
TECHNISCHE UNIVERSITÄT BERLIN

Unification of Monitoring Interfaces of

Federated Cloud and Future Internet Testbed

Infrastructures

- Engineering Doctorate Dissertation -

Yahya Al-Hazmi, M.Sc.

Berlin, 5. January 2016

Unification of Monitoring Interfaces of

Federated Cloud and Future Internet Testbed

Infrastructures

vorgelegt von

Yahya Al-Hazmi, M.Sc.

geb. in Ibb

von der Fakultät IV - Elektrotechnik und Informatik

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr.-Ing. Sebastian Möller

Gutachter: Prof. Dr.-Ing. Thomas Magedanz

Gutachterin: Prof. Dr.-Ing. Ina Schieferdecker

Gutachter: Prof. Dr. Serge Fdida

Tag der wissenschaftlichen Aussprache: 5. Januar 2016

Berlin, 2016

Abstract

The federation of information and communication technology infrastructures is gaining

signiőcant attention from academia and industry, in particular in the őelds of cloud

and Future Internet testbeds, where heterogeneous resources and services are shared

across multiple administrative domains. This is because of its multilateral beneőts for

users and infrastructure providers in terms of increasing the capacity of resources and

diversity of oferings, as well as eicient resource utilization and complementarity.

A major challenge in such federated environments is the exchange of monitoring data

across the federation due to the variety and heterogeneity of the tools and interfaces

used. Much efort has been made to unify interfaces by the use of common data models

and protocols that are task or domain speciőc, particularly in the network domain.

This hinders their application in other domains without signiőcant modiőcations,

becoming even more complex in federated, heterogeneous domains.

This thesis addresses this issue and provides an architecture for the uniőcation of

monitoring interfaces to enable a uniőed data representation across federated, hetero-

geneous infrastructures. This is achieved by three mechanisms: őrst, an adaptation

layer on top of the tools deployed at infrastructure level is responsible for providing

the data in a uniőed representation through a common interface; second, the use of a

ŕexible, extensible and schema-independent data transportation protocol; and third,

the use of a common information model that is based on Semantic Web technologies

and caters for the collection and representation of data in uniőed, meaningful manner,

as well as facilitating interoperability between tools and data consolidation.

This thesis delivers three major contributions as the main research results. These

are an extensible monitoring architecture for federated, heterogeneous infrastructures,

an ontology-based information model for describing monitoring related concepts and

relations in federated, heterogeneous infrastructures at the conceptual and semantic

levels, and a prototype implementation that has been validated through selected

use-case projects.

i

Zusammenfassung

Die Föderation von Informations- und Kommunikationstechnologie-Infrastrukturen erhält zur Zeit

große Aufmerksamkeit der Forschung und der Industrie. Insbesondere in den Bereichen Cloud

und Future Internet Testumgebungen, wo heterogene Ressourcen und Dienstleistungen über die

Grenzen administrativer Domänen hinweg bereitgestellt und gemeinsam genutzt sind, zeigen sich die

vielseitigen Vorteile für Nutzer und Infrastrukturanbieter im Hinblick auf die Erhöhung der Kapazität

der Ressourcen und Angebotsvielfalt sowie eiziente Ressourcennutzung und Komplementarität.

Aufgrund der Vielfalt und Heterogenität der verwendeten Werkzeugen und Schnittstellen jedoch,

ist der föderationsweite Austausch von Monitoringdaten eine große Herausforderung in solchen

föderierten Umgebungen. Viele Ansätze versuchen Schnittstellen durch die Verwendung gemeinsamer

Datenmodellen und Protokollen zu vereinheitlichen, doch sind diese aufgaben- oder domänenspeziősch,

insbesondere in der Netzwerkdomäne. Dies behindert ihre Anwendung in anderen Domännen ohne

nennenswerte Modiőkationen, besonders in den komplexen föderierten, heterogenen Domännen.

Die vorliegende Arbeit befasst sich mit diesem Thema und bietet eine Architektur für die Verein-

heitlichung der Monitoringschnittstellen, um eine einheitliche Darstellung von Daten innerhalb von

föderierten, heterogenen Infrastrukturen zu ermöglichen. Dies wird durch drei Mechanismen erreicht.

Zunächst ist eine Anpassungsschicht auf der eingesetzten Werkzeuge auf Infrastrukturebene für die

Bereitstellung der Daten in einer einheitlichen Vertretung über eine gemeinsame Schnittstelle zuständig.

Der zweite Mechanismus ist die Verwendung eines ŕexiblen, erweiterbaren und schemaunabhängigen

Datentransportprotokolls. Schließlich ist die Verwendung eines gemeinsamen Informationsmodells,

das auf Semantic Web Technologien basiert und für die Erfassung und Darstellung von Daten in einer

einheitlichen, sinnvollen Art und Weise, sowie die Erleichterung der Werkzeuginteroperabilität und

Datenkonsolidierung sorgt, der dritte Mechanismus.

Diese Arbeit liefert drei Hauptbeiträge als Forschungsergebnisse. Diese sind eine erweiterbare

Monitoringarchitektur für föderierte heterogene Infrastrukturen, ein Ontologie-basiertes Information-

smodell für die Beschreibung von Monitoring-bezogene Konzepten und Relationen in föderierten

heterogenen Infrastrukturen auf der konzeptionellen und semantischen Ebenen, und eine Prototyp-

Implementierung, die durch ausgewählte Use-Case-Projekte validiert wurde.

iii

Acknowledgments

For making this research and thesis possible, I owe a debt of gratitude to a number of

people and institutions. This work would not have been possible without their help

and support in diferent ways.

First, I would like to thank Prof. Dr.-Ing. Thomas Magedanz for his support and

guidance throughout my research work. I would also like to thank Prof. Dr.-Ing.

Ina Schieferdecker and Prof. Dr. Serge Fdida for their helpful support and valuable

suggestions.

Second, I would like to express my sincere thanks to everyone who assisted me

directly or indirectly, professionally or personally to complete this work. Special thanks

go to my colleagues at Technische Universität Berlin AV and Fraunhofer Institute

FOKUS NGNI. I’m very grateful to Andisa Dewi, Robyn Loughnane, Mingyuan Wu,

Abdulrahman Hamood, Alexander Willner, Adel Al-Hezmi and Daniel Nehls for their

support and help.

I deeply thank my wife Maha for her love, time and understanding. She was always

behind me and gave her unconditional support, even when that meant sacriőcing the

time we spent together.

I would like to thank my family for their wonderful support. I owe special thanks

to my mother Mohelah and my son Aiman.

Finally, I would like to thank the European Commission for funding the FIRE and

FI-PPP initiatives, and the teams I worked with within these initiatives for their

valuable discussions and feedback.

v

Contents

List of Figures xiv

List of Tables xv

List of Listings xviii

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Problem Statement and Formulation 4

1.3 Objectives and Research Questions 9

1.4 Scope of the Thesis and Major Contribution 9

1.5 Methodology . 13

1.6 Thesis Outline and Structure . 14

2 State of the Art 17

2.1 Service-Oriented Interaction . 18

2.2 Cloud Computing . 19

2.2.1 Cloud Characteristics . 20

2.2.2 Cloud Service Models . 21

2.2.3 Cloud Deployment Models . 22

2.2.4 Virtualization and Multi-Tenancy 23

2.2.5 Cloud Management Tools and Standards 26

2.3 Future Internet Experimentation . 28

2.3.1 Global Environment for Network Innovations (GENI) 29

2.3.2 Future Internet Research and Experimentation (FIRE) 30

2.3.3 Future Internet Public Private Partnership (FI-PPP) 32

2.3.4 German-Lab (G-Lab) . 34

2.4 Federation Models and Approaches 34

2.4.1 Federation Models . 35

2.4.1.1 Models for Federation Operation and Stakeholders’

Interaction . 36

2.4.1.2 Models for Federation Architecture and Management

Software . 37

vii

Contents

2.4.2 Federation Approaches . 39

2.4.2.1 Cloud Federation 40

2.4.2.2 Federation of Future Internet Testbeds 41

2.5 Monitoring Concepts and Solutions 43

2.5.1 Monitoring Concepts . 44

2.5.1.1 Monitoring Process Stages 44

2.5.1.2 Cross-Layer Monitoring 44

2.5.1.3 Cross-Domain Monitoring 45

2.5.2 State-of-the-Art Monitoring Solutions 46

2.5.2.1 Review of Monitoring Solutions in Cloud Computing 46

2.5.2.2 Review of Monitoring Solutions in Future Internet

Testbeds . 47

2.5.2.3 ORBIT Measurement Library Framework (OML) . 49

2.5.2.4 Zabbix Monitoring System 51

2.6 Data Modeling . 52

2.6.1 Integration of Heterogeneous Databases 52

2.6.2 Information and Data Models 53

2.6.3 Data Transport Protocols . 53

2.6.3.1 Simple Network Management Protocol (SNMP) . . 54

2.6.3.2 Internet Protocol Flow Information Export (IPFIX) 54

2.6.3.3 OML Measurement Stream Protocol (OMSP) . . . 55

2.6.3.4 Summary . 56

2.6.4 Ontology-Based Modeling . 56

2.6.5 Applied Ontologies . 59

2.7 Summary . 60

3 Requirements Analysis 61

3.1 Sources of Requirements . 62

3.1.1 Emerging ICT Technologies and Paradigms 62

3.1.2 Testbed Management and Operation 63

3.1.3 Federation Operation . 64

3.1.3.1 Monitoring Support for Federation Services 65

3.1.3.2 Monitoring Challenges Across the Federation 66

3.1.4 User Communities . 67

3.2 Requirements Analysis . 68

3.2.1 General Requirements . 68

3.2.2 Federation Requirements . 70

3.2.3 User Requirements . 71

3.3 Discussion and Gap Analysis . 72

3.4 Summary . 73

viii

Contents

4 Architecture Design and Specification 75

4.1 Conceptual Phase of Design . 77

4.1.1 Initial Phase of Design . 77

4.1.1.1 Architectural Design Principles 78

4.1.1.2 Cross-Layer Monitoring Services 80

4.1.1.3 Initial Architecture 81

4.1.1.4 Architectural Limitations Based on Experience . . . 82

4.1.2 Design Decisions and Goals for Final Design 83

4.2 Generic, Flexible and Extensible Architectural Design 84

4.2.1 Architectural Design Principles 85

4.2.2 Reference Federation Model 86

4.3 MAFIA: Monitoring Architecture for Federated Heterogeneous Infras-

tructures . 87

4.3.1 Types of Monitoring and Measurements Services 88

4.3.1.1 Infrastructure Health and Status Monitoring 88

4.3.1.2 Infrastructure Resources Monitoring 89

4.3.1.3 User Customized Resource Environment Monitoring 90

4.3.1.4 Services and Applications Monitoring 90

4.3.2 Architecture Components and Interactions 91

4.3.2.1 Monitoring Services for Users 92

4.3.2.2 Infrastructure Health and Status Monitoring for Fed-

eration Administrators and FLS Monitoring Dashboard 97

4.3.2.3 Infrastructure Resources Monitoring for Federation

Services . 97

4.4 Summary . 98

5 Ontology-Based Information Model 99

5.1 Main Concept of Ontology-Based Modeling 100

5.2 MOFI: Monitoring Ontology for Federated Infrastructures 101

5.2.1 Design Decisions . 101

5.2.2 MOFI Upper Ontology . 104

5.2.3 MOFI Metric Ontology . 105

5.2.4 MOFI Data Ontology . 106

5.2.5 MOFI Unit Ontology . 107

5.2.6 MOFI Tool Ontology . 107

5.2.7 MOFI Generic Concepts Ontology 108

5.2.8 Interaction with External Ontologies 109

5.2.9 Data Modeling and Serialization 110

5.3 Summary . 110

6 Implementation of the Architectural Functional Elements 111

ix

Contents

6.1 Overview of the Implementation of the Initial Architecture 112

6.1.1 Main Monitoring Components 114

6.1.1.1 Monitoring Collector Image 114

6.1.1.2 Compute Resource Image 115

6.1.1.3 Contextualization Service 117

6.1.2 Cross-Layer Monitoring Support 117

6.1.3 Solution Applicability . 119

6.2 Reference Implementation of the Final Architecture 119

6.2.1 Implementation of the Main Functional Elements 120

6.2.1.1 Local Monitoring Tools 120

6.2.1.2 Common Monitoring API 120

6.2.1.3 Monitoring Adapters 122

6.2.1.4 Semantic Data Collection and Representation 123

6.2.1.5 Data Access and Visualization 127

6.2.2 Implementation of Monitoring Services for Various Consumers 128

6.2.2.1 MAFIA Services for Users 128

6.2.2.2 MAFIA Services for Federation Administrators and

FLS Monitoring Dashboard 133

6.2.2.3 MAFIA Services for Federation Services 133

6.3 Summary . 134

7 Validation and Evaluation 135

7.1 Observational Evaluation . 136

7.1.1 The FP7 ICT BonFIRE Project 136

7.1.2 The FP7 ICT FI-STAR Project 140

7.1.3 The FP7 ICT OpenLab Project 141

7.1.4 The FP7 ICT XIFI Project 142

7.1.5 The FP7 ICT Fed4FIRE Project 144

7.1.6 The FP7 ICT Inőnity Project 146

7.1.7 Fraunhofer FUSECO Playground 146

7.2 Experimental Evaluation . 147

7.3 Analytical Evaluation . 150

7.3.1 Quality and Correctness Evaluation 150

7.3.2 Efectiveness Evaluation . 153

7.3.3 Performance Evaluation . 155

7.3.4 Impact Evaluation . 161

7.4 Requirements Validation . 163

7.5 Comparison with other Solutions . 165

7.6 Summary . 168

8 Conclusion 169

x

Contents

8.1 Summary . 170

8.2 Dissemination and Impact . 172

8.3 Outlook . 175

Acronyms 177

Bibliography 185

A Author’s Peer-Reviewed Publications I

B Monitoring Ontologies V

C Monitoring Resource Adapters XXI

D Evaluation Appendix XXXI

E Glossary XXXV

xi

List of Figures

1.1 Main motivations of the thesis . 4

1.2 Monitoring tool taxonomy . 6

1.3 The incentives of the research work 8

1.4 Major aspects of a federated infrastructure (based on [39]) 10

1.5 Scope overview of the thesis (in gray) in a reference architecture for a

possible federation . 11

1.6 Methodology of the thesis . 13

1.7 Thesis inŕuences . 14

2.1 Concept of service orientation . 18

2.2 Cloud software stack with cloud services models 22

2.3 Beneőts of virtualization technology 24

2.4 Types of server virtualization . 25

2.5 Federation models according to FedSM, based on [70], [73], [77], [78] 38

2.6 RDF graph . 58

2.7 Information represented in RDF graphical format 58

2.8 Relationship between information model, data model and syntax (based

on [129]) . 59

4.1 Design process . 76

4.2 Cross-layer monitoring services . 80

4.3 Initial design of the monitoring architecture (based on [64]) 82

4.4 High-level representation of the common monitoring API 85

4.5 High-level overview of the federation reference model followed in this

thesis . 87

4.6 MAFIA components and interactions (based on [143]) 91

4.7 Sequence diagram for the setup of monitoring services in the generic

approach . 93

4.8 Sequence diagram for the setup of monitoring services in the user-

friendly approach . 96

5.1 Concepts of interest for the target information model [109] 103

5.2 MOFI hierarchy . 103

xiii

List of Figures

5.3 MOFI Upper ontology (based on [159]) 104

5.4 MOFI Metric ontology (based on [159]) 105

5.5 MOFI Data ontology (based on [159]) 106

5.6 MOFI Unit ontology (based on [159]) 107

5.7 MOFI Tool ontology (based on [159]) 108

5.8 Example illustrating MOFI interactions with external ontologies (based

on [109]) . 109

6.1 Semantic OML implementation . 126

6.2 Implementation of MAFIA services 130

7.1 BonFIRE federation architecture [161] 137

7.2 CPU load within a physical machine (blue) and the average CPU load

within three virtual machines running on the physical machine (black)

[64] . 139

7.3 Workŕow of an experiment setup (using Teagle) and execution . . . 141

7.4 Resource allocation through Teagle’s VCT 142

7.5 Packet traic and delay visualization between two nodes through Netview 143

7.6 FIWARE Lab federation architecture [70] 145

7.7 XiPi health monitoring service implementation [170] 146

7.8 Used bandwidth of a VM and its hosting PM during performing a

controlled experiment to evaluate the efectiveness and reliability of

MAFIA . 149

7.9 Packet delay between two VMs visualized by MAFIA 150

7.10 An RDF graph representation in Lodlive 151

7.11 Performance evaluation results (statistical information (min, quartile 1,

median, quartile 3, max) relates to the mean values shown in Table 7.1;

times along the vertical axis are in base-10 logarithmic scale) 159

7.12 Performance evaluation results (statistical information (min, quartile 1,

median, quartile 3, max) relates to the mean values shown in Table 7.2;

times along the vertical axis are in base-10 logarithmic scale) 160

7.13 Impact of MAFIA wrapper in term of CPU usage and bandwidth

during 12 hours of pushing monitoring data for two VMs 162

D.1 A sequence diagram indicating processing at an OML server of a batch

of 5 successive OML streams .XXXII

D.2 RDF graph representation in LodliveXXXIII

xiv

List of Tables

7.1 Performance evaluation for semantic and classic use of MAFIA’s com-

mon API (OML/OMSP) ś Part 1 . 156

7.2 Performance evaluation for semantic and classic use of MAFIA’s com-

mon API (OML/OMSP) ś Part 2 . 160

7.3 Identiőed requirements and methods speciőed and developed by this

thesis . 163

7.4 Comparison of diferent monitoring solutions 166

xv

List of Listings

6.1 OCCI request to create a monitoring collector 115

6.2 Part of an OCCI request to create a monitoring collector 115

6.3 OCCI request to create a VM with monitoring service enabled . . . 116

6.4 Use of the usage element of the OCCI context tag to create a collector

VM . 117

6.5 An OMSP header and data streams 120

6.6 RDF-based OML streams . 125

6.7 OMN-based OML template . 125

6.8 RSpec advertisement of VM with monitoring capabilities 131

6.9 RSpec request to create a VM with monitoring services 131

B.1 Part of the MOFI Upper ontology V

B.2 Part of the MOFI Metric ontology IX

B.3 Part of the MOFI Data ontology . XI

B.4 Part of the MOFI Tool ontology . XIII

B.5 Part of the MOFI Generic Concepts ontology XVII

C.1 Example of an OML wrapper written in Python XXI

C.2 Conőguration information stored in SQLite database and required by

an OML wrapper for performing its tasks XXV

C.3 Conőguration information required by an OML wrapper for performing

its tasks . XXV

C.4 An example of OML wrapper written in Ruby XXVI

D.1 SPARQL query to get delay of a link XXXI

D.2 SPARQL query to get bandwidth of a particular PM resource XXXI

D.3 SPARQL query to get bandwidth of a particular VM resource XXXII

xvii

1
Introduction

1.1 Context and Motivation . 1

1.2 Problem Statement and Formulation 4

1.3 Objectives and Research Questions 9

1.4 Scope of the Thesis and Major Contribution 9

1.5 Methodology . 13

1.6 Thesis Outline and Structure . 14

1.1. Context and Motivation

T
HE Internet has transformed our lives in many domains ś social, economic,

educational, personal, etc. It has become therefore an integral part of our

daily lives. Over the past years, the Internet has evolved quickly and become

a major tool for many services in various őelds such as eHealth, public services, job

search, tourism, entertainment, and more. Thus, the number of users and devices

connected to the Internet is growing dramatically as well as the amount of Internet

data traic increases rapidly [1]ś[3]. This growth in both number of devices and the

amount of data will further increase through new technologies and communication

paradigms like Machine-To-Machine Communication (M2M) [2]. In parallel, a plethora

of applications and services are being introduced that require fast, reliable and secure

transmission of data, such as video, 3D content, online banking, etc.

Management of the continuously growing Internet and networks is becoming more

complex. Furthermore, the phenomenal success of the Internet is a catalyst for new

and innovative applications, products and ideas, creating expectations beyond its

current capability to support the demands of such applications and services to a

suicient level [4], [5]. This is because the Internet was not designed for the current

1

1. Introduction

level of usage. New technologies and future architectures [6] are being introduced

to cope with the limitation of the current Internet architecture and its management

complexity in terms of improving the scalability, Quality of Service (QoS), resource

utilization and eiciency, reliability, and security.

In addition, new communication and networking paradigms and technologies ś such

as Cloud Computing, Software Deőned Networking [215] (SDN), Network Function

Virtualization [193] (NFV), M2M and Internet of Things [189] (IoT) ś are emerging and

changing the current Information Technology (IT) and Telecommunication worlds. On

the one hand, they bring forth new business models and opportunities to build Smart

Cities, eHealth, eGovernments, eLiving, and other future services and applications.

However, on the other hand, they add more management complexity.

Important to the development of the Future Internet (FI) is how these new technolo-

gies, architectures and their associated applications are trialed and evaluated. There

are currently a large number of activities worldwide focusing on building testbeds

for experimenting and prototyping Smart Cities and FI architectures, services and

applications [6]. A testbed as deőned in [7] is as follows.

Definition of Testbed: "An environment containing the hardware, instrumentation,

simulators, software tools, and other support elements needed to conduct a

test".

However, for the scope of this thesis the deőnition will be limited to Informa-

tion and Communication Technology (ICT) environments. In this thesis, the term

’experimentation facility’ is also used as a synonym for ’testbed’. Major examples

of relevant testbeds include the Global Environment for Network Innovations1 [13],

[188] (GENI) and PlanetLab [208], [209]2 (PlanetLab) in the United States (US);

the Future Internet Research and Experimentation3 [65] (FIRE) and Future Internet

Public Private Partnership4 [181] (FI-PPP) testbeds in Europe; and the German Lab5

[187] (G-Lab) in Germany. They each have diferent infrastructures based on various

technologies and ofer services for diverse experimentation communities.

Collaboration among multiple distributed testbeds to provide a larger pool of

shared heterogeneous resources is recognized to signiőcantly enrich and accelerate FI

research and development. Indeed, sharing and granting access to resources beyond

the boundaries of independent administrative domains has multifold beneőts: i)

complementarity of resources in the őeld of service-composition (e.g. Internet and

Telecom), ii) increased resource utilization, and iii) increased return on infrastructure

investments. This is referred to as resource federation in the literature [8]. This

1http://geni.net
2http://planet-lab.org
3http://ict-fire.eu
4http://fi-ppp.eu
5http://german-lab.de

2

http://geni.net
http://planet-lab.org
http://ict-fire.eu
http://fi-ppp.eu
http://german-lab.de

1.1. Context and Motivation

concept is applied in the area of distributed and grid computing, and is becoming a

hot topic in Cloud Computing and FI testbed federation. The most proper deőnition

of a federation in the context of this thesis is given in [9] as follows.

Definition of Federation: "A model for the establishment of a large scale and

diverse infrastructure for the communication technologies, services, and applica-

tions and can generally be seen as an interconnection of two or more independent

administrative domains for the creation of a richer environment and for the

increased multilateral beneőts of the users of the individual domains".

There is ongoing work on FI testbed federation to deliver large-scale and higher

performance experimentation facilities, e.g. the eforts within the context of FIRE

[10]ś[12] and GENI [13], [14] initiatives. In the őeld of Cloud Computing, federation

is recognized as being of tremendous value to the cloud industry, with the increas-

ing number of commercial cloud providers (in particular the Small and Medium

Enterprises (SMEs)) and their broad diversity of oferings, as well as the numer-

ous end consumers [15]. Many research activities focus on cloud federation and

interoperability, with examples including the Cross-Cloud Federation Manager [16],

BonFIRE Multi-Cloud Test Facility [17], IEEE Intercloud [18], Future Internet Core

Platform6 [184] (FIWARE) Lab Cloud Federation [19], and the European Grid In-

frastructure (EGI) Federated Cloud Task Force.7

Nevertheless, federation is still evolving and is recognized as a potential őeld of

research associated with several challenges [20]. Two of the most critical challenges

in realizing a federation on much larger scales are the monitoring and control of

heterogeneous resources across multiple administrative domains [21], [22]. Powerful

and convenient tools ofered through common Application Programming Interfaces

(APIs) are required to support monitoring and controlling the involved infrastructures’

resources and services. These APIs enable their interoperability, and provide oferings

to the diferent user communities involved in a common and standardized manner.

Generally, monitoring is essential in a number of areas and plays a signiőcant

role in the management and control of such complex, evolving ecosystems. Besides

what Tom DeMarco said namely "you cannot control what you cannot measure" [23],

measurement and monitoring are fundamental pillars of experimental-based scientiőc

research, where emerging, advanced computing and networking technologies are tested

and evaluated. To this end, this thesis focuses on monitoring services (including

measurement) in federated infrastructures, taking Cloud Computing and FI testbeds

as two practical use cases.

Advanced monitoring services are required to fulőll the demands of i) the emerging

technologies and communication paradigms (e.g. monitoring capabilities to support

6http://fi-ware.org
7https://www.egi.eu/infrastructure/cloud/

3

http://fi-ware.org
https://www.egi.eu/infrastructure/cloud/

1. Introduction

the key characteristics of Cloud Computing, like multi-tenancy and high availability

[24]), and ii) the federation of independently administered infrastructures (e.g. moni-

toring capabilities to support key features and aspects of the federation, such as the

scalability, extensibility, user-centricity "decoupling services from infrastructures",

interoperability, trustworthiness and Service Level Agreement (SLA) management).

There are many deőnitions for monitoring. However, the most appropriate deőni-

tion is the one deőned by the ITIL Service Management [25] as follows: "repeated

observation of a conőguration item, IT service or process to detect events and to

ensure that the current status is known". In line with this, the monitoring deőnition

within the context of this thesis is as follows:

Definition of Monitoring: The process of constantly observing and recording in-

formation about resources (virtual and physical devices, systems, processes,

applications, networks, traic ŕow, etc.) to determine their state, usage, perfor-

mance, and behavior. This information is used by various users and systems

that are responsible for controlling and managing these resources, as well as

further services such as capacity planning, SLA management, trustworthiness,

security and privacy assurance, data analytics, etc.

Figure 1.1 summarizes the main motivations for the current research work.

Build a technically-sound, powerful
environment for experimentally driven
research within the context of Cloud

Computing and Future Internet

Investigate the characteristics of the
emerging technologies (e.g. Cloud
Computing) and the added value of

resource and infrastructure federation

Obtain significant, meaningful
information about the performance and

behavior of ideas or solutions being
researched in a unified manner

Contribute to the improvement of
interoperability across domains despite
heterogeneity of the management and

monitoring tools used

Motivation of

the research

Fig. 1.1.: Main motivations of the thesis

1.2. Problem Statement and Formulation

There are a large and diverse number of measurement and monitoring tools and

frameworks addressed in the literature in diferent contexts. They difer from each

other in their architectures, functionalities, usage, and where measurements take

4

1.2. Problem Statement and Formulation

place. Some tools are used for system monitoring (e.g. Central Processing Unit (CPU)

usage, memory consumption), while others used for monitoring network performance

(e.g. packet loss, delay and throughput) or applications. Tools might be, on the one

hand, limited to execute only particular measurements (active or passive), status

information, notiőcations and logs. On the other hand, some tools could partially

support cross-layer monitoring, expanding from infrastructure resources through the

network up to services and applications.

For clariőcation and to deőne the scope of this thesis, Figure 1.2 illustrates a

taxonomy of monitoring tools. The taxonomy has been built inspired by the one

provided in [26] that is extended to cover more aspects, which will be discussed

throughout this thesis.

The taxonomy is built according to the fact that the majority of the tools have

features in common. They are organized into seven categories: architecture, com-

munication paradigm, core functionalities, data collection and transportation, data

representation, data access, and primary use cases. Each of these categories includes

various sub-classiőcations. To be noticed that only some sub-classiőcations are rep-

resented as examples besides those considered in this thesis that are shaded in gray.

Indeed, some tools fall under numerous classiőcations, whereas others are restricted

to a single category. An example of the former is the Zabbix8 monitoring tool that

has a distributed architecture, client-server communication paradigm, includes data

producers, collectors and viewers. Zabbix provides the data in push and pull modes

in structured representation that can be then access either through a Graphical User

Interface (GUI) or JavaScript Object Notation - Remote Procedure Call (JSON-RPC)

API. Zabbix can be applied in multiple areas such as health and status, infrastructure

resources, and network monitoring. The Ping program (Internet Control Message

Protocol (ICMP) echo) is an example of the latter case, where it can only be classiőed

under the type "producer" as a probe for network measurements (i.e. its application

area) and the data is represented in a structured manner.

Moreover, in federated environments where infrastructures are administered sepa-

rately, from diferent domains (cloud-based, OpenFlow-enabled, WiFi, sensor networks,

mobile networks, etc.) providing heterogeneous resources, the heterogeneity and va-

riety of the monitoring solutions increase. Furthermore, an infrastructure might

even use several tools in order to monitor the entire facility or to provide cross-layer

monitoring. To give an example from one domain, namely Cloud Computing, two

individual surveys [26], [27] on cloud monitoring tools (considering their capabilities

and limitations) have shown how the state-of-the-art tools are not capable of fulőlling

all monitoring requirements. In their surveys, the authors did not consider aspects

relevant to federation that would have raised additional requirements, and thus, limit

the capabilities of these tools even more.

8http://www.zabbix.com

5

http://www.zabbix.com

1. Introduction

Monitoring Tools

Data Representation

Type / Core Functionality

Use Cases

Data Access

Architecture
Centralized

Distributed

Peer-to-peer (P2P)

Unidirectional

Bidirectional

Adapter (converter)

Filter

Unstructured (e.g. free-text file)

Structured (with data model)

Health & Status

Network & Connectivity

Infrastructure resources

Flow, Path characterization

Data Collection &

Transportation

Push

Pull

Producer (clients, probes, ..)

Collector

Viewer (visualize, ..)

Analyzer

API

GUI / Dashboard

SLA, trustworthiness, ..

Services / Applications

Communication Paradigm

 Single-domain

Client-server

Cross-domain

Fig. 1.2.: Monitoring tool taxonomy

State-of-the-art monitoring solutions mainly target homogeneous, single-entity-

administered infrastructures. There is no existing solution that is capable of monitor-

ing complex, large-scale federated environments, as well as supporting the various

monitoring services and capabilities required by diverse users. Users can be adminis-

trators and operators, end-users (experimenters), as well as a couple of management

systems responsible for ensuring availability and performance of the ofered resources

and services, interoperability, SLA conformance, trustworthiness, privacy, etc.

There is therefore a need for a monitoring solution that operates across a federation,

aggregating a multitude of measurements from various sources of diferent infrastruc-

tures, and provides various sets of data for many consumers (in both central and

6

1.2. Problem Statement and Formulation

distributed modes) in a uniőed and standardized manner. The signiőcant need for

such a monitoring solution has been identiőed in a couple of research projects that

focus on the federation of heterogeneous FI testbeds [11] and on cloud federation [17],

[28], as well as in research calls [29], [30], and in a survey on cloud monitoring [31].

The proposed solution should accommodate a wide range of measurement and

monitoring services at diferent levels of granularity. This covers providing cross-layer

monitoring information from low-level infrastructure resources up to services and

applications speciőc measurements for various groups of users who have diferent

needs and interests. Usually, to provide cross-layer monitoring information in a single

infrastructure, various tools are used depending on where the measurements take

place, as traditional tools focus on monitoring homogeneous resources (i.e. a single

layer) [32]. They are used to monitor infrastructure resources (physical and virtual),

network connectivity and performance, and running services and applications. The

heterogeneity of the tools used increases even more in a federated environment. From

this perspective, independently administered infrastructures might use heterogeneous

tools that use diferent data formats, data models and schemas, APIs, and databases.

This results in providing the collected monitoring and measurement data across the

federated infrastructures in diferent formats and structures, and leads to disparate

interpretation and semantic interoperability problems.

This problem is well known in the őeld of heterogeneous database systems, and

there are methods for their integration and interoperability in the literature [33].

Although this is out of the scope of this thesis and its requirements, some knowledge

from this domain can be applied to this work. As long as there is disagreement on

meanings, interpretations or intended use of information, semantic ambiguity can

arise [33]. Examples of possible heterogeneities include the following:

• Naming conflicts: Tools could use diferent names to represent the same concept.

For example, the number of CPUs can be named by tool A as num_cpus, while

in tool B cpu_count.

• Unit conflicts: Tools could use diferent values to represent the same concept.

For example, tool A provides the amount of the free memory in kilobytes while

tool B in bytes.

• Different data structures or schemas: Tool A provides only the name of the

measured metric with its measured values, while tool B provides the name,

measures, units, and further information.

• Different programmatic access: Tool A provides the data through a JSON-RPC

API while tool B via a direct access to its database (e.g. MySQL) or through a

GUI frontend.

7

1. Introduction

• Different implementations: Even if tools expose the same type of APIs, they

might have diferent implementations and thus diferent names. Similarly, tools

that use the same databases might use various schemas.

At the beginning of the research work for this thesis there were already some eforts

[34]ś[36] focused on developing information models to enable data to be collected

from diferent tools in a uniőed format, but these were limited to the needs of the

problems in question (domain and task speciőc). The heterogeneity problem still

remains in the case of federated infrastructures comprising heterogeneous domains, as

well as diverse tasks within each domain.

To overcome this problem that was addressed by several major federation projects

[11], [19], [28], [34], the target monitoring solution must allow monitoring data to be

aggregated from diferent sources across the federated infrastructures (that maintain

the use of tools already in place) and provide the data in a uniform format. This will

eliminate misinterpretation of data by its users, as well as facilitate the interoperability

of infrastructures in terms of monitoring data exchange.

Research aimed at achieving such a monitoring solution has become even more

prevalent and critical due to the demand of emerging technologies (Clouds, IoT, Big

Data, etc.) and cooperation strategies (e.g. infrastructure federation). With this in

mind, the research literature still lacks a valid, generic solution. However, there are

some eforts in the literature to partially solve the problem, by proposing solutions for

individual sub-problems: i) cross-layer monitoring [32], ii) inter-domain connectivity

monitoring [37], [38], and iii) uniőcation of data but limited to speciőc domains

[34]ś[36]. These are discussed in detail in Chapter 2 on the state-of-the-art.

Figure 1.3 summerizes the main incentives for the research work conducted in this

thesis.

MAFIA

Absence of
monitoring

solutions for
federated

infrastructures

Demand for
unification of
monitoring
interfaces

Monitoring
requirements

from emerging
technologies

Demand for
interoperability

support in
terms of data

exchange

Heterogeneity
of monitoring

tools

Monitoring
Architecture for
Federated
heterogeneous
InfrAstructures

Fig. 1.3.: The incentives of the research work

8

1.3. Objectives and Research Questions

1.3. Objectives and Research Questions

The objective of this thesis is to design and develop a monitoring solution operating

across federated infrastructures. It has to be capable of uniőcation of monitoring

interfaces, which already takes place at the individual infrastructures exposing data

in diferent formats. Uniőcation is achieved through a common interface that allows

exposing the data in a uniform format for multiple stakeholders who have various

needs.

The major contribution of this thesis is to answer the following research questions

derived from the problem stated in Section 1.2 within the context of federated clouds

and FI testbeds.

Q1: How to design an architecture that i) allows the integration and management

of heterogeneous monitoring solutions distributed in a federated environment in

order to provide a set of monitoring services in a common manner, and ii) is

extensible to allow monitoring of other similar fields of application?

A number of considerations are to be taken into account when designing such an

architecture, e.g. infrastructures of diferent natures, monitoring systems with limited

access possibilities, etc.

Q2: How to model heterogeneous monitoring and measurement related concepts and

relationships allowing the target solution to provide the data in a common and

meaningful way?

While working on the design of the target model, standardization should be kept in

consideration throughout the whole design process.

1.4. Scope of the Thesis and Major Contribution

This section positions the scope of the thesis within the context of Cloud Computing

and FI research and experimentation.

The thesis is built on current research in infrastructure federation that is recognized

to be at the core of cloud platforms, future Internet and networks. Although the work

has a strong focus on these domains, the concepts are general enough to be applicable

to other similar domains as well.

Federation of ICT infrastructures is a non-trivial task and gives arise to several

technical and research challenges [10], [14]. Figure 1.4 presents the major aspects

or challenges of a federation. It is an extended version of the one introduced in [39].

Amongst these aspects, the focus of this thesis lies on the monitoring, as shaded in

gray in Figure 1.4.

9

1. Introduction

Infrastructure Federation

Control

Networking

Economy

Service Level Agreement

Resource Provisioning

Resource Discovery

Resource Selection

Resource Reservation

Resource Allocation

Identity Management

Authorization

Addressing

Naming

Federation Aspects

Resources

Business Models

Pricing

Resource Orchestration

Resource Release

Monitoring Infrastructure Resources

Service/Application/Experiment

Connectivity

Federated SLA Management

Federation Level Agreement

SLA Monitoring

Charging and Accounting

Security

Health & Status

Others
Transparency

Brokerage & Recommendation

Trustworthiness

Fig. 1.4.: Major aspects of a federated infrastructure (based on [39])

Figure 1.5 represents a high-level overview of a reference architecture taken as

an example for a possible infrastructure federation, where some main components,

stakeholders and APIs are illustrated. Using a suitable tool, that in return uses

common federation APIs, users can discover and request resources including moni-

toring services they are interested in. They get monitoring data through a common

monitoring API to be used for various purposes, e.g. performance analysis of services

and applications being used or tested, tracking the behavior and utilization of the

deployed resources, and accordingly controlling them. For simplifying the őgure, four

10

1.4. Scope of the Thesis and Major Contribution

Infrastructure

Manager

Common Monitoring

API

Federation Services (e.g.

SLA and Trustworthiness)

User Tools

(e.g. Portal, Command Line Interface)

Service(s)/Application(s)

Infrastructure

Manager

First Level Support

Monitoring Dashboard

5
)

M
o
n
it

o
ri

n
g
 d

at
a

User Environment Resources

Infrastructure Resources

Federated Infrastructure

Federation APIs

Common Resource

Control API
Common Resource

Provisioning API

Extensible

WLAN

2) Discover resources

3) Request resources

7) Release resources

1) Describe

offered resources

with monitoring

capabilities

4) Allocate resources

with monitoring services

6) Control resources

User Environ.
Resources

Monitoring

Services /
Applications

Monitoring

Infrastructure
Resources

Monitoring

Infrastructure
Health & Status

Monitoring

A
d
ap

ta
ti

o
n
 L

ay
er

Fig. 1.5.: Scope overview of the thesis (in gray) in a reference architecture for a

possible federation

main monitoring areas of applications (infrastructure health and status, infrastructure

resources, resources provisioned by users to build their own environments, and users’

applications and services) and their stakeholders (e.g. users, federation services, First

Level Support (FLS) monitoring dashboard) are represented. The dotted boxes stand

for the capability of accommodating further tools or even monitoring new areas of

applications besides those already represented.

However, the scope of the thesis is depicted in Figure 1.5 in dark gray. The

monitoring solutions used at the infrastructure level are out of scope. This thesis

will not focus on a speciőc type of measurements or monitoring, or even develop new

solution speciőc to a particular application area. Infrastructure administrators can

choose the monitoring solutions that best őt their needs.

Furthermore, the focus of this thesis according to the taxonomy illustrated in

Figure 1.2 comprises the classiőcations highlighted in gray. The solution presented in

this thesis will operate across federated, distributed infrastructures (multi-domain) to

provide a set of monitoring services (e.g. health and status information, infrastructure

resources monitoring, SLA and trustworthiness related metrics). The data is pro-

duced and collected at the infrastructure level, converted by suitable adapters at the

11

1. Introduction

adaptation layer, to be then provided in a unified data representation via a common

API to its consumers such as federation services (deployed in either distributed or

centralized modes), a central health monitoring dashboard and distributed users.

The main aims of this thesis are as follows:

• Classiőcation and discussion of several measurement and monitoring tools

and frameworks for monitoring federated infrastructures, in particular cloud

platforms and test environments for FI research.

• Analysis of existing approaches for monitoring federated domains in terms of

functionality.

• Design and speciőcation of basic core functionalities for provisioning various

types of monitoring information, expanding from low-level infrastructure re-

sources up to application and services that are deployed across federated infras-

tructures. Such information is provided for diferent types of users in a uniőed

manner through a common and standardized interface.

• Providing reference implementation of the core functionalities.

According to the problem stated and the objectives addressed in this thesis, its

major contributions include the following:

• Design and develop a generic, adaptable, ŕexible and extensible Monitoring

Architecture for Federated heterogeneous Infrastructures (MAFIA). It includes a

method for uniőcation of monitoring interfaces through a monitoring adaptation

layer on top of monitoring systems deployed at the infrastructure level. This

layer is responsible for providing the data in a uniőed representation to its users

through a common monitoring API.

• Develop an ontology-based information model for measurement and monitoring

in federated infrastructures. It will be generic enough to be used for the

common, relevant monitoring concepts and relationships within the context of the

application areas of this thesis, in particular cloud and virtualized infrastructures

as well as infrastructures for FI experimentation.

• Provide a prototype implementation and disseminate the results through sci-

entiőc publications, workshops and contribution to related standardization

bodies.

• Prototype validation through selected use-case projects.

• Integration of theoretical concepts and practical implementations into the Future

Seamless Communication Playground9 (FUSECO PG).
9http://www.fuseco-playground.org

12

http://www.fuseco-playground.org

1.5. Methodology

1.5. Methodology

This section outlines the methodology followed to achieve the objectives of this thesis.

Design and
Specification

•  Monitoring architecture for
federated infrastructures

•  Common information and
data models

Dissemination

•  Contribution to the research
community, industry impact
and standardization

State-of-the-Art
Analysis
•  Monitoring systems, tools,

architectures and standards
•  Information and data models
•  Research projects’ outcomes
•  Gap analysis

Requirements
Analysis
•  Emerging technologies
•  Federation of cloud and

Future Internet testbeds
•  Infrastructure and user

communities

Validation Areas

•  Federation of heterogeneous
infrastructures for Future
Internet experimentation

•  Federation of cloud

infrastructures

Implementation

•  Monitoring solution for
federated infrastructures

•  Develop common information
and data models

Fig. 1.6.: Methodology of the thesis

Figure 1.6 illustrates the main methodology of the work, starting with requirements

analysis from main stakeholders, emerging relevant technologies (e.g. virtualization

and Cloud Computing) and management systems in the őelds of Cloud and FI

testbeds, and accordingly performing a thorough analysis on state-of-the-art research

and practice on the topics addressed throughout this thesis. The topics that inŕuence

this thesis are depicted in Figure 1.7. Then, design and implement action of the core

functional elements of the targeted architecture for monitoring federated environments

is presented. The major emphasis is on uniőcation of heterogeneous interfaces of

monitoring systems through developing adaptation and conversion mechanisms, as

well as common information and data models. The implemented solution is validated

and evaluated in two main application areas: Cloud Computing and FI testbeds. Of

course, the requirements are validated. Finally, the research results are disseminated.

The methodology used in this work follows an agile model, in which the work is

performed in iterations depending on multiple development cycles planned within

each application area.

13

1. Introduction

Thesis

Influences

Federation

Semantics &

Ontologies

Future Internet

Testbeds

Cloud Computing

Infrastructure

Provider

Users

Quality of

Service (QoS)

Performance

Privacy

Quota & usage

Logging

Instrumentation

& Evaluation

 Environmental

conditions

Emerging

Technologies

Availability &

reliability

Performance

Availability

Capacity

Performance

Efficiency

Security

Maintenance

Multi-tenancy

Multi-layer

Scalability

Resource Sharing

& Interoperability

Cross-domain

Deployment

Heterogeneity

Transparency

Trustworthiness

Service Level

Agreement (SLA)

Interoperability

Unified data

representation

Information and

data modeling

RDF/OWL/Triplestore

….

Privacy

Customizability

& Extensibility….

….

….

….

….

Fig. 1.7.: Thesis inŕuences

1.6. Thesis Outline and Structure

The rest of the thesis is outlined and structured in a further seven chapters as follows.

Chapter 2 – State of the Art discusses and analyzes the state-of-the-art in moni-

toring methods, tools, frameworks, and information and data models used in

the relevant domains, like distributed computing systems, High Performance

Computing (HPC), Grid and Cloud Computing, and FI testbeds. Furthermore,

outcomes of relevant research projects are considered.

Chapter 3 – Requirements Analysis includes general and speciőc requirements

from diferent actors concerned in the research areas covered by this thesis. This

includes high-level technical, functional and non-functional requirements from

diferent stakeholders and users in the Cloud and FI testbeds and a federation

thereof. A discussion is included of the speciőc requirements of a federation,

namely those supporting key control and management functionalities. A gap

analysis between the requirements and the state-of-the-art discussed in Chapter

2 is covered, as well as a summary of the common requirements.

Chapter 4 – Architecture Design and Specification describes in detail the de-

sign and speciőcation of the core functionalities of the monitoring architecture

14

1.6. Thesis Outline and Structure

MAFIA in order to fulőll the requirements outlined in Chapter 3. The design

and speciőcation includes supporting diferent kinds of monitoring services, tak-

ing into account several considerations, e.g. compatibility and interoperability,

standardization eforts, and minimizing the integration eforts.

Chapter 5 – Information Model describes the design and speciőcation of the

ontology-based information model, its main concepts, the individual monitoring

models and the data model that are utilized by MAFIA allowing exchange of

data in a uniőed data representation.

Chapter 6 – Implementation presents the implementation of the individual func-

tional elements of the designed and speciőed architecture. This chapter discusses

in detail the technologies, protocols and software used in the prototype im-

plementation. The adoption and implementation of the developed monitoring

ontology is also discussed.

Chapter 7 – Validation and Evaluation discusses the validation and evaluation

of the architecture designed in Chapter 4, with the associated ontology in Chapter

5, and implementation in Chapter 6. The discussion includes a comparison

between the implementations and the requirements discussed in Chapter 3. The

validation of the implementations carried out at several testbeds and projects is

presented.

Chapter 8 Conclusion and Outlook concludes the work through a summary, im-

pact and outlook.

15

2
State of the Art

2.1 Service-Oriented Interaction . 18

2.2 Cloud Computing . 19

2.2.1 Cloud Characteristics . 20

2.2.2 Cloud Service Models . 21

2.2.3 Cloud Deployment Models 22

2.2.4 Virtualization and Multi-Tenancy 23

2.2.5 Cloud Management Tools and Standards 26

2.3 Future Internet Experimentation 28

2.3.1 Global Environment for Network Innovations (GENI) . . 29

2.3.2 Future Internet Research and Experimentation (FIRE) . . 30

2.3.3 Future Internet Public Private Partnership (FI-PPP) . . . 32

2.3.4 German-Lab (G-Lab) . 34

2.4 Federation Models and Approaches 34

2.4.1 Federation Models . 35

2.4.2 Federation Approaches . 39

2.5 Monitoring Concepts and Solutions 43

2.5.1 Monitoring Concepts . 44

2.5.2 State-of-the-Art Monitoring Solutions 46

2.6 Data Modeling . 52

2.6.1 Integration of Heterogeneous Databases 52

2.6.2 Information and Data Models 53

2.6.3 Data Transport Protocols 53

2.6.4 Ontology-Based Modeling 56

2.6.5 Applied Ontologies . 59

2.7 Summary . 60

17

2. State of the Art

T
HIS chapter presents the state-of-the-art concepts, technologies and solutions

in the őelds related to this thesis. It őrst discusses the Cloud Computing

model and FI research and experimentation initiatives. It then explains the

federation concept and its models within these domains. Finally, monitoring solutions

along with their associated data modeling and limitations are reviewed.

2.1. Service-Oriented Interaction

Service orientation is a design pattern that allows the utilization of the oferings of

distributed enterprise systems in a service oriented form. It is more a concept than

a technology. It is based on the provider-consumer model as depicted in Figure 2.1,

which shows a simple interaction model, where a service is being ofered by a provider

and utilized by a consumer.

Service Service Provider Service Consumer

Publish Use

Fig. 2.1.: Concept of service orientation

Service Oriented Architectures (SOA) is an architectural style that supports the

service orientation concept. In SOA, computing, network and software resources are

made available for consumers as individual services or capabilities. SOA is a design

paradigm for linking computational resources on demand to achieve the desired results

for service consumers [40]. SOA as deőned by the Organization for the Advancement

of Structured Information Standards (OASIS) is: "a paradigm for organizing and

utilizing distributed capabilities that may be under the control of diferent ownership

domains. It provides a uniform means to ofer, discover, interact with and use services

or capabilities to produce desired efects consistent with measurable preconditions

and expectations [41]". In this perspective, capabilities or services are őrst advertised

in a common way to be then discovered by consumers and őnally used.

Service orientation is a relevant concept in the use case domains addressed within

this thesis, namely Cloud and FI testbed infrastructures, where resources, capabilities

and services are described and advertised in a common way that can then be accessed

by users according to speciőc policies. More precisely, SOA shares concepts of

service orientation with the Cloud Computing model that ofers a diverse set of

services in a service-oriented manner [42]ś[44]. Cloud Computing is seen by [42] as a

ŕexible platform for service providers to build their SOA solutions, while according

to [43], [44], both models complement each other. Concerning the FI testbeds that

18

2.2. Cloud Computing

are discussed in detail in Sec. 2.3, many deal with abstraction and modularity of

current and future networks and IT infrastructures in order to ofer various services or

capabilities for users to develop and trial novel applications and services. Such services

or capabilities on top of converging networks are abstracted in a service-oriented

manner allowing for cross-layer service and network composition, even across federated

domains [45], [46]. In this perspective, service orientation concepts inŕuence the design

and implementation of the architecture delivered by this thesis.

2.2. Cloud Computing

Cloud Computing is seen as a new business computing model that has changed the way

computing resources are consumed. It changes the focus from investments on building

own infrastructures for ofering functionalities to the contracting of a third-party to

deliver these functionalities over the Internet on a pay-per-use basis. This model is

seen as a powerful shift for computing, towards a utility model like the telephone

system or even the Internet itself [47]. In this perspective, cloud computing shifts

the computing from local, own infrastructures to distributed, virtual ones. Thus,

computing, storage and network resources can be utilized on-demand by anybody, at

any time and from anywhere in a form of Anything-as-a-Service (XaaS) following the

pay-per-use utility model.

To achieve such a capability, Cloud Computing relies on dynamic resource sharing,

virtualization and on-demand service provisioning mechanisms. As a matter of fact,

such a paradigm enables eicient use of resources and ease of service delivery, as well

as reduction of capital expenditures and operating costs.

To further clarify the picture more, infrastructures (e.g. datacenters) are usually

underutilized most of the time. Thus, resources are over-provisioned, resulting in

wasted investments. Furthermore, the unused resources also consume energy. These

resources can be customized for peak loads (e.g. Christmas business) or planned

future events (e.g. deploying services for speciőc period of times). That means service

providers, who have small private infrastructures, can utilize/rent unused resources of

other infrastructures during peak load times.

Cloud Computing has been deőned diferently in accordance to the context it’s

applied in. However the widely adopted deőnition given by the US National Institute

of Standards and Technology [50] (NIST) is as follows:

Definition of Cloud Computing: "Cloud computing is a model for enabling ubiq-

uitous, convenient, on-demand network access to a shared pool of conőgurable

computing resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management efort

or service provider interaction. This cloud model is composed of őve essential

characteristics, three service models, and four deployment models."

19

2. State of the Art

The following sections describe the őve cloud characteristics, as well as its service

models and deployment models.

2.2.1. Cloud Characteristics

The features of Cloud Computing are diverse, including dynamic and elastic provision-

ing of resources and IT services in highly scalable and reliable infrastructures with QoS

guarantees to meet user requirements. However the őve main cloud characteristics

according to NIST deőnition are as follows:

• On-demand Self-service A cloud consumer can unilaterally provision com-

puting capabilities (resources) as needed automatically without requiring human

interaction with service providers.

• Broad Network Access Capabilities are accessible over the network through

standard mechanisms using any device (smart phones, laptops, tablets, etc.).

• Resource Pooling Resources ofered by cloud providers are pooled to serve

multiple consumers and with diferent physical and virtual resources dynamically

provisioned according to demand. Consumers have generally no control or

knowledge over the exact location of the provided resources, but might have the

possibility to specify location at a higher level of abstraction (e.g. country, city,

or datacenter).

• Rapid Elasticity The ability of the underlying infrastructure to adapt to

the dynamic changes, thus allowing resources to be elastically provisioned and

released. Such a capability can in some cases be supported automatically, i.e.

auto-scaling up or down of resources for a given application in accordance with

demand.

• Measured Service Automatically control and optimize resource usage, sup-

ported with suitable monitoring and reporting capabilities. Information on

resource usage is provided transparently to both the provider and consumer of

the utilized services.

Further economic aspects are considered. Cloud infrastructures are built, operated

and maintained in a cost-efective and energy-eicient manner, beneőting from tech-

nologies like virtualization and resource sharing mechanisms [48]. Scalability and

pay-as-you-go features play a role in cost reduction. Furthermore, cloud agility and

deployment models support turning Capital Expenditure (CAPEX) into Operational

Expenditure (OPEX), thus allowing entrepreneurs a low risk market entry. CAPEX

is required to establish own, local infrastructure, but with outsourcing computa-

tional resources on an on-demand basis to other cloud services providers, those other

20

2.2. Cloud Computing

providers will actually outlay OPEX for provisioning capabilities, as they acquire and

use resources according to operational demand [49].

2.2.2. Cloud Service Models

Cloud Computing as deőned by NIST covers three fundamental cloud service models

(also illustrated in Figure 2.2).

Software as a Service (SaaS) This model provides complete cloud-based, multi-

tenancy applications or services using a cloud infrastructure or platform, e.g. com-

munication services, business processes-oriented applications, games, collaboration

software and tools. SaaS is deőned by NIST as follows: "The capability provided to

the consumer is to use the provider’s applications running on a cloud infrastructure.

The applications are accessible from various client devices through either a thin client

interface, such as a Web browser (e.g., web-based email), or a program interface. The

consumer does not manage or control the underlying cloud infrastructure including

network, servers, operating systems, storage, or even individual application capabil-

ities, with the possible exception of limited user-speciőc application conőguration

settings."

Platform as a Service (PaaS) This model provides computational resources

through a platform (including software, middleware, databases and development tools)

to application and service developers (also referred to as cloud consumers), on which

applications and services can be developed and hosted. PaaS is deőned by NIST

as follows: "The capability provided to the consumer is to deploy onto the cloud

infrastructure consumer-created or acquired applications created using programming

languages, libraries, services, and tools supported by the provider. The consumer

does not manage or control the underlying cloud infrastructure including network,

servers, operating systems, or storage, but has control over the deployed applications

and possibly conőguration settings for the application-hosting environment."

Infrastructure as a Service (IaaS) This model provides managed and scalable

computing, storage and network resources as services on demand in an elastic manner

to the users (cloud consumers). IaaS is deőned by NIST as follows: "The capability

provided to the consumer is to provision processing, storage, networks, and other

fundamental computing resources where the consumer is able to deploy and run

arbitrary software, which can include operating systems and applications. The

consumer does not manage or control the underlying cloud infrastructure but has

control over operating systems, storage, and deployed applications; and possibly

limited control of select networking components (e.g., host őrewalls)."

21

2. State of the Art

Storage Network Compute

Virtual Machines

Interconntected (e.g. VPNs)

Virtualiza?on Techniques

Opera?ng Systems

PlaDorms

Cloud Managers

Hardware

Physical Resources

Applica?ons

In
fr
a
st
ru
ct
u
re
‐a
s‐
a
‐S
e
rv
ic
e

P
la
D
o
rm

‐a
s‐
a
‐S
e
rv
ic
e

S
o
K
w
a
re
‐a
s‐
a
‐S
e
rv
ic
e

Fig. 2.2.: Cloud software stack with cloud services models

2.2.3. Cloud Deployment Models

Cloud services can be implemented in four diferent deployment models [50].

Private Cloud The cloud services and infrastructure are maintained on a private

network, i.e. greatest level of security and control compared to other models that

have potential security and intellectual property rights issues. Private Cloud can

be managed and operated internally or by a third-party and hosted internally or

externally. Private Cloud is deőned by NIST as follows: "The cloud infrastructure is

provisioned for exclusive use by a single organization comprising multiple consumers

(e.g., business units). It may be owned, managed, and operated by the organization,

a third party, or some combination of them, and it may exist on or of premises."

Community Cloud The cloud services and infrastructure are exclusively used by

a speciőc community of consumers or organizations that have shared concerns and

interests. Community Cloud is deőned by NIST as follows: "The cloud infrastructure is

provisioned for exclusive use by a speciőc community of consumers from organizations

that have shared concerns (e.g., mission, security requirements, policy, and compliance

considerations). It may be owned, managed, and operated by one or more of the

organizations in the community, a third party, or some combination of them, and it

may exist on or of premises."

22

2.2. Cloud Computing

Public Cloud The cloud services and infrastructure are provided of site over the

Internet and thus made available to the general public or a large industry group

provided by an organization selling cloud services. Public Cloud is deőned by NIST

as follows: "The cloud infrastructure is provisioned for open use by the general public.

It may be owned, managed, and operated by a business, academic, or government

organization, or some combination of them. It exists on the premises of the cloud

provider."

Hybrid Cloud The cloud services and infrastructure are built in a composition

of two or more diferent cloud models (private, community, or public) that remain

individually unique entities but together form a hybrid cloud. Through such a

model, cloud infrastructures can perform on-demand, on-peak out- and in-sourcing

provisioning of IT resources either partially or completely. Hybrid Cloud is deőned by

NIST as follows: "The cloud infrastructure is a composition of two or more distinct

cloud infrastructures (private, community, or public) that remain unique entities, but

are bound together by standardized or proprietary technology that enables data and

application portability (e.g., cloud bursting for load balancing between clouds)."

2.2.4. Virtualization and Multi-Tenancy

Virtualization has recently become a signiőcant buzzword in the industry, in par-

ticular with the introduction of Cloud Computing. However, virtualization as a

concept is not new. It has been employed since the days of mainframe computers

through the introduction of the concept of multitasking in Operating System (OS)

[51]. Virtualization can be deőned as the creation of logical (virtual) instances from

physical ones. In other worlds, it is the abstraction of physical hardware to appear

as multiple logical instances. Virtualization technology enables sharing (splitting) or

combination (aggregation) of computing resources to ofer virtual ones.

It is considered as a key enabling technology for Cloud Computing and many other

services (e.g. NFV). Examples of the areas and services empowered by virtualization

are illustrated in Figure 2.3. Its power can reduce both capital and operational

expenses through less and eicient resource utilization and energy saving. Its power

supports achieving higher levels of network and service ŕexibility and resilience, e.g.

high availability and scalability of infrastructure resources as well as supporting load-

balancing and disaster-recovery through fast and simple deployment and migration of

virtual instances.

Virtualization is applied in diferent domains: server (also called system) virtualiza-

tion [51], storage virtualization, network virtualization [52]ś[55], network interface

cards [55]ś[57] and network service virtualization (called also NFV) [58]. However,

server virtualization is the most relevant technique in Cloud Computing and NFV. It

enables the creation and running of multiple (virtual) server instances on the same

23

2. State of the Art

Virtualiza)on
as an enabling
Technology

Cloud
Compu)ng

Network
Func)on

Virtualiza)on

Efficient
Resource
U)liza)on

Energy
Efficiency

Disaster
Recovery

Load
Balancing

High
Scalability &
Availability

Fast
SoIware

Development

Fig. 2.3.: Beneőts of virtualization technology

physical server hardware, while each server instance (called Virtual Machine (VM))

runs separately on its own OS as if it were a physical server. Physical resources

(memory, CPUs, disks, etc.) are shared by the created VMs which can be rebooted

independently. Server virtualization is based on virtualization software commonly

known as Hypervisor, also called Virtual Machine Manager (VMM). It allows multiple

OSs to run concurrently on a host server. It is called as hypervisor because it is

conceptually one level higher than a supervisor. It provides several management

functions: creating, starting, moving, copying, pausing, stoping and destroying VMs,

as well as managing the execution of guest OSs.

