduce’s static execution model. After a MapReduce program has been started, the master
begins to schedule Map tasks to workers with available task slots. Once a Map task is scheduled,
the input format starts reading the data of the associated input split and generates key-value pairs.
Each key-value pair is individually passed to and processed by a Map UDF. The key-value pairs
that are emitted by the user-defined function are collected in memory. Periodically, the collected
pairs are sorted and handed to the Combine function. The resulting pairs are partitioned by a
hash function such as hash(key) mod N into N buckets and written to disk. The Map tasks reports
the location of the written partitions to the master which informs the Reduce task responsible for

19

2 Background

Reduce Task; Reduce Task, Reduce Tasks
Output Format Output Format Output Format

(External) Sort (External) Sort (External) Sort

Gather Gather Gather

|
Reduce (UDF) l
|
|

|
Reduce (UDF) l
|
|

|
Reduce (UDF) l
|
|

Write to Local Disk Write to Local Disk Write to Local Disk

Partition Partition Partition
Combine (UDF) Combine (UDF) Combine (UDF)
Map (UDF) Map (UDF) Map (UDF)

Input Format Input Format Input Format

|
|
|
| Partial Sort
|
|

|
|
|
| Partial Sort
|
|

|
|
|
| Partial Sort
|
|

Map Task, Map Task, Map Task;

Figure 2.3: The MapReduce execution model, c. f. [[127]

that partition about the location of its data. Once a Reduce task is scheduled, it pulls its partitions
from all Map tasks over the network and locally sorts the key-value pairs by their key. In case
the amount of data is too large for an in-memory sort, the sort is externally performed using
the local hard disks. After sorting, the key-value pairs are grouped by key and the groups are
handed one-by-one to the Reduce UDF. Finally, the output of the Reduce UDF calls is handed to
the output format and the program execution finishes when the last Reduce task is completed.

It is not a coincidence that MapReduce’s execution model integrates well with the distributed
Google file system. When reading a file from GFS as input for a MapReduce program, the
chunks of the file are translated into input splits which can be independently processed in par-
allel. When scheduling a Map task to an open task slot, the master aims to assign the task to a
machine that is as close to the data as possible. Ideally, the Map task is executed on the same
machine that also hosts the corresponding file chunk. If this can be achieved, the file can be
locally read without incurring any network traffic. Due to the replication of chunks, local reads
can be usually achieved for the majority of input splits. Note that MapReduce’s data reading
phase follows a shared-disk strategy since each worker can in principle read all data, while the
remaining processing is carried out in a shared-nothing fashion.

The MapReduce execution model and processing system was designed to run on large clusters
of commodity hardware. In such settings, failing task execution due to software or hardware

20

2.1 Parallel Data Flow Processors

failures is rather common than an exception. MapReduce’s system design is able to continue
program execution in presence of such failures. The master checks for failures by pinging each
worker. In case a worker does not respond within a certain time interval, the master marks its
state as failed. All Map tasks and non-completed Reduce tasks which had been scheduled on
this worker are rescheduled to other workers. Since Map tasks store their results locally on their
hard disk, this data is lost in case of a machine failure. Hence, all Reduce tasks are notified about
the failed Map tasks and their new execution location.

Higher-Level Programming Abstractions for MapReduce The combination of MapRe-
duce and a distributed file system, such as GFS [92] or HDFS [109], yields generic data process-
ing systems that are capable of processing large amounts of data. This is due to the file system
storage abstraction which does not enforce any schema on the stored data and MapReduce’s
support of arbitrary data types and user-defined functions. However, this generality comes at a
price. Providing well-performing implementations even for moderately complex tasks using the
MapReduce programming model requires skill and effort.

In addition, data processing tasks often apply similar data processing operations and originate
from similar domains, such as relational, extract-transform-load (ETL), and machine learning
applications. Implementing such tasks using the plain MapReduce programming model induces
significant code overlap and high implementation costs. This motivated the design and im-
plementation of several higher-level programming abstractions on top of MapReduce. These
abstractions provide domain specific operations to ease the definition of data processing tasks
and compile their programs into MapReduce programs. Most of these abstractions were im-
plemented using the openly available Apache Hadoop system [[109]. In this section, we briefly
introduce and discuss some of these systems.

Apache Hive [[124] [198], [199] is a data warehousing system built on top of Hadoop. It was
started as a project at Facebook and joined the Hadoop ecosystem as an Apache project later.
Hive offers a SQL-like query interface and adapts storage techniques used by parallel relational
database systems to provide storage formats which optimize the management of relational data
on distributed file systems. Hive features a system catalog called Metastore that holds schema
and partitioning information of the data imported and managed by Hive. From an interface point
of view, Hive is similar to a parallel relational database system. However internally, Hive queries
are translated into MapReduce jobs. Compared to database systems, Hive cannot leverage the
benefits of relational processing engines, such as pipelining, but at the same time offers robust
fault-tolerance, i. e., queries do not fail in case of hardware failures. Google’s Tenzing [49] offers
a SQL abstraction for Google MapReduce similar to Hive. Tenzing breaks at some point with
the original MapReduce programming and execution model to avoid performance overhead.

Pig 90, [169, [175] and Jaql [28]] are two other representatives of higher-level languages on top
of Hadoop. While Pig is an Apache project, Jaql is part of IBM’s big data platform InfoSphere

21

2 Background

BiglInsights [30]. Both languages operate on a semi-structured and nested data model and follow
an imperative programming style, i.e., scripts are composed step by step. Each step performs
a simple data transformation or operation, such as filtering, grouping, joining, or a user-defined
function. The supported operators have been chosen with a focus on parallel execution. The
imperative style is an obvious difference to SQL. Due to their step-wise programming style,
extensive support for user-defined operations, and handling of semi-structured data, Pig and Jaql
are well suited for complex data flow definitions, such as ETL processes.

Cascading [44] is a programming model to compose advanced data flows consisting of multi-
ple data sources, operators, and data sinks. These data flows are compiled into sequences of
MapReduce jobs. Cascading is based on the concept of pipes that are connected and chained
into assemblies. Different types of pipes apply user-defined functions in different ways to data
items. For example the Each pipe is semantically equivalent to a Map function and applies
a user-defined function to each individual item. Further pipes support group-wise processing,
joining, splitting, and merging. Cascading features a record-based data model. In contrast to
higher-level languages, such as Hive, Pig, or Jaql, Cascading is a more low-level programming
abstraction.

IBM’s SystemML [93]] features a domain-specific language for machine learning called Declar-
ative Machine learning Language (DML). DML resembles the programming language R and
provides linear algebra and mathematical programming primitives that manipulate matrices and
scalar values. These kinds of operations are commonly used to implement a wide range of
machine learning algorithms. In addition, DML offers loop primitives to implement iterative al-
gorithms. DML does not offer the full set of R functionality but focuses on operations which can
be effectively parallelized. SystemML optimizes algorithms implemented in DML and compiles
them into workflows consisting of multiple Hadoop MapReduce jobs.

Using Apache Hadoop as a processing back-end for higher-level languages gives several ben-
efits, such as excellent scaling and fault-tolerance behavior, but also has major disadvantages.
Most data processing tasks implemented in a higher-level programming abstraction are com-
piled into workflows consisting of multiple Hadoop jobs. The execution of each job has high
constant costs, which are due to scheduling overhead and the transfer of intermediate results via
a distributed file system. These limitations of Hadoop motivated the design and development of
novel data processing systems, such as Spark [[190, 207, [208]], Stratosphere [10, [23] [195]], and
Tez [197]] which are based on a data flow abstractio Once these systems became more mature,
a new trend evolved. Higher-level programming abstractions that were originally built on top of
Hadoop are migrating to data flow systems. For example Hive and Pig have been ported to Tez
and similar plans exist for Cascading. The adoption of a new processing back-end significantly
improved the performance of Hive and Pig.

2Data flow systems are discussed in Sectionm

22

2.1 Parallel Data Flow Processors

Performance Improvements for MapReduce Prior to MapReduce, the predominant so-
lution to analyze large amounts of data have been parallel RDBMSs. Compared to parallel
RDBMSs, MapReduce’s open-source implementation Hadoop allows to store large amounts of
data at much lower cost and analyze it using a generic programming model in a scalable and
fault-tolerant manner. However, it has been recognized that data processing using MapReduce
can be inefficient. Especially for relational workloads, which were traditionally executed on re-
lational DBMS, Hadoop’s performance is often very low. Due to this reason, several approaches
have been proposed to improve the performance of certain applications on Hadoop. Most of
these approaches adapt techniques known from relational database systems and port them to
Hadoop. In the following we list some works in this direction.

Several approaches have been proposed to improve the access to structured data. Google’s
Bigtable system [48] is a store for structured data that is built on top of GFS [92]. Data is indexed
by three attributes, a row key, a column key and a time stamp. Bigtable offers point access as well
as range access. Apache Hbase [115] an open source implementation of Google’s Bigtable and
is built on top of HDFS. Hadoop++ [[70] and the Hadoop Indexing Library (HAIL) [[71}[181]] pro-
vide input formats for Hadoop, which are specialized for accessing structured data. Hadoop++
embeds read-optimized indexes into HDFS file chunks and features data co-location to improve
join processing. HAIL leverages HDFS’s replication by storing differently sorted replicas of file
chunks. By doing so, each replica is read-optimized for a different access pattern. Further ap-
proaches to improve data access include the adaption of columnar storage formats [|85,153]], data
co-location /6], and scan sharing [167]]. In addition to data storage, techniques have been pro-
posed to improve the performance of iterative MapReduce workflows [4 1], Hadoop’s scheduling
behavior in heterogeneous environments [209], and support for pipelined execution of MapRe-
duce programs [58]].

Another class of MapReduce-based systems are hybrids of MapReduce and parallel database
systems. HadoopDB [3] is based on Hadoop MapReduce and Hive. It addresses Hadoop’s defi-
ciency for sophisticated data storage techniques, such as indexes and columnar storage layouts.
HadoopDB replaces HDFS by one non-parallel, stand-alone database system on each machine
of the Hadoop installation. A query optimizer splits a SQL-like Hive query into queries that can
be locally answered by the stand-alone DBMSs and a global data flow consisting of one or mul-
tiple MapReduce jobs. The goal of the optimization is to push as much processing as possible
into the local database processors. Similar to parallel relational database systems, the amount
of locally processable work depends on a proper data partitioning configuration. Polybase [69]
follows another approach. It combines Microsoft’s SQLServer Parallel Data Warehouse (PDW)
and Apache Hadoop [109]. Polybase queries can jointly access relational database tables and
files stored in HDFS. The optimizer automatically decides which parts of a query to execute
using the MapReduce engine or SQLServer’s relational processing engine.

23

2 Background

2.1.4 General Parallel Data Flow Systems

MapReduce tightly couples a programming and an execution model. Both models are static
and do not support to rearrange or add additional operators or processing steps. Although the
data flow of a MapReduce program can be customized by user-defined functions [70], its overall
structure is fixed. The MapReduce execution model can be understood as a hardwired paral-
lel data flow. The fixed execution plan is a major performance issue for more advanced data
processing tasks. Application logic that does not fit into a single MapReduce program needs
to be split and implemented as multiple programs. In addition to being cumbersome to imple-
ment, the execution of multiple MapReduce programs results high scheduling overhead and low
performance because data must be transferred jobs via a distributed data store.

In contrast to MapReduce’s fixed execution model, there are a several systems which feature the
execution of generic parallel data flows. These systems feature flexible and efficient execution
engines for higher-level programming abstractions. In this section, we will present parallel
data flow systems in detail, list some representatives, and discuss higher-level programming
abstractions on top of these data flow systems.

Data Flow Program Abstractions Data flows are an intuitive abstraction to specify data
processing jobs. In this abstraction, data is read from one or more data sources and “flows”
from processing task to processing task until the desired result is computed and emitted to a data
sink. Data flows are often realized as directed, acyclic graphs (DAGs). The vertices represent
processing tasks, data sources, and sinks, and the edges represent connections between tasks
over which data is transferred. Each processing task is a modular piece of sequential processing
code which reads a data set or stream and produces a data set or stream.

Data flows can be executed in a distributed computing environment using task parallelism as
well as data parallelism. For task parallelism, different processing tasks are simply assigned to
different compute resources. Data parallel execution is a bit more intricate and requires that pro-
cessing tasks are split up into multiple subtasks. Each subtask processes a subset of the original
processing task’s input data and can be assigned to a different compute resource. However, it
depends on the semantics and implementation of a processing task whether it can be split into
subtasks or not. In addition, a processing task might require a certain distribution of its input data
to its subtasks in order to produce semantically valid results. For example a task that requires
all data elements of a certain type to be processed by the same subtask needs a data-sensitive
routing of data elements, i.e., data partitioning. Figure [2.4] shows a data flow (Figure [2.4(a))
and a parallelized version (Figure [2.4(b)). The original data flow consists of three data sources
(Sources A, B, and C), four processing tasks (Tasks A, B, C, D), and a single sink. For the par-
allelized version, Source A and Task A have been split into three subtasks each. Sources B and
C, Tasks B and D, and the sink have been split into two subtasks each and Task C is represented
by four subtasks. Figure [2.4(b)| shows as well that the connection patterns of subtasks differ

24

2.1 Parallel Data Flow Processors

Sink Sink; Sinky
Task D Task Dy Task Dy

Task C Task C; Task C, Task C3 Task Cy4
Task A Task B Task A Task Ay Task Aj Task By Task B,
Source A Source B Source C Source A; Source A, Source Az Source B; Source B, Source C; Source Cy
(a) Data Flow (b) Parallelized Data Flow

Figure 2.4: Parallelization of a data flow

depending on the semantics of the connected tasks. While each subtask of Source A feeds its
data to exactly one subtask of Task A, each subtask of Source B is connected with every subtask
of Task B for example to establish a partitioning of the input of Task B.

Execution of Parallel Data Flows Parallel data flow processors provide a programming ab-
straction and take care of task scheduling, data transfer between tasks, and fault-tolerance. How-
ever, systems differ in the techniques to provide these features. For example resource allocation
and task scheduling can be achieved using built-in mechanisms, dedicated cluster schedulers,
such as Hadoop Yarn [205] or Apache Mesos [123| [162]], or Infrastructure-as-a-Service offer-
ings. Data can be transferred using different types of communication channels, such as network
connections, in-memory copying, and writing to and reading from files in local or distributed file
systems. Also the mode of communication, i.e., blocking or pipelined data shipping, and the
provided mechanisms to overcome failures differ among data flow systems. Representatives for
data flow systems are Dryad from Microsoft [[72,[133]], UC Irvine’s Hyracks [36], UC Berkeley’s
Spark, Apache Strom, and Nephele [203]], which was developed at TU Berlin. Apache Tez [[197]]
is a new data flow engine that aims to serve as a processing engine for higher-level languages
and programming abstractions which are originally based on Hadoop MapReduce [109]], such
as Hive [124]], Pig [[175]], and Cascading [44].

Higher-level Programming Abstraction for Parallel Data Flow Systems Parallel data
flows offer an expressive and flexible abstraction to specify data processing tasks. Because this

25

2 Background

abstraction is more flexible than SQL and MapReduce, many use cases can be implemented in a
more straight-forward and efficient way without the restrictions of the MapReduce programming
model or SQL’s syntax. However, parallel data flows are a rather low-level abstraction such that
this flexibility comes at the cost of usability. Programming abstractions for parallel data flows
lack declarative task specification and require manual composition of parallel execution plans
which essentially results in doing the job of a query optimizer. Implementing a well-performing
parallel data flow requires expertise in parallel data processing and good programming skills
and takes a significant amounts of time. The APIs of data flow processing systems are usually
not designed for manual task specification. Instead higher-level programming abstractions have
been designed which compile and translate their jobs into parallel data flows. In the following,
we discuss some representatives of these higher-level programming models.

Mircosoft’s DryadLINQ is a LINQ (Language INtegrated Query) compiler for Dryad [[134}206].
LINQ is an approach to tightly integrate data processing specifications into the higher-level
programming languages of the .NET framework, such as C#, F#, or VisualBasic. Queries are
stated in the same language in which the application is written using special LINQ libraries. In
contrast, SQL is a dedicated and independent language and SQL queries are usually embedded
as strings into application code. The integration of LINQ and the hosting programming language
features characteristics of declarative and imperative languages. Embedded LINQ queries are
compiled by so-called LINQ providers and executed against data processing systems, such as
relational DBMSs, XML processors, or as in case of DryadLINQ against a parallel data flow
system.

SCOPE is another high-level programming abstraction developed at Microsoft. It is a declara-
tive query language, which heavily borrows from SQL [47, 212]. The data model is based on
sets of rows consisting of typed attributes. The operator set and syntax resembles SQL. The
language supports selection, projection, inner and outer joins, and aggregations. SCOPE queries
can be written as nested queries or in an imperative style similar to Pig and Jaql, where multiple
individual statements are linked. Nested subqueries are not supported. Similar to Pig, Hive, and
Jaql, SCOPE is extensible and allows to define three types of parallelizable UDFs called Process
(which is equivalent to Map), Reduce, and Combine, which correspond to the first-order func-
tions of the MapReduce programming model. SCOPE features an advanced optimizer which
compiles queries into data flows and executes them on Microsoft’s Cosmos platform [47]].

Spark is a parallel data processing system, which originates from UC Berkeley [208]]. It became
an Apache top-level project in 2014. Spark’s execution model follows the model of parallel
data flows. Its programming interface is based on the concept of resilient distributed data sets
(RDDs) [207]. An RDD is a set of data items which are distributed over Spark worker nodes
and ideally held in memory. By applying a transformation on an existing RDD, a new RDD is
constructed. Spark supports a rich set of transformations including Map, Reduce, Filter, and Join
and offers programming APIs for Scala, Java, and Python. In addition, physical data processing
operators are supported, such as explicit in-memory caching and partitioning.

26

2.1 Parallel Data Flow Processors

AsterixDB is a scalable information management system that operates on large clusters of com-
modity servers [[15]]. AsterixDB started as a joint project of UC Irvine, UC Riverside, and UC
San Diego. The goal of the project is to store, index, process, analyze, and query semi-structured
data [25]]. Key features of the system are support for short and long running queries over struc-
tured and semi-structured evolving data sets. AsterixDB features a declarative query language
called AQL (Asterix Query Language) which was designed to support a wide range of analyses
and queries of semi-structured data sets. Query specified in AQL are optimized and compiled
into Hyracks data flows for execution.

The PACT programming model, which was developed as part of this dissertation, belongs as well
into the category of higher-level programming abstractions for data flows and will be presented
in Chapter 3]

2.1.5 Comparing Parallel Data Processing Systems

In the previous three sections, we presented and discussed three classes of parallel data process-
ing systems: 1) parallel relational database management systems, 2) MapReduce-based systems,
and 3) general parallel data flow systems. In this section, we discuss the benefits and drawbacks
of these approaches and compare the different classes.

Paralle]l RDBMSs have been used to process data sets which exceed the capabilities of a single
machine for many years. Database systems provide data independence, enforce a relational data
model, and offer a declarative query interface. Sophisticated query optimizers transform com-
plex SQL queries into efficient execution plans, which are evaluated by extremely specialized
processing engines. On the other hand, parallel RDBMSs have a number of drawbacks which
helped MapReduce and in particular Hadoop to become popular. A relevant aspect of parallel
database systems is their high cost of operation. Since these systems are not easy to manage,
a significant fraction of operation cost is required to employ qualified personnel. Licensing
costs and the cost of high-end hardware add to this. In addition, parallel database systems of-
ten assume a pool of homogeneous machines, which renders scaling out a challenging task.
Putting economic arguments aside, relational database systems are not a good choice for data
that does not nicely fit the relational data model. And even if data is relational, importing it into a
database is often a too time consuming process. Moreover, new use cases, such as graph analyt-
ics or machine learning applications, cannot be easily expressed using SQL and would require
cumbersome workarounds using external user-defined functions. In order to add support for
emerging data analysis applications, database systems started to incorporate characteristics of
MapReduce-based systems such as support for MapReduce-style user-defined functions [87]] or
massively parallel setups on commodity hardware clusters [201]. Further approaches integrated
Hadoop and database systems such as for example HadoopDB [3]] or Polybase [69].

27

2 Background

MapReduce and in particular Hadoop addressed several of the short-comings of relational database
systems with respect to new emerging use cases. One of the most important benefits of Hadoop
is its lower cost of operations. The software itself is publicly available under Apache version 2
license and runs on heterogeneous clusters of commodity hardware of any size. New machines
can be added or removed at any time allowing the cluster to dynamically scale. Platform-as-a-
service offerings such as Amazon Elastic MapReduce [[77] allow users to operate large Hadoop
clusters on demand and mitigate the need for system administrators. High-level languages such
as Hive and Pig are easy to learn and reduce expenses for user training. Another reason for
MapReduce’s popularity is its flexibility. The Hadoop Distributed File System stores data in
any format, can be easily scaled, is fault-tolerant, and provides good read performance through
parallel I/O. Furthermore, the generic MapReduce programming model eases the processing of
any kind of data by supporting custom data types and user-defined functions. Moreover, Hadoop
offers better fault-tolerance than most database systems, which are rather designed to avoid fail-
ures than to cope with thenﬂ However, these benefits come at the cost of inefficient processing
for certain kinds of workloads. Especially workloads that require several MapReduce jobs, such
as relational queries or iterative tasks perform poorly on MapReduce systems. This is due to
two reasons. First, the high costs of reading data from and writing data to a distributed file sys-
tems at the beginning and end of each jobs, and second, the high scheduling overhead caused
by Hadoop’s communication model. These deficiencies were also recognized by the database
research community [[173] [194]. Nonetheless, the open source community established a large
ecosystem around Hadoop including several higher-level languages (Pig [[175], Hive [124], Cas-
cading [44]), data stores (HBase [115]], Accumulo [4]], Parquet [172]]), management tools (Am-
bari [13]], Bigtop [29]). Hadoop has achieved wide industry adoption with products of major IT
companies, such as IBM, Microsoft, Yahoo!, supporting it. In addition several companies that
package Hadoop distributions, offer support for the Hadoop ecosystem, and build commercial
tools or custom solutions around it established.

Parallel data flow systems aim to close the gap between parallel RDBMSs and MapReduce-
based systems. In fact, a parallel RDBMS is a parallel data flow system with a domain-specific
programming front-end language (SQL) and the execution plans compiled by its optimizer are
parallel data flows. On the other hand, the MapReduce execution model is a fixed parallel
data flow consisting of a single data source, followed by a Map and a Reduce operator and
finally a data sink. Parallel data flow systems aim to provide the scalability, fault-tolerance, and
flexibility of MapReduce and performance-wise more similar to RDBMS than to MapReduce-
based systems. Compared to the MapReduce programming model, programming models on
top of data flow systems ease the definition of complex data processing tasks by providing an
extensive set of operators which can be freely connected.

3parallel RDBMSs are usually operated on smaller clusters of homogeneous high-performance machines with re-
dundant hardware configuration. This reduces the probability and impact of hardware failures. Data loss due to
disk failures is avoided by redundant storage systems, such as RAID setups.

28

2.2 Optimization of Parallel Data Flows

2.2 Optimization of Parallel Data Flows

Parallel data flows are a flexible abstraction to define and execute data processing tasks. How-
ever, this abstraction is not well-suited for a broader audience since manual specification of par-
allel data flows requires expert knowledge in distributed data processing and good programming
skills. To overcome this limitation, a wide variety of high-level programming abstractions which
are compiled to parallel data flows have evolved. Among these abstractions are query languages
such as SQL, Pig [[169, [175]], Hive [124. [198]], and Scope [212], but also parallel programming
models including MapReduce [[64]], Spark [190, 208], Cascading [44], and DryadLINQ [206].
The compilation of these abstractions into parallel data flows and their execution offers much
optimization potential.

In this section, we briefly describe different approaches to compile higher-level program ab-
stractions into parallel data flows and optimize their execution. We start presenting traditional
cost-based optimization of relational queries and discuss problems with the state-of-the-art. We
continue to discuss optimization techniques for plain MapReduce jobs and finally present the
optimization of higher-level languages and parallel programming models. This section is based
on our survey on the optimization of massively parallel data flows [[127]].

2.2.1 Optimization of Relational SQL Queries

Query optimization is one of the most extensively researched topics in the field of database
systems. The popularity of SQL and the relational data model necessitated and powered the
advances of query optimization. Declarative SQL queries define the desired result instead of
imperatively specifying the execution steps. Therefore, it is up to the database system to decide
how the requested result should be computed. It is the task of the query optimizer to find the
most efficient execution plan for a given query. In this section we give a short introduction into
cost-based query optimization and discuss open problems with this approach. Finally, we review
special optimization techniques for parallel RDBMS.

Cost-based Query Optimization Most modern database systems feature a cost-based query
optimizer that follows a three-staged approach [108]]. First the query is parsed, syntactically
checked, and translated into an internal representation. Second, logical optimization is applied.
This step rewrites the internal query representation by reordering or replacing logical operators.
Common rewrite rules in this step are selection and projection push-down, in-lining of logical
views, and un-nesting of subqueries. Since these rules are either mandatory or expected to gen-
erally improve query performance, they are greedily applied whenever possible. The third step
is called physical optimization and generates a physical execution plan. This process includes

29

2 Background

the choice of physical operators and access paths and determines the order of joinﬂ There are
two common approaches to enumerate plans in physical optimization, bottom-up and top-down.
Bottom-up approaches enumerate candidate execution plans by starting at the base relations and
finishing at the root of the execution plan. Commonly, dynamic programming techniques are
used to construct an optimal plan from optimal subplans [[163},[186]. In contrast, top-down enu-
meration techniques start at the root of an execution plan and move towards the base relations of
a query. Branch and bound algorithms are often used to prune large fractions of the search space
[82,197]]. All techniques rely on the ability to compare two equivalent (sub-)plans by estimating
their execution costs. Since these costs are used to select plans and prune areas of the search
space, high accuracy of cost estimates is crucial.

Optimizers feature a so-called cost model to estimate the execution cost of a plan. A cost model
is a collection of functions that compute a cost metric such as resource consumption or execution
time for a specific operator and a given execution condition. The execution condition of an
operator includes, among other things, the amount of data to processes and the available memory
budget. It is specified by the input parameters of the operator’s cost function. Depending on
the operator type these input parameters include statistics of the input data (e. g., cardinalities,
data size, page counts, and value distributions), query properties (e. g., local and join predicate
selectivities), and the amount of available resources (e.g., amount of memory, disk I/O and
network bandwidth, and CPU utilization). Given a plan, the optimizer assesses the execution
conditions for each operator and calls the corresponding cost function. The total cost of the plan
is usually computed as the sum of the individual operator costs. During the plan enumeration
process, the optimizer compares equivalent plans based on their estimated cost. Eventually, the
plan with the least estimated costs remains and is executed.

Challenges of Cost-Based Optimization A major problem of cost-based query optimiza-
tion is that input parameters of cost functions are usually not known at optimization time and
must be estimated as well. That means that the optimizer needs to predict the conditions under
which a query will be executed including available resources and properties of the data. In the
following, we will discuss the challenges of estimating the input parameter of cost models and
the consequences for cost-based optimization.

In disk-based database systems, the performance of a query significantly depends on the amount
of data that needs to be read from and written to hard disks. Database systems try to reduce
the number of physical I/O operations by caching data in memory. Since memory is a shared
resource, the usage of memory must be coordinated across concurrently running queries. Con-
sequently, the amount of memory that is available for a query at execution time varies with the
query load of a system. The same is true for the amount of CPU and I/O resources and renders

4 Although choosing the order of joins conceptually is a logical rewrite, it is carried out as part of the physical
optimization because the optimal order depends on the choice of the physical join operators.

30

2.2 Optimization of Parallel Data Flows

reliable predictions for the amount of query execution resources difficult. This issue is especially
relevant if a query is not immediately executed, such as pre-compiled queries with parameters.

The amount of data to process is another crucial input parameter for optimizer cost models.
Since the schema of the data is usually well-known in relational database systems, the problem
boils down to estimate the number of records. This is called cardinality estimation. The number
of records that an operator has to process depends on the operator tree blow its input. This
tree consists of base relations and processing operators. The cardinality estimate for the tree’s
result is computed using the cardinalities of the base relations and the selectivity of all involved
operators. While the cardinality of the base relations is typically known, the selectivity of the
operators needs to be estimated. The selectivity of an operator depends on the operator itself
and on the data that is processed. Since the semantics of relational operators are known, it
is important to know certain properties of the input data, such as attribute value distributions.
Database systems feature statistics stores to collect and provide such information. However, it is
not feasible to collect and maintain all interesting statistics. This is especially true for statistics
on multivariate value distributions. Optimizers fall back to default assumptions, such as the
uniformity assumption, the independence assumption, and the inclusion assumption if certain
statistics are not available [186]]. However, these assumptions can be significantly off and cause
estimation errors of several orders of magnitude [131} 164 [177].

In summary, cost estimates for query execution plans depend significantly on the accuracy of
cost model parameters, which are hard to assess and can be off by orders of magnitude. This
is a major problem for cost-based query optimization because not every plan is affected by this
problem at the same magnitude. While some plans are very sensitive for changing sizes of inter-
mediate results and suffer from significantly increasing execution time, other plans may behave
much more robust with no or low performance regression. In fact, cardinalities of conjunc-
tive predicates are frequently underestimated, which favors plans that excel at executing small
amounts of data but perform horribly for large inputs.

In prior work, basically three classes of approaches have been proposed to tackle this problem.
The first class aims to handle the problem within the optimizer, by identifying query execution
plans that are “robust” with respect to uncertain information, i. ., imprecise cost model param-
eters. Early work in this direction is least expected cost optimization [55, [56]]. The authors
propose to use probability distributions instead of point estimates for cost estimation and com-
pare execution plans based on their expected cost. Babcock et al. [[17] propose a tuning knob for
users to trade execution performance for predictable execution times. Chaudhuri et al. [50] focus
on reducing the variance of execution times of parametrized queries. The second class proposes
adaptive query evaluation methods. Instead of relying on the optimizer to identify a good exe-
cution plan, the runtime system is able to dynamically adapt the execution plans of queries to
improve the evaluation performance. However, the set of possible adoptions is often limited by
the initially chosen execution plan. Deshpande et al. [[66] give an extensive overview of work
in this direction. The last class uses hybrid techniques of both prior classes, i.e., it combines

31

2 Background

uncertainty-aware optimization and runtime adaption. The optimizer injects check operators at
critical positions into execution plan. Check operators track the size of intermediate data and
compare it to a validity range specified by the optimizer. If the validity range is violated, the
check operator triggers a reoptimization of the plan [[159]], or switches to plan alternative that
was computed before [19].

In Chapter [5| we discuss the problem of “risky” query execution plans in detail. We present
results of an experimental study to assess the sensitivity of query execution plans with respect
to changing execution conditions, propose a metric to measure this sensitivity, and describe an
approach to predict the sensitivity of execution plans for changing input sizes, and a method to
prevent risky plan choices.

Optimization of SQL Queries for Parallel Execution Query optimizers for shared-nothing
parallel database systems must take several additional aspects into account compared to opti-
mizers of stand-alone DBMS. These aspects increase the search space of possible execution
plans [68]]. Parallel execution plans consist of subplans that are concurrently executed on multi-
ple machines and connected by data reorganization steps such as data (re-)partitioning or replica-
tion [95,196]. Multiple database instances process a query in parallel and ship partial results over
the network in order to compute the final result. In contrast to a centralized system where the
costs for disk I/O are predominant, network I/O costs usually account for the biggest portion of
the absolute costs in parallel database systems. Therefore, cost models must take shipping costs
and concurrent execution into account [[143]. In order to reduce the amount of data shipped over
the network, several techniques have been proposed. Data placement strategies such as partition-
ing, replication, and co-location enable the local computation of expensive operations such as
joins and aggregations [[143]]. Due to these techniques large fractions of a query can be processed
without any network communication. Reasoning about existing partitionings can significantly
reduce the amount of shipped data and improve the query execution time. Further techniques to
reduce network traffic are semi-join reduction and partial aggregation. Semi-join reduction im-
proves distributed joins and reduces relations prior to shipping by filtering out tuples which will
not match in the join [27}[143]]. Partial aggregation is similar to MapReduce’s Combine function
and reduces data sets which are shipped by locally applying partial aggregation functions.

There are two common approaches to generate parallel query execution plans. The first approach
is based on two phases, where the first phase generates a sequential plan which is subsequently
translated into a parallel plan. The sequential plan can be obtained from an optimizer which
is not aware of the subsequent parallelization [125] or an enumerator that targets plans which
can be translated into well-performing parallel plans [113) [114]. In contrast to the two-step
approach, there has also been work to directly compile parallel execution plans by incorporating
parallelism into plan enumeration strategies and cost models [137, [191]]. Since this approach
has to deal with a significantly larger search space, also randomized search strategies have been
proposed [146[]. Mitschang et al. [[166] refer to further relevant work in this context.

32

2.2 Optimization of Parallel Data Flows

2.2.2 Optimization of Plain MapReduce Jobs

In contrast to SQL queries, MapReduce programs offer much less optimization potential. This
is due to several reasons. First, a MapReduce job is specified as user-defined functions which
impedes reasoning about its semantics. Lack of schema information and data statistics prohibits
most cost-based optimization approaches. Using a distributed file system to store data compli-
cates the application of sophisticated storage and data placement approaches, such as indexes
and data co-location. Finally, MapReduce’s hard-wired execution strategy significantly reduces
the degrees of freedom for physical optimization. However, some MapReduce systems, such as
Hadoop, provide more interfaces than Map and Reduce and several configuration parameters. In
the past, techniques and approaches have been proposed to improve the performance of MapRe-
duce jobs. Most work in this direction is based on Hadoop MapReduce. Not all techniques
can be transparently applied, but require user interaction. Among the proposed approaches are
techniques to improve data access, such as indexes [70, [71], columnar layouts [[85, [153] and
data co-location [76]] and iterative programs [41]]. In this section we present and discuss some
optimization techniques for MapReduce programs which can be transparently applied.

Analyzing and Modifying MapReduce UDFs A large problem when optimizing MapRe-
duce programs is the hard-wired execution plan. In essence, every MapReduce program is ex-
ecuted in exactly the same way. All job specific logic is contained in user-defined functions.
It might be possible to optimize a MapReduce program by improving the implementation of
its user-defined functions if their semantics are preserved. However, user-defined functions are
usually implemented in an imperative programming language, such as Java, which causes diffi-
culties for an optimizer to infer the semantics of a job by looking at the code.

Fortunately, there are a few data processing operations which are commonly expressed in easy-
to-detect code patterns, such as selection and projection. These operations can reduce the amount
of data to process and have much potential for performance improvements. In relational database
systems, selection and projection operations are pushed as close to the data source as possible for
this reason. Further, the use of indexes can significantly reduce the number of physical I/O op-
erations and is among the most important optimization in database systems. Manimal [42] [136]
employs static code analysis to identify selection and projection code patterns in Map and Re-
duce functions. Based on its findings, the user code is transparently modified to read data from
an index instead of performing a full scan. The analyzer follows a conservative policy and only
reports optimization opportunities that can be clearly identified. Manimal’s optimizer applies
simple rule-based heuristics [42]. It inspects all optimization opportunities identified by the an-
alyzer and tries to match these with available indexes retrieved from a catalog. Based on this
information, the optimizer chooses the index that promises the best performance gains. Con-
flicting optimization choices are solved with prioritization. Most of the proposed optimizations

33

2 Background

are based on indexes. Along with optimization opportunities that require an index, the analyzer
emits an index creation program to create the necessary index from the original job input data.

Manimal’s optimizations are well-known from relational database systems. Its contribution
comes from the fact that these optimizations are applied to arbitrary user code instead of semanti-
cally rich declarative queries. Experiments with third-party user code [173]] show that Manimal’s
analyzer identifies most optimization opportunities in relational-style jobs [136]]. Currently, the
system is restricted to individual MapReduce jobs. Workflows consisting of multiple jobs cannot
be optimized as a whole. Also, the decision to create an index is not made by the system. In-
stead, the user has to choose whether and which indexes to create. An index advisory component
as known from relational database systems [3]] is not part of Manimal.

Job Profiling and Configuration Tuning The execution of a MapReduce program follows
a fixed strategy which cannot be adapted. However, the performance of a Hadoop job also is
influenced by configuration parameters, such as the degree of task parallelism, the size of sort
buffers, and fill ratio to spill a sort buffer. In total, Hadoop provides more than 190 parameters
of which about 25 can have significant impact on the performance of a job [[18]]. In database
systems, some of these parameters are automatically chosen by the optimizer, such as the amount
of memory for sort operations or the degree of parallelism for tasks. Hadoop does not offer any
support in choosing the “right” parameter values. Instead, there is much literature about Hadoop
configuration which is based on best practices, experience, and empirical evidence. However,
manual tuning of these parameters is difficult since the optimal configuration depends on the
job, the input data, and the available compute resources. Moreover, some parameters interact
with others.

Starfish [121} [122] is an approach to optimize the execution of plain Hadoop MapReduce pro-
grams by properly configuring the Hadoop environment and the program. Prior to its execution,
a Hadoop job is intercepted and analyzed. Based on this analysis, Starfish generates optimized
parameter settings for Hadoop MapReduce jobs. Starfish consists of three major components:
a job profiler, a What-If engine, and a cost-based optimizer to improve the execution of arbi-
trary MapReduce jobs. Prior to optimization, the profiler monitors the job’s execution to derive
its performance characteristics. For this purpose, the Hadoop MapReduce execution pipeline is
split up into 13 phases [121]. During profiling the job’s behavior in each phase is monitored
and job profile with more than 60 gathered metrics is generated. The job profile is handed to
the What-If engine which features a cost model for Hadoop’s execution model [[120]. The en-
gine is able to simulate the execution of the job for varying environmental conditions, such as
different input sizes, compute resources, and parameter settings. The cost-based optimizer has
to explore a high-dimensional, nonlinear, non-convex, and multimodal search space of param-
eter settings. For each candidate configuration, the optimizer obtains a cost estimate by calling
the What-If engine. It also uses two techniques to split and explore the space of all possible
configurations [121]]. First, the highly dimensional search space is split into multiple subspaces

34

2.2 Optimization of Parallel Data Flows

with fewer dimensions. Many parameters influence only a certain part of the whole MapReduce
execution pipeline, such as the Map or the Reduce phase. Parameters that interact or effect the
same parts of the pipeline are clustered. The optimizer processes all clusters independently from
each other. Second, the optimizer employs a technique called Recursive Random Search (RRS)
to find good parameter settings within a cluster. RRS starts picking arbitrary points in the search
space. For each point, the What-If engine is called and computes a cost estimate. In consecutive
iterations, the optimizer inspects promising areas in more detail by taking more samples from
them. Finally, the optimizer returns the configuration with the shortest estimated execution time
found so far.

Starfish is an optimization framework that is generally applicable for arbitrary MapReduce jobs.
Even jobs which are generated by a high-level language compiler, such as Pig or Hive, are
supported. An evaluation shows a high accuracy of the What-If engine’s cost estimates and a
good quality of the optimizer’s configuration choices [121]].

Optimizing MapReduce Job Workflows One of the drawbacks of MapReduce is that ap-
plication logic needs to be fit into the tight corset of the MapReduce programming model. It is
common that data processing tasks cannot be implemented as a single MapReduce job. Instead
the application logic needs to be spread over multiple jobs. Depending on the interdependencies
of the jobs, these jobs can be executed in parallel or must run sequentially. Scheduling multiple
MapReduce jobs is costly due to the high start-up overhead for task scheduling and coordina-
tion. Moreover, the input of a MapReduce job forwarded to a subsequent job by writing it to and
reading it from a distributed file system which is also expensive. Consequently, a major perfor-
mance optimization when executing complex data processing tasks is to reduce the number of
required jobs as much as possible. However, this requires experience and leads to non-modular
and clumsy program code.

Stubby [151]] is a transformation- and cost-based optimizer for workflows consisting of multiple
MapReduce programs. The optimizer relies on manual annotations and optimizes workflows
by merging MapReduce programs together in order to reduce the overhead of executing multi-
ple MapReduce programs. In particular, Stubby features four optimization transformations, 1)
intra-job vertical packing which merges a Reduce function into its preceding Map function, 2)
inter-job vertical packing which merges two subsequent MapReduce jobs, 3) horizontal packing
which merges two jobs that consume the same input data, and 4) partition function transfor-
mations which manipulate the partition function of a job to either enable other transformations
or to remove data skew. Stubby requires annotations to reason about possible optimizations.
These annotations include physical data properties such as partitioning, sorting, and compres-
sion, schema information for input and output key-value pairs of programs, and performance
annotations. The optimizer uses two techniques to generate candidate workflows. First, it parti-
tions a workflow into optimization units of jobs which can affect each other. Second, it applies
transformation rules in a predefined order. The optimizer leverages Starfish’s what-if engine

35

2 Background

to obtain cost estimates. Since plans are merged, Stubby needs to adjust Starfish’s job profiles
by merging them. Stubby’s approach is transparent to the origin of the workflow. It is able to
optimize workflows which are manually composed, compiled from higher-level languages, such
as Pig or Hive, or data flow programming models, such as Cascading. In case of compiled data
flows, the compiler usually has all required information to also attach the required annotations
on the generated MapReduce jobs. An evaluation shows that workflows which were optimized
by Stubby consistently outperform non-optimized Pig programs by a factor 2 to 4.5.

2.2.3 Optimization of Higher-Level Programming Abstractions

Implementing an advanced data processing program as a MapReduce program or a parallel data
flow requires extensive knowledge in parallel data processing, good programming skills, and
finally takes much time. Several higher-level languages and programming abstractions have
been designed to ease the definition of parallel data processing tasks. Tasks implemented in
such a higher-level abstraction are compiled into MapReduce programs or parallel data flows
and executed as such. This compilation step is conceptually similar to query optimization in
relational DBMSs. Similar as for declarative queries, the compilation of data processing tasks
implemented in a higher-level language or programming abstraction offers degrees of freedom
which can be leveraged for program optimization.

When discussing the optimization of data processing tasks, we need to distinguish two distinct
questions. First, what are the degrees of freedom for optimization, and second, which are the
most beneficial optimizations. The first question addresses the search space of an optimizer, i. e.,
the set of all execution plans the optimizer can choose from. The second question addresses the
problem of finding the best plan within this search space. In the context of relational query opti-
mization, the first aspect is addressed by a well-known set of logical rewrite rules and different
physical implementations for logical operators which span the optimizers search space. The op-
timizers plan enumeration technique and its cost estimation framework which includes its cost
model and cardinality estimator, takes care of finding the best plan within the search space.

In this section, we discuss optimization techniques for higher-level programming abstractions.
We start by comparing the optimization of higher-level programming abstractions for parallel
data processing to traditional relational optimization. Subsequently we discuss the optimization
techniques of higher-level languages which are compiled to MapReduce programs and some
advanced programming abstractions which are translated into parallel data flows.

Differences between Optimization of Relational Queries and Higher-Level Programs
The optimization of programming abstractions for parallel data processing differs from relational
optimization in several aspects. Most languages and programming models feature relational op-
erators, such as selection, projection, and join. Consequently, several rewrite rules known from

36

2.2 Optimization of Parallel Data Flows

relational query optimization can be applied, such as reordering two join operators. However,
most programming abstractions also offer extensive support for user-defined functions. UDFs
can pose a challenge for query optimizers, because their exact semantics are not known to the
system. To what extent this is a problem depends on the interface of the UDF. For example, a
UDF operator may still be pushed down if the optimizer knows that it implements a user-defined
filter function. On the other hand, such a plan rewrite would not be possible if the operator only
knows about a generic Map function that may emit a random number of arbitrarily modified
records for each input record. Hence, limited information about user-defined functions reduce
the size of an optimizer’s search space.

In addition also the question, whether an optimization should be applied or not is more difficult to
answer in programs with UDFs. Cost-based relational optimizers rely on the ability to estimate
the costs of execution plans to guide their plan choice. This approach requires accurate estimates
of intermediate result cardinalities. Relational database systems require to load data before it can
be queried. During this (often costly) loading process, most DBMSs gathers basic statistics, such
as table cardinalities. More detailed statistics can be collected to further improve the accuracy of
cardinality estimates. In contrast to relational database systems, most higher-level languages and
programming abstractions do not come with a dedicated data storage layer or metadata catalog.
Instead, they aim to support the analysis of in-situ data which can be read from different data
stores, such as distributed file systems, key-value stores, or database systems. Consequently,
these systems do usually not require an expensive data loading step. This comes at the cost
of lacking valuable cardinality information, values and distribution statistics, and possibly also
schema information at optimization time. Cost estimation is even more exacerbated by use
of user-defined functions which may produce an arbitrary number of output records or have
unknown costs to process an input record.

Another opportunity for optimization is the choice of physical execution strategies. For example
a join operator can be executed using a sort-merge join strategy or a hash join strategy. Note that
these execution strategy choices also exists for operators that include user-defined functions.

Optimizing Higher-Level Programming Languages for MapReduce Despite the re-
duced optimization potential and the limited information to carry out deliberate optimization
decisions, there are a few techniques that can be applied to optimize data processing programs.
Most higher-level languages feature heuristics-based optimizers which apply transformations
that are considered to generally improve the performance [28] 90, [198]. Depending on the
concrete system, those rules include selection and projection push-down, variable and function
in-lining, nesting, un-nesting, and field access rewrites. For example, the Jaql optimizer features
more than 100 rules which are greedily applied. In order to preserve optimization potential in
presence of user-defined functions, Jaql also supports explicit annotations, which reveal certain
characteristics of user code that can be exploited by the optimizer [28]]. The choice of physi-
cal operators, such as sort-based or hash-based aggregation and Map-side or Reduce-side join

37

2 Background

implementations [33]], is often left to the user. Optimizer hints are commonly supported and
allow to choose and configure execution strategies [90, [198]. The order of joins is usually not
optimized due to lack of data size information. Instead, relations are joined in the order that
was specified by the user. Due to its metadata store, Hive is able to limit table scans to relevant
partitions.

Another aspect to consider when discussing the optimization of higher-level languages is the
execution plan abstraction to which a query or program is compiled. Hive, Pig, Jaql, and Cas-
cading leverage Hadoop MapReduce as a processing back-end. However, as previously noted,
MapReduce only offers a rather static corset into which programs need to be fitted. On the one
hand, this reduces the number of possible execution plans compared to a compilation onto a gen-
eral data flow system, but also requires special optimization techniques. A crucial aspect when
generating workflows of MapReduce programs is to minimize the number required programs as
much as possible. Usually, this heuristic produces good results since each MapReduce job comes
with high overhead costs resulting from scheduling overhead and the fixed execution pipeline of
reading the input, sorting, shuffling, and writing the result. Higher-level language compilers use
techniques to chain several record-wise operations into a single Map function [168] or append
them at the end of a Reduce function. Hive transforms multiple binary joins on the same at-
tribute into a multiway join [199]. Both, Hive and Pig use a technique to multiplex independent
operations on the same data into a single MapReduce program [90, [198]].

A feature called “physical transparency” differentiates Jaql from Pig and Hive [28]]. Low-level
physical operators and high-level declarative operators are conceptually the same in Jaql. Both
types of operators can be mixed when writing programs. That allows users to force the execution
of certain strategies and eases the implementation of own operators using lower-level constructs.
In addition, the result of optimizing a Jaql script is again a valid Jaql script, which significantly
eases debugging.

Higher-level programming abstractions on top of Hadoop MapReduce have become popular
tools to process large amounts of un- and semi-structured data. However, the high overhead
of executing multiple MapReduce jobs for a single program has motivated a few trends. First,
higher-level languages, such as Pig, Hive, and Cascading, are ported to data flow processing
engines, such as Apache Tez [197]] and Apache Spark [190]. Second, optimized storage for-
mats, such as Parquet [172]] and ORC (as part of Apache Hive [[124]), significantly improve data
access. These formats use indexing, compression, and columnar storage techniques to improve
data access. Moreover, they also provide a certain statistics. Hive extends its metadata storage
to also include more detailed data statistics. This evolution clearly improves the optimization
capabilities of these systems. In fact, there are efforts to add a cost-based optimizer to Hive.
Although this step is a significantly improvement of Hive’s optimization capabilities, it should
be noted that the optimization techniques used will be similar to traditional relational query
optimization [67, 68]].

38

2.2 Optimization of Parallel Data Flows

MRQL [81] is a SQL-like query language and an advanced optimization framework that trans-
lates nested queries into workflows of MapReduce programs. By providing an expressive nested
query language, MRQL aims to eliminate the need for opaque user-defined functions as com-
monly required by applications which are implemented for Hive or PigLatin. Due to this alge-
braic approach, the full query semantics are known to the optimizer. MRQL features a cost-
based optimizer and novel translation techniques. MRQL was open-sourced and has entered the
Apache Incubator [165]. Since then, MRQL has evolved and supports additional backends for
query execution, such as Apache Hama [[111], Apache Spark [190], and Apache Flink [84].

Optimizing DryadLINQ Programs The DryadLINQ [73}206] provider extracts data paral-
lel LINQ code from applications and compiles it into Dryad data flow programs. DryadLINQ’s
optimizer shares several features with traditional optimizers of parallel relational DBMSs [206].
It is based on greedy heuristics and applies optimizations such as pipelining of operations, min-
imizing repartitioning steps, eager aggregations, and reduction of I/O by using TCP-pipe and
memory-FIFO channels. The optimizer derives much semantics from the program code by static
typing, static code analysis, and reflection. Using these techniques, it reasons about prevalent
data properties, such as partitioning and sorting. Partitioned data stores are supported as well.
DryadLINQ features a rich set of user annotations to hint potential optimizations and expected
memory consumption of user code. A notable feature is dynamic optimization. DryadLLINQ
adapts execution plans at runtime in order to perform network-aware aggregations, tree broad-
casting, and determines partitioning properties, such as number of partitions and key-ranges for
range-partitioning to handle skewed data [[141}, 206].

Optimizing Scope Programs Microsoft’s Scope is a higher-level language on top of the
parallel Cosmos execution engine [47, 212]. It features a sophisticated cost-based optimizer
framework that uses several novel techniques to improve the execution of parallel data flows.
The optimizer is based on the Cascades framework [97]]. Scope features several different exe-
cution strategies known from parallel database systems, such as alternative join algorithms and
sort- or hash-based grouping. The optimizer includes transformations for selection and projec-
tion push-down, eager aggregation, and chooses appropriate partitioning schemes. A special
focus was put on optimizing partitioning, sorting, and grouping [213]]. These data properties are
crucial for data parallel processing, required for many operations, and expensive to establish.
Minimizing the number of partitioning, sorting, and grouping steps is a major optimization goal
for parallel environments. When reasoning about existing data properties, the Scope optimizer
takes functional dependencies and constraints on the data into account. Moreover, Scope fea-
tures static code analysis (SCA) to analyze user-defined functions and infer whether existing
data properties are preserved after a UDF has been applied [211]. While this approach is non-
invasive, i. e., it does not modify the user code, another technique applied automatically adapts

39

2 Background

the user code to inject projections of fields which are not accessed in UDFs and moves filter con-
ditions across UDFs to reduce the amount of processed data [[106]. Scope addresses the problem
of missing data statistics by online statistics collection. During optimization, the optimizer auto-
matically injects statistics collection operators into a program to obtain missing statistics, such
as cardinalities, average record sizes, value distributions, and UDF execution costs. Statistics
are gathered and stored in a statistics store. A program signature allows the optimizer to re-
trieve relevant statistics later from the store. The collected statistics are leveraged in an offline
and an online way by Scope. First, they are used to improve the optimization of identical or
similar programs which are later optimized [38]]. Second, statistical information is also used to
optimize a currently running program from which it was collected. Whenever, new statistics
are retrieved by the optimizer, it reoptimizes the data flow of the currently running program and
decides whether it needs to be adapted or not [40]. Given all these features, Scope has the most
advanced optimizer for massively parallel data flows that we are aware of.

40

2.3 Summary
2.3 Summary

In this section, we discussed three classes of systems for parallel analytical data processing and
their capabilities to optimize queries and programs. While relational DBMSs offer an easy-to-
use interface and high processing performance, they are not flexible enough for many of today’s
data analysis tasks. On the other hand, MapReduce systems lack performance and ease-of-use.
Due to these limitations, novel distributed data processing systems have evolved to close the gap
between both system families. Some of these systems are based on parallel data flows which
are a flexible abstraction for efficient data processing. However, manual specification of parallel
data flows is a cumbersome task and requires a rare skill set.

Consequently, there is a need for higher-level languages and programming models on top of
parallel data flow systems which are easy to use and expressive enough to meet the requirements
of today’s data analysis applications. Program optimization is a fundamental building block to
achieve these goals because it hides much of the complexity of a parallel and distributed data
processing system from users and significantly improve processing efficiency and performance.
However, program optimization suffers from lack of program semantics as induced by today’s
general purpose programming abstractions. In the following chapters of this thesis, we propose
an expressive programming abstraction with declarative characteristics to define parallel data
processing tasks and address challenges that arise in the context of data flow optimization.

41

2 Background

42

3 Abstractions for Parallel Data Flows

Contents

e rogrammingModel], 45

B.11 DataModell 45
[3.1.2 Operators| 46
3.1.3 DataSourcesand Sinks|.o 48
[3.1.4 PACT Programs| 48

(3.2 The Optimization of PACT Programs| 52
[3.2.1 Execution Strategies| 52
[3.2.2 Interesting Properties| L. 53
323 CostEstimationl. 55
[3.2.4 Differences to Relational Optimization| 56

B3 Evaluafion] oot vttt it e 58
331 FaseofUsel. 58
332 Performance] o 64

BA _RelatedWorklot v e it ittt it et et 67
.................................... 69

In order to support today’s data analysis applications, data processing systems must cope with
rapidly growing data set sizes and support a wide range of analysis tasks on possibly unstructured
ad-hoc data. A common solution to analyze large data sets is parallel processing. Advanced
analysis methods can be applied to unstructured data due to support of user-defined functions
and user-defined data types. MapReduce [64] is the most prominent and popular approach that
meets these requirements. It provides a programming model and a scalable execution model to
analyze large amounts of data in a massively parallel and fault-tolerant way.

However as noted in Chapter 2] MapReduce has also several deficiencies. While in principle be-
ing expressive, MapReduce is not well suited for complex data analysis tasks. Applications that
do not fit the programming model need to be implemented as a workflow of multiple MapReduce
programs. Joint analysis of two or more data sets requires unintuitive workarounds and common
operations such as relational joins need to be manually implemented. In general, implementing
data analysis applications using the MapReduce programming model requires a lot of exper-
tise, is time consuming, error-prone, and hardwires the execution of a program. In contrast,

43

3 Abstractions for Parallel Data Flows

relational DBMSs offer a declarative user interface (SQL) and execute automatically optimized
query plans. However, RDBMSs are tightly coupled to the relational data model, cannot handle
ad-hoc data (well), and have only limited support for user-defined functions.

In this chapter, we propose the Parallelization Contract (PACT) programming model that com-
bines the advantages of relational DBMSs and MapReduce. It eases the implementation of
complex analysis tasks while preserving MapReduce’s expressiveness. PACT programs are
optimized similar to relational queries and compiled into Nephele data flows [203]. This ab-
straction is similar to parallel execution plans for relational queries and more flexible than the
MapReduce execution model. Consequently, PACT programs can often be more efficiently exe-
cuted than programs implemented with MapReduce. The contributions of this chapter have been
published in several articles [9, [10} 11} 23] and were jointly developed with Stephan Ewen.

The remainder of this chapter is organized as follows. Section [3.1]introduces the PACT pro-
gramming model. Section [3.2] discusses the optimization of PACT programs. We evaluate the
PACT programming model in Section [3.3] give an overview of related work in Section [3.4] and
summarize this chapter in Section [3.5]

44

3.1 The PACT Programming Model

3.1 The PACT Programming Model

In this section, we present the PACT programming model as a generalization and extension of
the MapReduce programming model. Similar to MapReduce, PACT operators consist of a paral-
lelizable, system-provided, second-order function and a user-defined, first-order function, which
process custom data types defined by the user. The system-provided second-order functions are
called Parallelization Contracts (PACTs) because they give guarantees about how the system
will invoke the user-provided first-order function. The term Parallelization Contract motivates
the naming of the programming model. The operator set of the PACT programming model in-
cludes Map and Reduce as known from MapReduce and three additional binary operators. PACT
programs are defined by assembling these operators to acyclic data flows. We start discussing
the data model and continue to present the PACT operators. Finally, we discuss the composition
of PACT programs.

3.1.1 Data Model

PACT features a generic data model which is centered around the concepts of data sets and
records. It is based on user-defined types in order to support a wide range of use cases. A
data set is an unordered list of records and denoted as D = [y,...,t,]. A record is an ordered
tuple of typed fields t = (vy,...,v,) with non-null values and field indexes 1,...,m. Two records
rn=i1, . Vin), 2= V21,...,vam areequal (r =r)iffn=mandVi=1,...,n: vi;=v;.
Two data sets Dy, D, are equal (D = D») if there exist two orderings of their records such that
Dy =[ri1y...,rin)s Da=[r21,...;roml,n=mand Vi=1,...,n: r;; = ry.

PACT distinguishes two kinds of field types, value types and key types. Some PACT operators
require the definition of a key, which is used to group or associate records. A key can be atomic
or composite, 1i.e., be defined as a single or multiple record fields. Record fields that are part
of a composite key are accessed by the processing system and must implement a specific key
interface. The key interface defines methods to compare and hash a key field. These methods are
used by the processing system to (re-)organize tuples. Value types are only interpreted by user
code and transparently handled by the processing system. Hence, they can be of any arbitrary,
user-defined type.

In its original version [23]], the PACT programming model was based on MapReduce’s key-
value pair data model. Later, the data model was generalized and evolved into the here presented
record data model. The key-value pair model is a special case of the record model with a single
key and a single value field. The record model provides two major benefits over the key-value
pair model. First, the record model facilitates more modular data handling and is easier to use.
For example, there is no need to define container data types to hold multiple values in a single
field as often required by the key-value pair data model. Second, the record model is better suited

45

3 Abstractions for Parallel Data Flows

Key Fields
iValue Fields
v
CTH— [1: (TH
([0 [
Input Indep. Subsets Input Indep. Subsets
(a) Map (b) Reduce

Rul3

FLE

Input 1 Independent Subsets Input 1 Independent Subsets Input 1 Independent Subsets
(c) Cross (d) Match (e) CoGroup

Figure 3.1: System-provided second-order functions

for optimization because it eases the reasoning about data modifications and the preservation of
physical data properties.

3.1.2 Operators

A PACT operator is a parallelizable, system-provided, second-order function that wraps an asso-
ciated, user-defined, first-order function (UDF). PACT operators process and produce data sets
of records as defined in the previous section. Conceptually, the second-order function divides the
records of its input data set into independently processable subsets and invokes its user-defined,
first-order function for each of these subsets. The first-order functions produce one or more
records and the output of an operator is the union of the results of all UDF calls. Since all calls
of the user-defined function are independeniﬂ an operator can be executed in parallel. The possi-
ble parallelization methods and the potential degree of parallelism depends on the second-order
function.

PACT provides five second-order functions that differ in the number of their inputs and how they
partition their input data set. While Map and Reduce operate on a single input, Cross, Match, and
CoGroup process the data of two inputs. Map, Cross, and Match operate on one record for each
input at a time and are called record-at-a-time (RAT) operators. Reduce and CoGroup process

'PACT requires that UDF calls are stateless and have no side effects.

46

3.1 The PACT Programming Model

groups of records, which are defined by a grouping key, and are called key-at-a-time (KAT)
operators. All user-defined function may produce none, one, or more output records as defined
in the previous section. The result of an operator is the (non-duplicate-eliminating) union of all
records that are emitted by all of its UDF invocations.

Figure|3.1|shows the second-order functions of the PACT programming model. In the following
we briefly describe how these second-order functions partition their input. We assume two input
data sets R =[ry,...,r,) and S = [s1,...,Sp].

Map Map has the same semantics as in the MapReduce programming model. In PACT terms,
Map is a RAT operator with a single input. It calls its user-defined function exactly once
for each record of its input. A Map operator with user-defined function f is formally
defined as

Map(f,R) = [f(r1),--, f(ra)].
Figure|3.1(a)| visualizes Map’s mode of operation.

Reduce Reduce has the same semantics as in the MapReduce programming model. It is a KAT
operator with a single input and requires the specification of a key. As described in the
data model section, a key is defined as one (atomic) or more (composite) record fields.
Reduce organizes all input records into groups with identical key values and calls its UDF
for each group providing all records of that group, i. e., all records in one UDF call share
the same key value. In the following, we call all records that share the same key a key
group. A Reduce operator on a key K and with a user-defined function f is defined as

Reduce(K, f,R) = [f(rlfl,...,rzl‘),...,f(rlf”,...,r,';;’)],
where the domain of values of the key K in R is {ki,...,k,} and the key of a record
r is k. Figure [3.1(b) shows how Reduce applies its UDF to groups of records. Similar
to MapReduce, the PACT programming model supports Combiners which are associated
with a Reducer.

Cross Cross operates on two inputs and builds the Cartesian product of the records of both
inputs. Each pair of records from both inputs is handed once to the user-defined function.
A Cross operator with a user-defined function f is defined as

CI‘OSS(f,R,S) = [f(rlasl)7"-7f(r17sm)7-";f(rnasl))-'-af(rnasm)]-
Figure [3.1(c)| visualizes Cross’ mode of operation.

Match Match processes two inputs and requires compatible key specification for both inputs,
i.e., the data types of both keys must be equivalent. Match builds pairs of records from
both inputs whose key values are equal and hands each of these pairs once to its user-
defined function. Hence, Match behaves similar to a relational equality inner-join oper-
ation but instead of concatenating both record values it calls a UDF. Formally, a Match

47

3 Abstractions for Parallel Data Flows

operator on two inputs R and S with associated keys K and L and with a user-defined
function f is defined as

Match(f, K, L,R,S) = [f(ri,sj)\ ri € R,SJ' €S k= |j]

where k; (I;) is the key of record r; (s;). Figure [3.1(d)|illustrates how Match assembles
pairs of records with matching keys.

CoGroup CoGroup operates on two inputs and processes groups of records. It requires the
specification of two compatible keys, one for each input, and groups the records of each
input by their corresponding key. CoGroup calls its user-defined function with one groups
from each input where both groups share the same keys. If there is no matching key in
one input for a group in the other input, the UDF is called with that group and an empty
group. A CoGroup operator on two inputs R and S with associated keys K and L and with
a user-defined function f is defined as

CoGroup(f,K,L,R,S) = [f(r‘l”,...,r;l’},s‘l”,...,s;’n‘l),...,f(r\ll",...,rxﬁ,s\ll”,...,sé"p)},
where the combined key domain of distinct K values in R and distinct L values in S is
{v1,...,v, } and the key of arecord r¥ (s") is equal to v. Figure|3.1(e)|illustrates CoGroup’s
mode of operation.

3.1.3 Data Sources and Sinks

The PACT programming model provides five UDF-based operators. In addition to these op-
erators, PACT includes data sources and data sinks. Data sources provide the input data of a
program and data sinks consume the result of a program. Data sources and sinks are generic and
do not depend on a specific storage system. For example, a data source can read data from a
(distributed) file system, query a relational DBMS, or generate data on-the-fly. Similarly, a data
sink may write data to files, pipe it to another process, or simply discard it. Since, usually I/O
is the bottleneck for data-intensive applications, data sources and sinks can operate in parallel
similar to the operators. In order to leverage data parallelism for a data source, the input data
must be split into independently processable chunks. Whether and how this is possible depends
on the data store and the data itself.

3.1.4 PACT Programs

In the original version [23] of the PACT programming model, a program was defined as a di-
rected acyclic data flow consisting of data source, operators, and data sinkﬂ Conceptually, data

ZExplicit iteration operators for cyclic data flows were proposed in follow-up work [[791[80].

48

3.1 The PACT Programming Model

DataSink; DataSink; DataSink
Match Map; Match
Reduce \ Reduce
T Map, T Map,
Map, A Map, /\
DataSource; DataSource; DataSources DataSource; DataSource, DataSources
(a) Valid PACT Program (b) Invalid PACT Program

Figure 3.2: PACT program examples

enters a data flow through data sources, is processed by “flowing” from operator to operator,
and finally leaves the data flow through a data sink. The PACT programming model supports
programs with multiple data sources and data sinks. All data sources and operators must be
transitively connected to a data sink.

Figure [3.2] shows a valid (Figure and an invalid (Figure 3.2(b)) PACT program. The
right program is not correct due to the Map; operator, which does not have a data sink as a
transitive successor. The PACT program in Figure features a few notable details. First,
the Reduce operator has two successors, DataSink; and Match which means that the output of
Reduce is duplicated and completely send to both successors. Second, the Map, operator has
two predecessors while being a unary operator with a single input. In this case, the data of both
preceding nodes, DataSource, and DataSources, is combined with an implicit (non-duplicate-
eliminating) union operator and handed to the Map; operator.

SELECT
1_orderkey, o_orderdate, o_shippriority,
SUM(1_extendedprice * (1 - 1_discount)) AS revenue
FROM
customer, orders, lineitem
WHERE
c_mktsegment = :1
AND c_custkey = o_custkey
AND 1_orderkey = o_orderkey
AND o_orderdate < :2
AND 1_shipdate > :2
GROUP BY
1_orderkey, o_orderdate, o_shippriority

Figure 3.3: TPC-H Query 3 (without final order)

49

3 Abstractions for Parallel Data Flows

DataSinkgeguit

[o_okey,0_odate,o_sprio, revenue

Reduce

'ylfokey.ofodatenfsprio.SUM(revenue)

T [o_okey, 0_odate, o_sprio, revenue

Match

No_okeyz]_okey

[o_okey, 0_odate, o_sprio] f_\—/ \/\ [L_okey, revenue

Match Map
>c_ckey=o_ckey T_okey, (I_extdpricex(1—I_discnt))
[c_ckey] K—J % [o_okey, 0_ckey, 0_odate,o_sprio] T [I_okey,1_exdtprice,1_discnt]
Map Map Map
Oc_mktseg=:1 Op_odate<:2 O}_sdate>:2
T le_ckey, c_mktseg] T lo_okey,o_ckey, o_odate, o_sprio] T Lokey, L_sdate, _exdrprice, I_disen
’ DataSourcecystomer ’ DataSourceoders ’ DataSourcer ineitem ‘

Figure 3.4: TPC-H Query 3 PACT program. The symbols denote the following relational oper-
ators: o selection, 7 projection, > join, and Y group-by.

In the following we present and discuss an example PACT program that implements a slightly
simplified version of Query 3 from the TPC-H benchmark [200ﬂ The equivalent SQL statement
for the implemented query is shown in Figure [3.3]

The PACT program implementation is shown in Figure [3.4] The base relations are read by three
data sources. In this example, we assume that the data sources perform a full scan of the relations
and apply a first projection. In principle, data sources could also perform index look-ups and
projections and hence reduce the required I/O operations [70, [71} [172]. Each data source is
followed by a Map operator that evaluates a local predicates. The Map operator calls its UDF
for each tuple, the UDF evaluates the predicate on its input tuple and forwards it only if it passes.
The lineitem input is passed to another Map operator. Its UDF computes for each input tuple
the revenue attribute. Both joins of the query are implemented using Match operators with the
corresponding join attributes being used as keys. The Match second-order function identifies all
pairs of tuples with identical keys and gives them to the user-defined function and the UDF only
needs to concatenate two tuples in each call. Finally, the group-by and aggregation of the query
is realized using a Reduce Operator with the grouping attributes of the SQL query being set as
composite key. The UDF receives all tuples that share the same composite key and computes
the sum of all revenue attributes. The result of the Reduce operator is passed to a data sink that
emits the result of the query.

3The implemented program does not sort the final result.

50

3.1 The PACT Programming Model

The PACT programming model extends and generalizes MapReduce in several aspects. Its data
model evolves key-value pairs to records of custom types and supports composite key definitions.
PACT’s operator set includes Map and Reduce and is therefore a superset of MapReduce’s. In
contrast to the static structure of MapReduce programs, PACT features flexible compositions of
operators into acyclic data flows with possibly multiple data sources and sinks.

51

3 Abstractions for Parallel Data Flows

3.2 The Optimization of PACT Programs

The MapReduce approach tightly integrates a programming and an execution model [64]. Simi-
lar to the programming model, the MapReduce execution model is a static, yet scalable, parallel
data flow, which is used to execute all MapReduce program The PACT programming model
offers more flexibility than the MapReduce programming model. PACT programs are acyclic
data flows composed from operators, which consist of a system-provided, second-order func-
tion and a user-defined, first-order function. For execution, a PACT program is translated into a
parallel data flow that is processed by a general parallel data flow system as described in Sec-
tion[2.1.4] In contrast to MapReduce, this translation exhibits several degrees of freedom which
can lead to different data flows with vastly varying execution performance [10, 23]. Hence, the
compilation of PACT programs into parallel data flows bears similarity with the translation of
SQL queries into execution plans as performed by relational DBMSs. However, there are also
a few notable differences to relational optimization. In this section, we discuss the cost-based
optimization and translation of PACT programs into parallel data flows.

3.2.1 Execution Strategies

PACT programs are compiled into and executed as parallel data flows. As described in Sec-
tion operators of parallel data flows process on partitioned data. Each data partition is
independently processed by a parallel instance of an operator. This mode of operation follows
the principle of data parallelism. A PACT program can be often executed by multiple differ-
ent but semantically equivalent data flows. The degrees of freedom originate from the fact that
PACT’s system-provided, second-order functions exhibit a declarative character. Similar to a re-
lational join, PACT’s Match operator does not imply how the execution system brings matching
records together. Instead, the program compiler can choose from different physical execution
strategies to perform this operation. The PACT optimizer distinguishes between two types of
execution strategies, local strategies and ship strategies. A ship strategy defines how the data is
partitioned among the parallel task instances of an operator, i. e., which data a parallel task in-
stance processes. A local strategy defines how the parallel task instances of an operator process
the data of their individual partitions.

Figure [3.5]shows two alternative execution strategies for a Match operator, which is semantically
close to a relational inner equi-join. Red boxes highlight ship strategies, blue boxes local strate-
gies. The left alternative (Figure[3.5(a)) shows a repartition sort-merge execution strategy. Both
inputs, R and S, are repartitioned on their respective Match key, i. e., all records with the same
key are sent the to the same parallel instance of the Match operator. Each parallel instance of
the Match operator individually sorts the records of both inputs on their keys and subsequently

“4In database terminology, all MapReduce programs are executed with the same execution plan.

52

3.2 The Optimization of PACT Programs

Match, Match, Matchs Match, Match, Matchs
1 0 0 L i :
Merge Merge Merge HT-Probe HT-Probe HT-Probe
1A rA 1A i i i

“Build HT-Build HT-Build

Sort Sort Sort Sort Sort Sort

Broadcast Local Forward

Repartition Repartition ; A
1 1
R Ry R3 M S, S3 R Ry R3 S1 S» S3
(a) Repartition Sort-Merge Match (b) Broadcast (Hybrid-)Hash Match

Figure 3.5: Alternative execution strategies for Match operators

performs a merge join to identify record pairs with matching keys. Finally, the UDF of the
Match operator is called for each record pair with matching keys. The alternative plan shown in
Figure uses a different ship strategies for each input. The first input R is broadcasted to
each parallel instance of the Match operator, i. e., the data is fully replicated on each instance.
Each parallel instance builds a hash-table from the broadcasted data indexed by R’s Match key.
The data of the second input is locally forwarded to the corresponding Match instance, i.e., it is
not shipped over a network connection, and probes the hash-table with the key of each record to
identify pairs of records with matching keys. For each record pair, the UDF of the Match opera-
tor is called. There are further alternatives to execute a Match operator. For example, repartition
ship strategies can be combined with a hash-join local strategy or the build- and the probe-side
of a hash-join or the broadcasted and the forwarded inputs can be switched.

3.2.2 Interesting Properties

Local and ship strategies reorganize the data and establish certain properties on distributed data
sets. Such properties include sorting, grouping, and different types of partitioning. Concep-
tually, operators require that their input data holds certain properties. For example a Reduce
operator requires that its input data is grouped by key. In order to establish a distributed data
set with the required grouping property, records need to be grouped by key across and within
partitions, i. e., all records that share the same key must be present and grouped together in the
same partition. Repartition ship strategies (hash- or range-partitioning) can be used to group
records across partitions. Grouping within a partition can be achieved by sorting the records or
applying hashing techniques.

An important aspect of data flow optimization are operators that produce data sets with prop-
erties, which can be reused by a subsequent operator. If for example, an operator produces a
data set that is hash-partitioned in a suitable way for a following Reduce operator, the data can
be locally forwarded instead of using an expensive repartitioning strategy that sends all data

53

3 Abstractions for Parallel Data Flows

DataSinkgeguit
0

Local Forward

Reduceﬁi

Sort
T

Local Forward
'

orderkey,o_orderdate,o_shippriority, SUM(revenue)

MatchMo_orderkey:l_orderkey
Merge

/—> Sort Sort (—\

Repartition Repartition
! |
Matchuy, o cu Ma
c_custkey=o_custkey p T0_orderkey, (I_extendedprices(1—1_discount))
HT-Probe
Stream
/-—) HT-Build T
Broadcast Local Forward Local Forward
1 1 1
Ma Ma
pccfmktsegmem:: 1 Map Oo_orderdate<:2 p clfshipdale> 2
Stream Stream Stream
0 0 0
Local Forward Local Forward Local Forward
1 1 1
DataSourcecystomer DataSourceoders DataSourcey ineitem

Figure 3.6: TPC-H Query 3 data flow

over the network. Optimizers that consider these opportunities can produce significantly more
efficient data flows. More optimization opportunities arise if reusable data properties are not
only leveraged when found, but when optimizers also explicitly enumerate plans that provide
such opportunities. Plan enumeration techniques that explicitly generate and memorize plans,
which produce so-called interesting properties are well-known from relational query optimiza-
tion [101} 186l [213]. These techniques usually work in two steps. First, they enumerate all
properties that can be reused by an operator and are hence interesting. Second, the optimizer
generates plans where the input data of the operator exhibits interesting properties and memo-
rizes them even if they are more expensive than equivalent plans but less expensive plans.

Figure shows a candidate data flow to execute the TPC-H Query 3 example PACT program
presented in the previous Section [3.1] Observe that the aggregating Reduce operator receives
its input data from a local-forward ship strategy, i.e., its input data is not transferred over the
network. Instead, Reduce reuses the partitioning that was established for the previous Match
operator. This is possible, because Reduce’s key (1_orderkey,o_orderdate, o_shippriority) is a
superset of Match’s key (l_orderkey)ﬂ Reasoning about interesting properties can lead to several
optimization opportunities especially in presence of composite keys. For examples, data can be

5The optimizer can even decide to sort the input of the Match operator on the full key of Reduce and reuse the
sorting for the Reduce if it knows that the Match operator preserves the sorting.

54

3.2 The Optimization of PACT Programs

hash-partitioned only on a subset of a composite key to ensure these properties are reusable for
a subsequent operator. It should be noted that such optimizations require distribution statistics
on the partition keys as they can also worsen data skew. Zhou et al. formalized the interesting
property reasoning of the Scope optimizer [213]].

However, there is an additional requirement that needs to be met to enable effective interesting
property optimizations for PACT programs. In contrast to relational operators, PACT operators
do not have well-defined semantics due to their user-defined function. UDFs can arbitrarily
modify their input data and also change the key fields of a record. Hence, the optimizer cannot
assume that the output data of an operator has the same properties as the data that was passed into
its UDFs. Instead, the optimizer must assume that all properties are eliminated by the UDF.

To overcome this problem, the PACT programming model offers annotations for UDFs to re-
veal some of their semantics to the optimizer. In the original description of the programming
model [23] that used a key-value pair data model, these annotations where called Output Con-
tracts and could specify whether the key field was unmodified or extended by a UDF. Given such
an annotation, the optimizer could infer that properties of the input data, such as partitioning or
sorting, were preserved by a user-defined function. These output contract annotations changed
in the course of the data model evolution from key-value pairs to records. In the current version,
UDF annotations can specify which fields of a record are not modified by a UDF. This allows
more fine-grained inference of preserved properties in case of composite keys.

3.2.3 Cost Estimation

A PACT program can be compiled into multiple different but semantically equivalent parallel
data flows. These data flows differ in execution strategies and consequently in execution times
as well. Relational database systems are in a similar situation when choosing the execution plan
for a SQL query and commonly employ cost-based query optimizers to identify the execution
plan with the least estimated cost. Cost estimates for plans are computed by a cost model as a
function of input data (cardinality and size) and available resources (memory budget, I/O rate,
CPU utilization).

In principle, the PACT optimizer follows a similar approach as relational database optimizers.
However, there are a few notable differences. While cost models of relational database systems
are quite advanced and fine-tuned [105 [107], PACT follows a more coarse-grained approach.
This is mainly due to lack of accurate information. Relational DBMS are able to leverage differ-
ent kinds of information for cost estimations, including schema information and statistics, such
as base cardinalities and value distributions. In order to estimate the cost of an operator, the
size and cardinality of all its inputs must be estimated. This is achieved using base statistics and
reasoning about the semantics of all logical operators that are applied to compute the operator’s

55

3 Abstractions for Parallel Data Flows

input [186]. However, cost estimation and in particular the size estimation of intermediate results
are hard problems and still a major challenge for modern database optimizers [1311 [164]].

In the context of the PACT programming model, cost estimation is even harder. PACT does not
feature a dedicated data store but processes potentially unstructured ad-hoc data for which no or
only very limited statistical information is available. Furthermore, estimating the cardinality of
intermediate results is significantly harder due to the unknown semantics of the operators’ UDFs.
Given the limited information that can be leveraged for size estimations, the PACT optimizer
would not benefit from a too detailed cost model. Instead, it follows a pragmatic approach and
tries to extract basic statistics from data sources. For example for file inputs, the optimizer draws
a few sample records and estimates the input cardinality as the ratio of total file size and average
record width of the samples. Having obtained basic statistics for the input of the program, the
optimizer needs to estimate the size of intermediate results, i.e., the size and cardinality of an
operator’s output for a given input. In general, this is not possible because neither the schema of
the input or output data nor the semantics of the operators’ UDFs are known. PACT’s approach
to overcome this problem is to offer compiler hints that allow to specify the selectivity of a UDF,
the average size of output records, and the average number of records for unique combinations
of fields. The optimizer computes the result cardinality of a PACT operator by estimating the
number of UDF calls and combining this information with an available compiler hint. Given a
Map operator, the optimizer knows that the UDF is called once for each incoming record and
multiplies this with the selectivity hint of the Map UDF. In principle, compiler hints can be
obtained in different ways. Users can specify hints when implementing a PACT program or
compilers that translate higher-level languages or programming abstractions such as Pig, Hive,
or Cascading into PACT programs can provide them due to their richer semantics. Another
option is to employ runtime monitoring or static code analysis techniques to obtain compiler
hints. If no compiler hints are available, the optimizer marks estimates as unknown and falls back
to conservative execution strategies such as repartition shipping strategies instead of broadcast-
forward strategies.

The cost model of the PACT optimizer aims to minimize the amount of data shipped over the
network and the amount of data that is written to external storage, i.e., hard disk. The model
computes those two estimates but does not combine them into a joint cost metric. Instead, it
primarily evaluates the amount of network-transferred data and secondarily checks for estimated
disk I/O. The rational for this mode of operation is that network transfer is significantly more
expensive than disk I/O. Since shipping and local strategies can be often freely combined, both
metrics are useful.

3.2.4 Differences to Relational Optimization

The PACT optimizer leverages techniques which are known from relational optimization, such as
its alternative execution strategies, interesting property reasoning, and cost-based plan choices.

56

3.2 The Optimization of PACT Programs

However, there are also several aspects that differ from relational optimization.

The shape of PACT programs can differ from relational queries. SQL queries compute a single
result and have a tree structure, i.e., the result of each operator is forwarded to exactly one
successor. PACT programs may have more than one sink, i. €., can compute more than one result.
Furthermore, a PACT operator may forward its output to multiple successors such that data flows
can branch and join again. These differences requires special plan enumeration techniques.

Also the job abstraction that is given to the optimizer for optimization differs. Relational
database systems parse a SQL query and construct a logical operator tree, which is handed
to the optimizer. This representation is based on relational algebra operators with well-defined
semantics. Using a set of well-known logical transformation rules, the optimizer is able to
reorder or replace logical operators. In contrast, PACT programs are concrete data flows con-
sisting of UDF-based operators with only partially known semantics. This lack of knowledge
impedes reasoning about the preservation of interesting properties, accurate size estimates, and
the reordering of PACT operators. In its initial version, we addressed the first two aspects by
providing annotations and optimizer hints to reveal some information to the optimizetﬂ The
challenge of reordering UDF-based operators is addressed in Chapter 4]

As discussed in the previous section, cost-based optimizers rely on the accuracy of cost estima-
tion. PACT’s lack of operator semantics does severely affect its ability to precisely estimate the
size of intermediate results. However, lack of size estimation accuracy is also a challenge for
relational database systems. Chapter [5|analyzes the effects of imprecise optimizer estimates.

SPACT can serve as a compilation target for higher-level languages [117, [140]. Annotations and compiler hints
enable a language compiler to inject additional semantics into a PACT program.

57

3 Abstractions for Parallel Data Flows

3.3 Evaluation

The PACT programming model advances MapReduce in mainly two dimensions. First, it eases
the definition of advanced data analysis programs while not giving up the approach of a general
programming model. Second, it offers better performance and efficiency than MapReduce due to
its optimization and compilation to parallel data flows. In this section, we compare MapReduce
and PACT along both dimensions with the help of a few example programs.

3.3.1 Ease of Use

An important aspect of any programming model is its usability, i. e., the effort that is required to
solve a problem. It is not easy to objectively evaluate the usability of a software or programming
model. A common approach are user studies, which can be biased due to the skill level of the
probates and the problems under consideration. The fact that PACT is a superset of MapRe-
duce eases their comparison. In this section, we present a few common data analysis tasks that
are not straightforward to realize with MapReduce and show how PACT improves these. Fi-
nally, we show PACTs superiority by comparing the definitions of two analysis programs in
MapReduce and PACT. Several aspects of this comparison have been discussed in a previous
publication [[11].

The MapReduce programming model is a static template for data processing programs. Data is
read, processed by a user-defined Map function, grouped, processed by a user-defined Reduce
function, and finally emitted. There are several common data processing tasks that do not nicely
fit this template. Among these tasks are data analysis programs that analyze more than one data
set. The MapReduce programming model features only a single logical input. Hadoop’s [109]
implementations of the MapReduce model offers abstractions to read multiple data sets. One
solution is to put a file into the so-called distributed cache before starting a job and let each
Mapper read the file from the cache. This technique broadcasts the data of the file to each
Mapper but it is only applicable for small files. Another solution is to register multiple input
formats and Map functions. Each input is processed by an individual input format and Map
function. The data of both inputs is handed together to the same Reduce function. In order to
track which key-value pair originated from each input the Map functions need to inject a lineage
flag into the key-value pairs. In contrast, the PACT programming model supports multiple data
sources that can be unioned or combined using one of the three binary operators, Cross, Match,
and CoGroup.

The key-value pair model is another limitation of the MapReduce programming model. It forces
programmers to squeeze all data items into two data types, a key and a value. This results in
struct-like container data types to hold unrelated data items. For each unique combination of data
items, such as a composite key, a new container type needs to be defined. As a consequence,

58

3.3 Evaluation

the key-value pair model increases development overhead and hampers the reasoning about pro-
grams. PACT’s record model facilitates the reuse of data types and supports the definition of
composite keys.

Even for moderately advanced data analysis tasks it is common that the logic of an application
cannot be expressed as a single MapReduce program and needs to be distributed over multi-
ple MapReduce programs, which depend on each other’s output. Such analysis programs are
executed as workflows of chained MapReduce programs. There are several drawbacks to this
approach. First, analysis programs are cumbersome to implement and maintain if the program
logic is distributed over multiple MapReduce programs. Second, the execution of the individ-
ual MapReduce programs needs to be orchestrate(ﬂ Finally, executing analysis programs as
workflows of MapReduce programs has considerable performance implications. MapReduce
programs can exchange data only by reading and writing to stable storage systems, such as
distributed file systemﬂ Also the execution of each MapReduce program comes with high
overhead costs due to task scheduling and mandatory data shuffling and sorting. In contrast, the
PACT programming model defines data processing programs as arbitrarily complex data flows.
Hence, there is no need for external job orchestration, reading and writing of intermediate results
from and to stable storage, and reduced scheduling overhead. Instead, the data flow model offers
potential optimization benefits.

The more declarative nature of PACT is another feature that distinguishes it from MapReduce.
Declarativity is not only an enabler for automatic optimization, it also influences the usability
of a programming model since it hides unnecessary complexity from users. Using declarative
concepts, a user specifies what should be done and does not need to bother how it is achieved.
Instead, this task is delegated to an optimizer and the execution engine. An example for this is
PACT’s Match operator. As mentioned before, Match resembles an inner equi-join. There are
two common strategies to implement an equi-join in MapReduce. The Map-side join leverages
the distributed cache to broadcast the (sufficiently) smaller join input to each Mapper and builds
a hash table from it, indexed by its join attributes. Subsequently, the Map function processes
the larger input by probing the hash table for each key-value pair and constructs and emits a
joined output key-value pair for each match. The alternative Reduce-side join reads both inputs
using a special input format for multiple inputs. The Map function attaches a lineage tag to
each key-value pair. The data of both inputs is unioned and partitioned and sorted by join key.
Finally, the Reduce function builds joined key-value pairs from all key-value pairs with matching
key originating from different inputs. The MapReduce implementation of an analysis program
that includes a join is fixed to the chosen join implementation. However, the best join strategy
depends on the size of the inputs and the program’s degree of execution parallelism, among other
things. The PACT programming model offers the Match operator and lets an optimizer choose
which join strategy to use depending on the programs input size and execution environment.

TThere are schedulers and optimizers such as Oozie [170] and Stubby [151]] for MapReduce workflows.
8Distributed main memory file systems, such as Tachyon [112,[196], reduce these costs.

59

3 Abstractions for Parallel Data Flows

[—. (o_okey,0_odate, o_sprio, revenue))

Reduce

}'l_okey.o_odate,o_sprio,SUM(revenue)

T [(o_okey, 0_odate, o_sprio), revenue]

Map

Extract Key

'

[—. (o_okey,o_odate, o_sprio, revenue))

Reduce

l>q()70ké:y:17(;k5y

1
1
1
1
1
1
1
1
1
1
! o_okey, (o_odate,o_sprio 1_okey, revenue
| O_OXEY. _OREY.
1
1
1
1
1
1
1
1
1
1

Map Map :

. (Gc,mktscgzzl (C)) nliokey.(liexldprice*(1—1_discnt))
—
DlSt' CaChe D‘<]<:7ckey:ofckey (Glisdate>:2 (L))
T (G(Lm:lute<:2(o))
[=(

c_ckey,c_mktseg)] T [—, (o_okey,o_ckey, o_odate, o_sprio)] [—, (I_okey,_sdate,]_exdtprice,]_discnt)]
1
:’ InputCustomer ’ InputOrders InpUtLineitem

Figure 3.7: TPC-H Query 3 MapReduce workflow

In fact, the Reduce-side join and the Map-side join follow the same strategy as the execution

strategies shown in Figures and Figure respectively.

In the following, we compare the MapReduce and PACT implementations of two data analysis
tasks. The first analysis program is the TPC-H query that we used as an example in the previous
sections. The second program is an algorithm that identifies all triples of vertices in a graph
which are connected with each other. This triangle enumeration task is commonly used as a
preprocessing step to identify densely connected subgraphs, e. g., for social network analysis.

Relational Query We use TPC-H query 3 as a running example previously in this chapter.
Figure [3.3] shows the SQL statement and Figure [3.4] shows an implementation using the PACT
programming model. Because MapReduce does not abstract logical programs from physical
execution, there are several ways to implement this query in MapReduce. Figure shows a
MapReduce implementation, which is moderately optimized for performance and not the most

60

3.3 Evaluation

straightforward solutimﬂ It is based on two MapReduce jobs, of which the first one is rather
complex. The first job reads the orders and lineitem relations using a multi-input input
format and processes both relations with individual Map functions. At start-up time, the orders
Map function reads the customer relations from Hadoop’s Distributed Cache, which is used
for broadcasting small data sets, and builds an in-memory hash-table. Then it starts processing
the orders relation, applies a filter predicate, and joins orders with customer by probing the
hash-table. This join strategy is known as Map-side join. The lineitem Map function also
applies a filter predicate and computes the revenue attribute. Both Map functions return key-
value pairs with the key being set to the o_okey or 1_okey attribute, which are the join attributes
for the following join. The following Reduce function joins results of both Map functions. For
each unique key (o_okey or 1_okey), the Reduce function is called once. The function collects
all input pairs and separates them into two groups depending on their origin. Finally, for each
combination of pairs of both groups a key-value pair is emitted and written to a stable storage,
such as HDFS. The second job reads the data emitted by the first job and applies a Map function
that emits for each input record a key-value pair with a key that contains the o_okey, o_odate,
and o_sprio attributes. The following Reduce function simply sums the revenue attribute in
each group and emits one key-value pair for each group, which is emitted by the final output
format.

Looking at the presented MapReduce implementation, we see that a large fraction of the program
logic is squeezed into the Map function that joins the customer and orders relation while the
Map function of the second job does only set the correct key. Such patterns are quite common
when implementing workflows of MapReduce jobs. Since each job comes with a high execution
overhead for reading, writing, shuffling, and sorting the data, and scheduling all task instances,
minimizing the number of jobs is an important optimization. This naturally leads to UDFs with
highly intertwined program logic. The resulting source code is hard to maintain and barely
reusable. In contrast, the PACT programming model encourages a more modular programming
style as shown in the PACT variant of the TPC-H query in Figure Here, each function serves
a single purpose, such as a filter, projection, or join.

Another issue with the MapReduce model are hard-coded execution strategies. For example, the
presented query implementation relies on the fact that the filtered customer relation is small
enough to fit into an in-memory hash table. Also distributing the customer data via the Dis-
tributed Cache becomes less efficient if the relation grows or the execution parallelism of the
job increases. As a result, MapReduce implementations are often tailored towards specific input
sizes, size ratios, or degrees of parallelism and become less efficient if these change. More-
over, manual optimization of data flows is also a non-trivial task and requires experience and
programming skills. The PACT programming model addresses this issue with an optimizer that
automatically chooses the execution strategies for a PACT programs depending on the input size
and degree of parallelism.

9There might be even more efficient implementations.

61

3 Abstractions for Parallel Data Flows

! Output :
1
: Triangles !
1 1
' T[= (vi,v2,v3)] '
1
: Reduce :
1
! Close Triads :
I .
1 1
1 [(v2,v3)v1] [(vi,v2), —] :
1
1 1
1 Map Map 1
! \ DataSink
| | Project Edges Project Triads :
1 Triangles
I Ti i) Ti=)l £
1 PR
' Input Input ! T [vi,va,v3]
: Triads Edges | Match
- _T_____________________-' Close Triads
______ ——- o111,
Output
. [vi,v2,v3]
Triads
T [—.(1v2,03)] Reduce -
V1,2
Reduce Build Triads

! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
1 1
1 1
. | Build Triads !
1
[vi,v2] ! v1,v2)

1 Vi | Vi,v2
] ,
! 1
! 1
! 1
! 1
1 1
! 1
! 1
! 1
! 1
! 1
! 1

Map Map
Project Edges Project Edges
Tl i) Toivl
Input DataSource
Edges Edges
| T I T, a
(a) MapReduce Program (b) PACT Program

Figure 3.8: Triangle Enumeration programs

Triangle Enumeration Our second example for comparing the MapReduce and PACT pro-
gramming models is an algorithm to enumerate triangles, i. e., three-edge cycles, in undirected
graphs. The basic algorithm and a MapReduce implementation were presented by Cohon [57]].
We adapted this algorithm for the PACT programming model. Figure[3.8|shows both variants.

The algorithm takes a list of edges as input. An edge is represented as a pair of vertices. The
edges are grouped by their lexicographically smaller vertex. Within each group, the algorithm
enumerates all pairs of edges and builds so-called triads. A triad consists of two edges that share
a common vertex (the grouping vertex) and is represented as a triple of vertices. Finally, the
triads for which no closing third edge in the original edge set exists are removed.

62

3.3 Evaluation

The MapReduce implementation (Figure consists of two MapReduce programs. The first
program, reads the input edges and uses the Map function to generate key-value pairs where the
lexicographically smaller vertex ID is set as key and the other vertex ID is set as value. The
following Reduce function builds all combinations of edges within a group and emits for each
pair of edges a triad. Finally, the first program writes all triads to a stable storage. The second
program is invoked after the first program finished. It reads two inputs. The first input are
the previously computed triads and the second input is the original set of input edges. The Map
function for the triads generates key-value pairs with the two vertices, which are not the common
vertex of the triad’s edges, set as key and the common vertex of the triad set as value. For the
edge input, the whole edge is interpreted as key. In both cases, the key vertices are ordered
by ID. Triads and edges are grouped by key and the Reduce function checks for the presence
of an original input edge. If an edge is present, it constitutes the missing edge and all triads
of that group are emitted as triangles. If no edge is present in a group, the group’s triads are
discarded.

The PACT program is shown in Figure[3.8(b)] It starts reading the input edges and applies a Map
operator to lexicographically order the vertex IDs of each edge. The result is given to a Reduce
function that treats the first attribute as key and builds triads by combining all edges of a group.
The result of Reduce and the Map operator are forwarded into a Match operator. The key of the
Mapper’s edges are both vertex IDs, the key of the Reducer’s output are the triad’s non-common
vertex IDs. The Match operator calls the UDF only for matching pairs of records of both inputs.
Hence, all triads without a matching edge are automatically discarded by the system’s Match
operator. The UDF simply emits all triads.

When comparing both implementations, the most obvious difference is that two MapReduce
programs are required, whereas the PACT implementation consists of a single data flow program.
Looking closer, we see that the first part of the PACT program is almost identical to the first
MapReduce program. However, MapReduce realizes the following join between triads and
edges with a Reduce-side join strategy, which requires a handcrafted join implementation as an
additional MapReduce program. In contrast, the PACT program leverages the Match operator
to perform the join using system-internal operations. The Match UDF implementation is trivial
and only needs to forward its input triad. One effect of having two MapReduce programs is that
the edge input needs to be read twice instead of once as in the PACT implementation. For the
MapReduce program, a large amount of implementation effort is spent on assembling the correct
grouping and join keys. This needs to be manually implemented in all three Map functions. In
addition, custom key and value data types are required to hold edges, and triads. The PACT
program processes data as records and the composite keys are defined by selecting fields of the
input record.

63

3 Abstractions for Parallel Data Flows

3.3.2 Performance

An important property of any data processing system is its performance and processing effi-
ciency. While the MapReduce execution model provides good scalability and fault-tolerance,
it has been criticized for its inefficiency and low performance [173| [194]. One can argue that
MapReduce is, with respect to efficiency, not a good fit for some of the use cases it is applied
to. On the other hand MapReduce is widely adopted as indicated by the popularity of higher-
level programming abstraction on top of Hadoop [44, [169, [198]]. In this section, we compare
the performance of MapReduce and PACT programs by discussing the results of an experi-
mental evaluation that was published in the VLDB Journal [10]. Specifically, we look at the
implementations of three analysis tasks, 1) Word Count, 2) TPC-H query 3, and 3) Triangle
Enumeration.

The evaluation compares Stratosphere [195]], our implementation of the PACT programming
model, and version 1.0.4 of Apache Hadoop [[109] and was carried out on a cluster of 25 compute
nodes and one dedicated master node. Each compute node was provided with two AMD Opteron
6128 CPUs with 8 cores each, 32 GB RAM, a Gigabit Ethernet adapter, and four SATA hard
disks. For the evaluation the number of compute nodes was varied from 5 to 25 with 8 parallel
tasks running on each worker node yielding a total parallelism of 40 to 200. For all benchmarks,
the amount of data is scaled proportionally with the number of worker nodes. We refer to the
original publication for details [[10].