Diferent types of server virtualization exist [51]. These are illustrated in Figure 2.4

and explained as follows:

• Full Virtualization Provides total abstraction of the underlying hardware, so

that each VM has dedicated hardware resources: memory, CPU, disk, etc. VMs

are isolated and each can run any kind of OSs (e.g. Linux, Windows, Mac, etc.)

that is referred to as guest OS. Examples of hypervisors from this type are

XEN1 and Kernel-based Virtual Machine (KVM)2.

• Paravirtualization As some hardware platforms don’t support virtualization,

this type of virtualization requires modiőcations to the guest OS to run in this

virtual environment. However, like full virtualization, guest OSs are executed

in their own isolated VMs. There are some versions of XEN that support this

type of virtualization.

1http://www.xenproject.org
2http://www.linux-kvm.org

24

http://www.xenproject.org
http://www.linux-kvm.org

2.2. Cloud Computing

OS

Physical Hardware

App App App

VMM

Physical Hardware

Linux Windows Mac

VMM

Physical Hardware

Same

Linux OS
Same

Linux OS

Physical Hardware

App

Host OS

VMM

Linux Windows

Same

Linux OS

A. Tradi?onal Use of Server/APPs B. Full Virtualiza?on

C. Paravirtualiza?on D. Container‐based Virtualiza?on

D. Hosted Virtualiza?on F. Emulator

VMM

Physical Hardware

Modified

OS

Modified

OS
Modified

OS

Physical Hardware

Host OS

QEMU

Linux Windows

QEMU

Mac

QEMU

Fig. 2.4.: Types of server virtualization

• Hosted Virtualization The hypervisors runs as a process within an OS that is

run on the physical hardware and called host OS. The hypervisor does not need

its own drivers, but uses those provided by the host OS. VMs are isolated and

each can run any kind of OSs. Examples of the VMM from this type include

VMWare Workstation3, VirtualBox4.

• Container-based Virtualization This type of virtualization creates multiple

isolated containers. Each container performs and executes exactly like a stand-

alone server. All containers use the same Linux kernel, however, they can be

rebooted independently and have root access. Examples of hypervisors of this

type are OpenVZ5 and Linux-Vserver6.

• Emulator A machine emulator like QEMU7 emulates its own hardware, and

thus, enables software that was compiled for a speciőc architecture to work on

a diferent architecture. It supports virtualization when executing under XEN

or KVM.

3http://www.vmware.com
4https://www.virtualbox.org
5https://openvz.org
6http://linux-vserver.org
7http://wiki.qemu.org

25

http://www.vmware.com
https://www.virtualbox.org
https://openvz.org
http://linux-vserver.org
http://wiki.qemu.org

2. State of the Art

Multi-tenancy is another technique that has become prominent in cloud domains

although the concept is not new [59]. The concept refers to the idea of running multiple

independent instances of one application simultaneously to serve multiple users. Such

instances are referred to as tenants. A tenant is a logically isolated space dedicated

to one or more users (organization). Multi-tenancy is based on sharing infrastructure

resources and services among tenants that needs to be managed, maintained and

made available in multiple isolated instances [59], [60].

However, authors in [61] extend the multi-tenancy deőnition to address the whole

technological stack behind the diferent cloud service models (SaaS, PaaS, and IaaS),

and therefore, deőned multi-tenancy as "the sharing of the whole technological

stack (hardware, OS, middleware and application instances) at the same time by

diferent tenants and their corresponding users. The diferentiation between tenants

(organizational domains) and users (individual entities inside these groups) allows for

diferent levels of granularity in the sharing of resources [61]."

Multi-tenancy model is meant to support per-tenant customizable applications with

diferent SLAs that have to be met. Multi-tenancy has diferent level of isolation

that can be realized through virtualization (in forms of VMs), Docker8 or Linux

Containers9 (LXC). However, as virtualization is the dominant technique used in

Cloud Computing, multi-tenant application deployment has advantages in terms of

scalability, reducing costs and time-to-market as organizations focus only on their

applications and not the infrastructure itself, although some concerns, such as security,

remain the same.

2.2.5. Cloud Management Tools and Standards

Cloud Computing has been gaining more and more attention in recent years, and

has become an integral part of IT infrastructures. As a matter of fact, a range of

global initiatives has been established from both industry and academia, spanning

from cloud management APIs and open source toolkits to speciőcations within several

Standards Developing Organizations (SDOs).

The fundamental component of cloud management systems is the virtualization

manager, which is in charge of the abstraction of the underlying physical resources,

and thus, also in charge of managing the provision of virtual instances. Such a

manager can work with one or multiple hypervisors (Xen, KVM, VMware, etc.). For

users to interact with the manager cloud management APIs and de-facto standards

have been deőned in order to discover, deploy, stop and destroy VMs associated with

the required storage and networking resources.

The Open Cloud Computing Interface [197] (OCCI) standardized by the Open Grid

Forum (OGF) is a protocol and API for cloud management. OCCI initially focused

8https://www.docker.com
9https://linuxcontainers.org

26

https://www.docker.com
https://linuxcontainers.org

2.2. Cloud Computing

on the IaaS model for remote management interactions with cloud infrastructures,

but recent releases include other models (e.g. PaaS and SaaS). Similar to the OCCI,

the Distributed Management Task Force (DMTF) worked on the Cloud Infrastructure

Management Interface [175] (CIMI), which is an open standard API speciőcation for

managing cloud infrastructures. Likewise, the Open Virtualization Format [206] (OVF)

is an open format for packaging software to be run in VMs. To manage storage

resources, the Storage Networking Industry Association (SNIA) deőned the Cloud

Data Management Interface [174] (CDMI). The OCCI is compatible with both OVF

and CDMI. Another standard is the Amazon Elastic Compute Cloud (Amazon EC2)10

Web service interface that is owned and used by Amazon, but is widely adopted by

many cloud service providers for managing and controlling resources.

In addition to these standards, OASIS has deőned the Cloud Application Manage-

ment for Platforms (CAMP) speciőcation that aims at enhancing the interoperability

of interfaces of diferent cloud platforms. As CAMP has limited functionalities

to support portability and orchestration of applications across platforms, OASIS

has deőned the Topology and Orchestration Speciőcation for Cloud Applications

[222] (TOSCA). TOSCA aims at leveraging portability of application layer services,

as well as the deployment of complex service topologies and their orchestration across

cloud environments [62].

A range of cloud management solutions exists from both industry and academia.

Examples include, OpenStack11, OpenNebula12, Eucalyptus13and VMWare14. Most

relevant to this thesis is OpenStack, which is becoming more and more the dominant

de-facto standard. Its architecture comprises several components with diferent

functionalities. The essential ones are Nova (a Cloud Computing fabric controller that

manages VMs), Glance (supporting disk and server images discovery, registration and

delivery), Neutron (network management including OpenFlow control), Swift (object

storage), Cinder (block storage), Keystone (identity management) and Ceilometer

(providing metering and statistics from OpenStack components).

Finally, concerning cloud infrastructures and services monitoring, there are no

standards or architectures. An exception is the extension to OCCI, which supports

the management of monitoring setup [63] and is similar to the research done at the

early stage for this thesis [64]. However, state-of-the-art solutions on monitoring

distributed systems and grid infrastructures were initially used for this purpose. But as

these are limited in their functionalities and not convenient to serve the requirements

of clouds, new solutions and architectures are under development. These are discussed

in Sec. 2.5.

10http://aws.amazon.com/ec2
11https://www.openstack.org
12http://opennebula.org
13https://www.eucalyptus.com
14https://www.vmware.com

27

http://aws.amazon.com/ec2
https://www.openstack.org
http://opennebula.org
https://www.eucalyptus.com
https://www.vmware.com

2. State of the Art

2.3. Future Internet Experimentation

The growing success and increasing conődence in the Internet in our daily lives have

led to major debate among experts on the ability of the current architecture to cope.

Some believe it may collapse under increasing demands of future applications [5], [65],

as it was not designed in the beginning for the current level of usage [4], [5]. David D.

Clark, MIT, in an article in MIT Technology Review in 2005, said "The Internet is

broken". It has become a complex ecosystem that is rapidly growing [1]ś[3] at a great

pace of change and uncertainty in many of its areas.

As a matter of fact, several global activities propose FI architectures (following

either clean-slate or evolutionary Internet design approaches) to solve the limitations

of the current Internet [4], [5], [66]. Others have introduced new technologies and

future architectures [6] to cope with the management complexity of the Internet and

networks in terms of improving QoS, resource utilization, reliability, security and

reduction of CAPEX and OPEX costs.

Emerging communication and networking paradigms and technologies have been

introduced to overcome some of the aforementioned issues of the current Internet,

e.g. virtualization, Cloud Computing, SDN, NFV, M2M and IoT . However, they

bring forth new business models and opportunities for building Smart Cities, eHealth,

eGovernments, eLiving, and other services and applications.

For such new services and applications to be trialed and evaluated at scale, conve-

nient experimental environments that support, or are enabled with, the aforementioned

paradigms and technologies are required. This is because the transition from theoreti-

cal or simulation based research into production is not always the optimal strategy,

especially if the newly developed services or protocols will be deployed in large-scale

or across heterogeneous networks. It is therefore foreseen that experimentally driven

research conducted on large-scale and real-world facilities is essential for FI research

and development. This opens the door for researchers, applications developers, and

SMEs to study and test their new ideas and products in real-world, controllable,

and cost-efective environments. Additionally, allowing various stakeholders (e.g.

technology and application developers, platform providers, integrators, and end-users)

to meet in such environments where they can inŕuence each other’s work.

Many research activities worldwide are focusing on the deőnition and the develop-

ment of FI architectures. Some of them even build suitable experimental facilities.

The major examples are GENI and the Future Internet Design15 (FIND) programs

in the US , the European FIRE initiative and FI-PPP program, and the G-Lab

in Germany. Similar programs have been launched in Asia as well. Examples in-

clude AKARI16 in Japan; the Joint Asian activities that are carried out under the

15http://nets-find.net
16http://akari-project.nict.go.jp

28

http://nets-find.net
http://akari-project.nict.go.jp

2.3. Future Internet Experimentation

Asia-Paciőc Advanced Network (APAN)17 initiative; the Asia Future Internet Forum

(AsiaFI)18; the Japan Gigabit Network (JGN)19 testbed and StarBED (Hokuriku

Research Center)20 emulation testbed that support implementation and testing of

Next-Generation Network (NGN) technologies; and the KREONET (Korea Research

Environment Open NETwork)21, which is a national R&D network managed by KISTI

(Korea Institute of Science and Technology Information) connecting twelve regional

network centers and over 200 participating institutions.

2.3.1. Global Environment for Network Innovations (GENI)

GENI is a collaborative program funded by the US National Science Foundation (NSF).

It started in 2007 with the aim of providing a global large-scale experimental platform

for testing and validation of FI architecture. It relies on the concept of combining

heterogeneous, virtualized resources to produce a single platform for multiple network

researchers simultaneously. Its current status is beyond its initial prototyping stage,

supporting wider deployment of increasingly standard technologies such as SDN,

OpenFlow and WiMAX [13].

Its high-level architecture comprises multiple building blocks and functionalities,

the major ones being components, aggregates, slices and a clearinghouse [67]. The

components refer to the ofered resources, while a group of components that are

owned and administrated by an organization are referred to as an aggregate. A slice

represents a set of slivers (virtual instances or part of speciőc resource) spanning

a set of network components. Oferings are available for experimenters through a

control framework run by a clearinghouse, which is a collection of related services

supporting federation among experimenters and aggregates. Within the context

of GENI, multiple testbeds are federated to build the GENI infrastructure. They

are controlled by diferent competing control frameworks: the DETER Federation

Architecture [177] (DFA), PlanetLab, ProtoGENI [210] (ProtoGENI), Open Resource

Control Architecture [205] (ORCA) and Open Access Research Testbed for Next-

Generation Wireless Networks [204] (ORBIT). More details about these control

frameworks are given in [13], [67].

GENI adopts a federation model that includes resources owned and operated by

diferent platform providers [13]. It aims at providing a coherent, large-scale facility

that embraces contributions from a range of autonomic networks. GENI federates

at the international level with other testbeds, e.g. with the KREONET testbed in

Korea [68].

17http://www.apan.net/
18http://www.asiafi.net/
19http://www.shiratori.riec.tohoku.ac.jp/jgn.html
20http://starbed.nict.go.jp/en/
21http://www.kreonet.net

29

http://www.apan.net/
http://www.asiafi.net/
http://www.shiratori.riec.tohoku.ac.jp/jgn.html
http://starbed.nict.go.jp/en/
http://www.kreonet.net

2. State of the Art

2.3.2. Future Internet Research and Experimentation (FIRE)

FIRE is a European initiative that was established by the European Union’s Seventh

Framework Programme for research and technological development (FP7) in 2007.

It aims at creating an open environment for research and development within the

context of FI to study and trial new concepts and ideas through conducting large-

scale experiments on new paradigms, technologies and networking concepts and

architectures [65].

Under the umbrella of FIRE, several research projects22 has been conducted, as

well as multiple testbeds established in various domains. In addition to these, FIRE

encompasses support activities that deal with socio-economic and sustainability

aspects.

As the initiative started some years ago, several projects have already closed that

focused on researching FI concepts, e.g. OneLab23 [200] (OneLab). OpenLab24

[203] (OpenLab) provided testbed federation model proven through the federation of

PlanetLab Europe with the global PlanetLab infrastructure that is practically realized

through the OneLab2 [200] (OneLab2). ResumeNet25 studied network resilience

aspects in FI and future networks. There are also several others FIRE projects22.

Considering the outcomes of the closed FIRE projects, new projects have been

started that have built experimental facilities for FI experimentation. Examples

include Building Service Testbeds on FIRE [17] (BonFIRE), OpenLab, SmartSan-

tander26 (SmartSantander), OpenFlow in Europe: Linking Infrastructure and Applica-

tions27 (OFELIA), Cognitive Radio Experimentation World28 (CREW), Community

Networks Testbed for the Future Internet29 (CONFINE), Federated E-infrastructure

Dedicated to European Researchers Innovating in Computing network Architec-

tures30 (FEDERICA), EXPERIMEDIA31 (EXPERIMEDIA), Federation for FIRE32

[11] (Fed4FIRE) and more22.

In addition to all these projects and testbeds, several Coordination and Support

Actions (CSAs) have been established to coordinate these eforts as well as to enhance

the exchange of information between them. Succeeding the closed activities PAR-

22http://www.ict-fire.eu/home/fire-projects.html
23http://onelab.eu
24http://www.ict-openlab.eu/project-info.html
25http://www.resumenet.eu
26http://smartsantander.eu
27http://www.fp7-ofelia.eu
28http://www.crew-project.eu
29https://confine-project.eu
30http://www.fp7-federica.eu
31http://www.experimedia.eu
32http://www.fed4fire.eu

30

http://www.ict-fire.eu/home/fire-projects.html
http://onelab.eu
http://www.ict-openlab.eu/project-info.html
http://www.resumenet.eu
http://smartsantander.eu
http://www.fp7-ofelia.eu
http://www.crew-project.eu
https://confine-project.eu
http://www.fp7-federica.eu
http://www.experimedia.eu
http://www.fed4fire.eu

2.3. Future Internet Experimentation

ADISO33, FIREworks34, FIREBALL35, and MyFIRE36, the new activities FUSION37,

FIRE STATION38, AmpliFIRE39 and CI-FIRE40 have been established. The last two

support the FIRE community to prepare FIRE for 2020. Both aim at developing a

sustainable vision and business models, as well as the role of FIRE facilities beyond

the funding phases.

As BonFIRE, OpenLab and Fed4FIRE are the most relevant projects to this thesis,

they are discussed further below.

BonFIRE The BonFIRE project has designed and built a multi-site cloud testbed,

targeted at the Internet of Services (IoS) community. It supports large-scale testing of

applications, services and systems over multiple, geographically distributed, heteroge-

neous cloud testbeds. Its aim is to provide an infrastructure that allows experimenters

to control and monitor the execution of their experiments to a degree that is not

provided or might not be found in traditional cloud infrastructures. Among its key

functionalities are controllable resource management and conőguration (including the

ability to emulate network parameters), in-depth monitoring of virtual and physical

infrastructure metrics, elasticity support, user-friendly experiment descriptors and

scheduling [17].

OpenLab The aim of OpenLab was the design and development of a federation

framework operating across heterogeneous domains (wireless and wired), allowing

researchers and engineers to execute experiments at larger scale. It provides advances

on early prototypes serving the demands of FI services and applications. The OpenLab

federation framework facilitates the federation at the level of control, experimental,

and data planes. The control plane is in charge of the management of the underlying

testbeds resources, which includes resource virtualization, inter-resource communica-

tion, etc. The experimental plane includes all software components that allow users

to execute experiments with a range of monitoring and measurement capabilities.

The data plane is concerned with measurements and data collection, i.e. ensuring the

interoperability of tools and data repositories [69].

Fed4FIRE The aim Fed4FIRE is to build the largest federation of FI experimen-

tation facilities in Europe covering diferent technologies, domains, services and user

communities. A large number of testbeds are available, and these have diverse

33http://paradiso-fp7.eu
34http://www.ict-fireworks.eu
35http://www.fireball4smartcities.eu
36http://www.my-fire.eu
37http://www.sme4fire.eu
38http://www.ict-fire.eu/home/firestation.html
39http://www.ict-fire.eu/home/amplifire.html
40http://www.ci-fire.eu

31

http://paradiso-fp7.eu
http://www.ict-fireworks.eu
http://www.fireball4smartcities.eu
http://www.my-fire.eu
http://www.sme4fire.eu
http://www.ict-fire.eu/home/firestation.html
http://www.ict-fire.eu/home/amplifire.html
http://www.ci-fire.eu

2. State of the Art

focuses, such as network management and networking protocols (e.g. OFELIA),

wireless cognitive networks (e.g. CREW), Cloud Computing and IoS (e.g. BonFIRE),

IoT (e.g. SmartSantander) and content-centric networking and peer-to-peer (e.g.

EXPERIMEDIA). The idea is to build an even larger and more powerful facility

beyond initial federations within the context of FIRE (e.g. OneLab, OneLab2 and

OpenLab) that had smaller or diferent levels of integration and complexity. Neverthe-

less, the establishment of such a federation is not a trivial task, as it takes time and

efort to deőne the right approach and to build an ecosystem in which experimentation

facilities can coexist without blocking innovation. Fed4FIRE builds further on the

technologies and approaches developed in OpenLab. It draws on federation experience

built in other projects like OFELIA, BonFIRE, and CREW. It generalizes these tools

for the FIRE community as a whole. Fed4FIRE follows a heterogeneous federation

where all testbeds run their native testbed management software but adopt a set of

APIs on top of the federated infrastructure [10].

2.3.3. Future Internet Public Private Partnership (FI-PPP)

FI-PPP is a European programme for FI innovation. It is a more market-oriented

program aimed at accelerating the development and adoption of FI technologies in

Europe, advancing the European market for smart infrastructures. Several research

projects41 have been conducted under the umbrella of the FI-PPP program, but at

its heart is the FIWARE project. This project, along with other projects that are

relevant to this thesis, are discussed below.

FIWARE FIWARE delivers a service infrastructure that ofers a large number of

general-purpose, vendor-independent platform functions and services, called Generic

Enablers (GEs). They can be seen as enabling technologies in diferent őelds to

build a sustainable foundation for the FI and Smart Cities Innovation. These are

ofered through the FIWARE Catalogue42, which includes over 80 Generic Enabler

implementations (GEis) that can be applied in the őelds of IoT, healthcare, transports,

energy and environments, media and content, manufacturing and logistics, and social

and learning services. These GEs are ofered by diferent technology providers in

form of open and vendor-independent APIs. The catalogue can be enriched with

additional, new GEs. Technology providers can build their technologies in any őeld

and provide them in the form of GEs through the FIWARE Catalogue. These can be

used by diferent application developers who can provide signiőcant feedback to the

technology providers. They can accordingly enhance their solutions.

41http://www.fi-ppp.eu/projects/
42http://catalogue.fi-ware.org

32

http://www.fi-ppp.eu/projects/
http://catalogue.fi-ware.org

2.3. Future Internet Experimentation

XIFI Experimental Infrastructures for the Future Internet43 [70] (XIFI) focuses on

building a sustainable pan-European federation of cloud-based test infrastructures

for open innovation developments ofering a large number of general-purpose, vendor-

independent platform functions and services (GEs), in diferent őelds within the

context of FI and Smart Cities Innovation. XIFI federation architecture is introduced

in [70], most of its components are based on FIWARE GEis and the remaining

components are developed within the project. An instance of the XIFI federation is

implemented and deployed though a federation of more than 17 infrastructures under

the so-called FIWARE Lab44 [19] (FIWARE Lab). Although its architecture is mainly

built through using some GEis, instances of these GEis besides the remaining FIWARE

GEis are all ofered through FIWARE Lab for users (FI application developers).

FIWARE Lab FIWARE Lab is seen as the most suitable environment for open

innovation where various communities can meet and inŕuence each other, including

infrastructure providers, technology providers and application developers. Detailed

oferings and beneőts for each of these stakeholders are discussed in [70]. Besides

the traditional cloud resources (e.g. VMs), the strength and the unique ofer of

FIWARE Lab is the innovative general-purpose platform functions and services (the

FIWARE GEs), extended with advanced FI facilities like sensor-enabled environments,

SDN-enabled infrastructures, seamless access anywhere, anytime and from any device

(Wi-Fi, 2G, 3G, 4G, etc.), and more.

Future Internet - Social and Technological Alignment for Healthcare45

[185] (FI-STAR) Its goal is to establish early trials in the healthcare domain

building on the FI-PPP technologies, i.e. on the FIWARE GEs, in particular those

from the cloud and IoT domains. It delivers a suitable platform in the health sector

that is built out of GEs and further FI-STAR components (referred to as Speciőc

Enablers (SEs)), which are available through the FI-STAR Catalogue46.

INfrastructures for the Future INternet CommunITY47 (INFINITY) The

role of the INFINITY project within the context of FI-PPP is similar to that of Am-

pliFIRE39 and Ci-FIRE40 within the FIRE program. INFINITY acts as a CSA to

promote and ensure the success of FI-PPP program. It aims at capturing and com-

municating information about available testbeds and ICT infrastructures and making

them available for diverse communities, as well as facilitating the exchange of any

interoperability requirements and issues.

43http://fi-xifi.eu
44http://lab.fi-ware.org
45https://www.fi-star.eu/fi-star.html
46http://catalogue.fi-star.eu
47http://fi-infinity.eu

33

http://fi-xifi.eu
http://lab.fi-ware.org
https://www.fi-star.eu/fi-star.html
http://catalogue.fi-star.eu
http://fi-infinity.eu

2. State of the Art

2.3.4. German-Lab (G-Lab)

The G-Lab initiative is the largest German project driving FI research in Germany

and is funded by the German Bundesministerium für Bildung und Forschung (BMBF).

It includes several research projects supported with a Germany-wide experimental

facility investigating the interplay between new technologies and the requirements of

emerging applications. G-Lab’s vision is that research studies are accompanied by

experimentation performed at a G-Lab facility. Its main concept is based on the tight

coupling of research and real experimentation with the vision that the G-Lab platform

might evolve into the FI backbone itself through adopting emerging technologies

and future paradigm. From a technical viewpoint, the G-Lab facility leverages the

PlanetLab central software. Concerning federation aspects, some were tackled by the

G-Lab Deep project48 from a conceptual perspective. The project also focused on

service composition and security.

2.4. Federation Models and Approaches

The term ’federation’ has been deőned in diferent ways. But the common under-

standing of a federation is an agreement between independent entities or domains

on a certain level of commitment that is ensured and managed internally. The fed-

eration in its application varies from one context to another. For instance, today’s

Internet services, such as cloud services and multimedia services (e.g. Internet Proto-

col Television (IPTV) and Voice over Internet Protocol (VoIP) that require strong

guarantees on end-to-end QoS), are evolving towards complex composed services

spanning across administrative domains. These services beneőt diverse capabilities

provided by multiple domain providers and complement each other [71]. To achieve

service composition across independent domains, there is a need for coordination and

collaboration agreements across them.

In general, federation agreements in the ICT world are already in use but on a

limited context. Federation agreements, according to Celesti et al. [72], can be

established vertically or horizontally. In the vertical federation, services or capabilities

of one provider are leveraged by another. For instance, cloud providers leverage

cloud resources from other cloud infrastructure providers. While in the horizontal

federation, cloud providers federate among themselves to gain economies of scale,

as well as enlarge or complement their oferings. The horizontal federation is the

one in line with the vision and work within this thesis. Such a type of a federation

is discussed in diferent research projects and application contexts, with examples

including Cloud Computing domains [17], [47], [70], [72], [73], FI testbeds [10], [12],

[13], [45], [71]ś[74], and e-infrastructures [73].

48http://www.g-lab-deep.de/index.html

34

http://www.g-lab-deep.de/index.html

2.4. Federation Models and Approaches

It is to be noted that neither the motivation nor the demand for federation are

discussed in this thesis as these are out of scope. This thesis is built on the fact that

federations exist and are in demand from various sectors (e.g. economy, e-commerce,

Smart-Cities and FI services and applications) associated with a range of research

projects driven by academic research and industrial needs.

The new demands and trends for federation have contributed to reőne its orig-

inal, simple deőnition as an agreement among parties to be more speciőc to the

areas of application. Although there are multiple deőnitions for federation in the

literature in accordance with this thesis, this thesis follows the one introduced in

Sec. 1.1. To elaborate more on that deőnition, a federation is a model for the estab-

lishment of a larger-scale, higher performance, and diverse infrastructure through

the interconnection of two or more independently administered infrastructures. This

allows infrastructures owners to share resources and services for increased multilateral

beneőts to their users. This is achieved following a set of agreements on a certain

level of commitment and operational procedures, and deőning internal mechanisms to

enforce these at the infrastructure level.

Multiple federation models and approaches exist. These are discussed in the

following sections.

2.4.1. Federation Models

Multiple federations exist that difer from each other in their approaches, models, and

the tools and interfaces used. For instance, in Cloud Computing, Toosi et al. [39]

discuss several models from diferent perspectives. However, one of the common goals

of federation activities in the context of e-infrastructure federation is the establishment

of the self-sustainable operation of the federation, as operation is a critical aspect of

any federation.

Within the context of FIRE, models and strategies have been analyzed, for example,

within the Pan European Laboratory Infrastructure Implementation [207] (Panlab)

project several relevant deliverables [75], [76] have been produced and a FIRE Oice

[182] was planned to be established. Such activities continued in multiple projects,

but within the Fed4FIRE project, federation models and scenarios are discussed

extensively from the following diferent perspectives:

• federation architecture and management software [10], and

• federation operation and stakeholders’ interaction [77] that itself is mainly based

on the federation framework deőned by the Federated IT Service Management49

[73] (FedSM) project. Based on this framework, similar analysis has been done

within the context of the FI-PPP program to determine the most suitable model

for its federation [70].
49http://fedsm.eu

35

http://fedsm.eu

2. State of the Art

2.4.1.1. Models for Federation Operation and Stakeholders’ Interaction

In this section the main aspects of the FedSM federation framework are described

[70], [73], [77]. The three main actors in a federation are as follows:

• User The consumer or customer of the federation (can also be a group) that

beneőts from the ofered services or resources.

• Federation members A group of organizations or bodies that form a federation.

These are the service and resource providers. In the case of the domains

addressed in this thesis, they are the infrastructure providers.

• Federator An individual body or component that provides added-value services

for the whole federation. It can either act as an advisor for the users or even

has full control and management over the whole federation including the users

and federation members.

These actors can interact in one of three diferent ways in order to utilize a service:

• Certification authority Users and federation members interact directly with each

other. The role of the federator is to provide the means for the interaction to

be realized, e.g. through deőning protocols and standards.

• Loose integration Part of the interaction involves the user interacting with

federation services provided by the federator before interacting directly with

the federation member.

• Tight integration All interaction is between the user and the federator.

In accordance with these three diferent models of interactions, FedSM introduced

őve diferent federation models that vary from each other depending on the way

the main actors interact among each other. These are illustrated in Figure 2.5 and

described as follows [70].

• Invisible Coordinator The federation acts as a certiőcation or validation

authority. The federator deőnes membership rules and validates compliance of

the federation members who work to comply with the rules and seek certiőcations

from the federator. Users őnd infrastructures through other channels (e.g. search

engines, marketplaces) and then request services (Figure 2.5a).

• Advisor The federator advises federation members on how to ofer and promote

their services through the federation. Users describe the required services to the

federator, which advises them on where to őnd the needed services in the form

of recommendations. Users then decide which federation members to interact

with (see Figure 2.5b).

36

2.4. Federation Models and Approaches

• Matchmaker The federator advises federation members on how to promote

their services, along with terms and conditions, through the federation. Users

describe the required services to the federator, which matches users’ requests to

the services ofered by infrastructures, and thus, performs resource allocation

(reservations) on behalf of the users (Figure 2.5c).

• One-Stop-Shop The federation provides a channel for the federation members

to advertise their services. Users describe the required services to the federator,

which performs resource allocation (reservations) on behalf of the users, monitors

usage (based on monitoring information collected from infrastructures) and

provides billing. Users pay the federator who is the initial point of contact.

Federation members are still able to bill one another (Figure 2.5d).

• Integrator The federation is in charge of all interactions with users. Users

interact with the federation searching for oferings and describe the required

services and resources. These are reserved and then invoked by the federator at

the proper time. Billing and payment are done by the federator (Figure 2.5e).

An advisor or matchmaker model implies a looser integration of resources and

stakeholders by the federator, which provides support to enable resource identiőcation

by users and resource exploitation at the resource provider site. An integrator or

one-stop-shop by contrast increases the control and support ofered by the federator in

running and managing resource utilization. Their role reŕects the tighter integration

interaction model while the invisible coordinator corresponds to the certification-based

interaction. Making a decision on the most suitable model for a target federation is

not a trivial task. This decision would also be inŕuenced by economic factors afecting

the target federation.

2.4.1.2. Models for Federation Architecture and Management Software

Suitable mechanisms are required to allow infrastructures to interoperate in a stan-

dardized manner. Resources and services ofered through the federation have to be

managed at the federation level so as to appear to users as if they were provided by a

single infrastructure provider. Therefore, several management mechanisms are to be

speciőed and standardized in order to support the entire service or experiment lifecycle

(resource description, discovery, provisioning, monitoring, control and release), as well

as authentication and authorization aspects. From this perspective, the federation

architecture has to be designed to cover the necessary mechanisms. According to a

study conducted within the FIRE initiative for its testbed federation, four possible

models for the federation architecture are introduced [10]:

• A Central Management System Resources of all infrastructures are man-

aged by a single management system at the federation level. Infrastructures

37

2. State of the Art

User
Infrastructure

Provider

Federator

Invoke services on infrastructures

(a) Invisible Coordinator

Infrastructure

Provider

Federator

Invoke services on infrastructures
User

(b) Advisor

Infrastructure

Provider

Federator

Invoke services on infrastructures
User

(c) Matchmaker

Infrastructure

Provider

Federator

B
il
l

Invoke services on infrastructures
User

(d) One-Stop-Shop

Infrastructure

Provider

Federator

B
il
l

In
v
o
k
e
 s
e
r
v
ic
e
s
 o
n

in
fr
a
s
tr
u
c
tu
r
e
s

User

(e) Integrator

Fig. 2.5.: Federation models according to FedSM, based on [70], [73], [77], [78]

38

2.4. Federation Models and Approaches

themselves do not run local management systems. The advantage of such

a system is easy deployment, management, and maintenance. On the other

hand, infrastructure providers will all be forced to replace their management

systems with the common one. Considerable eforts would be necessary to adopt

the new software, which may not be beneőcial for some platforms in terms of

compatibility in case they are part of other federations.

• A Central Frontend Point All infrastructures and their tools are listed

through a portal. Each infrastructure keeps using its management software and

mechanisms. This approach is the easiest and cheapest federation approach

since no eforts are required from infrastructure providers. In this approach

there is no real federation, since users still need to have multiple accounts, and

use diferent tools.

• Homogenous Federation Running the same Management System on

all Infrastructures The same management system is to be deployed locally at

each infrastructure. Each infrastructure will manage its resources independent

from a central point. While it is advantageous in comparison to fully centralized

systems each infrastructure is required to replace its own management system,

and its users must adopt the new tools.

• Heterogeneous Federation with Common APIs on top of Different

Independent Management Systems Each infrastructure keeps its manage-

ment tools and software. Resources are managed as they are being provided

and managed at the federation level through speciőed and standardized inter-

faces. This imposes the need to deőne and develop multiple interfaces for the

individual management mechanisms, such as provisioning, control, etc. This

approach makes it easy and ŕexible for further infrastructures to be involved

in the federation. Its advantage is obvious for federated infrastructures that

provide heterogeneous resources managed by diferent tools. Federation inter-

faces can be implemented with basic functionalities and then grow over time

based on the support needed. On the other hand, specifying these interfaces

and interoperability across infrastructures is not trivial and could be costly.

Heterogeneous federation might be the most suitable model for large and more

dynamic federations with heterogeneous infrastructures. But for a small and fairly

stable federation, the centralized approach works well.

2.4.2. Federation Approaches

Many approaches for ICT infrastructure federation exist in various sectors. To

give an example, ICT infrastructure federation has been recognized as a promising

mechanism in the cross-border trade sector to support global supply chains [79]. This

39

2. State of the Art

is because marketplaces are moving from traditional monolithic business models, where

most of the activities were carried out locally, into multi-layer service orchestration

coordinating out- and in-sourced services across domains. However, within the context

of this thesis, the federation of Cloud and FI testbed infrastructures is of major

concern. Therefore, this section discusses only the related approaches.

2.4.2.1. Cloud Federation

The steadily gaining momentum of Cloud Computing encourages cloud providers to

develop or adopt new technologies that both enhance their services with a high level of

customer satisfactions, and promote strategies to build new business models [64], [80].

Emerging markets spur cloud providers, which have diferent kinds of resources with

diferent service quality levels, not only to compete but also to collaborate (federate)

with each other. Federation of various cloud providers has several advantages for

both cloud service providers and cloud service customers. Among the advantages for

cloud providers are the complementation of the ofered resources to improve resource

utilization and the combination of multiple services in order to ofer eicient end-to-

end solutions. On the other hand, customers have the ability to combine resources

and services from diferent cloud providers to create their own environments (e.g. IaaS

or PaaS). Combining resources from multiple cloud providers becomes increasingly

feasible for customers in order to beneőt from factors like price diferences, locality

of resources, etc. Cloud federation provides the necessary means to compare and

select the best cloud platform or service available at any given point in time. Cloud

federation has a tremendous potential for the industry as an efective mechanism

to increase the capacity of resources, diversity of oferings, as well as eicient and

ŕexible use of resources ś through shifting the operation of the oferings from in-house

datacenter hosting towards the outsourcing of infrastructure or services to external

use ś while keeping costs relatively low.

However, the high heterogeneity of cloud infrastructures in terms of resources,

management systems, tools, information exchange and other aspects is a problem.

Therefore the concepts of standardization and common tools and APIs are becoming

of high importance in order to cater for the necessary degree of interoperability

and portability across the federation. Currently, there are already standardization

activities and implemented cloud federation architectures that are up and running.

The three-phase architecture model for cloud federation introduced in [16], [21] focuses

on authentication aspects across cloud platforms. The RESERVIOIR [81] and Con-

trail [82] projects focus on the management of IaaS across domains. The Intercloud

Architecture Framework (ICAF) [83] addresses multi-layer and multi-domain aspects

referring to the NIST Cloud Computing Reference Architecture (CCRA) and Interna-

tional Telecommunication Union Telecommunication Standardization Sector (ITU-T)

Joint Coordination Activity on Cloud Computing (JCA-Cloud) standardization ac-

40

2.4. Federation Models and Approaches

tivities. Many others are introduced in [18], [70], [80], [84]. The major approaches

and those related to this thesis are discussed below.

The EGI Federated Cloud Task Force50 focuses on standardizing some protocols

and APIs for managing cloud resources across federated clouds such as the OCCI,

CDMI and X.509 [85]. This activity focuses more on the user level but has not covered

federation aspects at the networking level. In contrast, the Institute of Electrical and

Electronics Engineers (IEEE) InterCloud approach [18] proposes a novel architecture

for federating diferent clouds with more focus on network aspects, no matter which

technologies, protocols or APIs are in use. This activity provides a detailed standard

on interoperability and federation, called Standard for Intercloud Interoperability and

Federation [47] (SIIF).

The cloud federation implemented within the FI-PPP program by the XIFI project

and deployed through the FIWARE Lab has another approach that is based on

FIWARE technologies and speciőcations. Through its mature architecture, the

FIWARE Lab federation addresses the federation at the networking and user level as

well considering diferent federation aspects, such as monitoring, SLA management,

authentication, authorization, security, and procedures for joining and leaving the

federation. Among the federation models discussed in Sec. 2.4.1, the choice made for

the FIWARE Lab took into account sustainability strategies, as well as requirements

of diverse types of stakeholders as discussed in [70]. The model adopted in FIWARE is

a hybrid model covering aspects of the one-stop-shop and the integrator models. From

the one-stop-shop model, a common advertising channel for infrastructure oferings is

provided where users choose which services they want to use. From the integrator

mode, the federator decides which services and resources will be used.

Another cloud federation approach is used by the BonFIRE project, where multiple,

geographically distributed, heterogeneous cloud and network testbeds are federated.

Its federation model is based on a central resource manager, used to expose a homoge-

neous API (namely the OCCI) and interact with the testbeds [80]. For those testbeds

that can’t speak OCCI, BonFIRE architecture includes an enactor component that

adopts and translates the OCCI requests into a suitable testbed format. In addition

to this standard API, BonFIRE uses the open standard OVF for describing experi-

ments. BonFIRE multi-cloud facility is being further federated within the Fed4FIRE

federation, aiming to the establishment of a larger, heterogeneous FI experimentation

facility. This will be discussed further in the following section.

2.4.2.2. Federation of Future Internet Testbeds

Resource and infrastructure federation has attracted much attention in the ICT

world, as it’s believed to accelerate the development of the FI and future networks.

50https://www.egi.eu/infrastructure/cloud/

41

https://www.egi.eu/infrastructure/cloud/

2. State of the Art

Federation of multiple infrastructures enables on-demand composition and provisioning

of complex, distributed services and applications across heterogeneous domains. The

federation of ICT resources and infrastructures is therefore implemented by a couple

of large-scale research projects through the federation of heterogeneous, powerful ICT

testbeds, the major examples being the Fed4FIRE federation in Europe and the GENI

federation in the US as discussed in Sec. 2.3. They aim to connect heterogeneous

resources across several independent heterogeneous domains to provide larger-scale

and higher performance experimentation facilities. For simpliőcation, this thesis takes

Fed4FIRE as a reference federation, as such the focus in the following will be on

Fed4FIRE. Fed4FIRE is working on federating a number of European FI testbeds

that are built and equipped with emerging and future technologies and communication

paradigms (such as Cloud Computing, NFV, SDN, IoT, IoS, and mobile and wireless

networks). These testbeds are available for researchers and developers to study and

trial novel applications, services or ideas in real-world, controllable and cost-efective

environments.

The federation of multiple, distributed, independently administrated testbeds is not

a trivial task, as testbeds could use diferent approaches and tools to manage their

infrastructure resources and services. Testbeds usually support multiple stages of

the experiment lifecycle in a trustworthy manner, starting from resource provisioning

(description, discovery, reservation and allocation), monitoring, control, and up to

release. The commonly used frameworks within FIRE and GENI testbeds are Slice-

based Federation Architecture [217] (SFA), cOntrol and Management Framework

[198] (OMF), Network Experimentation Programming Interface [192] (NEPI), Teagle

[8], [221] (Teagle), FITeagle51 [183] (FITeagle) and ORBIT Measurement Library

[199] (OML). SFA is used for resource provisioning and release, while OMF along

with the Federated Resource Control Protocol [186] (FRCP), NEPI and Teagle can

in addition be used for resource control. OML and others reviewed in [86] are used

for experiment and resource monitoring.

In a federated environment, experiment lifecycle has to be supported in common

ways federation-wide, i.e. interoperable mechanisms are required to manage experi-

ments in such multi-domain, heterogeneous environments. The Fed4FIRE federation

architecture [10], [11] follows the heterogenous federation model and deőnes a set

of common APIs that are adopted by the participating testbeds to be federation

compliant. This means that each testbed provider committed to the federation should

implement the common, standardized APIs for external interactions. This approach

allows testbeds to maintain tools and techniques already in place. These tools are

used to manage resources and services ofered to experimenters to support the whole

experiment lifecycle. The common API overcomes the variety and heterogeneity of the

technologies, languages and protocols used at the testbed level. SFA, OMF/FRCP

51http://fiteagle.org

42

http://fiteagle.org

2.5. Monitoring Concepts and Solutions

and OML are the de-facto standard protocols or APIs that are used in Fed4FIRE

federation to support the experiment lifecycle.

From the viewpoint of the federation operation and stakeholders’ interaction, the

model followed by Fed4FIRE is similar to the one-stop-shop [77]. The federator

provides all the support to őnd and acquire the right to use the infrastructures’

resources, i.e. resource discovery and reservation. The experimenter invokes services

on the infrastructures directly. Furthermore, as with the matchmaker model, there

might be a need for contracts or SLAs between the federator and the federation

members, so as to determine what the federator can and cannot do [77].

2.5. Monitoring Concepts and Solutions

Monitoring is an essential part of every ICT infrastructure. It facilitates the control

and management of diferent entities in various application areas, such as computing,

storage and network resources, networking and connectivity, systems, processes,

applications, and traic ŕows. As per its deőnition (see Sec. 1.1), monitoring is the

process of observing and recording information about these entities to determine

their state, usage, performance, and behavior. This information is utilized by service

components to make intelligent control and management decisions, e.g. for health

and performance assurance, capacity and resource planning, security and privacy

assurance, SLA management, data analytics, etc. Furthermore, monitoring is also

required by users who are interested in obtaining information or even executing the

measurements themselves to determine and evaluate their services or applications.

As the scope of this thesis includes the federation of cloud and FI experimentation

facilities, the focus in the following will be on the monitoring aspects within these

areas. Thus the main stakeholders are the infrastructure providers, federation services

(provided by the federator) and users (experimenters in experimentation facilities and

cloud services or application providers in cloud facilities). Infrastructure providers

are looking for rich monitoring information of their resources (physical and virtual)

to ensure their operational health and availability, as well as to understand the

performance and the behaviors of the deployed resources, services and platforms

for efective and eicient decision-making in terms of provisioning, management

and optimization. Information is required by federators to manage federation-wide

services, such as keeping track of the health and availability of infrastructures and

providing knowledge for all parties in the federation through a FLS dashboard,

SLA management, brokerage and reservation, charging and billing, etc. Users are

interested in monitoring information about the used resources and are sometimes

looking for capabilities to execute measurements themselves to determine and evaluate

their services or applications. In experimentation facilities, the users (referred to

as experimenters) are the major monitoring stakeholders, as measuring experiment

43

2. State of the Art

resources and collecting observations are an essential part of any scientiőc evaluation

or comparison of technologies, services or applications being studied.

2.5.1. Monitoring Concepts

This section gives an overview of diferent concepts and terms related to monitoring

discussed throughout the thesis.

2.5.1.1. Monitoring Process Stages

Usually, the monitoring process goes through multiple stages. It starts with producing

the information from particular Measurement Points (MPs), considered to be data

sources, using diferent kind of tools (capturing tools, measurement probes, agents

or clients), depending on the application area, for instance, utilizing the Iperf52 tool

to get delay information between two points. This step is also referred to as data

acquisition. After that, the data might be transported to an external collection

resource. The data might be processed, i.e. őltered or sampled (usually this happens

before being transported to external collectors), and then stored or directly provided

for users if data storage is not required or supported. If it is stored, for instance in a

database, it can be accessed, visualized or analyzed. In some cases, where needed,

the data can be archived for post-processing and future use.

As already mentioned, measurements can be performed as part of the whole

monitoring lifecycle in order to acquire monitoring information. Measurements can

also be executed as a stand-alone process in order to check particular states or values

at any point in time. The deőnition of measurement used within this thesis is as

follows.

Definition of Measurement: As deőned by Weiner [87] measurement is: "A sys-

tematic, replicable process by which objects or events are quantiőed and/or

classiőed with respect to a particular dimension. This is usually achieved by

the assignment of numerical values."

Measurements can be performed in any environment to monitor either hardware

or software. Measurement data can also be obtained in diferent ways, by diverse

tools, with data then utilized by various types of consumers. Within the context of

this thesis, measurement data is acquired from various sources that expand vertically

(cross-layer) and horizontally (cross-domain) according to points of observation.

2.5.1.2. Cross-Layer Monitoring

New models of ofering services, driven by emerging technologies and paradigms like

Cloud Computing, SDN and IoT, vary in their deployment and operation. To give an
52https://iperf.fr

44

https://iperf.fr

2.5. Monitoring Concepts and Solutions

example from the cloud domain where multiple stakeholders are present (infrastructure

providers, cloud services providers and cloud services consumers), IaaS services are

deployed and ofered diferently than PaaS and SaaS services. Their consumers also

receive diferent control permissions, as discussed in Sec. 2.2.2. In such environments,

stakeholders will have diferent interests in the information about their resources,

which again varies from layer to layer depending on the type of service and the level of

permitted control. Cross-layer monitoring services are of major interest from low-level

hardware resources (e.g. CPU, memory), through to OSs, networks, platforms and

up to the application layer [32], [64], [88], [89].

Definition of Cross-Layer Monitoring: Monitoring all functional layers expand-

ing from low-level resources (e.g. CPU, memory) through the network up to

the services and applications layers.

2.5.1.3. Cross-Domain Monitoring

The importance of obtaining monitoring information at multi-domain level (or across

domains) is present in many ICT sectors. An example is the Wireless Mesh Networks

(WMNs) domain, which was one of the inspiration that motivated the need for a

monitoring solution operating across domains in this thesis. In [55], virtual, context-

aware WMNs are built with the help of network virtualization to serve diferent

service providers. This allows an end-user to have multi-access through a single access

technology/device, thus, being able to connect to the best őt Virtual Network (VN).

Monitoring is a fundamental task to support the management of multiple VNs, which

may have diferent context characteristics (i.e. diferent QoS, mobility and security

conőgurations). It is necessary to monitor the virtual resources, which form the

VNs themselves, as well as QoS, mobility and security related metrics. In addition,

the energy consumption is a further signiőcant characteristic to be considered. In

[90], diferent methods have been considered to save energy in wireless federated

infrastructures. Virtualization is a key technology that enables saving energy in

diferent ways, not only by virtualizing resources to create multiple software-based

instances on top of the physical one, but also by virtualizing wireless access interfaces

that can be used to build WMNs [56]. When detailed monitoring information is

lacking in such meshed (federated) environments, it would not be a trivial task to

optimally and eiciently manage their operation. Such information may include details

of the infrastructure resources (e.g. energy consumption and resources availability)

and the state of the load (e.g. the number of subscribers and their usage)

Beyond its importance in grid infrastructures [91], cross-domain monitoring support

is essential in federated infrastructures within the context of Cloud and FI testbeds

and experimentation [29], [37], [89], [92]ś[94], as MPs are distributed across multiple

domains that might be of diferent nature (wired, wireless, cellular, virtualized

45

2. State of the Art

infrastructures, etc.) and independently administrated, e.g. [11]ś[13], [19]. In such

environments, both cross-layer and cross-domain monitoring support is basically

required, as diferent level of information across multiple, distributed domains is

required by the various types of consumers. For example, infrastructure providers

look for information on the health and performance of their resources; federation

services are looking for information on the availability status of resources across the

federation, SLA validation, interconnectivity across-domains; and users are looking

for information on their usage and service quality (at the services and applications

level), where services and applications resources are deployed across domains.

Definition of Cross-Domain Monitoring: Monitoring various components, sys-

tems, network and software metrics that are distributed across multiple domains.

2.5.2. State-of-the-Art Monitoring Solutions

This section gives an overview of some of major tools and solutions currently used by

cloud infrastructures and FI testbeds. As OML and Zabbix8 are the most relevant

solutions in this thesis, they are discussed in more detail in separate sections.

2.5.2.1. Review of Monitoring Solutions in Cloud Computing

In commercial and experimental cloud infrastructures, there are many monitoring

systems and solutions being used. Cloud monitoring solutions are mainly targeting ho-

mogeneous, single-entity administered cloud infrastructures [26], [27], [31]. Examples

include Ganglia53, Nagios54, Zabbix8, collectd55, OpenNMS56, Groundwork57, Cloud-

Status58, CA Uniőed Infrastructure Management59 (formerly CA Nimsoft Monitor),

MonALISA[95], mOSAIC[96] and CASViD[97].

Moreover, several monitoring architectures targeting cloud management and mon-

itoring have been proposed in the literature. For instance, the service oriented

monitoring solution [98]ś[100] of the European OPTIMIS project [101] is one of the

OPTIMIS Toolkit’s software components. It is used to provide monitoring information

about virtual and physical resources of cloud infrastructures and services in order to

support self-management and optimization processes. It is based on open-source tools,

such as the monitoring tool Nagios54, which is extended through the implementation

of NEB2REST (RESTful Event Brokering module) to interact with a RESTful Web

service [102] for monitoring resources and services [98]. The Private Cloud MONitoring

53http://ganglia.sourceforge.net
54http://nagios.org
55http://collectd.org
56http://www.opennms.org
57http://www.gwos.com
58http://cloudstatus.eu
59http://www.ca.com/us/opscenter/ca-unified-infrastructure-management.aspx

46

http://nagios.org
http://www.opennms.org
http://www.gwos.com
http://cloudstatus.eu
http://www.ca.com/us/opscenter/ca-unified-infrastructure-management.aspx

2.5. Monitoring Concepts and Solutions

System (PCMONS) [103] is another solution that is based on Nagios54 as well. The

elastic monitoring framework introduced in [104] enables monitoring resources from

low-level metrics from OSs to higher level application-speciőc metrics derived from

services.

The aforementioned systems and architectures address the monitoring of cloud

environments but cannot be applied to federated ones where a large number of

resources from heterogeneous infrastructures are ofered to customers.

However, the monitoring solution developed within the European project RESER-

VOIR [105] partially supports some cloud federation aspects. It provides information

about services deployed in federated clouds for service management purposes. Yet,

this solution does not provide information to cloud-service customers. In contrast,

the Amazon monitoring system CloudWatch60 provides monitoring data to customers

regarding their running services, rather than providing data for infrastructure and

service management.

These solutions have not been designed to serve diferent types of users (e.g.

infrastructure management and cloud services customers). Furthermore, even though

some of them might provide partial cross-layer monitoring information, they can’t be

deployed in a form of Monitoring as a Service (MaaS) so that each user can get an

instance of the entire monitoring solution for exclusive use with full control.

This will be discussed in more detail in the requirements (Chapter 3), as well as

in the initial design (Sec. 4.1.1) of the solution delivered by this thesis. Support

is required for monitoring on network and infrastructure levels from heterogeneous

domains, as well as providing monitoring support that run across large populations of

end-to-end resources at the service and application levels.

2.5.2.2. Review of Monitoring Solutions in Future Internet Testbeds

Concerning monitoring solutions in FI testbeds and experimentation facilities, a wide

range of tools and frameworks are used. Many testbeds develop and use their own

tools or use third party open-source tools that are used for monitoring distributed

systems, such as Zabbix8, Nagios54 and collectd55. However, the major ones are

reviewed in [86] and brieŕy below.

INSTOOLS [106], [107] is a system of instrumentation tools that enables GENI

users to monitor and understand the behavior of their experiments by automatically

setting up and initializing experiment-speciőc network measurement and monitoring

capabilities on behalf of users. In its current implementation, the measurement

software is deployed along with the experiment resources to be installed on the

MPs. The collector collects data and provides it to the user through a Web interface.

INSTOOLS is limited to a set of measurements based on classical measurement tools,

60http://aws.amazon.com/cloudwatch/

47

http://aws.amazon.com/cloudwatch/

2. State of the Art

such as Simple Network Management Protocol [218] (SNMP), tcpdump61, Cisco IOS

NetFlow62 and standard OSs tools like ps and vmstat.

There are some eforts to support monitoring across federated infrastructures, but

these are limited to speciőc domains or measurement services. For instance, the

monitoring architecture of the Networking innovations Over Virtualized Infrastruc-

tures [35] (NOVI) research project [35] uses four monitoring tools deployed across

heterogeneous virtualized infrastructures. It is limited to a speciőc use (traic mon-

itoring) in a speciőc domain (virtualized distributed server systems). These tools

are 1) Hades Active Delay Evaluation System (HADES), used for one-way delay,

loss statistics, and hop count information, 2) packet capturing cards for line speeds

up to 10 GBit/sec, 3) the Multi-Hop Packet Tracking [211] (Packet Tracking), an

eicient passive one-way delay measurement solution, and 2) Service Oriented Network

Measurement Architecture [219] (SONoMA).

SONoMA is a Web Service based network measurement platform. It supports

the most common network measurement types (e.g. bandwidth measurement, delay,

network tomography, geographical localization) through a set of functions that are

supported through a standardized SOA-based Web services interface. A user simply

determines what needs to be measured and the system will perform the process. The

data is then forwarded back to the user and automatically stored in the public data

repository, called Network Measurement Virtual Observatory63 [196] (nmVO).

Another solution to support monitoring over multiple infrastructures is Continuous

Monitoring [176] (CoMo). CoMo provides a uniőed data interface but is limited

to passive network measurement. The European Traic Observatory Measurement

Infrastructure [179], [180] (ETOMIC) is another network traic measurement platform

that is synchronized with Global Positioning System (GPS) and allows its users to infer

network topology and discover its speciőc characteristics (e.g. delays and available

bandwidths). Users are able to deploy their own active measurement codes to conduct

experiments over the public Internet.

TopHat [108] is another solution that provides topology monitoring and network

measurements and supports experimentation across federated testbeds. It uses a

dedicated measurement infrastructure called TopHat Dedicated Measurement Infras-

tructure (TDMI) that runs active measurements, including Paris Traceroute. TopHat

provides access to a set of interconnected systems allowing its users to get measurement

information from them. Among those supported systems are DIMES64 [178] (DIMES),

ETOMIC, SONoMA, CoMo, MySlice65 (MySlice) and Team Cymru66 (Team Cymru).

61http://www.tcpdump.org
62http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
63http://nm.vo.elte.hu
64http://www.netdimes.org/new/
65http://myslice.info
66http://www.team-cymru.org

48

http://www.tcpdump.org
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://nm.vo.elte.hu
http://www.netdimes.org/new/
http://myslice.info
http://www.team-cymru.org

2.5. Monitoring Concepts and Solutions

Performance focused Service Oriented Network monitoring ARchitecture [38], [92]

(PerfSONAR) is a multi-domain network performance monitoring framework that

focuses on ofering network performance characteristics (e.g. delay, packet loss, link

utilization and interface error). It has been developed by the Internet267, Energy

Sciences Network68 (ESNet) and GÉANT69 in order to provide network administrators

cross-domain performance information in an easy manner. The framework is divided

into three main layers with diferent modules. The lower layer includes passive and

active measurements performed over MPs; there is one module for each measurement

metric (e.g. one for delay and another one for throughput). A second layer coordinates

the management of measurement tasks with particular Web services. A third layer

at the user level provides a user interface for data representation and visualization.

PerfSONAR services each use a diferent tool for performing measurements. For

instance, Iperf52 is used by the Bandwidth Test Controller70 (BWCTL) service for

conducting throughput measurements, while the One-Way Ping71 tool that implements

the One-Way Active Measurement Protocol [201] (OWAMP) is used to retrieve one-

way delay, jitter and packet loss measurements.

Leveraging and Abstracting Measurements with PerfSONAR72 (LAMP) is a GENI

project that creates an instrumentation and measurement system based on PerfSONAR

in order to be used by experimenters on ProtoGENI.

Although these solutions can be run on multi-domain environments, they are limited

in their support to speciőc őelds of applications, in particular network measurements.

Extending any of these to support cross-layer and cross-heterogeneous-domain mon-

itoring services is costly in terms of time and efort, as well as creating scalability

issues should new őelds of application be covered. Still, there is demand for a generic

and extensible solution capable of supporting various sets of monitoring services in

federated, heterogeneous environment [11], [17], [28]ś[31].

2.5.2.3. ORBIT Measurement Library Framework (OML)

OML is a distributed software framework enabling real-time collection of data in a

large distributed environment. It is mainly used as the measurement part of OMF-

based testbeds as a way to collect and process data from distributed applications

and experiments, but can also be used as a standalone data collection and reporting

system.

From architectural viewpoint, OML consists of two main components for injection

and collection, and a third optional component:

67http://www.internet2.edu
68https://www.es.net
69http://www.geant.net/Pages/default.aspx
70http://software.internet2.edu/bwctl/
71http://software.internet2.edu/owamp/index.html
72http://groups.geni.net/geni/wiki/LAMP

49

http://www.internet2.edu
https://www.es.net
http://www.geant.net/Pages/default.aspx
http://software.internet2.edu/bwctl/
http://software.internet2.edu/owamp/index.html
http://groups.geni.net/geni/wiki/LAMP

2. State of the Art

• OML Client Libraries There are multiple client libraries written (and sup-

porting software) in diferent languages: C-library (liboml2), Python (OML4Py),

Ruby (OML4R), Java (OML4J) and JavaScript (OML4JS). The C library is

native to OML, which provides an API (written in C) for applications or any

software. It facilitates both collection of measurement data and its encapsulation

as OML streams sent to one or more local or remote collection endpoints, called

OML servers, using OML Measurement Stream Protocol73 (OMSP).

• OML Server It receives measurements collected from distributed applications

and stores them in a database backend (SQLite3 and PostgreSQL are natively

supported). OML server is able to collect data from multiple domains at the

same time. Domains can be identiőed through a given experimental domain

name and a sender Identiőer (ID).

• OML Proxy Server (optional) In case OML is used to report data in an

environment involving disconnections from the control network (e.g. in the

case of reporting data from mobile devices), the proxy server can be used to

temporarily bufer data until a connection is available to transfer the bufered

data to the collection server.

OML supports two methods to produce measurements:

• OML allows application developers to deőne customizable MPs embedded in

new or pre-existing application code. Users running the applications can then

direct measurement streams from these MPs to OML servers. OML includes a

program called Scaffold, which facilitates generating MPs of the instrumented

application based on conőgurable templates.

• For applications for which code is not available, it is still possible to collect data

provided by them and report such data to the server through writing simple

wrappers using one of the supported languages (e.g. C, Python, Ruby, Java, or

JavaScript).

One the of the signiőcant advantages of OML is its ability to allow the creation

of ŕexible, user-deőned schemas of the streams carrying the data. Such a feature

makes OML a generic solution that can be used in various application areas for

data reporting. However, such ŕexibility could lead to interoperability and semantic

problems if data is reported by diverse tools or users, as it still lacks common, widely

used, standardized vocabularies or information models [109].

73http://oml.mytestbed.net/doc/oml/latest/doxygen/omsp.html

50

http://oml.mytestbed.net/doc/oml/latest/doxygen/omsp.html

2.5. Monitoring Concepts and Solutions

2.5.2.4. Zabbix Monitoring System

Zabbix8 is an open-source, distributed monitoring solution. It follows the client-server

model, and thus, consists of two major software components: server and agent. Zabbix

allows monitoring of a wide range of devices and software components, such as servers,

network devices, databases and applications. It supports performance monitoring

natively, in addition to an extensive list of OSs and platforms. Besides the built-in

checks (provided by default), it is possible to create customizable, user-deőned checks

on agents. This facilitates automatic and periodic application monitoring.

Zabbix supports diferent possibilities for data acquisition: through the use of native

Zabbix agents (in active or passive mode), SNMP agents or agentless script-based

queries (checking the availability and responsiveness of standard services like mail

or Web servers without the need to install any software on the host devices). In

the use of passive agent mode, the server asks for some data that is then sent back

by the concerned agents. In active mode, agents report data to the server. Agents

are small software components that are conőgured to send measurement data about

predeőned metrics to the server at regular intervals. Agents typically produce the

data by executing Unix scripts written to obtain the measurements. Data is then

collected in a central collection server that includes as a storage backend one of the

supported Structured Query Language (SQL) databases (MySQL, PostgreSQL, Oracle

or Microsoft SQL Server).