Since the execution engines of Stratosphere and Hadoop differ, this section does not compare
the performance of the PACT and MapReduce programming models in isolation. Certain perfor-
mance differences cannot be exclusively accounted to the programming model but are an artifact
of the interplay of programming model and execution engine. For instance, Stratosphere’s exe-
cution engine features pipelined data shuffles, i. e., records are shipped to succeeding operators
as soon as they are produced. In contrast, Hadoop employs batched shuffles by collecting records
on the sender side and sending them to the receiver them in large batches. Due to pipelined shuf-
fles, consecutive operators can concurrently process data in Stratosphere. Further differences are
the implementations and available types of internal operators such as sort algorithms and hash
tables.

Word Count Word Count is the classic example to introduce and explain MapReduce [64].
The task is to compute a histogram of words, i.e., count the occurrences of each word in a
text corpus. This problem maps naturally to a single MapReduce program. The Map function
receives lines of text and splits it into key-value pairs with a word being the key and a count
being the value. The count is initially set to 1. The Reduce (and Combine) function groups
the pairs by word and compute the sum of counts. The PACT implementation is conceptually
equivalent to the MapReduce solution and executed using the same strategies as the MapReduce
execution model. Hence, this benchmark compares the efficiency of the execution engines and

64

3.3 Evaluation

400
Stratog[phere PACT —o—
Stratosphere PACT (optimized) --O-

350 Hadoop MapReduce

o)
< 300 [
Q
2
&» 250
=
[0}
£ 200 -
=
c
o 150 -
=
3 e D)
X
[0}

50 |

L L L L L L L ‘
40 60 80 100 120 140 160 180 200
DOP

Figure 3.9: Execution time of MapReduce and PACT Word Count programs for varying degrees
of parallelism (DOP) [10].

gives a baseline for the following performance comparisons. It does not compare the efficiency
of the programming models.

Figure[3.9)shows the execution time of a Hadoop MapReduce and a PACT Word Count program
for varying parallelism and amounts of data. Both systems scale linearly with increasing num-
bers of worker nodes. The difference in execution time can be explained with Stratosphere’s
pipelined communication model, a different implementation of the Combiner, and its sort im-
plementation, which works (partially) on binary data instead of deserialized objects [10]. The
“Stratosphere PACT (optimized)” experiment used a more efficient tokenizer to improve the
performance of the Map function. This tokenizer could also be used in a Hadoop MapReduce
job [10].

This benchmark shows that the performance of Stratosphere’s processing engine is competitive
to Hadoop. Since both systems use the same execution strategy to execute the Word Count
program, Stratosphere’s superior performance cannot be explained by the PACT programming
model. Instead it is the result of a more efficient runtime system.

TPC-H Query 3 In the previous section we compared two possible implementations of the
running TPC-H query 3 example in MapReduce and PACT. The experimental evaluation of the
Stratosphere journal paper [[10] also contains a performance comparison for this query. However,
instead of using a handcrafted MapReduce program such as the one shown in Figure the
benchmark was performed with Apache Hive [[124, [198]] (version 0.10.0), a SQL compilation
layer on top of Hadoop. Hive includes a rule-based optimizer that aims to minimize the number
of MapReduce programs.

Figure [3.10] shows the performance of the TPC-H query 3 as shown in Figure [3.3] executed as a
PACT program on Stratosphere and ran as a Hive query on Hadoop MapReduce. The execution

65

3 Abstractions for Parallel Data Flows

400
Stratosphere PACT —©—

350 - Hive

250
200

150 -

execution time (seconds)

50 -
o

L n L L L L L)
40 60 80 100 120 140 160 180 200

DOP

Figure 3.10: Execution time of MapReduce and PACT TPC-H Query 3 programs for varying
degrees of parallelism (DOP) [10]].

time of the query with Hive on MapReduce is significantly higher than the execution time of the
PACT implementation. This is due to the fragmentation into multiple MapReduce jobs, which
requires to pass the result of a job to the next one via a distributed file system, the mandatory
shuffle and sort strategies of the MapReduce execution model, and the additional scheduling
overhead. In contrast, the PACT program is executed as a single data flow. The 1ineitem input,
which accounts for more than 70% of the input size, is joined using a broadcast hash-partition
join. Since the hash table and the sort for the final aggregation fit completely into memory, no
intermediate disk I/O is performed.

Triangle Enumeration The experimental evaluation in [10] also compares the performance
of hand-crafted MapReduce and PACT programs for the triangle enumeration task, which was
presented in the previous section. Figure shows that the PACT program significantly
outperforms the MapReduce implementation. The PACT optimizer picks a plan that minimizes
the intermediate I/O operations. The plan is shown in Figure[3.11(b)] The most important aspect
of this plan is how the result of the Reduce operator is handled. The Reduce function builds
all combinations of edges that have the same grouping vertex. For n edges that share the same
vertex, the Reduce function generates %ﬁl) output triads. In the MapReduce program, this
asymptotically quadratic intermediate result is written to a distributed file system, read again by
the following job, repartitioned, sorted using external storage, and finally processed and emitted
by the next Reduce function. In contrast, the PACT program repartitions the triads in a pipelined
fashion (without materialization) and identifies valid triangles by probing hash tables that were
built using the original edges. If these hash tables fit into memory, the large intermediate triad
data set is not materialized and completely processed on-the-fly.

66

3.4 Related Work

DataSink

Stream

1

Local Forward

I
Match

HT-Probe
HT-Build

1000 Repartition
Stratosphere PACT —S—
900 - Hadoop MapReduce |
2 sl Reduce
——
§ 700 L Sort epanmon
\33), 600 | \
qg) 500 | Repartition
c 400
g Map
8 300
§L<) 200 |- Stream
Q) +
100 5\@\9/‘@\@ Local Forward
0) I
40 60 80 100 120 140 160 180 200
DOP DataSource
(a) Execution time of MapReduce and PACT Triangle (b) Data Flow of PACT
Enumeration Programs for varying degrees of paral- Triangle Enumeration Pro-
lelism (DOP) [10]. gram.

Figure 3.11: Triangle Enumeration

3.4 Related Work

In this section, we briefly discuss how the PACT programming model and its optimization tech-
niques relate to other techniques, approaches, and systems.

As previously discussed, the PACT programming model is a generalization of the MapReduce
programming model [64]. It borrows the concept of parallelizable system-provided second-order
functions and user-defined first-order functions. Compared to MapReduce, PACT offers more
parallelization primitives, supports the composition of arbitrary complex acyclic data flows, and
features a record data model. Moreover, it is not tightly coupled with an execution model. In
contrast, a cost-based optimizer compiles PACT programs into parallel data flows.

With the growing popularity of MapReduce, it became clear that its static programming model
is not a good fit for several real-world problems. Especially, more advanced data analysis tasks
can only be implemented in a clumsy and cumbersome way using the MapReduce programming
model, as shown by our evaluation in the previous section. Driven by this insight, several efforts
started to improve its usability from a programmer’s point of view. Among these approaches are
higher-level languages such as Apache Pig [169, [175], Apache Hive [124} [198]], and Jaql [28]],

67

3 Abstractions for Parallel Data Flows

and programming APIs such as Cascading [44]. These programming abstractions address some
of the shortcomings of the MapReduce programming model that motivated and influenced the
design of the PACT programming model. From an API point of view, Cascading is similar to
PACT. It offers similar parallelizable operators that run custom user code including CoGroup
and Join. The operators can be assembled into complex data flows. However, these Cascading
flows are translated into workflows of MapReduce programs. Languages such as Pig, Hive, and
Jaql offer a more higher-level abstraction than PACT to specify data analysis tasks. In their
original versions these languages were also compiled into workflows of MapReduce programs.
Compiling programs or queries to workflows of MapReduce programs offers only limited op-
timization opportunities due to the inflexible MapReduce’s execution model. Moreover, the
sequential execution of several MapReduce programs comes at high overhead costs as discussed
before. In contrast, the PACT optimizer is able to reason about interesting data properties and
compiles PACT programs into efficient parallel data flows. Recently, Hive, Pig, and Cascad-
ing added support for compiling to Apache Tez [197]], a parallel data flow execution system.
This step improves their execution efficiency, but also calls for an optimizer such as PACT’s. In
fact, the PACT programming model itself can also serve as a compilation target for higher-level
languages such as Pig [140]], Hive, Jaql, and Cascading.

Apache Spark [190, 207, 208]] is a system for parallel data analysis. Its programming model is
based on resilient distributed datasets (RDDs), on which transformations and actions are applied.
Spark’s transformations are similar to PACT’s operators and include Map, Reduce, and Join
operators. Similar to PACT, Spark programs are compiled into parallel data flows and their
execution is triggered by actions. However, the compilation step does not involve advanced
optimizations such as interesting property reasoning or cost-based plan choices. As a system,
Spark put more focus on in-memory processing and low task scheduling overhead.

Another field of related work are parallel relational database systems [35, 167,168l 96, [183]210].
PACT’s optimizer borrows concepts from relational optimizers including cost-based optimiza-
tion [[186] and interesting property reasoning [101}, [186]. As pointed out in Section[3.2.4] there
are also notable differences to relational optimization such as PACT’s DAG-shaped programs
and its focus on user-defined functions. Nonetheless, a parallel data flow which is produced
by the PACT optimizer is similar to an execution plan of a parallel, shared-nothing, relational
database system. Both are built from the same physical execution strategies such as hybrid-hash
join and sort-based grouping strategies for local processing and repartitioning and broadcast-
ing strategies for data exchange. Relational execution plans can be executed very efficiently
since the semantics of the query are known to the processing system, which can apply low-level
optimizations. On the other hand, PACT data flows are a bit more general, as they execute
user-defined functions inside their operators and allow for multiple data sinks.

68

3.5 Summary
3.5 Summary

The PACT programming model is a hybrid of a MapReduce system and an analytical parallel
relational database system with the goal to unify the best properties of both.

The PACT extends and generalizes MapReduce in several aspects. It features a more generic
tuple data model, a richer set of parallelization primitives, and allows for free composition of
operators as acyclic data flows. Consequently, it significantly eases the definition of advanced
data analysis programs. By extending MapReduce’s concept of parallelizable, system-provided,
second-order functions and first-order, user-defined functions, PACT is a superset of MapReduce
and applicable to a wide set of data analysis tasks.

Higher-level languages such as Pig, Hive, Jaql, and Cascading, offer similar programming ab-
stractions as PACT but are compiled into workflows of MapReduce programs with limited po-
tential for optimization. In contrast, PACT programs are compiled into parallel data flows. Due
to their declarative characteristics, PACT’s second-order system functions can be compiled and
executed in different ways, which opens potential for optimization. A cost-based optimizer
that builds on concepts from relational query optimization chooses the most efficient execution
strategies for a PACT program. The ability for optimization is a crucial feature data process-
ing systems. It does not only improve the performance of programs, but also relieves users of
making explicit choices for processing algorithm and ensures program independence from data
and execution environment. Finally, the compilation of PACT programs to flexible parallel data
flows allows us to execute those using efficient processing techniques which are known from
relational database systems.

69

3 Abstractions for Parallel Data Flows

70

4 Optimizing Data Flows with UDFs

Contents
M1 Solution Overviewl v v vttt v it i e 73
4.2 Reorder Conditions for MapReduce-style UDFs| 76
M2.1 Definitions] 76
|4.2.2 Reordering MapReduce Programs| 78
|4.2.3 Reordering Binary Second-Order Functions| 81
{@.2.4 Possible Optimizations| 86
(4.3 Obtaining Reordering Information with Static Code Analysis|. 87
[4.3.1 EstimatingRead Sets|. 88
[4.3.2 Estimating Write Sets| 89
{4.3.3 Estimating Output Cardinality Bounds|. 92
#.3.4 Guaranteeing Safety| oL 93
44 PlanEnumerafion]ot 94
B3 Evaluafion oot v vt e e e e 97
[4.5.1 Experimental Setup|. 97
[4.5.2 Evaluation Programs| 98
[4.5.3 Experiments| 100
[4.6 Related Worklttt ieennennn 105
.................................... 107

The PACT programming model (see Chapter [3) is based on operators that consist of a system-
provided, second-order function and a user-defined, first-order function. Prior to execution, a
cost-based optimizer chooses physical execution strategies for the second-order functions. This
step is similar to physical optimization in relational database optimizers.

It is well known from relational database systems that not only the choice of physical oper-
ators, but also the order of operators can have a significant impact on a plan’s execution time.
Optimizers of relational DBMSs reorder or replace relational operators based on algebraic trans-
formation rules during logical optimization. However, applying such plan rewrite transforma-
tions on PACT programs is not possible, due to the unknown operator semantics induced by the
user-defined functions.

71

4 Optimizing Data Flows with UDFs

This problem is not unique to the PACT programming model. In fact, many systems such as
Hyracks [36], Dryad [133]], Spark [207], adopt a data flow abstraction, where a data analysis
program is specified as a directed, acyclic graph (DAG) of smaller components that contain
arbitrary user code. Even though some of these systems offer higher-level language interfaces
[250 128 147,169, 199, [206], support for parallel user-defined functions is a necessity for today’s
data analysis systems. Even commercial parallel DBMSs, such as Aster Data and Greenplum,
have adopted MapReduce-style UDFs [87, [103]] to address a broader scope of applications.

The common challenge faced by these systems is to efficiently execute parallel data flows that
embed UDFs. This entails parallelization, as well as reordering of operators. These two prob-
lems are highly coupled, as the optimal parallelization strategy depends on the operator order
and vice versa. Traditional RDBMS optimizers support only UDFs that follow strict templates,
such as scalar, aggregation, and table-generator UDFs. Due to these strict templates, the main
challenge for RDBMS optimizers is not whether UDFs can be reordered but rather when it is
beneficial. In contrast, MapReduce-style UDFs implement much less restrictive templates and
hide their semantics inside general-purpose imperative code, a fact that poses new challenges
for optimization.

It is well known that query optimization is possible at an abstraction layer where the seman-
tics and the algebraic properties of operators are known. In this chapter, we propose a query
optimizer that does not require this assumption. Instead, our optimizer performs a fully auto-
matic static code analysis pass over the UDFs, discovering a handful of properties that guarantee
safe reorderings. We observe that a few properties, rather than knowledge of full semantics, are
enough to enable many optimizations, including selection and join reordering, as well as limited
forms of aggregation push-down. We implement the above concepts in the Stratosphere sys-
tem [23]], and conduct an extensive experimental study. Our experimental results show that we
can reproduce most reorderings performed by traditional query optimizers in relational queries,
such as join and selection reordering and some forms of aggregation push-down. Further, our
system can automatically find optimal plans for non-relational tasks without being informed a
priori about the semantics of the operators. While we present our optimizer in the context of the
Stratosphere system, the results presented in this chapter are applicable to a variety of parallel
data flow systems that use imperative UDFs. This chapter is based our contributions, which were
published in References [126 128, [129].

The remainder of this chapter is organized as follows. In Section [4.1| we present an overview
of our approach by exercising operator reordering on a simple example data flow. Section §.2]
discusses conditions to safely reorder MapReduce-style UDFs in data flow programs. In or-
der to evaluate these reorder conditions, a few UDF properties are required. Section pro-
poses a technique based on static code analysis (SCA) to automatically extract these properties
from UDF code. We present a novel algorithm to enumerate reordered candidate data flows in
Section {f.4] and evaluate our approach in Section 4.5] Section [4.6] discusses related work and
Section 4.7| summarizes this chapter.

72

4.1 Solution Overview

4.1 Solution Overview

Before delving into the details of our solution, we demonstrate the salient points of our complete
approach with an example. Assume a PACT program P that consists of three Map operators with
first-order functions fi, f», and f3 interconnected as follows:

P:1— Map; — Map, — Map; — O

The input data set I contains two integer attributes (A,B). The first function f; replaces B
with |B|. The second function f, emits all records for which A > 0 and filters the rest of the
records, and the third function f3 replaces A with the sum A + B. For example, with input record
i = (2,-3), the data flow is

<27_3> - = <273> = fr— <273> = f3— <573>
while with input record i’ = (—2, —3) the data flow is

(=2,-3)—=>fi—=(23)—-fHh>L—->f—>1

where | represents the empty list.

Consider now the alternative plan P’ where the order of Map, and Map; is inverse:

P': 1 — Map, — Map, — Map; — O

The data flow for records i and i’ is

(2,-3) = fr—(2,-3) = fi— (2,3) = f3 — (5,3)
(=2,-3)=>fHh—->Ll—fi>Ll—>f—L

Observe that the order of Map,; and Map, does not influence the output data set O. Therefore,
for input I = [, '], these two operators can be safely reordered. In fact, if f; filters a significant
portion of the records in /, this reordering is desirable. On the other hand, f; and f3 cannot be
further reordered without changing the result:

(2,-3) = fr—(2,-3) = fr—(—1,-3) = f1 = (—1,3)

73

4 Optimizing Data Flows with UDFs

We generalize this concept in a safe manner without knowing the semantics of the operators. Our
key insight is that reasoning about the “conflicts” in the data flow suffices to establish reordering
conditions. For example, we do not need to know whether f3 computes A+ B or A - B. We only
need to know that f3 replaces the first field of its input record with a new value, which conflicts
with f> using the first field of its input record to potentially filter some records. We can therefore
establish that these operators “conflict” on A, and cannot be reordered. This holds only if the
execution path of a UDF is uniquely determined by its input data, i. e., communication between
two function calls of the same or different UDFs except via the explicitly defined data channels
of the data flow program (e. g., shared memory or other forms of communication) is prohibited.
We assume this restriction throughout this chapter.

We define a read set Ry, and a write set W s for each operator with respect to its UDF f. These
sets are defined over attributes that need to be extracted from the data flow. In our example flow,
we have two attributes A, B, that form the so-called global record A = {A,B}. The global record
provides unique names for all input and intermediate attributes of the data flow. It is explained in
more detail in Section|4.2] The read set of an operator contains all attributes that might influence
the operator’s output (except for being merely copied from input to output). The write set of
an operator contains all attributes whose values change with an application of the operator. We
formalize these concepts in Sectiond.2] Two operators “conflict” on an attribute if the attribute
is contained in both operators’ write sets, or in one operator’s read set and the other’s write set.
For example, operator f; has Ry, = {B}, and Wy, = {B}, and operator f> has Ry, = {A}, and
W, = 0. These operators do not conflict, and can therefore be reordered.

The next challenge we address is how to derive read and write sets among other necessary
properties. In Section 4.3 we present an algorithm that estimates these properties using a static
code analysis (SCA) pass over the code of the first-order functions. Our technique assumes a
fixed API to create records, to read and write record attributes, and to emit records from a UDF.
We describe PACT’s record API in Section[4.3] Assume the code of the three example first-order
functions shown below in the form of 3-address code [6] where the UDFs access fields A and B
by their positions (0 and 1 respectively) in the input record:

10: fl1(InputRecord $ir) 30: f3(InputRecord $ir)
11: $b:=getField ($ir ,1) 20: f2(InputRecord $ir) 31: $a:=getField ($ir ,0)
12: $or:=copy(S$ir) 21: $a:=getField ($ir ,0) 32: $b:=getField ($ir,1)
13: if ($b>=0) goto 16 22: if($a<0) goto 25 33: $sum:=%a+$b
14: $b:=—$b 23: S$or:=copy($ir) 34: S$or=copy($ir)
15: setField ($or,1,$b) 24: emit($or) 35: setField ($or,0,$sum)
16: emit($or) 25: return 36: emit($or)
17: return (b) UDF f, 37: return

(a) UDF f (c) UDF f3

Figure 4.1: 3-Address Code of Example UDFs

74

4.1 Solution Overview

The 3-address code of functions fi, f>, and f3 is shown in Figure[d.1] Consider for example the
code of function f,. Recall that f, filters records with negative values for attribute A. We can
automatically detect that A € Ry, by collecting all getField statements (in this case instruction
21), and determine whether the temporary variables introduced (in this case $a) are used in
the function’s code. In our example, instruction 22 uses the value of $a in a condition, so we
conclude that field O of the input record is part of the read set. In the same way, we can detect
that A € Wy, by looking at instruction 35, which potentially changes the value of field 0. We
can thus conclude that f, and f3 conflict on field 0, and cannot be reordered. This estimation is
conservative, but safe. It results in a set of reorderings that all produce the same query result,
but it might miss valid reorderings. For example, assume that the input data set / contains only
values with A > 0. Then, instructions 22 and 23 of function f, will never be executed, and in
fact, f> and f3 can be reordered. However, this is something that cannot be detected by static
code analysis, and this reordering will be prohibited by our system.

75

4 Optimizing Data Flows with UDFs

4.2 Reorder Conditions for MapReduce-style UDFs

In this section we present sufficient conditions to reorder the five operators of the PACT pro-
gramming model and proof them. PACT’s data model and operators are defined in Section [3.1
We start by giving the necessary definitions for our reordering conditions and continue to prove
the conditions step-by-step for different pairs of operator types.

4.2.1 Definitions

The user code of an operator accesses record attributes by static field indices. For example
line 11 of function f; (Figure in the previous chapter, reads the attribute with index
1 from the function’s input record. Two different functions that both use the same index do
not necessarily access the same logical attribute. Instead, an index accesses an attribute with
respect to the expected schema of the function’s input records. When changing the order of
two operators, the schemas of their input records may change such that a field index accesses a
different attribute. Therefore, it is essential to avoid that attributes are accessed by wrong indices
in order to preserve the original semantics of the data flow. In order to keep track of attributes
across user-defined functions, we define the global record as a collection of every attribute that
is accessed by any operator in the execution plan. It is built by traversing the original data flow
from the sources to the sinks. All initial source attributes are added to the global record with a
unique name. Each attribute that an operator emits on a field index that was not used in its input
is added with a unique name to the global record as well. Thus, the global record includes every
attribute of the input data sets as well as the attributes that are created by operators at some stage
of the execution plan. Note, the global record is only internally used by the optimizer and not
exposed to the user.

Definition 1. The global record A is a unique naming of all base and intermediate attributes in
the data flow. In addition, we define | and Oy as the set of attributes of the global record A that
appear in the input and output of a function f, respectively and Instances(ly) as the set of all
possible input records of a function f.

Next, we formally define the read and write sets. The write set Wy of a first-order function f
contains all attributes whose value might change after applying f.

Definition 2. An attribute A belongs to the write set Wy of a UDF f iff:

(A&l AA€O;
(2) Ji € Instances(ly) : mai # 7o f (i)

76

4.2 Reorder Conditions for MapReduce-style UDFs

where 7 is defined as relational projection with duplicate elimination. The definition captures
the fact that an attribute A is in Wy if A is either newly created by f (case 1 of the definition),
or that there exists at least one input record i for which f modifies the value of A (case 2 of the
definition). The above definition can be extended for UDFs that operate on multiple records.

The read set Ry of a user-defined function f contains all input attributes of f that might influence
f’s output apart from being merely copied from input to output.

Definition 3. An attribute A belongs to the read set Ry of a UDF f iff:

diy,ip € Instances(lf) T ALY 75 Taln N 7T(|f\A)l'1 = 7T(|f\A)i2
(D) ()] # 1 f(i2)], 0
() o) f(i1) # T o a)f(i2)

where 7 is defined as relational projection with duplicate elimination. The definition captures
the fact that an attribute A can influence f’s output if there are two input records i; and i, that
only differ on attribute A for which function f produces different output. It is worth mentioning
that the above definitions do not use the semantics of the functions. Section 4.3]discusses how
to approximate these sets using static code analysis of the UDFs.

Finally, we define two conditions that are sufficient for reordering of operators in most cases:

Definition 4. Two operators with UDFs fi, f> and key attributes K and Kj satisfy the read-only
conflict (ROC) condition iff (Ry UK)NWp, =Wg N(Rp UKy) =Wy, NWy, = 0.

The ROC condition captures the fact that a UDF does not update or use attributes that another
UDF updates. The ROC condition is relevant for all reordering conditions described in this
chapter. To reorder KAT operators, we additionally need the condition that key groups are
preserved:

Definition 5. A RAT operator with UDF f satisfies the key group preservation (KGP) condition
for an attribute set K C A iff:

Vi € Instances(l)

(M) [f(D)] = 1,0r
) 1f(@)| <1 A 3FCK,Vs1,s5 € Instances(ly) : me(s1) = me(s2) = | f(s1)] = | f(52)]

where 7 is defined as relational projection with duplicate elimination. The KGP condition states
that function f, when applied to a set of records /i with the same values for all attributes in K,
either emits or filters all these records, i.e., the filter condition depends on the attributes in K
only. The above definition can be extended for KAT operators.

77

4 Optimizing Data Flows with UDFs

4.2.2 Reordering MapReduce Programs

Reordering Map Operators In Section4.1|we outlined why two Map operators that satisfy
the ROC condition can be reordered without changing the result of the data flow. We now prove
this statement formally.

Theorem 1. Two plans, P and P’

P:I—Map; —§— Map, — O
P’:I—)Mapg—>S’—>Mapf—>O’

consisting of two Map operators Map, and Map, with UDFs f and g produce the same result
(O = 0) if the Map operators satisfy the ROC condition.

Proof. We prove that O = 0. Assume a record i € I, and let O; = Map,(Map,([i])), O; =
Map ;(Map,([i])), Si = Map,([i]) = f(i), and S} = Map,([i]) = g(i). It suffices to prove Vi € I :
O; = O.. We first observe that if the ROC condition holds, the global record can be partitioned
as A = WU (W UW,), where AUB additionally implies that AN B = 0. We define 7 (r) as the

projection of record r to attribute subset F.

First, we prove that an invocation of f and g produces the same result cardinality in both plans:
|£()] = |£(s})] = k where s, € S}, and [g(i)| = [g(s;)| = [where s; € S;. Records s’ € S} are
produced by applying g to i. Recall that g can only change W, attributes, therefore TpowW, (s’j) =
”Wuwf(i)' Observe that the execution path of f depends only on the values of attributes in

WU W¢. Therefore, f follows the same execution path for s;. and i, and the cardinality of its
output is the same: Vs’ : |f(i)| = |f(s})| = k. We can similarly prove |g(i)| = |g(s;)| = I. This
allows us to decompose plan P for input i as

Py Zi—>f—>[S1,...,Sk]
Psi— g — [oi,...,oq) Vi=1,...)k

and plan P’ as

Plii—g—Is),...,s]
Pyisy = f—= [0y, 0yl Vi=1,...,1

78

4.2 Reorder Conditions for MapReduce-style UDFs

We will now prove that Vi=1,....k, Vj=1,...,l:0;; = 03';'- We observe that 7y (0;;) = ”W(Og'i)
since attributes in W are not changed by either f or g. Therefore, it suffices to prove that (1)
7w, (0ij) = mw, (0';), and (2) mw, (0;) = iw, (0';). The proofs for the two cases are completely
symmetric. We proceed to prove case (1).

From sub-plan P, we observe that records o;; are produced by applying g to records s;. Therefore,
they have the same values for all attributes that g does not change: ”Wuwf(oi i) = TWOW, (7).
It suffices thus to prove my,(0’;) = mw, (s;). Consider sub-plans Py and P, that show the appli-
cation of f to i and s’j respectively. First, observe that s; comes from applying g to i, therefore
7w, (s;) = mw, (i). The execution path of f depends only on values of attributes in WUW;.
Since my, (s;) = mw, (i), the execution of f in sub-plans P and P; will follow the same exe-
cution path. Therefore, the changes applied to i will be the same as the changes applied to s’j.
Therefore, miw, (0;) = Tow, (5i)- O

Reordering Map and Reduce Operators As a next step, we identify a sufficient condition
to reorder Map and Reduce operators and proof it. Recall that unlike the MapReduce model, the
PACT model allows arbitrary data flows containing Map and Reduce (among other) operators.
Assume the plan

P:1—Map; —§ — Reduce; — O

with input / having two attributes (A, B). UDF f emits an input record if both attributes A and B
have odd values. UDF g calculates the sum of B using A as key, and appends the sum as a new
attribute C to all of its input records. Note that the ROC condition holds. Consider the input data
set in the following example application of the plan:

[0 E2] g, — [01,1) - Roduceg = (11,1

and the execution if the operators are reordered

(1,1,3),
[8232212’7221’] —Reduce, — gf:g;: —Map,—[(1,1,3)]
(2,2,3)

The ROC condition alone cannot guarantee the reordering of a Map and a Reduce operator. The
reason is that the key groups of the Reduce operator in the two plans do not have the same
cardinality, and thus result in a different value for attribute C. This would not be a problem if

79

4 Optimizing Data Flows with UDFs

the Map operator either eliminated whole key groups, or left them intact. Note that if Map also
emitted multiple records per call, the cardinality of the key groups would change. Therefore, we
need the KGP condition to hold as well.

Theorem 2. Two plans P and P’

P:1— Map; — S — Reducey — O

P:1— Reduce, — S — Map, — o

consisting of a Map operator Map ; and a Reduce operator Reduce, with UDFs f and g produce
the same result (O = O') if both operators satisfy the ROC condition and the KGP condition
holds for holds for f and the key K of the Reduce operator.

Proof. We prove that O = O'. Let I = U\, where Iy is the key group with key value k, and the
plans

P:I— Map, — Sk — Reduce, — Oy

P’ : Iy — Reduce, — S, — Map, — O},

It suffices to prove that Ox = O,.. Observe that if the KGP condition holds for f and K, |Sk| =
I], or |Sk| = 0. If |Sk| = 0, then Map, will also filter all records from S in P', and trivially
Oy = O, = L. Assume that |Ii| = |Sk| =k, and |Ok| = [. Since the Reduce UDF treats I in P’
in the same way as Sy in P (because |I;| = |Si| and the ROC condition holds), and the Map UDF
emits exactly one record per input, it holds that |} | = |0} | = [. Therefore, we can decompose
plan P as

P : ViE[il,...,ik],i—)f—)S,SE[Sl,...,Sk]

P [Sl,...,Sk]%g%[Ol,...,Ol]
and plan P’ as
Pl : i1, yii] = g =[5, 0 87]
P Vs els),....s)], s = f—=0, 0 €lo],...,0]]

80

4.2 Reorder Conditions for MapReduce-style UDFs

We now prove that Vj,j=1,...,l:0; = 0’]-. Due to the ROC condition it suffices to prove (1)
J'CWf(Oj) = J'CV\/f(O/j), and (2) TCV\/g (Oj) = ﬂwg (0;)

We proceed to prove case (1). Case (2) is proven similarly. From sub-plan P, and record
0j, there is a record s, with the same attribute values for Wy: Vj,j=1,..../ dx,x=1,... k:
mw, (0;) = mw,(sx). Note that Reduce may “consolidate” multiple records into one, or produce
multiple records per input record. However, due to the ROC condition, attributes in W must be
preserved. Similarly, from P we have Vj, j=1,...,1 3y,y = 1,....k: 7r,(s}) = 7R, (iy) (due to
the ROC condition, attributes in Ry are preserved as well). Using the same arguments as in the
proof of Theorem we know that g follows the same execution path in sub-plans P, and P;.

Therefore, f follows the same execution path for records s;- and iy, so the result records of apply-
ing f to these records will also share the same values for W attributes: 7y f(og) = tw, (sx) =

TL'Wf(O;) - ﬂWf(Oj)' 0

The condition for reordering two Reduce operators are the ROC condition and the KGP condi-
tion for both UDF-key pairs. The proof proceeds similarly.

4.2.3 Reordering Binary Second-Order Functions

After having presented sufficient conditions to reorder Map and Reduce operators, we continue
to include the binary operators of the PACT programming model, namely Cross, Match, and
CoGroup. We start to give conditions for RAT operators and look at KAT operators subse-
quently.

Record-at-a-time Operators We first cover plans with RAT operators that are constructed
using the Cross, Match, and Map PACTs. Assume a Cross operator with UDF f and inputs R, S.
The operator applies f to every pair (r,s) € R x S. Here, the Cartesian product R x S of two data
setsR=[r1,...,ry],S=1s1,...,5,]is defined asadataset Rx S=[ri|s;:i=1...,n,j=1,...,m]
where r|s is the concatenation of records r and s. The attribute set of R x S is the union of the
attribute sets of R and S with a proper renaming (e. g., each attribute is prefixed by the data set
name it belongs to).

We observe that we can conceptually transform a Cross operator to a Map operator with the
same UDF over the Cartesian product:

Crossy(R,S) =Map /(R X S)

We can similarly transform a Match operator with UDF f to a Map operator with UDF f’ over
the Cartesian product:

81

4 Optimizing Data Flows with UDFs

Matchy(R,S) =Map, (R x S)

The difference here is that we need to change the UDF f in order to incorporate the implicit equi-
join performed by the Match second-order function. Assume that the join keys are attributes
R.A,S.B. We substitute f with

f'(r|s) =if (RA=S.B) then f(r,s) else L

We stress that this is a conceptual transformation in order to establish reordering conditions;
all optimizations described in this chapter are non-intrusive. This transformation simply means
that the attributes used as keys for the Match operator are added to the read set Ry of UDF f to
construct the read set of the function Ry

Using the above transformations, plans that contain Match, Cross, and Map operators are equiv-
alent to plans that contain only Map operators and Cartesian products. Therefore, it only remains
to establish when the latter two can be reordered:

Theorem 3. A Map operator with UDF f and a Cartesian product operator R X S can be re-
ordered as

Map (R x) =Map(R) x S

iff (RFUW,) NS = 0, where S is the attribute set of S. The case of pushing the operator to the
other side of the Cartesian product is symmetric.

The proof follows directly from the fact that (RFUW,)NS =0 = f(r|s) = f(r)|s.

It is straightforward to construct the conditions that allow reordering for Match, Cross, and Map
operators using Theorems [T and [3] We now show the proof for reordering two Match operators
with first order functions f, g, and key attributes Ky, K, as a series of transformations as shown

in Figure [4.2]

Step (a) — (b) substitutes the Match operators with their Map and Cartesian product equiva-
lents. Step (b) — (c) reorders Map with the Cartesian product with 7. For plans (b) and (c)
to be equivalent it is necessary that f” does not use attributes of 7 ((Ry UWy) N'T = 0). Step
(c¢) — (d) makes use of the conditions of Theorem (namely the ROC condition on UDFs f,g)
to reorder the two Map operators, and reorders the two Cartesian products using the normal as-
sociativity rule. Step (d) — () pushes Map,, under the Cartesian product, requiring the condition
(Rg UWg) NR = 0. Finally, step (e) — (f) reconstructs the Match operators. By collecting the
conditions needed by the series of transformations, we arrive at the conditions to reorder two
Match operators.

82

4.2 Reorder Conditions for MapReduce-style UDFs

Map,, Map
Map,, 8 f Map ¢
‘pg | | ‘pf
« Map ;/ Map, «
N ! ! N

Match, Mapy T X x R Map, Matchy
Matchy T X x T R X X R Match,
AN\ /\ /N /N /\ A\
R S R S R S ST ST ST

(a) (b (© (@ (e ®

Figure 4.2: Reorder transformation of two Match operators. Requires that f* and g’ fulfill the
ROC condition and (Ry UWy) NR = 0.

Lemma 1. Two Match operators with UDFs f, g and key sets Ky C RUS,K, C SUT can be
reordered iff the ROC condition holds for f',¢', (Rp UW;)NT =0, and (Ry UW,) NR =10
where Ry = Ry UKy, and Ry = Rg UK.

By repeating the same process for each pair of Match, Cross, and Map, we establish similar
conditions for all combinations of these operators.

Key-at-a-time Operators Incorporating KAT operators (Reduce and CoGroup) requires
stricter conditions, since groups must be preserved. We first show how to reorder a Reduce
operator with a Cartesian product.

Theorem 4. A Reduce operator with UDF g and key KUS and a Cartesian product operator
S % T can be reordered as

Reduce, kus(S x T) = S x Reduce, k(T)

iff (R;UW,) NS = 0 and all records of S are unique, i.e., S = [s1,...,s,), withi, j=1,...,n,i #
Jj =i #Sj.

Proof. Assume the datasets S=[s1,...,s,], withi, j=1,...,n,i# j=s;#sjand T =[t1,...,1,].
The key of the Reduce operator KUS includes all attributes of data set S. Note that K C T. Every
record of the Cartesian product can be written as s;|k;|f;, where k; is the part of the T record
with attributes K, and #; is the part of an 7' record with non-key attributes. Every record s; k|,
of the Cartesian product belongs to the same Reduce group G;;, determined by s; and k; only.
The output of the plan is [g(G;), Gij = {si|kj|t;}]. Assume that g does not use any attribute of
S for any purpose other than grouping its input data set. Then, it is safe to “push” Reduce, to
the data set T and remove the S part of the Reduce key. This will produce groups G; = {k;|z; },

83

4 Optimizing Data Flows with UDFs

and the output of the Reduce operator will be [g(G)]. By performing the Cartesian product of
these groups with S, we get the set of records s;|g(G;). If the Reduce UDF g simply emits the S
attributes unchanged, we have s;|g(k;|t) = g(silkj|te)- O

Using the above transformation, we can, in principle, reorder Reduce with Match and Cross
operators by transforming the latter to Map operators over Cartesian products. It is rather seldom
that the Reduce key includes all attributes of a data set. However, we can consider special cases
where it is safe to add the S attributes to the Reduce key without changing the result. One case
is when |S| = 1. This appears quite often in practice when implementing SQL queries with
correlated subqueries that return a single tuple. More interestingly, using Theorem [] as basis,
we can arrive at a Match-Reduce transformation similar to the invariant grouping transformation
in relational DBMSs [51]]. Assume the plan

(a) Reduceg p(Matchygk—7r(S,7))

where the Match keys are K C S, F C T, and the Reduce key is a superset of F. Assume that
each record in S is uniquely identified by its K attributeﬂ Then, in every record received by
the Reduce operator, the F part uniquely determines all S attributes due to the join condition
implied by the Match keys. We can therefore add S to the key of the Reduce operator without
changing the Reduce groups, and apply Theorem [to push the Reduce under the Match. As
always, the ROC and KGP conditions must hold in order to reorder the Reduce and Map UDFs.
The transformation steps taking plan (a) above as the starting point are shown in Figure[4.3]

Reduceg Fus Map Map ¢
\ [\
Reduceg Mapf/ Reduceg Fus X Matchy s k=T.F
\ \ \ N T
Matchysk=1F X X S ReducegF S ReducegF

N\ /N /N \ \
ST ST ST T T

(@ (b) © () ©

Figure 4.3: Reorder transformation of a Match and a Reduce operator. Requires that (1) the
ROC condition holds for f’ and g, (2) f’ fulfills the KGP condition for FUS, (3)
(RgUW,)NS =0, and (4) records in S are uniquely identified by their K attributes.

The last step is to incorporate CoGroup operators. We note that a CoGroup operator can be
conceptually transformed to a Reduce operator over the tagged union SU* T of its inputs S, T":

CoGroup,(S,T) = Reducey (SU"T)

'Uniqueness properties of attribute sets can be passed to the PACT optimizer via optimizer hints.

84

4.2 Reorder Conditions for MapReduce-style UDFs

The tagged union of two data sets S and T is simply the data set S followed by the data set T,
where each record has an additional lineage attribute [, which tracks the data set that the record
originates from. The CoGroup UDF g is properly annotated to distinguish between data sets
based on the lineage attribute, yielding the Reduce UDF g'.

Map and Reduce operators can be pushed down under the tagged union S U* T if their UDFs
operate only on one of the tagged union’s inputs. This can be properly detected using the lineage
attribute /. For example, assume that we want to push a Map operator with UDF f under the
tagged union SU* T, and that f uses only S attributes. We can define a UDF fs as

fs(s) = {f(s) fsl=S

s otherwise.

thus forcing the Map UDF f to ignore T records. This transformation yields

Map, (SU"T) =Map(S)U* T

and allows the following series of transformations that show how a Map operator can be re-
ordered with a CoGroup operator as depicted in Figure

Reduce
I
Map, Reduce,y u*
\ \
Map , Reducey Map ;.)\ CoGroup,
| | | PN
CoGroup, u* U* Map, T Map, T
AN /\ /\ ! !
ST ST ST S S

(a) (b) () (d) (e)

Figure 4.4: Reorder transformation of a Map and a CoGroup operator. Requires that (1) the ROC
condition holds for fs and g’, (2) fs fulfills the KGP condition for the grouping key
of the Reduce operator, and (3) (RFUW,)NT =0.

Step (a) — (b) replaces CoGroup with its Reduce equivalent. Step (b) — (c) uses the conditions
of Theorem 2] to reorder the Map and Reduce operators and transforms Map’s UDF f to fs. Step
(c) — (d) pushes the Map operator under the tagged union by reversing the previous transfor-
mation. Finally, step (d) — (e) reconstructs the CoGroup operator and transforms fs back to

f.

85

4 Optimizing Data Flows with UDFs

4.2.4 Possible Optimizations

We have presented sufficient conditions to reorder pairs of PACT operators. These conditions
are usually the ROC and the KGP conditions, together with some restrictions on the key of the
Reduce operator.

These conditions lead to a number of possible optimizations. First, assuming a straightforward
implementation of an acyclic SQL query as a PACT program, our conditions enable many of the
join and selection reorderings that RDBMS optimizers perform. Second, we enable the invariant
grouping transformation [51], the most elementary form of aggregation push-down. More ad-
vanced transformations that include group-by considered by RDBMSs assume knowledge of the
nature of the aggregating function, and are thus of limited applicability in settings of arbitrary
UDFs as ours [52].

We do not support reorderings that need semantic information to be established, including as-
sociative side-effects. For example, we cannot reorder two Map functions that add a constant
number to the same field. In addition, the fact that we evaluate the sufficient conditions for re-
ordering through static code analysis poses further restrictions to the possible optimizations (see
Section [4.3|for details).

86

4.3 Obtaining Reordering Information with Static Code Analysis

Record API method Description
$or=new OutputRecord() Creates an empty output record $or.
$or=new OutputRecord($ir) Creates a new output record $or by copying an

input record $ir.
$or2=new OutputRecord($or,$ir) | Creates a new output record $or2 by merging an
input record $ir and an output record $ir.

$t:=getField($ir,n) Reads the n-th field of input record $ir into the
temporary variable $t.

setField($or,n,$t) Sets the n-th field of output record $or to the
value of the temporary variable $t.

setField($or,n, null) Projects the n-th field of output record $or by set-
ting its value to null.

emit ($or) Emits the output record $or from the user-defined
function.

Table 4.1: Record API methods

4.3 Obtaining Reordering Information with Static Code
Analysis

The reordering proofs presented in the previous Section {.2] assume knowledge of a global
record, read and write sets for each operator, as well as bounds on the output cardinality. In
this section, we present our solution to conservatively estimate this information using static
code analysis (SCA) techniques.

Our solution relies on a static code analysis framework to get the bytecode of the analyzed UDF,
for example as typed three-address code [6]. The framework must provide a control flow graph
(CFG) abstraction, in which each code statement is represented by one node along with a func-
tion PREDS(s) that returns the statements in the CFG that are “true” predecessors of statement
s, i.e., they are not both predecessors and descendants. Finally, the framework must provide
two methods DEF-USE(s,$v) and USE-DEF(s, $v) that represent the Definition-Use chain of
the variable $v at statement s, and the Use-Definition chain of variable $v at statement s respec-
tively. The Use-Definition chain USE-DEF(s,$v) of a statement s and variable $v is a list of
all possible definitions of variable $v that reach s without being overridden by other definitions.
The Definition-Use chain DEF-USE(s, $v) of a statement s and a variable $v is a list of all uses
of $v as defined by statement s. Any SCA framework that provides these abstractions can be
used.

For the remainder of this section, we assume that the UDF code is formatted as typed three-

address code [6]. The possible statements in three-address code are definitions of a local (e. g.,
int i) or a temporary (e.g., int $t) variable, assignment (e.g., $t:=3), branching (e.g.,

87

4 Optimizing Data Flows with UDFs

Algorithm 1 Read-Set approximation for a UDF f
1: function APPROXIMATE-READ-SET(f)

2 Ry = 0

3 G = all statements of the form g:$t=getField ($ir,n) in function f
4: for gin G do
5

6

if DEF-USE(g, $t)# 0 then Ry = Ry U {n}

return Ry

if ($t<3) goto label), as well as basic arithmetic and method calls. In addition, we as-
sume the existence of an attribute type, Attribute, as well as record types InputRecord, and
OutputRecord, and a set of methods that operate on these types, i. e., methods to create, access,
modify, and emit records from user-defined functions. These methods constitute the assumed
Record API, which is exposed to the programmer of PACT programs. Table.|lists the methods
of the Record API.

Since the Record API accesses record fields by index, we need a mapping from field indices to
the attributes of the global record A. For this purpose we define an input redirection map o(f,n),
which maps every field index n € N of the input of a function f to the corresponding attribute
in the global record A. Equivalently, we define an output redirection map ®(f,n), which maps
every field index n € N of the output of a function f to the corresponding attribute in the global
record A.

We continue to present our solution to approximate read sets, write sets, and bounds on the
output cardinality of user-defined functions using static code analysis techniques. Finally, we
discuss the safety of our approach to automatically extract information from user code.

4.3.1 Estimating Read Sets

We estimate the read set Ry of an operator by scanning its UDF’s code for statements of the
form s:$t:=getField($ir,n). We assume that integer n is statically computable. Recall
that the n-th field of an input record of a function f corresponds to attribute & (f,n) of the global
record. We then look up all uses of the temporary variable $t in the code using the data structure
DEF-USE($t). If such uses exist, then we add the attribute ¢t(f,n) to Ry.

Algorithm [I] gives the pseudocode to extract read set information from a UDF f. The algo-
rithm starts with an empty read set R (line . Subsequently, all statements of the form $t :=
getField($ir, n) are enumerated (line[3). Each statement refers to a field n that is read into
a variable $t. A field n is added to the read set Ry if its corresponding variable $t is somewhere
used in the UDF (line [5).

88

4.3 Obtaining Reordering Information with Static Code Analysis

4.3.2 Estimating Write Sets

Estimating the write set W ¢ of an operator is more challenging than read set estimation since also
implicit modifications must be taken into account. Our Record API provides two constructors to
create an output record $or. First, a copy constructor $or=new OutputRecord($ir) to copy
an input record $ir. Second, the default constructor $or=new OQutputRecord() to create a new
and empty output record $or. The subtle difference is that the first constructor implicitly copies
all attributes of the input record (Implicit Copy) while the second method implicitly projects
all attributes (Implicit Projection). In addition, the API provides methods to explicitly copy,
project, modify, and add single attributes to output records. Therefore, the code analysis method
to estimate write sets must identify whether a user function implicitly copies or projects, and
estimate a complementary set of explicitly projected or copied attributes. In addition, a set of
modified and added attributes must be derived.

In order to identify the implicit operation and the attribute sets required for the write set esti-
mation, we start by collecting all statements of the form e:emit ($or), which emit the output
record $or. We track the origin of $or and can safely identify the implicit operation by identify-
ing the constructor call. If both constructors are used in different code paths, implicit projection
is the safe choice. Subsequently, the remaining attribute sets are estimated by collecting all
statements s:setField($or,n,$t). Explicit projections can be identified if $t is null. Ex-
plicit copies require that $t was previously set by 1: $t:=getField($ir,n). This can be easily
detected by looking at USE-DEF($t). In all other cases, statement s defines an explicit modifi-
cation operation and is added to the appropriate set. Note that it is always safe to consider s as an
explicit modification. Our implementation includes an additional record constructor $or=new
OutputRecord($or,$ir) that creates a new output record by merging the fields of an input
record and an output record in order to support efficient binary UDFs. This constructor yields
an implicit copy operation for the input record.