Besides a Web interface, Zabbix exposes a JSON-RPC-based API allowing users

to read, visualize and retrieve data in addition to performing Create-Read-Update-

Delete (CRUD) operations for various relevant objects: metrics (called items in

Zabbix), templates, graphs, aggregated and calculated information, and triggers. In

addition to problem detection based on predeőned triggers, Zabbix can send email

notiőcations or report Short Message Services (SMSs) to notify administrators about

a current or potential problem, or even execute shell scripts or any other user-deőned

actions.

Depending on the number of checks, Zabbix can scale up to tens of thousands

of servers, VMs and network devices that can be monitored simultaneously in real-

time. In such large environments, an automated way of monitoring devices is required.

Zabbix, through its automated registration and discovery features, supports automated

setup, conőguration and management. Thus, monitored devices can be added and

removed automatically as they come and go. However, Zabbix has its own housekeeping

process that is executed by the server periodically to remove outdated data. Monitoring

data of a measured item is stored for a speciőc period of time (given in days). This

history property of each item, initially is set to a default value, can be manually

changed on demand based on, for example, the available storage size, or the time

interval during which the data is required.

51

2. State of the Art

2.6. Data Modeling

This section presents state-of-the-art approaches to information and data modeling.

Before describing such approaches, related concepts are őrst deőned. An important

distinction is that between information and data models. A data model, compared

to an information model, can be seen as a lower level of abstraction that includes

more details [110]. In addition, a data model is represented in formal data deőnition

languages speciőc to the used protocol. From this viewpoint, as conceptual models

can be implemented in diferent ways, multiple data models can implement a single

information model.

Definition of Information Model: An information model is used by designers to

model entities and their relationships within a given domain at a conceptual

level [110].

Definition of Data Model: As deőned by NOVI, a data model "describes protocols

and implementation details, based on the representation of concepts and their

relations provided by the information model".

Various challenges are faced while analyzing the possibilities for deőning a common

monitoring information model for complex, federated ICT environments. This is

because of the diversity and heterogeneity of the domains involved, tools used, resources

(virtualized and real) ofered, application areas, and use and access policies. Despite

these challenges, there are a number of diferent approaches to developing information

and data models, as presented in the following sections.

2.6.1. Integration of Heterogeneous Databases

Integration of heterogeneous databases is one possible method to have uniőed access to

heterogeneous data resources. This type of integration is not a simple task to achieve

due to the various data structures and semantics of the integrated schemas. Therefore,

many methods for databases integration exist in the literature. They vary from one

another depending on the associated requirements and usage. Some methods are

based on the use of mediated, global schemas at integration level and local wrappers

above the databases and, thus, allow users to have transparent access to data [111].

Others are based on the use of multi-layered schema architectures (ranging from local

schemas, export schemas and import schemas to global schemas), where each layer

presents an integrated view of the concepts that characterize the layer below [112],

[113].

This approach assumes the deőnition of a particular architecture design for data

access. Such a solution does not scale well in the case of the use of diverse sets of

data sources, nor it is ŕexible and generic enough to accommodate new data sources

52

2.6. Data Modeling

easily. Furthermore, this approach lacks semantic information, expressiveness and

interoperability of data exchange between components. As such, this approach is not

seen as a valid approach to fulőll the requirements of the solution delivered by this

thesis, which aims to provide a ŕexible, scalable and generic solution for the common

representation of data collected and stored by arbitrary monitoring and measurement

tools and frameworks.

2.6.2. Information and Data Models

There are multiple information and data modeling solutions for common monitoring

data exchange, but they are limited to particular domains and/or are designed in a

task speciőc manner.

For instance, the OGF Network Measurement Working Group (NM-WG) worked

to provide shared knowledge about measurement tools and metrics [114]. NM-WG

developed an infrastructure that allows the exchange of network measurement data

and knowledge between diferent systems. NM-WG mainly focused on the deőnition of

a common vocabulary used to provide information about and from diferent measuring

tools. For each of the considered tools, they deőned a particular kind of Extensible

Markup Language (XML) schema [115], called RELAX NG (Regular Language

for XML Next Generation). Information is then sent in XML code deőned by that

schema. Another example is the information representation schema of PerfSONAR. It

is based on the NM-WG’s XML schema that is used to represent network performance

monitoring data.

According to [116], these solutions have two drawbacks:

1. they are based on an XML schema that supports only a common syntax but

does not allow deducing any information from monitoring data;

2. they are limited to a set of services, i.e. they don’t cover every common monitor-

ing concept that exists in large-scale federated, heterogeneous infrastructures.

Furthermore, there are other data models, such as those of the Internet Engineering

Task Force (IETF) SNMP and Internet Protocol Flow Information Export [120]

(IPFIX)[117] protocols, which are discussed in the following section.

2.6.3. Data Transport Protocols

Various protocols are used by the state-of-the-art solutions to transfer monitoring

data between agents and collectors. In this section, those solutions and the associated

protocols adopted in FI testbeds are discussed.

Some solutions are equipped to deal with the variety of tools, data formats and

functionalities, such as DIMES, Measurement Infrastructure for Network Research

[191] (MINER), TopHat [108], PerfSONAR, INSTOOLS [106], [107] and more, as

53

2. State of the Art

discussed in [118]. These solution aim to abstract the diferent tools using a common

way of manipulating them through APIs without providing much detail on how the

data is transmitted, limiting description in some cases to a mention of the use of

Transmission Control Protocol (TCP) streams or capability to support standard

protocols like SNMP and ICMP as it is the case for PerfSONAR and INSTOOLS.

Other solutions, such as SNMP, IPFIX and OMSP, are standard or de-facto-

standard protocols that are used for transmitting data records at application level.

They still rely on the traditional transport protocols, i.e. TCP and User Datagram

Protocol (UDP). These three are discussed in detail as follows.

2.6.3.1. Simple Network Management Protocol (SNMP)

SNMP is an application layer protocol deőned by IETF. Its main goal was to have

a simple means of accessing and managing IP enabled devices remotely. Its usage

has become wider and is often used for network monitoring and fault management.

SNMP is a bidirectional protocol and is based on agent-manager architecture. It

supports two bidirectional data exchange. First, the manager sends queries to the

agent, who responds by sending the desired information. Second, the agent reports

information once a speciőc, pre-deőned condition is met.

The relevant part of the standard to this thesis is the type of information that can be

queried, as well as the data structure and format. This is deőned by a set of managed

objects called Management Information Base (MIB), which aims at abstracting the

features and behavior of the agent in a sort of database. MIB should be known and

agreed between both the manager and the agent. SNMP is constrained to report

only information predeőned in its MIB. Although SNMP is an extensible protocol,

which can be extended to allow the transmission of heterogeneous data, it needs

pre-conőguration of both the manager and agent each time new sets or even new

structure of data needs to be reported. In addition, SNMP does not scale well as

evaluated in [119]. It is restricted to counter or database őelds. Scenarios requiring

ŕows of information could not be supported by such a protocol. SNMP is, however,

a standardized protocol and is supported by a large range of devices and tools. It

is therefore a consolidated protocol that should be taken into consideration when

deciding on the best alternative to transport measurement data.

2.6.3.2. Internet Protocol Flow Information Export (IPFIX)

Similar to SNMP, IPFIX [117] is an application protocol designed by the IETF,

however it is developed for exporting Internet Protocol (IP) traic ŕow information

over the network. Its basic function is to transmit a ŕow information in a unidirectional

manner from an exporter to a collector. An extension to the protocol was introduced

in [120] in order to cover every kind of measurement through the so-called template

54

2.6. Data Modeling

approach, which gives ŕexibility concerning data format. Furthermore, IPFIX has

already been applied in completely diferent scenarios from the ones it was originally

designed for, e.g. in wireless sensor networks [121].

IPFIX can use any transport protocol. However, it is preferred to be implemented

over Stream Control Transmission Protocol (SCTP), while TCP and UDP can be

used. SCTP is preferable due to its reliability and security support, as it is congestion

aware and handles multiple connections.

Datasets and their schemas are deőned through a template that is submitted to

the collector from an exporter prior to sending data. A template contains a schema

of the data coming next, which will include the template key beside the length of the

packet as overhead őelds. The literature lacks reporting on the performance of IPFIX,

however, according to NetQoS [122], IPFIX typically increases CPU utilization on

the conőgured devices by only 1% to 2% on average. The bandwidth consumption

depends heavily on what kind of ŕow is being exported and the transport protocol

used. The additional bandwidth caused by the header of the protocol should not be

of concern in most scenarios.

2.6.3.3. OML Measurement Stream Protocol (OMSP)

Unlike SNMP and IPFIX, OMSP is not standardized yet. However, it is currently

being used as part of the OML framework [123], which is used in several FI testbeds.

OML is based on a client-server architecture. Similar to IPFIX, OMSP is unidirec-

tional and follows the concept of clients submitting data schemas to the server before

sending the data itself. Data can be then sent either in text or binary format.

Concerning the transport protocol, OML always uses TCP streams. A client opens

a TCP connection with an OML server. After that, the client sends the schema,

followed by the measurement tuples. OML allows collection and representation of any

type of measurement data from any distributed applications in a uniőed format.

Similar to IPFIX, within one connection, OMSP client őrst sends data schemas in

a header, followed by the data. These schemas are stored in the OML server. These

schemas can be updated or additional ones can be added at any time. A signiőcant

diference to IPFIX is that OMSP is not standardized and is therefore limited to

a single implementation. Nevertheless, OMSP is capable of carrying any type of

data supporting heterogeneous measurements reported by any application from any

domain. This signiőcant capability makes OMSP the most appropriate candidate for

transporting arbitrary measurement data with unlimited freedom across distributed

measurement systems in a federation environment.

55

2. State of the Art

2.6.3.4. Summary

One of the basic requirements of a distributed monitoring solution for a federated

infrastructure is that its data reporting protocol should be scalable, ŕexible and generic

enough to carry various sets of measurement data. It should also be understood by

other applications at the collection endpoints in order to be able to correctly interpret

diverse datasets.

The traditional, standardized protocols used by the state-of-the-art frameworks

can’t be adopted without further modiőcation to support this requirement as discussed

in the previous section. Although SNMP and IPFIX support uniőed data reporting,

they are limited to particular domains (i.e. network measurement). SNMP only

reports information predeőned in its MIB. IPFIX leverages SNMP’s MIB and has

limited representable information focusing on IP traic measurement.

In contrast, the OML framework uses OMSP, which is a very ŕexible protocol, able

to carry heterogeneous datasets following pre-deőned schemas transmitted as streams.

OML is not limited to particular domains but is generic enough to instrument the

whole software stack (from low-level resources through networks up to applications),

and even take input from any software interface. It has no restrictions on the type

of software to be instrumented, nor does it force a speciőc data schema. Rather, it

supports whichever schemas or streams are in use.

The adoption of the OML framework with its OMSP protocol as a common interface

across the federation allows data to be provided in a common format. However, this

solves part of the problem, as it allows data to be represented in only ŕexible,

user-deőned schemas, but not in a meaningful, standardized way. There is a need

for common information and data models to represent monitoring concepts and

relationships in uniőed manner following a shared vocabulary [109].

2.6.4. Ontology-Based Modeling

Ontologies are used to describe real world things in a formal and explicit vocabulary.

They are widely used in the Semantic Web [216] (Semantic Web) to describe Web

services. However, they have also gained signiőcant attention recently in other

domains, such as BigData, sensor networks and IoT.

Definition of Ontology: "An Ontology is a formal, explicit speciőcation of a shared

conceptualization. [124]" An ontology deőnes a set of formal, explicit vocabu-

laries and deőnitions of concepts and their relationships within a given domain.

Concepts can be classiőed semantically (in terms of their meanings). This is

achieved through classes, subclasses and their instances.

According to [125], "Ontologies are content theories about the sorts of objects,

properties of objects, and relations between objects that are possible in a speciőed

56

2.6. Data Modeling

domain of knowledge. They provide potential terms for describing our knowledge

about the domain." They allow common vocabulary and knowledge to be deőned and

shared between multiple entities. Such a common deőnition of knowledge, facilitates

data exchange, merge and combination among diferent components. Unambiguous

names of terms allow data to be bound to real world objects. They also allow data

reasoning through logical rules.

The following brieŕy describes the main ontology components used to develop an

information model:

• Classes Classes refer to concepts. A class represents a group of individuals

that share common characteristics, also called instances of the class. Multiple

classes can be declared as subclasses of the same superclass.

• Relations Relations describe relationships between diferent concepts (classes

and subclasses), e.g. subClassOf. Concepts usually have properties that can

represent relations. Each property has a domain and range. The domain links

a property to a class or an individual. The range links a property to a class, an

individual or a data range (attribute).

• Attributes These describe parameters, features or characteristics of a class.

They are represented as data properties.

• Axioms These represent assertions (including inference rules) allowing the

insertion of new facts and predicates.

There are also further components including the following:

• Annotation Properties These allow annotations (e.g. labels, comments) on

classes, properties, and individuals.

• Restrictions Restrictions can be value constraints "on the range of the property

when applied to particular classes" or cardinality constraints "on the number of

values a property can take" [126].

Ontology-based information models are extensible to include additional vocabularies.

Among the main strengths of ontology-based modeling are that it is standardized and

expressive, it focuses on interoperability, schemas are unbound and it is extensible

[127]. Information models described through ontologies could be represented by any of

several possible languages [128] such as Frame Logic (F-Logic), Ontolingua, Knowledge

Interchange Format (KIF), LOOM, and Web Ontology Language [126] (OWL). OWL

is the most widely used and powerful language for representing knowledge (publishing

and sharing ontologies) in the Web.

57

2. State of the Art

Subject Object Predicate

Fig. 2.6.: RDF graph

Ontologies use the general-purpose language Resource Description Framework

[213] (RDF) as a data model, which allows describing and organizing the data as

triples of the form subject-predicate-object in graph format, as shown in Figure 2.6.

Figure 2.7 illustrates an example of how information is represented in a graphical

format, where any measurement metric has measurement data and is measured by a

measurement tool.

Metric Data has

Tool

measured by

Fig. 2.7.: Information represented in RDF graphical format

RDF uses diferent formats for serializing (expressing) RDF triples. RDF/XML

Syntax74 is the őrst standard RDF serialization format that serializes the triples as

an XML document. Other alternative serialization formats are RDF-Turtle75, which

allows writing graphs in a natural text format; RDF N-Triples76, which enables a line-

based, plain text format; and Notation3 (N3)77, which is a readable RDF format. RDF

provides basic vocabulary that is then extended in Resource Description Framework

Schema [212] (RDFS). RDFS adds data modeling vocabulary for RDF. OWL is built

on and extends RDF and RDFS with additional vocabulary and semantics. These can

together be seen as a framework for modeling (describing) all forms of data through

vocabulary and for allowing data interoperability through shared conceptualizations

and well-deőned, standardized schemas.

Figure 2.8 shows how an information model can be deőned through an ontology in

e.g. OML, which can then use any suitable data model (e.g. RDF) that in return

uses any of the possible serialization languages for expressing the data.

Finally, it is worth mentioning that the exchange of information in an ontology-

based way is only valid across tools and services that are aware of the ontologies in

question.

74http://www.w3.org/TR/rdf-syntax-grammar/
75http://www.w3.org/TR/turtle/
76http://www.w3.org/TR/n-triples/
77http://www.w3.org/TeamSubmission/n3/

58

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/n-triples/
http://www.w3.org/TeamSubmission/n3/

2.6. Data Modeling

Thing

IM

(e.g. OWL)

DM
(e.g. RDF)

DM
(e.g. XSD)

DM
(…)

Syntax
(e.g. N3)

Syntax
(e.g. XML)

Syntax
(…)

Legend

DM: Data Model

IM: InformaCon Model

N3: NotaCon3

OWL: Web Ontology Language

RDF: Resource DescripCon Framework

XML: Extensible Markup Language

XSD: XML Schema DefiniCon

Fig. 2.8.: Relationship between information model, data model and syntax (based on

[129])

2.6.5. Applied Ontologies

Ontologies have been applied in several őelds. Semantic annotations have been

devolved for the Web Services Description Language (WSDL) and XML schema under

the so-called Semantic Annotations for WSDL and XML Schema [214] (SAWSDL).

Search engines including Bing, Google, Yahoo! and Yandex have collaborated to create

the shared markup vocabulary called Schema.org78. It provides a shared collection

of schemas to annotate websites, allowing search engines to recognize them easily,

improve the display of the search results, and facilitate structured data interoperability.

Semantics have been also introduced for the IoT domain in [130].

Ontologies have been introduced in the converged telecommunication networks in

order to solve interoperability issues, caused by the use of diverse information and

data models [131]. Barcelos et al. have studied the use of ontologies to assist some of

the ITU-T recommendations [132]. This is because the ITU-T models, beside being

limited to the management of the telecommunication networks [133], are written in

natural language to be understood by human. Furthermore, these models contain

many ambiguous declarations that lead even to human misunderstandings in their

interpretation [132].

In the őelds related to this thesis, there are a number of relevant ontologies.

The Network Mark-Up Language [195] (NML) is an information model designed to

describe computer networks. NML, an OGF standard, was designed to be as general

as possible to be easily extensible to cover further emerging network architectures.

78http://schema.org

59

http://schema.org

2. State of the Art

Another example, the Infrastructure and Network Description Language [134] (INDL)

semantically modeled computing infrastructures [134].

There are a number of ontologies focusing on monitoring. Some are out of the

scope of this thesis, such as MonONTO [135], which focuses on advanced Internet

applications and QoS related concepts, and the Semantic Sensor Network [136] (SSN)

ontology [136], which focuses on the domain of sensor networks. The following

ontologies are highly relevant and even partially reused in the ontology developed

within this work.

The aim of the Monitoring and Measurement in the Next generation Technologies

[34] (MOMENT) ontology [34] is to provide a uniőed interface to harmonize network

measurement data produced by heterogeneous sources. It builds upon state-of-the-

art solutions and information models in the domain of network measurements, like

the measurement data standardization of NM-WG, the most common external data

representation from IETF, Applied Internet (CAIDA) Internet Measurement Data

Catalog (DatCat) [137] and data accessing possibilities provided by PerfSONAR.

NOVI information models [35] include three ontologies describing resources, policies,

monitoring capabilities and communications in the NOVI architecture, which focuses

on the federation of virtualized infrastructures. The design of the monitoring ontology

is based on the requirements of NOVI architecture and therefore includes seven models

that describe seven main monitoring functionalities (Query, Task, Event, Feature,

Parameter, Unit and Statistics).

The MOMENT and NOVI monitoring ontologies contributed to the Monitoring

Ontology for IP Traic Measurement (MOI) [36].

2.7. Summary

This chapter presented the state-of-the-art technologies, methods, and solutions

related to the work conducted in this thesis. It covered technologies and paradigms

such as service orientation (Sec. 2.1), Cloud Computing (Sec. 2.2), and virtualization

(Sec. 2.2.4) as well as resource and infrastructure federation models and approaches

(Sec. 2.4).

Sec. 2.3 gave a detailed overview of the major FI experimentation facilities and

testbeds relevant to this thesis. These facilities are used to study and evaluate

technologies, services and networking paradigms of the future.

Furthermore, monitoring concepts and solutions were discussed in Sec. 2.5. The

limitations of the state-of-the-art solutions were brieŕy discussed.

Finally, as information modeling is at the heart of the work of this thesis, state-of-

the-art models were discussed in Sec. 2.6. More emphasis was given to those based on

Semantic Web ontologies, as those implemented within this thesis are ontology based.

60

3
Requirements Analysis

3.1 Sources of Requirements . 62

3.1.1 Emerging ICT Technologies and Paradigms 62

3.1.2 Testbed Management and Operation 63

3.1.3 Federation Operation . 64

3.1.4 User Communities . 67

3.2 Requirements Analysis . 68

3.2.1 General Requirements . 68

3.2.2 Federation Requirements 70

3.2.3 User Requirements . 71

3.3 Discussion and Gap Analysis . 72

3.4 Summary . 73

T
HIS chapter discusses the most relevant functional and non-functional require-

ments on monitoring federated ICT infrastructures. It includes a thorough

analysis of the monitoring requirements of federated infrastructures. This

analysis focuses mainly on Cloud and FI testbed infrastructures, which are used in

this thesis as use cases for federation.

Furthermore, requirements of the emerging technologies and communication paradigms

involved in such environments are taken into consideration. This analysis is conducted

after discussing the state-of-the-art technologies, tools, standards, commercial solu-

tions, international projects and research activities on aspects related to monitoring

and federated Cloud and FI testbed infrastructures in Chapter 2.

It is worth mentioning again that the work in this thesis doesn’t focus on monitoring

speciőc domains, such as cloud, wireless or cellular, nor a particular level of application,

such as the hardware, the network or the application level. Instead, its main focus is

61

3. Requirements Analysis

on monitoring large-scale, distributed and federated environments, taking into account

the demands and features of the heterogeneous domains involved.

As a matter of fact, this thesis will not deliver new tools or solutions for monitoring

particular domains, since a wide range of solutions are available on the the market and

in the literature. For instance, for monitoring network performance, a range of tools

exist that difer from one another in their functionalities. As already mentioned in

Chapter 1, this thesis aims at delivering an architecture that operates across federated

infrastructures supporting monitoring at diferent levels. This can be achieved through

the re-use, extension, adoption and adaption of suitable tools amongst the state-of-

the-art ones and the addition of new features or services that are missing in these

tools.

In this chapter, a set of requirements collected from diferent relevant sources are

őrst explored. Thereafter, a through requirements analysis is conducted followed with

a gap analysis.

3.1. Sources of Requirements

This section gives an overview of the general monitoring requirements in the con-

cerned domains addressed in this thesis. It considers technical and non-technical

requirements of multiple stakeholders interacting within these domains. Of course,

these requirements are limited to those required

• to support and cope with the needs of emerging technologies, models and

networking approaches (e.g. Cloud Computing, SDN, NFV, IoT),

• for the management and operation of the FI experimental facilities and the

federation thereof, and

• by the users to check the performance and behavior of their deployed services

or applications.

3.1.1. Emerging ICT Technologies and Paradigms

In recent years, several ICT technologies and computing and networking paradigms

have emerged. Examples that are relevant to this thesis include Cloud Computing,

SDN, NFV and M2M/IoT.

The Cloud Computing business model has changed the way ICT services and

applications are being ofered and managed (Sec. 2.2). For rapid use and adoption

in many sectors, suitable monitoring methods and tools are required to support

its functionalities [88], [138]. Amongst those tasks that require monitoring support

as discussed in [88] are datacenter infrastructure resources management, capacity

and resource planning, SLA, performance and security management, billing and

62

3.1. Sources of Requirements

troubleshooting. The monitoring information assists cloud providers and application

developers (cloud services users) as follows [17], [64], [138]: to keep resources and

applications (e.g. PaaS, IaaS) operating at peak eiciency; to detect variations in

their performance; to manage SLAs; to track the changes of resource deployment to

cope with the elastic, dynamic and rapid way of resource creation and termination

[139]; and to continuously monitor resources in order to timely predict possible failures

(e.g. failure could happen in an overloaded server) that can be proactively handled

[27]. Cross-layer monitoring support in diferent granularities is required to monitor

the entire cloud stack [26], [88], [138]. This includes the ability for users to deőne own

customizable metrics to measure their services or applications [27].

SDN is another example that has tremendous potential as a networking paradigm,

working to facilitate programable control and orchestration of network services. SDN

is seen as a complementary approach to NFV, where it facilities the orchestration of

the the Virtualized Network Functions (VNFs) [140]. This serves to keep up with

the scale and ŕuidity of cloud resource conőgurations and provides the ability to

control and dynamically change network behavior, thus allowing the placement of the

VNFs where and when they need to be, and facilitating operation and maintenance

procedures [141]. For controlling such dynamically changeable environments, a suitable

monitoring solution is required. It has to be capable of auto-detecting and monitoring

a large number of virtual resources belonging to diferent deployments, as well as

adjusting on-the-ŕy to their changes [140].

SDN is also recognized as a promising paradigm for organizing isolated networks,

as might be the case in dynamic WMNs [55], [142], where dynamic traic engineering

support can be gained through SDN [142]. As already discussed in Sec. 2.5.1.3,

information about the WMNs’ resources (virtual and physical, wired and wireless) is

required; examples include utilization (e.g. CPU-, disk- and memory-usage and energy

consumption) of compute resources at the backbone of the WMNs infrastructure,

as well as link and network quality (QoS parameters) and load. Such WMNs are

discussed here as they are built in a federation-like manner, where access networks (e.g.

WiFi, cellular or sensor networks) might be separately administrated. Furthermore,

they could be considered as an enabler for IoT [55], [142].

3.1.2. Testbed Management and Operation

Monitoring is a key service in any ICT infrastructure to facilitate its management

and operation [86]. Information about the availability, performance, utilization and

behavior of infrastructure resources, services and users are required for many purposes,

like accounting, evaluation, validation and optimization. Multiple stakeholders are

interested in monitoring [10], [19], [94], [107], [143]. Their interests difer from testbed

to testbed depending on the nature of the testbed and the services ofered by each.

63

3. Requirements Analysis

Furthermore, requirements difer from one stakeholder to another depending on the

type, granularity, frequency and delivery methods of the monitoring information.

According to input and feedback collected from several testbed operators within

the context of the FIRE (Sec. 2.3.2) and FI-PPP (Sec. 2.3.3) initiatives, monitoring

plays a key role in the management and operation of testbeds. From the testbed

administrator’s viewpoint, providing rich monitoring information is essential for

efective and eicient decision-making in terms of provisioning, management and

optimization. This is due to the fact that it increases understanding of the performance

and behaviors of deployed resources, services and platforms.

Monitoring information is required during the entire lifecycle of the deployed

service (or experiment), starting from the negotiation (SLAs) and reservation through

to the provisioning, execution, run-time, and service termination. Furthermore,

there is a need for providing collection of measurements required to extend the SLA

understanding towards the fulőllment of the speciőc services requested.

Monitoring and measurements have even higher signiőcance in testbed infrastruc-

tures, where, in addition to serving testbed administrator’s needs, making observations

is essential in experimental scientiőc research. Therefore, from the experimenter’s

viewpoint, measuring experiment resources and their environmental conditions and

collecting observations are an essential part of any scientiőc evaluation or comparison

of technologies or services being studied [10], [17], [19], [64], [94], [107], [143]. Amongst

the functional requirements identiőed by the Fed4FIRE experimental facility for their

users (experimenters) is the need to open up the state of the ofered resources to all

users. This allows users to choose the best resources for their experiments. A further

requirement is to provide monitoring information about users’ resources. Furthermore,

users should be able to request on-demand monitoring and measurements services.

Finally, users’ data should be provided and managed in a secure manner.

3.1.3. Federation Operation

Monitoring information plays a major role in the management of any federation, its

operation and services. Speciőc information is required at the federation level by

several services. Information is required to check the availability status of infrastruc-

tures and their key services (FLS) [10], [11], allow federation management systems to

ensure end-to-end network and service performance and the interconnectivity [144],

ensure that SLAs are met (SLA management) [11], [145], and construct a quantitative

view of the trustworthiness of each facility (trustworthy reputation) [11].

However, concrete functional and non-functional requirements need to be analyzed

and identiőed. Those requirements needed to support the functionalities of a set

of federation services are discussed őrst. This is followed by a discussion of the

requirements commonly found among federations.

64

3.1. Sources of Requirements

3.1.3.1. Monitoring Support for Federation Services

Federation architectures usually include a set of services that facilitate management

[10], [70], [145]. These services can be ofered by one or multiple providers in a

central or distributed manner. Functionality of services relies mainly on monitoring

information as discussed in the following.

First Level Support FLS is one of the central federation services and provides

őrst-line support for users through high-level status information on testbeds and

resources availability. This service displays the overall status of each testbed as a

Red, Amber, and Green (RAG) status through a central FLS monitoring dashboard.

Testbed status is calculated based on the availability of key components of that testbed.

Information for FLS needs to be gathered from the individual testbeds periodically.

A requirement of FLS is the ability to drill down from the testbed RAG status to see

which components are degraded or down. Such monitoring information is also used

by federation administrators or FLS operators to check performance and take proper

action in case of issues in a testbed, e.g. notify the administrator of that testbed.

Service Level Agreement (SLA) Management SLA management requires mon-

itoring information about the used resources on a per-service-basis in order to ensure

that the agreements are met. Predeőned metrics are agreed on between testbed

providers and the SLA management. The data needs to be provided on a regular-basis

during the service lifetime.

Trustworthy Reputation Similar to the SLA service, the reputation service re-

quires monitoring information about the used resources on a per-service basis. Mon-

itoring data needs to be provided by the testbed providers. It is compared with

feedback from users provided as answers to questionnaires at the end of their services.

Both inputs are used to generate the reputation score for each resource or service, with

the score updated after every evaluation. Predeőned metrics are agreed upon between

testbed providers and reputation operators. An example from a wireless testbed could

be channel interference, used to evaluate users’ experience of interference during their

services.

Reservation Brokerage This service allows users to create resources based on a

set of selection criteria (e.g. time, type). The reservation broker requires monitoring

information of physical resources from all testbeds over a predeőned time window

in order to eiciently map the requested resources to the capacity and availability

of resources at testbed level. Such information is considered necessary to schedule

(perform advance reservation of) resources in an intelligent and eicient manner.

Required monitoring metrics are to be agreed on between the testbed providers and

65

3. Requirements Analysis

the reservation broker operators. Examples from a cloud testbed include the number

of free resources and the CPU-, disk- and memory-usage of physical machines.

3.1.3.2. Monitoring Challenges Across the Federation

To consider proper requirements of a sustainable federation, those of three practical,

large-scale testbed federations are analyzed, namely BonFIRE, FIWARE Lab and

Fed4FIRE. The Fed4FIRE federation, for instance, includes multiple heterogeneous FI

testbeds that are distributed in various European countries, with each already serving

numerous users. In such complex, large-scale, heterogeneous and geographically

distributed environment, used by a large number of users, various sets of functional

and non-functional requirements are identiőed, among these are the following:

• Users have diferent interests in monitoring services depending on the types of

experiments planned. Therefore various monitoring services are ofered in a

ŕexible way (diferent conőguration is possible), so that users have the ability

to conőgure their requests on-demand.

• Numerous resources are deployed and monitored and large amounts of mea-

surement data are collected from multiple testbeds and then provided to users.

The proposed monitoring solution would consume resources (e.g processing

resources, bandwidth and storages) for performing its services. These services

include the execution of measurements, data collection, conversion into a uniőed

format, transportation, and making data available to users. It therefore has

to be designed in a way to minimize the consumed resources for supporting

monitoring services and to minimize the impact on the experiments themselves.

• Data is collected from heterogeneous data sources, which might provide the

data in various schemas and formats. Therefore, there is a need for harmonizing

measurement data to be provided in a uniőed data representation and in a

standard manner.

• Experiment resources may be deployed across the federation. It should be

possible for a user to have data collected in a common way in one location.

• The user should be able to identify any collection endpoint to which the data is

pushed.

Furthermore, several architectural requirements from a sustainability viewpoint are

identiőed in a number of federations [70], [77]. The selected requirements relevant to

monitoring are as follows:

• It is preferable to minimize the central components as much as possible as these

would otherwise put the federation at a great risk concerning scalability and

long-term operability.

66

3.1. Sources of Requirements

• Support for a fast, easy way for infrastructures to join and leave the federation

is required. This is valid for the monitoring solution as it’s part of the federation

framework.

• The solution should be as tool-agnostic as possible, thus being easily extensible,

allowing integration of additional tools (compatibility with the legacy tools).

• A monitoring solution should be capable of ensuring federation compliance, e.g.

reachability and link bandwidth between infrastructures.

• Data should be provided in an interoperable way through common interfaces.

3.1.4. User Communities

Monitoring interests and requirements vary among user communities. In a federation

of infrastructures of the same nature, such as cloud infrastructures, users might have

similar interests in monitoring services. However, in a heterogeneous federation, such

as Fed4FIRE, various user communities are involved that have diferent interests.

Such diversity should be taken into consideration while designing the monitoring

solution used in these environments.

Furthermore, the solution should have the ability to deal with various conőgura-

tions and resource deployments across the federation. This is due to the fact that

multiple, diverse deployments from diferent users might simultaneously run on a

single infrastructure or across multiple infrastructures.

In addition to these non-functional considerations, several functional user require-

ments are identiőed [17], [86], [94], [107], [146]ś[148]:

• Monitoring services need to be ofered and requested on an on-demand basis.

• Domain-speciőc measurement should be supported.

• Users in experimental facilities require monitoring information regarding the

ofered resources. This allows them to choose the best resources for their needs.

Furthermore, it allows them to distinguish between errors caused by their

applications and services from those related to the testbed infrastructures.

• Users should be able to create, view, update, and terminate monitoring conőgu-

rations related to their applications and services in real time.

• An easy method is required for users to store their own measurements during

and after the service runtime for post processing and analysis. The data should

be clearly identiőed and stored related to their applications or services (e.g.

using unique ID).

67

3. Requirements Analysis

• Measurement data needs to be provided to users on-demand, either on a per-

request basis, or on a regular basis or even on schedule to provide the information

within a given time interval.

• Users should be able to share their stored data with others (individuals or

groups) or even open to the public.

Further non-functional requirements that are of interest to users [86], [107] are the

following:

• It is desirable to reduce or avoid user involvement in the setup and conőguration

of monitoring service deployments.

• Users demand both secure access to their datasets and results, and that the

privacy of their data is guaranteed.

• Data should be collected from diferent sources and provided in a user-friendly

manner via common and standard interfaces or visualization tools.

3.2. Requirements Analysis

A range of diverse monitoring and measurement capabilities and requirements have

been discussed in Sec. 3.1. These are analyzed and the common and relevant func-

tional and non-functional requirements are identiőed in this section. The identiőed

requirements are grouped into three categories: general, federator and user related.

3.2.1. General Requirements

This section includes those requirements that are valid or required in a generic context,

i.e. by the monitoring stakeholders. The identiőed general requirements are as follows:

Req-1 Cross-layer monitoring Monitoring information in multiple granularities

is required from low-layer metrics monitoring (infrastructure level, e.g. CPU)

up to the upper-layer (application speciőc) [26], [88], [94], [138]. This includes

high-level information on facility status (e.g. resource availability for FLS), as

well as monitoring of shared resources (e.g. from cloud infrastructures, either

underlying resources shared by VMs or those shared by multiple applications

within one VM [27]).

Req-2 Cross-domain monitoring Cross-domain monitoring is needed for a solution

that is capable of operating across federated domains, gathering data from

diferent sources and providing it to consumers in a common way [17], [88], [94],

[138].

68

3.2. Requirements Analysis

Req-3 On-demand Monitoring services are provided on an on-demand basis [64],

[94], [143], [149].

Req-4 Autonomic A good monitoring solution should be able to automatically adjust

to dynamic changes in monitored entities, as resources are created and destroyed

in a dynamic manner. For instance, they should automatically react to the

auto-scaling and rapid changes in the deployment of VMs without the need for

any manual intervention [26], [39], [88], [123]. In federated infrastructures, there

is a need to deal with changes in the federation, as MPs as well as monitoring

tools will change and vary. The federation may be expanded to include more

infrastructures or even shrunk [26], [123], [149], [150].

Req-5 Comprehensiveness A comprehensive solution is desired to support moni-

toring diferent types of resources and to collect several kinds of monitoring data

from heterogeneous data sources (e.g. platforms, hardware, software, mobile or

stationary devices) [26], [88].

Req-6 Extensibility An extensible solution is required to cover more features, as

well as measurement metrics [88], [148], [150].

Req-7 Scalability The solution should be able to deal with a rapidly increased

number of MPs and collected data [27], [31].

Req-8 Standard and common data representation Data has to be provided

through standard and common formats and metrics [39], [88], [109]. A well-

structured data model is needed in order to provide monitoring data in a

meaningful way. It should cover the common concepts and relations of monitoring

functionalities. It should also be extensible, so as to be able to accommodate

new monitoring concepts of additional domains in the future [149].

Req-9 Programming interfaces Monitoring data needs to be provided in multiple

ways, including visualization capabilities and APIs [94], [149]. It’s desirable

to allow users and tools to interact with monitoring capabilities through pro-

grammable interfaces [138].

Req-10 Standardization and openness Data needs to be transferred through

standard interfaces and communication protocols federation-wide [39], [138],

[149]. The adoption of the widely-used standards (e.g. Hyper Text Transfer

Protocol (HTTP), SNMP) should also be possible.

Req-11 Interoperability and compatibility A domain-agnostic monitoring solu-

tion is desired that can operate across multiple infrastructures in an interoperable

and compatible manner [123], [138].

69

3. Requirements Analysis

Req-12 Continuous monitoring A continuous resource (software and hardware)

monitoring process is desirable [138]. It supports fault management as it enables

timely prediction and detection of failures (e.g. failure could happen in an

overloaded server) that can be proactively handled [27]. It has also to be able

to diferentiate between failures and resource (e.g. VM) terminations [26].

Req-13 SLA monitoring Monitoring QoS parameters and further computation

metrics is required for SLA validation [11], [138], [145].

Req-14 Time sensitivity Data should be provided with minimal latency, i.e. mini-

mizing delay and transfer costs [26].

Req-15 Accuracy Data should be provided with high accuracy and precision [31],

[123].

Req-16 Reliability In large-scale, distributed environments where huge amounts of

data are exchanged, delay in data delivery and single point of failures should be

avoided. A distributed approach might help in this matter.

Req-17 Archivability Historical monitoring data needs to be archived and thus

remain available for post-processing [27].

Req-18 Security It’s required to have secure data transmission, as well as authenti-

cated access to monitoring data [27], [77], [150].

Req-19 Minimal impact As few overhead as possible should be expected from the

monitoring solution [150].

3.2.2. Federation Requirements

Federation of multiple administrative domains is not a trivial task. It even introduces

new challenges that need to be tackled as they arise. Further considerations have to

be taken into account in order to cater for a sustainable and manageable federation.

Therefor the federation adds more and new types of requirements to the previous

ones. The identiőed federation-related requirements are as follows:

Req-20 Tool-agnostic The collection and representation of monitoring data at in-

frastructure level have to be independent from the monitoring tools installed

[11], [77], [149].

Req-21 Reusability Monitoring tools that are already in place in the infrastructures

need to be maintained. They can be enhanced or extended to adapt to the

overall solution [77], [143], [149].

70

3.2. Requirements Analysis

Req-22 Federation aware Monitoring solution components should be integratable

into the federation architecture to interwork and interoperate with the rest

of the components of the architecture, such as the management, control and

federation systems [77], [149].

Req-23 Real-time and historical data Monitoring information about resources

is required by some consumers (e.g. SLA management) during their usage (in

real time), while other consumers (e.g. reservation brokerage) require historical

information [149].

Req-24 Data delivery Monitoring data needs to be delivered in both push and pull

manners [149], [150], as well as on a per-request basis and on a regular-basis

[150].

3.2.3. User Requirements

As users are always at the heart of any infrastructures, further requirements from the

user’s viewpoint are considered [17], [86], [94], [107], [146]ś[148]:

Req-25 Ease of use Automatic setup of monitoring services is required, allowing

users to request only services of interest without involvement in the entire

setup process. The setup and delivery of data are then the responsibility of the

monitoring solution.

Req-26 Usefulness Users require the ability to setup and control multiple, diverse

conőgurations that run simultaneously.

Req-27 Customizability A customizable solution is required that allows users to

choose metrics they want to be monitored or even deőne new ones for monitoring

their services or applications [27], [151].

Req-28 User-friendliness Access to monitoring data should be user-friendly.

Req-29 Data storage flexibility Users need to have the ŕexibility to decide where

to store their data and how large the storage capacity should be.

Req-30 Data availability Users require access to data both during the services’

lifetimes and afterwards for post-processing.

Req-31 Group support Support for the concept of groups is required, so that a

group of users can manage their monitoring conőgurations and access the data

as long as they are authorized.

71

3. Requirements Analysis

3.3. Discussion and Gap Analysis

The rapid development of new ICT technologies and computing and networking

paradigms requires suitable (maybe new) tools and methods for supporting their

functionalities, such as monitoring and controlling capabilities. For instance, with

the introduction of Cloud Computing, a suitable monitoring solution was needed

that provides the necessary information for controlling and managing the deployed

cloud services in accordance with standardized models and cloud characteristics

(Sec. 2.2). Solutions used for monitoring grid infrastructures and distributed systems

have been also used for monitoring clouds. However, multiple research studies on

monitoring cloud environments [26], [31], [152] have shown via thorough analysis and

comparisons of state-of-the-art solutions that none of them fulőlls all requirements

of cloud monitoring. Nevertheless, through enhancements or extensions, some tools

provide most of the needed support.

The federation of multiple administrative domains is another active őeld of research

in the ICT world, in particular in Cloud and FI experimentation domains (Sec. 2.4).

Such a federation introduces further challenges and requirements to support its func-

tionalities. The monitoring of heterogeneous resources across multiple administrative

domains is recognized as one of most critical challenges for establishing a federation

[21], [22]. The variety of the solutions used leads to several research questions related

to compatibility and interoperability, as solutions could have speciőc design, various

interfaces and use diferent protocols. The research literature lacks a solution capable

of overcoming the limitations of state-of-the-art solutions in fulőlling the federation

requirements. The need for such a solution has been identiőed in a couple of research

projects that focus on designing federation architectures and, accordingly, building

federated environments [11], [17], [28]; in research calls [29], [30]; and in the survey on

cloud monitoring in [31].

As this thesis focuses mainly on facilitating the monitoring of federated infrastruc-

tures, the related requirements are considered. A list of monitoring requirements

were identiőed in the previous section. Also considered were partial requirements

from some emerging technologies that are at the heart of the concerned federations.

That means that, on the one hand, those requirements that might be afected or need

extra care in the federation are considered. On the other hand, other domain- or

technology-speciőc monitoring related challenges and requirements might need further

investigation, but these are out of the scope of this thesis.

Some of the identiőed requirements that support a particular functionality can

already be supported by traditional tools. They are considered in the target solution

delivered by this thesis as they are valid and signiőcant in the federation. For instance,

the monitoring solution has to be autonomic in order to deal with the rapid and

dynamic changes in cloud resources, as cloud services might be ofered in an auto-

72

3.4. Summary

scalling manner. This requirement needs to be further considered in a federated

environment where resources are deployed across infrastructures. Other examples

include archivability, scalability and security.

By contrast, some requirements are federation-speciőc and have not yet been con-

sidered by sate-of-the-art solutions in the types and scales of the federations addressed

within this thesis. For instance, the monitoring solution should be tool-agnostic to

facilitate building sustainable and dynamic federations. Further examples include

interoperability and compatibility, and standard and common data representation.

The target solution should cover cross-layer and across-domain monitoring services

provided for individual, diverse users on-demand. It should also reŕect the general

requirements that any monitoring system should consider, such as scalability, extensi-

bility, and data delivery models (per-request or on-regular) to provide static hardware

and software conőgurations (e.g. number of CPUs) and dynamic information (e.g.

current CPU load) [150], in common data format and representation. To provide

the data in a common format across heterogeneous infrastructures, a standardized

protocol has to be used. However, meaningful common data representation is a

painful task, in particular, where a large number of diverse metrics, tools and domains

are considered. In order to have a common understanding and representation of

concepts and relations in such a complex environment, common information and data

models need to be used. Some of the models available (e.g. PerfSONAR, MOMENT

and NOVI) are limited to particular domains and have narrow scope. In contrast,

federated infrastructures, like those addressed within this thesis, have heterogeneous

domains and wide scope. Such limitations of the previously existing models hinder

their direct adoption; nevertheless, they are used as a starting point for the model

developed within this thesis.

3.4. Summary

This section discussed various sets of monitoring requirements. Sec. 3.1 presented

four types of requirements sources: i) emerging, thesis-relevant technologies and

networking paradigms, ii) testbed providers, iii) federation operators, and iv) users.

These requirements are analyzed in Sec. 3.2 and a set of concrete functional and

non-functional requirements are identiőed. The need for the selected requirements

and their realization are discussed with a gap analysis in Sec. 3.3. All the identiőed

requirements are considered in the design of the target monitoring solution, as will

be discussed in Chapter 4 (architecture design and speciőcation) and Chapter 5

(monitoring information model).

73

4
Architecture Design and Specification

4.1 Conceptual Phase of Design . 77

4.1.1 Initial Phase of Design . 77

4.1.2 Design Decisions and Goals for Final Design 83

4.2 Generic, Flexible and Extensible Architectural Design 84

4.2.1 Architectural Design Principles 85

4.2.2 Reference Federation Model 86

4.3 MAFIA: Monitoring Architecture for Federated Heterogeneous
Infrastructures . 87

4.3.1 Types of Monitoring and Measurements Services 88

4.3.2 Architecture Components and Interactions 91

4.4 Summary . 98

T
HIS chapter introduces the design and speciőcation of the monitoring archi-

tecture delivered by this thesis. Design was performed as an iterative and

incremental activity. Based on the requirements identiőed in Chapter 3,

it focused őrst on fulőlling the basic requirements for monitoring federated cloud

infrastructures, considering various aspects of clouds (e.g. virtualization, elasticity)

and the federation (e.g. diferent administrative domains with diferent access poli-

cies). The design has evolved according to additional requirements on ŕexibility and

sustainability, as well as feedback from deployment of the initial design. Going beyond

the requirements and use of the solution within the context of the cloud domain, a

generic, ŕexible and extensible design has been targeted. This design covers various

aspects for monitoring federated, heterogenous infrastructures that comprise domains

of diferent natures (e.g. cloud, WiFi, cellular and sensor networks, SDN-enabled),

taking the federation of heterogeneous testbeds for FI experimentation as a use-case.

75

4. Architecture Design and Specification

After performing a thorough analysis of monitoring requirements (Chapter 3) and

state-of-the-art solutions (Chapter 2), the őrst step towards achieving the objectives

of this thesis is to design an architecture for monitoring federated infrastructures.

The architecture should accommodate various types of monitoring and measurement

services and provide the data for multiple stakeholders. The aim of this architecture

is to meet the identiőed requirements of stakeholders, as well as support the speciőed,

relevant functional and non-functional requirements, while taking into consideration

infrastructures of diferent owners and natures.

Note, however, that this thesis does not intend to design and develop a completely

new architecture from scratch, thus avoiding the introduction of yet another solution.

Instead, the relevant existing technologies and protocols are analyzed and, as much as

possible, adopted or adapted to be part of the architecture’s functional elements. The

missing architectural elements are speciőed and implemented. The architecture aims

to fulőll all the demanded functionalities, taking into account multiple non-functional

requirements, such as standardization, reduction of implementation efort and time,

and performance.

The design process has been developed iteratively and incrementally, adapting to

changing requirements (due to change of federation models and the federated infras-

tructures addressed in this thesis) and responding to feedback from the deployment of

the initial design (see Figure 4.1). From this perspective, this chapter őrst discusses

the initial phase of the design process (including methods and motivations behind

decisions made during these phases), followed by the őnal architecture design and

speciőcation.

Requirements
Some tools can be

adopted or adapted

Architecture

Design

Implementation

Deployment

Check

SotA

Final Solution

Validation

No valid solution

Improve

(redesign)

OK

Reusability

Fig. 4.1.: Design process

76

4.1. Conceptual Phase of Design

4.1. Conceptual Phase of Design

This section discusses the engineering design process in its initial phases. It’s worth

mentioning at this stage that the initial motivation for this thesis was the limitations

of the state-of-the-art monitoring systems and the urgent demand for a system

capable of aggregating a multitude of measurements from resources of diferently

administrated, federated cloud infrastructures [30]. This is due to the fact that

each application, platform or infrastructure has its own monitoring solution and this

hinders interoperability across federated clouds in terms of management, control and

information exchange.

The design process is divided into two phases:

• Initial Design Phase The focus was on designing a system architecture that

fulőlls a set of basic monitoring requirements for emerging cloud platforms, with

an emphasis on their federation and the deployment of services and applications

across domains in the form of PaaS and IaaS.

• Final Design Phase The focus was on improving the design towards a generic

and ŕexible architecture taking into account sustainability considerations. In

this phase, the solution assumes that each infrastructure participating the

federation runs its native (or any suitable) software, but provides the data in a

common way.

4.1.1. Initial Phase of Design

The design follows a homogenous federation model (see Sec. 2.4.1) and is based on the

fact that the same monitoring tools are deployed on all infrastructures participating in

the federation in order to facilitate interoperability and compatibility (Req-11). Each

infrastructure runs an instance of the monitoring solution and is, thus, independent

of any central components or organizations.

The architecture design is driven by a twofold objective. First, monitoring informa-

tion for infrastructure providers and federation administrators should be provided to

assure the health and performance of the federated cloud infrastructures and their

internal services (e.g. supporting elastic service deployment), as well as service related

measures that are consumed by cloud users to monitor their deployed cloud services.

Second, the required services should be supported with minimal efort and complexity.

The term ’user’ is used in this chapter and the following chapters to refer to a

service provider in any ICT infrastructure, cloud customer in a commercial cloud or

an experimenter in a cloud-based or FI testbed. Furthermore, a User-Customized

Resource Environment (UCRE) refers to an environment that comprises a collection

of resources (compute, network, storage, software, etc.) created in a customizable,

on-demand manner, conőgured and used by a user or even a group of users. A UCRE

77

4. Architecture Design and Specification

is used to run an ICT service in any ICT infrastructure or an experiment in an

experimentation facility. In cloud infrastructures, a UCRE can be a cloud service

(e.g. PaaS or IaaS). It can be also any ICT service platform that can be created by

a user in a customizable, on-demand manner similar to the cloud service models or

experiments in experimentation facilities.

4.1.1.1. Architectural Design Principles

In this design, it’s assumed that the networking (on-site and cross-site connectivity)

is managed at the federation level by using a Wide Area Network (WAN) or a layer-3

multi-domain Virtual Private Network (VPN). The architecture is then designed

following a number of architectural principles [64] as follows.

Monitoring-as-a-Service (MaaS) Monitoring services are ofered like any other

cloud delivery models, following the concept of XaaS, and thus under Monitoring-as-

a-Service. The architecture is capable of providing monitoring services on-demand. It

leverages the paradigm of everything-as-a-resource. I.e. if it’s a resource, it can be

instrumented (through speciőc resource adapters, also called probes) and, as such,

monitored (Req-5). Monitoring data provided by the probes is collected in the data

collector and is őnally accessed by users or other systems.

On-Demand Basis Users are able to request any of the ofered monitoring services.

This decision can be taken while requesting cloud resources of the UCRE (Req-3).

MaaS Provisioning During the deployment of a UCRE, the monitoring probes are

deployed with the rest of the cloud resources as just another deployable object (Req-25,

Req-26, Req-28). Before that, the deployment of the data collector is performed,

which collects and stores data. All probes are then automatically conőgured to report

data to the collector (Req-25, Req-26, Req-28). The measured data can then be

accessed via its interfaces. The system design assumes that each user has a single

monitoring collector running on one of the VMs created as part of the UCRE. This

both assures privacy of information (Req-18), and is guaranteed to work with a wide

range of cloud providers, as it provides monitoring as an over the top service in a

cross-domain manner (Req-2).

Data Archive (Short- and Long-Term Availability) Users are able to have

data permanently available after the expiration or deletion of their UCREs or only

available during their lifetimes (Req-30). Three relevant cases can be distinguished:

1. Data is used to observe the correct progress of services or applications deployed

in UCREs. There is no interest in keeping this information.

78

4.1. Conceptual Phase of Design

2. A user decides to keep a trace of the UCRE after its lifetime. As inőnite disk

space is not available, keeping all data indeőnitely is not possible. Nonetheless,

the full data for the last day (or whatever delay is compatible with the cloud

providers’ infrastructure) is available, for a limited time.

3. A user knows that the complete monitoring data will be useful. In this case,

while establishing the UCRE, the user can ask for persistent storage with large

enough storage size as needed (Req-17).

Data Storage Flexibility Users have two options as to where to store monitoring

data (Req-29). It can be stored either inside the same resource hosting the collection

server VM or on external storage resources. With the second option, the database

of the collector is stored in external (and permanent, if required) storage that is

mounted as an additional block device on the collector VM. This option enables more

ŕexibility, a user can on-demand identify the required storage size and the data is

available after the expiration or deletion of the UCRE.

Data Access Programmability Users have the ability to access their data through

standard APIs (or at least in standard formats, such as JavaScript Object Notation

(JSON) or Comma Separated Values (CSV)) as well as able to display the data

graphically through a GUI (Req-8, Req-9, Req-10, Req-28).

Groups and Access Permissions A user has full permissions for their UCRE’s

monitoring collector. However, a group of users could work together on one UCRE and

have the same permissions, but use diferent credentials. In this case, the monitoring

system is responsible for enabling all group members to log in to the monitoring data

using their own credentials (Req-31). Furthermore, limited access to monitoring data

with read-only permissions can be granted to other groups in the case of cooperative

projects (Req-18).

On-the-Fly Reconfiguration On-the-ŕy adjustments should be possible to ac-

commodate the rapid and dynamic changes during the lifetime of the UCRE, as

resources are removed or added. This is done through reconőgurable logic based on

observing notiőcations and events and takes suitable actions to adjust monitoring

services conőguration and data delivery (Req-4, Req-7).

Extensibility The architecture should be extensible to include additional measure-

ment metrics or even monitor new entities (Req-6).

Customizability Users should be able to deőne their own metrics to be measured

according to their needs and speciőc to their services or applications (Req-27).

79

4. Architecture Design and Specification

4.1.1.2. Cross-Layer Monitoring Services

These architectural principles enable the monitoring system to provide ŕexible moni-

toring services. They support cross-layer monitoring (Req-1), as shown in Figure 4.2

and described as follows:

Infrastructure Resources Monitoring Physical infrastructure resources of the

federated clouds are monitored, considering various metrics that are used for assuring

the health and performance of the infrastructure, e.g. CPU-, memory-, disk-usage,

number of VMs running on each physical host, and ingoing and outgoing traic.

UCRE Monitoring Metrics are monitored that address the UCRE status at a

certain moment in time and the number of VMs per UCRE. This includes VM

monitoring, i.e. their status and further metrics like CPU-, memory-, disk-usage, I/O

operations, etc.

Services and Applications Monitoring Metrics are monitored that provide

information about the state of the service or application, its performance and other

service or application speciőc information.

Infrastructure Resources

Network Compute Storage

Cloud IaaS

eHealth Multimedia

Cloud PaaS

Smart X IoT
Services /

Applications

Monitoring

UCRE
Monitoring

Infrastructure
Resources

Monitoring

M
o

n
it
o

ri
n

g
 I
n

te
rf

a
c
e

User-Customized Resource Environment (UCRE)

User Services and Applications

Experiment

Fig. 4.2.: Cross-layer monitoring services

Concerning the last two monitoring types, namely UCRE monitoring and services

and applications monitoring, users have full control of the monitoring software and

setup and can conőgure it as described. They can monitor some or all used VMs,

the network performance between them, QoS parameters, etc. They can monitor

80

4.1. Conceptual Phase of Design

the performance and behavior of the deployed services and applications through the

customizable capability.

In addition, a user can get partial information about the physical machines that

host their VMs, referred to as infrastructure monitoring. Monitoring infrastructure

resources is the responsibility of the infrastructure providers. However, to provide

this service for users and federation administrators (and probably for internal use), an

infrastructure monitoring collector is required that continuously collects information

about the whole infrastructure as reported by the probes running in all physical

machines (Req-12). Information about speciőc metrics is only provided for users,

according to of users’ interests, such as CPU utilization, memory consumption, number

of running VMs and network characteristics.

4.1.1.3. Initial Architecture

The monitoring architecture is shown in Figure 4.3. It is designed based on a client-

server model. Monitoring probes, also called clients, are deployed and conőgured

on each of the user’s VM resources. These clients are responsible for collecting

data for measurement metrics on their respective hosts. Information is sent to a

user monitoring collector (User Collector), which holds all monitoring information,

for direct consumption by the user (via an API or a GUI). The user collector

representing the server is deployed as a separate resource (part of the UCRE) and

collects monitoring data reported by the clients in the UCRE’s VM images.

In addition, the user can get monitoring data about the physical machines host-

ing VMs from the respective infrastructure’s monitoring collectors (Infrastructure

Collectors) through their APIs. This is achieved through a daemon running on the

user collector that is responsible for periodically fetching data and their timestamps

and then storing the data in the database of the user collector. When user VMs

are deployed in multiple clouds, their infrastructure collectors are then accessed by

the user daemon. This daemon is notiőed each time a VM is created, updated, or

destroyed. The notiőcation is delivered through the relevant model, such as mes-

sage queuing and publish-subscribe interaction. The use of message queue allows

guaranteed notiőcation delivery. The daemon acts as a listener and subscribes to

notiőcations sent when VMs’ states are changed. Once a VM is created, the daemon

receives notiőcation, parses the content and stores this information in a local database

along with the name of the physical machine hosting the created VM and the cloud

infrastructure where it’s deployed. The daemon then fetches infrastructure monitoring

information about this physical machine from the respective infrastructure monitoring

collector. If a running VM is destroyed, it’s removed from the local database and no

monitoring data about its hosting physical machine is fetched, unless the user has

other VMs hosted on the same machine. The user can then get data through the API

or the GUI of the user collector with the original timestamps.

81

4. Architecture Design and Specification

PM

User Collector
GUI

C

API

VM

VM VM

Web Portal

PM PM

Cloud Infrastructure A

Infra.
Collector

Infra.
Collector

API

C

C

C

C

C

Infra.
Manager

Infra.
Manager

API

Legend

C: Client

D: Daemon

MQ: Message Queue

Infra.: Infrastructure

VM: Virtual Machine

PM: Physical Machine

UCRE: User‐Customized Resource Environment

 Management & Control

 Monitoring Data

 Publish/Subscribe

User
Collector

D

UCRE GUI

Resource Manager MQ

Cloud Infrastructure B

Fig. 4.3.: Initial design of the monitoring architecture (based on [64])

The technical details of gathering metrics pose a scientiőc challenge themselves.

Moreover, it is virtually impossible to predict all conceivable monitoring metrics

that might be of interest for cloud users, especially when addressing scientiőc users.

Therefore, any comprehensive cloud monitoring solution must be extensible through

user-deőned metrics. For this reason, the architecture is extensible in the sense that

it allows users to deőne their own probes or metrics on the client sides in order to

observe any software or hardware and get the desired information.

4.1.1.4. Architectural Limitations Based on Experience

This architecture was adopted and implemented for monitoring a large-scale, multi-site,

federated cloud facility for FI services experimentation within the European project

BonFIRE. BonFIRE consists of six cloud infrastructures geographically distributed

across Europe ofering heterogeneous cloud services for users, who develop and trial

FI-oriented services and applications.

Although this architecture supports cross-layer monitoring and aggregating a

multitude of measurements from resources of diferent administrative clouds in a

uniőed manner (details in Chapter 7), it assumes the same monitoring tools are

deployed in each of the federated infrastructures.

82

4.1. Conceptual Phase of Design

This architectural limitation prevents straightforward integration of cloud infras-

tructures with their own monitoring systems in place, according to a study performed

and published in [153]. In this study, the integration of an OpenStack11 based cloud

infrastructure within the BonFIRE federation was investigated. This infrastructure

uses the native OpenStack tools and APIs for observing events, messaging and notiőca-

tions, as well as controlling the infrastructure resources. Issues like event observability,

controllability and API compatibility were considered. The study showed a possible

integration through translators and adaptation components. However, this is always

required for any further infrastructure integration. Besides the efort spent for imple-

menting such mapping, mapping procedures have to be deőned and realized anew

each time due to the absence of standardization means.

From this perspective, an open, tool-independent architecture design is essential

(Req-20). This means that the monitoring solution should allow each federated

infrastructure to keep using the tools already in place or use any suitable tool

for its practical needs (Req-21). However, the diversity of the tools used raises a

heterogeneity problem concerning the data formats and schemas, and the ways the

data is represented or accessed. It is therefore necessary to deőne a mechanism

to harmonize data collected from diferent sources and then provide it in a uniőed

manner.