By looking at all statements s, we can also keep track of the global record. An attribute B =
B(f,n) at index n of an output record of a function f is added to the global record if it is not
included in the set of input attributes of f,i.e., B ¢ | /-

Algorithm |2} shows the pseudocode to approximate, i. €., compute a superset of the write set Wy
of a UDF f. It computes four sets of indices, O, E¢,Cy, Py from which eventually an approxi-
mation of f’s write set Wy is assembled. The origin set Oy of UDF f is a set of input indices.
An index o € Oy means that all fields of the o-th input record of f are copied verbatim to the
output. This is necessary to track the origin of fields in case of UDFs with more than one input,
such as Cross or Match. The explicit modification set Ey contains the indices of all fields that are
modified and then included in the output. The copy set C; contains the indices of all fields that
are copied verbatim from one input record to the output. Finally, the projection set Py contains
fields that are projected from the output, by explicitly being set to null. The write set is com-
puted from these sets using the function ASSEMBLE-WRITE-SET (lines [35]39). All fields in E¢

89

4 Optimizing Data Flows with UDFs

Algorithm 2 Write-Set approximation for a UDF f

1: function APPROXIMATE-WRITE-SET(f)

2 E = all statements of the form e:emit ($or) in function f

3 (Of,Ef,Cy,Pr) = VISIT-STMT(ANY(E), $or)

4 for e in E do

5: (0¢,E,,C,,P,) = VISIT-STMT(e, $or)

6 (Of,Ef,Cs,Pr) = MERGE((Oy, Ef,Cy, Py), (Oc, Ee, Ce, Fe))
7 return ASSEMBLE-WRITE-SET(f,0y,Ey,Cy, Py)

8

9

: function VISIT-STMT(s, $or)
if VISITED(s, $or) then
10: return MEMO-SETS(s, $or)
11: VISITED(s, $or) = true
12: if s of the form $or = new OutputRecord() then
13: return (0,0,0,0)
14: if s of the form $or = new OutputRecord($ir) then
15: return (INPUT-ID($ir),0,0,0)
16: P; = PREDS(s)
17: (Oy,E;,Cs, Ps) = VISIT-STMT(ANY(F), $or)
18: for p in P; do

19: (0p,E,,Cp,P,) = VISIT-STMT(p, $or)

20: (OMEHCWI)S) = MERGE((OMEMCHPSL (OpaEpaclhpp))
21: if s of the form $or = new OutputRecord($or, $ir) then
22: return (O; UINPUT-ID($ir), E;,C;, P;)

23: if s of the form setField($or, n, $t) then

24: T =USE-DEF(s, $t)

25: if all t € T of the form $t=getField($ir,n) then

26: return (O, E;,CsU{n}, Fy)

27: else

28: return (O;, E;U{n},Cs, F;)

29: if s of the form setField($or, n, null) then

30: return (O, E;,Cs, P U{n})

31: function MERGE((O],E],C],Pl), (OQ,EQ,CQ,PQ))

32: C = (CiNG)U{x|x € C1,INPUT-ID(x) € O3}

33: U {x|x € G2, INPUT-ID(x) € O;}

34: return (O; N0y, E) UE,,C,PLUP,)

35: function ASSEMBLE-WRITE-SET(f,Oy,Ef,Cy, Py)

36: Wy =EfUPs

37: for i € INPUTS(f) do

38: if i ¢ Oy then Wy = W, U (INPUT-FIELDS(f,1) \ C¢)
39: return Wy

90

4.3 Obtaining Reordering Information with Static Code Analysis

and Py are explicitly modified or set to null and therefore in Wy. For inputs that are not in the
origin set Oy, we add all fields of that input which are not in Cy, i. e., not explicitly copied.

To derive the four sets, function APPROXIMATE-WRITE-SET finds all statements of the form e:
emit ($or) in function f, which include the output record $or in the output (line [2). It then
calls for each statement e the recursive function VISIT-STMT that recurses from statement e
backwards in the control flow graph (lines 3}6). The function performs a combination of reverse
data flow and control flow analysis but does not change the values computed for statements once
they have been determined. The function ANY returns an arbitrary element of a set.

The interesting part of the algorithm is listed between lines of the algorithm. First, the
algorithm finds all predecessor statements of the current statement, and recursively calls VISIT-
STMT. The sets are merged using the MERGE function (lines [31}{34). MERGE provides a con-
servative approximation of these sets, by creating maximal E, P sets, and minimal O,C sets.
This guarantees that the data conflicts that will arise are a superset of the true conflicts in the
program. When a statement of the form setField($or, n, null) is found (line 29), field n
of the output record is explicitly projected, and is thus added to the projection set P. When a
statement of the form setField($or, n, $t) is found (line23)), the USE-DEF chain of $t is
checked. If the temporary variable $t came directly from field n of the input, it is added to the
copy set C, otherwise it is added to the explicit write set E. When we encounter a statement
of the form $or = new OutputRecord() (line[12)), we have reached the creation point of the
output record, where it is initialized to the empty record. The recursion then ends. Another
base case is reaching a statement $or = new OutputRecord($ir) (line[I4) where the output
record is created by copying all fields of the input record $ir. This adds the input id of record
$ir to the origin set 0. A $or = new OutputRecord($or, $ir) statement (line [21) results
in an inclusion of the input id of the input record $ir in the origin set O, and a further recursion
for the output record $or. The algorithm maintains a memo table MEMO-SETS to support early
exit of the recursion in the presence of loops (line[9). The memo table is implicitly updated at
every return statement of VISIT-STMT.

Function VISIT-STMT always terminates in the presence of loops in the UDF code, since it will
eventually find the statement that creates the output record, or visit a previously seen statement.
This is due to PREDS always exiting a loop after visiting its first statement. Thus, loop bodies
are only visited once by the algorithm. The complexity of the algorithm is O(en), where n is the
size of the UDF code, and e the number of emit statements. This assumes that the Use-Def and
Def-Use chains have been precomputed.

When estimating write sets, we need to distinguish between record-at-a-time and key-at-a-time
operators. While RAT operators receive only a single input record per input, KAT operators
such as Reduce and CoGroup receive a group of records per input. All records of a group can
have different attributes values, except for the key attributes on which the records are grouped.
Hence, key attributes are the only attributes which can be possibly constant in KAT operators.
When estimating the write set of an operator, we compute a super set of the actual write set. For

91

4 Optimizing Data Flows with UDFs

KAT operators, the estimated write set always includes all non-key attributes. This guarantees
that only key attributes are treated as constant.

4.3.3 Estimating Output Cardinality Bounds

The lower and upper bound on the output cardinality of a UDF can be derived by another pass
over the UDF code. We determine the bounds for each emit statement e and combine those
to derive the bounds of the UDF. For the lower bound |ECy|, we check whether there is a
statement before statement e that jumps to a statement after e. If there is none, the emit statement
will always be executed and we set [ECy| = 1. If such a statement exists, statement e could
potentially be skipped during execution, so we set |[ECy| = 0. For the upper bound [ECy|, we
determine whether there is a statement after e that can jump to a statement before e. If yes, the
statement could be executed several times during the UDF’s execution, so we set [ECy| = +oo.
If such a statement does not exist, statement e can be executed at most once so we set [ECy| = 1.
To combine the bounds we choose for the lower bound of the UDF the highest lower bound over
all emit statements and for the upper bound the highest upper bound over all emit statements.

Algorithm 3 Computation of output cardinality bounds for a UDF f
: function APPROXIMATE-OUTCARD-BOUNDS(f)

1

2 E = all statements of the form e :emit ($or) in function f

3 |ECy], [ECF] =0

4 for e in E do

5: (lEC.|,[EC,]) = GET-CALL-BOUNDS(e)

6 if |[ECy| < |EC,] then |ECy]| = |EC,]

7 if [ECy] < [EC,] then [ECy| = [EC,]

8 return (|ECy|,[ECy])

9: function GET-CALL-BOUNDS(e)
10: |EC.|,[EC.| =1
11: C = all statements of the form g:if (condition) goto(l) in function f
12: for cin C do
13: j = the statement that the condition statement ¢ jumps to
14: if (c € PREDS(e)) AND (e € PREDS(j)) then |[EC,| =0
15: if (j € PREDS(e)) AND (e € PREDS(c)) then [EC,| = +oo

16: return (|EC,|,[EC,))

Algorithm [3] gives the pseudocode to extract output cardinality information from a user-defined
function. APPROXIMATE-OUTCARD-BOUNDS determines all statements that emit records from
the user-defined function, i.e., all statements of the form emit ($or) (line 2). For each of
these statements, the function GET-CALL-BOUNDS returns individual output cardinality bounds
(line[5). The bounds of the user-defined function are computed as the maximum of all individual

92

4.3 Obtaining Reordering Information with Static Code Analysis

statements bounds (lines [6] and [7)) and returned (line [§). Function GET-CALL-BOUNDS de-
termines the output cardinality bounds of an emit statement by checking for each conditional
statement (lines whether it might jump behind the emit statement (line [I4) or jump in
front of it (line[I5). The former might result in skipping the statement, i. e., a lower bound of 0,
and the latter might cause a repeated execution of the statement, i. e., an upper bound of +co.

4.3.4 Guaranteeing Safety

The most important property of any method that relies on static code analysis is to guarantee
safety. In our setting, safety is defined as follows: Our analysis algorithm creates a set of
properties, which in turn lead to a certain set of possible reorderings. These reorderings result
in a set of plans P’ equivalent to the initial plan p. Our method is safe if each p’,p’ € P’ and p
produce the same query result for every possible input /.

We guarantee safety through conservatism. In particular, we guarantee that the properties dis-
covered by our static code analysis algorithm are supersets of the true properties of any execution
of the program for any collection of input data sets. We achieve this by considering all possible
execution paths of operators, and adding an attribute to the global record, and the read and write
set of an operator when in doubt. Since the discovered properties are supersets of the real proper-
ties, they cause additional conflicts (see Section[4.2)) leading to a subset of the valid reorderings,
and thus to a subset of the true equivalent alternative plans.

93

4 Optimizing Data Flows with UDFs
4.4 Plan Enumeration

In this section, we present an algorithm that, for a given data flow, enumerates all data flows that
can be derived by valid pairwise reorderings of operators. The algorithm differs significantly
from the well-known enumeration algorithms used in traditional relational database optimizers,
namely enumeration via top-down, branch-and-bound [82,97]] or bottom-up, dynamic program-
ming [[163, [186]]. This is due to the difference in the algorithm’s input. Traditional relational
optimizers operate on algebraic expressions on which heuristics such as selection and projection
push-down can be applied and from which data structures such as join graphs can be derived. In
contrast, the PACT optimizer does not receive a logical representation of the program but only
a specific data flow instance. The enumeration algorithm must be able to generate all valid re-
ordered data flows given this specific data flow instance. In the presented version, the algorithm
is restricted to tree-shaped data flows, i. e., an operator may only have a single ancestor.

Algorithm [provides pseudocode to enumerate all valid alternatives for a given data flow. The
algorithm is based on recursive calls to enumerate alternatives for sub-flows and the exchange
of two neighboring operators. In the listing, data flows and sets of data flows are denoted with
capitalized names while operators and sets of operators have lowercased names. The functions
getRoot(D) and rmRoot(D) return or remove the root of the data flow D, while addRoot(D,
r) appends r as root of D and setRoot(D, r) replaces D’s root with r. For ease of exposition,
the algorithm as shown handles data flows with single-input operators only. However, it can be
easily extended to deal with non-unary operators, and our implementation can, in fact, handle
binary operators.

We discuss the algorithm and argue that it computes all valid reordered data flows with the help
of an example data flow D = [Src — Map; — Map, — Maps]. The flow consists of a data source
Src and three Map operators with Map; being the root. We assume that all Map operator pairs
can be reordered except for Map, and Map;. The algorithm starts by recursively enumerating all
reordered alternatives Alts_, for D_,, which is the input data flow D minus the root operator r

(Maps) (Line|[T8):
Alts_yap, = Enum-Alternatives([Src — Map; — Map,))
= {[Src — Map, — Map,|,[Src — Map, — Map, |}

The result of the first recursive call Alts_, is used for two purposes. First, to enumerate a subset
of the result Alts, namely all reordered flows with the original root r. This is achieved by simply
appending the root r (Map;) to each computed alternative A_, € Alts_, (Line [21):

Alts = {[Src — Map; — Map, — Maps|} U
{[Src — Map, — Map; — Map;]}

Second, Alts_, is used to retrieve candidate root operators s that can be reordered with r. For
each root s of the computed alternatives A_, € Alts_,, the algorithm checks whether it can be

94

4.4 Plan Enumeration

Algorithm 4 Enumeration of alternative data flows

1:
2
3
4:
5:
6.
7
8
9

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:

22:
23:
24:
25:
26:
27:

28:
29:

function ENUM-ALTERNATIVES(D)

input: data flow D
output: all possible data flows derived by reordering of D
Alts = mTab.get(getMTabKey(D)) // check memoTable
if (Alts #~ 0) then
return Alts
r = getRoot(D) // get root r of D
if (r is data source) then
Alts = {r}
else if (r is data sink) then
D_, = rmRoot(D)
Alts_, = Enum-Alternatives(D_,)
for (A_, € Alts_,)do// add rtoeach A_,
Alts = Alts U {addRoot(A_,, 1)}
else if (7 is single-input operator) then
cand =0
D_, = rmRoot(D)
Alts_, = Enum-Alternatives(D_,)
for (A_, € Alts_,) do
s =getRoot(A_,) // get candidate root s
Alts = Alts U {addRoot(A_,,r)} //addrto A_,
if (s ¢ cand N reorderable(r,s)) then
cand = cand U {s} // enum candidate s only once
D_; =setRoot(A_,,r) // replace s by r
Alts_g = Enum-Alternatives(D_y)
for A_; € Alts_; do // append s to each A_;
Alts = Alts U {addRoot(A_s,s)}

mTab.put(getMTabKey(D), Alts)
return Alts

reordered with the original root r (Map;) by calling the Boolean function reorderable(r,s)
(Line 22)). In our example, this is only true for s = Map, and r = Map; since Map; and Map,
cannot be reordered. Therefore, Map; replaces Map, as root of A_, = [Src — Map, — Map,| ,
i.e., r is pushed down to data flow D_; (Line[24):

D_yap, = [STc — Map, — Maps]

The successive recursive call Enum-Alternatives(D_;) enumerates all valid reorderings for
the D_; (Line25):

Alts_yap, = Enum-Alternatives([Src — Map, — Maps])

= {[Src — Map, — Map;]|}

The result set Alts is amended by all valid reorderings that have s as root. This is achieved by

95

4 Optimizing Data Flows with UDFs

simply appending s to all reordered flows A_; € Alts_; (Line[27):
Alts = Alts U {[Src — Map, — Map; — Map, |}
Finally, all computed alternatives Alts are returned:

Alts = {[Src — Map; — Map, — Maps],
[Src — Map, — Map; — Maps],
[Src — Map, — Map; — Map, |}

In order to avoid duplicate enumerations, the algorithm may only descent once into recursion for
each distinct root candidate s (Lines [I6] [22] [23)). The use of a memo table reduces the number
of recursive descents and improves the enumeration time (Lines [[28).

The enumeration algorithm can also be easily integrated with a Volcano-style physical optimizer
using interesting properties as described in [23,197]). Instead of computing and returning all valid
reordered data flows, the Enum-Alternatives() function can be adapted to compute the least
expensive physical execution plan for each interesting property. Additionally, the algorithm must
take care that at least one plan for each possible root node s of a sub-flow is returned, in order to
enumerate all possible reorderings. Physical execution plans are generated by recursively com-
puting the least expensive execution plans for sub-flows, choosing local and shipping strategies
only for the root node, and connecting it to the sub-plan. Interesting properties can be tracked
during recursive descent and be used to enumerate physical execution plans for sub-flows. By
integrating cost-based physical optimization in the enumeration algorithm, the principle of opti-
mality can be exploited which effectively reduces the number of enumerated alternatives.

In contrast to optimization of relational queries, our approach for enumerating reordered data
flows is limited by the choice of the initial data flow. For some queries, such as queries that
include circular join graphs, the initial data flow already implies a plan decision that cannot be
changed by reordering operators.

96

4.5 Evaluation
4.5 Evaluation

We implemented a prototype to evaluate our approach for data flow optimization. The prototype
is based on the Stratosphere system, which is available as open source [195 Furthermore,
we implemented data processing tasks from different domains as PACT programs to experimen-
tally evaluate and validate our approach. These include relational OLAP, as well as weblog
clickstream processing and biomedical text mining. Our experimental evaluation covers the fol-
lowing aspects. First, we assess the optimization potential for parallel data flows. Second, we
evaluate the plan space enumerated by our optimizer. Third, we discuss the overhead of the plan
enumeration algorithm. Finally, we verify that static code analysis can be used to derive the
necessary properties for reordering UDFs.

We start discussing our prototypical implementation and present the PACT programs used for
evaluation before we show and discuss experimental results.

4.5.1 Experimental Setup

The existing optimizer of Stratosphere performs cost-based physical optimization as known
from parallel relational optimizers, i. e., it selects data shipping and execution strategies, such as
broadcasting and hybrid-hash joins, for a given data flow [23]. The cost model is a combination
of network I/O, disk I/O, and CPU costs of UDF calls. For result size and cost estimations, the
optimizer relies on hints, such as “Average Number of Records Emitted per UDF Call”, “CPU
Cost per UDF Call”, and “Number of Distinct Values per Key-Set”. These can be provided by
the user, a language compiler (e. g., Hive or Pig), or obtained by runtime profiling.

In order to implement our prototype, we adapted the optimization process of Stratosphere’s
optimizer in the following ways. Prior to plan enumeration, the optimizer obtains information
about the UDFs which is required to reason about reorderability of operators. This information
can be provided by manually attached annotations or derived by an SCA component. Our SCA
component is based on the Soot framework [189]], which provides all features required by our
code analysis technique (see Section [£.3). It also takes care of establishing the global record.
After the information has been obtained, all valid alternative data flows are computed using the
enumeration algorithm presented in Section[4.4] The existing cost-based optimizer [23] is called
for each alternative to choose shipping and local strategies and compute a cost estimate. Finally,
the cheapest plan is selected and returned for execution.

We perform our experiments on a cluster of four machines each being equipped with two Intel
Xeon E5530 Quadcore CPUs, 48 GB RAM, and ten 250 GB disks for data bundled in a RAIDS.
The machines are connected with 1 GBit Ethernet and run Linux (Ubuntu Server 10.04.3 LTS),
Sun Java 6, and HDFS 0.20.2. We execute all tasks with a degree of parallelization of 32.

2Stratosphere evolved into Apache Flink [84]).

97

4 Optimizing Data Flows with UDFs

4.5.2 Evaluation Programs

We evaluate our approach using four tasks from different domains. Algebraic optimization of
relational queries is best known from relational DBMS but also applied in the context of parallel
data flow systems by higher-level languages, such as Hive [199], SCOPE [47]], and Tenzing [49].
In order to show the effectiveness of our approach, we implemented two queries of the TPC-H
benchmark for evaluation. Parallel data flow engines are commonly used for non-relational
tasks. We show the applicability of data flow optimization for such domains by providing two
non-relational tasks, namely biomedical text mining and weblog clickstream processing. All
four tasks are implemented as handcrafted PACT data flows. In this section, we shortly present
all tasks and their implementations.

Relational OLAP We implemented slightly modified variants of queries 7 (where we reduced
the selectivity of the shipdate filter and removed the final sorting) and 15 (where we removed
the filter on total_revenue) from the TPC-H benchmark to cover relational analytical tasks.
For our experiments, we run both queries on a 400 GB TPC-H data set. Query 7 applies a local
predicate on the lineitem relation, joins six relations with circular-connected join predicates, and
finally performs a grouping with sum aggregation. Figure [4.5(a) shows our PACT implemen-
tation. All joins are implemented as Match operators except the join with the disjunctive join
predicate (nation; X natiomnp), which is implemented as a filtering Map operator. Grouping
and sum aggregation are realized as a Reduce operator. Query 7 was chosen to demonstrate the
join reordering capabilities of our approach.

Our query 15 applies a local predicate on the lineitem relation, joins it with the supplier table,
and groups and aggregates to compute the final result. We implemented the local predicates
as a Map, the join as a Match, and the grouping and aggregation as a Reduce operator (see
Figure [4.6[a)). Note that the join predicate and the grouping clause reference the same attribute
(s_key). As shown in Section [4.2.3] this is a necessary condition to reorder a Match and a
Reduce operator. We selected query 15 as an example to showcase that our approach is able to
push an aggregation past a join.

Text Mining We implemented a text mining task that detects relationships between genes
and drugs described in biomedical text corpora. The data flow is a pipeline of Map operators,
which extract entities and relationships by applying several natural language processing (NLP)
algorithms to the input. Our program takes a text collection as input and performs some lin-
guistic preprocessing, e. g., tokenization and part-of-speech tagging on the input to enable entity
and relation extraction. In order to reduce intermediate result set sizes, each entity or relation
extraction component also works as a filter by forwarding only those records that actually con-
tain a gene, drug, or relation mention. Most NLP components are compute-intensive and call
third-party machine learning or automaton-based libraries. Furthermore, most components have

98

4.5 Evaluation

(a) Reduce y ;1 2,

year,Y vol
\
Mapo'(nl:x/\n2=y) (b) Reduce Y nln2,
V(nl=yAn2=x) year,} vol
[\
Match pq n2 Mapcr(nl:x/\n2:y)
A V(nl=yAn2=x)
[
Match, g 51 nation) Match; g 51
Match, o ¢ nation; Match; nation;
Match; o customer Match, ¢ Matchg o 2
Match; g orders Match; gy customer supplier nation;
Mapa(dau?a) supplier Mapa(dau?a) orders
N(date<b) N(date<b)
[[
lineitem lineitem

Figure 4.5: PACT data flows of Query 7: (a) Implemented data flow, (b) 1st-ranked reordered
data flow.

dependencies on other components to be executed in advance. These dependencies limit the set
of valid reordered data flows. Optimization potential arises from different filter selectivities and
varying execution costs for the text mining components. We execute the text mining data flow
on a 425 MB subset of the PubMed data set.

Clickstream Processing Weblog processing is a common example of non-relational data
flows [87]. We implemented a task that processes web shop clickstream data (see Figured.7|(a)).
The task extracts click sessions that lead to buy actions and augments them with detailed user
information. Such tasks are common preprocessing steps for data mining algorithms. In our
scenario, a clickstream entry contains an IP address, a timestamp, and a visited URL. The URL
encodes a session id, and the performed user action. The first Reduce operator filters on sessions
that include at least one buy action. The successive Reduce operator condenses a session into
a single record. The following Match operator joins by session id with a relation that resolves
session ids to ids of logged in users, thereby selecting only sessions with logged in users. Finally,
a second Match operator appends detailed user information by joining on the user id. For our
experiments, we ran the task on 430 GB click, 13.8 GB login, and 9.2 GB user_info data.

99

4 Optimizing Data Flows with UDFs

(a) Matchy g (b) Reduce v s_key,
/\ Y revenue
\
supplier Reduce y gy, Matchg
Zreveriue
\ /\
Mapc(dateza) supplier MaPG(daIeZa)
N(date<b) N(date<b)
| |
lineitem lineitem

Figure 4.6: PACT data flows of Query 15: (a) Implemented data flow, (b) Data flow with Match
before Reduce.

Match (b) Match
@) Append User_Info Append User_Info
/\ /\
Match user_info Reduce user_info

Filter Logged-In Sessions Condense Sessions
|

— Reduce

Reduce

Condense Sessions login Filter Buy Sessions
| |
Reduce Match
Filter Buy Sessions Filter Logged-In Sessions
‘ N
click click login

Figure 4.7: PACT data flows of clickstream processing task: (a) Implemented data flow, (b) 1st-
ranked reordered data flow.

4.5.3 Experiments

Our evaluation addresses different aspects of our approach. First, we assess the potential of
optimizing data flows with user-defined functions by comparing the execution time of equivalent
data flows with reordered operators. Second, we analyze the space of plan choices that is covered
by our reorder conditions. Third, we briefly discuss the overhead of enumerating reordered
plan alternatives, and finally conclude our analysis by assessing the usefulness of our static
code analysis approach to extract the properties, which are required to evaluate our reordering
conditions.

Optimization Potential Query optimization as performed by modern relational DBMSs has
the potential to improve query execution time by orders of magnitude. Our first set of experi-
ments assesses the potential of our generic data flow optimization technique. We enumerate all
possible data flows for a given PACT program. Each reordered alternative is fed into the physical
optimizer where shipping and local execution strategies are enumerated, and cost estimates are
obtained. We sort the resulting plans in ascending order by their estimated costs and assign a

100

4.5 Evaluation

rank to each plan that corresponds to its position in the list. We pick ten plans in regular rank
intervals from the list and execute them. For each executed plan, we plot the cost estimate of
the optimizer and the actual execution time (averaged over three runs), both normalized by the

lowest estimated costs and averaged execution time respectively.

Figure 4.8|shows the results for TPC-H query 7. The enumeration algorithm explored a space of
2518 alternative plans. We see that the plan with the least estimated costs provides also the least
execution time with an absolute execution time of roughly 6 minutes (see Figure F.5(b) for this
plan). The last ranked plan is slower by a factor of 7 and requires the most time for execution

(about 45 minutes).

10F ~ Norm. Cost Estimate =—=1 £
Norm. Execution Runtime c ©
8 é = 5 =
> € £ S =
6 — < S IYe)
c £ Y 0 S ©
£ IS) o] s}
S - © ol <
4 = = A (Y i
c £ b = ©
€ E 2 3 =
s} < o i
2 g % =
L_m A
7 ‘30 ‘%’ ‘97 7y “ s ‘0. ‘%3 ‘:’6‘
© 7 o " v v B v e

Plan Rank

Figure 4.8: Normalized cost estimates and execution time for 10 regularly picked execution
plans of the TPC-H Query 7.

Figure 4.9 shows the estimated costs and execution time for selected plans of the text mining
task. The best plan (according to estimated costs) outperforms the worst by almost an order of

magnitude.
14 F " Norm. Cost Estimate === - = = c £
Norm. Execution Runtime s € £ € £ -
12 > T L I 3
< @ S > 3
10 5 3 © 10 b
8
6 i
c £ £ = E
4 c £ £ £ < i
® ~ < 2 <
2 0 =3 N S ©
-~ — — I s T
NEN="N= 0= 20 B
7 Q@ S [7y - s % > ¥
Plan Rank

Figure 4.9: Normalized cost estimates and execution time for 10 regularly picked execution
plans of the text mining job.

Our experiments show that reordering of data flows can lead to significant performance improve-
ments. Due to the observation that in general execution plans with higher cost estimates require

101

4 Optimizing Data Flows with UDFs

more time for execution, we can also approve the validity of the optimizer’s cost model. We note
that Stratosphere does not support indexes, columnar layouts, or materialized views yet. There-
fore, all execution plans result in full scans of all included data sets, which limits the achievable
performance improvements.

Plan Enumeration Space We continue discussing the plan enumeration space with TPC-H
query 15. Our implementation is based on a Map, a Reduce, and a Match operator (see Figure
[.6). We can exchange Match and Reduce since the ROC condition is fulfilled, Match preserves
the group cardinality because s_key is unique in the supplier relatimﬁ, and Reduce groups on
the Match key (s_key). This is essentially an aggregation push-up rewrite that could also be
applied by a relational optimizer. Besides the changed order of Reduce and Match, the rewrite
also leads to different physical plan choices.

For the data flow with Reduce being the input of Match (Figure [4.6(a)), the physical optimizer
chooses to partition the input of Reduce and establish the groups by sorting. The grouped and
aggregated result is locally forwarded into the Match operator and used to build a hash table.
Since Match operates on the same key as Reduce, the partitioning property remains and can be
reused. To compute the final result, the supplier relation is also partitioned, shipped to the Match
operator, and probed against the hash table. In fact, the optimizer could also choose to reuse the
sorting of Reduce and perform a sort-merge join for Match. However, this would require to sort
the supplier relation.

The alternative data flow with Match being the input of Reduce (Figure d.6(b)) is executed using
a different shipping strategy. In this case, Match’s lineitem input is much larger than the supplier
input, since it has not been aggregated as in the previous case. Therefore, the optimizer decides
to broadcast the much smaller supplier input to all parallel instances of Match and build a hash
table from it. The lineitem side is locally forwarded and probed against the hash table. The result
is partitioned and shipped to Reduce, which groups by sorting and computes the final result.

As previously stated, our optimizer is also able to reorder non-relational operators. Figure {.7]
shows (a) the implemented PACT program and (b) the data flow chosen by the optimizer for
the clickstream processing task. Both Reduce operators are non-relational operators. The “Fil-
ter Buy Sessions” UDF is called with all click records of a session and checks whether at least
one click performs a buy action. In that case, all click records are forwarded, otherwise none.
The subsequent “Condense Sessions” UDF collects all clicks of a session, merges them into a
single record and forwards it. Comparing the best performing and the implemented data flow,
we see that the optimizer pushed the selective join (“Filter Logged-In Sessions”) below both
non-relational Reduce operations. We are not aware of a data processing system that is able to
perform similar optimizations. Figure 4.10] gives the estimated costs and execution times of all

3We used a hint to tell the PACT optimizer about this uniqueness.

102

4.5 Evaluation

251 Norm. Cost Estimate =—= £
Norm. Execution Runtime - ~
2 E E S 1
— <2} 0
£ ™ @
~
15 £ < < .
0
&
1 4
0.5 R e e]
0
7 <@ Q@ v

Plan Rank

Figure 4.10: Normalized cost estimates and execution time for all 4 execution plans of the click-
stream processing job.

four execution plans. The best performing plan beats the implemented data flow (Rank 3) by a
factor of 1.4 or 13:47 minutes.

Our optimizer explores large fractions of the search space that conventional relational optimizers
cover, including bushy join orders (Figure[d.5), pushed aggregations (Figure 4.6), and reasoning
about interesting properties [23]]. Furthermore, we show that our approach enables optimizations
that are not supported by any current data analysis system we are aware of (Figure [4.7).

Enumeration Time Our enumeration algorithm is facing the same problem of exponential
search space sizes as relational optimizers. As previously discussed, our prototypical implemen-
tation first enumerates all valid reordered data flows and subsequently calls the physical opti-
mizer for each candidate. This implementation does not permit cost-based search space pruning
and it is not tailored towards efficient plan enumeration. In Section .4 we gave an intuition of
how to integrate the enumeration algorithm with the physical optimization step. For all queries
presented so far, which represent typical data analysis tasks, plan enumeration took less than 1.7
seconds using our naive implementation. The overhead of performing the static code analysis is
virtually zero.

Feasibility of Static Code Analysis We evaluate the feasibility of static code analysis to
determine read and write sets of UDFs. For this purpose, we compare the number of reordered
alternative data flows that were enumerated based on read and write sets which were manually
annotated and automatically derived using static code analysis. Table [4.2] gives the results for
all presented evaluation tasks. The information extracted by our prototypical implementation
of the SCA component enables the optimizer to enumerate almost all valid plans for our four
evaluation data flows. The current implementation is restricted to information that is available
at UDF compile time and can be easily accessed, such as field accesses with literals and final

103

4 Optimizing Data Flows with UDFs

PACT Task | Enumerated Orders with | Enumerated Orders with SCA
Manual Annotation

Clickstream | 4 3 (75%)

TPC-H Q7 2518 2518 (100%)

TPC-HQ15 | 4 4 (100%)

Text Mining | 24 24 (100%)

Table 4.2: Comparing number of reordered alternatives for manually annotated and automati-
cally derived read and write sets.

variables. This can be extended to more exhaustive control flow tracking and incorporation of
job configurations, which are only available at optimization time.

104

4.6 Related Work

4.6 Related Work

There is a good amount of prior work that is related to certain aspects of our approach. How-
ever, we are not aware of any work which aims to optimize data flows with unknown operator
semantics by reordering.

Optimization of user-defined functions and predicates has been extensively discussed in the con-
text of extensible RDBMSs [53| 118} [119]. This line of work only considered UDFs with strict
templates that revealed enough information about the semantics, such as user-defined predicates
or scalar functions. Hence, the challenge was not to identify whether a UDF can be reordered,
but rather when it is beneficial. Techniques to address this problem included estimation and
monitoring of UDF execution cost and selectivity.

Section [2.2.3] gave an overview of the optimization of higher-level languages, such as Pig [169],
Jaql [28]], Hive [199], DryadLINQ [206], SCOPE [47], AQL [25], and Tenzing [49]. These
approaches treat UDFs as fixed blocks in data flows and include only operators with known se-
mantics into their optimization. As a consequence, operators cannot be reordered across UDFs.
In contrast to these approaches, our work applies optimization directly to data flows without
knowledge of the operator’s algebraic properties. We view the two approaches as complemen-
tary; while we show that some optimizations can be performed at the data flow level, thus making
a data flow engine able to seamlessly handle multiple data and programming models, other op-
timizations are semantic in nature and can only be performed at a higher level. We note that
higher-level language translators can enrich data flows with reordering information based on the
operator’s semantics, hence enabling the unified optimization of operator order and physical op-
timization at the data flow abstraction. Rheinlidnder et al. [180]] presented an extensible optimizer
for data flows with user-defined operators as a follow-up of our work. The approach is based on
an extensible taxonomy of semantic operator annotations and set of transformation rules. Read
and write sets are automatically inferred and attached as semantic annotations to operators.

Starfish [121]] and Stubby [151] are approaches to optimize the execution of MapReduce pro-
grams and workflows. In contrast to our work, Starfish does neither inspect nor optimize the pro-
gram itself. Instead, it uses runtime profiling, execution simulation, and cost-based optimization
techniques to generate well-performing job configurations for Hadoop MapReduce jobs. Stubby
relies on manual code annotations to optimize workflows of multiple Hadoop MapReduce pro-
grams by reducing the number of executed MapReduce programs. This is achieved by merging
subsequent programs (vertical merging) or programs that operate on the same input data (hor-
izontal merging). Among the relevant information for Stubby are modifications of key fields.
In principle, this information could also be gathered using static code analysis under certain
conditions.

There are a few approaches that employ static code analysis for data flow optimization. Mani-
mal [[136] applies static code analysis to MapReduce programs to identify relational-style selec-

105

4 Optimizing Data Flows with UDFs

tions and projections. An optimizer selects from available B -tree indexes and decides on the
use of delta-compression. Manimal’s optimizations are orthogonal to ours (operator reordering),
and would constitute valuable additions to our system. Scope analyzes user-defined functions
to infer whether UDFs preserve existing data properties, such as partitioning or sorting [211].
In fact, this analysis could also be performed given the write sets of our approach. Scope goes
even beyond non-invasive analysis and modifies the code of user-defined function to push down
filters and projections [[106]. None of these approaches leverages static code analysis to reason
about reorderbility of UDFs.

The concept of read and write sets to detect conflicting data accesses is similar to conflict de-
tection in optimistic concurrency control methods [144] and compiler techniques to optimize
loops. Finally, we draw inspiration from the Ferry project [104]. Ferry follows an algebraic ap-
proach to push data processing instructions from the application into the DBMS by translating
general-purpose (application) code to SQL queries.

106

4.7 Summary
4.7 Summary

In this chapter, we proposed and addressed the problem of optimizing data flows that consist of
black box user-defined functions written in an imperative language. In this setting, the algebraic
properties of the operators of the data flow are unknown, and must be discovered. Our key insight
is that a handful of properties, which can be discovered using static code analysis, suffice to
establish many optimizations known from relational algebra, including filter and join reordering,
and some forms of aggregation push-down. We formally establish reordering conditions, show
how to estimate the desired properties via static code analysis, and present a plan enumeration
algorithm.

We have prototyped our solution in the Stratosphere system. Our experimental results show that
our approach is able to reorder relational and non-relational data flows, leading to performance
improvements of up to an order of magnitude. Moreover, we demonstrate that our approach is
able to perform optimizations which algebraic optimizers are not capable of. Our experiments
attest, that our static code analyzer successfully extracts properties from black box UDFs that
are required for reordering them.

107

4 Optimizing Data Flows with UDFs

108

5 Assessing the Risk of Relational Data Flows

Contents

[3.1 Analyzing the Performance of Query Plans for Changing Execution Con- |
...................................... 112

[5.1.1 Performance of Operators| 113
[5.1.2 Impact of Operator Order on Plan Performance| 116
[5.1.3 Performance of Analytical Query Plans| 120
[5.1.4 Identified Risky Plan Features| 133

5.2 Defining Plan Risk and Using it for Safe Plan Choices| 136
[5.2.1 Defining a Risk Score for Execution Plans|. 136
[5.2.2 Using Plan Risk Scores to Compute Risk-weighted Plan Costs| 137

[5.3 Predicting Risk Scores for ExecutionPlans 146
[5.3.1 A Machine Learning Approach for Plan Risk Prediction| 146
[5.3.2 Evaluation of Prediction Performancel 155
[5.3.3 Analysis of Feature Importance] 166

5.4 _Related Work
.................................... 176

Cost-based query optimization is the standard approach to choose an execution plan for a rela-
tional query from all possible semantically equivalent execution plans. Since the performance
of these plans can vary by several orders of magnitude, the quality of plan choices is of utmost
importance for the overall performance of a database system. Cost-based optimizers estimate
the execution cost of candidate plans and choose the plan with the least estimated cost. When
estimating the cost of a plan, the optimizer assesses the conditions under which the query will
be executed and calculates the cost based on its cost model parameterized with these conditions.
Important cost model parameters are, among others, the amount of data to process and the size
of the available memory budget. A major problem of this approach is the fact that the execution
conditions of a query are not known at optimization time and must be predicted. The quality
of an optimizer’s plan choice depends on its ability to assess the execution conditions of a plan
when it is executed. While some of the execution conditions, such as the costs of I/O operations,
can be obtained by performance profiling and monitoring, others are notoriously hard to assess.
These include the cardinality of intermediate results and the amount of available resources. As a
consequence, cost-based optimizers base their plan choices on potentially false assumptions.

109

5 Assessing the Risk of Relational Data Flows

100

ot
S

IS —_
= = Ot O

Lineitem Selectivity (%)

600
300
150
60
30
10
5

0.1 1 5 10 50 100 0.1 1 5 10 50 100
Orders Selectivity (%) Orders Selectivity (%)

Figure 5.1: Execution time (s) of two semantically equivalent plans with two predicates of vary-
ing selectivity.

While it is not surprising that the performance of a plan depends on parameters such as memory
budget or input cardinalities it is important to note that not all plans behave identically for chang-
ing execution conditions. Figure [5.1] shows the execution time of two semantically equivalent
plans for a version of TPC-H query Q3 [200], which was taken from the Picasso project [174]].
This query has two parameterized local range predicates on lineitem and orders for which
the selectivities have been varied in steps 0.1%, 1%, 5%, 10%, 50%, and 100%. While the left
plan has nearly constant performance for variations of the 1ineitem predicate and an execution
time ranging from 10 to 80 seconds, the right plan shows a different pattern. There, varying the
selectivity of the 1ineitem predicate causes the execution time to vary from about 20 to 600
seconds. Less variation is caused when changing the selectivity of the orders predicate. While
the performance of the right plan varies by a factor of 30, the performance of the left plan only
varies by a factor of 8. The above example illustrates that plans can differ in their sensitivity for
changing execution conditions. We call plans with rather slightly or moderately varying execu-
tion time for changing execution conditions robust plans and plans with significantly changing
performance risky plans.

Risky plans pose a serious problem for systems that use cost-based query optimizers. If the
optimizer is not able to accurately predict the conditions in which a plan will be executed, the
cost model is called with imprecise parameters and the optimizer will pick a suboptimal plan. If a
robust plan with low performance variation is chosen, this might not be an issue. However, a plan
which is sensitive to the size of its main memory budget can exhibit an unexpected execution
time if it receives less memory than expected due to concurrently running queries. Similarly,
the performance of a plan that was chosen because it is efficient for small data sizes might
degrade if it has to process more data than expected. Because risky plans often benefit from
underestimated input sizes they are frequently preferred over more robust plans with higher
fixed costs. Hence, risky plans are often chosen and executed where more robust plans would
have been more efficient.

110

Risky execution plans and the challenges of predicting execution conditions are not RDBMS-
specific problems. All systems that employ a cost-based optimizer are affected by this issue.
In fact, the problem of accurately estimating execution conditions is even harder in the context
of most optimization approaches discussed in Chapter [2.2] The presence of user-defined func-
tions, data without schema and statistical information, heterogeneous and distributed compute
nodes, virtualization, and concurrently running applications, renders the estimation of execution
conditions even more challenging if not impossible in certain cases.

In this chapter we discuss three important aspects of plan risk in detail.

1. We analyze the impact of changing execution conditions on the performance of execution
plans and identify risky plan patterns.

2. We propose a metric to measure plan risk and show how plan risk information can be
leveraged to improve optimizer plan choices.

3. We propose an approach to predict the risk of execution plans.

To limit the number of parameters that influence the performance of execution plans and to ease
the analysis of the observed effects, we restrict the scope of this chapter to execution plans for
stand-alone relational database systems.

The remainder of this chapter is organized as follows. In Section[5.1| we analyze the behavior of
execution plans for changing execution conditions, identify plan patterns that can cause signifi-
cantly varying execution performance, and derive a better understanding for plan robustness. We
start studying the performance of individual operators and common plan patterns for changing
execution conditions. Subsequently, we report on an extensive experimental study to assess the
execution behavior of 306 plans for changing input sizes and memory budgets and analyze its
results. In Section[5.2]we propose a risk score metric to measure the riskiness of execution plans
and show how it can be used to prevent the choice of plans with extremely varying performance.
In Section [5.3| we present an approach to predict the risk score of query execution plans using a
machine-learned regression model. The model is trained with data obtained from the previously
presented study. We give an overview of related work in Section[5.4]and summarize the chapter
in Section

The work presented in this chapter was inspired by discussions at the Dagstuhl seminar 12321
on “Robust Query Processing” in August 2012. We thank Surajit Chaudhuri, Goetz Graefe, Ihab
F. Ilyas, Anisoara Nica, Meikel Poess, and Kenneth Salem for great discussions.

111

5 Assessing the Risk of Relational Data Flows

5.1 Analyzing the Performance of Query Plans for Changing
Execution Conditions

Cost-based query optimizers choose execution plans by comparing their estimated execution
costs. In order to obtain meaningful cost estimates, optimizers must predict the conditions in
which a query will be executed. However, many relevant execution conditions cannot be pre-
cisely assessed at optimization time and need to be estimated. A major issue of cost-based
optimization is that query execution plans can differ considerably in their sensitivity when exe-
cution conditions change. In the case of misestimated execution conditions, a chosen plan can
perform significantly worse than expected. Among the most important parameters for estimating
the cost of query execution plans which are often not known at optimization time are the size of
the plan’s memory budget and the cardinality of its intermediate results.

Disk-based database systems try reduce the number of physical I/O operations, which account
for a large portion of query execution costs, by caching data in memory. Therefore, the size
of a query’s memory budget is an important cost model parameter. However, memory is a re-
source that is shared among concurrently running queries and operators. Hence, the amount of
memory that is available for a query frequently changes depending on the number and resource
requirements of other concurrent queries. Similar reasoning applies to the amount of available
CPU and I/O resources, which are also shared among concurrently running queries or even ex-
ternal processes on the same physical infrastructure, as in the case of virtualized environments.
An optimizer would need to look into the future to accurately estimate the amount of avail-
able resources and the number of concurrently running queries for the time when the plan is
executed.

The size of the input data of an operator is another crucial parameter when estimating its cost.
It can be computed from the size of an input tuple and the number of input tuples (cardinality).
While the size of a tuple can be easily estimated from schema information and statistics, cardi-
nality estimation of intermediate results is significantly harder and requires detailed knowledge
about the data to be processed. In a nutshell, the resulting cardinality of a (sub)plan is estimated
from the cardinalities of all involved base relations and the selectivities of all involved operators.
Since base cardinalities can be obtained and maintained with low overhead, this information is
usually available and quite accurate. However, estimating the selectivity of operators is more
intricate. Therefore, the problem of input size estimation essentially comes down to selectivity
estimation.

Database systems gather statistical information about the data they store in order to support
selectivity estimation. Since storage and maintenance of statistics requires space and incurs
overhead, it is not feasible to collect detailed statistics for all base relations and attributes. In-
stead, database administrators carefully choose the type and level of detail of statistics to collect.
Statistics are typically maintained periodically since online maintenance is too expensive. Due

112

5.1 Analyzing the Performance of Query Plans for Changing Execution Conditions

to the approximate nature of statistics, statistical information cannot provide exact selectivity
estimates such that optimizers need to approximate selectivities from the available information.
Conventional optimizers follow a number of heuristic assumptions for this purpose, such as the
uniformity assumption, the independence assumption, and inclusion assumption. Especially the
independence assumption is commonly violated by real-world applications and prone to cause
severe cardinality underestimation [[177]. In some cases where no statistical information is avail-
able, optimizers fall back to default values for selectivity estimates. Due to lack or inaccuracy
of available statistics and the use of default assumptions and values, selectivity estimates can be
off by multiple orders of magnitude [[131}[164]] in practice.

The general problem of selectivity estimation applies to all kinds of queries. For parameterized
queries additional aspects impede the assessment of execution conditions. Queries with param-
eters are often optimized once and the resulting plan is used for multiple executions of the same
query with different parameter bindings. Hence, the size of intermediate results can change sig-
nificantly for different parameter bindings, the size or the properties of the queried data might
change between two runs of the plan, and the amount of available resources might change as
well over time.

In this section we experimentally measure and analyze the performance of query execution plans
for varying execution conditions. We gain a better understanding of what differentiates plans that
are sensitive and insensitive for changing execution conditions and identify plan features that can
cause significantly varying execution times. Our analysis focuses on the impact of varying input
sizes and memory budgets, as these parameters are hard to estimate for optimizers, have a large
impact in the performance of a plan, and are rather easy to control in an experimental setting.
We start analyzing the execution behavior of individual operators (Section[5.1.1)) and common
plan patterns (Section[5.1.2). Subsequently, we present the results of an extensive experimental
study to assess the risk of query execution plans (Section[5.1.3)) and conclude with a list of risky
plan features (Section[5.1.4).

5.1.1 Performance of Operators

Query execution plans consist of physical operators, such as TableScan, HybridHashJoin,
and Sort. The behavior of a plan for changing input sizes or memory budgets depends on
the behavior of its individual operators. In this section, we briefly discuss the performance
characteristics of selected operators for varying execution conditions.

Accessing Relations Relation access operators are often responsible for a large fraction of a
plan’s execution costs in disk-based DBMS. Most database systems support at least three differ-
ent strategies to read and filter a relation, namely 1) a full TableScan with a subsequent Filter,

113

5 Assessing the Risk of Relational Data Flows

HeAAHINO OO OO
Se RO F0

HHINO000000000
> AHRMIFDOED0D
Selectivity (% Selectivity (%)

(a) Table Scan (b) Clustered Index Seek (c) Secondary Index Seek

Selectivity (%)

[R |
.01 1 1 10 50

Figure 5.2: Execution time (s) of single predicate table access plans for varying predicate selec-
tivity and database memory

2) a ClusteredIndexSeek, and 3) a SecondaryIndexSeek, given that the corresponding in-
dexes exist.

The TableScan operator sequentially reads all disk pages of a relation and evaluates filter pred-
icates on each individual tuple. Indexes can help to reduce the number of I/O operations,
such that only disk pages with relevant tuples are read from disk. A clustered index stores
the full relation ordered on the indexed attribute with additional pointers into the sorted se-
quence. A ClusteredIndexSeek operator seeks to the first tuple that matches the predicate
and sequentially reads tuples as long as the predicate evaluates to true. In contrast, a sec-
ondary index only holds pointers to its base relation, which can be in any order. Therefore,
a SecondaryIndexSeek causes random I/O accesses when retrieving data.