4.1.2. Design Decisions and Goals for Final Design

The major architectural changes in the őnal design compared to the initial one are

that it assumes the use of heterogeneous monitoring tools at infrastructure level

and adopts a proper mechanism responsible for enabling a uniform representation

of monitoring data across domains in order to overcome the heterogeneity problem

(Req-8 and Req-11).

Solving the heterogeneity problem is not a trivial task. Nevertheless, after extensive

analysis of possible solutions, a proper design is deemed to follow a federation model,

where each infrastructure adopts a speciőc set of common APIs and adaptation mech-

anisms to become part of the federation and ofers compatible services independent

of the infrastructure to support the entire service (or experiment) lifecycle including

resource description, discovery, provisioning, monitoring and control. Pros and cons

of this approach and other evaluated ones are presented in [10], and discussed in

Sec. 2.4.1. To this end, it is necessary to deőne those APIs and mechanisms that allow

an infrastructure to ofer the full capacity of the federation services in a uniőed manner,

and to achieve the necessary degree of compatibility with the rest of participating

infrastructures (Req-22). As this thesis focuses on monitoring aspects, the related

interface and adaptation mechanisms are thus described in the following section.

From this perspective, such design allows any infrastructure to be easily integrated

as long as it adapts its tools to the common interfaces in order to provide the data in

83

4. Architecture Design and Specification

a uniőed manner. Furthermore, if a tool is already adapted to a common interface,

it can be deployed in other infrastructures that have no tools in place. This allows

diferent infrastructures to beneőt from the development eforts of others.

The advantages of such a design are multifold:

• Infrastructures don’t need to replace their monitoring solutions but can keep

their own and adapt to the common interface.

• Reduced time and efort is needed to be part of the federation.

• All stakeholders in the federation speak the same language through the common

interface.

• Infrastructures can continue operating and serving their legacy users, as well as

those from diferent federations (in case they are part of multiple federations)

through diferent interfaces.

• An infrastructure can smoothly leave the federation and continue operating as

it was before being federated, since it keeps using the same software.

4.2. Generic, Flexible and Extensible Architectural

Design

One of the main architectural principles for designing the monitoring architecture is

to deőne an adaptation mechanism (as an intermediate layer as shown in Figure 4.4)

for mapping from heterogeneous monitoring systems to the Common Monitoring API.

This is achieved through a uniőed reference model that shall be implemented by the

diferent infrastructure managers speciőc to their monitoring tools in terms of adapters

(also called wrappers). Adapters are responsible for managing monitoring tools, i.e.

interacting with local monitoring tools. Functionalities of an adapter can include

processing and aggregation of raw measurement data, and generation of new data

following common information and data models. For each monitoring service ofered

by the infrastructure, at least one adapter is needed, i.e. various adapters should

be implemented. The functionality of each adapter difers depending on the type of

monitoring service it is responsible for. Therefore, an adapter can be in charge of all

or some of the following processes: installing software, running software, processing,

collecting data, and pushing data in a speciőc format to a data collector.

Within this thesis a set of adapters is deőned that is in charge of providing an

abstraction away from the diverse set of monitoring tools deployed by the infrastruc-

tures participating in the federation. This abstraction is referred to as an adaptation

layer. The abstraction layer aims to collect monitoring data from the federated infras-

tructures, and publish it in a uniőed and standardized manner through the common

84

4.2. Generic, Flexible and Extensible Architectural Design

Common Monitoring API

User

Infrastructure n Infrastructure 1

A A A

Adaptation Layer Adaptation Layer

Monitoring System
Monitoring Tool
Monitoring Tool X

Monitoring System
Monitoring Tool
Monitoring Tool Y

A A A

WLAN

A Adapter

Fig. 4.4.: High-level representation of the common monitoring API

monitoring API (Req-8). For this to be realized in a meaningful and standardized way,

an ontology-based information model was developed within this thesis. It provides

formal, semantic descriptions of the common monitoring and measurement concepts

and their relationships in federated infrastructures focusing on the areas of interest in

this thesis.

The solution architecture is designed to be extensible and capable of accommodating

further monitoring tools through additional adapters, as depicted in Figure 4.4 through

the dotted boxes and lines.

4.2.1. Architectural Design Principles

Besides the architectural principles discussed in Sec. 4.1.1.1, the following principles

were fundamental throughout the őnal design process.

Cross-Domain Compatibility Cross-domain compatibility (Req-11) should be

supported so as to act as if the data is being provided by a single domain. This

requires a suitable mechanism capable of collecting and representing the data across

multi-domain infrastructures in a uniőed manner.

Open APIs Data should be provided through a common, open API (Req-10).

Open interfaces (for resource provisioning, monitoring, and control) in a federation

environment enable diferent stakeholders (infrastructure providers, federators, and

users) to be part of an interoperable ecosystem and mobilize others (service providers

85

4. Architecture Design and Specification

and application developers) to join, thus facilitating the establishment of a wider

community.

Data Modeling A well-structured data model should be deőned to deliver data in

a meaningful way (Req-8).

Data Delivery Data delivery needs to be in both the following modes (Req-24):

• on a per-request basis, i.e. on user request, and

• on a regular basis, i.e. data is provided periodically, including even real-time

delivery.

Interoperability Monitoring components must be compatible and interoperable

with the remaining components of the federation architecture, such as the provisioning

and control components and the federation services’ systems (Req-11, Req-22) .

Scalability Capability to deal with the rapid and dynamic changes in the federation

is required due to the increased number of MPs and diversity of tools used (Req-7).

Reusability and Extensibility The architecture is designed in a way to allow

reuse of existing adapters that have been developed as long as they serve the same

subject matter (Req-21). It is also easily extensible to accommodate additional

monitoring and measurement metrics (Req-6).

4.2.2. Reference Federation Model

After evaluating diferent federation approaches [10], as discussed in Sec. 2.4.1, the

architecture design follows a heterogeneous federation approach, where infrastructure

providers, developers and users interact through common, open APIs. This approach

has been adopted in several large-scale federations built by Europe’s largest programs

within the context of FI experimentation [11], [70]. However, the reference federation

followed in this thesis is shown in the very abstract and high-level overview in

Figure 4.5, also reŕected in Figure 1.5.

Figure 4.5 includes three infrastructures ofering diferent types of resources and

using diferent tools for their management. However, they ofer and interact with

the outside world in a common way (through common APIs supporting resource

description, discovery and provisioning, monitoring and control). Users on the other

side use any tools or software able to speak the common languages. For simplifying

the model, this őgure does not show all federation aspects but only those of major

concern within this thesis. For instance, identity management is one of the key aspects

in any federation and is required at all stages of a service (or an experiment) lifecycle.

86

4.3. MAFIA: Monitoring Architecture for Federated Heterogeneous Infrastructures

Furthermore, federation administrators should have high-level monitoring information

about the health and status of the federated infrastructures in order to take proper

actions early on.

Such a federation model enables any stakeholder to join or leave the ecosystem easily

as long as it adopts the common interfaces, which should be open and well-deőned.

Furthermore, the federation can be realized in a distributed manner, where users

can interact directly with the infrastructures as long as they are authenticated and

authorized to do so.

WLAN

local tools

common
APIs

control monitoring
discovery &
provisioning

user tools

infrastructure C infrastructure B infrastructure A

first level support
dashboard

local tools local tools

authentication
& authorization

user communities

Fig. 4.5.: High-level overview of the federation reference model followed in this thesis

4.3. MAFIA: Monitoring Architecture for Federated

Heterogeneous Infrastructures

This section presents and discusses in detail the őnal version of Monitoring Architecture

for Federated heterogeneous Infrastructures (MAFIA).

MAFIA is described to be generic so as to handle any kind of measurements pro-

duced through any kind of monitoring system within any domain type. Furthermore,

it can be used to operate across any kind of ICT infrastructure federation (cloud-based,

őxed and mobile broadband telecommunication networks, or heterogeneous domain

federation). It can be therefore described as adaptable. MAFIA is referred to as

flexible due to a design that enables support for numerous requirements with diferent

possible implementations depending on the type of the ofered monitoring service and

its consumption. It is ŕexible in the sense that it can be deployed with minimal efort

required from the infrastructure owners to be compliant to its requirements. This is

because they can keep using their local monitoring systems to provide the concerned

87

4. Architecture Design and Specification

services as long as they provide the data following the common API. Moreover, it is

not mandatory to provide the same set of measurements across the federated infras-

tructures but each can decide which measurements are of major concern for their users.

MAFIA is comprehensive due to its ability to deal with large amounts of data from

multi-domain and across-layer monitoring solutions provided through a common API

for multiple stakeholders. Finally, MAFIA is extensible to accommodate additional

MPs or monitoring further ICT domains in the form of adapters as illustrated in

Figure 4.4.

To simplify the design and implementation of the architecture, monitoring and

measurements services in federated infrastructures (focusing on Cloud and FI experi-

mentation areas) are classiőed [143].

4.3.1. Types of Monitoring and Measurements Services

The initial design introduced three types of monitoring services (see Sec. 4.1.1.2) that

were deőned according to the requirements at the initial stage of work in this thesis.

However, in later stages, and according to the requirements analyzed in Chapter 3, the

őnal design has considered and classiőed monitoring and measurements services into

four diferent categories that difer from one another according to level and granularity

(Req-2). These types, discussed in the following sections are:

• Infrastructure Health and Status Monitoring;

• Infrastructure Resources Monitoring;

• UCRE Monitoring; and

• Services and Applications Monitoring.

Figure 1.5 illustrates these services, which together represent cross-layer monitoring.

Note that Figure 1.5 shows only those services deemed to be of major importance to

the areas of application addressed in this thesis, namely Cloud and FI experimentation.

However, further monitoring services, classiőcations, and even monitoring new areas

or domains are possible as the architecture is designed to be extensible. This is

discussed later in the implementation and evaluation chapters 6 and 7.

4.3.1.1. Infrastructure Health and Status Monitoring

This type of monitoring provides twofold information about an infrastructure facility,

namely, low-level information about its individual resources and services for internal

operational and administrative need; and high-level information about the availability

of the facility, which is exposed to the outside world.

88

4.3. MAFIA: Monitoring Architecture for Federated Heterogeneous Infrastructures

Low Level Infrastructure Monitoring This service represents monitoring of the

resources and networking services of the whole infrastructure. It is required by the

infrastructure provider in order to ensure the health and performance of its facility,

as well as to ensure the availability of all its oferings.

High Level Infrastructure Monitoring This service provides high-level infor-

mation about the availability of infrastructure facilities, namely whether each is

up and running, in risk, or down. It allows federation and system administrators

or FLS operators to verify that facilities are performing correctly, and verify their

connectivity and interworking. RAG status is pushed to a central dashboard for FLS

reactive monitoring. The infrastructure RAG status is based on the monitoring of

key components of each infrastructure that indicate the overall availability status

of the infrastructure facility. However, through the availability status information

provided, FLS operators are able to drill down from the infrastructure RAG status to

see which components are degraded or down. Status information depends on speciőc

monitoring metrics of the key components of the infrastructure facility. These vary

from facility to facility depending on the nature of each infrastructure in terms of the

types of services and resources ofered.

4.3.1.2. Infrastructure Resources Monitoring

This service provides information about infrastructure resources for users and federa-

tion services. Types of monitoring information and metrics vary from infrastructure to

infrastructure based on the nature of each infrastructure and its oferings. A practical

example of such is seen in the heterogeneous infrastructures involved in Fed4FIRE

federation. Under this monitoring category, two types are to be distinguished: resource

characteristics and information per service basis.

Resource Characteristics Quality of the resources ofered may vary from one to

another and also from one infrastructure to another. To increase user satisfaction

by providing information about oferings, measurable characteristics (real time or

historical that do not correspond to a certain UCRE) of resources might be useful for

resource selection (Req-23). For instance, a user might require a set of nodes that

have good quality pairwise connections. In a wireless network, these might be nodes

that have good measured signal strength between each other. In a distributed server

infrastructure, these might be nodes that have Internet routes between them that

have been determined to be stable over time. Furthermore, such information is useful

for the reservation brokerage service.

Information per Service Basis This type difers from the previous one in the

time interval and type of data delivery. It delivers information on a per-service basis

89

4. Architecture Design and Specification

about infrastructure resources (networks, infrastructure services and nodes) to which

users have no access or cannot instrument themselves but which are relevant to

their UCRE resources (Req-23). Per-service basis means that this monitoring service

delivers information only about the infrastructure resources used by the UCRE during

its lifetime. It is required by the users and some federation services.

• For Users Monitoring environmental conditions in the service development

lifecycle and in experimental driven research is of major importance. Looking

around the deployed service (or experiment) setup for inŕuencing factors in the

infrastructure (e.g. virtualization that may increase delays due to scheduling, bad

behavior of co-existing VMs used by other users) might increase the evaluation

accuracy of the service performance and experiment results. Infrastructure

resource information of users’ interests could be, for example, about physical

host performance if the user uses VMs, or wireless spectrum, among others.

• For Federation Management and Operation Federation services might

need information about infrastructure resources for their speciőc purposes. For

instance, information about speciőc predeőned measurement metrics is required

by SLA management to validate SLAs (Req-13). A trustworthy reputation ser-

vice requires information about particular resources and services that were used

during the UCRE lifetime (on a per-experiment basis) from both infrastructure

providers and the user in order to calculate reputation scores and őnally provide

high level descriptions of the quality of the ofered resources and services. This

knowledge is useful for resource selection by users.

4.3.1.3. User Customized Resource Environment Monitoring

This type of monitoring service represents monitoring UCRE resources that are used to

run a service or an experiment and are under the full control of the user. This includes

looking within the UCRE setup, hardware and networks, operating systems, and

component related metrics, such as CPU, memory, disk utilization, and bandwidth.

4.3.1.4. Services and Applications Monitoring

This type of monitoring service represents measurement metrics that provide infor-

mation about the state of the service or application being tested, its performance

and other speciőc information. This includes custom metrics deőned by the user

(Req-27) for observing the service or application in progress and for its evaluation (e.g.

to show improvements and comparison to other approaches). Custom metrics are

heterogeneous and vary depending on services or applications being tested. Examples

on a per service/application basis include CPU and memory consumption, errors and

warnings, and end-to-end service quality.

90

4.3. MAFIA: Monitoring Architecture for Federated Heterogeneous Infrastructures

4.3.2. Architecture Components and Interactions

This section describes the architecture components and their interactions, as well as

the various monitoring services supported by MAFIA.

Infrastructure Resources

User Data Collector User Tools

Infrastructure

Monitoring Resources

Resource Adapters

Common Monitoring API

Wrappers

Infrastructure Manager

API

Query or visualize monitoring data

User-Customized

Resources

Resource Adapters

Monitor

Fed. Service Data Collectors

Federation Services

Monitoring data

Provision resources

Discover, request &
release resources

Push monitoring data

Get

Monitor

Monitoring data

Fig. 4.6.: MAFIA components and interactions (based on [143])

Figure 4.6 shows an overview of MAFIA components and their interaction. The

components in charge of data uniőcation and collection are highlighted in gray. In

order to simplify the őgure, only one user with one data collection resource (user data

collector) is considered. Similarly, only one infrastructure is illustrated. Nevertheless,

the same deployment is to be expected in the remaining infrastructures participating

the federation. The data provided by all infrastructures is collected in the user

data collection resource. Collectors for data provided for federation services might

be deployed locally at the infrastructure level or centrally at the federation level

depending on the deployment of each service. If a federation service is deployed

in a distributed mode, which means an instance of its logic is deployed in each

infrastructure, it is recommended to have the collector at the infrastructure level as

well. This will be discussed again in detail in Sec. 4.3.2.3 and in Chapter 6.

The functionalities and roles of MAFIA components are described in the following

sections through the description of MAFIA support for the concerned monitoring

services discussed in Sec. 4.3.1.

91

4. Architecture Design and Specification

4.3.2.1. Monitoring Services for Users

Users are interested in information about infrastructure resources at two diferent

levels of granularity.

First, users look for performance and quality characteristics about the ofered

resources in advance before requesting resources. Such information is provided

with the resource advertisements. Advertisements for infrastructure oferings are

made available to the federation community through a common API exposed by the

infrastructure manager. This API is used by users to discover, request and release

resources required to setup their UCREs.

Second, users are interested in information about the infrastructure resources used

by (or related to) the resources deployed to run their services or experiments. This

is due to the fact that understanding the surrounding conditions helps for a more

accurate evaluation of the results.

Methodology for how the second case is supported, together with UCRE monitoring,

and services and applications monitoring, is discussed in the following sections in two

diferent possible implementation approaches, namely generic and user-friendly.

Generic Approach:

Monitoring information is collected from monitored resources across infrastructure

facilities, stored in data collection resources, and is then accessed by users. Usually

monitoring goes through multiple stages: data acquisition, collection, transportation,

storage, access, and archiving. Accordingly, various monitoring resources are used:

agents and probes (e.g. Zabbix agent, Nagios agent, Iperf, spectrum analyzer) for data

acquisition; data collection and transportation resources (e.g. SNMP, OMSP, IPFIX);

data collector (e.g. SQL server, OML server, Jena Apache Fuseki1); storage resource

(e.g. MySQL, PostgreSQL, SQLite, Triple Store); archival resource (permanent storage

resource); and data broker or access resource (any data retrieval tool).

The generic concept of MAFIA architecture is that infrastructures ofer such

monitoring resources as normal resources similar to the main ofered resources (e.g.

VMs, sensors, Wi-Fi nodes, platforms) [94], [143]. Due to the heterogeneity of the

ofered resources, infrastructures might ofer diferent types and numbers of monitoring

resources speciőc to their domain oferings. From this perspective, users have to be

aware of the functionality of each resource, and accordingly request and conőgure the

required resources and their relationships.

Therefore, users can setup UCREs together with monitoring services provided by

individual infrastructures. This covers the monitoring of infrastructure resources,

UCRE and user services and applications. This is done after user authentication as

illustrated in Figure 4.7, which shows a sequence diagram for the whole procedure.

1http://jena.apache.org/documentation/serving_data/

92

http://jena.apache.org/documentation/serving_data/

4.3. MAFIA: Monitoring Architecture for Federated Heterogeneous Infrastructures

Fig. 4.7.: Sequence diagram for the setup of monitoring services in the generic approach

Using any user tool, a user can discover and request monitoring resources along

with the required resources for setting up a UCRE across infrastructures. Individual

requests are dispatched to the respective infrastructure managers that are in charge of

resource provisioning. For each resource, a resource adapter is used that is in charge

of its initiation and conőguration. For monitoring resources, the roles of each resource

adapter difer from one to another depending on the type of monitoring resource.

Among its roles, a resource adapter can be responsible for all or some of the following

functionalities: software installation, conőguration, running, processing, performing

measurements, data collection, data conversion and data expiration. The data is

provided to the user in a uniőed data representation via the common monitoring

API. This is achieved by wrapper resources. Wrappers are in charge of retrieving

data from local tools and converting the data from local formats and publishing it

in the common format supported by the common API. Wrapping functionality can

93

4. Architecture Design and Specification

be one of the functionalities of a resource adapters, therefore Figure 4.6 shows an

overlap between wrappers and resource adapters. Data is őnally collected in the user

collection resource. The user collection resource can be owned by the user or ofered

by any of the federated infrastructures and can be provisioned like other resources.

This high level of abstraction of the architecture simpliőes implementation eforts

from the infrastructure provider’s prospective, who would otherwise need to setup

the whole monitoring processes for the individual UCREs. On the other hand, the

user might need to know the functionality of each monitoring resource and then

request those of interest. Furthermore, users themselves are responsible for setting

up the required monitoring services, i.e. by requesting a set of monitoring resources

that together realize a monitoring service. Such service range from conducting

measurements, collecting and converting data from source formats to a common one

supported by the common monitoring API, up to making data available for use. In

addition, permissions have to be provided for users in order to observe or at least

retrieve monitoring information about infrastructure resources used by their UCREs.

Such a generic implementation of MAFIA concerns only the setup and deployment

of monitoring services for users. To support the monitoring need of the federation

services, namely SLA management and trustworthy reputation, speciőc monitoring

resources need to be deployed. These resources are auto-conőgurable and capable

of collecting monitoring data about pre-deőned metrics related to UCREs during

their lifetime and provide data to individual federation services. This is discussed in

Sec. 4.3.2.3.

User-friendly Approach:

In contrast to the generic approach, MAFIA can be implemented in a user-friendly

manner, where infrastructures ofer monitoring service capabilities per ofered resource

type, and users can request the required resources and identify their interest in related

monitoring services. For example, an infrastructure that ofers resources of type VM

might ofer monitoring information about the created VMs (reŕecting UCRE moni-

toring, see Sec. 4.3.1.3) and their hosting physical machines (reŕecting infrastructure

resources monitoring, see Sec. 4.3.1.2). Such capabilities can be advertised in the

description of the VM resource type. A user can request one or multiple instances of

the resource type VM and identify whether or not they are interested in monitoring

information. From this perspective, infrastructures will then be in charge of setting up

monitoring services and delivering the respective monitoring data to the user through

the common monitoring API during the UCRE lifetime. Such setup and conőguration

per UCRE basis is analogue to the way data is provided to the federation services in

the generic approach above. Hence, diferent setups and conőgurations are expected,

as users might have diferent UCRE resources with diferent lifetimes and varying

94

4.3. MAFIA: Monitoring Architecture for Federated Heterogeneous Infrastructures

interests in monitoring services. These are managed through diferent monitoring

resource adapters and data wrappers as illustrated in Figure 4.6.

Having user-friendliness as the focus of this approach ś in particular by reducing

users’ involvement in the setup and conőguration ś allows the following:

• Automatic setup of monitoring services

• Automatic adjustment to dynamic change of the deployed service or application

resources (experiment resources within the context of the experimentation

facilities)

• Easy access to monitoring data

• Providing data access during the lifetime of the service or application (the

experiment within the context of the experimentation facilities) and afterwards

for post-processing

• Providing data in uniőed data representation

The steps involved in the entire instrumentation process are illustrated in the

sequence diagram in Figure 4.8 that is described as follows:

1. Infrastructure provider describes the ofered resources associated with monitoring

capabilities. As an example from a cloud-based infrastructure, a VM resource

can be described along with an announcement of the capability of providing

information about the VM (e.g. CPU-, memory-, disk-usage), its surrounding

conditions (e.g. network performance) and its hosting physical machine (e.g.

CPU-, memory-, disk-usage). It is left to the infrastructure provider to decide

on the kind and frequency of the provided monitoring information.

2. Using any user tool provided in the federation, users get or discover the ofered

resources after being authenticated.

3. A user will then indicate interest in monitoring services while requesting re-

sources. The user then conőgures the requests by identifying (through a unique

ID) an endpoint where monitoring data should be pushed to. This endpoint

can be the Uniform Resource Identiőer (URI) of the user data collector. Such a

collector can be deployed prior to requesting the resources used by the UCRE

in order to collect monitoring data.

4. Upon receipt of a request, the infrastructure manager checks if monitoring ser-

vices related to the requested resources are requested. If yes, a suitable wrapper

resource is then deployed and conőgured to periodically fetch measurement data

from the used monitoring tools, convert the data into the common data format

and push it to the given endpoint of the collection resource. It is left to the

95

4. Architecture Design and Specification

Fig. 4.8.: Sequence diagram for the setup of monitoring services in the user-friendly

approach

infrastructure provider to use a single wrapper per resource type, per UCRE

or per user. A wrapper resource is dynamically able to react to updates, e.g.

when more resources are created or deleted.

5. Wrappers are released once the UCRE terminates.

The user-friendly approach focuses on providing an automatic setup and con-

őguration of monitoring services that are grouped under UCRE monitoring and

infrastructure resources monitoring. Services and application monitoring can be

executed by users themselves. The rationale for this decision is that the behavior of

the users’ applications and services are only known to the users. They can deploy,

conőgure and control any tools suitable to measure and monitor their running services

or applications. Infrastructures could provide such tools in the form of software or

deployable images with certain solutions pre-installed.

96

4.3. MAFIA: Monitoring Architecture for Federated Heterogeneous Infrastructures

4.3.2.2. Infrastructure Health and Status Monitoring for Federation

Administrators and FLS Monitoring Dashboard

ICT infrastructures are usually under operational monitoring and control of their

administrators. To this end, low level infrastructure monitoring is supported at

infrastructure level for internal administrative demands. For this purpose, various

tools are used to monitor infrastructure resources and services. It’s left to each

infrastructure provider to deploy suitable tools depending on the type and size of the

infrastructure.

These tools are also used to provide the required high level health and status

information about the infrastructure to its consumers (federation and system admin-

istrators or FLS). The diference here, compared to the low level monitoring service,

is that only a particular kind of information about the status of the key components

in the infrastructure is required. That means speciőc metrics are measured that

indicate the health and availability status of the infrastructure, the results of which

are then reported. This information is made available via the common API. Each

infrastructure can use a wrapper that is in charge of collecting the concerned data from

the local monitoring tools and exporting the data to consumers (e.g. FLS monitoring

dashboard as one of the federation services) following the rules and formats of the

common API, as shown in Figure 4.6.

4.3.2.3. Infrastructure Resources Monitoring for Federation Services

Information about infrastructure resources, such as their availability, usage and

performance, is required by multiple federation services as part of their functionalities.

Federation services have diferent requirements for monitoring information. There-

fore, the types and frequency of the measured metrics for each service are to be

identiőed and arranged between the individual infrastructure providers and the ser-

vice developers. The heterogeneity of the federated infrastructures would be expected

to lead to diferent sets of metrics to be measured for each federation service.

Furthermore, these services don’t only require diferent kinds of information but

also difer in delivery time intervals. For instance, in the case of the SLA management

service, upon receipt of a request to create UCRE resources, the infrastructure

manager is in charge of conőguring proper software to provide related monitoring

data of predeőned metrics per UCRE basis only during its lifetime. While some other

services, such as reservation or brokerage, require historical resource characteristics.

However, the common feature across all services is that monitoring data is exported

by infrastructure providers through the common API to collection endpoints. For

each federation service, one or multiple instances of a monitoring collection resource

can be deployed. The number of instances deployed depends on the deployment of

the federation service itself, as well as on the operational level of support ofered by

97

4. Architecture Design and Specification

infrastructure providers. If a federation service is deployed in a distributed manner

(an instance runs in each infrastructure), it’s recommended to deploy the collection

resource at the infrastructure level. Additional reasons to deploy the collection

resource at infrastructure level include reducing complexity and resource consumption

(e.g. bandwidth), avoiding possible connectivity issues, and reducing latency, (Req-14,

Req-16). If a federation service is deployed in a central manner, the deployment of the

collector resource can either be deployed in a distributed manner, with one instance

at each infrastructure, or one central collector at the federation level to be used by all

infrastructures. The decision is left to be agreed upon between service providers and

infrastructure providers.

4.4. Summary

In this chapter, the architecture design is discussed. The design went through an

iterative and incremental process, as discussed in the introduction of this chapter.

The conceptual phase of architecture design as discussed in Sec. 4.1 includes initial

and őnal design phases. The initial phase focused on cloud federation (Sec. 4.1.1) and

introduced an initial architecture (Sec. 4.1.1.3) that followed a set of architectural

principles (Sec. 4.1.1.1). Decisions were taken to enhance the initial architecture design

(Sec. 4.1.2) towards a more generic and ŕexible architecture that can be adopted in a

heterogeneous federation in an extensible manner (Sec. 4.2), considering additional

principles (Sec. 4.2.1). All principles take into consideration the fulőllment of the

requirements identiőed in Sec. 3.2.

The őnal architecture, called (MAFIA), is introduced in Sec. 4.3. Its functional ele-

ments are described along with the various supported monitoring services (Sec. 4.3.1),

some of which were already covered in the initial design (Sec. 4.1.1.2). Various sets of

datasets are collected from diferent sources across the federation and provided for

multiple, various stakeholders through a common API.

The most suitable candidate for a reference implementation of the common API

has to allow representing and transporting data in a common format, as well as

using ŕexible, user-deőned schemas. However, providing data through a common

format may cause confusion if all parties using the interface don’t have the same

understanding and deőnitions for the used concepts and their relations. Such ŕexibility,

if own vocabularies are used, leads to an interoperability issue. This can be treated

at information model level through deőning a common, shared information model

to represent monitoring data, concepts and relationships in a uniőed, standardized

manner following a shared vocabulary.

Therefore Chapter 5 introduces an information model by leveraging Semantic Web

technologies.

98

5
Ontology-Based Information Model

5.1 Main Concept of Ontology-Based Modeling 100

5.2 MOFI: Monitoring Ontology for Federated Infrastructures . . . 101

5.2.1 Design Decisions . 101

5.2.2 MOFI Upper Ontology . 104

5.2.3 MOFI Metric Ontology 105

5.2.4 MOFI Data Ontology . 106

5.2.5 MOFI Unit Ontology . 107

5.2.6 MOFI Tool Ontology . 107

5.2.7 MOFI Generic Concepts Ontology 108

5.2.8 Interaction with External Ontologies 109

5.2.9 Data Modeling and Serialization 110

5.3 Summary . 110

T
HIS chapter presents the common information model designed and imple-

mented within this thesis. This model serves and supports compatibility and

interoperability of tools and components across federated ICT infrastruc-

tures in terms of monitoring data exchange, as per the requirements identiőed in

Chapter 3 (Req-8, Req-11 and Req-22). The model is used in the implementation of

the components of the monitoring architecture (MAFIA, presented in Sec. 4.3), in

order to allow representing and transporting monitoring data through its common

API using uniőed, meaningful, shared and standardized vocabulary. This allows the

uniőcation of the data schemas coming from diferent sources with similar purposes

to facilitate tools’ interoperability.

The state-of-the-art data models as discussed in Sec. 2.6.2 are limited to the network

measurement domain and are implemented for speciőc protocols or frameworks,

99

5. Ontology-Based Information Model

which makes their use very complex in a broader context. They have diferent

concepts, schemas and modeling mechanisms, as they were designed based on diverse

requirements and applied contexts. Such domain-speciőc and implementation-oriented

models lead to poor, limited interoperability and wasted eforts reinventing the same

subject matter.

A feasible way to have a generic, reusable, widely used model is to reduce or eliminate

conceptual and terminological confusion through a common, shared understanding

and deőnitions of concepts and their relationships. This will serve as the basis for

interoperability of systems and data, as well as for reusability and reliability [109].

For this purpose, ontology-based modeling of the Semantic Web has tremendous

potential as a valid approach for developing a common, extensible information model.

Ontologies by deőnition have to be as generic and task-independent as possible [154].

The following sections present the main concept, as well as introduce and describe

an ontology-based information model, called Monitoring Ontology for Federated

Infrastructures [109], [159] (MOFI).

5.1. Main Concept of Ontology-Based Modeling

This section gives an overview of the main concepts of semantic ontologies and their

advantages.

An ontology deőnes a formal, explicit vocabulary and deőnitions of shared concepts

and their relationships within a given domain [155]. As this thesis focuses on the

monitoring domain, the MOFI ontology includes formal vocabulary covering related

concepts like measurement metrics, data, data units, and their relationships in an

explicit (representative and meaningful) manner.

Ontologies enable formally deőning concepts and their relationships in taxonomies

(superclassśsubclass hierarchies) including rich semantic meanings. Classes refer to

concepts and each class represents group of individuals that share common charac-

teristics. Concepts usually have properties that represent their relations. Ontologies

enable describing information at diferent levels of abstraction, i.e. allowing the

deőnition of speciőc classes derived from generic ones. For example, the class CPULoad

has a data property called hasMeasurementData, which has Data as a range, as well

as an object property called isMeasuredBy, whose range is a measurement tool (e.g.

Zabbix), which is an individual of the class MonitoringTool that is a subclass of the

generic class Tool.

The strengths of ontology-based modeling are its focus on interoperability, schema

unboundness, extensibility and reusability [127]. Using formal, explicit and shared

vocabulary ensures compatibility and interoperability of tools. Ontologies are extensi-

ble to include additional vocabularies, and their vocabularies are reusable by other

ontologies. The extensibility feature facilitates smooth extensions and the integration

100

5.2. MOFI: Monitoring Ontology for Federated Infrastructures

of further segments in the systems and architectures that implement these ontologies.

The reusability feature facilitates the sustainability of the ontology-based models and

reducing the efort of others as they don’t need to re-design the same subject matter.

Finally, dealing with information at a semantic level is recognized as a powerful

solution, as it enables, besides representing data in a common manner, some degree

of inference and automatic reasoning over the concerned monitoring data [156]. More

details on ontology-based modeling are given in Sec. 2.6.4.

5.2. MOFI: Monitoring Ontology for Federated

Infrastructures

The development of MOFI is driven by the practical use and requirements of MAFIA,

which focuses on monitoring federated infrastructures. More precisely, MOFI serves

to share a common understanding of the structure of information among people or

software architectural elements in the domain of monitoring, which aligns with the

main and common goals in developing ontologies [124], [157]. The MOFI ontology is

described after introducing the design decisions taken prior and during its development.

5.2.1. Design Decisions

MOFI is used as a common information model implemented within MAFIA. It

covers various monitoring services provided for diferent stakeholders: federation

administrators, experimenters, federation services (e.g. SLA management, trustworthy

reputation, reservation) and the FLS monitoring dashboard, as discussed in Sec. 4.3.

MAFIA assumes a common API is used for data provisioning across the federation.

As stated in Sec. 4.4, providing data in a common format through a common API

without following a common information model only helps solve part of the problem

addressed in this thesis. MOFI is therefore required in order for all parties involved

in MAFIA to have the same understanding and deőnitions for the concepts used and

their relations, and thus, to eliminate any possible confusion or misinterpretation.

For developing an ontology, a proper methodology should be used [158]. The

top-down method is followed, as described below:

• The area of interest was deőned, namely monitoring services and measurement

metrics in federated, heterogeneous ICT infrastructures. The scope of the

ontology is limited to the common requirements and services covered by MAFIA,

taking Fed4FIRE as a reference federation.

• The important concepts and their relations were identiőed.

• Existing ontologies were reused and extended as much as possible to cover various

domains in large ICT federations. Concepts and relations have been reused from

101

5. Ontology-Based Information Model

the World Wide Web Consortium (W3C) XML Schema Deőnition (XSD)[115]

and W3C Time1. MOMENT and NOVI are taken as a starting point, which in

turn considered NM-WG, PerfSONAR and NASA Units2 models.

• Concepts were deőned as classes and arranged in a taxonomic hierarchy following

a top-down method. Deőnitions of the most general concepts were deőned őrst

and specialization of the concepts after that.

• Concepts’ relations were deőned as object and data properties, along with rules

for their domains, ranges and restrictions.

• Relevant individuals (instances) of the deőned classes were created.

For MOFI to be reused beyond its current use and for standardization aims, it is

designed and developed together with other ontologies in order to model diferent

aspects within federated infrastructures. Each of these ontologies focuses on a partic-

ular domain, i.e. modeling federation concepts, infrastructures, services, resources,

components, policies and further domain speciőc concepts such as wireless, cloud,

SDN, etc. MOFI together with all these ontologies form the Open-Multinet3 (OMN)

Ontology [129], which focuses on describing federated infrastructures and their re-

sources, as well as supporting management of the whole ICT experimentation lifecycle.

The OMN ontology deőnes in its upper layer ontology (with the namespace preőx

omn) several basic concepts and their relations that are then reused and specialized in

the subjacent ontologies (omn-component, omn-resource, omn-service, omn-federation,

omn-lifecycle, omn-monitoring, omn-policy and others). MOFI represents the omn-

monitoring ontology and is then directly linked to other omn ontologies that are

considered external ontologies to MOFI.

For better understanding the requirements of the desired information model, Fig-

ure 5.1 illustrates the main, relevant components and their interactions within MAFIA.

Although some components are out of MOFI scope, they are represented in the di-

agram to shed light on the broader scope. However, these components, namely

the infrastructure manager, federation services (e.g. SLA management, trustworthy

reputation and reservation), resources, components, experiments and applications,

and infrastructures, are modeled within the OMN Ontology. The focus of the MOFI

information model is monitoring and measurement tools, measurement metrics, mea-

surement data, data units and further related concepts. It should serve MAFIA’s

needs, and thus model all the components involved in the entire monitoring process.

This allows the provisioning of diferent sets of monitoring information for various

consumers, like the FLS monitoring dashboard, federation services, and users.

1http://www.w3.org/TR/owl-time/
2http://sweet.jpl.nasa.gov/ontology/units.owl
3http://open-multinet.info

102

http://www.w3.org/TR/owl-time/
http://sweet.jpl.nasa.gov/ontology/units.owl
http://open-multinet.info

5.2. MOFI: Monitoring Ontology for Federated Infrastructures

AdapterAdapter

User Tools

Infrastructure

Manager
Adapter/Wrapper

Federation

Services (e.g. SLA)

FLS Monitoring

Dashboard

Monitoring Tool

Resource

(e.g. server)

Metric
Measurement

Data

Unit

User

Component

(e.g. CPU)

Experiment /

Application In
fr

a
st

ru
ct

u
re

 L
e

v
e

l

Federation Level

is part of

has

get raw data

push data in common format

has

uses

has

measured by

advertise, request

& release resources

configuration

has

provision resources

Fig. 5.1.: Concepts of interest for the target information model [109]

The management of large ontologies is a serious challenge for designers and users.

Modularization is a valid strategy to deal with this problem, i.e. to divide the subject

matter into smaller ontology components (sub-ontologies) [36]. MOFI is divided into

a hierarchy of diferent ontologies as shown in Figure 5.2. The highest level (upper

layer) ontology (with the namespace preőx mofi) describes very general concepts and

properties that are reused and specialized in the subjacent ontologies (mofi-metric,

mofi-data, mofi-unit, mofi-tool, mofi-genericconcepts). These ontologies are described

in the following sections.

mofi

mofi‐unit mofi‐data mofi‐metric mofi‐generic
concepts

mofi‐tool

Fig. 5.2.: MOFI hierarchy

103

5. Ontology-Based Information Model

5.2.2. MOFI Upper Ontology

The basic and fundamental measurement and monitoring concepts and their relations

are described in the upper ontology through a set of classes (e.g. Metric, Data,

Unit and Tool) and properties (e.g. measuredBy, measuresMetric, pushesDataTo,

hasUnit and retrievedBy). Furthermore, diferent sets of monitoring services in

federation infrastructures are deőned, such as InfrastructureHealthMonitoring,

InfrastructureResourceMonitoring, SLAMonitoring. These are subclasses of

the class MonitoringService, which is in turn a subclass of omn:Service like

Measurement and FirstLevelSupport as shown in Figure 5.3. The őgure shows

only part of the ontology.

Interactions with these services are described through isRequested, isOffered,

requiresUsername, requiresPassword data properties. Besides deőning the rela-

tion between these classes, the upper ontology includes some properties that link

these classes with other external ontologies. The isMeasurementMetricOf and its

inverse property hasMeasurementMetric express the relations between Metric and

omn:Service, omn:Resource and omn:Component, while the relation between Tool

with these OMN classes can be expressed through the monitors property.

measuredBy
measuresMetric

hasUnit

SLAMonitoring

is a

is a

is a

InfrastructureResourceMonitoring

omn:Service

InfrastructureHealthMonitoring
omn:Resource

omn:hasService

is a

is a

Ac>veMeasurement

Measurement

Metric

PassiveMeasurement

Thing MonitoringService

FirstLevelSupport

Life>me

is a

is a

is a

Data

Unit

hasLife>me

sendBy/sendFrom/sendTo/retrievedBy/

retrievedFrom/pushedBy

is a

is a

is a

Tool

is a

is a

is a

hasMeasurementMetric is a

is a

Fig. 5.3.: MOFI Upper ontology (based on [159])

104

5.2. MOFI: Monitoring Ontology for Federated Infrastructures

5.2.3. MOFI Metric Ontology

The Metric ontology describes anything that can be measured and monitored in

federated ICT infrastructures. Over őfty measurement metrics used for cross-layer

monitoring in diferent domains (e.g. datacenters, wireless networks, IP traic)

are described as classes. These classes describe metrics whose information changes

dynamically (e.g. CPU utilization, memory consumption, and packet delay and loss),

as well as metrics whose information may change very infrequently over time (e.g.

CPU core counts in a machine).

Figure 5.4 illustrates some classes that represent a set of metrics. Some classes

include further subclasses. For instance the RadioSignalQuality class includes a set

of subclasses representing radio signal quality in the wireless domain, such as radio

signal strength indicator level (RSSILevel), NoiseLevel, signal to interference ration

(SIR) and others. Figure 5.4 does not cover the whole taxonomy, but rather gives an

idea of the model. For instance MemoryUtilization includes more subclasses than

shown (e.g. SharedMemory and BuffersMemory), while other classes are further sub-

classiőed, like Delay (e.g. OneWayDelay, RoundTripDelay) and the CPUUtilization

(e.g. CPULoad and AllocatedCPU).

Metric

RSSILevel

UsedSwap

SIR

RadioSignalQuality

Temperature

TimeToRepair

Delay

Status

Throughput

Counter

PacketArrivalRate

is a

is a

is a

is a

is a

is a

is a

is a

is a

is a

MemoryUBlizaBon

is a

is a

CPUUBlizaBon

is a

is a

is a

is a

NoiseLevel

FreeMemory

UsedMemory

Thing
is a

Fig. 5.4.: MOFI Metric ontology (based on [159])

105

5. Ontology-Based Information Model

In addition to the properties in the upper ontology that represent relations with the

type Metric, further properties involving the class Metric are deőned in the MOFI

Metric ontology like hasFrequency and statusValue.

5.2.4. MOFI Data Ontology

The Data ontology describes basic concepts related to data. Figure 5.5 includes

a number of those classes that represent diferent types of measurement data (e.g.

SimpleMeasurement, StatisticalMeasurement and MeasurementParameter) and

data formats (e.g. DataFormat, FormattedFile and UnformattedFile). These

classes and others are linked through a set of object properties (e.g. dataFormat,

hasMeasurementData and isStatisticalMeasurementOf) and data properties (e.g.

hasTimestamp and hasMeasurementDataValue).

Several classes and properties deőned in the MOMENT ontology have been reused

in this ontology. However, some of the reused classes have been re-classiőed and

some properties have diferent domains and ranges. This has been done in order for

the MOFI Data ontology to be generic enough to serve heterogeneous (federated)

domains, as MOMENT focused only on network measurement.

dataFormat

Unit

Resource

isMeasurementMetricOf

Metric

hasMeasurementData

Data

DataFormat

isMeasuredIn

SimpleMeasurement

is a

is a

MinMeasurement

VarMeasurement

MeanMeasurement

MaxMeasurement
isSta<s<calMeasurementOf

is a

is a

is a

XMLFormat

JSONFormat

OMLStream BinaryFormat

TextFormat

is a

is a

UnformaDedFile
is a

is a

is a

Dura<on
is a

MeasurementData is a

is a

MeasurementParameter

Sta<s<calMeasurement

is a

is a

CSVFormat FormaDedFile

is a

is a

Fig. 5.5.: MOFI Data ontology (based on [159])

106

5.2. MOFI: Monitoring Ontology for Federated Infrastructures

5.2.5. MOFI Unit Ontology

The Unit ontology developed by the European project NOVI has been completely

reused because it serves the target purpose. The NOVI Unit ontology was initially

deőned within the European project MOMENT, which leverages the National Aero-

nautics and Space Administration (NASA) Unit ontology4, but replaced the units

from the physics őeld used by NASA with those from computer science like bit, byte,

bit per second (bps), IP address, etc. [34].

The MOFI Unit ontology includes data units (e.g. bit, byte, second, bps) covering

both unit preőxes (e.g. kilo, mega, giga), binary and decimal, as well as diferent

measurement levels (nominal, ordinal, interval, and ratio) and dimensions (basic and

derived) as illustrated in Figure 5.6.

Unit

Prefix

DerivedDimension

is a

is a

PointInTime

Countable

BaseDimension defaultUnit

is a

is a

hasPrefix

DifferenceDimension

Ra>oDimension

PowerDimension

ProductDimension

N‐aryUnit

UnaryUnit

GeoPosi>on

is a

is a

is a

DecimalPrefix

is a

is a

is a

is a

is a

is a

is a

is a

is a

is a Cardinal

is a

MeasurementLevel

NominalLevel

is a

OrdinalLevel

is a

BaseUnit

BinaryPrefix

Ra>onLevel

Dimension

Fig. 5.6.: MOFI Unit ontology (based on [159])

5.2.6. MOFI Tool Ontology

The monitoring process goes through multiple stages: data acquisition, collection,

storage, publication and visualization of the data, or even sending notiőcations or

events. The data might be őltered, converted from one format to another or analyzed.

A wide range of measurement and monitoring tools exist that difer from one

other in their core functionalities, architectures, communication paradigms and data

4http://sweet.jpl.nasa.gov/ontology/units.owl

107

http://sweet.jpl.nasa.gov/ontology/units.owl

5. Ontology-Based Information Model

access capabilities. These concepts are described in this ontology through classes

(e.g. MeasurementTool, CaptureTool, Collector, Adapter, VisualizationTool,

CollectionEndpoint and Database) and properties (e.g. communicationParadigm,

dataAccessProvided and reportsDataAbout), as partially shown in Figure 5.7.

The common tools that are used in the Fed4FIRE federation for instance are

deőned as individuals (e.g. Zabbix, Nagios, Iperf, ping, Traceroute, OMLServer,

OMLWrapper, PostgreSQL, JenaFuseki, OMSPEndpoint, and SPARQLEndpoint). Some

concepts deőned in the MOMENT ontology have been reused, e.g. subclasses of

MonitoringTool and CommunicationParadigm. The őgure shows only part of the

ontology.

Tool

Database

is a

is a

omn:hasService

is a

Collector

is a is a Communica6onParadigm

ClientServer is a

P2P

Distributed
is a

communica6onParadigm

Filter
omn:hasService

Centralized

is a

PostgreSQL

JenaFuseki

is a

SPARQLEndpoint

Exporter

CaptureTool

omn:hasService Adapter

MonitoringTool

is a is a

PassiveMeasurementTool

omn:hasService

Ac6veMeasurementTool

MonitoringDashboard

is a is a

is a

Ping Ac6veMeasurement
omn:hasService

is a MeasurementTool

Fig. 5.7.: MOFI Tool ontology (based on [159])

5.2.7. MOFI Generic Concepts Ontology

The Generic Concepts ontology describes generic concepts and relations that are

important for measurements, monitoring services and tools, but which were not

described in the previous ontologies. It covers a set of classes describing concepts, such

as Location, LogicalLocation, PhysicalLocation, Protocol, Event, Query and

AuthenticationMethod. It also includes a couple of properties describing relations,

like locatedAt, latitude, longitude, usesProtocol, etc.

108

5.2. MOFI: Monitoring Ontology for Federated Infrastructures

5.2.8. Interaction with External Ontologies

MOFI is directly linked to other external ontologies that are part of the OMN ontology

(like omn, omn-resource, and omn-service).

An example of the interactions of MOFI subontologies with external ontologies is

illustrated in Figure 5.8.

The external ontologies and their relations with each other are represented with

dotted lines. To facilitate understanding of Figure 5.8, imagine the following scenario.

A user has created a server (modeled as omn:Resource) in a particular infrastructure.

Monitoring data is needed about the usage of the server for the SLA management

service (modeled in the omn-service ontology as a subclass of omn:Service). Mea-

surement data (modeled in mofi-data as a subclass of mofi:Data) with the proper

units (modeled under mofi:Unit) about some relevant metrics are provided through

an OML wrapper (modeled in mofi-tool ontology as an individual of type mofi:Tool)

to the SLA service. An example of such a metrics is load (modeled in mofi-metric

as a subclass of mofi:Metric) of the CPU component (modeled as omn:Component),

which is part of the server resource.

mofi:Data

mofi:Unit

mofi:pushesDataTo

mofi:measuredBy

MOFI

mofi‐data:hasMeasurementData

mofi:Tool

mofi:hasUnit

mofi:retrievedBy

rdf:type (is‐a)

rdf:type

(is‐a)

omn:isComponentOf

omn:isServiceOf omn:hasComponent

omn:Service omn:Resource omn:Component

mofi:Metric

mofi‐tool:

OMLWrapper

mofi‐genericconcepts:

usesProtocol

omn:hasService

omn‐service:SLA

mofi:isMeasurementMetricOf

mofi‐

genericconcepts:

OMSP

Fig. 5.8.: Example illustrating MOFI interactions with external ontologies (based on

[109])

109

5. Ontology-Based Information Model

5.2.9. Data Modeling and Serialization

OWL is used to describe the MOFI ontology and together with RDF and RDFS

represent the data model. RDF/XML and RDF-Turtle are used for data serialization.

Parts of MOFI ontologies, written in Turtle, which is a human and machine readable

language, are given in Appendix B. The open source ontology editor Protégé5 was

used to deőne the ontology.

5.3. Summary

This chapter introduced the MOFI ontology, which acts as a common information

model for MAFIA. After introducing the main concept behind using ontologies in

this thesis in Sec. 5.1, in Sec. 5.2, MOFI with its six subontologies are described.

The formal description of MOFI includes over 1500 triples covering the common and

mostly used concepts and relations in the domains addressed within this thesis. Its

scope is limited to the requirements of MAFIA considering one of the largest ICT

infrastructure federations in Europe, Fed4FIRE, as a reference in order to deőne the

common concerned aspects. The methodology and design decisions are discussed in

Sec. 5.2.1.

The introduced ontology models are implemented within MAFIA, whose implemen-

tation is discussed in Chapter 6.

5http://protege.stanford.edu

110

http://protege.stanford.edu

6
Implementation of the Architectural Functional Elements

6.1 Overview of the Implementation of the Initial Architecture . . . 112

6.1.1 Main Monitoring Components 114

6.1.2 Cross-Layer Monitoring Support 117

6.1.3 Solution Applicability . 119

6.2 Reference Implementation of the Final Architecture 119

6.2.1 Implementation of the Main Functional Elements 120

6.2.2 Implementation of Monitoring Services for Various Con-
sumers . 128

6.3 Summary . 134

T
HIS chapter presents a reference implementation of the monitoring architec-

ture (MAFIA) and the information model (MOFI) that are designed within

this thesis as presented in Chapter 4 and Chapter 5 respectively. As men-

tioned in Chapter 4, the architecture design was done in an iterative and incremental

manner and therefore went through two main phases. Accordingly, the implementation

steps were also done in iterations during these two phases.

The goal of this chapter is to introduce a reference implementation of MAFIA. Note

that the strategy followed in this thesis, including the implementation, is to reuse

existing technologies, protocols and tools as much as possible as long as they serve the

required functionalities. Therefore, only functional elements of the architecture that

are neither supported by the state-of-the-art solutions nor in line with the deőned

design principles are implemented.

Furthermore, the reference implementation provided by this thesis covers the

monitoring of some domains (e.g. clouds and cellular networks) in a federation.

However, it is extensible to cover monitoring of any ICT domain or speciőc application

area.

111

6. Implementation of the Architectural Functional Elements

The focus of this chapter is the implementation of the őnal architecture design.

However, the implementation of the initial design is őrst brieŕy described. This is

because the őnal design is based on the architectural design principles of the initial

design. Furthermore, the experience gained after the implementation and deployment

of the initial architecture deign (Sec. 4.1.1.4) leads to the demand of a new design as

discussed in Sec. 4.1.2.

6.1. Overview of the Implementation of the Initial

Architecture

Ofering on-demand cross-layer and cross-domain monitoring services for users was at

the heart of the initial design. The goal was to support monitoring of heterogenous

resources deployed across federated cloud infrastructures. That means there was no

focus on heterogenous domain infrastructures, as all federated infrastructures were

cloud-based, which are heterogenous in terms of structure, networking features and

resources, and the used cloud management solutions.

This design follows the set of architectural design principles discussed in Sec. 4.1.1.

It assumes the use of a homogenous monitoring solution across the federation. In

its implementation, Zabbix (see Sec. 2.5.2.4) is adopted as a suitable monitoring

solution that fulőlls the requirements of the initial architecture design. The choice of

Zabbix was made after comparing several alternative existing monitoring tools (Zabbix,

Nagios, OpenNMS, Collectd and Ganglia).1 These were compared in accordance to a

set of features that should be supported, like distributed monitoring, auto-registration

of monitoring clients, SNMP support, triggers and alerts, ŕexibility of data storage

and the support of various databases, access control, support of screens and maps and

Internet Protocol version 6 (IPv6) support. Not all but most of these features are

supported by all the mentioned tools. However, besides supporting all these features,

Zabbix has essential advantages for the target architecture, such as ease of deployment

and customizability.

Monitoring functionality is implemented in a simple, traditional manner following

a client-server model [64], as shown in Figure 4.3. As this section focuses only on the

implementation of monitoring components, the implementations of other components

in the architecture, such as the Web portal, resource manager and cloud infrastructure

manager, are not presented. Nevertheless, the use of these reference implementations

within the context of their use within MAFIA are discussed later in Sec. 7.1.

Monitoring services are ofered for users on an on-demand basis. If a user is

interested in monitoring, they have to create a monitoring collector resource (referred

to as a User Collector in the design) in the form of a VM that uses a special image

1These tools are presented in Sec. 2.5.2.1

112

6.1. Overview of the Implementation of the Initial Architecture

referred to as collector image. Each user has a dedicated collector for exclusive use

that is deployed as a separate resource and collects monitoring data reported by clients

(called agents in Zabbix) that reside in the UCRE’s VM images. Amongst the types

of agents that Zabbix supports (see Sec. 2.5.2.4), the active Zabbix agent mode is used

in this implementation to avoid possible accessibility problems because of Network

Address Translation (NAT). Using this mode, the agent is the one that initiates

communication and sends monitoring data to the server. However, the Zabbix server

is conőgured to enable its auto-registration feature in order to allow Zabbix agents

running anywhere to be automatically registered once they are conőgured with the

server IP. Furthermore, in order for agents to report the required data, a set of basic

measurement metrics (like CPU usage, memory and disk consumption, and more) are

preconőgured through a template stored in the server. This template is then used

by all agents to report data values for these metrics. Linking this template to each

agent is done automatically if the auto-registration feature is enabled and linked to

the template.

The collector VM is created like any cloud compute resource (VM) through the

Web portal or directly through an OCCI-based API exposed by the resource manager.

This manager maps and passes user requests to the cloud infrastructure manager (e.g.

OpenNebula12 or OpenStack11) of the respective cloud infrastructure, as illustrated

in Figure 4.3. The Web portal allows the creation of cloud resources (VMs, storage,

etc.) through a GUI. It allows users to design their UCREs and sends XML-based

OCCI requests to the resource manager. While creating the collector, the user can

choose where to store the data, either inside the collector VM or in an external storage

resource. This is implemented in a way to allow the user to identify an option and,

accordingly, the database will either be stored inside the collector image or in an

external storage resource that is attached to the collector resource as an additional,

external disk. Such capability enables the user to store the data in on-demand

storage space that might be permanently available, and to have the possibility of

reusing an external storage resource in the future for post-processing or data analytics.

The user’s choice is passed to the collector through the contextualization service

supported by OCCI and the cloud management software (OpenNebula is used in this

implementation). Contextualization information is checked while booting the collector

VM and proper conőguration actions are taken accordingly.

The user collector has an IP address that is reachable by any VM deployed any-

where across the federation. This is because all the federated infrastructures, where

this implementation is deployed, are located within a single WAN that facilitates

communication between VMs located at diferent infrastructures. Each infrastructure

is connected to every other one via a direct VPN connection. Upon creation of the

collector, its IP is used by all user VMs that are monitored.

113

6. Implementation of the Architectural Functional Elements

6.1.1. Main Monitoring Components

6.1.1.1. Monitoring Collector Image

The collector image contains both Zabbix server and agent, as well as further prein-

stalled initialization scripts. The initialization scripts are used to deploy the requested

monitoring services. These services include infrastructure resources monitoring, the

use of permanent external storage, VM event logs, and allowing the collector to

monitor itself. The initialization scripts are conőgured according to contextualization

information received. This information includes users’ interest in any of the monitoring

services and is sent along with the collector creation request.

The federation portal used in the implementation supports the automatic creation

of the collector VM. Once the collector is running, the user can browse its Web

GUI or directly invoke its JSON-RPC API to get data in JSON format. Beyond the

native JSON-RPC API supported by Zabbix, a script was implemented to export

data in CSV format. Furthermore, a Representational State Transfer (REST) API

was implemented that provides data in JSON format over HTTP.

Each monitored machine is referred to in Zabbix as a host and is stored in the

Zabbix server with its original hostname. The collector image is prepared in a way so

as to group all the UCRE’s VMs under one hostgroup and all Physical Machines (PMs)

that host these VMs under another hostgroup.

Requirements At least one cloud infrastructure has to provide a collector image

that has a predeőned ID. Such an ID may change during the lifetime of the infrastruc-

ture. Therefore, before triggering the OCCI request to create the compute resource

running the collector, one must identify the image ID. In the case where all cloud

infrastructures provide collector images, the choice of where to deploy the collector

is left to the user. In this kind of implementation, the images used contains Zabbix

version 1.8.6, which in turn uses MySQL2 5.0+, Apache3 1.3.12+ and PHP: Hypertext

Preprocessor (PHP)4 5.1.6+.

Installation The OCCI request shown in Listing 6.1, when sent to the resource

manager, triggers the creation of the collector image in the speciőed cloud infrastruc-

ture.

Using the usage element of the context tag of the OCCI request to identify

required monitoring services (discussed in Sec. 6.1.2), the collector will automatically

be conőgured accordingly. If external storage is required, prior to the creation of the

collector, a storage resource (of type datablock) has to be deployed. Its ID is then

used in the OCCI creation request of the collector as shown in Listing 6.2. The user

2https://www.mysql.com
3http://httpd.apache.org
4http://php.net

114

https://www.mysql.com
http://httpd.apache.org
http://php.net

6.1. Overview of the Implementation of the Initial Architecture

still needs to specify their desire to use external storage via the contextualization

service with the usage element. This external storage will be mounted as an additional

disk beside the main one used by the OS image as shown in Listing 6.1.

Listing 6.1: OCCI request to create a monitoring collector

1 $ curl -kni https://federation-API-entrypoint_ip/UCRE_id/computes \

2 -X POST -H’Content-Type: application/vnd.MediaType+xml’ \

3 -d ’<?xml version="1.0" encoding="UTF-8"?>

4 <compute xmlns="http://federation-API-entrypoint_ip/doc/schemas/occi">

5 <name>MonitoringCollector</name>

6 <instance_type>small</instance_type>

7 <disk>

8 <storage href="/locations/CloudInfrastructureName/storages/image_id"/>

9 <type>OS</type>

10 <target>hda</target>

11 </disk>

12 <nic>

13 <network href="/locations/CloudInfrastructureName/networks/network_id"/>

14 </nic>

15 <context>

16 <usage>zabbix-agent</usage>

17 </context>

18 <link href="/locations/CloudInfrastructureName" rel="location"/>

19 </compute>’

Listing 6.2: Part of an OCCI request to create a monitoring collector

1 ...

2 <disk>

3 <storage href="/locations/CloudInfrastructureName/storages/datablock_id"/>

4 <type>disk</type>

5 <target>hdb</target>

6 </disk>

7 ...

8 <context>

9 <usage>zabbix-agent;zabbix-external-storage</usage>

10 </context>

11 ...

6.1.1.2. Compute Resource Image

Each federated cloud infrastructure may provide a variety of images for booting the

ofered compute resources (classic VMs). Images vary from each other in their OS or

even in services ofered (e.g. VNFs). To support monitoring, each of these images

contains an instance of Zabbix agent software (all versions are supported). The image

is preconőgured to utilize the contextualization information to activate the Zabbix

agent if monitoring is required and conőgure it with the IP of the collector. In addition

to those metrics predeőned in the Zabbix template, the federation resource manager’s

OCCI API supports speciőcation of monitoring metrics in the contextualization

section of a compute resource [64]. Thus, users are able to deőne custom metrics when

115

6. Implementation of the Architectural Functional Elements

preparing their VM images. The images include software (init.sh script) to read this

contextualization information (stored by the cloud manager, such as OpenNebula, in

a context.sh script) and conőgure the agents accordingly. Furthermore, users have

the ability to specify additional monitoring metrics for already running VMs through

additional software written in Python. This software takes as input a metric name,

the Unix command used to produce the measures, and additional metric attributes

like the update rate of measurement data in seconds, the amount of time to keep data

history in days and the expected data type of the measures. To activate measuring

for new metrics, the software automatically conőgures the local Zabbix agent and,

through the use of the zabbix_api.py library, it conőgures the Zabbix server remotely

using its JSON-RPC API. This service allows users to customize and monitor their

services and applications.

Requirements Similar to the collector image, the user needs to identify the allo-

cated ID of the selected image before the installation is performed.

Installation The OCCI request shown in Listing 6.3, when sent to the resource

manager, triggers the creation of a VM in the speciőed cloud infrastructure.

Listing 6.3: OCCI request to create a VM with monitoring service enabled

1 $ curl -kni https://federation-API-entrypoint_ip/UCRE_id/computes \

2 -X POST -H’Content-Type:␣application/vnd.MediaType+xml’ \

3 -d ’<?xml␣version="1.0"␣encoding="UTF-8"?>

4 <compute␣xmlns="http://federation-API-entrypoint_ip/doc/schemas/occi">

5 ␣␣<name>ComputeResource</name>

6 ␣␣<instance_type>lite</instance_type>

7 ␣␣<disk>

8 ␣␣␣␣<storage␣href="/locations/CloudInfrastructureName/storages/image_id"/>

9 ␣␣␣␣<type>OS</type>

10 ␣␣␣␣<target>hda</target>

11 ␣␣</disk>

12 ␣␣<nic>

13 ␣␣␣␣<network␣href="/locations/CloudInfrastructureName/networks/network_id"/>

14 ␣␣</nic>

15 ␣␣<context>

16 ␣␣␣␣<collector_ip>MonitoringCollector-IP</collector_ip>

17 ␣␣␣␣<usage>zabbix-agent</usage>

18 ␣␣␣␣<metrics>

19 ␣␣␣␣␣␣<metric>metric_name,␣Unix_command,␣metric_attributes</metric>

20 ␣␣␣␣␣␣...

21 ␣␣␣␣</metrics>

22 ␣␣</context>

23 ␣␣<link␣href="/locations/CloudInfrastructureName"␣rel="location"/>

24 </compute>’

Besides custom metrics deőned by the user, the IP address of the collector is

passed to the VM using the contextualization service supported by the OCCI creation

request.

116

6.1. Overview of the Implementation of the Initial Architecture

6.1.1.3. Contextualization Service

Contextualization is used to allow the automatic installation of any software on a

VM after booting. It also allows parameters to be passed directly to the VM on

instantiation. It is supported in both image types: collector and compute resource.

Collector Image Through the OCCI creation request (Listing 6.1), the user can

identify the software to be installed after booting. This is supported through setting

the usage element of the context tag by identifying the scripts to be executed.

Listing 6.4 shows the possible setting of the usage element of the context tag of the

OCCI request to create a collector VM. It includes four values. The őrst two have

been already discussed, while the last two will be discussed in Sec. 6.1.2.

Listing 6.4: Use of the usage element of the OCCI context tag to create a collector

VM

1 ...

2 <context>

3 <usage>zabbix-agent;zabbix-external-storage;log-MQevents-in-zabbix;infra-monitoring-

init</usage>

4 </context>

5 ...

Compute Resource Images Through the OCCI creation request (Listing 6.3), the

user can identify whether the created VM needs to be monitored. This is done through

setting the usage element of the context tag to zabbix-agent, which will conőgure

and run the Zabbix agent on the VM after booting. Conőguration information such

as the IP address of the collector and custom metrics, is also passed to the compute

resource VM through the context tag of the OCCI request.

6.1.2. Cross-Layer Monitoring Support

Multiple monitoring services are supported. These are ofered on-demand. While

creating a user collector resource, the user can indicate the desired services through

the contextualization part of the OCCI creation request, which is passed down to

the VM used to run the collector. During its boot, contextualization information is

checked and, according to the identiőed services, proper actions are taken.

UCRE Monitoring and Resource Event Logs The UCRE monitoring service is

automatically supported if the user creates a collector and all VMs are created through

the portal. All user VMs are preconőgured with the Zabbix agent, which reports

data to the collector. The IP address of the collector is passed to each VM through

the contextualization service. However, if the user uses the federation API to create

VMs, the usage element of the context tag must be set to zabbix-agent and the

117

6. Implementation of the Architectural Functional Elements

collector IP must also be given through the context tag as discussed in Sec. 6.1.1.3.

If a user is interested in logging all events related to UCRE resources (compute,

storage and network), this can be speciőed while creating the collector resource using

contextualization, as indicated in the OCCI request through log-MQevents-in-zabbix

(see Listing 6.4). To collect all events related to the status of user resources (created,

stopped, destroyed, etc.), software implemented in Python responsible for collecting

events logs is deployed at the user collector. This software is implemented based on

the message queue RabbitMQ5, where a message queue listener running on the user

collector is subscribed to a RabbitMQ server located at federation level. The listener

stores all event logs that are made available for the user through the Zabbix GUI and

the JSON-RPC API.

Services and Applications Monitoring Users can monitor any service or ap-

plication deployed on their resources through custom metrics. New measurement

metrics can be deőned as required to monitor services and applications. Zabbix

agents running on those resources are in charge of reporting measurement data of

these metrics to the collector. To achieve this, a simple program is implemented that

automates the process. It allows the user to add arbitrary metrics in a very simple

way. This program is written in Python and can be deployed on any VM. All that is

needed is to execute the program, which takes as input the name of the metric and a

command used to perform the measurements. This command can be a simple Unix

command or even a command to run any tool or software to produce the measures.

It automatically reconőgures the Zabbix agent running on the selected VM to start

measurement. It also conőgures the Zabbix server remotely in order to understand

the new metrics. User-deőned metrics are listed under the hostname of the selected

VM along with those metrics supported by default.

Infrastructure Resource Monitoring In order to implement the infrastructure

resource monitoring service at each cloud infrastructure, an instance of the Zabbix

server is deployed in a VM or a PM, called an infrastructure collector (Figure 4.3). The

infrastructure collector is in charge of monitoring the whole physical infrastructure.

It collects monitoring data from all PMs, and network and storage resources at that

infrastructure and from its interconnectivity with other infrastructures. In each

physical resource, a Zabbix agent is running that is conőgured to report data to the

respective infrastructure collector. This monitoring setup is used for internal control

and management, as well as by federation administrators for assuring the health

and performance of the infrastructure. Furthermore, partial information about the

physical infrastructures are ofered to users through a set of predeőned measurement

metrics about the physical machines on which users’ VMs are running. Read-only

5https://www.rabbitmq.com

118

https://www.rabbitmq.com

6.2. Reference Implementation of the Final Architecture

access to these metrics is ofered in the form of a Zabbix template. This is implemented

using a permanently running daemon on each user collector that fetches the data from

the respective infrastructure collectors through their APIs. The daemon is notiőed

each time the state of any of UCRE’s VM is changed (e.g. created, destroyed). This

notiőcation is implemented through the subscription of a message queue listener to the

message queue server as discussed for the resource event logs. The listener stores each

notiőcation in an SQLite database as a new entry in a table called notifications.

If the notiőcation indicates a creation event of a compute resource (VM), an entry is

stored in another table of the database called computes. The compute table entry

includes the name of the created VM, the PM on which it is running, at which

infrastructure it is located, and the IP address of the infrastructure collector. If the

notiőcation indicates a destroy event of a compute resource (VM), the respective

entry is removed from the computes table. The daemon periodically (e.g. every 30

seconds) checks the computes entries and retrieves information about the PMs from

their corresponding infrastructure collectors. If multiple VMs are running on the same

PM, information about that PM is retrieved only once. This service is only activated

for the user if the usage element of the OCCI request to create the collector VM is

set with infra-monitoring-init (see Listing 6.4). This script will then instantiate the

service.

6.1.3. Solution Applicability

This solution is used to monitor a federated cloud environment using homogenous

tools across clouds. This, however, limits its direct adoption in a heterogeneous and

dynamic federation where diferent monitoring systems are in place, as mentioned in

Sec. 4.1.2. Nevertheless, this solution can still be used as a stand-alone solution for

some scenarios. For instance, it can be used to monitor a federation of clouds that is

in turn part of a heterogeneous federation but adapts to its common monitoring API.

This is the case for one of the experimental use cases addressed in this thesis, where

this solution is partially reused in a federation of heterogeneous testbeds (Sec. 7.2).

6.2. Reference Implementation of the Final Architecture

This section presents a reference implementation of the őnal monitoring architecture,

namely MAFIA, whose design is introduced in Sec. 4.3. MAFIA supports various

types of monitoring services (Sec. 4.3.1). Their design is discussed in Sec. 4.3.2 in

according to the type of consumer. Similarly, the implementation of these services

for three main consumers (users, federation administrators and FLS, and federation

services) is presented in Sec. 6.2.2. However, the main functional elements of MAFIA

are valid for all three types, and are discussed őrst in Sec. 6.2.1.

119

6. Implementation of the Architectural Functional Elements

6.2.1. Implementation of the Main Functional Elements

To support MAFIA services according to the design principles laid out earlier, manda-

tory elements have to be provided or implemented by each infrastructure involved

in the federation. These include the deployment of local monitoring tools, the adop-

tion of the common monitoring API and the provisioning of the data following its

speciőcation in a common data representation.

6.2.1.1. Local Monitoring Tools

MAFIA is designed in a ŕexible way to allow infrastructure providers to maintain

monitoring tools and solutions already in place, provided that the required services

are supported. Each infrastructure can use arbitrary measurement and monitoring

tools, as long as they suit its domain, size and types of resources. Indeed, depending

on the nature of an infrastructure and the type of monitoring service being provided,

some tools might be more appropriate than others. This is out of the scope of this

thesis.

To give some idea of the tools used in the implementation, commonly used tools in

the experimental use-cases addressed in this thesis include Zabbix, Nagios, collectd,

Iperf, the Ping program as active measurement probes, and the Linux monitoring

tools iostat, netstat and vmstat.

It’s still possible for the federator to recommend a number of powerful tools to

be used by those infrastructures that would otherwise lack satisfactory monitoring

solutions.

6.2.1.2. Common Monitoring API

The OML framework (discussed in Sec. 2.5.2.3) is used as a reference implementation

of the common monitoring API of MAFIA. It deőnes a ŕexible protocol called OMSP

that is used to describe arbitrary data schemas and to transfer measurement data

from distributed clients (measurement and injection points) to one or multiple servers

(processing and collection points) as streams according to these schemas.

Upon connection to a server, a client őrst sends a header followed with measurement

data that is serialized using text or binary encoding. The header describes the injection

points, along with the schemas of the measurement data. OMSP uses a list data

model. The data serialization is done as Delimiter Separated Value (DSV), separated

by tab in the text encoding mode, while in binary mode the data is encoded following

a speciőc type of marshaling.

Listing 6.5 shows an example of a valid OMSP header and data streams that are

text encoded. This example is used to provide availability status information on a set

of components in FUSECO PG.

120

6.2. Reference Implementation of the Final Architecture

Listing 6.5: An OMSP header and data streams

1 protocol: 4

2 domain: FUSECO

3 start-time: 1441184697

4 sender-id: fuseco.fokus.fraunhofer.de

5 app-name: health_monitoring

6 schema: 0 _experiment_metadata subject:string key:string value:string

7 schema: 1 fiteagle node:string up:int32 last_check:string

8 schema: 2 epc_client node:string up:int32 last_check:string

9 schema: 3 epc_testbed node:string up:int32 last_check:string

10 schema: 4 cloud_testbed node:string up:int32 last_check:string

11 content: text

12

13 10.9578390121 1 0 FITeagle AM 1 2015-09-02T11:05:07.957537+02:00

14 10.9579770565 2 0 EPC Client 0 2015-09-02T11:05:07.957537+02:00

15 10.9580380917 3 0 EPC Testbed 1 2015-09-02T11:05:07.957537+02:00

16 10.9580969811 4 0 Cloud Testbed 1 2015-09-02T11:05:07.957537+02:00

Lines 1 to 11 are header information and deőne meta information about the

monitoring data that starts in line 13. In the header, the domain tag (line 2) contains

the name of the infrastructure from which health monitoring information is provided

by a particular client (see sender-id in line 4). The client runs a health monitoring

application (represented through app-name in line 5), which is started at a speciőc

point in time (represented through start-time in Unix timestamp). Schema 0 in

line 6 is a speciőc hardcoded stream for metadata. Schemas 1 to 4 are user-deőned

according to the following deőnition (see lines 7 to 10 and lines 13 to 16):

schema: <id> <identifier> <value 1> <value 2> ... <value n>

Where the placeholders have the following meaning:

• id: schema identiőer

• identifier: unique identiőer of the monitored component

• values for example:

– node: deőned in a text message to provide the name of the monitored

component in a human readable manner

– up: has to be 1 if the component is up, 0 if down, or 2 if the status is

unknown

– last_check: indicates the date when the component status was checked

This predeőned structure must be kept while pushing the information. It is, however,

possible to update any schema when a connection is present or even add new schemas.

Schemas must have distinct names as is the case in lines 7 to 10.

Lines 13 to 16 represent the actual monitoring data being pushed, which has the

structure deőned in the schemas. For example, line 14 belongs to the component

121

6. Implementation of the Architectural Functional Elements

EPC Client with the schema number 2, the resource is down, and the information

was generated at 2015–09–02T11:05:07.957537+02:00.

This example shows a simple scenario as to how OMSP protocol is used. However,

the same methodology is valid for all scenarios supported in MAFIA independent of

the type of the planned measurements or monitoring services.

Important while using OML/OMSP is to deőne the MPs or to write suitable

wrappers to produce measurement data ready for injection. Deőning MPs to produce

measurement data is more relevant to users, allowing them to monitor their services

or applications. In contrast, the use of wrappers to produce data is most appropriate

for supporting most MAFIA services. This is because such wrappers are used by

infrastructure providers to gather already produced data from local monitoring tools

and provide the data to various consumers. A wrapper fetches measurement data

from one or multiple tools through their native APIs (having own data formats)

and converts the data into OML streams with the help of supported OML libraries,

which then export the data to the identiőed OML server. As OML includes libraries

in multiple languages, such wrappers can be written in any of these languages (as

discussed in Sec. 2.5.2.3). Such wrappers are referred to in this thesis as OML

wrappers. According to MAFIA architecture (Figure 4.6), a wrapper represents a

monitoring adapter or even part of an adapter.

6.2.1.3. Monitoring Adapters

A monitoring adapter compliant with MAFIA speciőcation can be used to either

manage a monitoring resource such as a measurement probe (probe instantiation and

execution, data processing and delivery, and probe release) or convert data from one

interface (format) to another, as discussed in Sec. 4.2. Both cases are implemented

for various scenarios as will be discussed later. However, as far as the provisioning

of data in a common format is concerned, each adapter used to provide data to its

consumer has to deliver it as OML streams. Such adapters can either be responsible

for deőning and executing MPs and data delivery, or they can act as OML wrappers

to wrap data from monitoring tools and deliver it as OML streams.

Wrappers are used to collect data from any data source, e.g. monitoring tools,

network traic statistics, CPU and memory utilization, and input from sensors like

temperature. Such generic capability allows writing wrappers for diferent scenarios.

Furthermore, wrappers can be shared and reused by other users or infrastructures

as long as they are used to wrap the same set of data from the same tools. Generic,

simple examples are provided in Appendix C that can be modiőed or extended by

users for their speciőc use.

OML supports providing data in a common format following the OMSP speciőcation.

However, it does not deőne speciőc schemas or vocabulary but rather leaves them

to be deőned by the user. For instance, the example shown in Listing 6.5 includes

122

6.2. Reference Implementation of the Final Architecture

user-deőned schemas that contain a set of values and use their own vocabularies

(node, up, last_checked). To provide the same service from a diferent source in a

federation, these schemas and vocabulary should be common and shared by all parties

involved in order to avoid any misinterpretation and interoperability problems. As

this solution will not scale in a large and dynamic federation where MPs, tools and

measurement metrics change dynamically, MOFI and the other OMN ontologies are

used as a common information model. This model allows common data collection

and representation across the federation.

6.2.1.4. Semantic Data Collection and Representation

The use of common, shared deőnitions of monitoring and measurement concepts

and their relations facilities interoperability and allows the data to be provided in

a common, meaningful manner across the federation. MOFI describes the common

monitoring concepts and their relations in the experimental use-cases addressed in

this thesis.

As discussed in Sec. 5.2.1, working towards the goals of sustainability and standard-

ization, MOFI is designed as part of the larger OMN ontology that models federated

infrastructures with a focus on the complete experiment life cycle, where MOFI is

the OMN-Monitoring subontology. It is, together with the other OMN ontologies,

implemented within MAFIA. For reusability and sustainability, the OMN namespace

and preőxes are used instead of MOFI for the monitoring onotologies in a fashion

similar to all other OMN ontologies. That means instead of using mofi as the preőx for

concepts and relations deőned in the MOFI upper ontology, the preőx omn-monitoring

is used. Similarly, the preőx omn-monitoring-data is used instead of mofi-data and

omn-monitoring-metric is used instead of mofi-metric, and so on.

A wide range of infrastructure-, resource- and monitoring-related concepts and

relations deőned in OMN are implemented within MAFIA, particularly for those

components related to data collection and representation, namely OML-related.

A proof-of-concept version6 of a semantic OML was implemented to support the

collection of monitoring data as RDF triples. This version is limited to a speciőc

domain (network measurements) and has not been deployed in any real environment.

However, it is used as a basis for the semantic OML implemented in this work. The

initial version was dramatically changed and extended in multiple aspects [64], [159].

It was modiőed to implement the OMN ontology and support the services required

within MAFIA. It has also been extended to support semantics in two additional

languages (Python and Ruby) besides C, that is natively supported, in order to allow

users to use any of the three corresponding client libraries (liboml2, OML4Py and

OML4R).

6https://github.com/alco90/soml

123

https://github.com/alco90/soml

6. Implementation of the Architectural Functional Elements

On the server side, oml2-server is extended through additional capabilities for

processing and storing OML streams that are collected semantically following RDF-

based schemas.

• Upon receipt of a header, the client handler őrst parses the metadata and for-

wards the information to a semantic database adapter (called fuseki-adapter)

for further processing.

• It prepares an INSERT statement for each schema according to the metadata.

INSERT statements can be seen as templates used for inserting data, sent

following the header, during the whole connection lifetime or at least as long as

the schemas are not changed or updated. INSERT statements are prepared in a

way so as to allow serialization of the data in RDF triples using the RDF-Turtle

data format. That means that, each time a stream is received, the actual

monitoring data is inserted into the corresponding INSERT statement that is

then ready for insertion serialized as RDF-Turtle.

• The data is then inserted as RDF triples in a semantic triple store. Each

insertion (or INSERT statement) contains multiple RDF triples depending on

the amount of information included in the corresponding stream.

The Apache Jena Fuseki7 server is used along with Jena TDB7 as RDF triple store

backend for the semantic OML server. Fuseki server is a SPARQL Protocol And

RDF Query Language [220] (SPARQL) endpoint that allows RDF triples to be stored

through SPARQL 1.1 Update over HTTP and retrieved through SPARQL 1.1 Query

over HTTP.

At the client side, an extension is done in the OML Scafold program (oml2-scaffold)

that is natively used to generate the skeleton OML source code for MPs written in

C, as discussed in Sec. 2.5.2.3. Scafold is extended in this work to have a twofold

service:

1. To generate part of the OML wrapper code (in C, Python or Ruby) that is

used for building the injection of OML streams to follow semantic RDF-based

schemas (see line 2 in Listing 6.6) according to a predeőned user template

(Listing 6.7, which is deőned according to OMN monitoring and other related

ontologies).

2. To act as a validator to check the correctness of the user-deőned semantic schemas

against OMN ontologies. The validator gets both as input, user schemas in the

form of a template and OMN ontologies, as shown in Figure 6.1.

7http://jena.apache.org/documentation/serving_data/

124

http://jena.apache.org/documentation/serving_data/

6.2. Reference Implementation of the Final Architecture

Listing 6.6: RDF-based OML streams

1 schema: 0 _experiment_metadata subject:string key:string value:string

2 schema: 1 used_bandwidth used_bandwidth:double:{omn-monitoring-data:SimpleMeasurement|

omn-monitoring-data:isMeasurementDataOf|omn-monitoring-metric:UsedBandwidth}{omn-

monitoring-metric:UsedBandwidth|omn-monitoring:isMeasurementMetricOf|omn-domain-

pc:VM}{omn-monitoring-data:SimpleMeasurement|omn-monitoring-

data:hasMeasurementDataValue|%value%}{omn-monitoring-data:SimpleMeasurement|omn-

monitoring:hasUnit|omn-monitoring-unit:bitpersecond}{omn-monitoring-

unit:bitpersecond|omn-monitoring-unit:hasPrefix|omn-monitoring-unit:mega}

timestamp:datetime:{omn-monitoring-data:SimpleMeasurement|omn-monitoring-

data:hasTimestamp|%value%} virtualresource:string:{omn-domain-pc:VM|omn:hasURI|%

value%}{omn-domain-pc:VM|omn-lifecycle:childOf|omn-domain-pc:PC}

physicalresource:string:{omn-domain-pc:PC|omn:hasURI|%value%}

3 content: text

4 0.985508918762 1 0 0.002190 2015-10-20 23:22:34+02:00 http://monitoring.service.tu-

berlin.de/resource/Openstack-1/c277660a-f5c7-4c29-9fdb-590e6e57ecc2 openstack.av.tu-

berlin.de

Listing 6.7: OMN-based OML template

1 app.defMeasurement("used_bandwidth"){ |m|

2 m.defMetric(’used_bandwidth’, :double, ’used␣bandwidth␣of␣monitored␣host’,

3 [[’omn-monitoring-data:SimpleMeasurement’,’omn-monitoring-data:isMeasurementDataOf’,’

omn-monitoring-metric:UsedBandwidth’],

4 [’omn-monitoring-metric:UsedBandwidth’,’omn-monitoring:isMeasurementMetricOf’,’omn-

domain-pc:PC’],

5 [’omn-monitoring-data:SimpleMeasurement’,’omn-monitoring-data:hasMeasurementDataValue

’,’%value%’],

6 [’omn-monitoring-data:SimpleMeasurement’,’omn-monitoring:hasUnit’,’omn-monitoring-

unit:bitpersecond’],

7 [’omn-monitoring-unit:bitpersecond’,’omn-monitoring-unit:hasPrefix’,’omn-monitoring-

unit:mega’]])

8 m.defMetric(’timestamp’, :datetime, ’Time␣when␣the␣metric␣is␣measured’,

9 [[’omn-monitoring-data:SimpleMeasurement’,’omn-monitoring-data:hasTimestamp’,’%value%

’]])

10 m.defMetric(’physicalresource’, :string, ’URI␣of␣monitored␣resource’,

11 [[’omn-domain-pc:PC’,’omn:hasURI’,’%value%’]])

12 m.defMetric(’virtualresource’, :string, ’URI␣of␣virtual␣host␣which␣is␣running␣on␣the␣

monitored␣physical␣host’,

13 [[’omn-domain-pc:VM’,’omn:hasURI’,’%value%’],

14 [’omn-domain-pc:VM’,’omn-lifecycle:childOf’,’omn-domain-pc:PC’]])}

Figure 6.1 shows an overview of the implementation of the semantic OML delivered

by the work done in this thesis together with a set of examples of monitoring

and measurement tools (e.g. Zabbix, Ping, Traceroute, Ierf) and capabilities (e.g.

OpenStack API, Ceilometer) used to produce raw measurement data. OML wrappers

that are part of OML clients together with the proper OML libraries are used to

gather monitoring data from these tools and convert them into OML streams and

send them to the server. The server stores the data in Jena Triple Store through

SPARQL updates over HTTP. However, in order for these wrappers to export the

data semantically following RDF based schemas, they need to use OMN models. For

this to be achieved, a user has to deőne RDF-based schemas through templates that

125

6. Implementation of the Architectural Functional Elements

includes the required measurement metrics and the associated monitored resources.

An example of such a template (written in Ruby) is shown in Listing 6.7.

OML Wrapper (Ruby)

OML Wrapper (Python)

OML Wrapper (C)

OpenStack API /

Ceilometer

Ping / Tracerout / Iperf

Zabbix

Scaffold

T
e

m
p

la
te

(R
D

F
B

a
se

d
 S

ch
e

m
a

s)

O
M

N
 (

in
cl

.
M

O
F

I)

O
n

to
lo

g
ie

s

Jena Triple Store

OML Server

Inter-Domain (ID) Monitoring

 OpenStack (OS) Monitoring

H
R

O
S

ID

Health (H) & Resource (R)

Monitoring

R
D

F
S

ch
e

m
a

 B
a

se
d

 M
o

n
it

o
ri

n
g

D
a

ta
 S

tr
e

a
m

s

R
a

w
 M

o
n

it
o

ri
n

g
 D

a
ta

Store Data

(SPARQL Updates)

Query / Visualize Data (SPARQL Queries)Define Semantic Schemas

OML4R

OML4Py

liboml2

Fig. 6.1.: Semantic OML implementation

In order to simplify the scenario in Figure 6.1, it’s assumed that the user who deőnes

the template is the same as the one who will then query the data. However in practical

use, these can either be the same user or two diferent users. In the former case, a user

uses OML for performing measurement related to their services and applications and

then utilizes the data. As an example of the latter case, an infrastructure provider

deőnes a template that is used to export data about infrastructure resources; an

authorized user can query the data based on resource IDs (limited to the given IDs)

or resource types (gets data about all resources of the given type).

126

6.2. Reference Implementation of the Final Architecture

The adoption of semantic OML together with the use of OMN would not need

much manual change if a classic OML is already in place. At the server side, an OML

server can be upgraded to the new semantic version that supports RDF serialized

data streams. Furthermore, there is no need for any manual change to go back to

the use of a classic OML, as the new version can handle both schemas (semantic

and traditional). At the client side, it’s not necessary to change or upgrade any of

the traditional OML client libraries in place. An exception is in the latest version

of OML4Py (v2.10.4). This version checks the format of the used schemas in the

traditional way. It is extended to handle both schemas (semantic and traditional).

There is no real overhead here as this library is just a Python script that can be

replaced. However in general, all that has to be done at the client side is to write

MPs or OML wrappers in to export streams following predeőned RDF-based schemas.

This process is even facilitated via the use of oml2-scaffold.

6.2.1.5. Data Access and Visualization

Users can query or visualize their data in multiple ways. If the classic OML framework

is used that stores data in either an SQLite or PostgreSQL database, the user can

use any SQL client to query the data. Furthermore, several visualization tools can be

used on top of these databases. In the case of PostgreSQL, for instance, a range of

visualization and GUI-based tools8 are available. As MAFIA supports diferent kinds

of users with various interests, the decision of how to access the data is left to the

user.

In the case of the semantic OML, data is retrieved through the use of SPARQL

1.1 Query Language. Fuseki’s SPARQL Query engine supports by default exporting

semantic triples in the form of tables or in other formats such as XML, JSON and

CSV. It’s hard for a human user to understand the data as it is stored as triples

and identiőed through unique and speciőc URIs. To provide a data visualization

capability, Sgvizler9 is used. It coverts the RDF triples queried from the Jena TDB

into graphs and charts. Sgvizler is a Javascript őle (sqvizler.js) that can be placed

in the directory where Fuseki is deployed under the pages folder. All ontology preőxes

used in the semantic OML (MOFI, OMN, W3C Time, and others) are written in

this őle to avoid using them in each SPARQL query. Finally, this őle can be either

embedded in a portal or used in any Hyper Text Markup Language (HTML) page.

The latter is used in the this implementation where the new created page is added

to fuseki.html. By doing so, a new link to the visualization appears in the Fuseki

GUI.

8https://wiki.postgresql.org/wiki/Community_Guide_to_PostgreSQL_GUI_Tools
9https://www.w3.org/2001/sw/wiki/Sgvizler

127

https://wiki.postgresql.org/wiki/Community_Guide_to_PostgreSQL_GUI_Tools
https://www.w3.org/2001/sw/wiki/Sgvizler

6. Implementation of the Architectural Functional Elements

6.2.2. Implementation of Monitoring Services for Various
Consumers

In Sec. 6.2.1, the implementation of the main functional elements of MAFIA was

discussed. This section presents the implementation of MAFIA services and how they

are made available for their consumers.

As all services have to provide monitoring data via OML across the federation, it

is assumed that each infrastructure has deployed suitable monitoring tools in charge

of data acquisition and is able to forward the data as OML streams.

MAFIA is designed in an extensible manner so that arbitrary monitoring services

can be deployed for various consumers [143]. However, a set of services are designed

in this thesis that are consumed by diferent consumers, grouped into three categories

(see Sec. 4.3.2). Their implementation is discussed in the following three sections.

6.2.2.1. MAFIA Services for Users

Monitoring services for users can be implemented in two diferent approaches: generic

ad user-friendly (Sec. 4.3.2.1) [143]. The user-friendly approach is the reference

implementation delivered by this work. However, a proof-of-concept implementation

that demonstrates the feasibility of the generic approach is carried out and is discussed

brieŕy below.

Generic Implementation:

This approach assumes that an infrastructure ofers monitoring resources for

users like other classic resources (e.g. VM, sensor, WiFi Access Point) that can be

requested on-demand. Examples of monitoring resources include measurement probes,

data converter, data exporter, data collector, and data viewer (API, GUI). In this

implementation, in contrast to the user-friendly implementation, all monitoring and

measurement setup and conőguration are performed by the user.

This generic approach was implemented using the Teagle framework, which was

used for registering and provisioning monitoring resources [94]. Teagle was selected

due to its generality and resource agnosticism, i.e. anything can be a resource that

can be managed, like software, a server or even a platform. It includes multiple

central services for resource description, registration and provisioning across federated

domains. Infrastructures advertise resources described with their functionalities.

While creating a UCRE the user requests suitable resources that will be used to

perform measurements and collect data. User requests are dispatched to the respective

infrastructures. Monitoring resources are then provisioned along with classic resources

to form the UCRE. In Teagle, each of the ofered resources is managed via a resource

adapter.

128

6.2. Reference Implementation of the Final Architecture

In the proof-of-concept implementation, the Packet Tracking tool is used, which

is a passive measurement solution for network path and quality monitoring. It is

used for performing traic monitoring between nodes deployed in a multi-domain

environment. It includes three main components: impd4e (passive measurement

probe), matcher (data processing and collection) and netview (data visualization).

Two resource adapters were developed within Teagle: one for the impd4e and the

other one for the matcher. Both resource types are ofered through Teagle along

with other resource types, such as VM, server, router and database. Netview as an

executable Java Archive (JAR) őle can be deployed anywhere (e.g. on the matcher

machine) to get the data from the matcher to be visualized.

Teagle includes the Virtual Customer Testbed Tool [221] (VCTTool), through which

a user can setup a UCRE. During setup, the user can identify the type and number

of the required resources (e.g. VMs, routers), in which infrastructures they should be

deployed, and their conőguration and dependencies. The user can request an instance

of the impd4e to be deployed on each of the VMs between which delay and network

path quality measurements are to be performed. It’s mandatory to deploy an instance

of the matcher in advance as its IP is required by all probes to report data. Teagle

includes an orchestration engine that supports the provisioning of resources following

a pre-deőned order to ensure dependencies.

User-friendly Implementation:

A user-friendly implementation enables automatic setup of monitoring services.

This allows users to get monitoring data about their UCREs and their accompany-

ing infrastructure resources on an on-request basis without any need of the users’

involvement in setup and conőguration (see Sec. 4.3.2.1) [143].

This implementation requires some efort at the infrastructure level. First of

all, it assumes that the infrastructure already has some means to actually measure

infrastructure-related metrics. Information about infrastructure resources is ofered

to users as a service in addition to information about their UCRE resources. Ofering

these services is achieved analog to the way classic resources are being ofered.

In the FI experimentation őeld that is addressed in this thesis as an experimental use

case, the SFA Aggregate Manager (AM) and Clearinghouse (CH) APIs are used as a

de-facto standard for resource discovery, provisioning and termination across federated

infrastructures. SFA is accompanied by the GENI Resource Speciőcation10 (RSpec)

that is used for describing resources in a common manner.

FITeagle, one of the SFA implementations, is used in this work. Using FITeagle as

an infrastructure manager, classic resources ofered by the concerned infrastructure

are described via RSpec advertisements. GENI RSpecs are XML-based documents

10http://groups.geni.net/geni/wiki/GENIExperimenter/RSpecs

129

http://groups.geni.net/geni/wiki/GENIExperimenter/RSpecs

6. Implementation of the Architectural Functional Elements

and one RSpec is provided per resource type. In FITeagle, each resource type is

described via an RSpec and managed by a resource manager.

FITeagle was extended within this thesis to implement some MAFIA functionalities,

namely the advertisement and provisioning of monitoring capabilities associated with

the classic resources ofered. These are illustrated in Figure 6.2 through the steps 1

to 4.

An example of an RSpec advertisement for the resource type VM as managed by

FITeagle is shown in Listing 6.8. The capability of ofering monitoring services is

indicated through ofering MonitoringService in the monitoring element. This means

that monitoring data related to the described resource (OpenStack VM in this case)

can be provided upon request as OML streams to a given collection endpoint.

Monitoring Tools
(Zabbix, Ping. etc.)

OML Wrappers

OML Server &
Database

SFA-based Infra.
Manager (FITeagle)

SFA client
(e.g. jFed, Omni)

RSpec

adver+sements

RSpec requests with

infrastructure monitoring

Configure

OML wrappers

Fetch data

 Export data as

OML streams for

the user

OML Servers &
Databases

Trustworthy
Reputation

Export data per

UCRE basis as

OML streams for

federa+on

services

Access data

Access data

Infrastructure

SLA
Management

User-Customized
Resources

Infrastructure Resources

Resource provisioning

Legend

Infra.: Infrastructure

OML: ORBIT Measurement Library

RSpec: Resource Specifica+on

SFA: Slice Federa+on Architecture

SLA: Service Level Agreement

1

2

3

4

5

6 6

7

7

Fig. 6.2.: Implementation of MAFIA services

Using any SFA client, such as jFed11 (jFed) or the GENI command line tool Omni12

(Omni), a user can discover resources ofered by any infrastructure participating in the

federation. A user can on-demand request resources, and optionally identify interest

in having monitoring services if ofered (step 2 in Figure 6.2). Listing 6.9 shows an

example of an RSpec request to create an instance of a VM with monitoring services.

As the data has to be collected across the federation as OML streams, the user is

obliged to identify the collection endpoint (i.e. URI) that is capable of receiving and

understanding OML streams.

11http://jfed.iminds.be
12http://trac.gpolab.bbn.com/gcf/wiki/Omni

130

http://jfed.iminds.be
http://trac.gpolab.bbn.com/gcf/wiki/Omni

6.2. Reference Implementation of the Final Architecture

Listing 6.8: RSpec advertisement of VM with monitoring capabilities

1 <rspec

2 type="advertisement"

3 generated="2015-10-06T11:40:46.078Z"

4 expires="2015-10-06T11:40:46.078Z"

5 xmlns="http://www.geni.net/resources/rspec/3">

6 <node

7 component_id="urn:publicid:IDN+monitoring.service.tu-berlin.de+node+http%3A%2F%2

Fmonitoring.service.tu-berlin.de%2Fresource%2FOpenstack-1"

8 component_manager_id="urn:publicid:IDN+localhost+authority+cm"

9 component_name="Openstack-1"

10 exclusive="false">

11 <sliver_type name="http://monitoring.service.tu-berlin.de/resource/Ubuntu-64bit"/>

12 <sliver_type name="http://monitoring.service.tu-berlin.de/resource/2048MB_20GB"/>

13 <sliver_type name="http://monitoring.service.tu-berlin.de/resource/1024MB_10GB"/>

14 <sliver_type name="http://monitoring.service.tu-berlin.de/resource/512MB_5GB"/>

15 <location latitude="52.516377" longitude="13.323732"/>

16 <ns2:monitoring type="http://open-multinet.info/ontology/omn-monitoring#

MonitoringService"/>

17 </node>

18 </rspec>

Listing 6.9: RSpec request to create a VM with monitoring services

1 <rspec

2 type="request"

3 generated="2014-07-11T10:20:39Z"

4 xsi:schemaLocation="http://www.geni.net/resources/rspec/3␣http://www.geni.net/

resources/rspec/3/request.xsd"

5 xmlns:client="http://www.protogeni.net/resources/rspec/ext/client/1">

6 <node

7 client_id="monitoringTest_VM"

8 component_id="urn:publicid:IDN+monitoring.service.tu-berlin.de+node+http%3A%2F%2

Fmonitoring.service.tu-berlin.de%2Fresource%2FOpenstack-1+Ubuntu-64bit"

9 component_manager_id="urn:publicid:IDN+monitoring.service.tu-berlin.de+authority+

am"

10 component_name="Openstack-1"

11 exclusive="false">

12 <sliver_type name="http://monitoring.service.tu-berlin.de/resource/Ubuntu-64bit"/>

13 <ns2:monitoring type="http://open-multinet.info/ontology/omn-monitoring#

MonitoringService" uri="http://130.149.22.139:3003"/>

14 </node>

15 </rspec>

This resource has to be created by the user in advance as part of the UCRE before

creating the planned classic resources. Upon receipt of the user request by FITeagle,

two actions are taken.

First, the respective resource adapter processes the request. In this example, an

OpenStack resource adapter is in charge of processing the VM resource. It has to

perform resource provisioning (step 3 in Figure 6.2). It interacts with the OpenStack

API and creates a VM. The results are then pushed back to the FITeagle message

bus. Information, such as the given VM ID, its current status (in the the case of

creation, started), and the URI of the identiőed user OML collection resource, is used

131

6. Implementation of the Architectural Functional Elements

by the monitoring integrated service that is implemented as part of this thesis within

FITeagle to support monitoring services. Such information is used by this service for

two purposes:

• Using the VM ID, to contact the OpenStack API to retrieve the ID of the PM

that hosts the created VM.

• If monitoring services are requested, to instantiate and conőgure a suitable

OML wrapper to provide monitoring data to the user (step 4 in Figure 6.2).

This wrapper periodically (on a regular basis, e.g. every 30 seconds) fetches

monitoring data already collected by local monitoring tools (Zabbix is used)

about both machines using their IDs (step 5 in Figure 6.2) and exports the data

as OML streams to the user collection resource using the given URI (step 6 in

Figure 6.2) during the UCRE lifetime.

The collection resource can be an OML server together with a database backend

(Jena7 Toolkit in the case of semantic collection). This resource can be optionally

ofered by the infrastructure (or any other infrastructure participating in the federation)

as a resource in the same way as any other classic resource. This resource can be

deployed in a form of a VM in cloud infrastructures. The user could use such a

collector as a collection endpoint for monitoring data collected from two diferent

sources: monitoring information about the infrastructure resources received from

infrastructures, and data generated by measurements related to the user’s services

and applications.

The user can őnally access data (step 7 in Figure 6.2) using tools such as SPARQL

Query or visualize the data as discussed in Sec. 6.2.1.4. As long as the collection

resource is owned by the user for exclusive use, there are no access control and privacy

issues.

Once the VM resource is deleted or its lifetime is over, a notiőcation message is

provided by the OpenStack resource adapter through the FITeagle message bus. This

message includes information like the VM ID and its current status (deleted). It is

used by the FITeagle monitoring integrated service to re-conőgure the OML wrapper

to stop pushing data to the user.

There are no special implementation eforts required by users. All that a user needs

to do is to ensure the existing of an OML collection resource to receive data. It has

to be provisioned prior to requesting UCRE resources.

At the federation level, some efort is required during implementation. Taking the

Fed4FIRE federation as an example, user and UCRE (referred to as a Slice in SFA)

authentication and authorization are based on X.509 v3 certiőcates that are issued by

the member (user) and slice authorities respectively. Furthermore, a Web portal can

be provided to allow users to interact with all these resources in a more user-friendly

132

6.2. Reference Implementation of the Final Architecture

manner, from resource discovery and provisioning up to data collection and access.

In the Fed4FIRE federation, MySlice is used to power the Fed4FIRE Web portal.

6.2.2.2. MAFIA Services for Federation Administrators and FLS

Monitoring Dashboard

As discussed in Sec. 4.3.2.2 [143], health and status information about federated

infrastructures are of major importance for the federation administrator in order to

ensure availability of infrastructures and their main services. This information is also

required by the federation’s FLS system, which displays the information through its

monitoring dashboard.

Providing such information does not require signiőcant efort at infrastructure level,

as monitoring tools are probably already deployed to monitor infrastructure resources

and services for internal administrative demands. If it is not the case, it’s left to each

infrastructure to deploy suitable tools depending on its type, size and the types of

resources ofered. Only information that reports the status of the key components in

each infrastructure is required.

At each infrastructure, such information is obtained through measuring the avail-

ability status of each of the key components. The data is then reported via an OML

wrapper that is permanently running. The wrapper periodically (e.g. every 5 minutes)

fetches the required data from local tools and exports it as OML streams to a central

OML collection resource located at the federation level. The data is then accessed

by the federation administrators and the FLS system. The FLS system calculates

the overall status of each infrastructure and displays this information through its

monitoring dashboard.

6.2.2.3. MAFIA Services for Federation Services

A number of federation services require monitoring information as part of their func-

tionalities. They have diferent requirements for monitoring information (Sec. 4.3.2.3).

For each service, the types and frequency of the measured metrics are identiőed and

arranged between the individual infrastructure providers and the service developer

[143]. Various sets of metrics are measured, and thus diferent kinds of information is

expected from one infrastructure to another due to their heterogeneity. Federation

services receive information exported as OML streams from individual infrastructures

provided that each service has at least one OML collection resource. This depends on

the deployment setup of each service, whether distributed or central (Sec. 4.3.2.3).

The implementation of these services itself is out of scope of this thesis, however,

because they are served with monitoring information, they will be discussed brieŕy.

For instance, in the case of the SLA management service, upon receipt of a request

to create UCRE resources, FITeagle deploys a speciőc OML wrapper. It periodically

133

6. Implementation of the Architectural Functional Elements

(e.g. every 5 minutes) fetches monitoring data of predeőned metrics per UCRE basis

only during its lifetime (step 5 Figure 6.2) and exports this data to the OML collection

resource already running for the SLA management service (step 6 in the right side of

Figure 6.2).

The same procedure is also valid for the trustworthy reputation service. The only

diference is the metrics measured and the frequency of the delivered data. Of course

another OML wrapper is used.

Other federation services, such as reservation or brokerage, require historical infor-

mation for resource characteristics. The delivery of such information is not associated

with any UCRE or user. Therefore, the data can be provided in various ways, either

through RSpecs or exported as OML streams. In the latter case, an OML wrapper

is used that is permanently running and periodically reports data. To reduce the

overhead and the amount of data, the frequency of data delivery can be as large as

possible, e.g. every hour.

6.3. Summary

This chapter presented a reference implementation of MAFIA along with the MOFI

information model in Sec. 6.2. The implementation of the initial architecture design

was presented őrst in Sec. 6.1, as this can be deployed as a stand-alone solution for

any cloud environment or cloud federation that has no monitoring solution in place.

Furthermore, an environment using the implementation of the initial architecture

design can also be part of a heterogeneous federation that adopts the őnal reference

implementation of MAFIA, discussed in Sec. 6.2, but use OML and MOFI model on

top of that to export monitoring data in a common, meaningful way to the outside

world.

This chapter focused on the őnal and reference MAFIA implementation. The im-

plementation of the main architectural functional elements were discussed (Sec. 6.2.1),

these are valid for all services provided for multiple consumers. Thereafter in Sec. 6.2.2,

the implementation of MAFIA services was discussed according to consumer type.

The applicability and efectiveness of these implementations are discussed in Chap-

ter 7.

134

7
Validation and Evaluation

7.1 Observational Evaluation . 136

7.1.1 The FP7 ICT BonFIRE Project 136

7.1.2 The FP7 ICT FI-STAR Project 140

7.1.3 The FP7 ICT OpenLab Project 141

7.1.4 The FP7 ICT XIFI Project 142

7.1.5 The FP7 ICT Fed4FIRE Project 144

7.1.6 The FP7 ICT Inőnity Project 146

7.1.7 Fraunhofer FUSECO Playground 146

7.2 Experimental Evaluation . 147

7.3 Analytical Evaluation . 150

7.3.1 Quality and Correctness Evaluation 150

7.3.2 Efectiveness Evaluation 153

7.3.3 Performance Evaluation 155

7.3.4 Impact Evaluation . 161

7.4 Requirements Validation . 163

7.5 Comparison with other Solutions 165

7.6 Summary . 168

T
HIS chapter presents the validation and evaluation of the solutions delivered

by this thesis. Multiple design evaluation methods are available. Hevner

et al. categorize the well known methods as observational, experimental,

analytical, testing and descriptive [160]. Some methods from the őrst three categories

are selected according to the design requirements, as well as selected evaluation

metrics. These metrics are as follow:

135

7. Validation and Evaluation

• The field study as one of the observational methods deőned in [160] is selected,

and is used to monitor the use of the designed solutions in multiple projects.

• Amongst the two experimental methods deőned in [160], namely simulation and

controlled experiment, the latter is selected in this work to study the usability

and efectiveness of the designed solutions.

• Some analytical evaluation methods are chosen to study the effectiveness, quality

and correctness, and performance of the implementation (presented in Chapter 6)

of the designed monitoring architecture (MAFIA, introduced in Chapter 4) and

the associated information models (MOFI, presented in Chapter 5).

In this chapter, those requirements identiőed in Chapter 4 are validated. In

addition to this, a comparison between the solution delivered by this thesis with the

state-of-the-art solutions is given.

7.1. Observational Evaluation

The field study is chosen as an observational evaluation method as the solutions and

methods delivered by this thesis are used in multiple research projects. They have

thus evolved in iterations according to their demonstration, impact and feedback

from these projects. Some concepts and implementations are even reused or extended

in diferent projects. A high level overview of these projects along with the use

and impact of the solutions delivered by this thesis are discussed in the following

subsections.

7.1.1. The FP7 ICT BonFIRE Project

The BonFIRE project ofers a federated cloud testbed supporting large-scale ex-

perimentation of applications, services and systems over multiple, geographically

distributed and heterogeneous cloud and network testbeds.

At the core of BonFIRE are seven geographically distributed cloud testbeds: (EPCC

(UK), INRIA (France), HLRS (Germany), iMinds (Belgium), HP (UK), PSNC

(Poland) and Wellness Telecom (Spain)). Together these ofer around 660 com-

puting cores with 1.5TB of RAM and 34TB of storage. An additional 2300 cores can

be added to BonFIRE on-request [64], [80], [161].

These testbeds are heterogeneous in terms of cloud managers (OpenNebula1[162],

HP Cells[163] and VMWare2), hypervisors (Xen, KVM and ESX) and the types

of hardware. Besides cloud resources, BonFIRE allows access to the Virtual Wall

1http://opennebula.org
2http://www.vmware.com

136

http://opennebula.org
http://www.vmware.com

7.1. Observational Evaluation

emulated network facility3, as well as the FEDERICA[164] and the AutoBAHN

Bandwidth on Demand4 service of GÉANT5.

Testbed infrastructures are interconnected through the projects’s own network,

called BonFIRE WAN and, thus, any VMs in any testbeds can connect to each other.

This network is used by BonFIRE services to manage and monitor VMs. Each

testbed is interconnected to every other testbed via a direct VPN connection.

Amongst the federation models discussed in Sec. 2.4.1, the BonFIRE federation

architecture can be seen as a mix of a central management system and a heterogeneous

federation. BonFIRE uses a central Resource Manager to expose a homogeneous API

and interact with the management systems of the individual federated testbeds with

the help of an Enactor.

SSH

Gateway

X

Monitoring

VM

(Monitoring

Aggregator)

VM

Testbed

SSH

Gateway

API

SSH

VM

OCCI

Enactor

OCCI

ResourceManager

ExperimentBManager

Message

QueueBServer
Portal

GUI

Identity

Manager

Interface*or*API*

accessible*by*end*users,*

user6agents*or*the*layer*

above

X

BonFIRE*internal*interface*

or*API*accessible*only*by*

the*layer*above*

BonFIRE*internal*API*

accessible*from*multiple*

layers*of*the*architecture.

VM BonFIRE*virtual*

machine

Key

Layer*of*the*

BonFIRE*

architecture

Component*of*BonFIRE

architecture*used*by*multiple*

layers

(Used*by*Portal,*

Experiment*

Manager,*

Resource*Manager*

and*Testbeds)

OCCI

LDAP

X

Monitoring

GUI

Monitoring

API

UsageB

Report
Reservation

Authorization

Service

Accounting

Service
Scheduler

AMQP

(Provides*publish/

subscribe*

messaging*for*

BonFIRE*

management*and*

expriments)

VM

(ElasticityB

Manager)

VM

(COCOMAB

Controller)

COCOMA

API

OAR
Report

API
Authorization

API

VM
BonFIRE*virtual*machine*

running*BonFIRE*

funtionality*images.

MonitoringB

dashboard

VM

(EDMB

Provenance)

Provenance

API

Fig. 7.1.: BonFIRE federation architecture [161]

Figure 7.1 illustrates the main components of the BonFIRE federation architecture.

The Resource Manager exposes an OCCI interface for remote management interactions

with the infrastructures. It is the lowest level interface provided for experimenters

to give them full programmatic control over their experiments, similar to those

3https://www.ibcn.intec.ugent.be/content/ilabt-virtual-wall
4http://geant3.archive.geant.net/service/autobahn/Pages/home.aspx
5http://www.geant.net/Pages/default.aspx

137

https://www.ibcn.intec.ugent.be/content/ilabt-virtual-wall
http://geant3.archive.geant.net/service/autobahn/Pages/home.aspx
http://www.geant.net/Pages/default.aspx

7. Validation and Evaluation

ofered by IaaS commercial cloud solutions. The OCCI acts as the user API for the

whole experiment lifecycle management (create, stop, resume, shutdown, and delete

resources). The Enactor acts as a mediator that receives OCCI requests from the

Resource Manager and transforms them into a suitable format for the appropriate

testbeds through adaptors. BonFIRE also provides a higher level interface through

the Experiment Manager that allows an experiment as a whole to be described. An

experimenter can specify the initial deployment of the experiment’s resources in a

single document called the experiment descriptor using OVF or JSON format. The

Experiment Manager takes this description and manages its execution by performing

multiple calls to the Resource Manager. Experimenters can also use the Web portal

to create and manage their experiments in a user-friendly manner.

BonFIRE aimed to allow experimenters to control and monitor the execution of

their experiments to a degree that is not found in commercial clouds [17], [64], [80].

Concerning monitoring support, the initial monitoring architecture design and its

implementation discussed in Sec. 4.1.1.3 and Sec. 6.1 respectively have been adopted

by BonFIRE [64]. Thus, the BonFIRE monitoring system supports aggregating a

multitude of measurements from resources of diferent administrative clouds in a

uniőed manner, monitoring resources from heterogeneous domains on both the network

and infrastructure level, and providing support that is able to operate across large

numbers of end-to-end resources at both the service and the application levels.

The efectiveness, utility and performance of this system have been evaluated and

discussed in diferent dimensions. For instance, it has been used for supporting the

elasticity-as-a-service provided by BonFIRE to auto-scale cloud resources up and

down [139]. Furthermore, signiőcant experiments that were conducted in BonFIRE

beneőtted from the monitoring services ofered, e.g. [165] and [166].

To shed light on the system utility the extent of performance and the beneőt of

infrastructure monitoring for experimenters, an experiment was conducted [64] and is

discussed as follows. The creation of an experiment along with monitoring services

was achieved through sending a number of individual OCCI requests to the BonFIRE

Resource Manager’s API. These requests őrst created the actual experiment and

subsequently deployed and conőgured a VM to serve as the user monitoring collector

(referred to in BonFIRE as Monitoring Aggregator). This experiment was created

through the BonFIRE Web Portal and the monitoring service was enabled by choosing

which BonFIRE cloud the aggregator needed to be deployed in. Furthermore, the

infrastructure monitoring service was also enabled, as BonFIRE allows experimenters

to enable or disable any monitoring service on-demand through the Portal.

So far only the experiment container (i.e. UCRE) and the aggregator VM were

created and BonFIRE Portal provided the experimenter seamless access to the aggre-

gator’s GUI through the BonFIRE Portal. The VMs required to run the experiment

were then created and were automatically monitored along with their hosting PMs.

138

7.1. Observational Evaluation

BonFIRE ofers reservation of PMs, called clusters, for exclusive use. In this

experiment, a cluster was reserved to ensure that only experimenter VMs were

running on it. On this cluster, three VMs were created. At this point, the experiment

comprised one aggregator VM running on a classic PM and three VMs running on

the reserved cluster. On the three VMs, benchmarking was executed, not for testing

performance but only to investigate and show the behavior of performance metrics

like CPU load within the VMs and the cluster. The IOzone6 benchmark was used for

this purpose, although it is in practice usually used for testing őle I/O performance

on various őle systems. Still, the operations performed by the benchmark consume

processing power and the CPU load will vary based on the number of operations being

executed by the benchmark and the őle system that is employed. The benchmark

was run for more than two days. Figure 7.2 shows the behavior of the CPU load

within the physical cluster represented by the black line, and the average of the CPU

loads within the three VMs represented by the blue line. The result shown in the

őrst graph is for one hour; in the second graph, for twelve hours. As expected, loads

are almost similar, which indicates that experimenters can get meaningful real-time

information about the underlying infrastructure that can be used as support for

suitable decision-making. Additionally, from the results, it is clear that the CPU

processing consumed by monitoring Zabbix agents is almost negligible.

Fig. 7.2.: CPU load within a physical machine (blue) and the average CPU load

within three virtual machines running on the physical machine (black) [64]

6http://www.iozone.org

139

http://www.iozone.org

7. Validation and Evaluation

7.1.2. The FP7 ICT FI-STAR Project

The implementation of the initial monitoring architecture is partially re-used and

extended within the FI-STAR project. This is delivered as the Monitoring Service SE7,

which is one of the FI-STAR platform components. As mentioned in Sec. 2.3.3, beside

a set of FIWARE GEs, the FI-STAR platform consists of a number of components

referred to as SEs. The Monitoring Service SE is in charge of monitoring the FI-STAR

platform components (GEs and SEs), which are deployed as VMs in one or multiple

clouds, and the applications running on the platform.

The objective of the FI-STAR project is to facilitate and accelerate the development

of healthcare applications by providing a number of GEs and SEs that can be composed

on-demand by application developers. This allows develop and build their own

platforms with as quickly as possible and to create code to deliver their services for

hospitals and patients. During the project lifetime, seven early trials are deployed

and executed across Europe, serving more than four million people.

From this perspective, application developers deploy various instances of FI-STAR

platform depending on their needs. As OpenStack-based cloud infrastructures are

used, FI-STAR platform instances are deployed as isolated tenants. Each instance

has a distinct set of GEs and SEs.

The Monitoring Service SE provides monitoring information for two main con-

sumers: application developers and cloud administrators. Developers can monitor

the availability, health and performance (e.g. CPU, disk and memory consumption)

of the used GEs and SEs, as well as application-related metrics that are supported

through customizable services, which allow developers to deőne own metrics. If a

developer is interested in monitoring services, they can deploy the Monitoring Service

SE part of their FI-STAR platform instances. Cloud administrators can deploy an

instance of the Monitoring Service SE to monitor the usage of each FI-STAR platform

instance, e.g. the number of tenants, the number and type of the used GEs and SEs

in each tenant, number of used CPUs, used memory in each tenant, and more.

Two extensions were written in order to support FI-STAR need, in addition to

the implementation used in BonFIRE. First, a set of probes have been developed

to deliver monitoring information from the virtualization layer (OpenStack), that

is located between the physical infrastructure and the cloud resources. Second, in

addition to the JSON-RPC API and the Web frontend supported by Zabbix, a REST

API is implemented within the context of the FI-STAR project, allowing users to get

the data over HTTP.

7http://catalogue.fi-star.eu/enablers/monitoring-service

140

http://catalogue.fi-star.eu/enablers/monitoring-service

7.1. Observational Evaluation

7.1.3. The FP7 ICT OpenLab Project

The őnal monitoring architecture delivered by this thesis, in particular the generic

implementation of MAFIA for providing monitoring services for users, has been

initially deployed and validated within the OpenLab project.

As mentioned in Sec. 2.3.2, OpenLab focused on the design and development of a

federation framework operating across heterogeneous domains. Within the OpenLab

project as discussed in Sec. 6.2.2.1 and [94], a proof of concept implementation of

the generic approach of MAFIA has been validated and demonstrated. Figure 7.3

illustrates the workŕow of a demo scenario, where an experimenter uses the Teagle

Virtual Customer Testbed (VCT) tool to setup an experiment as shown in Figure 7.4

[167] (the demo video8 is publicaly available).

communicate

with testbeds

specify and request

 UCRE resources

monitoring data sent to the matcher

VCT Tool
Netview

Teagle

T
e
a
g
le
 T
e
st
b
e
d

Domain Manager (PTM)

RA RA RA

PT Matcher

S
F
A
 T
e
st
b
e
d

Domain Manager (PTM)

create sliver,

install and run

Iperf and probe

RA RA RA

physical node

1

2 3a allocate physical

node, run Iperf

and probe

3b

 Iperf

client

generates

traffic

4

5

export and visualize monitoring data 6

RA: Resource Adapter

PT: Packet Tracking

physical node

Iperf and probe sliver with Iperf and probe

Fig. 7.3.: Workŕow of an experiment setup (using Teagle) and execution

The Packet Tracking monitoring tool, Iperf tools and two physical nodes are used.

They are ofered by two testbeds (one is managed by the Teagle framework and

the other is managed by the SFA framework to which Teagle is interfaced). To

demonstrate the ŕexibility of the generic implementation approach of MAFIA, two

conőgurations were tested in this scenario. First, the physical node ofered by the

Teagle-based testbed was already provisioned. It was then used by the experimenter,

on which the preinstalled Packet Tracking probe and Iperf server were run. Second,

on the node ofered by the SFA-based testbed, a VM (sliver in SFA terminology) was

created and a Packet Tracking probe and an Iperf client were downloaded from the

Internet, installed and run. For managing these resources, four resource adapters have

8http://www.av.tu-berlin.de/menue/research_development/tools/packet_tracking/

141

http://www.av.tu-berlin.de/menue/research_development/tools/packet_tracking/

7. Validation and Evaluation

been implemented for probe, Iperf, physical node, and SFA sliver. As Teagle works in

an orchestrated way, probes and Iperf were run after nodes. This is managed at the

VCT level via dependency relations as represented in Figure 7.4 via black connections.

Upon having all resources deployed, the Iperf client connected and sent traic

to the Iperf server running on the other node to generate artiőcial traic between

the provisioned nodes. Packet Tracking probes reported monitoring data to the

Packet Tracking matcher, which was in this scenario up und running prior to the

experiment. The experimenter locally deployed Netview (Packet Tracking’s visual-

ization tool) to track and visualize packet traic and delay statistics as shown in

Figure 7.5.

Fig. 7.4.: Resource allocation through Teagle’s VCT

Packet Tracking is integrated with the Open Evolved Packet Core9 [202] (OpenEPC)

[168], [169], allowing users to track and study the performance of OpenEPC com-

ponents and chose suitable conőgurations and setup to meet the concerned QoS

requirements. Both OpenEPC and Packet Tracking are also made available via

Teagle, allowing experimenters to provision them on-demand. Packet Tracking probes

are deployed on each of the OpenEPC components.

7.1.4. The FP7 ICT XIFI Project

The initial results of this thesis have contributed to the federation architecture design

and sustainability plans of FIWARE Lab [70], in particular in terms of monitoring

system, which is one of the main systems delivered by the XIFI project.

9http://www.openepc.net

142

http://www.openepc.net

7.1. Observational Evaluation

Fig. 7.5.: Packet traic and delay visualization between two nodes through Netview

Among the federation models discussed in Sec. 2.4.1, FIWARE Lab has adopted

a hybrid federation model covering aspects of the one-stop-shop model and the

integrator model [70]. At the time writing, the FIWARE Lab federation comprised

over 17 cloud-based infrastructures distributed across Europe. Based on a deployment

conőguration, two types of infrastructures are to be distinguished: master and slave.