Figure [5.2] shows the execution time of these three operators for accessing a 1 GB table with 1
million records and applying a range predicate with selectivities from 0.0001% to 100% and the
total memory budget of the DBMS varying from 256 GB to 2048 MB. Since the I/O behavior
of the TableScan operator does not depend on the selectivity of the predicate, it has a uniform
performance (Figure[5.2(a)). Its execution time differs only slightly for changes of the database
memory, which might be due to overhead caused by page evictions of the buffer pool. In contrast,
the execution costs of the index seek operators depend on the selectivity of the filter predicate.
The ClusteredIndexScan provides low execution times for small selectivities and degrades
gracefully for increasing selectivities (Figure [5.2(c)). For a selectivity of 100% it is as good as
the TableScan operator because it also reads all pages of the table in sequential order. Similar
to the TableScan plan, the performance does only marginally depend on the amount of avail-
able memory. The SecondaryIndexScan plan provides good performance for low predicate
selectivities of up to 0.1% (Figure [5.2(b)). However, its execution time significantly increases
for selectivities larger than 1% due to its random I/O access pattern. Furthermore, its perfor-
mance depends on the size of the buffer pool and hence on the amount of DBMS memory. If
the whole relation fits into the buffer pool, each table page can be cached in the buffer pool and
subsequent reads of the same page are served from memory without accessing the disk. We can
assume that for 2048 MB DBMS memory most of the 1 GB table fits into the buffer pool such
that the performance of the secondary index plan is close to the performance of the TableScan

114

5.1 Analyzing the Performance of Query Plans for Changing Execution Conditions

plan. Note that even in case of a large buffer pool, the performance of SecondaryIndexSeek
operators can suffer from concurrently running operators and queries which replace disk pages
in the buffer pool.

Joining Most analytical queries include joins. In addition to the order of join operators, the
type of join operators can have a significant impact on the performance of a query execution
plan. Most relational database systems support at least four types of equality joins, MergeJoin,
NestedLoopJoin, IndexNestedLoopJoin, and HybridHashJoin.

A MergeJoin expects its inputs to be sorted on the join attributes. Both inputs are consumed
in a zig-zag fashion, always advancing the input with the smaller join attribute value (assuming
ascending order). In case of 1:1 or 1:n joins, a MergeJoin does not hold any intermediate data
and produces its (sorted) result as a pipelined stream. Hence, its performance depends linearly
on the size of its larger input.

The NestedLoopJoin is the most generic join algorithm. It can evaluate arbitrary join condi-
tions and does not have any requirements on its inputs. The inputs are distinguished as outer
input and inner input. In its basic form, the NestedLoopJoin repeatedly reads its inner input
for every tuple of the outer input and applies the join predicate to each pair of outer and inner
tuple. More efficient implementations iterate over the inner input for a batch of outer tuples.
While being fairly efficient for small inputs, the performance of a NestedLoopJoin drastically
degrades for increasing cardinality of the outer side because more and more iterations over the
inner input are required.

The IndexNestedLoopJoin is a common special case of the NestedLoopJoin where the inner
input is a SecondaryIndexSeek or ClusteredIndexSeek operator. For each tuple of the outer
input, an index seek operation is performed to retrieve matching tuples from the index. The
IndexNestedLoopJoin provides good performance for small outer and large indexed inner
sides because the inner side is not completely read but only matching tuples are fetched from the
index. However, similar to the plain NestedLoopJoin, the cost of an IndexNestedLoopJoin
significantly increases for growing cardinalities of the outer input as more random I/O operations
are caused by index fetches. The impact of varying outer sides is reduced under certain condi-
tions. For example, the number of random physical I/O operations decreases if the inner relation
fits to a large extent into the buffer pool or if the outer input is sorted on the join attribute and
the inner input is a clustered index. In the latter case, the disk pages of the clustered index are
sequentially read (and might even be pre-fetched), which reduces the I/O cost significantly.

The HybridHashJoin has a build and a probe input and works in two phases. In the build phase,
all tuples of the build input are inserted into a hash table, which is indexed by the join attribute.
In the subsequent probe phase, the hash table is probed with the join attribute of each tuple from
the probe input and matching tuples are joined. The HybridHashJoin excels if the hash table
can be kept completely in memory, i. e., the amount of assigned memory is greater than the size

115

5 Assessing the Risk of Relational Data Flows

@@

Figure 5.3: Join graph of the chain join query

of the build input. If less memory is available, some parts (buckets) of the hash table need to be
spilled to disk during build phase. In the probe phase, all tuples from the probe side that fall into
spilled buckets are written to disk as well. After the probe input was fully consumed, spilled
hash table buckets are loaded into memory and probed with corresponding spilled records from
the probe input. In the worst-case spilling and loading must be applied recursively. The cost of
a HybridHashJoin depends largely on the amount of memory and the size of the build input.
If the build input does not fit into memory, also the size of the probe input matters because it is
partially spilled to disk as well.

Sorting Query optimizers inject Sort operators into query plans to produce sorted output and
to enable or improve the performance of subsequent operators, such as StreamingAggregation,
MergeJoin, or IndexNestedLoopJoin. Sort operators require a memory budget to buffer their
input. If the input completely fits into memory, a Sort operator only causes CPU costs. If the
input does not fit into memory, an external merge-sort needs to be performed. The input is di-
vided into multiple sorted runs each of the size of the memory budget. The runs are sequentially
produced and written to disk. After the whole input was read and all runs have been produced,
the sorted output is generated by reading the sorted runs from disk and merging them together.
Consequently, the execution time of a sort operator depends on the size of the input data and the
amount of memory. Sort operators deserve special attention when reasoning about plan risk.
They are occasionally injected into execution plans to sort (usually) small intermediate results to
improve the performance of subsequent operators, such as IndexNestedLoopJoin operators.
Such an optional sort operator does not contribute the result computation of a query but might
add an additional risk if the size of its input was underestimated.

5.1.2 Impact of Operator Order on Plan Performance

The order of operators in a query execution plan can significantly influence the size of interme-
diate results and the amount of data that is processed. Consequently it can also heavily affect
the performance and the riskiness of a plan.

In order to evaluate the influence of operator order on the riskiness of a plan, we benchmark plans
with different join orders for a query that joins four relations, R, S, T, and U. Figure [5.3]shows
the join graph of the query. All relations consist of 1 KB-tuples. R contains 1 million tuples
(1 GB) and S, T, and U consist of 100,000 tuples (100 MB) each. The three join predicates
are R><g =5y S, S Xgx=7y T, and T X -y, U, where the first join is a 10:1 join and the

116

5.1 Analyzing the Performance of Query Plans for Changing Execution Conditions

H-Join H-Join H-Join
H-Join H-Join H-Join R U H-Join
T U R S H-Join U R H-Join
(a) Bushy (B-P) A A

S T S T
(b) LD (P) (¢) RD (B-P)

Figure 5.4: Join plans (left build, right probe input)

remaining two joins are 1 : 1 joins. Since S, T, and U have the same cardinality and join 1:1,
the intermediate result of joining these relations has the same cardinality but wider tuples. In
addition to the three join predicates, the query has one local range predicate on R to vary the
input size of the query. The selectivity of R’s local predicate determines the cardinality of all
intermediate results to which R contributes. Since R’s cardinality is ten times as large as the
cardinality of the other relations, a selectivity of less than 10% reduces and a selectivity of more
than 10% increases the cardinality of intermediate results.

We constructed twelve plans to execute the query described above. All joins are executed by
HybridHashJoin operators (left input is build, right is probe input). We place relation R on all
four leaf positions of a bushy (BH), a left-deep (LD), and a right-deep (RD) join plan. Relations
S, T, and U are identical and are joined in this order to prevent Cartesian products. Figure [5.4]
shows a bushy, a left-deep, and a right-deep plan. “Bushy (B-P)” refers to the bushy plan where
R is on the build side (B) of the first and on the probe side (P) of the second join. “Left-Deep
(P)” marks the left-deep plan where R is on the probe side of the third join. Relations S, 7', and
U are accessed by TableScan operators. R is read using a ClusteredIndexSeek operator on
R’s filter attribute to avoid the fixed cost overhead of a TableScan.

We execute each plan for varying selectivities of R’s local predicate (from .0001% to 100%) and
varying memory budgets for the database system (from 256 to 2048 MB). Figure[5.5|shows the
average execution time for each plan and execution condition.

The left-deep plans feed the result of a HybridHashJoin operator into the build side of a sub-
sequent HybridHashJoin operator. Therefore, these plans perform well if the selectivity of R’s
predicate is low and R and S are the first relations which are joined (Figures [5.5(a)| and [5.5(d)).
In this case, the small result of the first join is fed into the build side of the remaining two
joins. However, the same plan performs much worse if the predicate selectivity is high because
HybridHashJoin operators are sensible to large build inputs as discussed in Section[5.1.1]

Right-deep plans forward the result of a HybridHashJoin into the probe input of the following
HybridHashJoin which means that intermediate join results are processed in a pipelined fash-

117

5 Assessing the Risk of Relational Data Flows

DB Mem (MB)
ot
=
S

(a) Left-Deep (B-B-B) (b) Right-Deep (B-P-P)

DB Mem (MB)
<]
=
S

(d) Left-Deep (P-B-B) (e) Right-Deep (P-P-P)

512

DB Mem (MB)

(g) Left-Deep (P-B) (h) Right-Deep (B-P)

DB Mem (MB)
ot
=
[©)

i i i 0 (=} (=] (=3 — — — 0 (=)
s =< = w9 8 = —
< Selectivity R Predicate (%) < Selectivity R Predicate (%)
(j) Left-Deep (P) (k) Right-Deep (B)
B 2 e
25 50 75 100 200 300

(c) Bushy(B-B)

(f) Bushy (B-P)

(i) Bushy (P-B)

— — 0 [=} (=3 (=3
S — 0 =]

- Selectivity R Predicate (%)

(1) Bushy (P-P)

Figure 5.5: Execution time (s) of different plans for a chain join query and varying input cardi-

nality and database memory in seconds.

118

5.1 Analyzing the Performance of Query Plans for Changing Execution Conditions

ion given that the hash table fits completely into memory. Therefore, these plans do not benefit
from low selectivities as much as left-deep plans but also do not suffer from high selectivities.

In left- or right-deep plans at least one input of each join is a base table access. Plans with at least
one join that has only intermediate results as input are called bushy plans. The third column of
Figure [5.5]shows the execution times of the four bushy plans. These four plans behave similarly
for varying selectivity and memory budgets. Since all relations participate in exactly two joins
in each bushy plan, the benefit of small intermediate results in case of low selectivities or the
penalty of large intermediate results in case of high selectivities is similar for all plans. The only
performance differences of plans are due to different assignments of build and probe side.

Figure [5.5] illustrates the importance of operator order when assessing the risk of a plan. Fig-
ures [5.5() and [5.5(k)] show the results of the left- and right-deep plan where R is joined as the
last relation. Since R is the only relation whose cardinality is varied, the costs of all previous
joins are constant (for constant memory). Only the execution time of the last join varies, which
results in a rather low variation of the overall plan costs. Of course, joining an intermediate
result with variable size late, limits the performance benefits if the result is small. In contrast,

Figures [5.5(a), [5.5(d) [5.5(b), and [5.5(¢)| show the effect of including R in the first join of a
plan.

Another observation is that plans which pipeline intermediate results of variable size
[5.5(e)} and[5.5()) have quite uniform performance given that enough memory is available. Since
all joins in a pipeline require their memory at the same time, his requirement might not be met in
case of scarce memory resources such that the performance of pipelined plans can significantly
drop (see Figure for example). Note that the probe input needs to be partially written to
disk if a HybridHashJoin operator is short on memory. In contrast, left-deep plans which do
not pipeline results are less sensitive for low memory budgets because only two joins are active
and consume memory at the same time.

Figure [5.5] also illustrates the common trade-off between the ability of a plan to exploit small
intermediate results and the ability to gracefully handle significantly larger intermediate results.
Plans that perform well in worst-case often pay with high execution overhead if less data needs
to be processed.

The previous experiments illustrated a few ways in which the order of operators can affect the
risk of a plan. For example plans that need to materialize intermediate results of varying size
have a more varying performance than plans which are able to process intermediate results of
varying size in a pipelined fashion, i.e., without materialization. Reasons to materialize in-
termediate results are the plan structure (early joining of varying results) and lack of memory
(spilling of hash table). In fact, pipelined plans can provide low performance with little variation.
However, this observation does not hold for pipelined data processing in general. For example,

119

5 Assessing the Risk of Relational Data Flows

Query Involved Relations #Plans
Q2 | PS,PS,P,S,S,N,N,R,R 38
Q3 L,O,C 18
Q4 L,O 14
Q5 L,0,C S,N,R 17
Q7 L,O0,C S,N,N 24
Q8 L,O,PC,S,N,N,R 37
Q9 L,O,PS,P, S, N 47
Q10 L,O,C,N 21
Ql1 PS,PS,S,S,N,N 16
QI2 L,O 8
Ql4 L P 4
Ql6 PS,P, S 28
Q17 L,L,P 11
Q21 L,L,L,O,S,N 23

| total | | 306 |

Table 5.1: Analyzed queries of the experimental study. Queries are adapted from the TPC-H
benchmark. Relations with parameterized predicates are underlined and red.

pipelining of variable sized results along NestedLoopJoin or IndexNestedLoopJoin opera-
tors can cause significantly varying numbers of expensive subplan executions or random I/O
operations.

5.1.3 Performance of Analytical Query Plans

In the previous section we discussed the performance characteristics of individual operators and
different join orders. In this section, we report on an extensive experimental study to assess
the risk of full query execution plans. We execute in total 306 different plans for 14 analytical
queries on a commercial relational database system with varying selectivities of parameterized
predicates and memory budgets. We measure the execution time of each plan for 108 different
execution conditions and analyze this data to identify properties and features of plans which
cause significantly varying plan performance. In the following, we present the experimental
setup and discuss our findings in detail.

Experimental Setup The experiments are carried out using a TPC-H data set [200] of scale
factor 1 and a set of modified TPC-H queries, which are taken from the Picasso project [[174]
179]. The base relations are stored as clustered indexes indexed and sorted by their primary
key. Each query has two parameterized local range predicates for which we vary the literal

120

5.1 Analyzing the Performance of Query Plans for Changing Execution Conditions

bindings to control the predicates’ selectivities. We generate a set of distinct execution plans
for each query similar to the approach of Haritsa et al., i. e., we call the optimizer with different
literal bindings and different physical configurations (with and without secondary indexes on
the predicate attributes) and store each unique returned plan. Hence, all returned plans are
considered to be optimal for at least one execution condition. Due to the varying complexity of
the queries and the fact that the optimizer always returns the “best” plan, the number of plans for
each query differs. See Table[5.T|for details on the selected queries and the number of generated
plans.

Usually a database system executes the “best” execution plan that is determined by the optimizer
for a given query and execution condition. Since we want to execute each plan for every execu-
tion condition, we need to “force” the database system to execute a particular plan. We achieve
this by specifying the whole plan as an optimizer hint, which leaves the optimizer almost no
freedonﬂ Each plan run is carried out in isolation with an internal degree of parallelism of 1.

We run our benchmark on two standalone workstations with identical hardware and software
configurations. All plan runs for a given query are performed on the same machine. Each
machine is equipped with an Intel Core i7-860 CPU with 4 cores and 8 threads at 2.80 GHz,
16 GB main memory, and two 1TB SATA hard disks at 7200 rpms and with 32MB cache. One
disk holds the operating system, the DBMS, and the database. The other disk is dedicated to the
DMBS’s temporary database, which is used to spill intermediate results to disk. The machines
run a 64 Bit Windows 7 Professional with Service Pack 1. The benchmarks are executed on
a current version of a commercial relational DBMS. The database system does not allow fine-
grained memory configuration. Instead, we grant the DBMS a total memory budget and the
DBMS internally distributes the memory among the buffer pool, workset memory, query cache,
and other components.

We execute each plan with six different selectivity settings for each predicate (0.1%, 1%, 5%,
10%, 50%, and 100% selectivity) and three different database memory configurations (512MB,
1024, and 2048MB) totaling in 108 different execution conditions per plan. We compute the
execution time of a plan as the average from seven execution runs, excluding the minimum
and maximum observed execution time. The buffer pool of the DBMS is cleared after each
run. Overall, we execute 231,336 plan runs with a total sequential execution time of about 207
days.

We continue to discuss the result of our experimental study. First, we analyze the overall varia-
tion of execution time for the executed plans. Subsequently, we have a detailed look at individual
plans to identify plan features which have a significant effect on performance variations.

It still chooses the assignment of memory to queries and operators.

121

5 Assessing the Risk of Relational Data Flows

—_
(==}
=

10°

—_
(==}
<)

Execution Time (s)
=

& ‘_"‘”wm“dj

(a) Min, max, and average plan execution time.

(b) Coefficient of variation of plan execution time.

[«
Plans grouped by query

(c) Coefficient of variation of estimated plan cost.

Figure 5.6: Actual plan execution time, coefficient of variation (CoV) of actual plan execution
time and estimated plan cost grouped by query.

Overall Variation of Plan Performance Figureshows the minimum, maximum, and
average execution time of all 306 plans in seconds on a log scale. We see that the performance
of some plans varies by multiple orders of magnitude for changing execution conditions. Even
though the queried data set was only 1 GB in size, some plans for query Q21 run for more than
two hours in worst case but take only subseconds for low predicate selectivities. However, we
also find plans with low performance variation.

Figure[5.6(b)|shows for each plan the coefficient of variation (CoV) or relative standard deviation
of the observed execution times for all execution conditions. The coefficient of variation c, is
defined as the ratio of the standard deviation ¢ and the average U, ¢, = 2. The plans are
shown in the same order as in Figure (grouped by query, in ascending order of CoV).
The black lines indicate the average CoV of each query. Over all plans, the CoV ranges from
0.017 (Q4) to 3.213 (Q2). Within a single query, the CoV can also differ significantly as for

122

5.1 Analyzing the Performance of Query Plans for Changing Execution Conditions

40
3.0/
. 35
S | 30
=
% 2.0¢ | %8
£ | 2
B 200
& m I
1["
% 1.0 g
] 10
5
0 _m |
0 1.0 2.0 3.0

CoV Actual Execution Time

Figure 5.7: CoV of actual execution time vs. CoV of optimizer estimated cost.

example from 0.218 to 3.119 for plans of query Q21. In contrast, the CoV values for plans of
query Q11 range only from 0.027 to 0.272. When comparing Figures [5.6(a)] and [5.6(b)] a few
intuitions can be confirmed. Plans with low performance variation have often constant, but in
comparison to other plans of the same query a rather high, minimum execution time as shown
by queries Q4, Q5, Q10, Q12. However, there are also exceptions as for example queries Q9,
Q11, and Q17. Plans with high performance variations have often significantly higher maximum
execution times compared to other plans of the same query. Again there are exceptions, such
as some plans for queries Q4, and Q16. For some queries (e. g., Q2, Q4, Q5, and Q8), we can
identify plans with lower average and similar or lower maximum execution time compared to
the plan with the least performance variation. These plans perform better on average and similar
(or better) in the worst case but have a higher variation in execution time.

The comparison of the minimum, the maximum, and the CoV of the plans’ execution times
shows that the choice of the optimal plan for a query is not trivial. For most of the plans analyzed,
low performance variation correlates with rather high minimum execution time. Hence, there
is a trade-off between robust and optimistic plan choices, which depends on the concrete use
case. While in some situations robust plan choices are favorable, optimistic plan choices are
better suited for other situations. However, we also see that there are a few plans for some
queries, which combine the best of both worlds, i.e., a low minimum execution time and low
performance variation. In any case, the risk of a plan needs to be assessed in order to be able
to take this information into account when choosing an execution plan. As previously noted,
each plan shown in Figure[5.6]is chosen by the optimizer and considered to be optimal for some
execution condition. Consequently, these plans are a biased sample from the queries’ whole plan
spaces.

Figure [5.6(c)| shows the coefficient of variation of all plans’ optimizer cost estimates for all exe-
cution conditions. Plans are in the same order as in Figure and Figure[5.6(b)] Comparing
Figures [5.6(b) and [5.6(c), we see for several plans a clear difference of the CoV of estimated

123

5 Assessing the Risk of Relational Data Flows

plan costs and the CoV computed from actual execution time. For queries Q5, and Q10, the
execution time CoV is quite well captured by the optimizer’s estimates. However for queries
Q2, Q3, Q9, and Q17 the estimated cost CoV of some plans differ significantly from their actual
performance variation. In general, the CoV computed from the optimizer’s estimates exhibit less
variation compared to the CoV computed from actual plan execution time. Looking at the aver-
age execution time CoV by query, the minimum and maximum CoV of execution time are 0.106
and 1.987, while the minimum and maximum CoV of estimated costs are 0.501 and 1.448.

Figure[5.7|shows a binned scatterplot of the CoV of actual execution time and estimated cost for
all benchmarked plans. The red line indicates exactly matching CoVs. The plot visualizes that
assessing the performance variation of a plan using optimizer estimates does not yield accurate
results in general. In general, the estimated cost CoV for plans with low actual risk is quite
precise. However, there are also exceptions. For example, the estimated cost CoV for plans with
an actual execution time CoV between 0.0 and 0.2 ranges from 0.0 to 2.0.

Identifying Risky Plan Features After we had a look at the variance of performance of our
benchmarked plans, how it relates to their execution time, and how the CoV of actual execution
time and estimated cost differ, we continue to analyze the execution time of individual plans
for changing execution conditions. We identify plan features, which are responsible for varying
performance, and verify some of the observations made in previous sections with the help of
concrete example plans.

SELECT
1_orderkey, o_orderdate, o_shippriority,
SUM(1_extendedprice * (1 - 1_discount)) AS revenue
FROM
customer, orders, lineitem
WHERE
c_mktsegment = ’BUILDING’
AND c_custkey = o_custkey
AND 1_orderkey = o_orderkey
AND o_totalprice < 7
AND 1_extendedprice < 7
GROUP BY
1_orderkey, o_orderdate, o_shippriority
ORDER BY
revenue desc, o_orderdate

Figure 5.8: Query Q3
We start by looking at some plans for query Q3. The SQL statement of the query is shown in

Figure [5.8] It joins the customer, orders, and lineitem relations, computes an aggregate,
and sorts the result. All relations are restricted by local predicates. While the predicate on

124

5.1 Analyzing the Performance of Query Plans for Changing Execution Conditions

Sort
StrJAgg Sort
So;t H-Agg
NL—;oin NL—}oin
H-Join ClIdx-Seek H-Join ClIdx-Seek

/\
ClIdx-Scan ClIdx-Scan LINEITEM ClIdx-Scan ClIdx-Scan LINEITEM
\ \ \ \

ORDERS CUSTOMER ORDERS CUSTOMER
(a) Plan Q3-1 (b) Plan Q3-2 S°‘rt
Str-Agg
Sort SoLt
StrlAgg H-JLin
SoLt M—J;E;:—__—_____“““QTEIIEQ—Scan
NL—goin ClIdxiEE;;/”\\\\\g;rt CUSTBMER
H—J;;;”’/’ﬁ\\\aiza;—Seek QBSEE§ NL—goin
ClIdx-Scan ClIdx-Scan LINEITEM Sort Idx-Seek ClIdx-Seek
CUSTOMER ORDERS H—Agg LINEITEM LINE&TEM
(c) Plan Q3-3 i Join (d) Plan Q3-5
M-Join ClIdx-Scan

— T \
ClIdx-Scan ClIdx-Scan CUSTOMER

\ \
ORDERS LINEITEM

(e) Plan Q3-4

Figure 5.9: Query Q3 execution plans

customer is fixed, the predicates on orders and lineitem are parameterized to vary their
selectivity. Figure [5.9]shows five plans for query Q3, which we analyze in detail. Relations with
parameterized predicates are underlined and shown in red color. We compare plans that only
differ in specific details to isolate the effect of certain plan features. That way we are able to
reason about the effect of individual plan features on the performance variance of a plan.

Figure [5.10] shows the execution time of the five selected plans for different memory settings
and varying selectivities of both parameterized predicates. Plan Q3-1 uses a HybridHashJoin
to join orders and customer with orders being the join’s build input. The result is joined with
the lineitem relation using an IndexNestedLoopJoin, and then sorted, stream-aggregated,
and sorted again. Figure shows the execution time of plan Q3-1 for 2048 MB database
memory. The performance of the plan mostly depends on the selectivity of the orders predicate

125

5 Assessing the Risk of Relational Data Flows

—_
= a9
oS O O

Lineitem Selectivity (%)

(=

= = o

(a) Q3-1, 2048 MB (b) Q3-1,512 MB (c) Q3-2,2048 MB (d) Q3-2,512MB

600
300
150

60
30

10

—
= ot o
o O O

Lineitem Selectivity (%)

IS
= = o

011 5 1050100 01 1 5 1050100 01 1 5 10 50100 0.1 1 5 10 50 100
Orders Selectivity (%) Orders Selectivity (%) Orders Selectivity (%) Orders Selectivity (%)

(e) Q3-3,512MB (f) Q3-4,512 MB (g) Q3-5,2048 MB (h) Q3-5,512 MB

Figure 5.10: Query Q3 Plan execution times (s) for varying predicate selectivities and database
memory.

and ranges from 8 to 74 seconds. Figure [5.10(b)| shows the execution time of the same plan but
with database memory reduced to 512 MB. For lower selectivities the performance is the same
as with 2048 MB. However, for selectivities of 50% and more, the execution time increases to
a maximum of 162 seconds, a factor of two. This regression of performance for high predicate
selectivities and low memory is due to the memory-sensitive HybridHashJoin and Sort op-
erators, which spill data to disk if their (build) inputs do not fit into memory and the increased
number of random I/O operations of the IndexNestedLoopJoin due to the reduced size of the
buffer pool.

Plan Q3-2 (Figure[5.9(b)) differs from plan Q3-1 in how it computes the aggregation. While plan
Q3-1 uses a StreamAggregate operator with an additional Sort operator, plan Q3-2 employs
a HashAggregate operator, which does not require sorted input. Figures [5.10(c)| and [5.10(d)|
show the execution time of plan Q3-2 for 2048 and 512 MB database memory respectively.
While Q3-1 and Q3-2 have similar performance for 2048 MB database memory, the worst-case
execution time of Q3-2 is lower than Q3-1 ones (120 vs. 162 seconds). This difference is
caused by the additional Sort operator of Q3-1, which is sensitive to increasing data sizes and
decreasing memory budgets as discussed in Section[5.1.1]

Both plans, Q3-1 and Q3-2, have another plan feature that causes increasing execution time for
decreasing database memory. Comparing plan Q3-3 (Figure [5.9(c)) with Q3-1 we see that the
only difference are the switched input sides of the HybridHashJoin operator, i.e., customer

126

5.1 Analyzing the Performance of Query Plans for Changing Execution Conditions

becomes build side and orders becomes probe side. This change improves Q3-3’s robust-
ness in two ways compared to plan Q3-1. First, the build side of the HybridHashJoin op-
erator has a fixed size (the selectivity of the predicate on customer is not varied) such that
the memory requirement of the hash table remains constant. Second, the input of the subse-
quent IndexNestedLoopJoin becomes sorted on lineitem’s join attribute. This is because,
the orders relation is sorted on its primary key due to the clustered index and the sorting is
preserved because orders is the probe side of the HybridHashJoin. Since lineitem is also
stored in a clustered index organized by the join attribute, the IndexNestedLoopJoin accesses
the disk pages of 1ineitem’s clustered index in a sequential pattern. Due to the buffer pool, only
the first read of each page goes to disk. All following reads are logical reads and served from
the buffer pool. Since the outer side of the IndexNestedLoopJoin is not sorted in plans Q3-1
and Q3-2, the index accesses are randomly distributed over the whole index. In this case, the
probability of a buffer pool hit increases with increasing buffer pool size. Therefore, plans Q3-1
and Q3-2 are more sensible to reductions of database memory as shown by the execution time
plots for 512 MB database memory of the three plans (Figures [5.10(b)} [5.10(d), and [5.10(e)).
For 512 MB, plan Q3-3’s execution time ranges from 10 to 80 seconds (8 to 74 seconds for 2048
MB).

Plan Q3-4 (Figure[5.9(e)) joins orders and lineitem using a MergeJoin. Since both relations
are stored in a clustered index sorted on their join attribute, no additional Sort operator is
required for this join. The result of the join is fed into the build side of a HybridHashJoin. The
remaining customer relation is the probe input. The result is aggregated using a HashAggrega-
tion operator and finally sorted. Compared to the other plans for Query 3, Plan Q3-4’s execution
time is rather constant (38 to 78 seconds for 512 MB database memory) because it performs full
sequential scans of all three relations (no reduced I/O for lower predicate selectivities), uses a
MergeJoin operator with robust execution behavior, and a hash aggregation. The only possible
source of major performance variation is the variable sized build input of the HybridHashJoin
operator. However, since this join is the only major memory consumer in the plan, its impact
on the overall execution time is marginal. The performance of plan Q3-4 is also constant for
changing database memory settings. Its maximum execution time only increases from 65 to 78
seconds when reducing the memory from 2048 MB to 512 MB.

Plan Q3-5 (Figure[5.9(d)) differs from plan Q3-4 in the way the 1ineitem relation is accessed. It
uses a secondary index on the attribute of the variable local predicate, joins it with the clustered
index to construct the required tuple and sorts the result for the subsequent MergeJoin with
the orders relation. In addition, the aggregation is performed using a Sort and a Stream-
Aggregation operator. Figures[5.10(f) and [5.10(h)| show the execution time of Q3-4 and Q3-5
for 512 MB database memory, respectively. While the execution time of plan Q3-4 differs by
slightly more than a factor of two (38 to 78 seconds), the execution time of plan Q3-5 varies
significantly from 19 (low selectivity of 1ineitem predicate) to 670 seconds (high selectivity of
both predicates), a factor of 35. The main reasons for the significant performance difference with
512 MB memory are the secondary and clustered index seeks and the following Sort required

127

5 Assessing the Risk of Relational Data Flows

by the Merge Join operator. These three operators are very sensitive to low memory budgets, the
index seeks due to the size of the buffer pool and the sort due to the size of its workset memory,
which might force it to spill to disk in case of insufficient memory. Looking at the performance
of plan Q3-5 with 2048 MB of database memory (Figure [5.10(g)) we see that the maximum
execution time is reduced to 86 seconds.

SELECT

n_name,

SUM(1_extendedprice * (1 - 1_discount)) AS revenue
FROM

customer, orders, lineitem, supplier, nation, region
WHERE

c_custkey = o_custkey
AND 1_orderkey = o_orderkey
AND 1_suppkey = s_suppkey
AND c_nationkey = s_nationkey
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND r_name = ’ASIA’
AND o_orderdate >= 21994-01-01°
AND o_orderdate < ’1995-01-01°
AND c_acctbal < 7
AND s_acctbal < 7

GROUP BY
n_name

ORDER BY
revenue DESC

Figure 5.11: Query Q5
(D <>
o=
Co—D

Figure 5.12: Query QS5 join graph

Another plan feature with potentially large impact on plan risk is illustrated by three plans for
query Q5. Query Q5 is shown in Figure[5.11]and joins six tables, customer, orders, lineitem,
supplier,nation, and region. The relations region and orders are filtered with constant lo-
cal predicates and the two parameterized predicates are applied on the customer and supplier
relations. An interesting aspect of this query is the cyclic join graph (see Figure [5.12)) with
the join between customer and supplier on their nationkey attributes being not a primary-
key/foreign-key join. The result of joining all relations is grouped, aggregated, and sorted.

128

5.1 Analyzing the Performance of Query Plans for Changing Execution Conditions

Sort
\
Str-Agg
|
Sort
\
NL-Join
NL-Join ClIdx-Seek
\
H-Join ClIdx-Seek SUPPLIER gort
| \
H-Join ClIdx-Scan LINEITEM Str-Agg
! |
NL-Join ClIdx-Scan ORDERS Sort
T \ \
ClIdx-Scan ClIdx-Seek CUSTOMER NL-Join
\ \ =
NATION REGION H-Join ClIdx-Seek
_—— \
(a) Plan Q5-1 H-Join ClIdx-Scan LINEITEM
—— \
NL-Join ClIdx-Scan ORDERS
\ Sort
NL-Join ClIdx-Seek CUSTOMER
\ Str-Agg
ClIdx-Scan ClIdx-Seek REGION
\ \ Sort
SUPPLIER NATION \
NL-Join
(b) Plan Q5-2 .
H-Join ClIdx-Seek
NL-Join ClIdx-Scan LINEITEM
NL-Join Table-Spool ORDERS
I
NL-Join ClIdx-Seek ClIdx-Scan
T~ \ \
ClIdx-Scan ClIdx-Seek REGION CUSTOMER

\ \
SUPPLIER NATION

(c) Plan Q5-3
Figure 5.13: Query Q5 execution plans

Plan Q5-1 is shown in Figure [5.13(a) and is a left-deep plan consisting of IndexNestedLoop-
Join and HybridHashJoin operators followed by a Sort, StreamAggregate, and final Sort
operator. Figures[5.14(a)land[5.14(b)|show the execution time of plan Q5-1 for 2048 and 512 MB
database memory, respectively. The execution time of the plan is determined by the selectivity
of the parameterized predicate on customer because it determines the size of the intermediate
results that are given to the build input of the HybridHashJoin with the orders relation and the
outer sides of the IndexNestedLoopJoin operators with the 1ineitem and supplier relations.
The minimum and maximum execution time of plan Q5-1 for 512 MB memory are 8 and 47
seconds, respectively (7 and 41 for 2048 MB memory).

Similar to plan Q5-1, plan Q5-2 (Figure [5.13(b)) is also a left-deep join plan with a Sort,
StreamAggregate, and final Sort operator on top as in plan Q5-1. While most relations are

129

5 Assessing the Risk of Relational Data Flows

—
[=3
(=)

50

=
[=]

Supplier Selectivity (%)
=)
[

(a) Q5-1, 2048 MB (b) Q5-1,512MB (c) Q5-2,2048 MB (d) Q5-2,512 MB

470

240
120
60

5 30
15
5

01 1 5 10 50 100

=
(=3
[=)

h =
= = OO O

Supplier Selectivity (%)
(=}

0.1 1 5 10 50 100
Customer Selectivity (%) Customer Selectivity (%)

(e) Q5-3,2048 MB (f) Q5-3,512 MB

Figure 5.14: Query Q5 plan execution time (s) for varying predicate selectivities and database
memory.

joined using the same join operators, the order in which they are joined is different. The exe-
cution time of plan Q5-2 for 512 MB database memory is shown in Figure [5.14(d)| and ranges
from 8 seconds to 401 seconds. Figure shows the performance for 2048 MB memory
(7 to 148 seconds). The significant difference in maximum execution time compared to plan
Q5-1 is caused by the non-primary-key/foreign-key m:n join of the supplier and customer
relations. Since there are only 25 distinct values of the nationkey join attribute, the interme-
diate result of the join is very large. The large intermediate result is fed into the build input
of the HybridHashJoin with orders and even more importantly into the outer input of the
IndexNestedLoopJoin with the 1ineitem relation. The join with 1ineitem finally closes the
cyclic join graph and significantly reduces the size of the intermediate result. The strong depen-
dency of plan Q5-2’s performance on the amount of memory can be accounted to the smaller
buffer pool to cache pages of the 1ineitem relation and smaller memory budget for the hash
table of the HybridHashJoin with orders.

Plan Q5-3 is shown in Figure [5.13(c) and is identical with plan Q5-2 except in the way the
customer relation is joined. In plan Q5-2, the customer relation is read by a Clustered-
IndexScan and joined as the probe side of a HybridHashJoin. In plan Q5-3, the customer
relation is also read with a ClusteredIndexScan, but the filtered and projected result (only the
custkey and nationkey are required) is written into a temporary table. The temporary table
serves the inner input of a NestedLoopJoin. Consequently, the temporary table is repeatedly
scanned by the NestedLoopJoin. How often this happens depends on the size of the outer input.
Figures[5.14(¢e)|and[5.14(T)|show the performance of plan Q5-3 for varying predicate selectivities
and 2048 and 512 MB database memory, respectively. Same as plan Q5-2, plan Q5-3 suffers

130

5.1 Analyzing the Performance of Query Plans for Changing Execution Conditions

from the large intermediate result caused by the m:n join between customer and supplier.
Therefore, the patterns of their execution time plots are quite similar, although plan Q5-3 is even
worse than plan Q5-2. While plan Q5-2’s performance ranges from 7 to 148 seconds for 2048
MB memory (8 to 401 seconds for 512 MB memory), Q5-3 takes 7 to 220 seconds to executed
with 2048 MB memory and 8 to 470 seconds with 512 MB memory. Compared to Q5-2 the
maximum execution time of plan Q5-3 is about 70 seconds higher independent of the amount of
memory. This example shows the impact that a NestedLoopJoin operator with an outer side of
uncertain size can have on the risk of a plan.

SELECT
c_custkey, c_name,
SUM(1_extendedprice * (1 - 1_discount)) AS revenue,
c_acctbal, n_name, c_address, c_phone, c_comment
FROM
customer, orders, lineitem, nation
WHERE
c_custkey = o_custkey
AND 1_orderkey = o_orderkey
AND o_orderdate >= ’1993-10-01°
AND o_orderdate < ’1994-01-01°
AND c_nationkey = n_nationkey
AND c_acctbal < 7
AND 1_extendedprice < 7
GROUP BY
c_custkey, c_name, c_acctbal, c_phone,
n_name, c_address, c_comment
ORDER BY
revenue DESC

Figure 5.15: Query Q10

Two plans from query Q10 illustrate how opportunistic optimizer decisions can lead to extreme
performance variations without significant execution time improvements. Query Q10 joins four
relations, lineitem, orders, customer, and nation, performs an aggregation, and sorts the
result (see Figure[5.15] Fixed local predicates are applied on orders and parameterized predi-
cates are applied on lineitem and customer.

Figure [5.16] shows two execution plans for query Q10. The plans are identical except for the
position of a Sort operator. Both plans start joining the customer and orders relation using a
HybridHashJoin operator with the orders relation being on the probe side. In plan Q10-1 the
result of the join is forwarded into the outer side of an IndexNestedLoopJoin with 1ineitem.
The result is sorted on custkey and stream-aggregated. In plan Q10-2, the result of the first
join is first sorted on custkey, then used as the outer input of the IndexNestedLoopJoin with
lineitem, and after that stream-aggregated. Both plans continue with joining their result with

131

5 Assessing the Risk of Relational Data Flows

Sort Sort
H-Join H-Join
ClIdx-Scan Str-Agg ClIdx-Scan Str-Agg
| | | |
NATION Sort NATION Scalar
Scalar NL-Join
NL-Join Sort ClIdx-Seek
H-Join ClIdx-Seek H-Join LINEITEM
ClIdx-Scan ClIdx-Scan LINEITEM ClIdx-Scan ClIdx-Scan
CUSTOMER ORDERS CUSTOMER ORDERS
(a) Plan Q10-1 (b) Plan Q10-2
Figure 5.16: Query Q10 execution plans
~ 440
S
EIOO 240
£ 00 120
g 10 60
B 5 30
8 15
L 1
k3|
£ 0.1
3

011 5 10 50100 0.1 1 5 10 50100 0.1 1 5 10 50100 0.1 1 5 10 50 100
Customer Selectivity (%) Customer Selectivity (%) Customer Selectivity (%) ustomer Selectivity (%)

(2) Q10-1,2048 MB (b) Q10-1,512MB (c) Q10-2,2048 MB (d) Q10-2, 512 MB

Figure 5.17: Query Q10 plan execution time (s) for varying predicate selectivities and database
memory.

the nation relation and finally sorting the result.

The Sort operator is required by the StreamAggregate operator. The optimizer has the option
to move the Sort operator below the IndexNestedLoopJoin operator because it preserves the
order of its outer input. In case of plan Q10-2, the optimizer decides to move the sort below the
join because this reduces the amount of data to be sorted due to the smaller tuple width.

Figure [5.17) shows the execution time of both plans for 2048 and 512 MB database memory.
For both plans, the performance depends on the selectivity of the customer predicate. The
performance of plan Q10-2 also varies for changing memory settings. While the execution time
of plan Q10-1 ranges from 7 to 47 seconds, the execution time of plan Q10-2 ranges from 7 to
98 seconds for 2048 MB database memory (8 to 53 and 8 to 340 seconds for 512 MB). This
significant difference in performance is caused by the different position of the Sort operator in
both plans, which are identical otherwise.

132

5.1 Analyzing the Performance of Query Plans for Changing Execution Conditions

The position of Sort operator significantly influences the performance of the IndexNested-
LoopJoin with the 1ineitem relation. In plan Q10-1 the outer input of the join is sorted on the
orderkey because the probe side of the previous HybridHashJoin is a scan of the clustered
index on orders, which is sorted on orderkey, its primary key. Because the clustered index
on lineitem is also sorted on orderkey and orderkey is the join attribute between orders
and lineitem, the IndexNestedLoopJoin in plan Q10-1 sequentially reads the disk pages
of the clustered index on lineitem. Plan Q10-2 sorts the output of the first join on custkey
before it is fed into the outer side of the IndexNestedLoopJoin with 1ineitem. Therefore, the
ClusteredIndexSeek operator causes many expensive random I/O accesses. Again, a large
buffer pool can reduce the number of I/O operations that actually hit the disk.

5.1.4 Identified Risky Plan Features

In the previous sections we discussed the impact of individual operators, join order, and pipelined
execution on the execution time of query plans and analyzed complete execution plans and their
performance for changing input sizes and memory settings. We identified several plan features,
which can be responsible for a significantly varying performance of execution plans and hence
can have a negative impact on the robustness of an execution plan. In the following we give a
summary of these features.

NestedLoopJoin The performance of a NestedLoopJoin heavily depends on the cardinality
of its outer input. Since it evaluates its inner side for every outer tuple (or batch of outer
tuples), it becomes expensive even for small numbers of tuples on the outer side. To
reduce this cost, optimizers sometimes inject a temporary table to cache the result of the
inner side (see Figure [5.13]c) for example). However even in such cases, the cost of a
NestedLoopJoin can be high if the size of the outer or inner side is underestimated. Due
to its high costs even for small cardinalities, a NestedLoopJoin is seldom used for equality
joins where usually better alternatives exist.

IndexNestedLoopJoin The IndexNestedLoopJoin is a “common special case” of the Nes-
tedLoopJoin and can be a good operator to join a large indexed relation. Its execution
time does also depend on the cardinality of its outer input because the join performs an
index seek operation for each outer tuple. In principle, each index seek operation causes at
least one expensive random I/O operation. The cost the index seeks can be reduced if the
target relation (partly) fits into the buffer pool. If the tuples of the outer input are sorted
on the join attribute and the accessed index is clustered, the random I/O pattern becomes
sequential and disk pages might even be asynchronously pre-fetched. In this case, the cost
variance of the IndexNestedLoopJoin decreases significantly. Plans Q10-1 and Q10-2
in Section 3.1 3lillustrate the effect of sorted outer sides.

133

5 Assessing the Risk of Relational Data Flows

Index Seeks IndexSeek operators are used to apply a predicate on a relation. The predicate

Sort

can be a local predicate or a join predicate if the IndexSeek operator is called from an
IndexNestedLoopJoin. In the latter case, the IndexSeek operator is called several times
with different value bindings of the join attribute. If the seek operation is performed on
a clustered index, the number of random I/O operations is independent of the predicate’s
selectivity, because the data is physically organized in order of the predicate attribute. In
case of a SecondaryIndexSeek operator, each tuple that fulfills the predicate condition
might be located on a different disk page and cause an additional random I/O operation.
Hence, SecondaryIndexSeek operations are very sensitive for changing predicate selec-
tivities and can result in significant execution costs. A large buffer pool helps to reduce the

amount of physical I/O operations. Figure and Plan Q3-5 (Figures [5.9(d), [5.10(h)
and|5.10(g)) illustrate this behavior.

Joins The result cardinality of an equi-join where at least one join attribute has a unique-
ness constraint (such as UNIQUE or PRIMARY KEY) is bounded by the cardinality of the re-
lation with the non-unique join attribute. In contrast, non-equality joins or equality-joins
on non-unique attributes can result in large intermediate results. Moreover, the result car-
dinalities of non-equality and equality joins on non-unique attributes are hard to estimate
such that optimizers can be easily off by multiple orders of magnitude. Hence, such joins
pose a high risk and should be avoided if possible. Plan Q5-2 (Figures [5.13|b),
and[5.14(d)) illustrates which effect such a join and its intermediate result can have on the
performance of a plan.

While some queries explicitly ask for ordered results, Sort operators are also often in-
jected by optimizers. One reason to add a sort operator are subsequent operators that
require sorted input, such as MergeJoin or StreamAggregate. Another reason to in-
ject a sort operator is to improve the performance of an operator, as for instance an
IndexNestedLoopJoin on a clustered index. However, most sort-based operators have
also hash-based alternatives that do not need sorted input. Usually, a sort-based operator
and the necessary Sort operator are chosen over a hash-based alternative if the optimizer
expects a small input size. However, the Sort operator can become expensive if its input
data exceeds its workspace memory such that it needs to write data to disk and read it back
(see Plans Q3-1 and Q3-2 in Section[5.1.3). A few times, we observed that the optimizer
injected a Sort operator to sort the outer side of an IndexNestedLoopJoin. In such
cases, the optimizer expects that the additional costs of the sort are less than the costs
savings of the sequential access pattern of the IndexNestedLoopJoin. However, Plan
p10-2 shows the result of an inverse case, where the optimizer pushes a Sort operator in
front of an IndexNestedLoopJoin that shuffles the index accesses and causes the plan to
become expensive for high selectivities.

HybridHashJoin Finally, hash joins read their build input and create an in-memory hash table.

134

If the memory is not sufficient, parts of the data are spilled to disk (see Plans Q3-1 and

5.1 Analyzing the Performance of Query Plans for Changing Execution Conditions

Q3-3 in Section [5.1.3). Therefore, the performance hash joins depend on the size of their
build input. However, the performance of a HybridHashJoin degrades rather gracefully
as only parts of the build and probe input need to be spilled to disk.

Similar observations were published in a technical report by Abhirama et al. [2]. In this report,
the authors propose a method to reduce the plan space of a query by replacing the optimal plan
at some locations of the plan space with neighboring plans that have costs close to the optimal
plan, but which exhibit a more stable behavior for other regions of the plan space. The authors
made a few observations regarding common changes made by their method, i.e., how did the
plans which were replaced differ from the replacing plans. We cite and comment the technical
report [2] in the following:

e “Index intersections are often replaced by joins based on sequential scans. This is due
to the indexes becoming very expensive at the higher selectivity regions of the selectiv-
ity space.” We did not look at plans with intersecting indexes in our study. However,
index seek operations, either for local predicate evaluation or as inner side of Index-
NestedLoopJoin operators, are frequently responsible for significantly varying plan per-
formance.

e “Nested-loop-based plans are frequently replaced with hash-join-based plans, but the re-
verse was never observed. Further, merge joins were almost never retained.” The analy-
sis of our benchmark showed that NestedLoopJoin operators are indeed risky choices
if the cardinality of their outer side varies. However, there are some exceptions for
IndexNestedLoopJoin operators. Our observations showed that MergeJoin operators
are robust choices given that the input is already sorted (e. g. due to a ClusteredIndexScan).
In case that an input with variable size needs to be sorted, using this input on the probe
side of a HybridHashJoin operator is often a more robust choice.

o “Finally, we also often saw that the join order of the replacement plan was different to
that of the original plan. In particular, left-deep plans were typically replaced by bushy
plans.” Our experiments in Section [5.1.2] shows that left and right deep plans can easily
degrade. Figure [5.5shows that a pipelined plan with variable probe side is hard to beat
given that enough memory is available to hold all hash tables in memory. Otherwise,
bushy plans offered a good compromise between good performance for small input sizes
and not-too-bad performance for large input sizes.

135

5 Assessing the Risk of Relational Data Flows

5.2 Defining Plan Risk and Using it for Safe Plan Choices

In the previous sections we discussed why it is desirable to distinguish robust from risky plans
and identified plan features that can cause significant variations in execution time. So far we
used the term “robust plans” for plans that exhibit only low or moderate performance variations
for changing execution conditions and called plans risky if their execution time was highly sen-
sitive to varying execution conditions. In order to assess and compare the robustness of query
execution plans we need a metric that captures the riskiness of a plan. In this section we propose
such a plan risk score to compute and compare the risk of execution plans. Subsequently, we
propose a method that leverages the plan risk score to compute a risk-weighted plan cost in order
to prevent the choice of very risky execution plans.