Figure 7.6 illustrates the FIWARE Lab federation architecture. The lower part

contains the components deployed on each infrastructure (both master and slave), and

the upper part contains the components deployed only on the master infrastructures.

A master infrastructure is the one where, in addition to the features deployed on slave

infrastructures, the centralized parts of the federation services (i.e. the components

needed to manage the federation) are deployed. A slave infrastructure is the one

where, only the software needed for deploying and managing user resources and

services, is installed. This software comprises the cloud computing (OpenStack-based),

monitoring and security functionalities.

For monitoring the individual deployed VMs (either those hosting GE instances or

traditional ones) across the federation, the FIWARE Lab monitoring system is de-

signed following the same methodology designed in the initial monitoring architecture

design delivered by this thesis, in terms of the monitoring setup and deployment. Each

VM is deployed with a preinstalled monitoring probe (agent) that reports monitoring

data to a monitoring collector. One monitoring collector instance is deployed in

each cloud infrastructure that collects monitoring data pushed from all probes. An

auto-registration service is enabled so that each probe is then automatically registered

to the collector, requiring no intervention from the user [19], [149].

However, the major diference from the initial monitoring architecture design

delivered by this thesis, which is identiőed as an architectural limitation based on

143

7. Validation and Evaluation

practical experience (see Sec. 4.1.1.4), is that each FIWARE Lab cloud infrastructure

provider can use any monitoring tool to provide the data. This means that there

us no need to use homogenous tools to provide the data. However, monitoring data

has to be collected in a common format across the federation. Therefore, the Open

Mobile Alliance (OMA) Next-Generation Service Interface [194] (NGSI) is used in

FIWARE Lab for this purpose. This facilitates having an easy to use and sustainable

federation architecture [70]. It makes it possible to integrate any cloud infrastructure

with its own monitoring system(s) in place. This infrastructure will need to adopt

a speciőc set of adapters to become part of the federation. A set of adapters are

implemented speciőc to a set of application areas (e.g. virtual and physical machines,

and cross-domain inter-connectivity). These adapters are accompanied by a common

data model to provide the data in one format [19], [149].

7.1.5. The FP7 ICT Fed4FIRE Project

The Fed4FIRE project aims to federate all FIRE testbeds to build a large-scale, widely

distributed, heterogeneous and powerful facility for FI experimentation. Besides the

BonFIRE and OpenLab testbeds, many other testbeds have been federated to form a

large federation of more than 20 testbeds at the time writing.

Beyond the initial design deployed and validated within the BonFIRE project,

the generic monitoring architecture design was introduced just prior to the start of

the Fed4FIRE project [94]. Fed4FIRE has been taken in this thesis as a reference

federation in terms of requirements gathering, implementation, deployment and

validation of the őnal MAFIA architecture.

Analog to MAFIA, the Fed4FIRE federation architecture follows a heterogeneous

federation approach, where the main actors in the federation interact via common

APIs while keeping their monitoring and management tools.

The Fed4FIRE monitoring system fully follows the architectural design principles

of MAFIA and adopts its services presented in Sec. 4.3.1 [143]. Concerning the

implementation discussed in Sec. 6.2, only some of the main functional elements

presented in Sec. 6.2.1 are implemented. Each testbed uses its own local monitoring

tools and most of them follow the recommended tools that are commonly used across

testbeds (e.g. Zabbix, Nagios, Collectd). OML is used as a common API. OML

adapters are used to provide monitoring data following the OMSP format for some

services that are implemented, as not all testbeds support all the monitoring services

discussed in Sec. 4.3.1 at the time of writing. Concerning the semantic support, the

use of the MOFI and OMN ontologies, and user-friendly data access for visualization,

these are planned for the őnal cycle of the project, which has just begun.

Only some of the implemented services presented in Sec. 6.2.2 have been adopted

in the Fed4FIRE monitoring system so far. A health and status monitoring service

for FLS has been implemented, named facility monitoring in Fed4FIRE. High-

144

7.1. Observational Evaluation

Virtual Machine

User

Interoperability Tool

Resource Catalogue &

Recommendation Tool

Federation Manager

SLA Manager

Federation Monitoring

(Context Broker & Big

Data GEs)

Monitoring

GUI

Scalability Manager

GE

Help Desk
Cloud Portal

(Marketplace)

Security Dashboard

Infrastructure Toolbox

(IaaS Deployer)

Deployment and

Configuration Adapter

PaaS GE

SW Deployment and

Config. Manager GE
Network Controller

Security Monitoring

GE

FI
W

A
R

E
G

E
 C

a
ta

lo
gu

e

&
 t

h
ir

d

p
a

rt
y

p
ro

d
u

ct
s

re
p

o
si

to
ry

Master IŶfrastructure’s FederatioŶ Platforŵ

Slave & Master Infrastructure

Federation Monitoring

(Context Broker & Big

Data GEs)

Security Proxy

(KeyStone Proxy)

Proprietary IdM

System

Identity Management

(IdM) GE

Access Control GE

Data Center Resource

Management (DCRM) GE

(OpenStack)
Quantum

Local SDN

Controller

OpenVSwitch
OpenFlow

Switches

Virtual Machine

Monitor Probe

SW Deployment and

Config. Client GE

Security Probe

Monitoring Adapter &

Collector

NGSI Adapter

Security Probe

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

GE: Generic Enabler; GUI: Graphical User Interface; SDN: Software Defined Networking; SLA: Service Level Agreement; SW: Software

Fig. 7.6.: FIWARE Lab federation architecture [70]

level monitoring information about all federated Fed4FIRE testbeds is displayed

through the Fed4FIRE FLS monitoring dashboard.10 Some testbeds has implemented

infrastructure resource monitoring service for federation services, such as SLA and

reputation. Concerning the infrastructure resource monitoring service for users

(Fed4FIRE experimenters), only the user-friendly approach has been adopted. It is

implemented by around half of the testbeds to date. One of them, the FUSECO PG,

adopted the implementation provided in Sec. 6.2.2.1 as is. Nevertheless, all testbeds

will adopt these services and their implementations in the őnal cycle of the project.

10https://flsmonitor.fed4fire.eu

145

https://flsmonitor.fed4fire.eu

7. Validation and Evaluation

7.1.6. The FP7 ICT Infinity Project

One of the MAFIA monitoring services, namely the high-level infrastructure health

and status monitoring service presented in Sec. 4.3.1.1, has been adopted within the

INFINITY project. This service bas been integrated within the XiPi (xipi.eu) portal

to provide information for various user communities about European FI testbeds

besides diverse kinds of information of their capabilities, locations, etc. This service

is only visible for XiPi’s registered users, as per XiPi’s sustainability strategy.

Figure 7.7 shows the implementation of the health monitoring service. The imple-

mentation comprises two central main components integrated with the XiPi platform:

the monitoring module and the monitoring frontend (GUI) [170].

The implementation of the monitoring module follows the implementation presented

in Sec. 6.2.2.2. Registered infrastructures push monitoring data as OML streams

to this module, which ofers an OMSP interface. The module stores the data with

the corresponding infrastructures in own data storage. It gets a list of the already

registered infrastructures via the REST interface provided by XiPi portal.

The monitoring frontend has been integrated with the environment used by the XiPi

portal (Liferay). It is implemented as two integrated portlets and a Web service. It

pulls the status information from a REST interface ofered by the monitoring module

to display results. More details are found in [170].

Infrastructure 2 Infrastructure n Infrastructure 1

GUI

XiPi Core

XiPi Monitoring Module

Manager Manager Manager

Health monitoring portlets

REST

REST OMSP

Portal
Pull list of infrastructures

via REST

Push updates via OMSP

Pull status of infrastructures

R
e
g
is
te
r
n
e
w

in
fr
a
st
ru
ct
u
re
 m

a
n
u
a
ll
y

v
ia
 t
h
e
 p
o
rt
a
l

2 1

3

4

Fig. 7.7.: XiPi health monitoring service implementation [170]

7.1.7. Fraunhofer FUSECO Playground

FUSECO PG is built and operated by the Fraunhofer Institute FOKUS and TU

Berlin, and is a standalone testbed that is also part of the Fed4FIRE federation. The

reference implementation of MAFIA presented in Sec. 6.2 is used by FUSECO PG to

provide the monitoring services supported by MAFIA for Fed4FIRE users.

146

xipi.eu

7.2. Experimental Evaluation

7.2. Experimental Evaluation

This section discusses the validation of the usability and efectiveness of the designed

solutions using the controlled experiment method according to Hevner et al. classi-

őcation [160]. The aim of this evaluation is not to conduct a complex experiment

but rather to demonstrate the usability and efectiveness of MAFIA through the

deployment of a simple UCRE on a federation of testbeds. Such a UCRE is usually

created by the user to conduct experiments to study something. Note that the

term ’experiment’ is used in this section in two diferent contexts; one refers to the

demonstration of a controlled experiment to evaluate MAFIA, and the other refers to

the experiment conducted by the user within the created UCRE.

Two testbeds were used for this evaluation. One is the Monitoring Demo Testbed

located at the TU Berlin, and the other one is the FUSECO PG. Both testbeds

have an OpenStack environment and use FITeagle as an infrastructure manager for

managing (advertisement, provisioning and termination) their resources.

On each testbed, a VM was deployed, using jFed tool, which acts as an SFA client

to the FITeagle’s SFA API. Through jFed, sequential commands were sent to each

of the two FITeagle instances to perform the allocation and provisioning the VMs

individually. Upon receipt of these requests, FITeagle interacted with OpenStack

to create a VM instance according to the requested image (see sliver_type in

Listing 6.8). Both VM instances were created with an Ubuntu-64bit image, while

each had diferent instance sizes, a tiny OpenStack ŕavor (512MB Random-Access

Memory (RAM), 1 Virtual CPU (vCPU) and 5GB disk) at the Monitoring Demo

Testbed and a medium OpenStack ŕavor (4GB RAM, 2 vCPU and an a 40GB Disk)

at FUSECO PG. The latter was used as a server, while the the former acted as a

client and downloaded some őles from the server.

Both VMs along with their hosting PMs were monitored at testbed level. The

Zabbix tool is used in both testbeds to monitor their infrastructures, each with its

own deployment. In order to simplify the scenario, both testbeds uses Zabbix as a

local monitoring tool, although diferent tools can be deployed.

As discussed in Sec. 6.2.2.1, FITeagle is used and extended in this work to implement

part of the MAFIA functionalities (Figure 6.2). This version was running on the

Monitoring Demo Testbed. After the provisioning of the VM, the monitoring module

of FITeagle interacted with OpenStack to get the ID of the PM hosting the created

VM. It then conőgured a Python-based OML wrapper to collect data from Zabbix

about the VM and its hosting PM and export it as OML streams following RDF-based

schemas. The wrapper performed this job in a regular basis, with an update rate of

10 seconds. An example of such a wrapper along with some of the used measurement

metrics is shown in Listing C.1 in Appendix C. The same procedure was applied at

the FUSECO PG, but diferent software was used to conőgure the wrapper.

147

7. Validation and Evaluation

Monitoring data received from both testbeds was collected in a collection resource

created prior to the VMs. This resource was created as part of this experiment

as an additional VM at the the Monitoring Demo Testbed. A special image was

used to boot the VM instance that contains the semantic OML server and Jena

Toolkit (Fuseki and TDB) as its backend. Its URI was given in the RSpec requests

(see http://130.149.22.139:3030 in Listing 6.9) when creating the VMs. Related

monitoring data was then pushed by the wrappers at the testbeds to the server.

To demonstrate the efectiveness and reliability of MAFIA, the following activity

was performed. The VM created to act as a client was used to download a őle of 761

MB size from the VM deployed at FUSECO PG, which acts as a server. This őle

was downloaded 5 times consecutively and the same action was repeated three times

with a four-minute rest in between. The bandwidth used by the client VM and its

hosting PM are shown in Figure 7.8. The őgure shows in the left side three line charts

representing the bandwidth used by the PM (7.8a), VM (7.8c), and by both (7.8e) as

shown by the visualization capability of MAFIA. The same information as originally

shown through Zabbix are represented in 7.8b, 7.8d and 7.8f respectively. The őgure

shows that the behaviour of the VM is reŕected by its hosting PM as expected.

However, the key message of this őgure is to show that the monitoring data provided

to the user through the visualization capability of MAFIA is the same as that originally

shown through Zabbix at testbed level. This means that the user will get data in

a common format after being converted at federation level, as if it were provided

directly by the tool deployed at testbed level. The visualization capability of MAFIA

can display the data in various chart types as responses to SPARQL queries sent over

HTTP to the SPARQL endpoint of the Fuseki server. For instance, line charts are

shown in the őgure. Through these charts, more detail for a single measure, such as

the date, human readable timestamp, and the exact measured value, can be displayed

as shown in the subőgure 7.8c. Sample SPARQL queries are given in Appendix D.

Monitoring information about the UCRE and infrastructure resources was provided

by the testbeds through the Python-based OML wrapper that was conőgured by the

monitoring module of FITeagle. In order to demonstrate a user-related measurement,

another OML wrapper was deployed on the client VM that measures packet delay

(as shown in Figure 7.9) and loss on its link with the other VM that acted as a server.

This wrapper used Ping to conduct measurements and exported data to the collection

resource. It is written in C in order to demonstrate the ŕexibility of MAFIA in terms

of smooth integration and multi-language support.

Monitoring data was semantically stored in graphs linked to their associated

resources and testbeds, which are in turn linked to other information. Figure 7.10

shows an example of an RDF graph represented through LodLive11, a tool used to

browse RDF resources from any triple store using Linked Data standards (RDF,

11http://en.lodlive.it

148

http://en.lodlive.it

7
.2

.
E

x
p
erim

en
ta

l
E

v
a
lu

a
tio

n

(a) Used BW of the PM as visualised by MAFIA (b) Used BW of the PM as shown by Zabbix

(c) Used BW of the VM as visualised by MAFIA (d) Used BW of the VM as shown by Zabbix

(e) Used BW of both VM and PM as visualised by MAFIA (f) Used BW of both VM and PM as shown by Zabbix

Fig. 7.8.: Used bandwidth of a VM and its hosting PM during performing a controlled experiment to evaluate the efectiveness and

reliability of MAFIA

149

7. Validation and Evaluation

Fig. 7.9.: Packet delay between two VMs visualized by MAFIA

SPARQL). This simpliőed graph represents linked information around the client VM

deployed in the controlled experiment. The information displayed in the list to the

right of Figure 7.10 represents a simple measurement of used_bandwidth on the VM,

following the schema used by the Python wrapper and represented in Listing 6.6

and Listing 6.7. This simple measurement has a data value of 0.002190 with the

unit gigabps and a timestamp 2015-10-20 23:22:34+02:00. The graph is further

described in Sec. 7.3.2.

7.3. Analytical Evaluation

This section presents analytical evaluations of the solutions developed within this

thesis. As this thesis focuses mainly on the uniőcation of monitoring interfaces to

provide data in a common and meaningful manner, this section focuses on evaluating

a certain number of directly related components. That means components used to

describe, discover and provision resources that are implemented by other tools, such

as Teagle, FITeagle or any other tool (see Sec. 6.2.1), are out of the scope of this

evaluation. In the reference implementation, the OML framework, related components

like resource adapters (wrappers), and MOFI models represent the main functional

elements of MAFIA. These are used to harmonize monitoring data and deliver it in

a common manner according to shared conceptualisation and deőnitions among the

various consumers. Therefore, it’s especially worth evaluating the implementation of

these components.

Several evaluation methods are discussed, including quality and correctness, efec-

tiveness, performance, and environmental impact analysis.

7.3.1. Quality and Correctness Evaluation

The quality and correctness of the tools and models used within MAFIA are brieŕy

discussed.

150

7
.3

.
A

n
a
ly

tica
l
E

v
a
lu

a
tio

n

Fig. 7.10.: An RDF graph representation in Lodlive151

7. Validation and Evaluation

As monitoring tools used for data acquisition are out of scope, the quality and

correctness of the data produced by such tools are not discussed here. However,

measured data and their original timestamps are made available for MAFIA users in

the form originally provided by such tools. It is assumed these tools have a high level

of accuracy and correctness.

As mentioned, the OML framework, MOFI and monitoring wrappers are the main

components that are evaluated. OML per se takes care of minimizing side efects

introduced by measurement, supports robust timestamping across measured devices,

and is dynamically reconőgurable [123]. The semantic OML extension, even with the

adoption of MOFI ontologies, is implemented in compliance with OMSP speciőcations

and is still capable of collecting and processing monitoring data in both modes:

semantic and classic data streaming. OML wrappers retrieve data from their sources

and provided it as OML streams following OMSP speciőcation and MOFI models.

From this perspective, the correct use of OMSP and MOFI is essential.

MOFI ontologies are developed following best practice methods to ensure high

quality and correctness. For this purpose, multiple considerations are taken into

account (Sec. 5.2.1):

• The ontologies are developed following a standard methodology, which takes

into consideration taxonomic precision, reusability and concept comparisons.

• MOFI ontologies are built using Protégé12, which is a widely used ontology

editor and knowledge-base framework. Furthermore, because of its expressive

power, OWL 2 Web Ontology Language13 (OWL2) is used for encoding the

ontologies. For data serialization, RDF/XML and Turtle are used.

• Prior to the development of MOFI, relevant and existing ontologies were inves-

tigated and carefully evaluated in order to avoid redesign of the same subject

matter and to reuse as much as possible from existing ontologies. Reuse is actu-

ally one of the main advantages of ontologies. Accordingly, signiőcant concepts,

relations and vocabularies were reused by MOFI from existing ontologies.

• During the development of MOFI, any change or update was automatically

validated using the Protégé reasoner and Apache Jena Eyeball14 inspectors, after

having been manually validated via the OntOlogy Pitfall Scanner15 (OOPS).

Some validation steps can also be done during the use of the ontologies. For

instance, while creating user schemas, the extended OML Scafold program is

used to validate their correctness and, in case of a typo for instance, a warning

is declared and the most probable correct term is suggested as an alternative.
12http://protege.stanford.edu
13http://www.w3.org/TR/owl-overview/
14https://jena.apache.org/documentation/tools/eyeball-getting-started.html
15http://www.oeg-upm.net/oops

152

http://protege.stanford.edu
http://www.w3.org/TR/owl-overview/
https://jena.apache.org/documentation/tools/eyeball-getting-started.html
http://www.oeg-upm.net/oops

7.3. Analytical Evaluation

7.3.2. Effectiveness Evaluation

The use of a common API accompanied by well-deőned information and data models

overcome the heterogeneity of the interfaces, data models (e.g. tree or list based) and

data formats (e.g. XML, JSON, CSV and DSV) of the various tools used in federated

infrastructures. It is otherwise painful for users or applications to understand or

process data collected from various sources. They would need to translate as many

formats as are available in addition to parsing various data structures.

For uniőcation of monitoring interfaces, the OMSP protocol is used in the prototype

implementation of MAFIA in order to allow the transportation and collection of data

in uniőed manner as lists of DSV. OMSP also allows arbitrary data schemas to be

deőned on-demand. In addition, MOFI ontologies are used in order to enable the

creation of understandable, ŕexible data schemas without the need for them to be

predeőned or unique across domains. A short explanation of the efectiveness of the

use of OMSP with MOFI ontologies is given as follows.

XML-based solutions are currently used to overcome heterogeneity issues in the

domains addressed in this thesis. As discussed in [159], although XML schemas are

extensible, their tree-based data structures do not allow explicit semantics. Further-

more, there are no rules for restricting which extension is permitted and in which

part of the tree. As a result, syntax checking to parse the information cannot be

easily applied. This is due to the fact that, every time a new extension is added, the

checking process is left to the code parser, which has to be modiőed to cope with

the new extensions. Such solutions will not scale in large and dynamically changing

environments. In contrast, parsing (syntax checking) RDF triples is much easier.

Further modiőcations are not required when additional information is included, as

these are simply further RDF triples that can be handled as normal.

Furthermore, XML supports syntactic interoperability, but it supports neither

semantics nor reasoning over the information. In contrast, semantic annotation and

representation of data as RDF triples facilitates semantic interoperability. RDF identi-

őes concepts, also called resources, with speciőc and unique URIs. This method allows

all functional elements involved in a solution that uses semantic data representation

to share the same knowledge. Via linked data capability, more information can be

linked to form a graph of a large number of facts and relations as long as they are

related to a given URI. This facilitates information discovery and mapping.

For example, SLA management is one of the federation services that consumes

monitoring data provided by MAFIA. If all resources are identiőed by unique

URIs, then all required information (e.g. resource ID, resource related monitoring

information, and resource lifetime) is linked together as graphs, which can then be

used for SLA validation, even if the information is stored in multiple locations. If the

relations between UCRE resources (e.g. VMs), their related infrastructure resources

(e.g. host PMs), measured metrics (e.g. CPU load), and SLA ID are all expressed via

153

7. Validation and Evaluation

RDF triples, the SLA management system can easily discover and őnd the relevant

information required to validate SLAs.

Such capability signiőcantly reduces time and complexity otherwise spent in the

implementation without the semantics. This is reŕected in practical experience within

the Fed4FIRE project [159], as all involved parties had to agree on a speciőc SQL

data structure (e.g. number of databases, tables, őelds) for each service being handled.

A further advantages of storing data triples with unique URIs is that it allows possible

failures to be predicted via linked data and as a result these failures can be handled

proactively.

Figure 7.10 shows an example of an RDF graph representing information related to

a user VM, which is an instance of omn:VM created as described in the controlled

experiment discussed in Sec. 7.2. The infrastructure (Monitoring Demo Testbed)

ofers this resource, which is hosted on a PM, named OpenStack Server, which

is in turn an instance of the class omn:PC. Further monitoring information about

both the VM and its hosting PM are also provided, such as the UsedMemory and

CPULoad as indicated in the graph. Each of the circles displayed in the graph shown

in Figure 7.10 represents a resource. In this graph, all resources are represented

via their labels, but are otherwise represented through their unique URIs. For

example, the VM, PM and the Monitoring Demo Testbed infrastructure each have a

unique URI. These are http://monitoring.service.tu-berlin.de/resource/Openstack-

1/c277660a-f5c7-4c29-9fdb-590e6e57ecc2, http://monitoring.service.tu-berlin.de and

http://openstack.av.tu-berlin.de, respectively, also represented in Listing 6.6.

By clicking on the letter t beside each circle representing a speciőc instance (RDF

resource), a new circle is displayed indicating the type of the instance according to

the OMN ontology. The small, not őlled circles surrounding a large circle represent

its related concepts. By clicking on any of these, related information is displayed. By

clicking on the small circle with lines located at the top right of each large circle, the

black list of information is displayed. The user can view all the information linked

together in a large graph. For simplifying the őgure, this graph illustrates only a few

relations. An extended graph with more linked information related to this controlled

experiment is shown in Figure D.2 in Appendix D.

In addition to the other beneőts gained from using semantics, semantic reasoning

allows logical information to be inferred from asserted triples. For example, from

a given property, it’s possible to automatically know the type of the resource this

property is related to, according to the type of its domain or range.

As a result, the semantic-based approach presented here does not only allow the

data to be represented in uniőed and meaningful manner, but also enables linking,

matching, searching and reasoning of resource related information collected from

diferent data sources.

154

7.3. Analytical Evaluation

7.3.3. Performance Evaluation

This section presents a number of experimentations that evaluate the performance of

the implementation of MAFIA. This evaluation studies the performance of MAFIA

with a focus on fundamental functional elements like OML wrappers and the OMN-

based semantic OML. The performance evaluation of OML per se is out of the

scope of this thesis. Nevertheless, it does not signiőcantly (p < 0.05) impact the

instrumented services or applications in terms of performance, data accuracy and

precision, as evaluated in [123].

In the performance evaluation discussed in this section, multiple runs of 10 experi-

ments were conducted to investigate the performance of the reference implementation

of semantic versus classic OML. The aim of these experiments is to investigate the

overhead costs of the use of semantic technologies.

With the same conőguration environments, two OML wrappers (non-semantic and

semantic-aligned) were used to collect data from Zabbix and transmit it as OML

streams to an OML server. This server supports both semantic and non-semantic

data collection. In each experiment, 10,000 measurement values of particular metrics

and their associated resources were transmitted as OML streams from the wrapper to

the server. These 10,000 transmissions were pushed on a regular basis with an update

rate of 10 seconds. In őve experiments, the data was transmitted by the non-semantic

OML wrapper as classic OML streams handled by the server following the classic

procedure and stored in a PostgreSQL backend. In the other őve experiments, the

data was sent by the semantic-aligned OML wrapper following RDF schemas, was

handled semantically at the server, and was őnally sent to Jena Fuseki server to be

stored in Jena TDB. In both cases, each of the őve experiments had a diferent number

of metrics being measured, transmitted and stored, namely 1, 5, 10, 15 and 20. An

example of the semantic-aligned OML wrapper with only three of these metrics is

shown in Listing C.1 in Appendix C. After transmitting OML header information

including the schemas (see Sec. 6.2.1.2), data was then sent as streams, where each

metric and its related information was sent through one OML stream.

In each experiment, was the time spent at the following four stages investigated as

performance indicators:

• Tinjection: time spent for data injection at the client,

• Tprocessing: time spent processing data at the server,

• Tinsertion: time spent inserting the data in the database, and

• Tdelay: time between data injection and data processing, which includes trans-

mission delay between the client and server and the queuing delay before all

OML streams being processed, i.e. after the last stream of each push is ready

to be processed.

155

7. Validation and Evaluation

It is worth mentioning at this stage that the data are sent along with their original

timestamp. However, this evaluation was conducted to examine only the delay and

transfer cost caused by the use of the semantics.

Table 7.1 shows the evaluation results of the 10 experiments (őve representing the

classic use of OML and the other őve semantic-based). To obtain more accurate

results, each experiment was conducted in several runs (at least three) with the same

setup and conőguration, with 10,000 streams transmitted each time. The values in

Table 7.1 represent the average times (in milliseconds) spent to process one stream

(including information about diferent numbers of metrics) in several stages in classic

and semantic OML. Each time represents the average of 30,000 measured values,

where values of three runs per experiment are considered.

Tab. 7.1.: Performance evaluation for semantic and classic use of MAFIA’s common

API (OML/OMSP) ś Part 1

Number

of Metrics

OML

Type

Tinjection

(ms)

Tprocessing

(ms)

Tinsertion

(ms)

Tdelay

(ms)

Classic 0.162 0.272 0.386 0.216

1 Semantic 0.188 0.316 19.998 0.266

Classic 0.307 0.500 1.564 2.256

5 Semantic 0.428 0.863 100.682 105.416

Classic 1.125 0.878 2.957 4.218

10 Semantic 1.394 1.743 209.192 216.398

Classic 1.649 1.333 4.584 6.517

15 Semantic 2.373 2.844 306.111 320.003

Classic 4.965 1.810 6.722 9.461

20 Semantic 5.667 3.459 427.640 446.418

Table 7.1 shows that there is no big diference in Tinjection and Tprocessing in both

cases (classic and semantic handling), with slightly more time in the semantic case.

This is because around 25 triples were processed to represent information about one

metric, which is represented in the classic case through 9 key/value pairs.

However, the time spent for inserting (Tinsertion) the RDF triples into Jena Fuseki

with a Jena TDB backend takes signiőcantly longer compared to that for storing

traditional OML data into PostgreSQL. This was expected, as the cost per unit

information inserted in Jena TDB is much higher than relational database [171].

Furthermore, each stream was represented through 25 triples that were, with all their

associated ontology preőxes, őrst processed at the Fuseki server and then stored in

the TDB database.

156

7.3. Analytical Evaluation

Concerning the Tdelay, including transmission and queueing delays, diferent results

are obtained. For transmitting only one measurement metric in each stream, the delay

is similar in both cases, with 0.216 ms in classic OML and 0.266 ms in semantic

OML. This is because there was no queueing for OML streams, as only one stream

was transmitted in each push. The deviation in the Tdelay between the classic and

semantic cases begins from 5 metrics upwards. This was induced by the queuing

delays at server side, as streams were processed sequentially. Longer delays occurred

in the semantic case, as the data processing and injection took longer. Although the

Tdelay values in Table 7.1 from 5 metrics upwards represent only transmission and

queueing delays, they are the highest values. This is because each stream was delayed

in a queue until all previous streams in the respective push were processed and their

data inserted into the database. An example of how the queueing delay increased the

Tdelay in the case of 5 metrics is shown in Figure D.1 in Appendix D. The Tdelay

in the case of 5 metrics implicitly includes the time consumed for processing and

inserting of 4 metrics (N-1, where N represents the number of metrics/streams).

Tdelay can thus be calculated as follows:

Tdelay = transmission_delay +

N−1︁

n=1

(Tprocessing(n) + Tinsertion(n))

Similarly in the case of 10, 15 and 20 metrics, Tdelay implicitly includes the time

consumed for processing and inserting of 9, 14 and 19 metrics/streams respectively.

Such delays are not signiőcantly high in the case of classic versus semantic use of

OML, as the time consumed for processing and inserting streams into PostgreSQL is

low.

Although there are signiőcant delays caused by data insertion into Jena RDF store,

these are still within an acceptable range. This is because most, if not all, of the

monitoring solutions provide data regularly with a regular update rate of 10 to 60

seconds. Thus, less than half a second to export a batch of data streams comprising

more than 500 RDF triples, representing 20 diferent measurement metrics is still

acceptable.

Nevertheless, the use of a faster RDF triple store would reduce the insertion time

dramatically. According to [172], Virtuoso16 is eight times faster than Jena Fuseki.

To give more information on the distribution of the obtained data, in addition to

the mean values given in Table 7.1, Figure 7.11 shows the so-called őve statistical

numbers: minimum, őrst quartile, median, third quartile and maximum. These are

represented in each individual subőgure in Figure 7.11, where each varies according to

time (Tinjection, Tinsertion, Tprocessing and Tdelay) and the number of measurement

metrics (1, 5, 10, 15, and 20). Note that the times in Figure 7.11 are represented

along the vertical axis in microseconds on a logarithmic scale (base 10).

16http://virtuoso.openlinksw.com

157

http://virtuoso.openlinksw.com

7
.

V
a
li
d
a
ti

o
n

a
n
d

E
v
a
lu

a
ti

o
n

Figure 7.11, continued on next page ... 15
8

7
.3

.
A

n
a
ly

tica
l
E

v
a
lu

a
tio

n
... continued from previous page

Fig. 7.11.: Performance evaluation results (statistical information (min, quartile 1, median, quartile 3, max) relates to the mean

values shown in Table 7.1; times along the vertical axis are in base-10 logarithmic scale)

159

7. Validation and Evaluation

Further experiments were conducted to evaluate performance in the case of multiple

clients (OML wrappers) simultaneously connected with the server and reporting data.

In this evaluation study, őve parallel OML wrappers running on diferent machines

were connected with the server through diferent TCP sockets. Each wrapper reported

data on about 10 measurement metrics with a regular update rate of 10 seconds. That

means the server processes 50 metrics in each push. 1,000 pushes were performed

by each wrapper to export data about the respective 10 metrics. This experiment

scenario was executed twice: once in the case of classic use of OML and once in the

semantic-based case. Furthermore, both experiment types were run multiple times.

In this experimentation, only the performance at the server side was investigated.

Therefore, only the time spent for data processing and insertion were considered. The

average values of the time spent to classically or semantically process (Tprocessing)

50 metrics/streams and insert the data into the respective database (Tinsertion) are

shown in Table 7.2. The results show an expected distribution comparable to those

shown in Table 7.1. Similar to the previous experimentation, Figure 7.12 shows

statistical information.

Tab. 7.2.: Performance evaluation for semantic and classic use of MAFIA’s common

API (OML/OMSP) ś Part 2

OML Type Tprocessing (ms) Tinsertion (ms)

Classic 6.811 13.721

Semantic 9.402 928.440

Fig. 7.12.: Performance evaluation results (statistical information (min, quartile 1,

median, quartile 3, max) relates to the mean values shown in Table 7.2;

times along the vertical axis are in base-10 logarithmic scale)

160

7.3. Analytical Evaluation

7.3.4. Impact Evaluation

The impact and overhead of the used monitoring tools should be kept to a minimum.

In particular, when they are deployed on the same machines where other applications

or services are running.

This evaluation investigates the impact of fundamental components of MAFIA in

terms of resource consumption, such as CPU and bandwidth.

In this evaluation, two VMs were created in the Monitoring Demo Testbed. An

infrastructure resource monitoring service was requested during setup. A Python-

based OML wrapper was used to provide information about 10 measurement metrics

per resource, collected from Zabbix. The wrapper fetched data from Zabbix and

pushed it as OML streams, following RDF-based schemas to the semantic OML

server. To investigate the impact of MAFIA in this case, only the Python wrapper

and FITeagle on a Docker container were running on a machine. These then interact

with other components, such as OpenStack, Zabbix and an OML server running on

other machines.

Figure 7.13 shows the results of an experiment lasting 2 hours. The experiment

started at 9:00 p.m. and stopped at 11:00 p.m.

Graph 7.13a shows the CPU user time, represented in graph 7.13b in a black

line, compared to the CPU system time represented in blue. Graph 7.13c shows

further information about CPU utilization, where CPU use is almost negligible when

compared to the CPU in an idle state (around 99% represented in red). The őrst jump

in the őrst three subgraphs represent the execution of four successive SFA AM API

calls sent by jFed and processed by FITeagle: getCredential, ListResources, Allocate

and Provision for two VMs. The last jump represents the execution of the Delete call

to remove both resources. However, it is clearly shown in the time period between the

őrst jump and the last jump (i.e. from 9:00 p.m. to 11:00 p.m.), that the CPU use is

very small at around 1%. Most of this usage (around 0.8%) is induced by other user

processes (e.g. the Docker container), as shown in the őrst three subgraphs before

the start time (9:00 p.m.) and after the stop time (11:00 p.m.) of the experiment.

Graph 7.13d in Figure 7.13 shows bandwidth utilization in Kbps. Black line

represents the bandwidth used for incoming traic (data retrieved from Zabbix), while

blue line represents bandwidth used for outgoing traic (data exportation to the

semantic OML collection resource). The bandwidth used for incoming traic is not

an issue, if the wrapper and Zabbix run on the same machine, or enough bandwidth

capacity in the local network is available.

To be concluded that the impact of MAFIA components in particular the wrappers

is almost negligible.

161

7. Validation and Evaluation

(a) CPU user

(b) CPU user and system times

(c) CPU utilization (idle, system, user, nice, and iowait times)

(d) Bandwidth utilization (incoming and outgoing traic)

Fig. 7.13.: Impact of MAFIA wrapper in term of CPU usage and bandwidth during

12 hours of pushing monitoring data for two VMs

162

7.4. Requirements Validation

7.4. Requirements Validation

Chapter 3 presented and analyzed a wide range of requirements collected from diferent

sources. This section analyzes the identiőed requirements against the speciőed and

developed methods and components delivered by this thesis, in particular MAFIA and

MOFI. Thus, it validates the fulőlment of the addressed requirements and presents

the added values gained from the methods used.

Table 7.3 shows how the requirements identiőed in this thesis are fulőlled by MAFIA

and its associated methods and models. Some requirements are either partially (e.g.

standardization and openness, and security) or indirectly (e.g. time sensitivity and

accuracy) supported. Scalability is one of the requirements that is not addressed in

this thesis. However, MAFIA is designed in a ŕexible way to scale so that scaling

should be possible.

Tab. 7.3.: Identiőed requirements and methods speciőed and developed by this thesis

Requirement MAFIA Support

Req-1 Cross-layer
monitoring

Several monitoring services from low-level resources up to applica-
tions are supported.

Req-2 Cross-domain
monitoring

The main focus of MAFIA is to operate cross-domain.

Req-3 On-demand MAFIA services are ofered on an on-demand basis.

Req-4 Autonomic MAFIA is designed to support on-the-ŕy reconőguration to adapt
to the dynamic changes of the measured entities.

Req-5 Comprehen-
siveness

Any monitoring or measurement tool can be integrated. Thus, any
entity that can be measured is integratable.

Req-6 Extensibility MAFIA allows to add new measurement metrics at any level in
the federation or even integrate additional monitoring tools.

Req-7 Scalability Scalability has not been directly addressed.

Req-8 Standard and
common data repre-
sentation

This requirement is supported through standardized and common
ontology-based information model (see MOFI models in Chap-
ter 5).

Req-9 Programming
interfaces

Data is provided via a common API (OML) and can be accessed
through a standard SPARQL Query API.

Req-10 Standardiza-
tion and openness

Partially supported. Data is provided via OML, which is open but
not standardized, and can be accessed via standardized SPARQL
Query API.

Req-11 Interoperabil-
ity and compatibility

Supported by a common data collection and transportation proto-
col (OMSP) and a common information model (MOFI).

Req-12 Continuous
monitoring

It depends on the implemented service; e.g. UCRE monitoring is
provided for the interested consumers (the user or any federation
service) continuously over the course of the UCRE’s lifetime.

Table continued on next page ...

163

7. Validation and Evaluation

... Table 7.3 continued from previous page

Req-13 SLA monitor-
ing

MAFIA provides capabilities to support SLAs across domains. It
further delivers speciőcation on how to provide monitoring data,
but the type of measurement metrics are out of scope as they are
application and domain speciőc.

Req-14 Time sensitiv-
ity

Not directly supported as it is the job of the tools used to perform
measurements.

Req-15 Accuracy Not directly supported as it is the job of the tools used to perform
measurements.

Req-16 Reliability Supported in that it provides all requested services and avoids
single points of failure that may occur, as the architecture is
designed to work in a distributed manner.

Req-17 Archivability Data can be archived after the service or experiment lifetime.

Req-18 Security Partially supported. Only authorized users are allowed to access
or deal with the data.

Req-19 Minimal im-
pact

Partially supported. MAFIA allows any tool to be used to produce
data, and the impact of tools varies from one to the other. OML,
as the main functional element in the implementation, has been
designed and implemented to avoid additional overhead [123].

Req-20 Tool-agnostic MAFIA is designed to be tool-agnostic, so that any monitoring
tool can be used.

Req-21 Reusability Adapters written for integrating tools can be reused by any other
infrastructure that uses the same tool with limited reconőguration
eforts.

Req-22 Federation
aware

MAFIA is designed to operate on a federation level and, thus, can
interoperate with many other systems.

Req-23 Real-time
and historical data

Both are supported.

Req-24 Data delivery Infrastructures provide data to the user collection resource in a
push manner, data is then accessed by the user in a pull manner.

Req-25 Ease of use Once requested, users monitoring data is exported from multiple
infrastructures to their own collection resources in a common way.

Req-26 Usefulness Users can deploy diferent setups and get related monitoring data
automatically if requested.

Req-27 Customizabil-
ity

Users can deőne their own measurement metrics.

Req-28 User-
friendliness

Partially supported, as it was not at the focus of MAFIA.

Req-29 Data storage
ŕexibility

Users can create their own data collectors as VMs with ŕexible
storage size. Infrastructures send user data to their collector or
any collection endpoint identiőed by the user as long as it under-
stands the protocol used (OMSP in the reference implementation
of MAFIA).

Req-30 Data avail-
ability

Data is available for users during and after the lifetime of their
created UCREs.

Req-31 Group sup-
port

Indirectly supported through granting privileges to the database to
other users by the main user who owns the data collection resource.

164

7.5. Comparison with other Solutions

7.5. Comparison with other Solutions

This section compares the achievements of this thesis with the other relevant state-of-

the-art solutions introduced in Chapter 2. The most relevant solutions as summarized

in Table 7.4 are considered in this comparison according to various criteria. The

criteria are based on the requirements driving this thesis (discussed in Chapter 3) and

are brieŕy described along with some remarks.

• Cross-Layer Monitoring: This type of monitoring is deőned in Sec. 2.5.1.2.

Taken as a criterion, it indicates whether the solution is capable of monitoring

multiple layers, or only focuses on a particular layer.

• Cross-Domain Monitoring: This type of monitoring is deőned in Sec. 2.5.1.3.

Taken as a criterion, it indicates whether the solution can operate across domains.

Usually, monitoring tools target homogeneous, single domains but not federated

ones. Some tools supports some federation monitoring aspects, but these are

very limited. For example, PerfSONAR measures network performance between

domains (this thesis refers to such tools as inter-domain monitoring).

• Federation Aware: This criterion refers to whether the solution architecture

is integratable with the target federation architecture and can interwork with

the rest of the components of the architecture.

• Data Representation: This criterion refers to the methods, data formats and

data structures used to represent monitoring data.

• Information Model: This criterion indicates whether the solution follows a

speciőc information model to represent the data. This is the case for some

solutions to avoid any possible confusion if information is represented diferently.

Such solutions are domain or implementation speciőc, e.g. FIWARE monitoring.

• Interoperability and Compatibility: This criterion indicates the ability

of the solution to easily interwork with many other tools or solutions in an

interoperable and compatible manner.

• Tool Dependency: This criterion indicates whether the solution depends on

particular tools to support monitoring services, or is ŕexible to accommodate

new tools (e.g. those in place in newly joined infrastructures) with minimum

adaptation and as few changes as possible.

• Extensibility: This criterion relates to the possibility of extending the solution

to include additional monitoring services or even monitor new areas or domains.

• Customizability: This criterion signals whether it’s possible for users to deőne

their own, customized measurement metrics.

165

7
.

V
a
li
d
a
ti

o
n

a
n
d

E
v
a
lu

a
ti

o
n

Tab. 7.4.: Comparison of diferent monitoring solutions

Solution
Cross-Layer Monitoring

(1)

Cross-Domain

Monitoring (3)
Federation Aware (2)

Data Representation

(1)
Information Model (3)

PerfSONAR out of scope (-)

it focuses on inter-domain

network performance

monitoring (+)

supported, but limited to

the network domain (+)

limited and specific to the

tools used and their

associated protocols (e.g.

OWAMP) (+)

based on OGF

specification and limited

to network measurement

metrics (+)

INSTOOLS

network measurement with

limited OS measurements

(+)

supported, but limited to

particular domains

(distributed servers and

network performance

measurements) (+)

supported but limited to

the GENI federation (+)

SNMP and Secure

Shell (SSH)/Secure

Copy (SCP) (+)

SNMP’s MIB (+)

FIWARE Monitoring supported (++)
supported but limited to

cloud infrastructures (+)
supported (++)

following the OMA NGSI

specification (++)

limited to a list of

datasets (-)

RESERVOIR

Monitoring
supported (++)

supported but limited to

cloud infrastructures and

supports only three probes

(CPU, memory and

network usage) (+)

supported but limited to

cloud domain (+)

there is no information on

this (0)

own model that uses

Distributed Hash Table (-)

TopHat

not supported, but still

possible through the

integration of suitable

tools (+)

supported but limited to

topology monitoring and

network measurements (+)

works on a federation but

with no direct

interoperability with other

systems (e.g. control) (+)

XML-based or visualized

through MySlice (+)

limited requests to query

its Extensible Markup

Language - Remote

Procedure

Call (XML-RPC) API (+)

MINER out of scope (-) out of scope (-) out of scope (-) XML documents (++)
based on the W3C XML

schema (+)

Zabbix supported (++)

possible for particular

domains only (networks

and distributed computer

systems) (+)

out of scope (-) JSON format (++) own model (-)

Nagios
supported through

third-party plugins (++)
same as Zabbix (+) out of scope (-)

graph-based, or as JSON

or XML through plugins

(++)

Round Robin Database

(RRD) files (-)

MAFIA supported (++) supported (++)

one of its main

architectural design

principles (++)

through OMSP format

along with an

ontology-based data

model (++)

MOFI ontologies (++)

Table continued on next page ...

16
6

7
.5

.
C

o
m

p
a
riso

n
w

ith
o
th

er
S
o
lu

tio
n
s

... Table 7.4 continued from previous page

Solution
Interoperability and

Compatibility (2)
Tool Dependency (2) Extensibility (1) Customizability (1) Weighted Overall Score

PerfSONAR
limited to the adopted

standard tools (+)

depends on few tools

(Ping, Iperf, Tracerout,

etc.) (0)

yes, but only for new

network metrics (+)
out of scope (-) 10

INSTOOLS
limited to the adopted

standard tools (+)

depends on a set of tools

(SNMP, tcpdump,

NetFlow) (0)

possible, but requires

extensions in through the

whole software stack (+)

out of scope (-) 12

FIWARE Monitoring
limited to the used GEs

(0)

tool-agnostic, currently

based on Nagios and

PerfSONAR (++)

supported (++)
supported through the

used tools (+)
15

RESERVOIR

Monitoring

limited to the adopted

tools (0)

depends on a set of own

probes (0)
out of scope (-) out of scope (-) 2

TopHat

only supported between

TopHat and the integrated

tools (0)

it depends on the

supported tools (through

gateways, as discussed in

Sec. 2.5.2.2), but can be

extended (++)

extensible through

gateways (++)
out of scope (-) 15

MINER

possible through proxies,

to the tools supported,

that provide data

following XML schemas

(+)

tool-agnostic but the

available implementation

covers a set of network

measurement tools (++)

possible (+) out of scope (-) 5

Zabbix out of scope (-)

own implementation, but

some standard tools (e.g.

SNMP agents) can be

integrated (0)

possible (+) supported (+) 2

Nagios out of scope (-) like Zabbix (0) possible (+)
possible through plugins

(+)
2

MAFIA

supported through a

unified protocol

(OMSP) and a common

information model

(MOFI) (++)

tool-agnostic (++)
supported through

wrappers (++)

supported through

wrappers and/or

OMSP-aligned MPs

(++)

32

Criteria weights: (3) high importance, (2) medium importance, and (1) low importance — Rating: (++) accepted (2), (+) limited (1), (0) neutral (0), and (-) rejected (-1)

167

7. Validation and Evaluation

7.6. Summary

This chapter presented the evaluation methodologies that have been used to validate

and investigate the performance of the solutions delivered within this thesis, in

particular MAFIA and MOFI. According to the methodologies deőned by Hevner et

al. [160], three diferent evaluation methods have been undertaken.

The őrst is an observational evaluation method aimed at validating and tracking

use, extensions and improvements of the delivered solutions within a set of practical,

large-scale projects. Sec. 7.1 presented the main projects this thesis has contributed

to and gained experience from. These projects have served to further enhance the

delivered solutions that have been designed (Chapter 4, Chapter 5) and developed

(Chapter 6) in an interactive, incremental manner.

The usability and reliability of MAFIA have been demonstrated through the

experimental evaluation method discussed in Sec. 7.2. Besides demonstrating the

usability and the cross-layer monitoring support of MAFIA, this evaluation has also

shown that data provided to the user semantically, after being converted into the

uniőed format at the federation level, is the same data as originally shown in the tool

deployed at infrastructure level.

The third evaluation method is an analytical approach (Sec. 7.3) that investigated

the quality, efectiveness and performance of the presented prototype implementation

of MAFIA, as well as its environmental impact while running. In this evaluation,

the efectiveness of the use of MAFIA was discussed, in particular in regard to

the ontologies and their associated Semantic Web technologies. The added value

gained includes linking information, conducting complex queries and reasoning over

heterogeneous data, which allows information to be deduced without the need to

extract it from diferent data structures. To check the overhead induced by the

use of Semantic Web technologies within MAFIA, performance evaluation has been

conducted. The results have shown that the time spent processing data at the server,

in particular storing data in a triple store, takes longer compared with non-semantic

data delivery, processing and storing in an SQL database. However, the induced

delay is still within an acceptable range (in milliseconds), which does not have a

noticeable efect. Finally, the evaluation study, that has been conducted to investigate

the impact of MAFIA on its running environment, has shown that MAFIA has a very

limited efect in terms of resource consumption (e.g. below 0.1% of CPU).

This chapter discussed the mapping of the identiőed requirements to the methods

speciőed and developed within this thesis (Sec. 7.4) and presented a brief comparison

between the solution delivered by this thesis and a set of the other most relevant

solutions available (Sec. 7.5).

168

8
Conclusion

8.1 Summary . 170

8.2 Dissemination and Impact 172

8.3 Outlook . 175

T
HE research of this thesis has focused on monitoring and measurement services

across federated, heterogeneous ICT infrastructures. This is mainly due to

the emerging needs and the lack of proper monitoring solutions that can

operate across multiple administrative domains and deliver various and extensible sets

of monitoring data in a common way within a heterogeneous federation, as discussed

in Chapter 1.

The absence of a suitable existing solution along with the various and emerging

requirements of multiple stakeholders from diferent sources (Chapter 3) have lead to

the core contributions of this thesis. An extensive study of the state-of-the-art and

research outcomes was conducted within this thesis (Chapter 2). This study served

as a starting point for the main research results of this thesis, which are a monitoring

architecture, an ontology-based information model and a prototype implementation,

presented in Chapters 4, 5 and 6 respectively, and evaluated in Chapter 7. Together

these provide a solution for the uniőcation of monitoring interfaces of federated,

heterogeneous ICT infrastructures, focusing on Cloud and FI experimentation areas,

thus aggregating large, diferent and extensible sets of data from various sources.

This őnal chapter őrst presents a summary of the őndings and the main contri-

butions of this thesis. It then presents the dissemination activities, the impact of

the achievements of this thesis, and its contributions to several research projects and

standardization bodies.

169

8. Conclusion

8.1. Summary

The objective of this thesis was to design and develop a monitoring solution that

operates across federated infrastructures and caters for collecting monitoring data

provided by diferent monitoring interfaces, in a uniőed format following a common

vocabulary. To this end, the following two main research questions were formulated

as discussed in the introduction (Chapter 1):

1. How to design an architecture that i) allows the integration and management

of heterogeneous monitoring solutions distributed in a federated environment in

order to provide a set of monitoring services in a common manner, and ii) is

extensible to allow monitoring of other similar fields of application?

2. How to model heterogeneous monitoring and measurement related concepts and

relationships allowing the target solution to provide the data in a common and

meaningful way?

Achieving the objectives of the thesis and answering these questions were at the

heart of the research work performed during the course of this thesis. The main

research results consist of three main contributions. These are brieŕy discussed and

conclusions are drawn as follows:

1. The monitoring architecture for federated, heterogeneous infrastructures, called

MAFIA, comprises a set of main components (Sec. 4.3.2): monitoring tools at

infrastructure level, a common API, a set of adapters, data collection and storage,

and data access and visualization. In answer to the őrst research question,

MAFIA is designed in a generic way to support the main monitoring services

required in a federation such as those addressed in this thesis. These include the

federation of Cloud and FI testbed infrastructures, and the accommodation of

any type of data collected from any data source as long as its design architectural

principles (Sec. 4.2.1) are adhered to. In this thesis, seven diferent types of

monitoring services are discussed (Sec. 4.3.1) and implemented (Sec. 6.2.2).

Through an adaptation layer implemented by a set of adapters, a high level of

abstraction of the diverse set of monitoring tools distributed in a federation

enables the integration and management of data collected from various sources.

MAFIA follows a federation model where each infrastructure keeps its own tools

in place, but adapts to the common API speciőcations. Thus, MAFIA can be

extended to monitor additional infrastructures joining the federation or even

include new monitoring services through additional adapters. It is not necessary

to write new adapters from scratch, but those already in use (examples are in

Appendix C) can be re-used with minor modiőcations to fullől their planned

tasks in terms of providing the target data wrapped from the locally deployed

tools.

170

8.1. Summary

2. The ontology-based information model, MOFI, describes related monitoring con-

cepts and relations in federated, heterogeneous infrastructures at the conceptual

and semantic levels. It comprises a vocabulary of terms and speciőcations of

their meanings, and a set of deőnitions. It is designed to assist MAFIA in order

to provide monitoring information in a common and meaningful way, where

information originates from various sources with diferent ways of describing

monitoring data. It has a hierarchical structure and consists of an upper on-

tology, which deőnes the fundamental concepts and relations, and subjacent

ontologies, which reuse and specialize concepts and relations from the upper

ontology (Sec. 5.2). Each subontology focuses on a particular aspect of the

monitoring process, like measurement metrics, data, units, tools and further

generic aspects. In answer to the second research question, this thesis has

shown how these formal, canonical models allow mutual understanding of shared

conceptualizations and deőnitions. This can overcome interoperability issues

caused by the use of syntactic data models, like tree- or list-based data models

with arbitrary schemas, which lack consistent, standardized vocabularies and

hinder tool interoperability and data consolidation. Furthermore, ontologies

allow information to be linked, heterogeneous data to be reasoned and queried

over, and information to be deduced without the need to be extracted from

diferent data structures.

3. The prototype implementation of the monitoring architecture (MAFIA) contains

an implementation of the ontology-based information model (MOFI). This

implementation covers the main components of MAFIA, namely the monitoring

tools at infrastructure level (Sec. 6.2.1.1), a common API (Sec. 6.2.1.2), a set of

adapters (Sec. 6.2.1.3), data collection and storage (Sec. 6.2.1.4), and data access

and visualization (Sec. 6.2.1.5). The usability and efectiveness of the solutions

delivered by this thesis have been demonstrated in Sec. 7.2 and Sec. 7.3.2. It

can therefore be said that MAFIA is ŕexible enough to integrate and manage

heterogeneous monitoring solutions distributed in a federated environment. This

serves to provide various sets of data in a common and meaningful manner.

MAFIA is furthermore extensible through adapters to allow monitoring of

other similar őelds of application. The analytical evaluation results have shown

that the use of semantic technologies induces some delays, in particular during

insertion of data into triple stores (Sec. 7.3.3). However, it was suggested in

this thesis to use other faster triple store engines rather than the one used in

the implementation. Nevertheless, it was observed that the semantic-based

approach taken is beneőcial for collecting and representing monitoring data

in a ŕexible, uniőed and meaningful manner. The semantic-based approach

also enables linking, matching, searching and reasoning of resource related

171

8. Conclusion

information collected from diferent data sources in the application őeld of FI

experimentation across federated testbeds, which was not otherwise possible.

The design and implementation of the solutions delivered by this thesis have been

undertaken in an iterative, incremental manner. They have been extended and

improved after each iteration according to lessons learned from practical deployments.

The solutions have been validated in large-scale environments, notably BonFIRE

(a federation of seven cloud infrastructures) and Fed4FIRE (a federation of over 20

heterogeneous ICT infrastructures).

8.2. Dissemination and Impact

This section describes the dissemination activities that have been conducted during

the course of this thesis, along with its academic and industrial impact. The academic

impact is evaluated by the publication of the research results at the international

highly ranked Association for Computing Machinery (ACM), IEEE and Information-

stechnische Gesellschaft im VDE (ITG) conferences and workshops. The academic

impact is further demonstrated by contribution to the teaching proőle of the Chair

of NGN (called "Architekturen der Vermittlungsknoten (AV)"1 in German) at the

Technische Universität Berlin. An indication of the industrial impact is provided

through the use of the thesis artifacts in several industry driven testbeds and research

projects. This is facilitated through the close and strong cooperation between AV

and the Next Generation Network Infrastructures (NGNI) Competence Centre2 at

FOKUS Fraunhofer Institute for applied science.

The dissemination and impact of the outcomes of the thesis research are brieŕy

listed as follows:

Publications: The publication track record of the thesis author includes 24 scientiőc

publications between 2011 and 2015. These are listed in Appendix A and consist

of one journal article, one book chapter, 18 conference papers, and four workshop

papers.

Contribution to the scientific community: The expertise of the thesis author

in the research őelds addressed within this thesis has enabled him to further contribute

to the scientiőc community in various ways. This includes reviewing a set of scientiőc

papers, and the organization and co-chairing of three workshops. The author was

the Chair of the International Workshop on UsiNg and building ClOud Testbeds

(UNICO)3, which was held in conjunction with the 5th IEEE International Conference

1http://av.tu-berlin.de
2https://www.fokus.fraunhofer.de/ngni
3http://www.bonfire-project.eu/unicocloudcom

172

http://av.tu-berlin.de
http://www.bonfire-project.eu/unicocloudcom

8.2. Dissemination and Impact

on Cloud Computing Technology and Services in Bristol, United Kingdom, on 2

to 5 December 2013. The author participated in the organization of all aspects of

the workshop, from workshop proposal formulation, through organization of call

distribution, submission, review and acceptation processes, up to hosting and chairing

the event. He was one of the organization committee of the 4th International IEEE

Workshop on Open NGN and IMS Testbeds (ONIT)4, which was held in conjunction

with the IEEE Global Communications Conference (GLOBECOM) in Anaheim,

California, US, from 3 to 7 December 2012. The author was the organizing chair for the

1st International IEEE Workshop on Multimedia Communications (MMCOM) 20115,

held in conjunction with the 54th Annual IEEE GLOBECOM in Houston, Texas, US,

from 5 to 9 December 2011. Finally, the thesis author has been contributing to and

administrating the Free Tools for Future Internet Research and Experimentation (Free

T-Rex) Platform6, which provides access and knowledge dissemination for scientists,

testbed operators and tool developers for tools and testbeds that are widely used in

the area of FI experimentation.

Teaching contribution: The work within this thesis has contributed to the teach-

ing proőle of the AV Chair through enriching three master’s degree courses with

novel, relevant topics, where students are enabled to stay up to date with the current

state-of-the-art. The thesis author has been an assistant lecturer in the course "

Future Internet Technologies (FIT)" and supervisor of the student seminar course

"Hot Topics in NGN & FI" between 2011 and 2014. He was a supervisor of the

student project course "NGN & FI Projects" in 2015. Two bachelor’s theses have

been supervised by the author.

Artifacts usage: As discussed in Sec. 7.1, diferent artifacts of this thesis have

been adopted and deployed in multiple testbeds in several research projects within the

context of the largest relevant initiatives in Europe, namely the FIRE projects (e.g.

BonFIRE and Fed4FIRE) and the FI-PPP projects (e.g. INFINITY and FI-STAR).

Besides the software components, the contribution also consists of leadership and

inŕuence on the design and speciőcation of the respective architectures. Furthermore,

based on lessons learned from the initial implementation and deployment of MAFIA,

this thesis inŕuenced and contributed to the design of the XIFI monitoring architecture.

Speciőcally, it inŕuenced XIFI monitoring architecture to be tool-agnostic and open

to integrating any cloud infrastructure with tools in place that adapts a speciőc

set of adaptation mechanisms to become part of the federation [149]. The artifacts

delivered by this thesis have been integrated into the FUSECO PG, in particular

4http://www.onit-ws.org/2012
5http://www.fuseco-workshop.org/mmcom2011
6http://www.free-t-rex.net

173

http://www.onit-ws.org/2012
http://www.fuseco-workshop.org/mmcom2011
http://www.free-t-rex.net

8. Conclusion

in its OpenStack-based Cloud testbed and the Wireless Lab that is powered by

the licensed OpenEPC toolkit. FUSECO PG and other testbeds ofered by the

aforementioned projects target not only research communities but also SMEs and

innovative startups. This ofers them the possibility of establishing early-trials of

their products in real-world, controllable, and cost-efective environments with in-

depth monitoring capabilities. Furthermore, some of the initial research outcomes of

this thesis have been used in the BMBF G-Lab Deep7 project [168], [169]. Finally,

the Mobile Cloud Networking8 [190] (MCN) MaaS architecture[173] is conceptually

inspired by the initial monitoring architecture design delivered by this thesis.

Talks and demos: During the course of this thesis, the author has given various

talks and demos at international events to create, disseminate and share knowledge.

Ten presentations at IEEE conferences and workshops have been given between 2011

and 2015. Training sessions were given within the XIFI training series (physical

meetings and Webinars). These were ofered for various technology development

communities interested in FIWARE technologies and oferings, e.g. the Webinar

training entitled "FIWARE Lab Solution for Managing Resources & Services in a

Cloud Federation"9 was given by the thesis author for an audience of 72 participants.

The author was invited to give talks within the context of GENI-FIRE international

collaboration. In the GENI-FIRE Workshop 201510, the author gave two talks

including a demo on the use of ontologies, in particular OMN, for supporting the

whole experiment lifecycle in federated heterogeneous ICT testbeds, taking their use

for monitoring services as a use case. Furthermore, a couple of demos have been given

in multiple events, such as FIRE meetings and workshops, ITG events within the

G-Lab initiative and FOKUS FUSECO Forums.11

Standardization: The ontology-based information model (i.e. MOFI), as one of

the three main outcomes of this thesis, represents the monitoring part of the OMN

standardization initiative that focuses on modeling federated ICT infrastructures.

At the time of writing, the OMN monitoring ontology, consisting of the six mon-

itoring ontologies described in Chapter 5, is the largest OMN ontology in terms

of the number of concepts and relations described. To make this initiative more

accessible to the international community, OMN was registered with a permanent

identiőer (https://w3id.org/omn) and namespace (http://preőx.cc/omn) and the

W3C Federated Infrastructures Community Group12 was established.

7http://www.g-lab-deep.de
8https://www.mobile-cloud-networking.eu
9https://www.youtube.com/watch?v=1TKU4KdDybQ&feature=youtu.be

10http://tinyurl.com/firegeni2015
11http://www.fuseco-forum.org
12https://www.w3.org/community/omn/

174

http://www.g-lab-deep.de
https://www.mobile-cloud-networking.eu
https://www.youtube.com/watch?v=1TKU4KdDybQ&feature=youtu.be
http://tinyurl.com/firegeni2015
http://www.fuseco-forum.org
https://www.w3.org/community/omn/

8.3. Outlook

8.3. Outlook

This section outlines plans and possibilities to exploit the potential of the presented

work, as well as extensions of the work driven by currently running and planed

activities.

The outcomes of this research work can be applied in federated ICT environments.

The exact motivations for increasing demand in and type of federations go beyond the

scope of this work. However, demand for federations of heterogeneous infrastructures

is steadily increasing. Academic users are looking for federated heterogeneous testbeds

to study complex phenomena across domains in real-world environments. In the cloud

industry, SMEs can federate their resources and services to complement each other

and can then compete against leaders in the cloud business, such as Amazon Web

Services, Google and Windows Azure.

Indeed, various federation architecture models have been deőned in the literature

as described in Sec. 2.4.1. One of the main lessons learned within this thesis is that a

heterogeneous federation architecture model is the most convenient model for large-

scale, dynamic and sustainable federations. This model allows infrastructures to keep

using their management systems and uses a common APIs on top of these systems.

This way enables infrastructures to easily and quickly join or leave the federation.

Therefore, MAFIA has been designed following this model and a common API is

used on top of monitoring systems, thus catering for uniőcation of data collected

from their heterogeneous interfaces. MAFIA can be used to deliver various sets of

monitoring services in federated infrastructures. It can be used by a federator to

monitor and control the entire federation in terms of health and performance, SLA

management, advanced reservation, and so forth. It can also be used by infrastructure

providers to provide partial monitoring information for their users on-demand about

the infrastructure resource used . Such a service is recognised as providing signiőcant

added value for users; for example, in a cloud federation, service providers who

deploy their services in the forms of IaaS or PaaS across domains can get monitoring

information about the used resources and their environmental conditions.

To ensure the sustainability and reuse of MAFIA, several steps have been taken.

MAFIA was designed after considering a wide range of requirements from various

stakeholders (e.g. software developers, infrastructure providers and federators). It

is modular, not domain or task speciőc and can be extended to cover new areas of

application through additional wrappers. The development of such wrappers doesn’t

require much efort, as reference implementations are provided that can be modiőed

and extended according to the target use. De-facto standard protocols (SFA and

OML) are used in the delivered prototype implementation.

175

8. Conclusion

As stated before, the design of MAFIA has been done in iterations. Its initial design

and implementation can still be used to monitor a homogenous cloud federation, as it

assumes the same monitoring tools are used across the federated infrastructures.

In addition to MAFIA, a signiőcant contribution of this thesis is the monitoring

ontologies (MOFI) implemented within MAFIA. They have been developed in a

generic way to be (extended if required and) implemented in any ICT environment,

allowing data exchange across domains and tools in a common and meaningful manner.

MOFI is extensible to allow more ś even domain speciőc ś concepts and relations to

be modelled. For instance, according to interest raised by the cloud standardization

bodies IEEE InterCloud and EGI Federated Cloud Task Force, MOFI models are

planned to be extended to model missing concepts and relations to serve their need.

Furthermore, the thesis author was invited to present the possibility of using the

developed ontologies within the context of the European FP7 FIESTA13 Project,

which focuses on the IoT domain. It’s feasible to reuse the relevant IoT concepts from

existing ontologies (e.g. SSN) within MOFI and extend it to fulőll the need of IoT

platforms.

The impact of MOFI at the time of writing is limited to the FI experimentation őeld,

driven by strong communities like GENI and FIRE. It is also of interest in federated

Clouds. However, MOFI is not limited to a particular project but aims to reach a

broader range of communities. Therefore, several steps have been taken to promote

MOFI to achieve the broadest possible dissemination. This includes the use of the

Dublin Core (DC) and Vocabulary for Annotating Vocabulary Descriptions (VANN)

to describe meta data about individual MOFI ontologies. MOFI ontologies were

serialized in two formats RDF/XML and Turtle. The latter provides human and

machine readable serializations. Furthermore, the MOFI ontology is part of OMN

standardization activity as aforementioned.

Last but not least, although the comparison of MAFIA with other solutions discussed

in Sec. 7.5 has shown its advanced support and added value, there are still some

requirements that have been identiőed but not fully supported. These are indicated as

"not directly supported" or "partially supported" in Table 7.3 and can be considered

for future work. Furthermore, according to the performance evaluation results of the

prototype implementation, the use of a faster RDF/SPARQL server/triple-store is

recommended and is also considered to be a matter for future work.

13http://www.fiesta-iot.eu

176

http://www.fiesta-iot.eu

Acronyms

ACM Association for Computing Machinery . 172

AM Aggregate Manager . 129

API Application Programming Interface . 3

AV Architekturen der Vermittlungsknoten . 172

BMBF German Bundesministerium für Bildung und Forschung 34

BonFIRE Building Service Testbeds on FIRE [17] . 30

bps bit per second . 107

BWCTL Bandwidth Test Controller14 . 49

CAMP Cloud Application Management for Platforms . 27

CAPEX Capital Expenditure . 20

CCRA Cloud Computing Reference Architecture . 40

CDMI Cloud Data Management Interface [174] .27

CH Clearinghouse . 129

CIMI Cloud Infrastructure Management Interface [175] 27

CoMo Continuous Monitoring [176] . 48

CONFINE Community Networks Testbed for the Future Internet15 30

CPU Central Processing Unit . 5

vCPU Virtual CPU. .147

CREW Cognitive Radio Experimentation World16 . 30

CRUD Create-Read-Update-Delete . 51

CSA Coordination and Support Action . 30
14http://software.internet2.edu/bwctl/
15https://confine-project.eu
16http://www.crew-project.eu

177

http://software.internet2.edu/bwctl/
https://confine-project.eu
http://www.crew-project.eu

Acronyms

CSV Comma Separated Values . 79

DC Dublin Core . 176

DFA DETER Federation Architecture [177] . 29

DIMES DIMES17 [178] . 48

DMTF Distributed Management Task Force . 27

DSV Delimiter Separated Value . 120

EGI European Grid Infrastructure . 3

ESNet Energy Sciences Network18 .49

ETOMIC European Traic Observatory Measurement Infrastructure [179], [180]

48

EXPERIMEDIA EXPERIMEDIA19 . 30

Fed4FIRE Federation for FIRE20 [11] . 30

FEDERICA Federated E-infrastructure Dedicated to European Researchers

Innovating in Computing network Architectures21 30

FedSM Federated IT Service Management22 [73] . 35

FI-PPP Future Internet Public Private Partnership23 [181]2

FIND Future Internet Design24 . 28

FIRE Office FIRE Oice [182]

FIRE Future Internet Research and Experimentation25 [65] 2

FITeagle FITeagle26 [183] . 42

FIWARE Lab FIWARE Lab27 [19] . 33

FIWARE Future Internet Core Platform28 [184] . 3

FI Future Internet . 2

FI-STAR Future Internet - Social and Technological Alignment for Healthcare29

[185] . 33
17http://www.netdimes.org/new/
18https://www.es.net
19http://www.experimedia.eu
20http://www.fed4fire.eu
21http://www.fp7-federica.eu
22http://fedsm.eu
23http://fi-ppp.eu
24http://nets-find.net
25http://ict-fire.eu
26http://fiteagle.org
27http://lab.fi-ware.org
28http://fi-ware.org
29https://www.fi-star.eu/fi-star.html

178

http://www.netdimes.org/new/
https://www.es.net
http://www.experimedia.eu
http://www.fed4fire.eu
http://www.fp7-federica.eu
http://fedsm.eu
http://fi-ppp.eu
http://nets-find.net
http://ict-fire.eu
http://fiteagle.org
http://lab.fi-ware.org
http://fi-ware.org
https://www.fi-star.eu/fi-star.html

FIT Future Internet Technologies . 173

FLS First Level Support . 11

FRCP Federated Resource Control Protocol [186] . 42

FUSECO PG Future Seamless Communication Playground3012

G-Lab German Lab31 [187] . 2

GEi Generic Enabler implementation . 32

GENI Global Environment for Network Innovations32 [13], [188] 2

GE Generic Enabler . 32

GLOBECOM Global Communications Conference . 173

GPS Global Positioning System . 48

GUI Graphical User Interface . 5

HADES Hades Active Delay Evaluation System. .48

HPC High Performance Computing . 14

HTML Hyper Text Markup Language . 127

HTTP Hyper Text Transfer Protocol . 69

IaaS Infrastructure as a Service . 21

ICT Information and Communication Technology . 2

ID Identiőer. .50

IEEE Institute of Electrical and Electronics Engineers 41

IETF Internet Engineering Task Force . 53

INDL Infrastructure and Network Description Language [134] 60

INFINITY INfrastructures for the Future INternet CommunITY3333

ICAF Intercloud Architecture Framework . 40

ICMP Internet Control Message Protocol . 5

IoC Internet of Content .XXXVI

IoS Internet of Services . 31

IoT Internet of Things [189] . 2

IPFIX Internet Protocol Flow Information Export [120] 53

IPv6 Internet Protocol version 6. .112
30http://www.fuseco-playground.org
31http://german-lab.de
32http://geni.net
33http://fi-infinity.eu

179

http://www.fuseco-playground.org
http://german-lab.de
http://geni.net
http://fi-infinity.eu

Acronyms

IPTV Internet Protocol Television . 34

IP Internet Protocol . 54

ITG Informationstechnische Gesellschaft im VDE . 172

ITU-T International Telecommunication Union Telecommunication

Standardization Sector . 40

IT Information Technology . 2

JAR Java Archive. .129

JCA-Cloud Joint Coordination Activity on Cloud Computing 40

jFed jFed34 . 130

JSON JavaScript Object Notation . 79

JSON-RPC JavaScript Object Notation - Remote Procedure Call.5

KVM Kernel-based Virtual Machine. .24

LAMP Leveraging and Abstracting Measurements with PerfSONAR35 49

LXC Linux Containers36 . 26

M2M Machine-To-Machine Communication. .1

MaaS Monitoring as a Service . 47

MAFIA Monitoring Architecture for Federated heterogeneous Infrastructures12

MCN Mobile Cloud Networking37 [190] . 174

MIB Management Information Base . 54

MINER Measurement Infrastructure for Network Research [191] 53

MOFI Monitoring Ontology for Federated Infrastructures [109], [159]. . . .100

MOMENT Monitoring and Measurement in the Next generation Technologies [34]

60

MP Measurement Point . 44

MySlice MySlice38 . 48

NAT Network Address Translation . 113

NASA National Aeronautics and Space Administration 107

NEPI Network Experimentation Programming Interface [192]42

NFV Network Function Virtualization [193] . 2
34http://jfed.iminds.be
35http://groups.geni.net/geni/wiki/LAMP
36https://linuxcontainers.org
37https://www.mobile-cloud-networking.eu
38http://myslice.info

180

http://jfed.iminds.be
http://groups.geni.net/geni/wiki/LAMP
https://linuxcontainers.org
https://www.mobile-cloud-networking.eu
http://myslice.info

NGN Next-Generation Network . 29

NGSI Next-Generation Service Interface [194] . 144

NIST National Institute of Standards and Technology [50]19

NM-WG OGF Network Measurement Working Group . 53

NML Network Mark-Up Language [195] .59

nmVO Network Measurement Virtual Observatory39 [196] 48

NoF Network of the Future .XXXVI

NOVI Networking innovations Over Virtualized Infrastructures [35] 48

NSF National Science Foundation . 29

OASIS Organization for the Advancement of Structured Information

Standards . 18

OCCI Open Cloud Computing Interface [197] . 26

OFELIA OpenFlow in Europe: Linking Infrastructure and Applications40 . . 30

OGF Open Grid Forum. .26

OMA Open Mobile Alliance .144

OMF cOntrol and Management Framework [198] . 42

OML ORBIT Measurement Library [199] . 42

Omni Omni41 . 130

OMN Open-Multinet42 .102

OMSP OML Measurement Stream Protocol43 . 50

OneLab2 OneLab2 [200] . 30

OneLab OneLab44 [200] . 30

OWAMP One-Way Active Measurement Protocol [201]. .49

OOPS OntOlogy Pitfall Scanner45 . 152

OpenEPC Open Evolved Packet Core46 [202] . 142

OpenLab OpenLab47 [203] . 30
39http://nm.vo.elte.hu
40http://www.fp7-ofelia.eu
41http://trac.gpolab.bbn.com/gcf/wiki/Omni
42http://open-multinet.info
43http://oml.mytestbed.net/doc/oml/latest/doxygen/omsp.html
44http://onelab.eu
45http://www.oeg-upm.net/oops
46http://www.openepc.net
47http://www.ict-openlab.eu/project-info.html

181

http://nm.vo.elte.hu
http://www.fp7-ofelia.eu
http://trac.gpolab.bbn.com/gcf/wiki/Omni
http://open-multinet.info
http://oml.mytestbed.net/doc/oml/latest/doxygen/omsp.html
http://onelab.eu
http://www.oeg-upm.net/oops
http://www.openepc.net
http://www.ict-openlab.eu/project-info.html

Acronyms

OPEX Operational Expenditure .20

ORBIT Open Access Research Testbed for Next-Generation Wireless Networks

[204] . 29

ORCA Open Resource Control Architecture [205] .29

OS Operating System. .23

OVF Open Virtualization Format [206] . 27

OWL Web Ontology Language [126]. .57

OWL2 OWL 2 Web Ontology Language48 . 152

PaaS Platform as a Service . 21

PerfSONAR Performance focused Service Oriented Network monitoring

ARchitecture [38], [92] . 48

PHP PHP: Hypertext Preprocessor .114

Panlab Pan European Laboratory Infrastructure Implementation [207] 35

PlanetLab PlanetLab [208], [209]49 . 2

PM Physical Machine . 114

ProtoGENI ProtoGENI [210] . 29

Packet Tracking Multi-Hop Packet Tracking [211] . 48

QoS Quality of Service . 2

RAM Random-Access Memory . 147

RAG Red, Amber, and Green. .65

RDFS Resource Description Framework Schema [212] . 58

RDF Resource Description Framework [213] . 58

REST Representational State Transfer . 114

RSpec Resource Speciőcation50 . 129

SaaS Software as a Service .21

SAWSDL Semantic Annotations for WSDL and XML Schema [214] 59

SCP Secure Copy . 166

SCTP Stream Control Transmission Protocol . 55

SDN Software Deőned Networking [215] . 2

SDO Standards Developing Organization . 26
48http://www.w3.org/TR/owl-overview/
49http://planet-lab.org
50http://groups.geni.net/geni/wiki/GENIExperimenter/RSpecs

182

http://www.w3.org/TR/owl-overview/
http://planet-lab.org
http://groups.geni.net/geni/wiki/GENIExperimenter/RSpecs

SE Speciőc Enabler . 33

Semantic Web Semantic Web [216] .56

SFA Slice-based Federation Architecture [217] . 42

SIIF Standard for Intercloud Interoperability and Federation [47] 41

SLA Service Level Agreement . 4

SmartSantander SmartSantander51 . 30

SME Small and Medium Enterprise . 3

SMS Short Message Service. .51

SNIA Storage Networking Industry Association. .27

SNMP Simple Network Management Protocol [218]. .48

SOA Service Oriented Architectures . 18

SONoMA Service Oriented Network Measurement Architecture [219] 48

SPARQL SPARQL Protocol And RDF Query Language [220] 124

SQL Structured Query Language . 51

SSH Secure Shell . 166

SSN Semantic Sensor Network [136] .60

TCP Transmission Control Protocol . 54

TDMI TopHat Dedicated Measurement Infrastructure.48

Teagle Teagle [8], [221] . 42

Team Cymru Team Cymru52 .48

TOSCA Topology and Orchestration Speciőcation for Cloud Applications [222]

27

UCRE User-Customized Resource Environment . 77

UDP User Datagram Protocol . 54

URI Uniform Resource Identiőer . 95

URN Uniform Resource Name .V

US United States . 2

VANN Vocabulary for Annotating Vocabulary Descriptions.176

VCTTool Virtual Customer Testbed Tool [221] .129

VCT Virtual Customer Testbed . 141
51http://smartsantander.eu
52http://www.team-cymru.org

183

http://smartsantander.eu
http://www.team-cymru.org

Acronyms

VM Virtual Machine . 24

VMM Virtual Machine Manager . 24

VN Virtual Network . 45

VNF Virtualized Network Function . 63

VoIP Voice over Internet Protocol . 34

VPN Virtual Private Network . 78

WAN Wide Area Network. .78

W3C World Wide Web Consortium. .102

WMN Wireless Mesh Network . 45

WSDL Web Services Description Language . 59

XaaS Anything-as-a-Service . 19

XIFI Experimental Infrastructures for the Future Internet53 [70] 32

XML Extensible Markup Language . 53

XML-RPC Extensible Markup Language - Remote Procedure Call166

XSD XML Schema Deőnition . 102

53http://fi-xifi.eu

184

http://fi-xifi.eu

Bibliography

[1] Cisco, łCisco Visual Networking Index: Global Mobile Data Traic Forecast

Update 2014ś2019 White Paper,ž 2014, [Online]. Available: http://www.

cisco.com/c/en/us/solutions/collateral/service-provider/visual-

networking-index-vni/white_paper_c11-520862.html (cit. on pp. 1, 28).

[2] E. mobility report, łOn the Pulse of the Networked Society,ž 2014, [Online].

Available: http://www.ericsson.com/res/docs/2014/ericsson-mobility-

report-november-2014.pdf (cit. on pp. 1, 28).

[3] łITU ICT Facts and Figures ś The world in 2015,ž 2015, [Online]. Avail-

able: http://www.itu.int/en/ITU-D/Statistics/Documents/facts/

ICTFactsFigures2015.pdf (cit. on pp. 1, 28).

[4] T. Zahariadis, D. Papadimitriou, H. Tschofenig, S. Haller, P. Daras, G. D.

Stamoulis, and M. Hauswirth, łTowards a Future Internet Architecture,ž in

Future Internet Assembly, Springer LNCS, 2011, pp. 7ś18, isbn: 978-3-642-

20897-3. doi: 10.1007/978-3-642-20898-0_1. [Online]. Available: http:

//dx.doi.org/10.1007/978-3-642-20898-0_1 (cit. on pp. 1, 28, XXXVI).

[5] E. F. Group, łFundamental Limitations of Current Internet and the path to

Future Internet,ž 2011, [Online]. Available: http://www.future-internet.

eu/publications (cit. on pp. 1, 28, XXXVI).

[6] J. Pan, S. Paul, and R. Jain, łA survey of the research on future internet

architectures,ž IEEE Communications Magazine, vol. 49, no. 7, pp. 26ś36,

Jul. 2011, issn: 0163-6804. doi: 10.1109/MCOM.2011.5936152. [Online].

Available: http://dx.doi.org/10.1109/MCOM.2011.5936152 (cit. on pp. 2,

28).

185

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.ericsson.com/res/docs/2014/ericsson-mobility-report-november-2014.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2015.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2015.pdf
http://dx.doi.org/10.1007/978-3-642-20898-0_1
http://dx.doi.org/10.1007/978-3-642-20898-0_1
http://dx.doi.org/10.1007/978-3-642-20898-0_1
http://www.future-internet.eu/publications
http://www.future-internet.eu/publications
http://dx.doi.org/10.1109/MCOM.2011.5936152
http://dx.doi.org/10.1109/MCOM.2011.5936152

Bibliography

[7] IEEE, łIEEE Standard Glossary of Software Engineering Terminology,ž Office,

vol. 121990, no. 1, p. 1, 1990. doi: 10.1109/IEEESTD.1990.101064. [Online].

Available: http://dx.doi.org/10.1109/IEEESTD.1990.101064 (cit. on

pp. 2, XXXVII).

[8] S. Wahle, łGeneric Framework for Heterogeneous Resource Federation.,ž Doc-

toral Dissertation., 2011. [Online]. Available: HTTP://opus4.kobv.de/opus4-

tuberlin/files/3152/wahle_sebastian.pdf (cit. on pp. 2, 42, 183).

[9] S. Wahle, B. Harjoc, K. Campowsky, T. Magedanz, and A. Gavras, łPan-

European Testbed and Experimental Facility Federation - Architecture Reőne-

ment and Implementation,ž International Journal of Communication Networks

and Distributed Systems, vol. 5, no. 1/2, p. 67, 2010, issn: 1754-3916. doi:

10.1504/IJCNDS.2010.033968. [Online]. Available: http://dx.doi.org/10.

1504/IJCNDS.2010.033968 (cit. on pp. 3, XXXVI).

[10] W. Vandenberghe, B. Vermeulen, P. Demeester, A. Willner, S. Papavassiliou, A.

Gavras, A. Quereilhac, Y. Al-Hazmi, F. Lobillo, C. Velayos, A. Vico-oton, and

G. Androulidakis, łArchitecture for the Heterogeneous Federation of Future

Internet Experimentation Facilities,ž in Future Network and Mobile Summit

(FNMS), Lisboa, Portugal: IEEE, 2013, pp. 1ś11, isbn: 978-1-905824-37-3.

[Online]. Available: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?

arnumber=6633558 (cit. on pp. 3, 9, 32, 34, 35, 37, 42, 63ś65, 83, 86).

[11] T. Wauters, B. Vermeulen, W. Vandenberghe, P. Demeester, S. Taylor, L.

Baron, M. Smirnov, Y. Al-Hazmi, A. Willner, M. Sawyer, D. Margery, T.

Rakotoarivelo, F. L. Vilela, D. Stavropoulos, C. Papagianni, F. Francois, C.

Bermudo, A. Gavras, D. Davies, J. Lanza, and S.-Y. Park, łFederation of

Internet Experimentation Facilities: Architecture and Implementation,ž in

European Conference on Networks and Communications, IEEE, Jun. 2014,

pp. 1ś5. [Online]. Available: http://hdl.handle.net/1854/LU-5732987

(cit. on pp. 3, 7, 8, 30, 42, 46, 49, 64, 70, 72, 86, 178).

[12] A. Sanchez, I. Moerman, S. Bouckaert, D. Willkomm, J. Hauer, N. Michailow, G.

Fettweis, L. Dasilva, J. Tallon, and S. Pollin, łTestbed federation: An approach

for experimentation-driven research in cognitive radios and cognitive network-

ing,ž 2011 Future Network & Mobile Summit, pp. 1ś9, 2011. [Online]. Available:

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6095242

(cit. on pp. 3, 34, 46).

[13] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaud-

huri, R. Ricci, and I. Seskar, łGENI: A federated testbed for innovative

network experiments,ž Computer Networks, vol. 61, pp. 5ś23, Mar. 2014,

issn: 13891286. doi: 10.1016/j.bjp.2013.12.037. [Online]. Available:

186

http://dx.doi.org/10.1109/IEEESTD.1990.101064
http://dx.doi.org/10.1109/IEEESTD.1990.101064
HTTP://opus4.kobv.de/opus4-tuberlin/files/3152/wahle_sebastian.pdf
HTTP://opus4.kobv.de/opus4-tuberlin/files/3152/wahle_sebastian.pdf
http://dx.doi.org/10.1504/IJCNDS.2010.033968
http://dx.doi.org/10.1504/IJCNDS.2010.033968
http://dx.doi.org/10.1504/IJCNDS.2010.033968
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6633558
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6633558
http://hdl.handle.net/1854/LU-5732987
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6095242
http://dx.doi.org/10.1016/j.bjp.2013.12.037

Bibliography

http://dx.doi.org/10.1016/j.bjp.2013.12.037 (cit. on pp. 2, 3, 29, 34,

46, 179).

[14] R. Ricci, G. Wong, L. Stoller, and J. Duerig, łAn architecture for international

federation of network testbeds,ž IEICE Transactions on Communications, vol.

E96-B, no. 1, pp. 2ś9, 2013. doi: 10.1587/transcom.E96.B.2. [Online].

Available: http://doi.org/10.1587/transcom.E96.B.2 (cit. on pp. 3, 9).

[15] N. M. Calcavecchia, A. Celesti, and E. Di Nitto, łUnderstanding Decentralized

and Dynamic Brokerage in Federated Cloud Environments,ž in Achieving

Federated and Self-Manageable Cloud Infrastructures, IGI Global, 2012, pp. 36ś

56. doi: 10.4018/978-1-4666-1631-8.ch003. [Online]. Available: http:

//dx.doi.org/10.4018/978-1-4666-1631-8.ch003 (cit. on p. 3).

[16] A. Celesti, F. Tusa, M. Villari, and A. Puliaőto, łThree-Phase Cross-Cloud

Federation Model: The Cloud SSO Authentication,ž in 2010 Second Interna-

tional Conference on Advances in Future Internet, IEEE, Jul. 2010, pp. 94ś101,

isbn: 978-1-4244-7528-5. doi: 10.1109/AFIN.2010.23. [Online]. Available:

http://dx.doi.org/10.1109/AFIN.2010.23 (cit. on pp. 3, 40).

[17] A. C. Hume, Y. Al-Hazmi, B. Belter, K. Campowsky, L. M. Carril, G. Carrozzo,

V. Engen, D. García-Pérez, J. Jofre Ponsatí, R. Kűbert, Y. Liang, C. Rohr,

and G. Van Seghbroeck, łBonFIRE: A Multi-cloud Test Facility for Internet of

Services Experimentation,ž in 8th International ICST Conference, TridentCom

2012, vol. 44 LNICST, 2012, pp. 81ś96. doi: 10.1007/978-3-642-35576-

9_11. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-35576-

9_11 (cit. on pp. 3, 7, 30, 31, 34, 49, 63, 64, 67, 68, 71, 72, 138, 177).

[18] D. Bernstein and Y. Demchenko, łThe IEEE Intercloud Testbed ś Creating the

Global Cloud of Clouds,ž in 2013 IEEE 5th International Conference on Cloud

Computing Technology and Science, vol. 2, IEEE, Dec. 2013, pp. 45ś50, isbn:

978-0-7695-5095-4. doi: 10.1109/CloudCom.2013.102. [Online]. Available:

http://dx.doi.org/10.1109/CloudCom.2013.102 (cit. on pp. 3, 41).

[19] T. Zahariadis, A. Papadakis, F. Alvarez, J. Gonzalez, F. Lopez, F. Facca, and

Y. Al-Hazmi, łFIWARE Lab: Managing Resources and Services in a Cloud

Federation Supporting Future Internet Applications,ž in 2014 IEEE/ACM

7th International Conference on Utility and Cloud Computing, London, UK:

IEEE, Dec. 2014, pp. 792ś799, isbn: 978-1-4799-7881-6. doi: 10.1109/UCC.

2014.129. [Online]. Available: http://dx.doi.org/10.1109/UCC.2014.129

(cit. on pp. 3, 8, 33, 46, 63, 64, 143, 144, 178).

[20] S. Paul, J. Pan, and R. Jain, łArchitectures for the future networks and the

next generation Internet: A survey,ž Computer Communications, vol. 34, no.

1, pp. 2ś42, 2011. doi: 10.1016/j.comcom.2010.08.001. [Online]. Available:

http://dx.doi.org/10.1016/j.comcom.2010.08.001 (cit. on p. 3).

187

http://dx.doi.org/10.1016/j.bjp.2013.12.037
http://dx.doi.org/10.1587/transcom.E96.B.2
http://doi.org/10.1587/transcom.E96.B.2
http://dx.doi.org/10.4018/978-1-4666-1631-8.ch003
http://dx.doi.org/10.4018/978-1-4666-1631-8.ch003
http://dx.doi.org/10.4018/978-1-4666-1631-8.ch003
http://dx.doi.org/10.1109/AFIN.2010.23
http://dx.doi.org/10.1109/AFIN.2010.23
http://dx.doi.org/10.1007/978-3-642-35576-9_11
http://dx.doi.org/10.1007/978-3-642-35576-9_11
http://dx.doi.org/10.1007/978-3-642-35576-9_11
http://dx.doi.org/10.1007/978-3-642-35576-9_11
http://dx.doi.org/10.1109/CloudCom.2013.102
http://dx.doi.org/10.1109/CloudCom.2013.102
http://dx.doi.org/10.1109/UCC.2014.129
http://dx.doi.org/10.1109/UCC.2014.129
http://dx.doi.org/10.1109/UCC.2014.129
http://dx.doi.org/10.1016/j.comcom.2010.08.001
http://dx.doi.org/10.1016/j.comcom.2010.08.001

Bibliography

[21] A. Celesti, F. Tusa, and M. Villari, łToward Cloud Federation,ž in Achieving

Federated and Self-Manageable Cloud Infrastructures, IGI Global, 2012, pp. 1ś

17. doi: 10.4018/978-1-4666-1631-8.ch001. [Online]. Available: http:

//dx.doi.org/10.4018/978-1-4666-1631-8.ch001 (cit. on pp. 3, 40, 72).

[22] S. Keranidis, D. Giatsios, T. Korakis, I. Koutsopoulos, L. Tassiulas, T. Rako-

toarivelo, and T. Parmentelat, łExperimentation in Heterogeneous European

Testbeds through the Onelab Facility: The Case of PlanetLab Federation

with the Wireless NITOS Testbed,ž in TRIDENTCOM2012, Springer, 2012,

pp. 338ś354. doi: 10.1007/978-3-642-35576-9_27. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-35576-9_27 (cit. on pp. 3, 72).

[23] T. DeMarco, Controlling Software Projects - Management, Measurement &

Estimates. Prentice Hall PTR Upper Saddle River, NJ, USA, 1986, isbn:

0131717111. [Online]. Available: http://dl.acm.org/citation.cfm?id=

1096472 (cit. on p. 3).

[24] C. Gong, J. Liu, Q. Zhang, H. Chen, and Z. Gong, łThe characteristics of

cloud computing,ž in Proceedings of the International Conference on Parallel

Processing Workshops, 2010, pp. 275ś279. doi: 10.1109/ICPPW.2010.45.

[Online]. Available: http://dx.doi.org/10.1109/ICPPW.2010.45 (cit. on

p. 4).

[25] OGC, łInformation Technology Infrastructure Library (ITIL) V3 Glossary of

Terms and Deőnitions, Oice of Government Commerce (now UK Cabinet

Oice),ž 2007, [Online]. Available: http://www.best-management-practice.

com/gempdf/itil_glossary_v3_1_24.pdf (cit. on p. 4).

[26] J. Ward and A. Barker, łObserving the clouds: a survey and taxonomy of cloud

monitoring,ž Journal of Cloud Computing: Advances, Systems and Applications,

vol. 3, no. 1, p. 24, 2014, issn: 2192-113X. doi: 10.1186/s13677-014-

0024-2. [Online]. Available: http://www.journalofcloudcomputing.com/

content/3/1/24 (cit. on pp. 5, 46, 63, 68ś70, 72).

[27] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and T. Lynn,

A survey of Cloud monitoring tools: Taxonomy, capabilities and objectives,

2014. doi: 10 . 1016 / j . jpdc . 2014 . 06 . 007. [Online]. Available: http :

//dx.doi.org/10.1016/j.jpdc.2014.06.007 (cit. on pp. 5, 46, 63, 68ś71).

[28] F. Alvarez, J. Gonzalez, F. M. Facca, and S. Cretti, łTechnical and functional

solutions to build a community cloud for future Internet services from an

Infrastructure Owner Perspective,ž in Workshop on Test beds for the Networks

& Communications community (EUCNC), 2014 (cit. on pp. 7, 8, 49, 72).

188

http://dx.doi.org/10.4018/978-1-4666-1631-8.ch001
http://dx.doi.org/10.4018/978-1-4666-1631-8.ch001
http://dx.doi.org/10.4018/978-1-4666-1631-8.ch001
http://dx.doi.org/10.1007/978-3-642-35576-9_27
http://dx.doi.org/10.1007/978-3-642-35576-9_27
http://dl.acm.org/citation.cfm?id=1096472
http://dl.acm.org/citation.cfm?id=1096472
http://dx.doi.org/10.1109/ICPPW.2010.45
http://www.best-management-practice.com/gempdf/itil_glossary_v3_1_24.pdf
http://www.best-management-practice.com/gempdf/itil_glossary_v3_1_24.pdf
http://dx.doi.org/10.1186/s13677-014-0024-2
http://dx.doi.org/10.1186/s13677-014-0024-2
http://www.journalofcloudcomputing.com/content/3/1/24
http://www.journalofcloudcomputing.com/content/3/1/24
http://dx.doi.org/10.1016/j.jpdc.2014.06.007
http://dx.doi.org/10.1016/j.jpdc.2014.06.007
http://dx.doi.org/10.1016/j.jpdc.2014.06.007

Bibliography

[29] P. Calyam, C. Dovrolis, L. Jörgenson, R. Kettimuthu, B. Tierney, and J.

Zurawski, łMonitoring and troubleshooting multi-domain networks using mea-

surement federations [Guest Editorial],ž IEEE Communications Magazine, vol.

51, no. 11, pp. 53ś54, Nov. 2013, issn: 0163-6804. doi: 10.1109/MCOM.2013.

6658652. [Online]. Available: http://dx.doi.org/10.1109/MCOM.2013.

6658652 (cit. on pp. 7, 45, 49, 72).

[30] łElsevier Future Generation Computer Systems Special Issue on łCloud Mon-

itoring Systemsž,ž 2012, [Online]. Available: http://www.elsevierscitech.

com/lmfile/otherformat/1522_Future.pdf (cit. on pp. 7, 49, 72, 77).

[31] G. Aceto, A. Botta, W. de Donato, and A. Pescapè, łCloud monitoring: A

survey,ž Computer Networks, vol. 57, no. 9, pp. 2093ś2115, Jun. 2013, issn:

13891286. doi: 10 . 1016 / j . comnet . 2013 . 04 . 001. [Online]. Available:

http://dx.doi.org/10.1016/j.comnet.2013.04.001 (cit. on pp. 7, 46, 49,

69, 70, 72).

[32] C. Zeginis, K. Kritikos, P. Garefalakis, K. Konsolaki, K. Magoutis, and D.

Plexousakis, łTowards Cross-Layer Monitoring of Multi-Cloud Service-Based

Applications,ž in The Second European Conference on Service-Oriented and

Cloud Computing (ESOCC), vol. 8135, Springer LNCS, 2013, pp. 188ś195.

doi: 10.1007/978-3-642-40651-5_16. [Online]. Available: http://dx.doi.

org/10.1007/978-3-642-40651-5_16 (cit. on pp. 7, 8, 45).

[33] A. P. Sheth and J. A. Larson, łFederated Database Systems for Managing

Distributed, Heterogeneous, and Autonomous Databases,ž ACM Computing

Surveys, vol. 22, no. 3, pp. 183ś236, 1990, issn: 03600300. doi: 10.1145/

96602.96604. [Online]. Available: http://dx.doi.org/10.1145/96602.

96604 (cit. on p. 7).

[34] A. Salvador, J. E. L. de Vergara, G. Tropea, N. Blefari-Melazzi, Á. Ferreiro,

and Á. Katsu, łA Semantically Distributed Approach to Map IP Traic Mea-

surements to a Standardized Ontology,ž Int. Journal of Computer Networks

& Communications, vol. 2, no. 1, pp. 13ś31, 2010. doi: 10.1.1.158.9560.

[Online]. Available: http://airccse.org/journal/cnc/0110s02.pdf (cit. on

pp. 8, 60, 107, 180).

[35] J. van der Ham, J. Stéger, S. Laki, Y. Kryftis, V. Maglaris, and C. de Laat,

łThe NOVI information models,ž Future Generation Computer Systems, vol. 42,

pp. 64ś73, 2015, issn: 0167-739X. doi: 10.1016/j.future.2013.12.017.

[Online]. Available: http://dx.doi.org/10.1016/j.future.2013.12.017

(cit. on pp. 8, 48, 60, 181).

189

http://dx.doi.org/10.1109/MCOM.2013.6658652
http://dx.doi.org/10.1109/MCOM.2013.6658652
http://dx.doi.org/10.1109/MCOM.2013.6658652
http://dx.doi.org/10.1109/MCOM.2013.6658652
http://www.elsevierscitech.com/lmfile/otherformat/1522_Future.pdf
http://www.elsevierscitech.com/lmfile/otherformat/1522_Future.pdf
http://dx.doi.org/10.1016/j.comnet.2013.04.001
http://dx.doi.org/10.1016/j.comnet.2013.04.001
http://dx.doi.org/10.1007/978-3-642-40651-5_16
http://dx.doi.org/10.1007/978-3-642-40651-5_16
http://dx.doi.org/10.1007/978-3-642-40651-5_16
http://dx.doi.org/10.1145/96602.96604
http://dx.doi.org/10.1145/96602.96604
http://dx.doi.org/10.1145/96602.96604
http://dx.doi.org/10.1145/96602.96604
http://dx.doi.org/10.1.1.158.9560
http://airccse.org/journal/cnc/0110s02.pdf
http://dx.doi.org/10.1016/j.future.2013.12.017
http://dx.doi.org/10.1016/j.future.2013.12.017

Bibliography

[36] ETSI-MOI-Group Speciőcation, łEuropean Telecommunications Standards

Institute (ETSI) Industry Group MOI (Measurement Ontology for IP traic),ž

2013. [Online]. Available: http://www.etsi.org/deliver/etsi_gs/moi/

001_099/003/01.01.01_60/gs_moi003v010101p.pdf (cit. on pp. 8, 60, 103).

[37] E. Boschi, S. D’Antonio, P. Malone, and C. Schmoll, łINTERMON: An Ar-

chitecture for Inter-domain Monitoring, Modelling and Simulation,ž in 4th

International IFIP-TC6 Networking Conference, 2005, pp. 1397ś1400. doi:

10.1007/11422778_123. [Online]. Available: http://dx.doi.org/10.1007/

11422778_123 (cit. on pp. 8, 45).

[38] B. L. Tierney, J. Boote, E. Boyd, A. Brown, M. Grigoriev, J. Metzger, M. Swany,

M. Zekauskas, and J. Zurawski, łInstantiating a Global Network Measurement

Framework,ž Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA,

Tech. Rep., Dec. 2008. doi: 10.2172/946807. [Online]. Available: http:

//dx.doi.org/10.2172/946807 (cit. on pp. 8, 49, 182).

[39] A. N. Toosi, R. N. Calheiros, and R. Buyya, łInterconnected Cloud Computing

Environments: Challenges, Taxonomy, and Survey,ž ACM Computing Surveys

(CSUR), vol. 47, no. 1, pp. 7.1ś7.47, 2014. doi: 10.1145/2593512. [Online].

Available: http://dx.doi.org/10.1145/2593512 (cit. on pp. 9, 10, 35, 69).

[40] H. H. Aberra, łWhat is SAP Business Blueprint?ž In Handbook of Research

on Enterprise Systems, IGI Global, 2009, pp. 19ś31. doi: 10.4018/978-1-

59904-859-8.ch002. [Online]. Available: http://dx.doi.org/10.4018/978-

1-59904-859-8.ch002 (cit. on p. 18).

[41] OASIS, łReference Model for Service Oriented Architecture 1.0,ž Organization

for the Advancement of Structured Information Standards (OASIS) Std. 1.0,

2006. [Online]. Available: http://docs.oasis-open.org/soa-rm/v1.0/soa-

rm.pdf (cit. on p. 18).

[42] W.-T. Tsai, X. Sun, and J. Balasooriya, łService-Oriented Cloud Computing

Architecture,ž in 2010 Seventh International Conference on Information Tech-

nology: New Generations, IEEE, 2010, pp. 684ś689, isbn: 978-1-4244-6270-4.

doi: 10.1109/ITNG.2010.214. [Online]. Available: http://dx.doi.org/10.

1109/ITNG.2010.214 (cit. on p. 18).

[43] G. Feuerlicht, łNext Generation SOA: Can SOA Survive Cloud Computing?ž

In Advances in Intelligent and Soft Computing, vol. 67 AISC, 2010, pp. 19ś29,

isbn: 978-3-642-10686-6. doi: 10.1007/978-3-642-10687-3_2. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-10687-3_2 (cit. on

p. 18).

190

http://www.etsi.org/deliver/etsi_gs/moi/001_099/003/01.01.01_60/gs_moi003v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/moi/001_099/003/01.01.01_60/gs_moi003v010101p.pdf
http://dx.doi.org/10.1007/11422778_123
http://dx.doi.org/10.1007/11422778_123
http://dx.doi.org/10.2172/946807
http://dx.doi.org/10.2172/946807
http://dx.doi.org/10.1145/2593512
http://dx.doi.org/10.1145/2593512
http://dx.doi.org/10.4018/978-1-59904-859-8.ch002
http://dx.doi.org/10.4018/978-1-59904-859-8.ch002
http://dx.doi.org/10.4018/978-1-59904-859-8.ch002
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://dx.doi.org/10.1109/ITNG.2010.214
http://dx.doi.org/10.1109/ITNG.2010.214
http://dx.doi.org/10.1109/ITNG.2010.214
http://dx.doi.org/10.1007/978-3-642-10687-3_2

Bibliography

[44] G. Raines, łCloud Computing and SOA,ž Systems Engineering at MITRE,

Service-oriented architecture (SOA) series, 2009. [Online]. Available: http:

//www.mitre.org/sites/default/files/pdf/09_0743.pdf (cit. on p. 18).

[45] T. Magedanz, F. Schreiner, and S. Wahle, łService-oriented testbed infras-

tructures and cross-domain federation for future internet research,ž in 2009

IFIP/IEEE International Symposium on Integrated Network Management-

Workshops, IM 2009, 2009, pp. 101ś106. doi: 10.1109/INMW.2009.5195944.

[Online]. Available: http://dx.doi.org/10.1109/INMW.2009.5195944

(cit. on pp. 19, 34).

[46] N. Blum, T. Magedanz, F. Schreiner, and S. Wahle, łService Oriented Testbed

Infrastructures: a Cross-Layer Approach for NGNs,ž Mobile Networks and

Applications, vol. 15, no. 3, pp. 413ś424, Jun. 2010, issn: 1383-469X. doi:

10.1007/s11036-009-0201-6. [Online]. Available: http://dx.doi.org/10.

1007/s11036-009-0201-6 (cit. on p. 19).

[47] D. Bernstein and V. Deepak, łDraft Standard for Intercloud Interoperability

and Federation (SIIF),ž IEEE P2303, Tech. Rep., 2014. [Online]. Available:

https://standards.ieee.org/develop/project/2302.html (cit. on pp. 19,

34, 41, 183).

[48] A. Shawish and M. Salama, łCloud Computing: Paradigms and Technologies,ž

in Studies in Computational Intelligence, vol. 495, 2014, pp. 39ś67. doi:

10.1007/978-3-642-35016-0_2. [Online]. Available: http://dx.doi.org/

10.1007/978-3-642-35016-0_2 (cit. on p. 20).

[49] R.-A. C. Nguemaleu and L. Montheu, Roadmap to Greener Computing. Chap-

man and Hall/CRC, pp. 1ś246, isbn: 9781466506848 (cit. on p. 21).

[50] P. Mell and T. Grance, łThe NIST deőnition of cloud computing,ž NIST,

Tech. Rep., 2011. [Online]. Available: http://csrc.nist.gov/publications/

nistpubs/800-145/SP800-145.pdf (cit. on pp. 19, 22, 181).

[51] S. Nanda and T. Chiueh, łA Survey on Virtualization Technologies,ž Science,

vol. 179, no. Vm, U. A. S. Brook, Ed., pp. 1ś42, 2005. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.371

(cit. on pp. 23, 24).

[52] J. Carapinha and J. Jiménez, łNetwork virtualization: a view from the bottom,ž

in Proceedings of the 1st ACM workshop on Virtualized infrastructure systems

and architectures - VISA ’09, ser. VISA ’09, New York, New York, USA: ACM

Press, 2009, p. 73, isbn: 9781605585956. doi: 10.1145/1592648.1592660.

[Online]. Available: http://dx.doi.org/10.1145/1592648.1592660 (cit. on

p. 23).

191

http://www.mitre.org/sites/default/files/pdf/09_0743.pdf
http://www.mitre.org/sites/default/files/pdf/09_0743.pdf
http://dx.doi.org/10.1109/INMW.2009.5195944
http://dx.doi.org/10.1109/INMW.2009.5195944
http://dx.doi.org/10.1007/s11036-009-0201-6
http://dx.doi.org/10.1007/s11036-009-0201-6
http://dx.doi.org/10.1007/s11036-009-0201-6
https://standards.ieee.org/develop/project/2302.html
http://dx.doi.org/10.1007/978-3-642-35016-0_2
http://dx.doi.org/10.1007/978-3-642-35016-0_2
http://dx.doi.org/10.1007/978-3-642-35016-0_2
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.371
http://dx.doi.org/10.1145/1592648.1592660
http://dx.doi.org/10.1145/1592648.1592660

Bibliography

[53] A. Berl, A. Fischer, and H. de Meer, łUsing System Virtualization to Create

Virtualized Networks,ž Electronic Communications of the EASST, vol. 17,

pp. 1ś12, 2009. [Online]. Available: http://www.net.fim.uni-passau.de/

pdf/Berl2009e.pdf (cit. on p. 23).

[54] A. Galis, S. Clayman, A. Fischer, A. Paler, Y. Al-Hazmi, H. De Meer, A.

Cheniour, O. Mornard, J. P. Gelas, L. Lefevre, J. R. Loyola, A. Astorga, J.

Serrat, and S. Davy, łFuture Internet Management Platforms for Network

Virtualisation and Service Clouds,ž in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), vol. 6481 LNCS, 2010, pp. 235ś237. doi: 10.1007/978-3-

642-17694-4_39. [Online]. Available: http://dx.doi.org/10.1007/978-3-

642-17694-4_39 (cit. on p. 23).

[55] S. Sargento, R. Matos, K. A. Hummel, A. Hess, S. Toumpis, Y. Tselekounis,

G. D. Stamoulis, Y. Al-Hazmi, M. Ali, and H. de Meer, łMulti-Access Communi-

cations in Wireless Mesh Networks by Virtualization,ž in Wireless Multi-Access

Environments and Quality of Service Provisioning, IGI Global, 2011, pp. 97ś

138, isbn: 9781466600171. doi: 10.4018/978-1-4666-0017-1.ch005. [On-

line]. Available: http://dx.doi.org/10.4018/978-1-4666-0017-1.ch005

(cit. on pp. 23, 45, 63).

[56] Y. Al-Hazmi and H. de Meer, łVirtualization of 802.11 Interfaces for Wireless

Mesh Networks,ž in 2011 Eighth International Conference on Wireless On-

Demand Network Systems and Services, IEEE, Jan. 2011, pp. 44ś51, isbn:

978-1-61284-189-2. doi: 10.1109/WONS.2011.5720199. [Online]. Available:

http://dx.doi.org/10.1109/WONS.2011.5720199 (cit. on pp. 23, 45).

[57] H. Coskun, I. Schieferdecker, and Y. Al-Hazmi, łVirtual WLAN: Going beyond

Virtual Access Points,ž Electronic Communications of the EASST, vol. 25, no. 2,

pp. 32ś38, 2009, issn: 1863-2122. [Online]. Available: http://journal.ub.tu-

berlin.de/eceasst/article/view/226 (cit. on p. 23).

[58] H. Basilier, M. Darula, and J. Wilke, łVirtualizing network services - the

telecom cloud,ž Ericsson Review, The communications Technology Journal,

pp. 1ś9, 2014, issn: 0014-0171. [Online]. Available: http://www.ericsson.

com/res/thecompany/docs/publications/ericsson_review/2014/er-

telecom-cloud.pdf (cit. on p. 23).

[59] M. Pathirage, S. Perera, I. Kumara, and S. Weerawarana, łA Multi-tenant

Architecture for Business Process Executions,ž in 2011 IEEE International

Conference on Web Services, IEEE, Jul. 2011, pp. 121ś128, isbn: 978-1-4577-

0842-8. doi: 10.1109/ICWS.2011.99. [Online]. Available: http://dx.doi.

org/10.1109/ICWS.2011.99 (cit. on p. 26).

192

http://www.net.fim.uni-passau.de/pdf/Berl2009e.pdf
http://www.net.fim.uni-passau.de/pdf/Berl2009e.pdf
http://dx.doi.org/10.1007/978-3-642-17694-4_39
http://dx.doi.org/10.1007/978-3-642-17694-4_39
http://dx.doi.org/10.1007/978-3-642-17694-4_39
http://dx.doi.org/10.1007/978-3-642-17694-4_39
http://dx.doi.org/10.4018/978-1-4666-0017-1.ch005
http://dx.doi.org/10.4018/978-1-4666-0017-1.ch005
http://dx.doi.org/10.1109/WONS.2011.5720199
http://dx.doi.org/10.1109/WONS.2011.5720199
http://journal.ub.tu-berlin.de/eceasst/article/view/226
http://journal.ub.tu-berlin.de/eceasst/article/view/226
http://www.ericsson.com/res/thecompany/docs/publications/ericsson_review/2014/er-telecom-cloud.pdf
http://www.ericsson.com/res/thecompany/docs/publications/ericsson_review/2014/er-telecom-cloud.pdf
http://www.ericsson.com/res/thecompany/docs/publications/ericsson_review/2014/er-telecom-cloud.pdf
http://dx.doi.org/10.1109/ICWS.2011.99
http://dx.doi.org/10.1109/ICWS.2011.99
http://dx.doi.org/10.1109/ICWS.2011.99

Bibliography

[60] R. Krebs, C. Momm, and S. Kounev, łArchitectural Concerns in Multi-

tenant SaaS Applications,ž CLOSER, pp. 426ś431, 2012. [Online]. Available:

https://sdqweb.ipd.kit.edu/publications/pdfs/KrMoKo2012-closer-

multitenant-sass.pdf (cit. on p. 26).

[61] S. Strauch, V. Andrikopoulos, S. Gómez Sáez, and F. Leymann, łESBˆMT: A

Multi-tenant Aware Enterprise Service Bus,ž International Journal of Next-

Generation Computing, vol. 4, no. 3, pp. 230ś249, 2013 (cit. on p. 26).

[62] G. Katsaros, M. Menzel, A. Lenk, J. Rake-Revelant, R. Skipp, and J. Eberhardt,

łCloud Application Portability with TOSCA, Chef and Openstack,ž in 2014

IEEE International Conference on Cloud Engineering (IC2E’14), 2014, pp. 295ś

302. doi: 10.1109/IC2E.2014.27. [Online]. Available: http://dx.doi.org/

10.1109/IC2E.2014.27 (cit. on p. 27).

[63] A. Ciufoletti, łA Simple and Generic Interface for a Cloud Monitoring Service,ž

in Proceedings of the 4th International Conference on Cloud Computing and

Services Science, SCITEPRESS - Science, 2014, pp. 143ś150, isbn: 978-

989-758-019-2. doi: 10.5220/0004940901430150. [Online]. Available: http:

//dx.doi.org/10.5220/0004940901430150 (cit. on p. 27).

[64] Y. Al-Hazmi, K. Campowsky, and T. Magedanz, łA Monitoring System for

Federated Clouds,ž in 2012 IEEE 1st International Conference on Cloud

Networking (CLOUDNET), IEEE, Nov. 2012, pp. 68ś74, isbn: 978-1-4673-

2798-5. doi: 10.1109/CloudNet.2012.6483657. [Online]. Available: http:

//dx.doi.org/10.1109/CloudNet.2012.6483657 (cit. on pp. 27, 40, 45, 63,

64, 69, 78, 82, 112, 115, 123, 136, 138, 139).

[65] A. Gavras, A. Karila, S. Fdida, M. May, and M. Potts, łFuture Internet Research

and Experimentation: The FIRE Initiative,ž ACM SIGCOMM Computer

Communication Review, vol. 37, no. 3, pp. 89ś92, 2007, issn: 0146-4833. doi:

10.1145/1273445.1273460. [Online]. Available: http://doi.acm.org/10.

1145/1273445.1273460 (cit. on pp. 2, 28, 30, 178, XXXVI).

[66] P. Stuckmann and R. Zimmermann, łEuropean Research on Future Internet

Designž,ž IEEE Wireless Communications Magazine, vol. 16, no. 5, pp. 14ś

22, 2009. doi: 10 . 1109 / MWC . 2009 . 5300298. [Online]. Available: http :

//dx.doi.org/10.1109/MWC.2009.5300298 (cit. on pp. 28, XXXVI).

[67] T. Magedanz and S. Wahle, łControl framework design for Future Internet

testbeds,ž e & i Elektrotechnik und Informationstechnik, vol. 126, pp. 274ś

279, 2009, issn: 0932-383X. doi: 10.1007/s00502-009-0655-z. [Online].

Available: http://dx.doi.org/10.1007/s00502-009-0655-z (cit. on p. 29).

193

https://sdqweb.ipd.kit.edu/publications/pdfs/KrMoKo2012-closer-multitenant-sass.pdf
https://sdqweb.ipd.kit.edu/publications/pdfs/KrMoKo2012-closer-multitenant-sass.pdf
http://dx.doi.org/10.1109/IC2E.2014.27
http://dx.doi.org/10.1109/IC2E.2014.27
http://dx.doi.org/10.1109/IC2E.2014.27
http://dx.doi.org/10.5220/0004940901430150
http://dx.doi.org/10.5220/0004940901430150
http://dx.doi.org/10.5220/0004940901430150
http://dx.doi.org/10.1109/CloudNet.2012.6483657
http://dx.doi.org/10.1109/CloudNet.2012.6483657
http://dx.doi.org/10.1109/CloudNet.2012.6483657
http://dx.doi.org/10.1145/1273445.1273460
http://doi.acm.org/10.1145/1273445.1273460
http://doi.acm.org/10.1145/1273445.1273460
http://dx.doi.org/10.1109/MWC.2009.5300298
http://dx.doi.org/10.1109/MWC.2009.5300298
http://dx.doi.org/10.1109/MWC.2009.5300298
http://dx.doi.org/10.1007/s00502-009-0655-z
http://dx.doi.org/10.1007/s00502-009-0655-z

Bibliography

[68] D. Kim, J. Kim, G. Wang, J.-H. Park, and S.-H. Kim, łK-GENI testbed deploy-

ment and federated meta operations experiment over GENI and KREONET,ž

Computer Networks, vol. 61, pp. 39ś50, Mar. 2014, issn: 13891286. doi:

10.1016/j.bjp.2013.11.016. [Online]. Available: http://dx.doi.org/10.

1016/j.bjp.2013.11.016 (cit. on p. 29).

[69] A. Quereilhac, A. Willner, Y. Al-Hazmi, C. Tranoris, P. Becue, V. Sercu, J.

Auge, T. Rakotoarivelo, A. Gulyas, G. Biczok, and P. Chrysa, łOpenLab: Ex-

perimental plane ś Experiment Controllers,ž European FP7 Project OpenLabs,

Tech. Rep., 2012, pp. 1ś46. [Online]. Available: http://www.ict-openlab.

eu/fileadmin/documents/public_deliverables/OpenLab_Deliverable_

D2_1.pdf (cit. on p. 31).

[70] Y. Al-Hazmi, A. Willner, B. Pickering, A. Alloush, T. Magedanz, and S. Cretti,

łCreating a Sustainable Federation of Cloud-Based Infrastructures for the

Future Internet Ð The FIWARE Approach,ž in 10th International Conference

on Testbeds and Research Infrastructures for the Development of Networks

& Communities (TRIDENTCOM 2015), Vancouver, Canada: ACM, 2015,

pp. 1ś10. doi: 10.4108/icst.tridentcom.2015.259747. [Online]. Available:

http://dx.doi.org/10.4108/icst.tridentcom.2015.259747 (cit. on

pp. 33ś36, 38, 41, 65, 66, 86, 142ś145, 184).

[71] M. Serrano, S. Davy, M. Johnsson, W. Donnelly, and A. Galis, łReview

and Designs of Federated Management in Future Internet Architectures,ž

in International Journal of Network Management, 6, vol. 22, 2011, pp. 51ś

66. doi: 10 . 1007 / 978 - 3 - 642 - 20898 - 0 _ 4. [Online]. Available: http :

//dx.doi.org/10.1007/978-3-642-20898-0_4 (cit. on p. 34).

[72] A. Celesti, F. Tusa, M. Villari, and A. Puliaőto, łHow to Enhance Cloud

Architectures to Enable Cross-Federation,ž in 2010 IEEE 3rd International

Conference on Cloud Computing, IEEE, Jul. 2010, pp. 337ś345, isbn: 978-

1-4244-8207-8. doi: 10.1109/CLOUD.2010.46. [Online]. Available: http:

//dx.doi.org/10.1109/CLOUD.2010.46 (cit. on p. 34).

[73] O. Appleton, łD3.1: Business models for Federated e-Infrastructures,ž FedSM,

Tech. Rep., 2012. [Online]. Available: http://fitsm.itemo.org/sites/

default/files/FedSM-D3.1-Business_models-v1.0.pdf (cit. on pp. 34ś36,

38, 178).

[74] M. Serrano, S. Davy, M. Johnsson, W. Donnelly, and A. Galis, łReview

and Designs of Federated Management in Future Internet Architectures,ž

in The Future Internet - Future Internet Assembly 2011: Achievements and

Technological Promises, 2011, pp. 51ś66. doi: 10.1007/978-3-642-20898-

0_4. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-20898-

0_4 (cit. on p. 34).

194

http://dx.doi.org/10.1016/j.bjp.2013.11.016
http://dx.doi.org/10.1016/j.bjp.2013.11.016
http://dx.doi.org/10.1016/j.bjp.2013.11.016
http://www.ict-openlab.eu/fileadmin/documents/public_deliverables/OpenLab_Deliverable_D2_1.pdf
http://www.ict-openlab.eu/fileadmin/documents/public_deliverables/OpenLab_Deliverable_D2_1.pdf
http://www.ict-openlab.eu/fileadmin/documents/public_deliverables/OpenLab_Deliverable_D2_1.pdf
http://dx.doi.org/10.4108/icst.tridentcom.2015.259747
http://dx.doi.org/10.4108/icst.tridentcom.2015.259747
http://dx.doi.org/10.1007/978-3-642-20898-0_4
http://dx.doi.org/10.1007/978-3-642-20898-0_4
http://dx.doi.org/10.1007/978-3-642-20898-0_4
http://dx.doi.org/10.1109/CLOUD.2010.46
http://dx.doi.org/10.1109/CLOUD.2010.46
http://dx.doi.org/10.1109/CLOUD.2010.46
http://fitsm.itemo.org/sites/default/files/FedSM-D3.1-Business_models-v1.0.pdf
http://fitsm.itemo.org/sites/default/files/FedSM-D3.1-Business_models-v1.0.pdf
http://dx.doi.org/10.1007/978-3-642-20898-0_4
http://dx.doi.org/10.1007/978-3-642-20898-0_4
http://dx.doi.org/10.1007/978-3-642-20898-0_4
http://dx.doi.org/10.1007/978-3-642-20898-0_4

Bibliography

[75] A. Gavras, T. Magedanz, S. Wahle, H. Hrasnica, S. Avéssta, and J.-C. Im-

beaux, łDeliverable D2.1: Legal Framework (Version 2),ž Panlab, Tech. Rep.,

2008, pp. 1ś34. [Online]. Available: http://www.panlab.net/fileadmin/

documents/Deliverables/Panlab- D2.1- Legal- Framework- V2.0.pdf

(cit. on p. 35).