5.2.1 Defining a Risk Score for Execution Plans

The goal of the plan risk score is to give a quantitative measure for the performance variation of
a plan with respect to changing execution conditions. The considered execution conditions may
include several varying parameters, such as changing memory budgets, predicate selectivities,
or data set sizes. In fact, the choice of the variable parameters depends on the availability of
information and the application of the risk score. For example the selectivity of a parameterized
predicate might be considered while the selectivities of a fixed predicate is not included because
it can be accurately estimated. The amount of available memory can be a varying parameter of
the execution condition in setups that concurrently run ad-hoc queries.

In the following, we present our definition of the plan risk score. We represent each vary-
ing parameter of the considered execution conditions as a continuous random variable D; and
the considered execution conditions as a random vector D consisting of all n random variables
D;, 1 <i < n. The probability density function f5(d) of the random vector D describes the prob-
abilities of the considered execution conditions. The function #,(d) gives the execution time of a
plan p for an execution condition d. Note that the execution time of the plan only depends on d
because all other parameters that influence p’s performance are assumed to be fixed. We define
T, as a continuous random variable that describes the execution time of a plan p with respect to
the random vector D of all considered plan execution conditions as

T, = t,(D). (5.1

Given T, we define the plan risk score r,, of plan p for the considered execution conditions as
the coefficient of variation (CoV) or relative standard deviation of its execution time distribution

- o(T,)
- w(T,)

(5.2)

136

5.2 Defining Plan Risk and Using it for Safe Plan Choices

Similar to the coefficient of variation of a plan’s execution time distribution, we can also compute
the coefficient of variation of a plan’s distribution of estimated costs.

Wiener et al. propose a benchmark for query execution robustness [204] and define the metric
“consistency” as the variance of plan execution time, which is very close to our definition. While
a variance-based risk score captures the magnitude of the differences in execution time, defining
the plan risk score as the coefficient of variation gives the nice property that the risk score
is independent of the unit used. Hence, it is possible to compare plan risk values computed
from optimizer-estimated costs and from performance measurements. Further, the coefficient of
variation allows to compare the risk of plans (even for different queries) with execution times
that differ by orders of magnitude due to the normalization by the average execution time.

5.2.2 Using Plan Risk Scores to Compute Risk-weighted Plan Costs

Conventional cost-based query optimizers chose query execution plans based on cost estimates,
which are obtained for an assumed execution condition. As discussed before, assumed execution
conditions can significantly differ from actual conditions at the time when a plan is executed.
A plan which performs well for the assumed execution condition might perform poorly for the
actual condition. Since plans can substantially differ in their sensitivity for changing execution
conditions, a plan with more uniform performance can be a better choice.

Situations where a plan behaves much worse than expected due to unknown execution condi-
tions could be prevented if the optimizer would take the risk of a plan into account. However,
ranking execution plans based on estimated execution cost and risk is not straightforward. Fig-
ure[5.6]shows that plans with low performance variation often exhibit a rather high (but constant)
execution time. In contrast, plans with high variation are potentially fast but might take a long
time to complete under certain conditions. In this section, we propose and evaluate a method
that computes risk-weighted plan costs by combining the previously defined risk score and the
estimated costs of plans.

Our method aims to approximate the cost distribution of a plan using the plan’s risk score and
derives the risk-weighted cost estimate as a percentile from this distribution. The percentile is
a user-specified parameter ¢, which weighs performance and robustness of plan choices. Given
a plan p and an uncertain execution condition, such as a parameterized predicate with uncertain
selectivity, our method requires an optimizer cost estimate for the assumed execution condition
¢,, @ maximum cost estimate c; for the worst-case execution condition (such as selectivity =
100%), and a risk score r,. Given this information, we approximate the cost distribution as a
normal distribution with mean [= ¢), and standard deviation ¢ = r), * (c;,r —¢},) and choose
a risk-weighted cost estimate as the g-th percentile of this distribution. The rational of this
approximation is as follows. If a plan has a low risk score or the assumed execution condition

is close to the worst-case execution condition, the standard deviation of the cost distribution is

137

5 Assessing the Risk of Relational Data Flows

small and hence the risk-weighted cost estimate is close to the estimated cost of a conventional
cost-based optimizer. For plans with a high risk and an assumed execution condition which
is far from the worst-case condition, the standard deviation is large and the risk-weighted cost
estimate can be significantly higher than the conventional cost estimate.

In the following, we evaluate the proposed method and show that risk-weighted cost can prevent
plan choices that result in exceptional high execution times. The evaluation is based on the data
we collected in the course of our experimental study (Section where we executed 306
query plans for 108 different execution conditions (6 different selectivities for each of two local
range predicates and 3 database memory configurations). We simulate plan choices of different
methods for a given query and an assumed execution condition and analyze the execution time of
the chosen plans for actual execution conditions, which are different from the assumed one. For
this evaluation, we limit the differences of assumed and actual execution conditions to a single
predicate selectivity. This means, for each evaluation we let estimated and actual selectivities
only diverge for one of the two range predicates (see Table[5.1]as a reference) and provide exact
estimates for the other range predicate and the memory setting. We use linear interpolation of our
benchmark data to obtain the optimizer cost estimate and the execution time of a benchmarked
plan for an arbitrary execution condition.

For the evaluation we compare the execution times of a plan chosen by the risk score method
(RSP) to the best possible plan choice (BP), i. e., the plan with the lowest execution time for the
actual execution condition, and also to the plan with the minimum estimated cost for the assumed
execution condition (MCP), i. e., the plan that a conventional cost-based optimizer would choose.
We choose plans for six assumed selectivities, 0.1%, 1%, 5%, 10%, 50%, and 100%. For each
assumed selectivity, we randomly pick 500 actual selectivities either from a normal distribution
with the estimated selectivity as mean and 10% selectivity as standard deviation truncated to 0%
and 100% (we used the stats.truncnorm distribution from SciPy 0.16.0 [1835]]) or from a uniform
distribution between 0% and 100%. The plan risk scores used for the RSP method are computed
from actual execution times for six selectivities 0.1%, 1%, 5%, 10%, 50%, and 100% that we
measured in the course of our experimental study (Section[5.1.3).

Table [5.2] compares the execution times of minimum estimated cost plans (MCP) and risk-
weighted cost plans (RCP) to the execution times of the best possible plan (BP) for all queries.
The percentile parameter of our risk-weighting method is set to p = 0.95. We show percentiles
(p-50, p-75, p-95, p-99, max) of the absolute execution time differences and the total relative
slowdown compared to the best plan for both methods and all assumed and actual selectivities.
In this experiment, the actual selectivities are picked around the estimated selectivity using a
truncated normal distribution. We see that the minimum estimated cost plans are as good as or
only slightly worse than the best plan in at least 75% of all simulated executions. However for
some queries, 1% of the plans are significantly slower than the best plan choice (Q2: 165 s,
Q10: 42 s, Q21: 901 s). Looking at all simulated executions of query Q2, plans chosen using
the minimum estimated cost method are in total 5.68 times slower than the respective best plans

138

5.2 Defining Plan Risk and Using it for Safe Plan Choices

Exec. time diff. MCP and BP (s) slow Exec. time diff. RCP and BP (s) slow

p-50 | p-75 | p-95 | p-99 | max | down || p-50 | p-75 | p-95 | p-99 | max | down

Q2 0 1 49 165 663 | 5.68x 0 0 0 14 18 1.23x
Q3 4 7 11 25 186 | 1.16x 4 6 16 26 32 1.16x
Q4 0 0 20 27 30 1.45x 0 0 16 18 21 1.25x
Q5 5 7 12 13 127 | 1.29x 6 8 11 13 21 1.35x
Q7 0 2 4 4 11 1.09x 0 2 15 25 29 1.20x
Q8 9 10 13 21 62 1.32x 0 8 11 13 23 1.13x
Q9 0 1 13 15 32 1.09x 0 1 13 14 16 1.07x
Q10 8 10 21 42 140 | 1.47x 9 11 22 28 33 1.54x
Q11 0 0 0 0 1 1.01x 0 0 0 0 0 1.01x
Q12 0 0 9 23 121 1.10x 0 0 0 8 18 1.01x
Q14 0 0 12 31 160 | 1.03x 0 0 0 5 9 1.00x
Q16 0 0 1 1 2 1.08x 0 1 3 3 4 1.20x
Q17 0 0 8 10 46 1.05x 0 0 7 10 11 1.04x
Q21 0 1 24 901 | 3593 | 2.10x 0 0 7 24 29 1.05x

[ALLJ] 0o | 4 [13 [37 [3593]12ex|[0 [2 [11 [20 [33 [1.12x |

Table 5.2: Execution time difference of minimum estimated cost plan (MCP) and best plan (BP)
and risk-weighted cost plan (RCP) and best plan. Actual selectivity is normal dis-
tributed around estimated selectivity (¢ = 10%) truncated between 0% and 100%,
percentile parameter of risk-weighting method is p = 0.95.

(2.10x for query Q21 and 1.47x for query Q10). In contrast, the maximum absolute difference
in execution time is much lower for plans chosen by the risk-weighted method (29 vs. 3593 sec-
onds for Q21, 18 vs. 663 seconds for Q2) as well as the total relative slowdown (1.23x vs. 5.68x
for Q2, 1.05x vs. 2.10x for Q21). However, there are also queries for which the risk-weighted
method performs worse than the minimum estimated cost method, such as queries Q5, Q7, Q10,
and Q16.

In order to evaluate how much risk-weighted plan choices improve or hurt the performance with
respect to minimum estimated cost plan choices, we compare the execution times of plans chosen
by both methods in more detail. Table [5.3] shows percentiles (min, p-1, p-5, p-95, p-99, max)
of the relative and absolute differences of their execution times. We see that in several cases
the execution time of risk-weighted plans is significantly higher than the execution time of the
minimum cost plans. For example, in more than one percent of all simulated executions of query
Q21, the execution time of a RCP is more than a thousand times higher the execution time of
the MCP. However, when looking at the absolute difference, we find that the absolute regression
is limited to 29 seconds while the maximum improvement is 3593 seconds. For query Q16 the
maximum regression of risk-weighted plans is a factor of 225x but only 4 seconds. Over all
plans, the maximum absolute regression is 32 second while for 7 queries the best improvement
is more than 120 seconds. These observations show that risk-weighted plan choices prevent the
execution of plans with extremely poor performance in worst-case scenarios at the cost of plan
choices which are able to execute fast under favorable conditions.

139

5 Assessing the Risk of Relational Data Flows

Relative Difference: ¢(RCP)/t(MCP) Absolute Difference (s): t(RCP) —(MCP)
min p-1 p-5 p-95 p-99 max min p-1 | p-5 | p-95 | p-99 | max
Q2 0.01x | 0.02x | 0.04x | 2.21x | 7.68x 35x -663 | -165 | -49 0 0 1
Q3 0.23x | 0.47x | 0.85x | l.46x | 2.73x | 8.09x -186 | -24 | -6 11 22 32
Q4 0.17x | 0.18x | 0.28x | 1.79x | 2.01x | 2.09x -30 27 | -17 3 4 4
Q5 0.24x | 0.52x | 0.89x | 1.56x | 1.60x | 2.4Ix -123 -6 -2 7 10 15
Q7 0.60x | 0.71x | 0.92x | 1.62x | 3.56x | 8.29x -9 -2 -1 12 24 29
Q8 0.28x | 0.53x | 0.67x | 1.00x | 1.01x | 1.79x -62 21 | -13 0 0 9
Q9 0.69x | 0.74x | 0.85x | 1.02x | 1.06x | 1.37x -20 -12 | -5 0 2 13
Q10 || 0.24x | 0.55x | 0.76x | 1.63x | 3.30x | 7.60x -128 27 | -8 11 25 32
Q11 || 0.76x | 091x | 0.97x | 1.01x | 1.0Ix | 1.04x -1 0 0 0 0 0
Q12 || 0.18x | 0.47x | 0.72x | 1.00x | 1.24x | 3.71x -121 -23 -9 0 4 18
Q14 || 0.28x | 0.49x | 0.70x | 1.00x | 1.00x | 1.77x -160 | -31 | -12 0 0 9
Q16 || 0.82x | 0.95x | 0.98x | 4.71x | 47x 225x -2 0 0 2 3 4
Q17 || 0.48x | 0.73x | 0.86x | 1.01x | 1.17x | 1.35x -46 -10 | -5 0 5 10
Q21 || 0.01x | 0.03x | 0.54x | 1.04x | 1030x | 1237x || -3593 | -901 | -23 0 24 29
[ALL] 0.01x [0.10x] 0.69x [1.51x [3.54x [1237x [[-3593 | -35 | 9 | 4 [14 [32 |

Table 5.3: Execution time difference of minimum estimated cost plan (MCP) and risk-weighted

cost plan (RCP). Actual selectivity is normal distributed around estimated selectivity
(0 = 10%) truncated between 0% and 100%, percentile parameter of risk-weighting
method is p = 0.95.

Exec. time diff. MCP and BP (s) slow Exec. time diff. RCP and BP (s) slow

p-50 | p-75 | p-95 | p-99 | max | down || p-50 | p-75 | p-95 | p-99 | max | down

Q2 0 1 49 165 663 | 5.68x 0 0 3 15 24 1.34x
Q3 4 7 11 25 186 | 1.16x 4 8 14 20 32 1.17x
Q4 0 0 20 27 30 1.45x 0 0 17 25 28 1.35x
Q5 5 7 12 13 127 | 1.29x 6 8 10 13 20 1.35x
Q7 0 2 4 4 11 1.09x 0 2 4 4 11 1.09x
Q8 9 10 13 21 62 1.32x 0 8 12 13 17 1.15x
Q9 0 1 13 15 32 1.09x 0 1 13 14 16 1.07x
Q10 8 10 21 42 140 | 1.47x 8 10 12 20 27 1.45x
Q11 0 0 0 0 1 1.01x 0 0 0 0 0 1.01x
Q12 0 0 9 23 121 1.10x 0 0 7 10 18 1.05x
Ql4 0 0 12 31 160 | 1.03x 0 0 0 5 9 1.00x
Q16 0 0 1 1 2 1.08x 0 1 1 1 2 1.14x
Q17 0 0 8 10 46 1.05x 0 0 6 10 11 1.04x
Q21 0 1 24 901 | 3593 | 2.10x 0 0 3 24 29 1.04x

[ALL [0 [4 [13 [37 [3593[126x[[0 [3 [10 [16 | 32 [LlIx |

Table 5.4: Execution time difference of minimum estimated cost plan (MCP) and best plan (BP)

140

and risk-weighted cost plan (RCP) and best plan. Actual selectivity is normal dis-
tributed around estimated selectivity (¢ = 10%) truncated between 0% and 100%,
percentile parameter of risk-weighting method is p = 0.70.

5.2 Defining Plan Risk and Using it for Safe Plan Choices

Relative Difference: 1(RCP)/t(MCP) Absolute Difference (s): t(RCP) —(MCP)

min p-1 p-5 p-95 p-99 max min p-1 | p-5 | p-95 | p-99 | max

Q2 0.01x | 0.02x | 0.04x | 2.00x | 6.30x 35x -663 | -165 | -49 0 0 1
Q3 0.23x | 047x | 0.86x | 1.47x | 1.75x | 4.04x -186 -24 -6 12 15 28
Q4 0.17x | 0.18x | 0.98x | 1.02x | 1.95x | 2.09x -30 -26 0 0 4 4
Q5 0.24x | 0.52x | 0.89x | 1.56x | 1.60x | 2.41x -123 -6 -2 7 10 15
Q7 0.61x | 0.71x | 0.94x | 1.08x | l.16x | 1.42x -3 -2 0 1 3 4
Q8 0.28x | 0.53x | 0.67x | 1.00x | 1.01x | 2.42x -62 21 | -13 0 0 16
Q9 0.68x | 0.74x | 0.86x | 1.02x | 1.06x | 1.31x -21 -12 -5 0 1 11
Q10 || 0.24x | 0.51x | 0.69x | 1.49x | 1.59x | 2.26x -128 -31 | -11 9 11 18
Q11 0.76x | 091x | 0.97x | 1.01x | 1.0Ix | 1.03x -1 0 0 0 0 0
Q12 || 0.18x | 0.51x | 0.78x | 1.00x | 1.00x | 2.21x -121 -22 -7 0 0 10
Q14 || 0.28x | 0.49x | 0.70x | 1.00x | 1.00x | 1.77x -160 -31 | -12 0 0 9
Q16 || 0.82x | 0.95x | 0.99x | 2.96x | 4lx 63x 2 0 0 | 1 1
Q17 || 048x | 0.73x | 0.86x | 1.00x | 1.16x | 1.37x -46 -10 -5 0 5 10
Q21 || 0.01x | 0.03x | 0.54x | 1.00x | 446x | 1213x || -3590 | -901 | -23 0 24 29

[ALL [[0.01x [0.11x [0.70x | 1.35x [2.18x [1213x [[-3590 [-35 [9 [1 [9 [29 |

Table 5.5: Execution time difference of minimum estimated cost plan (MCP) and risk-weighted
cost plan (RCP). Actual selectivity is normal distributed around estimated selectivity
(0 = 10%) truncated between 0% and 100%, percentile parameter of risk-weighting
method is p = 0.70.

The performance-robustness trade-off of the risk-weighted plan choice method can be controlled
by the percentile parameter. Table and Table [5.5] show the differences in execution time if
the percentile parameter of the risk-weighting method is set to p = 0.70 instead of p = 0.95.
Comparing Table [5.4] with Table [5.2] we see that the effect of changing the percentile parameter
differs among queries. While the worst-case execution times and relative slowdowns for some
queries (Q2, Q4, Q12) increase, the plan choices for other queries (Q7, Q8, Q10, Q16) signifi-
cantly improve. For example the maximum execution time difference of the RCP to the best plan
is reduced from 29 to 11 seconds for query Q7. Table [5.5] shows that the maximum execution
time regression (relative and absolute) of RCPs compared to MCPs for a percentile parameter of
p = 0.70 is reduced for several queries (Q3, Q7, Q10, Q16) compared to a parameter setting of
p = 0.95 (Table[5.3). At the same time, the gains in worst-case situations remain stable among
all queries. These observations show that the optimal choice of the percentile parameter is not
only application, but also query and workload specific.

The simulations so far were conducted for a scenario where the actual selectivity was picked
from a truncated normal distribution that is centered on estimated selectivity with a standard
deviation of 10%. In the following we show results for a simulation with a more pessimistic sce-
nario where we pick the actual selectivity from a uniform distribution between 0% and 100%.
Hence, the probability of the actual selectivity is independent from the estimated selectivity,
which results in high over- and underestimations. We perform this simulation with a percentile
parameter of p = 0.70 and show the results in Table[5.6]and Table As expected, the execu-
tion time differences of minimum cost plans compared to the optimal plan choices significantly

141

5 Assessing the Risk of Relational Data Flows

Exec. time diff. MCP and BP (s) slow Exec. time diff. RCP and BP (s) slow

p-50 | p-75 | p-95 | p-99 max down p-50 | p-75 | p-95 | p-99 | max | down

Q2 0 12 605 | 1542 | 1851 | 34.35x 0 0 18 70 93 | 2.28x
Q3 4 9 26 222 600 1.33x 3 6 14 18 30 1.14x
Q4 0 0 25 31 44 1.51x 0 0 18 27 33 1.36x
Q5 6 9 17 69 253 1.38x 8 11 13 24 33 1.39x
Q7 1 3 9 18 50 1.16x 1 3 9 12 28 1.15x
Q8 10 12 17 112 195 1.45x 0 9 12 14 19 1.15x
Q9 0 3 13 32 59 1.11x 0 1 12 14 17 1.08x
Q10 9 16 75 241 412 1.96x 10 13 21 27 32 1.53x
Q11 0 0 1 2 3 1.04x 0 0 0 0 0 1.01x
Q12 0 0 47 185 375 1.38x 0 0 11 20 28 1.08x
Q14 0 0 31 144 425 1.07x 0 0 0 2 5 1.00x
Q16 0 1 3 6 10 1.15x 0 0 1 1 4 1.06x
Q17 0 0 15 89 151 1.12x 0 0 6 10 11 1.03x
Q21 0 2 204 | 7159 | 10359 | 8.54x 0 1 3 13 24 1.04x

[ALL] 0 | 6 [28 [350 [10359 [214x [0 [3 [13 [22 | 93 [LI2x |

Table 5.6: Execution time difference of minimum estimated cost plan (MCP) and best plan (BP)
and risk-weighted cost plan (RCP) and best plan. Actual selectivity is uniformly
distributed between 0% and 100%, percentile parameter of risk-weighting method is

p = 0.70.
Relative Difference: 1(RCP)/t(MCP) Absolute Difference (s): t(RCP) —r(MCP)

min p-1 p-5 p-95 p-99 max min p-1 p-5 | p-95 | p-99 | max
Q2 [[0.01x | 0.01x | 0.01x | 1.05x | 2.06x | 23x || -1851 [-1542 [-605 | 0 0 2
Q3] 0.09x [0.18x [0.50x | 1.21x [1.45x | 2.98x [-600 | 220 | 21 [9 13 | 24
Q4 [0.14x [0.17x [0.85x | 1.03x [1.65x | 2.08x -44 30 [-1 0 3 4
Q5 [[0.14x [037x | 0.81x | 149x | 1.57x | 419x || 248 [-64 [4 | 12 | 13 [28
Q7 || 0.48x [0.61x [0.95x | 1.12x [1.15x | L.I8x -41 -4 -1 1 4 5
Q8 || 0.11x [0.19x [0.59x | 1.00x [1.00x | 1.71x [| -195 | -111 [-17 [0 0 11
Q9 [[047x | 0.66x | 0.75x | 1.04x | 1.25x | 1.46x -49 21 [-1 1 8 15
Q10 [] 0.09x [0.18x | 0.40x | 1.40x [1.49x | 2.04x [[-399 | 223 | -60 | 10 [12 [14
Q11 [] 0.52x [0.62x | 0.78x | 1.01x | 1.0Ix | 1.02x -3 2 0 0 0 0
Q12 [[0.06x [0.12x | 0.47x | 1.00x | 1.00x | 1.28x || -375 | -185 [-39 | 0 0 5
QI4 [0.11x [023x | 0.61x | 1.00x | 1.00x | 1.28x || -425 [-144 [31 | 0 0 4
Q16 || 0.62x [0.68x | 0.76x | 1.28x [2.34x | 59 -10 -6 -3 0 1 1
Q17 [[0.22x [0.32x | 0.63x | 1.00x | 1.01x | 1.36x || -151 80 [-15] 0 0 10
Q21 [0.00x [0.01x [0.13x | 1.00x [1.69x | 1178x [| -10346 | -7158 [-202 [0 7 [24

[ALL [[0.00x [0.02x [0.53x [1.06x [1.49x [1178x [[-10346 | -348 [-19 [0 [11 [28 |

Table 5.7: Execution time difference of minimum estimated cost plan (MCP) and risk-weighted
cost plan (RCP). Actual selectivity is uniformly distributed between 0% and 100%,

142

percentile parameter of risk-weighting method is p = 0.70.

5.2 Defining Plan Risk and Using it for Safe Plan Choices

Exec. time diff. MCP and BP (s) slow Exec. time diff. BAP and BP (s) slow

p-50 | p-75 | p-95 | p-99 | max | down || p-50 | p-75 | p-95 | p-99 | max | down

Q2 0 1 49 165 663 | 5.68x 0 0 7 36 185 | 1.93x
Q3 4 7 11 25 186 | 1.16x 4 6 16 26 32 1.16x
Q4 0 0 20 27 30 1.45x 0 0 16 18 21 1.23x
Q5 5 7 12 13 127 | 1.29x 6 8 10 13 20 1.32x
Q7 0 2 4 4 11 1.09x 0 2 4 4 11 1.09x
Q8 9 10 13 21 62 1.32x 9 10 12 13 24 1.29x
Q9 0 1 13 15 32 1.09x 0 1 13 14 15 1.08x
Q10 8 10 21 42 140 | 1.47x 8 10 16 28 117 | 1.43x
Q11 0 0 0 0 1 1.01x 0 0 0 0 0 1.01x
Q12 0 0 9 23 121 1.10x 0 0 8 18 1.01x
Q14 0 0 12 31 160 | 1.03x 0 0 0 5 9 1.00x
Q16 0 0 1 1 2 1.08x 0 1 1 1 2 1.14x
Q17 0 0 8 10 46 1.05x 0 0 7 10 11 1.04x
Q21 0 1 24 901 | 3593 | 2.10x 0 0 2 10 29 1.03x

[ALLJ] 0 | 4 [13 [37 [3593[12ex|[0 [3 [10 [17 [185 [1.12x |

Table 5.8: Execution time difference of minimum estimated cost plan (MCP) and best plan (BP)
and Babcock plan (BAP) and best plan. Actual selectivity is normal distributed around
estimated selectivity (¢ = 10%) truncated between 0% and 100%, percentile param-
eter of Babcock method [17] is p = 0.70.

increases compared to the previous simulations (Table [5.6] left-hand side). For 9 out for 14
queries, our simulation shows plan choices for which the difference in execution time to the
optimal plan is more than 150 seconds. Similarly, the relative slowdown of minimum cost plans
compared to the optimal plan increases (e. g., 34.35x vs. 5.68x for query Q2, 8.54x vs. 2.10x
for query Q21). When comparing the execution time difference of risk-weighted plan choices
(Table [5.6] right-hand side), we see that the maximum difference to the optimal plan increases
only moderately compared to the simulation where actual selectivities were picked relative to
the estimated selectivity (Table[5.4). The comparison of the relative and absolute execution time
differences of minimum cost plans and risk score weighted plan choices (Table [5.7) shows that
cases where RCPs perform worse than MCPs are similar to the less pessimistic simulations (Ta-
ble[5.5), i. e., the risk-weighting plan choice method does not perform worse than the minimum
cost method. At the same time, risk-weighted plan choices perform much better in worst-case
situations compared to plan choices of the minimum cost method. The analysis of this simulation
indicates that our method is rather insensitive to the distribution of actual execution conditions.
However, an in-depth analysis is necessary to further validate this claim.

Our risk-weighting plan choice method is similar to a method proposed by Babcock et al. [17]],
which aims to improve the robustness of plan choices for queries with uncertain predicate selec-
tivities. This method requires knowledge of the selectivity distribution of a predicate and uses
a user-specified parameter to obtain a percentile value from the selectivity distribution similar
to the percentile parameter of our risk-weighting method. The resulting selectivity value is used
as a point estimate during plan enumeration and selection. Babcock et al. obtain the selectivity

143

5 Assessing the Risk of Relational Data Flows

Relative Difference: t1(BAP)/t(MCP) Absolute Difference (s): 1(BAP) — t(MCP)
min p-1 p-5 p-95 p-99 max min p-1 | p-5 | p-95 | p-99 | max
Q2 [[0.01x | 0.02x [0.05x | 1.27x | 6.36x | 35x || -663 [-164 [-40 | 0O 0 1
Q3 [[023x [047x [0.85x | 146x [273x | 8.09x || -186 [-24 [-6 | 11 | 22 [32
Q4 [[0.17x [0.18x [028x | 1.02x [1.95x | 2.09x || -30 [-27 [-17] © 4 4
Q5 [[024x | 052x [0.88x | 1.54x | 1.59x | 241x |[-123 | -6 [2 [7 9 16
Q7 [[0.60x [0.71x [0.92x | 1.08x | 1.15x | 141x 3 2 [0 1 3 4
Q8 [[028x | 0.57x [0.68x | 1.40x | 145x | 247x |[62 | -18 [-11 [9 1 [17
Q9 [[0.58x | 0.76x [0.90x | 1.02x | 1.26x | 146x || 27 [-11 [4 | © 9 15
QIO [0.17x [051x [0.70x | 1.53x [1.62x | 226x || -140 [-29 [-11 | 9 12 [54
QIT [[0.76x [0.90x [0.97x [1.01x [1.01x | 1.03x -1 0o o] o 0 0
QI2 [[0.17x [047x [0.72x | 1.00x [1.24x | 371x || -121 [23 [-9 | © 4 18
Q14 [[0.28x [0.49x [0.70x [1.00x [1.00x | 1.77x || -160 [-31 [-12 | 0 0 9
QI6 [[0.82x [0.95x [0.99x | 2.96x [41x | 63x 2 [1 1 1
Q17 [[0.48x [0.73x [0.85x | 1.01x [1.17x | 1.37x || 46 [-10 [-5 | © 5 10
Q21 [[0.00x [0.03x [0.52x | 1.00x [1.09x | 1237x || -3593 [-901 [-23 | 0 1 29
[ALL [0.00x [0.16x | 0.73x [1.32x [2.01x [1237x [[-3593 [31 | -8 [1 [10 [54 |

Table 5.9: Execution time difference of minimum estimated cost plan (MCP) and Babcock plan
(BAP). Actual selectivity is normal distributed around estimated selectivity (o =
10%) truncated between 0% and 100%, percentile parameter of Babcock method [[17]]
is p =0.70.

distribution by analyzing a sample of the queried base data set. In contrast, our method is not
restricted to uncertain selectivities and includes the probability distribution of varying parame-
ters through the risk score. We simulate the plan choices of Babcock’s method and compare the
results of this method with our method. We provide Babcock’s method with precise information
about the distribution of actual selectivities (normal distribution around the estimated selectivity
with standard deviation o = 10% truncated between 0% and 100%) and use a percentile param-
eter of p = O.7(ﬂ Table shows the execution time difference of Babcock plans (BAP) and the
optimal plan. When comparing Table [5.8] with Table [5.4] we see that both plan choice methods
behave similar for most queries. For queries Q4 and Q12, Babcock’s method gives better results,
while for queries Q2 and Q8 the plans chosen by our method perform better. Looking at the dif-
ferences to the minimum cost plan choices in Tables [5.9]and [5.5] shows that both methods are
sensitive to the same performance-robustness trade-off. For some queries (Q2, Q16, Q21), both
methods choose plans that perform much worse than the minimum cost plans while preventing
extremely risky plan choices.

We evaluated and compared different plan choice methods by simulating plan choices and ex-
ecutions with the help of the data we obtained from our performance study. The analysis of
the simulation results showed that our risk score weighting plan choice method is able to pre-
vent poor plan choices that cause exceptional high execution times. This comes at the cost of
higher plan execution times in presence of favorable execution conditions. A comparison of our

ZNote that the percentile parameters of our method and Babcock’s method are not related and cannot be compared.

144

5.2 Defining Plan Risk and Using it for Safe Plan Choices

method with Babcock’s approach suggests that the additional information of Babcock’s method,
i.e., exact knowledge of the selectivity distribution, does not significantly improve the quality
of its plan choices.

145

5 Assessing the Risk of Relational Data Flows

5.3 Predicting Risk Scores for Execution Plans

In Section [5.1] we identified plan features that can cause significant performance variations in
case of changing execution conditions. However, we also saw that the presence of a risky plan
feature does not necessarily imply that the whole plan suffers from varying performance. In-
stead, the influence of a risky operator on the overall execution time and risk of a plan depends
on several parameters, such as the size of its input data, the size of its workspace memory, and
the size of the buffer pool. The problem of estimating these parameters falls back to the original
problems of cardinality and memory estimation. But even if the performance variance of a sin-
gle operator can be accurately estimated, it is still not trivial to infer the plan’s overall variance
of execution time. In principle, there are two aspects to consider when reasoning about the risk
of a query plan. First, how much does the execution time of an individual operator vary for
changing execution conditions? And second, how does the execution time of an operator relate
to the overall execution time of the plan? An operator whose maximum costs are significantly
larger than its minimum costs for changing execution conditions does not notably increase the
overall risk of a plan if the operator’s costs are negligible compared to the costs of the whole
plan. Consequently, the overall risk of a plan is hard to quantify at optimization time. In this sec-
tion we present an approach to assess the risk of a query execution plan using a machine-learned
prediction model. We train a random forest regression model with the data we collected in the
course of our experimental performance study (Section[5.1.3)) to predict risk scores of execution
plans.

In the following Section[5.3.T| we present our approach to predict the risk of relational execution
plans using a random forest prediction model. We evaluate the predictive performance of our
approach in Section[5.3.2and analyze the importance of individual features in Section[5.3.3]

5.3.1 A Machine Learning Approach for Plan Risk Prediction

As summarized before, assessing the risk of a query execution plan is challenging. In this
section, we present our approach to predict the risk of a query execution plan using a supervised
machine learning technique. In the following we define the learning problem, describe how we
derived the training data, present the feature vector design, and briefly introduce random forest
regression models, which we used for our approach.

The Learning Problem We define the learning problem to predict the risk of a query exe-
cution plan as follows. Given a query execution plan, we predict the risk score of the plan as
defined in Section[5.2.1] i. e., we predict the coefficient of variation of the plan’s execution time
for one specific distribution of execution conditions. We restrict the varying execution conditions
to a single parameterized predicate, i.e., we assume that all other parameters of the execution

146

5.3 Predicting Risk Scores for Execution Plans

Probability
S 96
N

02 04 06 08 1.0 12 14 16 18 20
Plan Risk

Figure 5.18: Cumulative value distribution of plan risk labels

condition (other predicates, memory, buffer pool state, and so on) remain constant. This problem
statement includes risk predictions for queries with a single parameterized predicate, which are
executed with varying parameter binding values under otherwise stable execution conditions.

The Training Data Set Our approach is based on a supervised learning technique and re-
quires a data set to train a prediction model and test it. Each sample of a data set consists of
a feature vector that represents the input of the prediction model and a prediction label, which
defines the desired output of the model. For our application, a sample represents an execution
plan and a partially fixed execution condition for which we want to predict the risk of the plan.
Hence, a sample’s feature vector should capture all relevant features of the plan and the fixed
execution condition (such as amount of database memory) that determine the risk of the execu-
tion plan with respect to the variable part of the execution condition. The prediction label of
a sample is the plan risk score for the given plan and partially fixed execution conditions with
respect to a specific distribution of the variable predicate selectivity.

We derive our training and test samples from the data of the previously presented experimen-
tal performance study to analyze the performance variations of query execution plans (Sec-
tion [5.1.3). When comparing the learning problem with the data collected for the study we
see that the learning problem is restricted to a single variable predicate while the plan runs for
the study were conducted with two varying predicates and varying database memory settings.
The collected data provides 108 execution time measurements for each individual plan, one for
each combination of two times six selectivity settings (one for each variable predicate) and three
memory setting (6 x 6+ 3 = 108). From this data we compute 18 distinct training samples for
each variable predicate of a plan. Each sample is specified by a plan, one of three memory
settings (512, 1024, and 2048 MB), and one of six selectivity settings (0.1%, 1%, 5%, 10%,
50%, and 100% selectivity) for the non-variable predicate. Given 306 plans with two varied
predicates, our training data set consists of 11016 samples in total.

The prediction label of the training samples is computed as the coefficient of variation of the
six execution time measurements for the varied predicate selectivity. Figure [5.18] shows the
cumulative value distribution of the prediction labels. The prediction label values range from
0.0 to 2.106 and follow a long-tail distribution. About 60% of the risk score labels are smaller
than 0.2 and less than 10% of the samples have a plan risk of more than 1.0.

147

5 Assessing the Risk of Relational Data Flows

Note that we restrict the evaluation of our approach to a single probability distribution of uncer-
tain execution condition, namely the distribution that was used for the experimental study. We
would need to collect a new training data set in order to assess the risk of plans for a different
distribution of execution conditions.

Feature Vector Design Careful design and selection of features is crucial to achieve high
prediction performance with machine learning approaches. Usually, this task is laborious and
requires extensive domain knowledge. While we are not aware of any other approach that tried
to assess the performance variation of query execution plans using machine learning techniques,
there is prior work which uses machine learning models to predict for example the resource con-
sumption or execution time of query plans. These approaches proposed different alternatives to
model the problem and design feature vectors for query execution plans: 1) plan-level modeling
[88]], 2) operator-level modeling [[150]], and 3) hybrid plan-operator-level modeling [8]. In plan-
level modeling, one machine learning model is trained using features that describe a full plan.
Operator-level modeling is a more fine-grained approach, which trains separate models for all
types of operators using operator-specific features. To obtain the prediction for a plan, the plan is
decomposed into its individual operators and for each operator a prediction is obtained using the
respective model. The prediction of the whole plan is computed from all operator predictions.
The hybrid approach, trains models on subplans (which might consist also of a single operator)
of a full plan and combines their predictions.

Due to the complex structure of query plans, plan-level models tend to require a high dimen-
sional feature vector and bear the risk to be under- or overfitted depending on the coverage of
features in the training data. Since feature vectors need to be of constant size, the length of
a plan’s feature vector may not depend on its complexity, such as the number of operators or
the shape of the operator tree. Instead, operator information needs to be aggregated (for exam-
ple grouped by operator type). This can result in loss of valuable information. The plan-level
approach is used by Ganapathi et al. [88]. In contrast, operator-level models are restricted to
individual operators and can be trained with operator-specific features vectors. However, de-
pending on the learning problem, it can be challenging to compute the final prediction for a
plan from the predictions of its individual operators. For the prediction of resource consump-
tion, operator-level predictions can be summed up [150]], while execution time prediction would
be more difficult because concurrently running operators due to pipelining and task parallelism
need to be considered. In addition to the problem of computing the final prediction, operator-
level modeling requires training labels on the level of individual operators.

Our approach to predict plan risk is based on a plan-level model. This is due to two reasons.
First, the benchmark data includes only end-to-end execution times of plans, i.e., execution
times on operator-level are not available. Second, it is not trivial to compute the risk of a plan
from the risk of its individual operators as discussed before. Hence, we train a single model with
a feature vector that contains the risk-relevant features of a whole plan. In the process of feature

148

5.3 Predicting Risk Scores for Execution Plans

vector design, we experimented with different features and feature compositions and trained
and evaluated several prediction models. When designing feature vectors it is common that
modifications do not have the same effect on all test samples but rather improve the prediction
quality for some but worsen it for others. In this section, we report the result for the best feature
vector that we found.

The findings of our experimental performance study (Section[5.1.3) influence the design of the
feature vector. Our feature vector is composed of 127 features that can be grouped into three
classes: 1) plan features, 2) features for operators with variable input aggregated by operator
type, and 3) features for operators with constant input aggregated by operator type. Distinguish-
ing between operators with variable and constant input sizes is a crucial aspect for the feature
design. When predicting the risk score of the execution plan shown in Figure [5.13(b) with a
parameterized predicate on the Customer relation (i. e., the predicate on Supplier is fixed) all
operators below the lower HashJoin process a fixed amount of data, whereas the inputs of all
following operators depend on the selectivity of the variable predicate on Customer. However,
also operators with fixed input influence the risk of the plan because high constant plan costs
reduce the relative execution time variance. We refer to the set of all operators of a plan p as O,.
The subset of operators with variable input cardinality is O, C O, and the subset of operators
with constant input cardinality is O, € O,,. It holds O}, N O}, = 0 and O, U O}, = O),. We refer
with O7 | and Of . to the set of all operators of operator type ¢ in plan p with variable and

(p) (pt) . i
constant input cardinality, respectively.

According to the definition of our learning problem, variation of plan execution time may only
be caused by varying operator input cardinalities. Hence, predicting the risk score of a plan by
using only structural plan properties, such as type and order of operators, is not a promising
approach. Instead, the input size and costs of operators need to be taken into account to yield
satisfying results. Our approach includes features which are computed from estimated operator
input sizes and costs. For each training sample (i. e., a plan with one predicate selectivity being
fixed and constant memory setting), we call the optimizer once for the lowest (0.1%) and once
for the highest (100%) selectivity of the variable predicate to obtain minimum and maximum
cardinality and cost estimates for all operators of the plan. This is similar to Picasso’s method
to collect cost estimates for plan space diagrams [[179]. We refer to the low selectivity cost of
an operator o as ¢, and to the high selectivity cost as ¢;. The low and high input cardinalities

of the i input of an operator o are denoted as card(_o_i) and cardz; i) respectively. The low

and high result cardinalities of a plan p is referred to as card, and card;,r. In addition to cost
and cardinality information, the optimizer provides the estimated optimal amount of workspace
memory to process the plan, i.e., the amount of memory that is required to keep all processed
data in memory. We refer with m,,, and mjp, to the optimal amount of memory required to
execute the plan with 0.1% and 100% selectivity, respectively.

An important aspect of feature vector design is generalization for unseen data, i.e., the ability
to represent unseen data with similar feature vectors as the training data. For example varying

149

5 Assessing the Risk of Relational Data Flows

value domains of features caused by plans that query significantly larger data sets than plans in
the training set can pose a challenge. We address this issue by computing most features as ratios
instead of absolute values. The general applicability of the trained model is also supported by
the prediction value itself as the coefficient of variation is a relative measure for variance instead
of the absolute variance or standard deviation. The following ratios are used to build the feature
vector.

The max-min cost ratio of a set of operators captures the relative difference of maximum and
minimum cost for a set of operators and is defined as

+
plmacmin) () Leex Gy 0,. (5.3)

The spread-planMin cost ratio captures the absolute difference of maximum and minimum cost
for a set of operators with respect to the minimal cost of the whole plan, i. e., the cost of the plan
for the smallest input size (selectivity 0.1%). It is defined as

r(spread—planMin) (X) _ ZxEX (C;_ — C;)

—=,X C O,. 5.4
2060,, Co ’

The min-planMin cost ratio computes for a set of operators how much the sum of their low

selectivity costs accounts for the low selectivity costs of the whole plan and is defined as

—

r(min—planMin) (X) _ ZXGX Cx XC Op- (5.5)

ZOEOP Co

Equivalently, the max-planMax cost ratio computes for a set of operators how much the sum of

their high selectivity costs accounts for the high selectivity costs of the whole plan and is defined
as

+
r(max-planMax) (X) — erixcx X C Op. (5.6)

Given the plan- and operator-level estimates obtained from the optimizer and the ratio definitions
above, Table lists all plan-level features (numbered pl to pl5). The plan-level features
address four aspects of the plan, 1) the number of operators (p1 to p3), cost ratios for subsets
of plan operators (p4 to p9), information about the result cardinality of the plan (p10 to p12),
and about the memory budget of the database and the plan (p13 to p15). The result cardinality
features (p10 to p12) give a hint for the time it takes the client to retrieve a computed result. This
time is included in the execution time measure for the performance study but is not considered

150

5.3 Predicting Risk Scores for Execution Plans

Feature Description Definition
pl | Abs. number of plan ops |0,
p2 | Rel. number of var. input ops 10,1/10,|
p3 | Rel. number of const. input ops 1051/10,|
p4 | Max-MaxPlan cost ratio of var. input ops p(max-maxPlan) (0})
p5 | Min-MinPlan cost ratio of var. input ops (min-minPlan) (0})
p6 | Max-MaxPlan cost ratio of const. input ops plmax-maxPlan) (03)
p7 | Min-MinPlan cost ratio of const. input ops p(min-minPlan) (OC)
p8 | Min-Max cost ratio of var. input ops p(max-min (0L)
p9 | Spread-MinPlan cost ratio of var. input ops p(spread- P (0}))
p10 | Result card. for 0.1% selectivity card,
pll | Result card. for 100% selectivity card;
pl12 | Ratio of min. and max. result cardinality card; /card,,
p13 | DBMS memory in MB Mpms
pl4 | Ratio of min. and max. optimal memory budget mjpl /Mg

Ratio of the max. optimal memory budget and the
pI> db memory setting P Y M3pt Mdbms

Table 5.10: Plan-level features

in the optimizer’s cost estimates. For plans with extremely varying output cardinalities, the time
to fetch the result can have a significant impact on the execution time variance and hence on
the plan risk. Features p13 to p15 use the optimizer’s memory estimates and aim to capture the
plan’s demand for memory.

Table [5.11] lists the features for operators with variable input. We use these features for opera-
tors with variable input of the following types: ClusteredIndexScan, ClusteredIndexSeek,
SecondarylIndexScan, SecondaryIndexSeek, ScalarComputation, Sort, DistinctSort,
StreamAggregation, and MergeJoin. For the remaining join operators, we distinguish inputs
of variable and constant size. Hence, we have HashJoin-VarBuild, HashJoin-VarProbe,
IndexNestedLoopJoin-VarOuter, IndexNestedLoopJoin-VarInner, NestedLoopJoin-
VarQuter, and NestedLoopJoin-VarInner.

Feature v5 is added for each input of an operator, i.e., we add it twice for a MergeJoin but
not at all for a ClusteredIndexScan because it does not have an input. Features v7 to v9
are specifically designed to capture the cost of the inner side of nested-loop-based joins and
are hence only added for NestedLoopJoin-VarQuter and IndexNestedLoopJoin-VarOuter
operator types. The following equations define features v7 to v9. Thereby, the iOps (o) gives all
operators of the inner side of the nested-loop join operator o, and oCard (o) gives the cardinality

151

5 Assessing the Risk of Relational Data Flows

Feature Description Definition
vl | Abs. number of ops of type ¢ 10},
v2 | Rel. number of ops of type ¢ 10,,:1/10,|
v3 | Max-Min cost ratio of all ops of type ¢ p(max-min) (0,.)
v4 | Spread-MinPlan cost ratio of all ops of type ¢ p(spread-minPlan) (0,.)

Feature each input i of operator type ¢
Ratio of the sum of the min. and max. input cardi- | Xoeoy, card
nalities of the i input for all ops of type ¢ Locoy,, cardy,
Features for nested-loop-based joins with varying outer input
The ratio of the sum of single execution costs of the
v7 | inner sides of all nested-loop join ops of type ¢ and | see Equation
the minimum cost of the whole plan.
Max-min cost ratio of the inner sides of all nested- .
v8 loop join ops of type ¢ see Equatlon
Spread-MlnI.’le'ln cost ratio of the inner sides of all see Equation
nested-loop join ops of type ¢

v5/6

2

Table 5.11: Features for operators with variable input and type ¢

of the outer side of the nested-loop join operator o.

Z()EO;’,_, ((eriOps(o) Cx) /OC&I‘d(O))

2060,, Co

5.7

Equation computes for each nested-loop join operator with variable outer side the cost of
a single execution of its inner side (total cost divided by cardinality of outer side), sums these
costs for all nested-loop join operators, and divides it by the minimum cost of the whole plan.

r(max-min) (X),X = {10pS(0)‘0 S 0‘;)1)} (58)

r(spread-minPlan) (X),X — {iOpS(O) ’0 c 0}’”)} 5.9

Equations [5.8] and [5.9] compute the max-min and spread-minPlan ratios for all operators which
are on an inner side of a nested-loop join with variable outer side.

In total we have four operator types with four features (v1 to v4), four operator types with five
features (v1 to v5), five operator types with six features (v1 to v6), and two operator types with
nine features (v1 to v9). This results in 84 features for operators with variable input. If a plan
does not have an operator of a specific type, all corresponding features are set to 0.

152

5.3 Predicting Risk Scores for Execution Plans

Feature Description Definition
cl | Abs. number of ops of type 7 with const. input 10},
c2 | Rel. number of ops of type ¢ with const. input 10,:1/10,|

Ratio of the sum of the cost of all ops of type ¢ with

Zo 4 (CO)

c3 | const. input and the sum of the low costs of all oper- %
ators with var. input 0€0p 70

Ratio of the sum of the cost of all ops of type ¢t with Y o (co)

: . 0e0S, , \Co

c4 | const. input and the sum of the high costs of all op- T D) - %3
0€0), \“0

erators with var. input

Table 5.12: Features for operators with constant input and type ¢

Finally, Table [5.12] shows the features for operators with constant input size. We add these fea-
tures for a selected set of operator types, namely ClusteredIndexScan, ClusteredIndexSeek,
SecondaryIndexScan, SecondaryIndexSeek, StreamAggregate, ScalarComputing, and
HashJoin. Given four features for each of these seven operator types, we have 28 features for
operators with constant input size. Again, if a plan does not contain an operator of a specific
type we set all corresponding features to 0.

Summing up the features of all three classes we have 15 plan level features, 84 variable input
operator features, and 28 constant input operator features, which yields 127 features in total.

Random Forest Regression Models We use a random forest regression model to predict
risk scores of query execution plans. Random forests are an ensemble technique, which means
that it derives its predictions by combining multiple prediction models. In case of random regres-
sion forests these models are regression trees. A random forest is a collection of N regression
trees [37]] which are independently trained. Regression trees are binary trees whose inner nodes
and leaves represent split conditions and prediction labels, respectively. A regression tree is
trained as follows. At the beginning all samples of the training set are assigned to the root node.
A node determines a split condition to group its samples into two sets such that their labels are
separated in a “good” way. A split condition is usually considered to be “good” if it produces
equally sized subsets where labels of both sets are as different as possible. The split condition is
based on one (or more) elements of the samples’ feature vectors. The splitting node creates two
child nodes and assigns each subset to one of its children. Nodes are split until a termination
criterion is reached. There are several conditions for stopping the splitting including a maximum
tree depth, a minimum number of samples in a node, and pure nodes (all samples have the same
label). A trained regression tree predicts a label for a given feature vector by repeatedly evalu-
ating the split conditions of inner nodes, starting at the root node and following their path down
to a leaf node. Finally, the prediction label is computed as the arithmetic mean of the samples’
labels which were assigned to the identified leaf node during training.

153

5 Assessing the Risk of Relational Data Flows

Random forests train multiple regression trees and introduce randomization into the training
such that the regression trees differ. A random regression forest computes a prediction as the
mean of the predictions of all its regression trees.

There are several variations of random forests that differ in how they add randomization to the
training process of the regression trees. In traditional random forests [37] each tree is built with
a random subset (bootstrap sample) of the available training data. When determining the split
condition, a random subset of K attributes is considered. For each of these K attributes, an
optimal split value is computed and the best of the K splitting conditions is chosen. AdaBoost
random forests [86] evaluate the prediction performance of already built trees and try to improve
the predictions for samples that perform the worst so far.

For our learning problem we used random forests built from extremely randomized trees [91],
which provided the best prediction performance in our experiments. These trees are trained
as follows. In contrast to the traditional method, each tree is built with the full training set
instead of a sample. Again K attributes are randomly chosen from the feature vector. For each
attribute, a split value is chosen at random, which is used to create a randomized split condition.
Each of the resulting K split conditions is evaluated and the best condition is chosen. We used
the extremely random tree regressor implementation from the Python machine learning library
scikit-learn [[184]].

In contrast to machine learning models that aim to approximate a function, such as linear re-
gression or gradient descent methods, the value range of random forest predictions is limited to
observed training samples, i.e., by the minimum and maximum label in the training data. For
our application, this is not a fundamental limitation since the value domain of the coefficient of
variation is quite narrow as shown in Figure [5.18] Moreover, our training data contains some
very risky plans with execution time differences of more than five orders of magnitude. An
important property of random forests is their ability to capture complex and non-linear depen-
dencies by consecutively splitting the feature space. The ensemble property of random forests
leads low variation of predictions. Finally, random forests are rather easy to use due to the small
number of parameters and tolerance with respect to input features.

Model Training Parameters The performance of many machine learning techniques de-
pends to a large extent on parameters that need to be tuned. The scikit-learn implementation of
extremely random tree forests provides the following parameters.

The parameter N is the number of trees that are trained for the forest. The time to train the model
as well as the time to compute a model prediction depends linear on the number of trees. The
prediction quality of random forests improves asymptotically for an increasing number of trees,
i.e., the prediction performance of a model will not decrease for a higher number of trees but
does only slightly improve at some point [37]. K is the number of randomly chosen attributes,
which are considered during split condition generation. For regression problems, setting K to

154

5.3 Predicting Risk Scores for Execution Plans

the size of the feature vector has been found to provide the best results in many cases [91]. Our
experiments supported this finding. Note, that setting this parameter to the size of the feature
vector effectively removes one degree of randomization from the model. Further, there are three
parameters which act as conditions to limit the splitting of nodes. The maximum tree depth
Dinax limits the number of tree levels. The minimum number of samples for a splittable tree
node is Smin- A node with fewer samples will not be split and becomes a leaf node. And finally
the minimum number of samples that a new node must contain in order to be created Ly,. If a
node cannot be split in a way such that both of its children have at least this minimum number
of samples, it is not split and becomes a leaf node itself. Parameters Dmax, Smin, and Liin
influence the number of samples in the leaf nodes and hence the number of sample labels that
are aggregated to compute the leaf’s prediction label. Thereby, more samples result in stronger
smoothing of outliers, which can improve or worsen the prediction of samples.

Finding a good set of parameter values for Dpax, Smin, and Ly, requires the training and com-
parison of several models. For the each evaluation run, we did several parameter tuning runs to
determine good parameter settings.

5.3.2 Evaluation of Prediction Performance

When evaluating machine-learned prediction models it is common practice to split the available
data into non-overlapping training and test data sets. This method helps to prevent biased eval-
uation due to model overfitting. Evaluations that do not follow this rule are usually not helpful
because they do not measure how well a model generalizes for unseen data. Hence, a part of
the available data needs to be reserved for evaluation purposes and cannot be used for model
training. Because the predictive performance of machine-learned models significantly depends
on the number of training samples, reducing the size of the training data set can be challenging
for applications where it is expensive or laborious to obtain training data, such as in our case.

A common approach to mitigate the cutback of training data is k-fold cross-validation. With
cross-validation, the available data is divided into k subsets. Each of the k subsets is used once
as test data set on a model that was trained using the remaining k — 1 subsets. The performance
of the model is computed as the average of all test runs. We use cross-validation techniques and
the following metrics to evaluate the prediction performance of our approach.

The root mean squared error (RMSE) measures the average difference of predictions and true
values and is defined as

. I ¢ .
RMSE(y,y) = ;Z()’i*)’i)zy (5.10)

155

5 Assessing the Risk of Relational Data Flows

where n is the number of test samples, and y; and J; are the true and predicted value of the i"”
test sample, respectively.

The coefficient of determination or R? score is a measure for how well the data fits the prediction
model. It is defined as

n 5.2
N 1 (i —9)
R?(y,) = 1 - 2t 01 =30 (5.11)
0:3) i (i —3)?
with y = % " _,¥i. An R? score of 1 indicates that the model perfectly fits the data, i.e., the true

values of all samples are exactly predicted. A score in the range between 1 and 0 indicates that
the model’s predictions are better than using the average of the true values as a prediction. An
R? score of less than 0 indicates that the predictions of the model are worse than the average of
the true values.

For measuring the prediction error of an individual sample we use the absolute error (AE) defined
as

AE(y;, i) = |yi — Jil- (5.12)

Baseline: Optimizer Risk Prediction We compute the plan risk for each training sample
using optimizer estimated costs as a baseline for the evaluation of the predictive performance of
our random forest prediction models. For each training sample we retrieve six plan cost estimates
from the optimizer, one for each of the six selectivity bindings of the variable predicate. From
these cost estimates we compute the samples’ risk score prediction as the coefficient of variation.
We treat this value as a risk score value predicted by the optimizer.

Figure shows a binned scatter plot of the actual and optimizer predicted plan risk Valueﬂ
The red line indicates perfect predictions. The plan risk scores of samples below and above this
line are under- and overestimated, respectively. The binned scatter plot of Figure [5.19] shows
that the plan risk scores of samples with low plan risk are often accurately predicted by the
optimizer. However, except for samples with low actual plan risk, the predicted risk scores
are mostly imprecise and often overestimated. Figure [5.19]indicates that computing plan risk
predictions from optimizer cost estimates does not yield satisfying results.

3Figure differs from Figurebecause it shows risk scores for plans with a single variable predicate.

156

5.3 Predicting Risk Scores for Execution Plans

2.5

103
% 200
o't
§
A Lor - 1] 110
T L0} - ©
=

1
: : 0
12}
& 0.5
"o |

0
00005 10 15 20 25 W0
Actual Runtime Plan Risk

Figure 5.19: Actual execution time plan risk scores vs. plan risk scores predicted by optimizer
cost estimates.

Random k-fold Cross-Validation Next, we evaluate the performance of a random forest
prediction model with 10-fold cross-validation. We randomly split our training data set into ten
subsets of about equal size. We train ten models with nine subsets and test with the remaining
tenth set. Each model consists of 5000 trees with a maximum tree depth of 36 and the minimum
sample split and minimum sample leaf parameters set to 4 and 2, respectively.

Figure [5.20] shows a binned scatter plot of actual and model predicted plan risk values. With
an average RMSE of 0.0348 and an average R? score of 0.9921, the obtained results are too
good are require a closer look. The extremely good prediction performance is caused by model
overfitting. Each plan of our experimental study is represented by 36 samples in our data set
(18 samples for each of both variable predicates). The ten randomly assembled cross-validation
folds contain very similar samples which causes overfitted prediction models. Therefore, this
performance evaluation is not conclusive.

Query-wise Cross-Validation To overcome the problem of model overfitting and to simulate
the prediction of plan risk values for plans of unseen queries, we split the data set into 14 subsets,
one set for each individual query. We run a cross-validation with 5000 trees (maximum tree
depth 36, minimum sample split 20, and minimum sample leaf 10) for these query-grouped
folds. Note that the model parameters for the minimum number of samples for split and leaf
nodes are higher than for the random cross-validation run to achieve stronger smoothing of the
predictions by averaging over more samples.

Figure [5.22] shows a binned scatter plot with the predictions of all cross-validation runs. Com-

157

5 Assessing the Risk of Relational Data Flows

2.5
- 10°

2.0t -
x . -
=
~ .
g1.5F u ‘
g1 - . 110%
A]] =
T |a 3
10 :'
s . .)

]] 10

A | | '- a

0.5t * -

|]

I I I I 0
000 05 10 15 20 25 W0

Actual Runtime Plan Risk
Figure 5.20: Actual and predicted plan risk scores for random 10-fold cross-validation.

2.5

4

8

/2 Loy B

Lo | 4 b

Full] B s B
0 Q2 Q3 Q4 Q5 Q7 Q8 Q9 Qlo Q11 Q12 Ql4 Q16

Query

O

P
[

o

R [~

é@
fart
<]

Figure 5.21: Distribution of actual plan risk scores by query.

pared to Figure [5.19) we see that the predictions for samples with an actual plan risk score
between 0 and 0.8 are much closer distributed around the red line indicating perfect predictions.
For samples with actual plan risk scores higher than 0.8 the model predictions are less precise
and often significantly underestimated.

Table shows the root mean squared errors and R? scores for all cross-validation runs and
their mean values (weighted by the number of test samples per query). We also add the RMSE
and R? scores of the optimizer predictions for comparison. Figure shows a binned scatter
plot for each query with actual and predicted plan risk values. Table[5.13]and Figure [5.23] show
that the prediction performance of the regression model heavily varies among queries. While
the risk scores for plans of some queries are quite accurately predicted, other queries suffer
from significant prediction errors. Figure [5.21] shows the value distribution of plan risk scores
grouped by query using box-and-whisker plots (blue crosses indicate outliers). When comparing
Table[5.13]and Figure [5.21) we see that the prediction model has the lowest prediction errors for
queries with plans that have low risk values, i. e., queries Q4, Q8, Q9, Q11, and Q17. In contrast

158

5.3 Predicting Risk Scores for Execution Plans

RMSE R?

Query | #Samples RF OPT RF OPT
Q2 1368 0.5656 | 0.4971 || 0.0525 0.2680
Q3 648 0.0991 | 0.4347 || 0.8905 | -1.0189
Q4 504 0.0759 | 0.3644 || 0.7361 | -5.0783
Q5 612 0.1391 | 0.4146 || 0.8197 | -0.5124
Q7 864 0.2398 | 0.4151 || -0.0649 | -2.1910
Q8 1332 0.0912 | 0.3102 || 0.7235 | -2.1970
Q9 1692 0.0773 | 0.3200 || 0.1748 | -13.1236
Q10 756 0.1885 | 0.2249 || 0.6945 0.5649
Q11 576 0.0907 | 0.4516 || -0.2302 | -29.4607
Q12 288 0.1444 | 0.4104 || 0.7827 | -0.7533
Q14 144 0.4222 | 0.5906 || 0.1832 | -0.5981
Ql6 1008 0.2394 | 0.3194 || 0.6232 0.3297
Q17 396 0.1292 | 0.3342 || 0.2844 | -3.7879
Q21 828 0.4311 | 0.3766 || 0.0452 0.2200

] Mean \ - \ 0.2149 \ 0.3733 H 0.3765 \ -4.3741 \

Table 5.13: Performance of query-wise cross-validation prediction (RF) compared to perfor-
mance of optimizer estimated cost prediction (OPT).

the performance of the prediction model is much worse for queries with several high risk plans
(Q2, Q7, Q14, Q16, and Q21). This finding is also supported by Figure [5.22] which shows
good prediction performance for samples with actual plan risk scores up to 0.8 and significantly
higher errors for samples with risk scores of more than 0.8.

Figure [5.18] helps to explain the influence of a query’s plan risk score distribution on the re-
gression model’s prediction performance. It shows that the actual plan risk values follow a
long-tailed distribution with few plans having high risk scores. Only 10% of the samples have a
plan risk score of 0.8 or more, only 5% of 1.2 or more. Therefore, the model might suffers from
lack of training samples for high plan risk scores. This lack of training data is exacerbated by
the fact that only few queries have samples with high plan risk values out of which one query
can be held back as test set due to the cross-validation technique.

Looking at Table [5.13] we find that the R? scores correlate with the RMSE values in general,
i.e., a low RMSE indicates a high R? score. There are a four queries for which this observation
does not hold (Q7, Q9, Q11, and Q17). Three of these queries have samples with low plan risk

scores (Figure [5.21]).

Note, we do not find conclusive evidence that the model’s prediction performance depends on
the complexity of a query (and plan). The four queries with an RMSE of less than 0.1 access 3,
6, 6, and 8 relations while the four queries with an RMSE of more than 0.2 access 2, 6, 6, and 9
relations.

159

5 Assessing the Risk of Relational Data Flows

2.5
10°
2.0}
]
o
o'
E? Loy 110%
A 5
g S
10
el
[]
& 10!
0.5
- .
. .‘ " ‘ | .
B0 05 10 15 20 25 W

Actual Runtime Plan Risk

Figure 5.22: Actual and predicted plan risk scores for query-wise cross-validation.

Comparing the prediction performance of the regression model and the predictions computed
from the optimizer’s cost estimates, we see that the prediction errors of the optimizer predictions
are more stable (RMSE between 0.22 and 0.59) than the errors of the model. Except for query
Q2 and Q21, the random forest regression model outperforms the optimizer predictions in RMSE
and R? score. In comparison to the optimizer’s predictions, the regression model performs well
for queries whose plans have mostly low risk scores.

Next, we analyze in detail why the regression model performs poorly for plans of certain queries.
There are several reasons why a regression model may not be able to accurately predict the labels
of a sample. As already mentioned, lack of training data can be a reason for the poor prediction
performance. Another possibility is that the feature vector does not model characteristics that
influence the label to predict. Further, the prediction performance of a model may suffer if some
aspects that influence the label and which are actually represented in the feature vector are only
present in a subset of samples that all belong to the same fold. For our use case this happens
if a risky plan characteristic, such as a specific operator, is only present in plans of the same
query. All these reasons can affect machine learning approaches in general. In addition, our
approach has to deal with an additional challenge. Since most of our features are computed from
optimizer estimates, the accuracy of optimizer estimates can be important for the performance
of our prediction models.

In order to analyze why our prediction models perform poorly for plans of certain queries, we
take a closer look at four queries with high RMSE prediction errors, namely Q2, Q10, Q14,
and Q21. We start analyzing how the models’ prediction errors correlate with the error of the
optimizer’s predictions. Figure[5.24]shows a binned scatter plot of the errors (AE) of the random
forest models and the optimizer predictions.

160

5.3 Predicting Risk Scores for Execution Plans

=om
o ;i o W
|

Predicted Plan Risk
Pt
]

(a) Q2 (b) Q3 (c) Q4 (@ Q5 (e) Q7

=R =

=
u
b |

Predicted Plan Risk

() Q8 (8 Q9 (h) Q10 @ Q11 () Q12

10.5

D R=Ts

107

Count

. -

' 1 m l. .

‘8.0 0.5 1.0 1.5 20 25 .0 0.5 1.0 1.5 2.0 25 .0 0.5 1.0 1.5 2.0 25 .0 0.5 1.0 1.5 2.0 2.5
Actual Plan Risk Actual Plan Risk Actual Plan Risk Actual Plan Risk

(k) Q14 @ Q16 (m) Q17 (m Q21
Figure 5.23: Actual and predicted plan risk scores for query-wise cross-validation by query.

I
o

Predicted Plan Risk

10°

o

For the discussion, we divide the plot into six areas as indicated by the dashed red lines. Area
1 in the bottom left corner includes samples for which both the regression model and the opti-
mizer produce low estimation errors (AE < 0.25). Areas 2 and 3 contain samples for which the
regression model has low estimation errors and the optimizer has high errors (AE > 0.25) and
vice versa. Area 4 includes samples for which the optimizer and the regression model produce
similar high prediction errors. Areas 5 and 6 contain samples for which both, regression model
and optimizer produce high errors, but where the error (AE) of the optimizer exceeds the error
of the regression model by at least 0.25 and vice versa.

We see that most of the samples fall in Area 1 (56.8%) and Area 2 (26.2%). Area 3 contains
about 7.3% of the samples. Figure [5.24] shows for 6.8% of the samples a correlation between
the optimizer and the regression model prediction errors (Area 4). The high optimizer prediction
errors indicate inaccurate cardinality or cost estimates. Since several features are derived from
optimizer estimates, estimation errors might have been propagated into the model. Areas 5 and
6 contain only 1.0% and 1.9% of the samples.

Figure [5.23|shows the model and optimizer errors (AE) for all samples grouped by query. Simi-
lar to Figure[5.23| we see significant differences between individual queries. For several queries,

161

5 Assessing the Risk of Relational Data Flows

2.0
2 |
103
w
g
2 15
3
e}
e
A 1107
9 m =]
3 Lof g
= O
5
&
5 10t
S 0.5]
. 0
15 2.0 10

0.5 1.0
AE of Random Forest Predictions

Figure 5.24: Absolute error (AE) of model predictions (query cross-validation) vs. AE of opti-
mizer predictions.

including Q3, Q4, Q9, and Q11, the plots show that the random forest model is able to “cor-
rect” imprecise optimizer estimates. For the queries with the highest RMSE (Q2, Q14, and Q21)
several samples are located in Area 4. This indicates that inaccurate optimizer estimates are
propagated through feature vectors into the regression models and theirs predictions. The same
queries have also several samples in Areas 3 and 6 indicating that the model produces worse
predictions than the optimizer. Although, the regression model is often able to improve over op-
timizer predictions, we cannot expect that it provides accurate predictions even if the optimizer
estimates are far off. However, the goal of the model should be to provide predictions that are
not significantly worse than the optimizer’s predictions. In the following, we analyze why the
regression model produces bad predictions for the queries Q2, Q14, Q21, and Q10.

Query Q2 joins nine relations and includes a subquery, which is executed in some plans as
an IndexNestedLoopJoin with multiple operators on the inner side and an outer side that
depends on a variable predicate. The execution time of these plans significantly depends on
the cardinality of the outer input of the IndexNestedLoopJoin. All samples of Q2 plans that
feature the complex IndexNestedLoopJoin fall into Area 1 and 4 of Figure This
indicates that the optimizer is not able to correctly estimate the cost of this join for a range
of selectivities. The plans of all samples in Area 3 and 6 have another pattern in common
and include two SecondaryIndexSeek operators where the selectivity depends on the variable
predicate. In our data set, only query Q2 features plans with multiple SecondaryIndexSeek
operators. The model cannot learn this pattern when all Q2 samples are included in the test set
as required by query-wise cross-validation.

Query Q14 is a simple query, which filters and joins two relations, 1ineitem and part. It differs

162

5.3 Predicting Risk Scores for Execution Plans

o
=)

Optimizer AE
=
=)

Optimizer AE

(2 Q9 (h) Q10 @ Q11

< : .~ : ool
= ; ; 107
g . o m 3
= ; [I ‘ L] 1010
o) .
o v .
S & B s
% 1.0 2.0 10 2.0) 10 2.0) L0 20
Random Forest AE Random Forest AE Random Forest AE Random Forest AE
k) Q14 @ Q16 (m) Q17 (n) Q21

Figure 5.25: Absolute error (AE) of model predictions (query cross-validation) vs. AE of opti-
mizer predictions by query.

from most other queries in our data set (except Q2) because it does not return an aggregated
result. Instead its output cardinality ranges from O to 6 million tuples (the cardinality of the
lineitemrelation in a scale factor 1 TPC-H data set). For queries with rather low computational
overhead (such as Q14), the time to retrieve the result by the client can account for a large
fraction of the overall execution time. The optimizer does only give an estimate for the efforts to
compute the result of a plan but does not take the time to fetch the result into account. Because
Q14 is the only query with such a large output cardinality range, this pattern cannot be learned by
the regression model (Query Q2’s output cardinality depends on the much smaller part relation
and Q2 is much more expensive to compute). Consequently, samples with extremely varying
output cardinality, i. e., samples where the fixed predicate has a high selectivity, fall into Areas
4 and 5 of Figure [5.25(k)] Figure[5.25(k)|does also show that for some samples the optimizer’s
predictions are much better than the regression model’s predictions (samples in Area 3). For
these samples the predicate of the 1lineitem relation is varied. The corresponding execution
plans read the lineitem relation using a SecondaryIndexScan and feed the result into the
build side of a HybridHashJoin. While the optimizer correctly estimates the varying execution
costs of these samples, it seems that the regression model does not capture the relevance of

163

5 Assessing the Risk of Relational Data Flows

the SecondaryIndexScan and HybridHashJoin for the risk score of the plan. This might be
caused by lack of training data because the data set does not include other plans with just a
single HybridHashJoin operator, which can be considered as rather robust compared to nested-
loop based joins. Similar to query Q14, queries Q4 and Q12 also join two relations. However,
these joins are performed on indexed attributes such that IndexNestedLoopJoin or MergeJoin
operators are preferred.

Query Q21 joins four relations and includes an EXIST and a NOT EXIST subquery both refer-
ring to the large lineitem relation. Figure shows that for some samples the regression
model outperforms the optimizer (Areas 2 and 5). However, there are also samples for which
the error of the regression model correlates with the optimizer’s error (Area 4) or is much worse
(Areas 3 and 6). Looking at samples for which the regression model produces predictions er-
rors of more than 0.7 (RMSE), we find that all corresponding plans contain a NestedLoopJoin
with a ClusteredIndexScan of the lineitem relation on the inner side, i.e., the full rela-
tion is scanned for each tuple (or set of tuples) of the outer input. The outer input of the
NestedLoopJoin is the result of a join of the supplier and nation relations. The result
of the NestedLoopJoin is fed into a cascade of three subsequent IndexNestedLoopJoins. In
Q21, the variable local predicates are applied on the supplier and the 1ineitem relations. For
samples where the supplier predicate is fixed (i. e., the outer input of the NestedLoopJoin is
constant and the size of the inner input varies), the prediction errors of the regression model and
the optimizer are similar (samples in Area 4). If the local predicate of the 1ineitem relation
is fixed and the selectivity of the supplier predicate is varied, the optimizer predictions are
much better than the predictions of the regression model (Areas 3 and 6). NestedLoopJoins
with expensive inner sides occur only in 9 of the 306 benchmarked plan out of which 8 plans
are for query Q21. Hence, the regression model can learn this property of risky plans only from
one other plan when testing the model with samples from query Q21. In addition to inaccu-
rate optimizer estimates, this lack of training samples contributes to the low performance of the
regression model for some of the plans of query Q21.

Figure[5.25(h)| shows that the regression model performance is worse than the optimizer predic-
tions for some samples of query Q10. These samples correspond to three distinct plans, which
are executed with the lowest database memory setting (512 MB). All plans exhibit the same
property as plan Q10-2 presented in Section i.e., they have a Sort operator in front of an
IndexNestedLoopJoin that references a clustered index on lineitem on its inner side. This
Sort operator shuffles the order of the join attribute causing massive random I/O due to index
seek operations. Because of the low memory setting, only a small fraction of I/O operations can
be served by the buffer pool. Our analysis indicates that the regression model does not capture
the effect of (un-)sorted outer sides on IndexNestedLoopJoins. In fact, our feature vector does
not distinguish between IndexNestedLoopJoin operators with sorted and unsorted outer sides.
We experimented with adding corresponding features, however this did not considerably im-
prove the predictions for samples of query Q10 and reduced the overall prediction performance
of the model.

164

5.3 Predicting Risk Scores for Execution Plans

The detailed analysis of prediction errors for queries Q2, Q10, Q14, and Q21 indicates that high
prediction errors of the regression model are mostly caused by inaccurate optimizer estimates
or lack of appropriate training data for certain properties of risky plans. Inaccurate optimizer
estimates are one of the main motivations to determine the risk score of a plan. Hence, it would
be desirable to have a method to assess the risk of an execution plan that is not sensitive with
respect to inaccurate optimizer estimates. In fact, the analysis of the prediction performance
shows that the prediction model is often able to “correct” imprecise optimizer plan risk predic-
tions. However, for 6.9% of the samples the errors of the optimizer and model are similar which
indicates that inaccurate optimizer estimates are propagated into the model. In cases where the
optimizer predictions significantly outperform the regression model (about 9.2% of our training
samples), the detailed analysis of queries Q2, Q10, Q14, and Q21 shows that the model is not
aware of specific risky plan features. Due to query-wise cross-validation, such risky plan fea-
tures are only present in the test fold and cannot be learned during the training phase. Additional
training data from more diverse queries that cover these risky plan features could improve this
situation. Although our analysis indicates that lack of appropriate training data is the primary
reason for poor prediction performance, we cannot preclude that inappropriate feature vector
design plays a role as well.

Plan-wise Cross-Validation In order to ascertain that feature vector design is not a major
reason for the insufficient prediction performance of our models, we train prediction models
with additional samples by conducting another set of cross-validation runs. For these runs, we
assign all samples with the same variable predicate of a plan to a separate fold resulting in 612
folds, each consisting of 18 samples (six selectivity settings times three memory settings). Since
the risk score of a plan can differ significantly for different variable predicates, having the same
plan with different variable predicates in separate folds should not cause model overfitting. A
more noteworthy problem might be plans which are very similar, such as the plans discussed in
Section[5.1.3] However, these examples demonstrate that even small changes of a plan, such as
a reordered Sort operator, can cause large differences in the risk score. Due to the increased
number of folds (612 vs. 14), we reduced the number of trees to 500. All other parameter are set
to the same values as in the query-wise cross-validation experiment, i. e., a maximum tree depth
of 36, at least 20 samples to split a node, and at least 10 samples for each leaf node.

Figure shows a binned scatter plot of the predicted and actual plan risks for all samples.
As expected, the prediction performance of regression models trained with plan-wise cross-
validation is much better than the performance of the models trained with query-wise cross-
validation (compare to Figure [5.22)). Figure displays binned scatter plots for the predicted
and actual plan risks of queries with previously low prediction performance (Q2, Q10, Q14,
and Q21). Comparing these plots with Figures [5.23(a)| [5.23(h)| [5.23(k)} and [5.23(n), we see
significant improvements for all queries. However, there are still a few outliers for which the
risk is not accurately predicted. We account these inaccurate predictions to imprecise optimizer

165

5 Assessing the Risk of Relational Data Flows

2.5
10°
2.0f 1
4
i
=
i | " |
§10 Ro- 1102 =
3 3
810} i -
T |= -
& 10!
0.5 | N | i
| B | .I
|

100

000 05 10 15 20 2
Actual Runtime Plan Risk

t

Figure 5.26: Actual and predicted plan risk for plan-wise cross-validation.

2.5 .
é 9 10
922.0

o
E.‘: 1.5 n - 10 §
= =3

1.0
S i " . . 101°
205 o' 1
4 n -au
P, et = . = = = = . = = .

.0 05 1.0 1.5 20 25 .0 0.5 1.0 1.5 2.0 25 .0 0.5 1.0 1.5 2.0 25 .0 0.5 1.0 1.5 2.0 2.5

Actual Plan Risk Actual Plan Risk Actual Plan Risk Actual Plan Risk
(2) Q2 (b) Q10 (c) Q14 (d Q21

Figure 5.27: Actual and predicted plan risk for plan-wise cross-validation predictions by query.

estimates. This experiment supports the conclusion of our previous analysis that additional
training data improves the prediction performance for plans with underrepresented risky plan
features and indicates that the feature vector is able to represent also these infrequent risky plan
features.

5.3.3 Analysis of Feature Importance

Due to their hierarchical structure and easy-to-understand split conditions, regression tree mod-
els have the nice property that they can be analyzed and understood by humans. This property
differentiates decision trees from machine learning techniques that produce black box models
as for instance support vector machines (SVMs). Given a regression tree model it is possible to
assess for an individual feature how much it contributes to label prediction, i. e., how important it
is. The importance of a feature can be computed by estimating the fraction of samples which are

166

5.3 Predicting Risk Scores for Execution Plans

10°
10
10
10
10
10 °
10 2 4 3 1 12

Features

N I SR
=

[

“\‘
47,1‘
=

Feature Importance
O

Figure 5.28: Distribution of feature importance for query-wise cross-validation runs.

partitioned by split conditions that evaluate the feature. A feature that is evaluated in multiple
split conditions of nodes close to the root of a regression tree influences the predictions of more
samples than a feature which is evaluated in a single node close to a leaf. Please note that the
importance of a feature depends as well on its frequency in the training data set, i.e., a feature
for an operator type that is rare but highly discriminating might have a lower importance score
than a less discriminating but more frequent feature. Therefore, a feature importance analysis is
specific for a trained model and not for the prediction problem in general.

The importance of a feature in a random forest model is computed by averaging its importance
in all regression trees of which the model consists. The average computation also reduces the
variance of the importance estimation induced by the random nature of the method. The scikit-
learn [184]] implementation of extremely random trees computes the relative importance of each
feature. In the following we analyze the importance of features in a random forest model trained
with query-wise cross-validation.

Figure [5.28] shows the importance of all 127 features ordered by importance on a logarithmic
scale. The figure shows that the importance of features follows a long tail distribution. The top
20 features account for approximately 92.5% of the feature importance. The most important
feature has a relative importance of 20.52%. Four features did not contribute to the predictions
at all (0.0%). Next we discuss the most influential features.

Table [5.14]lists the 20 most important features. The most important feature is plan-level feature
p8, i.e., the max-min cost ratio of all operators with variable input (see Equation [5.3). This
feature determines how much the cost of all operators with changing input cardinalities varies
for changing predicate selectivities. The third, fourth, and fifth most important features are also
plan-level features. The third and fourth features are the max-maxPlan cost ratio (see Equa-
tion [5.6) of all operators with variable and constant input, respectively. The fifth feature is the
spread-minPlan cost ratio of all operators with variable input. These three plan-level features
model in different ways how much operators with variable and constant input sizes influence
the overall cost of a plan. Further important plan-level features address the output cardinal-
ity of plans and are on rank 11 (p12, the ratio of the plan’s output cardinality for minimum and
maximum input size) and rank 18 (p11, the plan’s output cardinality for maximum input size).

167

5 Assessing the Risk of Relational Data Flows

rank | Operator type / Plan Feature ID | Importance
1 Plan p8 20.52%
2 SecondaryIndexSeek op with var input vl 14.56%
3 Plan p4 9.93%
4 Plan po 9.46%
5 Plan p9 6.05%
6 ComputeScalar op with const. input cl 4.74%
7 IndexNestedLoopJoin op with var. outer input v8 4.55%
8 IndexNestedLoopJoin op with var. outer input v5 4.22%
9 SecondaryIndexSeek op with var. input v3 3.64%
10 | ComputeScalar op with const. input c2 3.03%
11 | Plan pl12 2.76%
12 | IndexNestedLoopJoin op with var. outer side v3 1.70%
13 | SecondaryIndexSeek op with var. input v4 1.15%
14 | Sort op with var. input v5 1.02%
15 | IndexNestedLoopJoin op with var. outer side v4 1.00%
16 | IndexNestedLoopJoin op with var. outer side v9 0.92%
17 | NestedLoopJoin op with var. outer side v7 0.92%
18 | Plan pll 0.88%
19 | ClusteredIndexSeek op with var input v4 0.75%
20 | NestedLoopJoin op with var. outer side v9 0.72%

Table 5.14: The 20 most important features for query-wise cross-validation. See Tables [5.10)

168

5.11} and |5.12for feature descriptions.

5.3 Predicting Risk Scores for Execution Plans

Looking at operator-level features, the second most important feature is the absolute number of
SecondaryIndexSeek operators with variable output in the plan (v1). The same operator is also
represented by features v3 and v4 with ranks 9 and 13, respectively. Other operator types that
appear in the top 20 features are ComputeScalar, IndexNestedLoopJoin, NestedLoopJoin,
Sort, and ClusteredIndexSeek. Given the risky plan features we identified based on our
experimental performance study (see Section [5.1.4)), it is not surprising to find features of ex-
actly these operator among the most important ones, except for the features of ComputeScalar
operators with constant input size.

Table [5.13] lists for each operator type the number of features in the feature vector, the best
ranking of a feature for this operator type, the average ranking, the maximum importance of
a feature for this operator type, and the sum of the importance of all features for this operator
type. It shows that plan-level features are the most important features and account for more
than 50% of the relative importance. The ranking of the following operators is not unexpected.
Features for operators with variable input are more important than features for operators with
constant input. Among the operators with the most important features are index seek operators
and nested-loop-based joins with variable outer input. As discussed before, both can cause
significantly higher execution time for increasing input sizes or predicate selectivities. Features
for Sort operators are relevant as well. The much lower importance of DistinctSort operator
features compared to the regular Sort can be explained by their less frequent occurrence in our
data set. Features for ClusteredIndexScan operators are also relevant for the prediction of
plan risk as they tend to cause a high number of I/O operations, which can account for a large
fraction of plan cost. Features for SecondaryIndexScan operators with variable output are not
relevant for the model because none of the plans in our data set contains this operator. We also
see that neither HybridHashJoin operator features, both for variable build and probe inputs,
nor nested-loop based joins with variable inner sides are important for the plan risk prediction
model.

There are also a few surprising observations. First of all, the high importance of ComputeScalar
operator features, both for constant and variable inputs, is remarkable. This operator type does
not cause any I/O operations and its cost should depend linearly on the input size. Hence, it is
unlikely that this operators actually influences the risk of a plan. One explanation is that this
feature is used by the model to distinguish plans of different queries. For example the plans
of query Q2 are the only ones in our data set without any ComputeScalar operator. Another
unexpected observation is that the features of HybridHashJoin operators with variable probe
side are more relevant than features of HybridHashJoin operators with variable build side.
This might be explained by the fact, that parts of the probe side are spilled to disk if the build
side exceeds the memory budget. Since the probe side is usually larger than the build side, its
spilling causes more I/O operations. Lack of memory for hash tables might frequently happen
for low database memory settings. Comparing the frequency of these features, we find that 5760
HybridHashJoin operators with variable build side and 10008 ones with variable probe side
are included our training data set. Hence, the difference in occurrence frequency might have

169

5 Assessing the Risk of Relational Data Flows

%000°0 %0000 Yq! 144! 14 Tea uROGXOPUIAIRPUODSS | €7
%800°0 %¥00°0 SC8II 41! 14 JSu0d 93edea88ywesids | 7T
%020°0 %600°0 SL 601 98 b 1SU0d yooagxepulLrepuodss | [7
%9¢€0°0 %8000 00°00T 6 9 Tea (9p1s 1ouut “rea) utordoopeasaNxepul | (7
%¥30°0 %0100 €T E8 8¢ 14 JSU0d ueogxepuIfIepUoOes | 6]
%880°0 %0100 SL'T8 LS 14 Jsuod UTOLYSRHPTAALH | 8]
%960°0 %£S0°0 0S°€L 1S 14 ISU0d UROSXOPUIPSISISNT) | L]
%001°0 %8100 0098 ¥S S TeA o3e8e133ywesas | 9]
%810 %0L0O0 L1CL (8174 9 Tea (opr1s 1ouur ‘rea) utordooTpaasay | G
%CST°0 %7800 0099 [34 14 ISU0D AO9GXSPUTIPOISISNT) |]
%081°0 %0L0°0 L9'6L Ly 9 TeA (SpIs p[Iinq “IeA) UTOLYSEHPTIALH | €]
%0ST0 %081°0 09°9L £¢ S TeA 3I0830UTISTO | 71
%C8C 0 %6610 00'vL 4 9 JeA (op1s 2qoid “1eA) UTOLYSEHPTIQAH |]
%Y9¥°0 %18E0 05°6S Y4 14 Tea URDSXSOPUTIPSISASNT) | O]
%0£9°0 2%609°0 00°S6 1T 9 IeA utore8iIsl | 6
%S0T %09¢°0 080 9C S Tea TeTeogesndwo) | §
%BS61'1 %810°1 0C'LS 14! S Tea 3I08 | L
%96¢" 1 BISLO SL'S¢E 61 14 IeA yeegxepuIpeIelsnI) | 9
%9€8'T %S16°0 I1'19 LT 6 TeA (9prs 1900 “rea) utordooTpesseN | ¢
WCLY L BYYLY 00°1¢ 9 14 ISU0d TeTeogesndwo) |
PHSIEE1 WBLYS ¥ 8L°0C L 6 JeA (opr1s 191no0 “1eA) utordoopeasoNxepuUI | €
%916°61 | %¥9S ¥1 SLTT C ¥ TeA yoogxepulLiepuodeg | ¢
%S98°0S | % 615°0C LT ST I ST - ueld | 1
duy g dwy Xepy | uey ‘SAy | uey 1sog | soImesd# | I1SUOD/IRA JojeradQ

Table 5.15: Feature importance grouped and aggregated by operator type sorted by sum of fea-

ture importance.

170

5.3 Predicting Risk Scores for Execution Plans

also supported the higher importance of features for HybridHashJoin operators with variable
probe side. For both types of operators, the most important feature is the minimum-maximum
ratio of input cardinality (v5 and v6) of the variable input, i. e., build or probe input. In general,
Table [5.15] validates the findings of our benchmark analysis in Section [5.1.4] The predictions
of the random forest model depend on features for index seek, nested-loop based join, and sort
operators with variable input. All of these operators have been identified to bear a high risk of
performance regression for varying input sizes.

171

5 Assessing the Risk of Relational Data Flows

5.4 Related Work

The problem of inaccurate selectivity estimates emerged with the first cost-based query opti-
mizer. Since then, techniques for robust query processing are in the focus of database research.
Different research directions have been explored over the years including methods to improve
selectivity estimates, techniques to improve the choice of execution plans, and novel data pro-
cessing algorithms, which are more tolerant with respect to estimation errors, and benchmarks
to assess different robustness aspects of database systems.

In the following we discuss prior work from three areas of database research that are related
to the contributions in this chapter, namely benchmarking DBMS robustness, query optimiza-
tion for robust execution plans, and applications of machine learning approaches in database
systems.

Robustness Benchmarks In Section we presented the results of an experimental study
to analyze performance variations of query execution plans and to identify plan features that
cause plans to be sensitive to changing execution conditions.

Conventional database benchmarks focus on processing performance, i. e., transactional through-
put or query execution performance. Wiener et al. [204] propose to extend benchmarks to in-
clude the assessment query execution robustness, i. €., the capability of a DBMS to handle unex-
pected execution conditions. The authors propose three robustness metrics, 1) Optimality: How
much does the cost of an implementation (or plan) vary from the best known implementation (or
plan)?, 2) Consistency: How does the performance of an implementation (or plan) vary across
different execution conditions?, and 3) Graceful degradation: How much impact have small
changes of execution conditions on the performance of an implementation (or plan)? Consis-
tency is measured as the variance of execution time across different execution conditions. This
definition is very close to our definition of plan robustness, i. e., the coefficient of variation which
is a normalized variation metric. In addition, the authors proposed techniques to visualize the
robustness of operators and plans [100]]. Both papers present results of rather confined bench-
marks to assess the robustness of table access techniques and methods to obtain a sorted result.
In contrast, we have conducted a more extensive performance study to measure the execution
time of complex analytical queries across a wide range of input sizes and memory settings.

The Picasso database query optimizer visualizer [179] is a tool to display the plan space of query
optimizers. For a given query with one or two parameterized predicates, Picasso calls the opti-
mizer of a DBMS with varying parameter bindings over the full range of predicate selectivities
and retains the returned query execution plans. Picasso plots the optimizer’s plan choices of the
whole selectivity space by representing each distinct plan by a unique color. The paper shows
several plan space plots generated for modified TPC-H queries, which are optimized by different
database optimizers. These plots show that optimizer plan choices are often sensible for small

172

5.4 Related Work

changes of cardinality estimates. Since cardinalities are notoriously hard to estimate and often
off by large factors, the complexity of the plan space becomes questionable. In addition, Pi-
casso generates three-dimensional plots of the estimated costs of a plan for varying selectivities.
In our work, we follow a similar approach as Picasso. In fact, we use Picasso’s TPC-H query
templates with parameterized predicates and also call an optimizer with varying parameter bind-
ings to collect different query execution plans. However, we actually execute these plans over
a range of varying selectivity and memory settings, measure their execution times, and analyze
their behavior for different execution conditions.

Waas et al. propose a method to measure the quality of optimizer cost models [202]]. The method
is based on the comparison of the two plan rankings defined by the optimizer’s estimated cost
and the actual execution time for different plans of a given query. In a follow-up paper [103]]
the method is refined to enable comparisons of the accuracy and optimality of different query
optimizers. Both methods rely on optimizer hints to enforce the optimization and execution of
different plans for the same query. In our work, we use optimizer hints to completely specify the
plans to be executed for varying execution conditions.

Finally, there are a few papers that analyze the performance of individual operators. For ex-
ample, Schneider et al. investigate the performance of four join algorithms in a distributed
shared-nothing database system [183]]. Haas et al. present detailed cost formulas for several
join methods and validate these against benchmarks across varying parameters, such as memory
and buffer size [107]].

Robust Query Processing Different techniques to improve the robustness of query process-
ing have been proposed. In the following, we discuss some research directions and present
notable approaches.

Inaccurate selectivity estimates are a root cause for unexpected query performance. Conse-
quently, selectivity estimation has been in the focus of database research for a long time. The
first methods for selectivity estimation have been proposed in the paper that presented cost-based
query optimization [[186]]. These methods are still the basis for the cardinality estimators in many
database systems. To improve selectivity estimates for local predicates several techniques, in-
cluding histograms [130} 135} [176]] and wavelets [[160], have been proposed. Further techniques
are based on statistics collection for query expressions [39 [75]], methods to avoid the indepen-
dence assumption [[158}[177], selectivity estimation from samples [116,|154]], and approaches to
leverage query feedback to improve selectivity estimates [[192].

Parametric query optimization is an approach to improve plan choices for queries with parame-
ters. Multiple plans for different parameter bindings of a query are precomputed. When a query
with a parameter binding is received, the best plan for the binding is selected from the precom-
puted set and executed [31} [132]]. In a recent work, Chaudhuri et al. generate plans for several
parameter bindings, cross-cost these plans for all other bindings, and choose the plan with the

173

5 Assessing the Risk of Relational Data Flows

least variance in estimated plan cost [S0]. As our performance study indicates, estimating the
variance of plan execution time using optimizer estimates might not yield accurate results. In-
stead, our machine-learned regression model improved the accuracy of plan risk predictions.
Another recent approach computes the set of plans which are optimal for some area of the pa-
rameter selectivity range and cover the full selectivity space [74]]. This technique does not rely
on selectivity estimation at all. Instead, the right plan is identified by partially executing plans
from the set.

Other approaches try to model the uncertainty of selectivity estimates as probability distribu-
tions and incorporate this information into the query optimization process. Chu et al. propose
least expected cost optimization [55} [56]], which tracks histograms of cardinality and cost esti-
mates of the probability distribution along the operators of plans at optimization time. Finally,
the plan with the lowest expected cost, i. e., the plan that minimizes the execution cost over the
probability distribution of the uncertain selectivities is chosen. Babcock and Chaudhuri pro-
pose a tuning knob to trade execution performance for predictable execution times [17]. The
selectivity estimate that is used for query optimization is taken from a specified position of the
cumulative probability distribution. In Section [5.2.2] we describe how the approach of Bab-
cock and Chaudhuri relates to our approach of risk-weighted plan costing and conduct a brief
experimental comparison.

Several approaches to improve plan robustness at optimization time have been proposed, which
are based on the results of the Picasso project. Harish et al. reduce plan space diagrams by re-
placing plans by a neighboring plan that has similar cost but a more robust behavior for different
input sizes [59, 160]. While this is an offline approach, Abhirama et al. propose a dynamic-
programming-based online approach, which considers robust plan choices during plan enumer-
ation. Both approaches use plan cross-costing, to obtain cost estimates for (sub)plans for specific
points in the selectivity space.

The aforementioned approaches mainly focus on choosing a good execution plan at compile
time. Another area of research has been adaptive query processing, i. e., techniques that are able
to adjust or mitigate wrong optimizer decisions during query execution. Eddies [16] are a query
processing technique that continuously reorders join operators while a query is executed. The
Generalized Join [98]] aims to unite the beneficial behaviors of Hash, Sort-Merge, and Index-
Nested-Loop Joins with the goal to mitigate the optimization problem of choosing the right join
algorithm. Deshpande et al. [66] present an extensive overview of further work in the direction
of adaptive query processing.

Finally, there are several hybrid approaches that combine uncertainty-aware optimization and
runtime adaption. Graefe and Ward [94] inject choose-plan operators into query plans to switch
the execution strategies at runtime if certain conditions are met. Other approaches add check
operators to collect statistics and compare them to a validity range specified by the optimizer.

174

5.4 Related Work

If thresholds are exceeded, a check operator triggers a reconfiguration of the current execu-
tion plan [138]], a switch to a previously computed plan alternative [19]], or a (complete) re-
optimization of the query leveraging the collected statistical information [[159].

ML predictions in DBMS The use of machine learning techniques to predict the execution
time, progress, or resource consumption of query execution plans is a fairly new trend in the
database research community.

Ganapathi et al. present a machine learning approach to predict various performance character-
istics of a plan, such as disk I/O, record, and message count, before the plan is executed [88]].
Queries are represented as feature vectors and mapped into a similarity space using a Kernel
Canonical Correlation Analysis (KCCA). To predict the performance characteristics of a plan,
the three closest plans from the training set are fetched from the similarity space and the average
of their performance characteristics is returned. The feature vector is constructed by counting
and summing the input cardinalities of each operator type.

Another approach to predict the resource consumption (CPU time and logical reads) of query
execution plans is based on hybrid prediction models of boosted regression trees and a scal-
ing method for each operator type [150]]. Since the range of prediction values of regression
trees is limited to the value range observed during training, a scaling function is used to model
the asymptotic behavior of the operators. The resource consumption of a plan is predicted by
summing the predictions of its individual operators. While this approach leads to improved pre-
diction performance and better generalization for previously unseen queries, it is not applicable
to our prediction problem because it is not trivial to compute a plan’s risk score given the risk
scores of its individual operators.

Akdere et al. train linear regression or SVM models to predict the performance of plans be-
fore they are executed [[8]. Plans are modeled with both coarse-grain plan-level features and
fine-grain operator-level features. It is shown that a hybrid of both approaches yields the best
results.

Konig et al. propose a method for progress estimation of plans before and during their execution
[142]. Instead of directly predicting the progress, the authors follow a meta-prediction approach
and use statistical models to select an estimator from a set of previously proposed progress
estimation methods. For each estimator they train a model of boosted regression trees to predict
the estimation error of plans. The feature vectors of this approach are based on static compile
time features as well as runtime features which are observed during execution. Our approach
is also based on regression trees, however extremely randomized trees performed better than
boosted regression trees for our learning problem.

Our approach of predicting risk scores for query execution plans uses operator type aggregated
features similar to Ganapathi et al.’s approach [88]] and random forest regression models as Li

175

5 Assessing the Risk of Relational Data Flows

et al. [150] and Konig et al. [142]. We are not aware of any other work that attempts to predict
the robustness or riskiness of query execution plans using machine learning techniques.

176

5.5 Summary
5.5 Summary

Query execution plans differ in their sensitivity for varying execution conditions. While some
plans have nearly constant execution time if the size of a certain input increases by an order of
magnitude, other plans suffer from a significant regression. In this chapter, we discussed and
analyzed the differences in sensitivity of query plans for changing execution conditions.

In order to evaluate the sensitivity of query execution plans, we conducted an extensive exper-
imental study and measured the execution time of operators, join trees, and complex analytical
queries for varying execution conditions. We analyzed the execution behavior and identified
plan patterns that are able to cause significant variations in execution time for changing input
sizes and memory budgets. Our analysis also showed that it is not possible to assess the risk of
a plan by looking at individual operators only. Instead, a plan as a whole needs to be taken into
account in order to reason about its sensitivity with respect to varying execution conditions.

We proposed a risk score to assess the sensitivity of query execution plans for varying execution
conditions, such as predicate parameter bindings and main memory budgets. The risk score is
based on the coefficient of variation of a plan’s execution time for changing execution conditions.
We show how the risk score can be used to prevent risky plan choices by computing a risk-
aware plan cost metric and evaluate this method using the plan execution data from our previous
experiments.

Subsequently, we proposed a method to predict the risk score of query execution plans using a
machine-learned regression model. We discussed the design of the feature vector to capture the
aspects of a query plan, which are relevant to predict its risk. The evaluation of a random forest
regression model which was trained using our plan execution data showed that its prediction
performance is significantly better than risk predictions computed from optimizer estimates. We
found that inaccurate predictions of the regression model can be accounted to insufficient train-
ing data. This is a problem especially for rare high-risk patterns. An analysis of the importance
of our features seconds the findings of the manual analysis of the plan execution data. Operators
that we deemed risky provided important features for the machine-learned regression model.

177

5 Assessing the Risk of Relational Data Flows

178

6 Conclusion and Outlook

Today, data analysis is pervasive in many domains. Growing data set sizes and more compute-
intensive analysis methods demand for parallel data processing. In this thesis, we presented our
work to improve data analysis by easing the specification and increasing the performance and
efficiency of parallel analytical data flows. In the following, we conclude this thesis, discuss
open problems, and propose future research directions.

In Chapter [3] we proposed the PACT programming model. It combines features of declara-
tive program specification, concepts of parallel programming models, and treats user-defined
functions (UDF) and data types as first class citizens. This combination results in an expressive
programming model that includes several benefits of declarative program specification. Declara-
tivity decouples the specification of a program is from its execution. Consequently, the execution
of a program can be optimized with respect to the program’s input and execution environment.
Furthermore, declarative concepts ease the definition of programs because the user can focus
on the semantics of a program while the optimizer takes care of the actual execution strategies.
PACT programs are optimized similar to SQL queries in relational database systems and execute
user-defined functions in parallel similar to MapReduce programs.

Chapter] presented techniques to enhance the optimization capabilities for data flow programs
with user-defined functions, such as PACT programs. Optimizing these programs is challeng-
ing because their semantics are hidden in user-defined functions. Our approach uses static code
analysis techniques to extract a few properties from user-defined functions. Based on these prop-
erties, we presented and proved sufficient conditions to decide whether two UDF operators can
be reordered. The evaluation of our approach showed that important optimizations of relational
database optimizers are supported by our approach including filter and projection push-down and
join order optimization. These optimizations can yield significant performance improvements
while being fully transparent to the user due to static code analysis.

Chapter [5] addressed a problem that is common for all cost-based optimization approaches,
namely inaccurate optimizer estimates. While this is a hard problem in traditional relational
database systems, it is certainly even more challenging in less controlled setups, such as general-
purpose data analysis engines since less information about the data, the execution environment,
and the executed programs is available. Imprecise estimates are challenging for cost-based op-
timizers because execution plans differ in their sensitivity with respect to imprecise estimates
and changing execution conditions. In Chapter[5] we analyzed this sensitivity by conducting an
extensive experimental study and identified features of query plans that can cause significantly

179

6 Conclusion and Outlook

varying performance for changing execution conditions. We proposed a plan risk score to iden-
tify sensitive plans and showed how it can be used to prevent the choice of risky plans by query
optimizers. Finally, we presented an approach to predict the risk score of query plans using a
machine-learned regression model.

Chapters 3] and 4] focused on enabling the optimization of parallel data flows. Due to the declar-
ative characteristics of PACT operators and the presented conditions to reorder operators with
user-defined functions, programs specified in the PACT programming model can be optimized
and translated into many different execution plans. We proposed cost-based optimization to
identify the best plan from the plan space. However, the effectiveness of cost-based optimiza-
tion depends on the availability of reliable cost estimates for plan alternatives.

This thesis did not discuss in detail how to compute cost estimates for parallel data flows that pro-
cess in-situ data and consist of operators with user-defined functions. The traditional approach is
based on cost functions for operators and cardinality estimates for all intermediate results. Both,
reliable cardinality estimates as well as an accurate cost model, are usually not available due to
missing base statistics and unknown operator semantics. In Chapter[5] we analyzed the effect of
missing optimizer estimates and discussed approaches to reduce their impact on the quality of
plan selection. However, also these approaches benefit from additional information and should
only be considered as a safety net to prevent the selection of highly risky plans.

One direction for future research are reliable plan choices for massively parallel data flow pro-
grams. A possible approach could be incremental optimization and execution in combination
with on-line statistics collection. Programs are partially planned and executed in a step-wise
fashion. During the execution of a step, the processing engine collects statistics that help to
plan the next step. This approach has a few interesting trade-offs that might be worth exploring.
For instance, the statistics that can be collected depend on the choice of the currently executed
step-plan and the statistics that will be helpful depend on the not-yet executed portion of the
program. The size of a step is also an interesting choice, i.e., how much uncertainty (or risk)
does the optimizer allow within a step.

Another area of future research is extending the optimization of programs with user-defined
functions. One option are more elaborate code analysis techniques to (partially) extract the
semantics of user-defined functions. This information might facilitate more optimizations or
help estimating the cost or selectivity of a UDF. Other approaches could aim to automatically
improve the code of a user-defined function or even fuse it with other UDFs or engine code.

180

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

Daniel J. Abadi, Rakesh Agrawal, Anastasia Ailamaki, Magdalena Balazinska, Philip A.
Bernstein, Michael J. Carey, Surajit Chaudhuri, Jeffrey Dean, AnHai Doan, Michael J.
Franklin, Johannes Gehrke, Laura M. Haas, Alon Y. Halevy, Joseph M. Hellerstein, Yan-
nis E. Ioannidis, H. V. Jagadish, Donald Kossmann, Samuel Madden, Sharad Mehrotra,
Tova Milo, Jeffrey F. Naughton, Raghu Ramakrishnan, Volker Markl, Christopher Olston,
Beng Chin Ooi, Christopher Ré, Dan Suciu, Michael Stonebraker, Todd Walter, and Jen-
nifer Widom. The beckman report on database research. SIGMOD Record, 43(3):61-70,
2014.

M. Abhirama, Sourjya Bhaumik, Atreyee Dey, Harsh Shrimal, and Jayant R. Haritsa.
Stability-conscious query optimization. 2009.

Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel J. Abadi, Alexander Rasin, and Avi
Silberschatz. HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technolo-
gies for Analytical Workloads. PVLDB, 2(1):922-933, 2009.

Apache accumulo. URL: http://accumulo.apache.org.

Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated selection of
materialized views and indexes in sql databases. In VLDB, pages 496-505, 2000.

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques and Tools. Pearson, 2006.

Anastasia Ailamaki, Verena Kantere, and Debabrata Dash. Managing scientific data.
Commun. ACM, 53(6):68-78, 2010.

Mert Akdere, Ugur Cetintemel, Matteo Riondato, Eli Upfal, and Stanley B Zdonik.
Learning-based query performance modeling and prediction. In Data Engineering
(ICDE), 2012 IEEE 28th International Conference on, pages 390-401. IEEE, 2012.

Alexander Alexandrov, Dominic Battré, Stephan Ewen, Max Heimel, Fabian Hueske,

Odej Kao, Volker Markl, Erik Nijkamp, and Daniel Warneke. Massively parallel data
analysis with pacts on nephele. PVLDB, 3(2):1625-1628, 2010.

181

Bibliography

[10] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag,
Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, Felix
Naumann, Mathias Peters, Astrid Rheinldnder, Matthias Sax, Sebastian Schelter, Mareike
Hoger, Kostas Tzoumas, and Daniel Warneke. The stratosphere platform for big data an-
alytics. The VLDB Journal, pages 1-26, 2014.

[11] Alexander Alexandrov, Stephan Ewen, Max Heimel, Fabian Hueske, Odej Kao, Volker
Markl, Erik Nijkamp, and Daniel Warneke. Mapreduce and pact - comparing data parallel
programming models. In BTW, pages 25-44, 2011.

[12] Peter Alvaro, Neil Conway, and Andrew Krioukov. Multi-query optimization for parallel
dataflow systems. URL.: http://neilconway.org/docs/286_mgqo.pdf, May 2009.

[13] Apache ambari. URL: http://ambari.apache.org.
[14] D.H. Brown Associates. Db2 udb vs. oracle8i: Total cost of ownership. 2000.
[15] Asterixdb. URL: http://asterix.ics.uci.edu.

[16] Ron Avnur and Joseph M. Hellerstein. Eddies: continuously adaptive query processing.
In Proceedings of the 2000 ACM SIGMOD international conference on Management of
data, SIGMOD ’00, pages 261-272, New York, NY, USA, 2000. ACM.

[17] Brian Babcock and Surajit Chaudhuri. Towards a robust query optimizer: A principled
and practical approach. In SIGMOD Conference, pages 119-130, 2005.

[18] Shivnath Babu. Towards automatic optimization of mapreduce programs. In SoCC, pages
137-142, 2010.

[19] Shivnath Babu, Pedro Bizarro, and David J. DeWitt. Proactive re-optimization. In SIG-
MOD Conference, pages 107-118, 2005.

[20] Monya Baker. Next-generation sequencing: adjusting to data overload. nature methods,
7(7):495-499, 2010.

[21] Roger Bamford, D Butler, Boris Klots, and N MacNaughton. Architecture of oracle
parallel server. In VLDB, volume 98, pages 669-670, 1998.

[22] Chaitanya K. Baru, Gilles Fecteau, Ambuj Goyal, H Hsiao, Anant Jhingran, Sriram Pad-
manabhan, George P. Copeland, and Walter G. Wilson. Db2 parallel edition. /BM Systems
Journal, 34(2):292-322, 1995.

[23] Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl, and Daniel
Warneke. Nephele/PACTs: A Programming Model and Execution Framework for Web-

Scale Analytical Processing. In SoCC ’10: Proceedings of the ACM Symposium on Cloud
Computing 2010, pages 119-130, New York, NY, USA, 2010. ACM.

182

Bibliography

[24] Jacek Becla, Andrew Hanushevsky, Sergei Nikolaev, Ghaleb Abdulla, Alexander S. Sza-
lay, Maria A. Nieto-Santisteban, Ani Thakar, and Jim Gray. Designing a multi-petabyte
database for Isst. CoRR, abs/cs/0604112, 2006.

[25] Alexander Behm, Vinayak R. Borkar, Michael J. Carey, Raman Grover, Chen Li, Nicola
Onose, Rares Vernica, Alin Deutsch, Yannis Papakonstantinou, and Vassilis J. Tsotras.

Asterix: towards a scalable, semistructured data platform for evolving-world models.
Distributed and Parallel Databases, 29(3):185-216, 2011.

[26] Bjorn Bergsten, Michel Couprie, and Patrick Valduriez. Prototyping dbs3, a shared-
memory parallel database system. In Proceedings of the First International Conference on
Parallel and Distributed Information Systems (PDIS 1991), Fontainebleu Hilton Resort,
Miami Beach, Florida, December 4-6, 1991, pages 226-234, 1991.

[27] Philip A. Bernstein, Nathan Goodman, Eugene Wong, Christopher L. Reeve, and James
B. Rothnie Jr. Query processing in a system for distributed databases (sdd-1). ACM Trans.
Database Syst., 6(4):602—-625, 1981.

[28] Kevin Beyer, Vuk Ercegovac, Rainer Gemulla, Andrey Balmin, Mohamed Eltabakh, Carl-
Christian Kanne, Fatma Ozcan, and Eugene J. Shekita. Jaql: A scripting language for
large scale semistructured data analysis. PVLDB, 2011.

[29] Apache bigtop. URL: http://bigtop.apache.org.
[30] Infosphere biginsights. URL: http://www-01.ibm.com/software/data/infosphere/biginsights/.

[31] Pedro Bizarro, Nicolas Bruno, and David J. DeWitt. Progressive parametric query opti-
mization. IEEE Trans. Knowl. Data Eng., 21(4):582-594, 2009.

[32] José A. Blakeley, Paul A. Dyke, César Galindo-Legaria, Nicole James, Christian Klein-
erman, Matt Peebles, Richard Tkachuk, and Vaughn Washington. Microsoft sql server
parallel data warehouse: Architecture overview. In Enabling Real-Time Business Intelli-
gence, pages 53—-64. Springer, 2012.

[33] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eugene J. Shekita, and
Yuanyuan Tian. A comparison of join algorithms for log processing in mapreduce. In
SIGMOD Conference, pages 975-986, 2010.

[34] Christoph Boden, Marcel Karnstedt, Miriam Fernandez, and Volker Markl. Large-scale
social-media analytics on stratosphere. In 22nd International World Wide Web Confer-
ence, WWW 13, Rio de Janeiro, Brazil, May 13-17, 2013, Companion Volume, pages
257-260, 2013.

183

Bibliography

[35] Haran Boral, William Alexander, Larry Clay, George P. Copeland, Scott Danforth,
Michael J. Franklin, Brian E. Hart, Marc G. Smith, and Patrick Valduriez. Prototyp-
ing bubba, a highly parallel database system. IEEE Trans. Knowl. Data Eng., 2(1):4-24,
1990.

[36] Vinayak R. Borkar, Michael J. Carey, Raman Grover, Nicola Onose, and Rares Vernica.
Hyracks: A flexible and extensible foundation for data-intensive computing. In /CDE,
pages 1151-1162, 2011.

[37] Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

[38] Nicolas Bruno, Sameer Agarwal, Srikanth Kandula, Bing Shi, Ming-Chuan Wu, and Jin-
gren Zhou. Recurring job optimization in scope. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA,
May 20-24, 2012, pages 805-806, 2012.

[39] Nicolas Bruno and Surajit Chaudhuri. Efficient creation of statistics over query expres-
sions. In ICDE, pages 201-212, 2003.

[40] Nicolas Bruno, Sapna Jain, and Jingren Zhou. Continuous cloud-scale query optimization
and processing. PVLDB, 6(11):961-972, 2013.

[41] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael Ernst. Haloop: Efficient
iterative data processing on large clusters. PVLDB, 3(1):285-296, 2010.

[42] Michael J. Cafarella and Christopher Ré. Manimal: Relational optimization for data-
intensive programs. In WebDB, 2010.

[43] Jesuis Camacho-Rodriguez, Dario Colazzo, and loana Manolescu. Paxquery: Efficient
parallel processing of complex xquery. IEEE Trans. Knowl. Data Eng., 27(7):1977-1991,
2015.

[44] Cascading. URL: http://www.cascading.org/.
[45] Cern Computing. URL: http://home.cern/about/computing.

[46] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna P Gummadi. Mea-
suring user influence in twitter: The million follower fallacy. ICWSM, 10(10-17):30,
2010.

[47] Ronnie Chaiken, Bob Jenkins, Per-Ake Larson, Bill Ramsey, Darren Shakib, Simon
Weaver, and Jingren Zhou. SCOPE: Easy and Efficient Parallel Processing of Massive
Data Sets. PVLDB, 1(2):1265-1276, 2008.

184

Bibliography

[48] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson Hsieh, Deborah Wallach,
Tushar Chandra Mike Burrows, Andrew Fikes, and Robert Gruber. Bigtable: A dis-

tributed storage system for structured data. ACM Transactions on Computer Systems
(TOCS), 26(2):4, 2008.

[49] Biswapesh Chattopadhyay, Liang Lin, Weiran Liu, Sagar Mittal, Prathyusha Aragonda,
Vera Lychagina, Younghee Kwon, and Michael Wong. Tenzing a sql implementation on
the mapreduce framework. In Proceedings of VLDB, pages 1318-1327, 2011.

[50] Surajit Chaudhuri, Hongrae Lee, and Vivek R. Narasayya. Variance aware optimization
of parameterized queries. In Proceedings of the 2010 international conference on Man-
agement of data, SIGMOD ’10, pages 531-542, New York, NY, USA, 2010. ACM.

[51] Surajit Chaudhuri and Kyuseok Shim. Including group-by in query optimization. In
VLDB, pages 354-366, 1994.

[52] Surajit Chaudhuri and Kyuseok Shim. An overview of cost-based optimization of queries
with aggregates. IEEE Data Eng. Bull., 18(3):3-9, 1995.

[53] Surajit Chaudhuri and Kyuseok Shim. Optimization of queries with user-defined predi-
cates. ACM Trans. Database Syst., 24(2):177-228, 1999.

[54] Ming-Syan Chen and Philip S. Yu. Interleaving a join sequence with semijoins in dis-
tributed query processing. IEEE Trans. Parallel Distrib. Syst., 3(5):611-621, 1992.

[55] Francis C. Chu, Joseph Y. Halpern, and Johannes Gehrke. Least expected cost query
optimization: What can we expect? In PODS, pages 293-302, 2002.

[56] Francis C. Chu, Joseph Y. Halpern, and Praveen Seshadri. Least expected cost query
optimization: An exercise in utility. In PODS, pages 138147, 1999.

[57] Jonathan Cohen. Graph Twiddling in a MapReduce World. Computing in Science and
Engineering, 11:29-41, 2009.

[58] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled Elmeleegy, and
Russell Sears. Mapreduce online. In NSDI, pages 313-328, 2010.

[59] Harish D, Pooja N. Darera, and Jayant R. Haritsa. On the production of anorexic plan
diagrams. In Proceedings of the 33rd International Conference on Very Large Data Bases,
VLDB ’07, pages 1081-1092. VLDB Endowment, 2007.

[60] Harish D., Pooja N. Darera, and Jayant R. Haritsa. Identifying robust plans through plan
diagram reduction. PVLDB, 1(1):1124-1140, 2008.

[61] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-
memory programming. Computational Science & Engineering, IEEE, 5(1):46-55, 1998.

185

Bibliography

[62] George S Davidson, Jim R Cowie, Stephen C Helmreich, Ron A Zacharski, and Kevin W
Boyack. Data-centric computing with the netezza architecture. United States. Department
of Energy, 2006.

[63] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, An-
drew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep

networks. In Advances in Neural Information Processing Systems, pages 1223-1231,
2012.

[64] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. In OSDI, pages 137-150, 2004.

[65] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing tool. Com-
mun. ACM, 53(1):72-77, 2010.

[66] Amol Deshpande, Zachary Ives, and Vijayshankar Raman. Adaptive query processing.
Found. Trends databases, 1(1):1-140, January 2007.

[67] DavidJ. DeWitt, Robert H. Gerber, Goetz Graefe, Michael L. Heytens, Krishna B. Kumar,
and M. Muralikrishna. GAMMA - A High Performance Dataflow Database Machine. In
VLDB, pages 228-237, 1986.

[68] DavidJ. DeWitt and Jim Gray. Parallel database systems: The future of high performance
database systems. Commun. ACM, 35(6):85-98, 1992.

[69] DavidJ DeWitt, Alan Halverson, Rimma Nehme, Srinath Shankar, Josep Aguilar-Saborit,
Artin Avanes, Miro Flasza, and Jim Gramling. Split query processing in polybase. In

Proceedings of the 2013 international conference on Management of data, pages 1255—
1266. ACM, 2013.

[70] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kargin, Vinay Setty, and
Jorg Schad. Hadoop++: Making a yellow elephant run like a cheetah (without it even
noticing). PVLDB, 3(1):518-529, 2010.

[71] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Stefan Richter, Stefan Schuh, Alekh Jindal,
and Jorg Schad. Only aggressive elephants are fast elephants. PVLDB, 5(11):1591-1602,
2012.

[72] Dryad - Microsoft Research. URL: http://research.microsoft.com/projects/Dryad.
[73] DryadLINQ - Microsoft Research. URL: http://research.microsoft.com/projects/Dryad LINQ.

[74] Anshuman Dutt and Jayant R. Haritsa. Plan bouquets: query processing without selectiv-
ity estimation. In SIGMOD Conference, pages 1039-1050, 2014.

[75] Amr El-Helw, Ihab F Ilyas, and Calisto Zuzarte. Statadvisor: recommending statistical
views. Proceedings of the VLDB Endowment, 2(2):1306-1317, 20009.

186

Bibliography

[76] Mohamed Y. Eltabakh, Yuanyuan Tian, Fatma Ozcan, Rainer Gemulla, Aljoscha Krettek,
and John McPherson. Cohadoop: Flexible data placement and its exploitation in hadoop.
PVLDB, 4(9):575-585, 2011.

[77] Amazon Elastic MapReduce. URL: https://aws.amazon.com/elasticmapreduce.

[78] Susanne Englert, Jim Gray, Terrye Kocher, and Praful Shah. A benchmark of nonstop
sql release 2 demonstrating near-linear speedup and scaleup on large databases. ACM
SIGMETRICS Performance Evaluation Review, 18(1):245-246, 1990.

[79] Stephan Ewen, Sebastian Schelter, Kostas Tzoumas, Daniel Warneke, and Volker Markl.
Iterative parallel data processing with stratosphere: an inside look. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, New
York, NY, USA, June 22-27, 2013, pages 1053-1056, 2013.

[80] Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, and Volker Markl. Spinning fast
iterative data flows. PVLDB, 5(11):1268-1279, 2012.

[81] Leonidas Fegaras, Chengkai Li, and Upa Gupta. An optimization framework for map-
reduce queries. In I5th International Conference on Extending Database Technology,
EDBT ’12, Berlin, Germany, March 27-30, 2012, Proceedings, pages 26-37, 2012.

[82] Pit Fender and Guido Moerkotte. A new, highly efficient, and easy to implement top-down
join enumeration algorithm. In ICDE, pages 864-875, 2011.

[83] Pit Fender, Guido Moerkotte, Thomas Neumann, and Viktor Leis. Effective and robust
pruning for top-down join enumeration algorithms. In /ICDE, pages 414-425, 2012.

[84] Apache Flink. URL: http://flink.apache.org.

[85] Avrilia Floratou, Jignesh M. Patel, Eugene J. Shekita, and Sandeep Tata. Column-oriented
storage techniques for mapreduce. PVLDB, 4(7):419-429, 2011.

[86] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learn-
ing and an application to boosting. In Computational learning theory, pages 23-37.
Springer, 1995.

[87] Eric Friedman, Peter M. Pawlowski, and John Cieslewicz. Sql/mapreduce: A practi-
cal approach to self-describing, polymorphic, and parallelizable user-defined functions.
PVLDB, 2(2):1402-1413, 2009.

[88] Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L Wiener, Armando Fox,
Michael I Jordan, and David Patterson. Predicting multiple metrics for queries: Better
decisions enabled by machine learning. In Data Engineering, 2009. ICDE’09. IEEE 25th
International Conference on, pages 592—-603. IEEE, 2009.

187

Bibliography

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]
[99]

[100]

[101]

188

Sumit Ganguly, Waqar Hasan, and Ravi Krishnamurthy. Query optimization for parallel
execution. In SIGMOD Conference, pages 9-18, 1992.

Alan Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shravan Narayanam,
Christopher Olston, Benjamin Reed, Santhosh Srinivasan, and Utkarsh Srivastava. Build-
ing a highlevel dataflow system on top of mapreduce: The pig experience. PVLDB,
2(2):1414-1425, 20009.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine
learning, 63(1):3—42, 2006.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system. In
SOSP, pages 29-43, 2003.

Amol Ghoting, Rajasekar Krishnamurthy, Edwin P. D. Pednault, Berthold Reinwald,
Vikas Sindhwani, Shirish Tatikonda, Yuanyuan Tian, and Shivakumar Vaithyanathan.
Systemml: Declarative machine learning on mapreduce. In Proceedings of the 27th In-
ternational Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover,
Germany, pages 231-242, 2011.

G. Graefe and K. Ward. Dynamic query evaluation plans. In Proceedings of the 1989
ACM SIGMOD international conference on Management of data, SIGMOD ’89, pages
358-366, New York, NY, USA, 1989. ACM.

Goetz Graefe. Encapsulation of parallelism in the volcano query processing system. In
Proceedings of the 1990 ACM SIGMOD International Conference on Management of
Data, Atlantic City, NJ, May 23-25, 1990., pages 102-111, 1990.

Goetz Graefe. Volcano - an extensible and parallel query evaluation system. /IEEE Trans.
Knowl. Data Eng., 6(1):120-135, 1994.

Goetz Graefe. The cascades framework for query optimization. I[EEE Data Eng. Bull.,
18(3):19-29, 1995.

Goetz Graefe. A generalized join algorithm. In BTW, pages 267-286, 2011.

Goetz Graefe, Wey Guy, Harumi A. Kuno, and Glenn N. Paulley. Robust query processing
(dagstuhl seminar 12321). Dagstuhl Reports, 2(8):1-15, 2012.

Goetz Graefe, Harumi A. Kuno, and Janet L. Wiener. Visualizing the robustness of query
execution. In CIDR, 2009.

Goetz Graefe and William J. McKenna. The volcano optimizer generator: Extensibil-
ity and efficient search. In Proceedings of the Ninth International Conference on Data
Engineering, April 19-23, 1993, Vienna, Austria, pages 209-218, 1993.

Bibliography

[102] Gotz Graefe, Arnd Christian Konig, Harumi Anne Kuno, Volker Markl, and Kai-Uwe
Sattler. 10381 Summary and Abstracts Collection — Robust Query Processing. In Goetz
Graefe, Arnd Christian Konig, Harumi Anne Kuno, Volker Markl, and Kai-Uwe Sat-
tler, editors, Robust Query Processing, number 10381 in Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, 2011. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Ger-
many.

[103] Pivotal Greenplum Database. URL: http://www.pivotal.io/big-data/pivotal-greenplum-
database.

[104] Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom Schreiber. Ferry: database-supported
program execution. In SIGMOD Conference, pages 1063—-1066, 2009.

[105] Zhongxian Gu, Mohamed A. Soliman, and Florian M. Waas. Testing the accuracy of
query optimizers. In DBTest, page 11, 2012.

[106] Zhenyu Guo, Xuepeng Fan, Rishan Chen, Jiaxing Zhang, Hucheng Zhou, Sean
McDirmid, Chang Liu, Wei Lin, Jingren Zhou, and Lidong Zhou. Spotting code opti-
mizations in data-parallel pipelines through periscope. In /0th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2012, Hollywood, CA, USA, Octo-
ber 8-10, 2012, pages 121-133, 2012.

[107] Laura M. Haas, Michael J. Carey, Miron Livny, and Amit Shukla. Seeking the truth about
ad hoc join costs. VLDB J., 6(3):241-256, 1997.

[108] Laura M. Haas, Johann Christoph Freytag, Guy M. Lohman, and Hamid Pirahesh. Ex-
tensible query processing in starburst. In SIGMOD Conference, pages 377-388, 1989.

[109] Apache Hadoop. URL: http://hadoop.apache.org.

[110] Gary Hallmark. Oracle parallel warehouse server. In Data Engineering, 1997. Proceed-
ings. 13th International Conference on, pages 314-320. IEEE, 1997.

[111] Apache Hama. URL: http://hama.apache.org.

[112] Li Haoyuan, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. Tachyon: Re-
liable, Memory Speed Storage for Cluster Computing Frameworks. In SoCC ’14: Pro-
ceedings of the ACM Symposium on Cloud Computing 2014, New York, NY, USA, 2014.
ACM.

[113] Waqar Hasan. Optimization of SQL Queries for Parallel Machines, volume 1182 of Lec-
ture Notes in Computer Science. Springer, 1996.

[114] Waqar Hasan, Daniela Florescu, and Patrick Valduriez. Open issues in parallel query
optimization. SIGMOD Record, 25(3):28-33, 1996.

[115] Apache HBase. URL: http://hbase.apache.org.

189

Bibliography

[116] Max Heimel and Volker Markl. A first step towards gpu-assisted query optimization. In
ADMS@VLDB, pages 33-44, 2012.

[117] Arvid Heise, Astrid Rheinldnder, Marcus Leich, Ulf Leser, and Felix Naumann. Mete-
or/sopremo: An extensible query language and operator model. Workshop on End-to-end
Management of Big Data, Istanbul, Turkey, 2012.

[118] Joseph M. Hellerstein. Optimization techniques for queries with expensive methods. ACM
Trans. Database Syst., 23(2):113—-157, 1998.

[119] Joseph M. Hellerstein and Michael Stonebraker. Predicate migration: Optimizing queries
with expensive predicates. In Proceedings of the 1993 ACM SIGMOD International Con-
ference on Management of Data, Washington, D.C., May 26-28, 1993., pages 267-276,
1993.

[120] Herodotos Herodotou. Hadoop performance models. CoRR, abs/1106.0940, 2011.

[121] Herodotos Herodotou and Shivnath Babu. Profiling, what-if analysis, and cost-based
optimization of mapreduce programs. PVLDB, 4, 2011.

[122] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong,
Fatma Bilgen Cetin, and Shivnath Babu. Starfish: A self-tuning system for big data
analytics. In CIDR, pages 261-272, 2011.

[123] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D Joseph,
Randy H Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for fine-grained re-
source sharing in the data center. In NSDI, volume 11, pages 22-22, 2011.

[124] Apache Hive. URL: http://hive.apache.org.

[125] Wei Hong and Michael Stonebraker. Optimization of parallel query execution plans in
XPRS. Distributed and Parallel Databases, 1(1):9-32, 1993.

[126] Fabian Hueske, Aljoscha Krettek, and Kostas Tzoumas. Enabling operator reordering in
data flow programs through static code analysis. In XLDI Workshop, affiliated with ICFP,
2012.

[127] Fabian Hueske and Volker Markl. Optimization of massively parallel data flows. In
Large-Scale Data Analytics, pages 41-74. Springer New York, 2014.

[128] Fabian Hueske, Mathias Peters, Aljoscha Krettek, Matthias Ringwald, Kostas Tzoumas,
Volker Markl, and Johann-Christoph Freytag. Peeking into the optimization of data flow
programs with mapreduce-style udfs. In 29th IEEE International Conference on Data
Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages 1292-1295, 2013.

190

Bibliography

[129] Fabian Hueske, Mathias Peters, Matthias Sax, Astrid Rheinldnder, Rico Bergmann,

Aljoscha Krettek, and Kostas Tzoumas. Opening the black boxes in data flow optimiza-
tion. PVLDB, 5(11):1256-1267, 2012.

[130] Yannis Ioannidis. The history of histograms (abridged). In Proceedings of the 29th in-
ternational conference on Very large data bases-Volume 29, pages 19-30. VLDB Endow-
ment, 2003.

[131] Yannis E. Ioannidis and Stavros Christodoulakis. On the propagation of errors in the size
of join results. In SIGMOD Conference, pages 268277, 1991.

[132] Yannis E. Ioannidis, Raymond T. Ng, Kyuseok Shim, and Timos K. Sellis. Parametric
query optimization. VLDB J., 6(2):132-151, 1997.

[133] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: Dis-
tributed Data-Parallel Programs from Sequential Building Blocks. In EuroSys, pages
59-72, 2007.

[134] Michael Isard and Yuan Yu. Distributed data-parallel computing using a high-level pro-
gramming language. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July 2,
2009, pages 987-994, 20009.

[135] HV Jagadish, Nick Koudas, S Muthukrishnan, Viswanath Poosala, Kenneth C Sevcik, and
Torsten Suel. Optimal histograms with quality guarantees. In VLDB, volume 98, pages
275-286, 1998.

[136] Eaman Jahani, Michael J. Cafarella, and Christopher Ré. Automatic optimization for
mapreduce programs. PVLDB, 4(6):385-396, 2011.

[137] Anant Jhingran, Timothy Malkemus, and Sriram Padmanabhan. Query optimization in
DB2 parallel edition. IEEE Data Eng. Bull., 20(2):27-34, 1997.

[138] Navin Kabra and David J. DeWitt. Efficient mid-query re-optimization of sub-optimal
query execution plans. In SIGMOD Conference, pages 106—117, 1998.

[139] Vasiliki Kalavri, Stephan Ewen, Kostas Tzoumas, Vladimir Vlassov, Volker Markl, and
Seif Haridi. Asymmetry in large-scale graph analysis, explained. In Second International
Workshop on Graph Data Management Experiences and Systems, GRADES 2014, co-
loated with SIGMOD/PODS 2014, Snowbird, Utah, USA, June 22, 2014, pages 4:1-4:7,
2014.

[140] Vasiliki Kalavri, Vladimir Vlassov, and Per Brand. Ponic: Using stratosphere to speed
up pig analytics. In Euro-Par 2013 Parallel Processing - 19th International Conference,
Aachen, Germany, August 26-30, 2013. Proceedings, pages 279-290, 2013.

191

Bibliography

[141] Qifa Ke, Michael Isard, and Yuan Yu. Optimus: a dynamic rewriting framework for data-
parallel execution plans. In Eighth Eurosys Conference 2013, EuroSys ’13, Prague, Czech
Republic, April 14-17, 2013, pages 15-28, 2013.

[142] Arnd Christian Konig, Bolin Ding, Surajit Chaudhuri, and Vivek Narasayya. A statistical
approach towards robust progress estimation. Proceedings of the VLDB Endowment,
5(4):382-393, 2011.

[143] Donald Kossmann. The state of the art in distributed query processing. ACM Comput.
Surv., 32(4):422-469, 2000.

[144] H. T. Kung and John T. Robinson. On optimistic methods for concurrency control. ACM
Trans. Database Syst., 6(2):213-226, 1981.

[145] Alexandros Labrinidis and H. V. Jagadish. Challenges and opportunities with big data.
PVLDB, 5(12):2032-2033, 2012.

[146] Rosana S. G. Lanzelotte, Patrick Valduriez, Mohamed Zait, and Mikal Ziane. Invited
project review: Industrial-strength parallel query optimization: issues and lessons. Inf.
Syst., 19(4):311-330, 1994.

[147] Mong-Li Lee, Masaru Kitsuregawa, Beng Chin Ooi, Kian-Lee Tan, and Anirban Mon-
dal. Towards self-tuning data placement in parallel database systems. In Proceedings of
the 2000 ACM SIGMOD International Conference on Management of Data, May 16-18,
2000, Dallas, Texas, USA., pages 225-236, 2000.

[148] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N
Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Soren Auer, et al.
Dbpedia—a large-scale, multilingual knowledge base extracted from wikipedia. Semantic
Web, 6(2):167-195, 2015.

[149] Marcus Leich, Jochen Adamek, Moritz Schubotz, Arvid Heise, Astrid Rheinldnder, and
Volker Markl. Applying stratosphere for big data analytics. In Datenbanksysteme fiir
Business, Technologie und Web (BTW), 15. Fachtagung des GI-Fachbereichs "Daten-
banken und Informationssysteme" (DBIS), 11.-15.3.2013 in Magdeburg, Germany. Pro-
ceedings, pages 507-510, 2013.

[150] Jiexing Li, Arnd Christian K6nig, Vivek Narasayya, and Surajit Chaudhuri. Robust esti-
mation of resource consumption for sql queries using statistical techniques. Proceedings
of the VLDB Endowment, 5(11):1555-1566, 2012.

[151] Harold Lim, Herodotos Herodotou, and Shivnath Babu. Stubby: A transformation-based
optimizer for mapreduce workflows. PVLDB, 5(11):1196-1207, 2012.

192

Bibliography

[152] Jimmy Lin and Alek Kolcz. Large-scale machine learning at twitter. In Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data, pages 793-804.
ACM, 2012.

[153] Yuting Lin, Divyakant Agrawal, Chun Chen, Beng Chin Ooi, and Sai Wu. Llama: lever-
aging columnar storage for scalable join processing in the mapreduce framework. In
SIGMOD Conference, pages 961-972, 2011.

[154] Richard J. Lipton, Jeffrey F. Naughton, and Donovan A. Schneider. Practical selectivity
estimation through adaptive sampling. In Proceedings of the 1990 ACM SIGMOD inter-
national conference on Management of data, SIGMOD ’90, pages 1-11, New York, NY,
USA, 1990. ACM.

[155] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. Distributed graphlab: A framework for machine learning in the
cloud. PVLDB, 5(8):716-727, 2012.

[156] Apache Mahout. URL: http://mahout.apache.org.

[157] James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles
Roxburgh, and Angela H Byers. Big data: The next frontier for innovation, competition,
and productivity. 2011.

[158] Volker Markl, Nimrod Megiddo, Marcel Kutsch, Tam Minh Tran, Peter J. Haas, and
Utkarsh Srivastava. Consistently estimating the selectivity of conjuncts of predicates. In
VLDB, pages 373-384, 2005.

[159] Volker Markl, Vijayshankar Raman, David E. Simmen, Guy M. Lohman, and Hamid
Pirahesh. Robust query processing through progressive optimization. In SIGMOD Con-
ference, pages 659-670, 2004.

[160] Yossi Matias, Jeffrey Scott Vitter, and Min Wang. Wavelet-based histograms for selectiv-
ity estimation. SIGMOD Record, 27(2):448—459, 1998.

[161] Manish Mehta and David J. DeWitt. Data placement in shared-nothing parallel database
systems. VLDB J., 6(1):53-72, 1997.

[162] Apache Mesos. URL: http://mesos.apache.org.

[163] Guido Moerkotte and Thomas Neumann. Dynamic programming strikes back. In SIG-
MOD Conference, pages 539-552, 2008.

[164] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. Preventing bad plans by
bounding the impact of cardinality estimation errors. PVLDB, 2(1):982-993, 2009.

[165] Apache MRQL. URL.: http://mrql.incubator.apache.org.

193

Bibliography

[166] Clara Nippl and Bernhard Mitschang. Topaz: a cost-based, rule-driven, multi-phase par-
allelizer. In VLDB, pages 251-262, 1998.

[167] Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George Kollios, and Nick Koudas.
Mrshare: Sharing across multiple queries in mapreduce. PVLDB, 3(1):494-505, 2010.

[168] Christopher Olston, Benjamin Reed, Adam Silberstein, and Utkarsh Srivastava. Auto-
matic Optimization of Parallel Dataflow Programs. In USENIX Annual Technical Confer-
ence, pages 267-273, 2008.

[169] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew
Tomkins. Pig Latin: A Not-So-Foreign Language for Data Processing. In SIGMOD
Conference, pages 1099-1110, 2008.

[170] Apache Oozie. URL: http://oozie.apache.org.

[171] M. Tamer Ozsu and Patrick Valduriez. Distributed and parallel database systems. In
Computing Handbook, Third Edition: Information Systems and Information Technology,
pages 13: 1-24. 2014.

[172] Apache Parquet (incubating). URL: http://parquet.incubator.apache.org.

[173] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt, Samuel
Madden, and Michael Stonebraker. A Comparison of Approaches to Large-Scale Data
Analysis. In SIGMOD Conference, pages 165-178, 2009.

[174] Picasso website. URL: http://dsl.serc.iisc.ernet.in/projects/PICASSO/.
[175] Apache Pig. URL.: http://pig.apache.org.

[176] Viswanath Poosala, Peter J Haas, Yannis E loannidis, and Eugene J Shekita. Im-
proved histograms for selectivity estimation of range predicates. ACM SIGMOD Record,
25(2):294-305, 1996.

[177] Viswanath Poosala and Yannis E. Ioannidis. Selectivity estimation without the attribute
value independence assumption. In VLDB, pages 486—495, 1997.

[178] Erhard Rahm. Parallel query processing in shared disk database systems. SIGMOD
Record, 22(4):32-37, 1993.

[179] Naveen Reddy and Jayant R. Haritsa. Analyzing plan diagrams of database query opti-
mizers. In VLDB, pages 1228-1240, 2005.

[180] Astrid Rheinldnder, Arvid Heise, Fabian Hueske, Ulf Leser, and Felix Naumann. SOFA:
an extensible logical optimizer for udf-heavy dataflows. CoRR, abs/1311.6335, 2013.

[181] Stefan Richter, Jorge-Arnulfo Quiané-Ruiz, Stefan Schuh, and Jens Dittrich. Towards
zero-overhead static and adaptive indexing in hadoop. VLDB J., 23(3):469-494, 2014.

194

[182]

[183]

[184]
[185]
[186]

[187]

[188]
[189]
[190]
[191]

[192]

[193]

[194]

[195]
[196]

Bibliography

Sebastian Schelter, Stephan Ewen, Kostas Tzoumas, and Volker Markl. "all roads lead
to rome": optimistic recovery for distributed iterative data processing. In 22nd ACM
International Conference on Information and Knowledge Management, CIKM’13, San
Francisco, CA, USA, October 27 - November 1, 2013, pages 1919-1928, 2013.

Donovan A. Schneider and David J. DeWitt. A performance evaluation of four paral-
lel join algorithms in a shared-nothing multiprocessor environment. In Proceedings of
the 1989 ACM SIGMOD International Conference on Management of Data, Portland,
Oregon, May 31 - June 2, 1989., pages 110-121, 1989.

scikit-learn website. URL: http://scikit-learn.org.
SciPy website. URL: http://scipy.org.

Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie,
and Thomas G. Price. Access path selection in a relational database management system.
In SIGMOD Conference, pages 23-34, 1979.

Srinath Shankar, Rimma Nehme, Josep Aguilar-Saborit, Andrew Chung, Mostafa Elhe-
mali, Alan Halverson, Eric Robinson, Mahadevan Sankara Subramanian, David DeWitt,
and César Galindo-Legaria. Query optimization in microsoft sql server pdw. In Proceed-
ings of the 2012 ACM SIGMOD International Conference on Management of Data, pages
767-776. ACM, 2012.

SNAP website. URL: http://snap.stanford.edu/data/index.html.
Soot: a Java Optimization Framework. URL: http://www.sable.mcgill.ca/soot/.
Apache Spark. URL: http://spark.apache.org.

Jaideep Srivastava and Gary Elsesser. Optimizing multi-join queries in parallel rela-
tional databases. In Proceedings of the 2nd International Conference on Parallel and
Distributed Information Systems (PDIS 1993), Issues, Architectures, and Algorithms, San
Diego, CA, USA, January 20-23, 1993, pages 84-92, 1993.

Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. Leo - db2’s learn-
ing optimizer. In VLDB, pages 19-28, 2001.

Michael Stonebraker. The case for shared nothing. IEEE Database Eng. Bull., 9(1):4-9,
1986.

Michael Stonebraker, Daniel J. Abadi, David J. DeWitt, Samuel Madden, Erik Paulson,
Andrew Pavlo, and Alexander Rasin. Mapreduce and parallel dbmss: friends or foes?
Commun. ACM, 53(1):64-71, 2010.

Stratosphere. URL: http://stratosphere.eu.

Tachyon. URL: http://tachyon-project.org.

195

Bibliography

[197] Apache Tez. URL: http://tez.apache.org.

[198] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Ning Zhang 0002, Suresh Anthony, Hao Liu, and Raghotham Murthy. Hive - a petabyte
scale data warehouse using hadoop. In ICDE, pages 996-1005, 2010.

[199] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh An-
thony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive - A Warehousing Solution
Over a Map-Reduce Framework. PVLDB, 2(2):1626-1629, 20009.

[200] TPC-H website. URL: http://www.tpc.org/tpch/.

[201] Florian M. Waas. Beyond conventional data warehousing - massively parallel data pro-
cessing with greenplum database. In Informal Proceedings of the Second International
Workshop on Business Intelligence for the Real-Time Enterprise, BIRTE 2008, in con-
junction with VLDB’08, August 24, 2008, Auckland, New Zealand, 2008.

[202] Florian M. Waas, Leo Giakoumakis, and Shin Zhang. Plan space analysis: an early
warning system to detect plan regressions in cost-based optimizers. In DBTest, page 2,
2011.

[203] Daniel Warneke and Odej Kao. Nephele: Efficient Parallel Data Processing in the Cloud.
In SC-MTAGS, 20009.

[204] Janet L. Wiener, Harumi A. Kuno, and Goetz Graefe. Benchmarking query execution
robustness. In TPCTC, pages 153—-166, 2009.

[205] Apache Hadoop - YARN. URL: http://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/ YARN.html.

[206] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Ulfar Erlingsson, Pradeep Kumar
Gunda, and Jon Currey. DryadLINQ: A System for General-Purpose Distributed Data-
Parallel Computing Using a High-Level Language. In OSDI, pages 1-14, 2008.

[207] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings
of the 9th USENIX Symposium on Networked Systems Design and Implementation, NSDI
2012, San Jose, CA, USA, April 25-27, 2012, pages 15-28, 2012.

[208] Matei Zaharia, Mosharat Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In 2nd USENIX Workshop on Hot Topics in
Cloud Computing, HotCloud’ 10, Boston, MA, USA, June 22, 2010, 2010.

[209] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy H. Katz, and Ion Stoica.
Improving mapreduce performance in heterogeneous environments. In OSDI, pages 29—
42, 2008.

196

[210]

[211]

[212]

[213]

Bibliography

Hansjorg Zeller. Parallel query execution in nonstop sql. In Compcon Spring’90. In-
tellectual Leverage. Digest of Papers. Thirty-Fifth IEEE Computer Society International
Conference., pages 484-487. IEEE, 1990.

Jiaxing Zhang, Hucheng Zhou, Rishan Chen, Xuepeng Fan, Zhenyu Guo, Haoxiang Lin,
Jack Y. Li, Wei Lin, Jingren Zhou, and Lidong Zhou. Optimizing data shuffling in data-
parallel computation by understanding user-defined functions. In Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation, NSDI 2012, San
Jose, CA, USA, April 25-27, 2012, pages 295-308, 2012.

Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Ake Larson, Ronnie Chaiken, and
Darren Shakib. Scope: parallel databases meet mapreduce. VLDB J., 21(5):611-636,
2012.

Jingren Zhou, Per-Ake Larson, and Ronnie Chaiken. Incorporating partitioning and par-
allel plans into the scope optimizer. In /CDE, pages 1060-1071, 2010.

197

	Title page
	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Motivation
	Scope of Thesis
	Abstractions for Parallel Data Analysis Tasks
	Optimizing Data Flows with UDF Operators
	Assessing the Risk of Relational Data Flows

	Contributions of Thesis and Impact
	Outline of Thesis

	Background
	Parallel Data Flow Processors
	Principles of Parallel Data Processing
	Parallel Relational Database Systems
	MapReduce Systems
	General Parallel Data Flow Systems
	Comparing Parallel Data Processing Systems

	Optimization of Parallel Data Flows
	Optimization of Relational SQL Queries
	Optimization of Plain MapReduce Jobs
	Optimization of Higher-Level Programming Abstractions

	Summary

	Abstractions for Parallel Data Flows
	The PACT Programming Model
	Data Model
	Operators
	Data Sources and Sinks
	PACT Programs

	The Optimization of PACT Programs
	Execution Strategies
	Interesting Properties
	Cost Estimation
	Differences to Relational Optimization

	Evaluation
	Ease of Use
	Performance

	Related Work
	Summary

	Optimizing Data Flows with UDFs
	Solution Overview
	Reorder Conditions for MapReduce-style UDFs
	Definitions
	Reordering MapReduce Programs
	Reordering Binary Second-Order Functions
	Possible Optimizations

	Obtaining Reordering Information with Static Code Analysis
	Estimating Read Sets
	Estimating Write Sets
	Estimating Output Cardinality Bounds
	Guaranteeing Safety

	Plan Enumeration
	Evaluation
	Experimental Setup
	Evaluation Programs
	Experiments

	Related Work
	Summary

	Assessing the Risk of Relational Data Flows
	Analyzing the Performance of Query Plans for Changing Execution Conditions
	Performance of Operators
	Impact of Operator Order on Plan Performance
	Performance of Analytical Query Plans
	Identified Risky Plan Features

	Defining Plan Risk and Using it for Safe Plan Choices
	Defining a Risk Score for Execution Plans
	Using Plan Risk Scores to Compute Risk-weighted Plan Costs

	Predicting Risk Scores for Execution Plans
	A Machine Learning Approach for Plan Risk Prediction
	Evaluation of Prediction Performance
	Analysis of Feature Importance

	Related Work
	Summary

	Conclusion and Outlook