[76] J.-C. Imbeaux, A. Gavras, H. Hrasnica, S. Wahle, O. Martinot, and S. Avéssta,

łDeliverable D2.1: Vision for a Pan-European Laboratory (Version 2),ž Panlab,

Tech. Rep., 2007, pp. 1ś52. [Online]. Available: http://www.panlab.net/

fileadmin/documents/Deliverables/Panlab- D1.2- Vision- for- PEL-

V2.0.pdf (cit. on p. 35).

[77] J. Van Ooteghem, S. Taylor, P. Grace, F. Lobillo, M. Smirnov, and P. Demeester,

łSustaining a federation of Future Internet experimental facilities,ž International

Telecommunications Society (ITS) conference, 2014. [Online]. Available: http:

//hdl.handle.net/10419/101436 (cit. on pp. 35, 36, 38, 43, 66, 70, 71).

[78] J. Van Ooteghem, B. Naudts, W. Vandenberghe, B. Vermeulen, S. Bouckaert,

S. Taylor, P. Grace, F. Lobillo, J. Martrat, L. Muñoz, P. Sotres, and M.

Sawyer, łDeliverable D2.3: First Sustainability Plan,ž Fed4FIRE, Tech. Rep.,

2013. [Online]. Available: http://www.fed4fire.eu/fileadmin/documents/

public_deliverables/D2-3_Fed4FIRE_First_sustainability_plan.pdf

(cit. on p. 38).

[79] M. Heikkurinen, O. Appleton, L. Urciuoli, and J. Hintsa, łFederated ICT for

global supply chains: IT service management in cross-border trade,ž in 2013

IFIP/IEEE International Symposium on Integrated Network Management, IM

2013, ser. 2013 IFIP/IEEE International Symposium on Integrated Network

Management, IM 2013, 2013, pp. 1268ś1275, isbn: 978-1-4673-5229-1. [On-

line]. Available: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?

arnumber=6573176 (cit. on p. 39).

[80] D. García-Pérez, J. Á. Lorenzo del Castillo, Y. Al-Hazmi, J. Martrat, K. Kavous-

sanakis, A. C. Hume, C. V. López, G. Landi, T. Wauters, M. Gienger, and D.

Margery, łCloud and Network Facilities Federation in BonFIRE,ž in Federative

and interoperable cloud infrastructures, Aug 2013, Aachen, Germany. Euro-Par

2013: Parallel Processing Workshops, 8374, Lecture Notes in Computer Science,

Springer Berlin Heidelberg, 2014, pp. 126ś135. doi: 10.1007/978-3-642-

54420-0_13. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-

54420-0_13 (cit. on pp. 40, 41, 136, 138).

[81] B. Rochwerger, C. Vázquez, D. Breitgand, D. Hadas, M. Villari, P. Massonet,

E. Levy, A. Galis, I. M. Llorente, R. S. Montero, Y. Wolfsthal, K. Nagin,

L. Larsson, and F. Galán, łAn Architecture for Federated Cloud Computing,ž

in Cloud Computing, Hoboken, NJ, USA: John Wiley & Sons, Inc., Jan.

195

http://www.panlab.net/fileadmin/documents/Deliverables/Panlab-D2.1-Legal-Framework-V2.0.pdf
http://www.panlab.net/fileadmin/documents/Deliverables/Panlab-D2.1-Legal-Framework-V2.0.pdf
http://www.panlab.net/fileadmin/documents/Deliverables/Panlab-D1.2-Vision-for-PEL-V2.0.pdf
http://www.panlab.net/fileadmin/documents/Deliverables/Panlab-D1.2-Vision-for-PEL-V2.0.pdf
http://hdl.handle.net/10419/101436
http://hdl.handle.net/10419/101436
http://www.fed4fire.eu/fileadmin/documents/public_deliverables/D2-3_Fed4FIRE_First_sustainability_plan.pdf
http://www.fed4fire.eu/fileadmin/documents/public_deliverables/D2-3_Fed4FIRE_First_sustainability_plan.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6573176
http://dx.doi.org/10.1007/978-3-642-54420-0_13
http://dx.doi.org/10.1007/978-3-642-54420-0_13
http://dx.doi.org/10.1007/978-3-642-54420-0_13
http://dx.doi.org/10.1007/978-3-642-54420-0_13

Bibliography

2011, pp. 391ś411. doi: 10.1002/9780470940105.ch15. [Online]. Available:

http://doi.wiley.com/10.1002/9780470940105.ch15 (cit. on p. 40).

[82] E. Carlini, M. Coppola, P. Dazzi, L. Ricci, and G. Righetti, łCloud Federations

in Contrail,ž in Euro-Par 2011: Parallel Processing Workshops, Springer, 2012,

pp. 159ś168. doi: 10.1007/978-3-642-29737-3_19. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-29737-3_19 (cit. on p. 40).

[83] Y. Demchenko, C. Ngo, C. de Laat, J. Rodriguez, L. M. Contreras, J. A.

Garcia-Espin, S. Figuerola, G. Landi, and N. Ciulli, łIntercloud Architecture

Framework for Heterogeneous Cloud Based Infrastructure Services Provisioning

On-Demand,ž in 2013 27th International Conference on Advanced Information

Networking and Applications Workshops, IEEE, Mar. 2013, pp. 777ś784, isbn:

978-1-4673-6239-9. doi: 10 . 1109 / WAINA . 2013 . 237. [Online]. Available:

http://dx.doi.org/10.1109/WAINA.2013.237 (cit. on p. 40).

[84] D. Villegas, N. Bobrof, I. Rodero, J. Delgado, Y. Liu, A. Devarakonda, L. Fong,

S. Masoud Sadjadi, and M. Parashar, łCloud federation in a layered service

model,ž Journal of Computer and System Sciences, vol. 78, no. 5, pp. 1330ś

1344, Sep. 2012, issn: 00220000. doi: 10.1016/j.jcss.2011.12.017.

[Online]. Available: http://dx.doi.org/10.1016/j.jcss.2011.12.017

(cit. on p. 41).

[85] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,

łInternet X.509 Public Key Infrastructure Certiőcate and Certiőcate Revocation

List (CRL) Proőle,ž RFC 5280, pp. 1ś152, 2008. [Online]. Available: http:

//tools.ietf.org/html/rfc5280 (cit. on p. 41).

[86] J. A. S. Monteiro, łMeasurement Infrastructures for Future Internet Testbeds,ž

in First Workshop of the Brazilian Institute for Web Science Research. Rio

de Janeiro, 2010, pp. 1ś10. [Online]. Available: http://webscience.org.br/

wiki/images/4/49/Fia.g3-20100625-suruagy.pdf (cit. on pp. 42, 47, 63,

67, 68, 71).

[87] J. Weiner, łMeasurement: Reliability and Validity Measures,ž Mimeo, Bloomberg

School of Public Health, Johns Hopkins University, 2007. [Online]. Available:

http://ocw.jhsph.edu/courses/hsre/PDFs/HSRE_lect7_weiner.pdf

(cit. on pp. 44, XXXVI).

[88] G. Aceto, A. Botta, W. de Donato, and A. Pescape, łCloud monitoring:

Deőnitions, issues and future directions,ž in 2012 IEEE 1st International

Conference on Cloud Networking (CLOUDNET), IEEE, Nov. 2012, pp. 63ś67,

isbn: 978-1-4673-2798-5. doi: 10.1109/CloudNet.2012.6483656. [Online].

Available: http://dx.doi.org/10.1109/CloudNet.2012.6483656 (cit. on

pp. 45, 62, 63, 68, 69).

196

http://dx.doi.org/10.1002/9780470940105.ch15
http://doi.wiley.com/10.1002/9780470940105.ch15
http://dx.doi.org/10.1007/978-3-642-29737-3_19
http://dx.doi.org/10.1007/978-3-642-29737-3_19
http://dx.doi.org/10.1109/WAINA.2013.237
http://dx.doi.org/10.1109/WAINA.2013.237
http://dx.doi.org/10.1016/j.jcss.2011.12.017
http://dx.doi.org/10.1016/j.jcss.2011.12.017
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://webscience.org.br/wiki/images/4/49/Fia.g3-20100625-suruagy.pdf
http://webscience.org.br/wiki/images/4/49/Fia.g3-20100625-suruagy.pdf
http://ocw.jhsph.edu/courses/hsre/PDFs/HSRE_lect7_weiner.pdf
http://dx.doi.org/10.1109/CloudNet.2012.6483656
http://dx.doi.org/10.1109/CloudNet.2012.6483656

Bibliography

[89] A. Mandal, I. Baldin, Y. Xin, P. Ruth, and C. Heerman, łEnabling persistent

queries for cross-aggregate performance monitoring,ž Communications Mag-

azine, IEEE, vol. 52, no. 5, pp. 157ś164, 2014. doi: 10.1109/MCOM.2014.

6815907. [Online]. Available: http://dx.doi.org/10.1109/MCOM.2014.

6815907 (cit. on p. 45).

[90] Y. Al-Hazmi, H. de Meer, K. A. Hummel, H. Meyer, M. Meo, and D. Remondo,

łEnergy-Eicient Wireless Mesh Infrastructures,ž IEEE Network, vol. 25, no. 2,

pp. 32ś38, Mar. 2011, issn: 0890-8044. doi: 10.1109/MNET.2011.5730526.

[Online]. Available: http://dx.doi.org/10.1109/MNET.2011.5730526

(cit. on p. 45).

[91] T. Baur and S. Saad, łVirtualizing Resources: Customer-Oriented Cross-

Domain Monitoring for Service Grids,ž in 2007 10th IFIP/IEEE International

Symposium on Integrated Network Management, IEEE, May 2007, pp. 777ś780,

isbn: 1-4244-0798-2. doi: 10.1109/INM.2007.374711. [Online]. Available:

http://dx.doi.org/10.1109/INM.2007.374711 (cit. on p. 45).

[92] A. Hanemann, J. W. Boote, E. L. Boyd, J. Durand, L. Kudarimoti, R. Łapacz,

D. M. Swany, S. Trocha, and J. Zurawski, łPerfSONAR: A Service Oriented

Architecture for Multi-domain Network Monitoring,ž in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), vol. 3826 LNCS, 2005, pp. 241ś254. doi:

10.1007/11596141_19. [Online]. Available: http://dx.doi.org/10.1007/

11596141_19 (cit. on pp. 45, 49, 182).

[93] Y. Xin, I. Baldin, J. Chase, K. Ogan, and K. Anyanwu, łLeveraging Semantic

Web Technologies for Managing Resources in a Multi-Domain Infrastructure-as-

a-Service Environment,ž pp. 1ś20, 2014. arXiv: 1403.0949. [Online]. Available:

http://arxiv.org/abs/1403.0949 (cit. on p. 45).

[94] Y. Al-Hazmi and T. Magedanz, łA Flexible Monitoring System for Federated

Future Internet Testbeds,ž in 2012 Third International Conference on The

Network of the Future (NOF), IEEE, Nov. 2012, pp. 1ś6, isbn: 978-1-4673-

5265-9. doi: 10.1109/NOF.2012.6463985. [Online]. Available: http://dx.

doi.org/10.1109/NOF.2012.6463985 (cit. on pp. 45, 63, 64, 67ś69, 71, 92,

128, 141, 144).

[95] I. Legrand, H. Newman, R. Voicu, C. Cirstoiu, C. Grigoras, C. Dobre, A.

Muraru, A. Costan, M. Dediu, and C. Stratan, łMonALISA: An agent based,

dynamic service system to monitor, control and optimize distributed systems,ž

Computer Physics Communications, vol. 180, no. 12, pp. 2472ś2498, Dec. 2009,

issn: 00104655. doi: 10.1016/j.cpc.2009.08.003. [Online]. Available:

http://dx.doi.org/10.1016/j.cpc.2009.08.003 (cit. on p. 46).

197

http://dx.doi.org/10.1109/MCOM.2014.6815907
http://dx.doi.org/10.1109/MCOM.2014.6815907
http://dx.doi.org/10.1109/MCOM.2014.6815907
http://dx.doi.org/10.1109/MCOM.2014.6815907
http://dx.doi.org/10.1109/MNET.2011.5730526
http://dx.doi.org/10.1109/MNET.2011.5730526
http://dx.doi.org/10.1109/INM.2007.374711
http://dx.doi.org/10.1109/INM.2007.374711
http://dx.doi.org/10.1007/11596141_19
http://dx.doi.org/10.1007/11596141_19
http://dx.doi.org/10.1007/11596141_19
http://arxiv.org/abs/1403.0949
http://arxiv.org/abs/1403.0949
http://dx.doi.org/10.1109/NOF.2012.6463985
http://dx.doi.org/10.1109/NOF.2012.6463985
http://dx.doi.org/10.1109/NOF.2012.6463985
http://dx.doi.org/10.1016/j.cpc.2009.08.003
http://dx.doi.org/10.1016/j.cpc.2009.08.003

Bibliography

[96] F. Moscato, R. Aversa, B. Di Martino, T. Fortis, and V. Munteanu, łAn

analysis of mOSAIC ontology for Cloud resources annotation,ž in Federated

Conf. on Computer Science and Information Systems (FedCSIS), IEEE, 2011,

pp. 973ś980. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=6078209 (cit. on p. 46).

[97] V. C. Emeakaroha, T. C. Ferreto, M. A. S. Netto, I. Brandic, and C. A. F. De

Rose, łCASViD: Application Level Monitoring for SLA Violation Detection

in Clouds,ž in 2012 IEEE 36th Annual Computer Software and Applications

Conference, IEEE, Jul. 2012, pp. 499ś508, isbn: 978-1-4673-1990-4. doi:

10.1109/COMPSAC.2012.68. [Online]. Available: http://dx.doi.org/10.

1109/COMPSAC.2012.68 (cit. on p. 46).

[98] G. Katsaros, R. Kübert, and G. Gallizo, łBuilding a service-oriented monitoring

framework with REST and nagios,ž in Proceedings - 2011 IEEE International

Conference on Services Computing, SCC 2011, 2011, pp. 426ś431. doi: 10.

1109/SCC.2011.53. [Online]. Available: http://dx.doi.org/10.1109/SCC.

2011.53 (cit. on p. 46).

[99] G. Katsaros, G. Gallizo, R. Kübert, T. Wang, J. Oriol Fitó, and D. Henriksson,

łA multi-level architecture for collecting and managing monitoring information

in cloud environments,ž in 1st Int. Conference on Cloud Computing and Services

Science, 2011, pp. 1ś4. doi: 10.5220/0003388602320239. [Online]. Available:

http://dx.doi.org/10.5220/0003388602320239 (cit. on p. 46).

[100] G. Katsaros, G. Gallizo, R. Kübert, T. Wang, J. O. Fitó, and D. Espling,

łAn Integrated Monitoring Infrastructure for Cloud Environments,ž in Cloud

Computing and Services Science, Service Science: Research and Innovations

in the Service Economy 2012, Springer New York, 2012, pp. 149ś164. doi:

10.1007/978-1-4614-2326-3_8. [Online]. Available: http://dx.doi.org/

10.1007/978-1-4614-2326-3_8 (cit. on p. 46).

[101] J. Tordsson, K. Djemame, D. Espling, G. Katsaros, W. Ziegler, O. Wäldrich, K.

Konstanteli, A. Sajjad, M. Rajarajan, G. Gallizo, and S. Nair, łTowards Holistic

Cloud Management,ž in European Research Activities in Cloud Computing,

Cambridge Scholars Publishing, 2012, pp. 122ś150, isbn: 978-1-4438-3507-7

(cit. on p. 46).

[102] S. Vinoski, łRESTful Web Services Development Checklist,ž IEEE Internet

Computing, vol. 12, no. 6, pp. 96ś95, Nov. 2008, issn: 1089-7801. doi:

10.1109/MIC.2008.130. [Online]. Available: http://dx.doi.org/10.1109/

MIC.2008.130 (cit. on p. 46).

198

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6078209
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6078209
http://dx.doi.org/10.1109/COMPSAC.2012.68
http://dx.doi.org/10.1109/COMPSAC.2012.68
http://dx.doi.org/10.1109/COMPSAC.2012.68
http://dx.doi.org/10.1109/SCC.2011.53
http://dx.doi.org/10.1109/SCC.2011.53
http://dx.doi.org/10.1109/SCC.2011.53
http://dx.doi.org/10.1109/SCC.2011.53
http://dx.doi.org/10.5220/0003388602320239
http://dx.doi.org/10.5220/0003388602320239
http://dx.doi.org/10.1007/978-1-4614-2326-3_8
http://dx.doi.org/10.1007/978-1-4614-2326-3_8
http://dx.doi.org/10.1007/978-1-4614-2326-3_8
http://dx.doi.org/10.1109/MIC.2008.130
http://dx.doi.org/10.1109/MIC.2008.130
http://dx.doi.org/10.1109/MIC.2008.130

Bibliography

[103] S. De Chaves, R. Uriarte, and C. Westphall, łToward an architecture for

monitoring private clouds,ž IEEE Communications Magazine, vol. 49, no. 12,

pp. 130ś137, Dec. 2011, issn: 0163-6804. doi: 10.1109/MCOM.2011.6094017.

[Online]. Available: http://dx.doi.org/10.1109/MCOM.2011.6094017

(cit. on p. 47).

[104] B. König, J. Alcaraz Calero, and J. Kirschnick, łElastic monitoring framework

for cloud infrastructures,ž IET Communications, vol. 6, no. 10, p. 1306, 2012,

issn: 17518628. doi: 10.1049/iet-com.2011.0200. [Online]. Available:

http://dx.doi.org/10.1049/iet-com.2011.0200 (cit. on p. 47).

[105] S. Clayman, G. Tofetti, A. Galis, and C. Chapman, łMonitoring services in a

federated cloud ś the reservoir experience,ž in Achieving Federated and Self-

Manageable Cloud Infrastructures, IGI Global, 2012. doi: 10.4018/978-1-

4666-1631-8.ch013. [Online]. Available: http://dx.doi.org/10.4018/978-

1-4666-1631-8.ch013 (cit. on p. 47).

[106] J. Griioen, Z. Fei, and H. Nasir, łArchitectural Design and Speciőcation of

the INSTOOLS Measurement System,ž Laboratory of Advanced Networking,

University of Kentucky, Tech. Rep, 2009 (cit. on pp. 47, 53).

[107] J. Griioen, Z. Fei, H. Nasir, X. Wu, J. Reed, and C. Carpenter, łMeasuring

experiments in GENI,ž Computer Networks, vol. 63, pp. 17ś32, Apr. 2014,

issn: 13891286. doi: 10.1016/j.bjp.2013.10.016. [Online]. Available:

http://dx.doi.org/10.1016/j.bjp.2013.10.016 (cit. on pp. 47, 53, 63,

64, 67, 68, 71).

[108] T. Bourgeau, J. Augé, and T. Friedman, łTopHat: Supporting Experiments

through Measurement Infrastructure Federation,ž in Testbeds and Research

Infrastructures. Development of Networks and Communities, Springer, 2011,

pp. 542ś557. doi: 10.1007/978-3-642-17851-1_41. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-17851-1_41 (cit. on pp. 48, 53).

[109] Y. Al-Hazmi and T. Magedanz, łTowards Semantic Monitoring Data Collection

and Representation in Federated Infrastructures,ž in 2015 3rd International

Conference on Future Internet of Things and Cloud, IEEE, Aug. 2015, pp. 17ś

24, isbn: 978-1-4673-8103-1. doi: 10.1109/FiCloud.2015.40. [Online].

Available: http://dx.doi.org/10.1109/FiCloud.2015.40 (cit. on pp. 50,

56, 69, 100, 103, 109, 180).

[110] A. Pras and J. Schoenwaelder, łOn the Diference between Information Models

and Data Models,ž Internet Engineering Task Force, Tech. Rep., 2003, pp. 1ś8.

[Online]. Available: http://www.ietf.org/rfc/rfc3444.txt (cit. on p. 52).

199

http://dx.doi.org/10.1109/MCOM.2011.6094017
http://dx.doi.org/10.1109/MCOM.2011.6094017
http://dx.doi.org/10.1049/iet-com.2011.0200
http://dx.doi.org/10.1049/iet-com.2011.0200
http://dx.doi.org/10.4018/978-1-4666-1631-8.ch013
http://dx.doi.org/10.4018/978-1-4666-1631-8.ch013
http://dx.doi.org/10.4018/978-1-4666-1631-8.ch013
http://dx.doi.org/10.4018/978-1-4666-1631-8.ch013
http://dx.doi.org/10.1016/j.bjp.2013.10.016
http://dx.doi.org/10.1016/j.bjp.2013.10.016
http://dx.doi.org/10.1007/978-3-642-17851-1_41
http://dx.doi.org/10.1007/978-3-642-17851-1_41
http://dx.doi.org/10.1109/FiCloud.2015.40
http://dx.doi.org/10.1109/FiCloud.2015.40
http://www.ietf.org/rfc/rfc3444.txt

Bibliography

[111] A. Y. Levy, łThe Information Manifold Approach to Data Integration,ž EEE

Intelligent Agents, vol. 13, no. 5, pp. 12ś16, 1998. doi: 10.1.1.50.1593.

[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.50.1593 (cit. on p. 52).

[112] M. Reddy, B. Prasad, P. Reddy, and A. Gupta, łA methodology for integration

of heterogeneous databases,ž IEEE Transactions on Knowledge and Data

Engineering, vol. 6, no. 6, pp. 920ś933, 1994, issn: 10414347. doi: 10.1109/

69.334882. [Online]. Available: http://dx.doi.org/10.1109/69.334882

(cit. on p. 52).

[113] M. N. Kamel and M. Zviran, łHeterogeneous databases integration in a hos-

pital information systems environment: a bottom-up approach,ž Proceedings

/ the ... Annual Symposium on Computer Application [sic] in Medical Care.

Symposium on Computer Applications in Medical Care, pp. 363ś367, 1991.

[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/1807623 (cit. on

p. 52).

[114] J. Zurawski, M. Swany, and D. Gunter, łA Scalable Framework for Representa-

tion and Exchange of Network Measurements,ž in 2nd International Conference

on Testbeds and Research Infrastructures for the Development of Networks and

Communities, 2006. TRIDENTCOM 2006., vol. 2006, IEEE, 2006, pp. 409ś

417, isbn: 1-4244-0106-2. doi: 10.1109/TRIDNT.2006.1649176. [Online].

Available: http://dx.doi.org/10.1109/TRIDNT.2006.1649176 (cit. on

p. 53).

[115] S. Gao, C. M. Sperberg-McQueen, H. S. Thompson, N. Mendelsohn, D. Beech,

and M. Maloney, W3C XML Schema Definition Language (XSD) 1.1 Part

1: Structures, 2012. [Online]. Available: http://www.w3.org/TR/2012/REC-

xmlschema11-1-20120405/ (cit. on pp. 53, 102).

[116] J. E. L. de Vergara, J. Aracil, J. Martínez, A. Salvador, and J. A. Hernández,

łApplication of ontologies for the integration of network monitoring platforms,ž

in Proceedings of the 1st European Workshop on Mechanisms for Mastering

Future Internet. Salzburg, Austria, 2008. [Online]. Available: http://www.

math.jhu.edu/jmartinezgarcia/papers/MonitoringOntology.pdf (cit.

on p. 53).

[117] B. Claise, B. Trammell, and P. Aitken, łSpeciőcation of the IP Flow Information

Export (IPFIX) Protocol for the Exchange of Flow Information,ž Tech. Rep.,

2013, p. 76. [Online]. Available: https://tools.ietf.org/html/rfc7011

(cit. on pp. 53, 54).

200

http://dx.doi.org/10.1.1.50.1593
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.1593
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.1593
http://dx.doi.org/10.1109/69.334882
http://dx.doi.org/10.1109/69.334882
http://dx.doi.org/10.1109/69.334882
http://www.ncbi.nlm.nih.gov/pubmed/1807623
http://dx.doi.org/10.1109/TRIDNT.2006.1649176
http://dx.doi.org/10.1109/TRIDNT.2006.1649176
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/
http://www.math.jhu.edu/jmartinezgarcia/papers/MonitoringOntology.pdf
http://www.math.jhu.edu/jmartinezgarcia/papers/MonitoringOntology.pdf

Bibliography

[118] V. Bajpai and J. Schonwalder, łA Survey on Internet Performance Measure-

ment Platforms and Related Standardization Eforts,ž IEEE Communications

Surveys & Tutorials, pp. 1ś1, 2015, issn: 1553-877X. doi: 10.1109/COMST.

2015.2418435. [Online]. Available: http://dx.doi.org/10.1109/COMST.

2015.2418435 (cit. on p. 54).

[119] P. Goncalves, J. L. Oliveira, and R. L. Aguiar, łAn evaluation of network

management protocols,ž in 2009 IFIP/IEEE International Symposium on

Integrated Network Management, IEEE, Jun. 2009, pp. 537ś544, isbn: 978-

1-4244-3486-2. doi: 10.1109/INM.2009.5188859. [Online]. Available: http:

//dx.doi.org/10.1109/INM.2009.5188859 (cit. on p. 54).

[120] E. Boschi, B. Trammell, L. Mark, and T. Zseby, łExporting type information

for IP ŕow information export (IPFIX) information elements,ž RFC 5610,

RFC Editor, Fremont, CA, USA, Tech. Rep., 2009. [Online]. Available: https:

//tools.ietf.org/html/rfc5610 (cit. on pp. 53, 54, 179).

[121] T. Kothmayr, C. Schmitt, L. Braun, and G. Carle, łGathering Sensor Data in

Home Networks with IPFIX,ž in Wireless Sensor Networks, Springer, 2010,

pp. 131ś146. doi: 10.1007/978-3-642-11917-0_9. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-11917-0_9 (cit. on p. 55).

[122] NetQos, łWhite Paper: Best Practices for Cisco NetFlow/IPFIX Analysis

and Reporting,ž 2008. [Online]. Available: http://www.techieindex.com/

techie1/whitepapers/wp_details.jsp?id=4447 (cit. on p. 55).

[123] O. Mehani, G. Jourjon, T. Rakotoarivelo, and M. Ott, łAn instrumentation

framework for the critical task of measurement collection in the future Internet,ž

Computer Networks, vol. 63, pp. 68ś83, Apr. 2014, issn: 13891286. doi:

10.1016/j.bjp.2014.01.007. [Online]. Available: http://dx.doi.org/10.

1016/j.bjp.2014.01.007 (cit. on pp. 55, 69, 70, 152, 155, 164).

[124] T. R. Gruber, łA translation approach to portable ontology speciőcations,ž

Knowledge Acquisition, vol. 5, no. 2, pp. 199ś220, 1993. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.7493

(cit. on pp. 56, 101).

[125] B. Chandrasekaran, J. Josephson, and V. Benjamins, łWhat are ontologies,

and why do we need them?ž IEEE Intelligent Systems, vol. 14, no. 1, pp. 20ś26,

Jan. 1999, issn: 1094-7167. doi: 10.1109/5254.747902. [Online]. Available:

http://dx.doi.org/10.1109/5254.747902 (cit. on p. 56).

[126] D. L. McGuinness and F. van Harmelen, łOWL Web Ontology Language

Overview,ž W3C, Tech. Rep., 2004. [Online]. Available: http://www.w3.org/

TR/owl-features/ (cit. on pp. 57, 182).

201

http://dx.doi.org/10.1109/COMST.2015.2418435
http://dx.doi.org/10.1109/COMST.2015.2418435
http://dx.doi.org/10.1109/COMST.2015.2418435
http://dx.doi.org/10.1109/COMST.2015.2418435
http://dx.doi.org/10.1109/INM.2009.5188859
http://dx.doi.org/10.1109/INM.2009.5188859
http://dx.doi.org/10.1109/INM.2009.5188859
https://tools.ietf.org/html/rfc5610
https://tools.ietf.org/html/rfc5610
http://dx.doi.org/10.1007/978-3-642-11917-0_9
http://dx.doi.org/10.1007/978-3-642-11917-0_9
http://www.techieindex.com/techie1/whitepapers/wp_details.jsp?id=4447
http://www.techieindex.com/techie1/whitepapers/wp_details.jsp?id=4447
http://dx.doi.org/10.1016/j.bjp.2014.01.007
http://dx.doi.org/10.1016/j.bjp.2014.01.007
http://dx.doi.org/10.1016/j.bjp.2014.01.007
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.7493
http://dx.doi.org/10.1109/5254.747902
http://dx.doi.org/10.1109/5254.747902
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/

Bibliography

[127] M. Bergman, Advantages and Myths of RDF, 2009. [Online]. Available: http:

//www.mkbergman.com/483/advantages- and- myths- of- rdf/ (cit. on

pp. 57, 100).

[128] A. Marchetti, F. Ronzano, M. Tesconi, and M. Minutoli, łFormalizing Knowl-

edge by Ontologies: OWL and KIF,ž Relatório apresentado L’Istituto di Infor-

matica e Telematica (IIT). Consiglio Nazionale delle Ricerche (CNR). Italia,

2008 (cit. on p. 57).

[129] A. Willner, C. Papagianni, M. Giatili, P. Grosso, M. Morsey, Y. Al-Hazmi, and

I. Baldin, łOpen-Multinet Upper Ontology Ð Towards the Semantic-based

Management of Federated Infrastructures,ž in 10th International Conference

on Testbeds and Research Infrastructures for the Development of Networks

& Communities (TRIDENTCOM 2015), Vancouver, Canada: ACM, 2015,

pp. 1ś10. doi: 10.4108/icst.tridentcom.2015.259750. [Online]. Available:

http://dx.doi.org/10.4108/icst.tridentcom.2015.259750 (cit. on

pp. 59, 102).

[130] P. Barnaghi, W. Wang, C. Henson, and K. Taylor, łSemantics for the Internet

of Things,ž International Journal on Semantic Web and Information Systems,

vol. 8, no. 1, pp. 1ś21, Jan. 2012, issn: 1552-6283. doi: 10.4018/jswis.

2012010101. [Online]. Available: http://dx.doi.org/10.4018/jswis.

2012010101 (cit. on p. 59).

[131] J. M. Serrano Orozco, Applied Ontology Engineering in Cloud Services, Net-

works and Management Systems. Boston, MA: Springer US, 2012, isbn:

978-1-4614-2235-8. doi: 10.1007/978-1-4614-2236-5. [Online]. Available:

http://dx.doi.org/10.1007/978-1-4614-2236-5 (cit. on p. 59).

[132] P. P. F. Barcelos, G. Guizzardi, A. S. Garcia, and M. E. Monteiro, łOntological

evaluation of the ITU-T Recommendation G.805,ž in 2011 18th International

Conference on Telecommunications, IEEE, May 2011, pp. 232ś237, isbn:

978-1-4577-0025-5. doi: 10.1109/CTS.2011.5898926. [Online]. Available:

http://dx.doi.org/10.1109/CTS.2011.5898926 (cit. on p. 59).

[133] A. Pras, J. Schonwalder, M. Burgess, O. Festor, G. Perez, R. Stadler, and

B. Stiller, łKey research challenges in network management,ž IEEE Communi-

cations Magazine, vol. 45, no. 10, pp. 104ś110, Oct. 2007, issn: 0163-6804.

doi: 10.1109/MCOM.2007.4342832. [Online]. Available: http://dx.doi.

org/10.1109/MCOM.2007.4342832 (cit. on p. 59).

[134] M. Ghijsen, J. van der Ham, P. Grosso, C. Dumitru, H. Zhu, Z. Zhao, and C.

de Laat, łA Semantic-Web Approach for Modeling Computing Infrastructures,ž

Computers and Electrical Engineering, vol. 39, no. 8, pp. 2553ś2565, 2013.

[Online]. Available: http://staff.science.uva.nl/~vdham/research/

publications/1212-INDL-report.pdf (cit. on pp. 60, 179).

202

http://www.mkbergman.com/483/advantages-and-myths-of-rdf/
http://www.mkbergman.com/483/advantages-and-myths-of-rdf/
http://dx.doi.org/10.4108/icst.tridentcom.2015.259750
http://dx.doi.org/10.4108/icst.tridentcom.2015.259750
http://dx.doi.org/10.4018/jswis.2012010101
http://dx.doi.org/10.4018/jswis.2012010101
http://dx.doi.org/10.4018/jswis.2012010101
http://dx.doi.org/10.4018/jswis.2012010101
http://dx.doi.org/10.1007/978-1-4614-2236-5
http://dx.doi.org/10.1007/978-1-4614-2236-5
http://dx.doi.org/10.1109/CTS.2011.5898926
http://dx.doi.org/10.1109/CTS.2011.5898926
http://dx.doi.org/10.1109/MCOM.2007.4342832
http://dx.doi.org/10.1109/MCOM.2007.4342832
http://dx.doi.org/10.1109/MCOM.2007.4342832
http://staff.science.uva.nl/~vdham/research/publications/1212-INDL-report.pdf
http://staff.science.uva.nl/~vdham/research/publications/1212-INDL-report.pdf

Bibliography

[135] P. S. Moraes, L. N. Sampaio, J. A. S. Monteiro, and M. Portnoi, łMonONTO: A

Domain Ontology for Network Monitoring and Recommendation for Advanced

Internet Applications Users,ž in NOMS Workshops 2008 - IEEE Network

Operations and Management Symposium Workshops, IEEE, Apr. 2008, pp. 116ś

123, isbn: 978-1-4244-2067-4. doi: 10 . 1109 / NOMSW . 2007 . 21. [Online].

Available: http://dx.doi.org/10.1109/NOMSW.2007.21 (cit. on p. 60).

[136] M. Compton, P. Barnaghi, L. Bermudez, R. García-Castro, O. Corcho, S. Cox,

J. Graybeal, M. Hauswirth, C. Henson, A. Herzog, V. Huang, K. Janowicz,

W. D. Kelsey, D. Le Phuoc, L. Lefort, M. Leggieri, H. Neuhaus, A. Nikolov,

K. Page, A. Passant, A. Sheth, and K. Taylor, łThe SSN ontology of the

W3C semantic sensor network incubator group,ž Web Semantics: Science,

Services and Agents on the World Wide Web, vol. 17, pp. 25ś32, Dec. 2012,

issn: 15708268. doi: 10.1016/j.websem.2012.05.003. [Online]. Available:

http://dx.doi.org/10.1016/j.websem.2012.05.003 (cit. on pp. 60, 183).

[137] C. Shannon, D. Moore, K. Keys, M. Fomenkov, B. Hufaker, and K. Clafy,

łThe internet measurement data catalog,ž ACM SIGCOMM Computer Com-

munication Review, vol. 35, no. 3, p. 97, Oct. 2005, issn: 01464833. doi:

10.1145/1096536.1096552. [Online]. Available: http://dx.doi.org/10.

1145/1096536.1096552 (cit. on p. 60).

[138] K. Alhamazani, R. Ranjan, K. Mitra, F. Rabhi, P. P. Jayaraman, S. U. Khan, A.

Guabtni, and V. Bhatnagar, łAn overview of the commercial cloud monitoring

tools: research dimensions, design issues, and state-of-the-art,ž Computing, vol.

97, no. 4, pp. 357ś377, Apr. 2014, issn: 0010-485X. doi: 10.1007/s00607-

014-0398-5. [Online]. Available: http://dx.doi.org/10.1007/s00607-014-

0398-5 (cit. on pp. 62, 63, 68ś70).

[139] G. Carella, T. Magedanz, K. Campowsky, and F. Schreiner, łElasticity as a

service for federated cloud testbeds,ž in 2013 IEEE International Conference

on Communications Workshops (ICC), IEEE, Jun. 2013, pp. 256ś260, isbn:

978-1-4673-5753-1. doi: 10.1109/ICCW.2013.6649239. [Online]. Available:

http://dx.doi.org/10.1109/ICCW.2013.6649239 (cit. on pp. 63, 138).

[140] J. Mwangama, N. Ventura, A. Willner, Y. Al-Hazmi, G. Carella, and T.

Magedanz, łTowards Mobile Federated Network Operators,ž in Proceedings of

the 2015 1st IEEE Conference on Network Softwarization (NetSoft), IEEE,

Apr. 2015, pp. 1ś6, isbn: 978-1-4799-7899-1. doi: 10.1109/NETSOFT.2015.

7116187. [Online]. Available: http : / / ieeexplore . ieee . org / lpdocs /

epic03/wrapper.htm?arnumber=7116187 (cit. on p. 63).

[141] Alcatel-Lucent, łWhite paper: Network Functions Virtualization ś Challenges

and Solutions.,ž 2013, [Online]. Available: http://www.tmcnet.com/tmc/

203

http://dx.doi.org/10.1109/NOMSW.2007.21
http://dx.doi.org/10.1109/NOMSW.2007.21
http://dx.doi.org/10.1016/j.websem.2012.05.003
http://dx.doi.org/10.1016/j.websem.2012.05.003
http://dx.doi.org/10.1145/1096536.1096552
http://dx.doi.org/10.1145/1096536.1096552
http://dx.doi.org/10.1145/1096536.1096552
http://dx.doi.org/10.1007/s00607-014-0398-5
http://dx.doi.org/10.1007/s00607-014-0398-5
http://dx.doi.org/10.1007/s00607-014-0398-5
http://dx.doi.org/10.1007/s00607-014-0398-5
http://dx.doi.org/10.1109/ICCW.2013.6649239
http://dx.doi.org/10.1109/ICCW.2013.6649239
http://dx.doi.org/10.1109/NETSOFT.2015.7116187
http://dx.doi.org/10.1109/NETSOFT.2015.7116187
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7116187
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7116187
http://www.tmcnet.com/tmc/whitepapers/documents/whitepapers/2013/9377-network-functions-virtualization-challenges-solutions.pdf
http://www.tmcnet.com/tmc/whitepapers/documents/whitepapers/2013/9377-network-functions-virtualization-challenges-solutions.pdf

Bibliography

whitepapers/documents/whitepapers/2013/9377-network-functions-

virtualization-challenges-solutions.pdf (cit. on p. 63).

[142] S. Fdida, T. Korakis, H. Niavis, S. Salsano, and G. Siracusano, łThe EX-

PRESS SDN experiment in the OpenLab large scale shared experimental

Facility,ž in 2014 First International Science and Technology Conference (Mod-

ern Networking Technologies) (MoNeTeC), IEEE, Oct. 2014, pp. 1ś7, isbn:

978-1-4799-7595-2. doi: 10.1109/MoNeTeC.2014.6995584. [Online]. Avail-

able: http://dx.doi.org/10.1109/MoNeTeC.2014.6995584 (cit. on p. 63).

[143] Y. Al-Hazmi and T. Magedanz, łMonitoring and Measurement Architecture

for Federated Future Internet Experimentation Facilities,ž in 2014 European

Conference on Networks and Communications (EuCNC), IEEE, IEEE, Jun.

2014, pp. 1ś6, isbn: 978-1-4799-5280-9. doi: 10.1109/EuCNC.2014.6882663.

[Online]. Available: http://dx.doi.org/10.1109/EuCNC.2014.6882663

(cit. on pp. 63, 64, 69, 70, 88, 91, 92, 128, 129, 133, 144).

[144] J. Augé, T. Parmentelat, N. Turro, S. Avakian, L. Baron, M. A. Larabi, M. Y.

Rahman, T. Friedman, and S. Fdida, łTools to foster a global federation

of testbeds,ž Computer Networks, vol. 63, pp. 205ś220, Apr. 2014, issn:

13891286. doi: 10.1016/j.bjp.2013.12.038. [Online]. Available: http:

//dx.doi.org/10.1016/j.bjp.2013.12.038 (cit. on p. 64).

[145] A. Gavras, H. Hrasnica, S. Wahle, D. Lozano, D. Mischler, and S. Denazis,

łControl of resources in Pan-European testbed federation,ž in Towards the

Future Internet: A European Research Perspective, IOS Press, 2009, pp. 67ś

78. doi: 10.3233/978- 1- 60750- 007- 0- 67. [Online]. Available: http:

//dx.doi.org/10.3233/978-1-60750-007-0-67 (cit. on pp. 64, 65, 70).

[146] O. Mehani, G. Jourjon, J. White, T. Rakotoarivelo, R. Boreli, and T. Ernst,

łCharacterisation of the Efect of a Measurement Library on the Performance

of Instrumented Tools,ž Tech. rep. 4879. NICTA, Tech. Rep., 2011. [Online].

Available: http://nicta.com.au/pub-download/full/4879/ (cit. on pp. 67,

71).

[147] A. Gavras, A. Bak, G. Biczók, P. Gajowniczek, A. Gulyás, H. Hrasnica, P.

Martinez-Julia, F. Németh, C. Papagianni, S. Papavassiliou, M. Pilarski, and

A. Skarmeta, łHeterogeneous Testbeds, Tools and Experiments śMeasurement

Requirements Perspective,ž in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-

formatics), vol. 7586 LNCS, 2013, pp. 139ś158. doi: 10.1007/978-3-642-

41296-7_9. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-

41296-7_9 (cit. on pp. 67, 71).

204

http://www.tmcnet.com/tmc/whitepapers/documents/whitepapers/2013/9377-network-functions-virtualization-challenges-solutions.pdf
http://www.tmcnet.com/tmc/whitepapers/documents/whitepapers/2013/9377-network-functions-virtualization-challenges-solutions.pdf
http://www.tmcnet.com/tmc/whitepapers/documents/whitepapers/2013/9377-network-functions-virtualization-challenges-solutions.pdf
http://dx.doi.org/10.1109/MoNeTeC.2014.6995584
http://dx.doi.org/10.1109/EuCNC.2014.6882663
http://dx.doi.org/10.1109/EuCNC.2014.6882663
http://dx.doi.org/10.1016/j.bjp.2013.12.038
http://dx.doi.org/10.1016/j.bjp.2013.12.038
http://dx.doi.org/10.1016/j.bjp.2013.12.038
http://dx.doi.org/10.3233/978-1-60750-007-0-67
http://dx.doi.org/10.3233/978-1-60750-007-0-67
http://dx.doi.org/10.3233/978-1-60750-007-0-67
http://nicta.com.au/pub-download/full/4879/
http://dx.doi.org/10.1007/978-3-642-41296-7_9
http://dx.doi.org/10.1007/978-3-642-41296-7_9
http://dx.doi.org/10.1007/978-3-642-41296-7_9
http://dx.doi.org/10.1007/978-3-642-41296-7_9

Bibliography

[148] L. Fàbrega, V. Pere, D. Careglio, and D. Papadimitriou, Measurement Method-

ology and Tools, L. Fàbrega, P. Vilà, D. Careglio, and D. Papadimitriou, Eds.,

ser. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2013, vol. 7586, isbn: 978-3-642-41295-0. doi: 10.1007/978-3-

642-41296-7. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-

41296-7 (cit. on pp. 67, 69, 71).

[149] Y. Al-Hazmi, J. Gonzalez, P. Rodriguez-Archilla, F. Alvarez, T. Orphanoudakis,

P. Karkazis, and T. Magedanz, łUniőed Representation of Monitoring Infor-

mation Across Federated Cloud Infrastructures,ž in 2014 26th International

Teletraffic Congress (ITC), IEEE, IEEE, Sep. 2014, pp. 1ś6, isbn: 978-0-

9883045-0-5. doi: 10.1109/ITC.2014.6932978. [Online]. Available: http:

//dx.doi.org/10.1109/ITC.2014.6932978 (cit. on pp. 69ś71, 143, 144,

173).

[150] S. Zanikolas and R. Sakellariou, łA taxonomy of grid monitoring systems,ž

Future Generation Computer Systems, vol. 21, no. 1, pp. 163ś188, Jan. 2005,

issn: 0167739X. doi: 10.1016/j.future.2004.07.002. [Online]. Available:

http://dx.doi.org/10.1016/j.future.2004.07.002 (cit. on pp. 69ś71,

73).

[151] B. Parak and Z. Ustr, łChallenges in Achieving IaaS Cloud Interoperability

across Multiple Cloud Management Frameworks,ž in 2014 IEEE/ACM 7th

International Conference on Utility and Cloud Computing, IEEE, Dec. 2014,

pp. 404ś411, isbn: 978-1-4799-7881-6. doi: 10.1109/UCC.2014.51. [Online].

Available: http://dx.doi.org/10.1109/UCC.2014.51 (cit. on p. 71).

[152] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, łA survey of mobile cloud comput-

ing: architecture, applications, and approaches,ž Wireless Communications and

Mobile Computing, vol. 13, no. 18, pp. 1587ś1611, Dec. 2013, issn: 15308669.

doi: 10.1002/wcm.1203. [Online]. Available: http://dx.doi.org/10.1002/

wcm.1203 (cit. on p. 72).

[153] J. A. L. del Castillo, K. Mallichan, and Y. Al-Hazmi, łOpenStack Federation

in Experimentation Multi-cloud Testbeds,ž in 2013 IEEE 5th International

Conference on Cloud Computing Technology and Science, vol. 2, IEEE, Dec.

2013, pp. 51ś56, isbn: 978-0-7695-5095-4. doi: 10.1109/CloudCom.2013.103.

[Online]. Available: http://dx.doi.org/10.1109/CloudCom.2013.103 (cit.

on p. 83).

[154] P. Spyns, R. Meersman, and M. Jarrar, łData modelling versus ontology

engineering,ž ACM SIGMOD Record, vol. 31, no. 4, p. 12, Dec. 2002, issn:

01635808. doi: 10.1145/637411.637413. [Online]. Available: http://dx.

doi.org/10.1145/637411.637413 (cit. on p. 100).

205

http://dx.doi.org/10.1007/978-3-642-41296-7
http://dx.doi.org/10.1007/978-3-642-41296-7
http://dx.doi.org/10.1007/978-3-642-41296-7
http://dx.doi.org/10.1007/978-3-642-41296-7
http://dx.doi.org/10.1109/ITC.2014.6932978
http://dx.doi.org/10.1109/ITC.2014.6932978
http://dx.doi.org/10.1109/ITC.2014.6932978
http://dx.doi.org/10.1016/j.future.2004.07.002
http://dx.doi.org/10.1016/j.future.2004.07.002
http://dx.doi.org/10.1109/UCC.2014.51
http://dx.doi.org/10.1109/UCC.2014.51
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1109/CloudCom.2013.103
http://dx.doi.org/10.1109/CloudCom.2013.103
http://dx.doi.org/10.1145/637411.637413
http://dx.doi.org/10.1145/637411.637413
http://dx.doi.org/10.1145/637411.637413

Bibliography

[155] R. Studer, V. Benjamins, and D. Fensel, łKnowledge engineering: Principles

and methods,ž Data & Knowledge Engineering, vol. 25, no. 1-2, pp. 161ś197,

1998, issn: 0169023X. doi: 10.1016/S0169-023X(97)00056-6. [Online].

Available: http://dx.doi.org/10.1016/S0169-023X(97)00056-6 (cit. on

pp. 100, XXXVII).

[156] J. E. López de Vergara, A. Guerrero, V. A. Villagrá, and J. Berrocal, łOntology-

Based Network Management: Study Cases and Lessons Learned,ž Journal of

Network and Systems Management, vol. 17, no. 3, pp. 234ś254, Sep. 2009,

issn: 1064-7570. doi: 10.1007/s10922-009-9129-1. [Online]. Available:

http://dx.doi.org/10.1007/s10922-009-9129-1 (cit. on p. 101).

[157] M. A. Musen, łDimensions of knowledge sharing and reuse,ž Computers and

Biomedical Research, vol. 25, no. 5, pp. 435ś467, Oct. 1992, issn: 00104809.

doi: 10.1016/0010-4809(92)90003-S. [Online]. Available: http://dx.doi.

org/10.1016/0010-4809(92)90003-S (cit. on p. 101).

[158] N. Casellas, łMethodologies, Tools and Languages for Ontology Design,ž in

Legal Ontology Engineering, ser. Law, Governance and Technology Series, vol. 3,

Dordrecht: Springer Netherlands, 2011, ch. 3, pp. 57ś107. doi: 10.1007/978-

94-007-1497-7_3. [Online]. Available: http://dx.doi.org/10.1007/978-

94-007-1497-7_3 (cit. on p. 101).

[159] Y. Al-Hazmi and T. Magedanz, łMOFI: Monitoring Ontology for Federated

Infrastructures,ž in The 3rd IEEE International Workshop on Measurements &

Networking (M&N) 2015, Coimbra, Portugal: IEEE, 2015, pp. 140ś145. doi:

10.1109/IWMN.2015.7322988. [Online]. Available: http://dx.doi.org/10.

1109/IWMN.2015.7322988 (cit. on pp. 100, 104ś108, 123, 153, 154, 180).

[160] A. R. Hevner, S. T. March, J. Park, and S. Ram, łDesign Science in Information

Systems Research,ž MIS Quarterly, vol. 28, no. 1, pp. 75ś105, 2004, issn:

02767783. doi: 10.2307/25148625. [Online]. Available: http://dl.acm.org/

citation.cfm?id=2017217 (cit. on pp. 135, 136, 147, 168).

[161] K. Kavoussanakis, A. Hume, J. Martrat, C. Ragusa, M. Gienger, K. Cam-

powsky, G. V. Seghbroeck, C. Vazquez, C. Velayos, F. Gittler, P. Inglesant,

G. Carella, V. Engen, M. Giertych, G. Landi, and D. Margery, łBonFIRE: The

Clouds and Services Testbed,ž in 2013 IEEE 5th International Conference on

Cloud Computing Technology and Science, IEEE, Dec. 2013, pp. 321ś326, isbn:

978-0-7695-5095-4. doi: 10.1109/CloudCom.2013.156. [Online]. Available:

http://dx.doi.org/10.1109/CloudCom.2013.156 (cit. on pp. 136, 137).

[162] R. Moreno-Vozmediano, Montero, and I. M. Llorente, łIaaS Cloud Architecture:

From Virtualized Datacenters to Federated Cloud Infrastructures,ž Computer,

vol. 45, no. 12, pp. 65ś72, Dec. 2012, issn: 0018-9162. doi: 10.1109/MC.

206

http://dx.doi.org/10.1016/S0169-023X(97)00056-6
http://dx.doi.org/10.1016/S0169-023X(97)00056-6
http://dx.doi.org/10.1007/s10922-009-9129-1
http://dx.doi.org/10.1007/s10922-009-9129-1
http://dx.doi.org/10.1016/0010-4809(92)90003-S
http://dx.doi.org/10.1016/0010-4809(92)90003-S
http://dx.doi.org/10.1016/0010-4809(92)90003-S
http://dx.doi.org/10.1007/978-94-007-1497-7_3
http://dx.doi.org/10.1007/978-94-007-1497-7_3
http://dx.doi.org/10.1007/978-94-007-1497-7_3
http://dx.doi.org/10.1109/IWMN.2015.7322988
http://dx.doi.org/10.1109/IWMN.2015.7322988
http://dx.doi.org/10.1109/IWMN.2015.7322988
http://dx.doi.org/10.2307/25148625
http://dl.acm.org/citation.cfm?id=2017217
http://dl.acm.org/citation.cfm?id=2017217
http://dx.doi.org/10.1109/CloudCom.2013.156
http://dx.doi.org/10.1109/CloudCom.2013.156
http://dx.doi.org/10.1109/MC.2012.76
http://dx.doi.org/10.1109/MC.2012.76

Bibliography

2012.76. [Online]. Available: http://dx.doi.org/10.1109/MC.2012.76

(cit. on p. 136).

[163] A. Coles, E. Deliot, A. Edwards, A. Fischer, P. Goldsack, J. Guijarro, R.

Hawkes, J. Kirschnick, S. Loughran, P. Murray, and L. Wilcock, łCells: A

Self-Hosting Virtual Infrastructure Service,ž in 2012 IEEE Fifth International

Conference on Utility and Cloud Computing, IEEE, Nov. 2012, pp. 57ś64,

isbn: 978-1-4673-4432-6. doi: 10.1109/UCC.2012.17. [Online]. Available:

http://dx.doi.org/10.1109/UCC.2012.17 (cit. on p. 136).

[164] P. Szegedi, J. Riera, J. Garcia-Espin, M. Hidell, P. Sjodin, P. Soderman, M.

Ruini, D. O’Mahony, A. Bianco, L. Giraudo, M. Ponce de Leon, G. Power, C.

Cervello-Pastor, V. Lopez, and S. Naegele-Jackson, łEnabling future internet

research: the FEDERICA case,ž IEEE Communications Magazine, vol. 49, no.

7, pp. 54ś61, Jul. 2011, issn: 0163-6804. doi: 10.1109/MCOM.2011.5936155.

[Online]. Available: http://dx.doi.org/10.1109/MCOM.2011.5936155

(cit. on p. 137).

[165] A. Micsik, P. Pallinger, and D. Siklosi, łScaling a Plagiarism Search Service

on the BonFIRE Testbed,ž in 2013 IEEE 5th International Conference on

Cloud Computing Technology and Science, IEEE, Dec. 2013, pp. 57ś62, isbn:

978-0-7695-5095-4. doi: 10.1109/CloudCom.2013.104. [Online]. Available:

http://dx.doi.org/10.1109/CloudCom.2013.104 (cit. on p. 138).

[166] U. Wajid, C. A. Marín, and N. Mehandjiev, łOptimizing Service Ecosystems

in the Cloud,ž in Future Internet Assembly 2013: Validated Results and New

Horizons, 2013, pp. 115ś126. doi: 10.1007/978-3-642-38082-2_10. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-38082-2_10 (cit. on

p. 138).

[167] Y. Al-Hazmi and ..., łOpenLab: Interoperability of tools and data reposito-

ries,ž European FP7 Project OpenLabs, Tech. Rep., 2013, pp. 1ś57. [Online].

Available: http://www.ict-openlab.eu/fileadmin/documents/public_

deliverables/OpenLab_Deliverable_D2_2.pdf (cit. on p. 141).

[168] Y. Al-Hazmi, J. Müller, H. Coskun, and T. Magedanz, łNetwork Path and

Quality Validation in the Evolved Packet Core,ž in 12th Würzburg Workshop on

IP: ITG Workshop "Visions of Future Generation Networks" (EuroView2012),

Würzburg, Germany, 2012, pp. 1ś2 (cit. on pp. 142, 174).

[169] J. Mueller, Y. Al-Hazmi, M. F. Sadikin, D. Vingarzan, and T. Magedanz,

łSecure and Eicient Validation of Data Traic Flows in Fixed and Mobile

Networks,ž in PM2HW2N’12 - Proceedings of the 7th ACM Workshop on

Performance Monitoring and Measurement of Heterogeneous Wireless and

Wired Networks, 2012, pp. 159ś165, isbn: 978-1-4503-1626-2. doi: 10.1145/

207

http://dx.doi.org/10.1109/MC.2012.76
http://dx.doi.org/10.1109/MC.2012.76
http://dx.doi.org/10.1109/MC.2012.76
http://dx.doi.org/10.1109/UCC.2012.17
http://dx.doi.org/10.1109/UCC.2012.17
http://dx.doi.org/10.1109/MCOM.2011.5936155
http://dx.doi.org/10.1109/MCOM.2011.5936155
http://dx.doi.org/10.1109/CloudCom.2013.104
http://dx.doi.org/10.1109/CloudCom.2013.104
http://dx.doi.org/10.1007/978-3-642-38082-2_10
http://dx.doi.org/10.1007/978-3-642-38082-2_10
http://www.ict-openlab.eu/fileadmin/documents/public_deliverables/OpenLab_Deliverable_D2_2.pdf
http://dx.doi.org/10.1145/2387191.2387213
http://dx.doi.org/10.1145/2387191.2387213

Bibliography

2387191 . 2387213. [Online]. Available: http : / / dx . doi . org / 10 . 1145 /

2387191.2387213 (cit. on pp. 142, 174).

[170] Y. Al-Hazmi, A. Willner, O. O. Ozpehlivan, D. Nehls, S. Covaci, and T.

Magedanz, łAn Automated Health Monitoring Solution for Future Internet

Infrastructure Marketplaces,ž in 2014 26th International Teletraffic Congress

(ITC), IEEE, Sep. 2014, pp. 1ś6, isbn: 978-0-9883045-0-5. doi: 10.1109/

ITC.2014.6932979. [Online]. Available: http://dx.doi.org/10.1109/ITC.

2014.6932979 (cit. on p. 146).

[171] C. Bizer and A. Schultz, łThe Berlin SPARQL Benchmark,ž International

Journal on Semantic Web and Information Systems, vol. 5, no. 2, pp. 1ś24, 2009.

[Online]. Available: http://libra.msra.cn/Publication/5502353/the-

berlin-sparql-benchmark (cit. on p. 156).

[172] M. Voigt, A. Mitschick, and J. Schulz, łYet Another Triple Store Benchmark?

Practical Experiences with Real-World Data,ž in 2nd International Workshop

on Semantic Digital Archives (SDA 2012), 2012, pp. 85ś94 (cit. on p. 157).

[173] J. Mueller, D. Palma, G. Landi, J. Soares, B. Parreira, T. Metsch, P. Gray, A.

Georgiev, Y. Al-Hazmi, T. Magedanz, and P. Simoes, łMonitoring as a Service

for Cloud Environments,ž in 2014 IEEE Fifth International Conference on

Communications and Electronics (ICCE), IEEE, Jul. 2014, pp. 174ś179, isbn:

978-1-4799-5051-5. doi: 10.1109/CCE.2014.6916699. [Online]. Available:

http://dx.doi.org/10.1109/CCE.2014.6916699 (cit. on p. 174).

[174] Storage Networking Industry Association (SNIA), łCloud Data Management

Interface (CDMI) V1.1.1,ž Storage Networking Industry Association (SNIA),

Tech. Rep., 2015. [Online]. Available: http://www.snia.org/cdmi (cit. on

pp. 27, 177).

[175] DMTF, Cloud Infrastructure Management Interface (CIMI) Model and REST-

ful HTTP-based Protocol, Sep. 2014 (cit. on pp. 27, 177).

[176] G. Iannaccone and C. Diot, łThe CoMo Project: Towards A Community-

Oriented Measurement Infrastructure,ž in Distributed Cooperative Laboratories:

Networking, Instrumentation, and Measurements, Boston: Kluwer Academic

Publishers, 2006, pp. 97ś111. doi: 10.1007/0-387-30394-4_8. [Online].

Available: http://dx.doi.org/10.1007/0-387-30394-4_8 (cit. on pp. 48,

177).

[177] T. Faber and J. Wroclawski, łA federated experiment environment for emulab-

based testbeds,ž in 2009 5th International Conference on Testbeds and Research

Infrastructures for the Development of Networks and Communities and Work-

shops, TridentCom 2009, 2009. doi: 10.1109/TRIDENTCOM.2009.4976238.

208

http://dx.doi.org/10.1145/2387191.2387213
http://dx.doi.org/10.1145/2387191.2387213
http://dx.doi.org/10.1145/2387191.2387213
http://dx.doi.org/10.1145/2387191.2387213
http://dx.doi.org/10.1109/ITC.2014.6932979
http://dx.doi.org/10.1109/ITC.2014.6932979
http://dx.doi.org/10.1109/ITC.2014.6932979
http://dx.doi.org/10.1109/ITC.2014.6932979
http://libra.msra.cn/Publication/5502353/the-berlin-sparql-benchmark
http://libra.msra.cn/Publication/5502353/the-berlin-sparql-benchmark
http://dx.doi.org/10.1109/CCE.2014.6916699
http://dx.doi.org/10.1109/CCE.2014.6916699
http://www.snia.org/cdmi
http://dx.doi.org/10.1007/0-387-30394-4_8
http://dx.doi.org/10.1007/0-387-30394-4_8
http://dx.doi.org/10.1109/TRIDENTCOM.2009.4976238

Bibliography

[Online]. Available: http : / / dx . doi . org / 10 . 1109 / TRIDENTCOM . 2009 .

4976238 (cit. on pp. 29, 178).

[178] Y. Shavitt and E. Shir, łDIMES: Let the Internet Measure Itself,ž ACM

SIGCOMM Computer Communication Review, vol. 35, no. 3, p. 71, Oct.

2005, issn: 01464833. doi: 10.1145/1096536.1096546. [Online]. Available:

http://dx.doi.org/10.1145/1096536.1096546 (cit. on pp. 48, 178).

[179] D. Morato, E. Magana, M. Izal, J. Aracil, F. Naranjo, F. Astiz, U. Alonso,

I. Csabai, P. Haga, G. Simon, J. Steger, and G. Vattay, łThe European

Traic Observatory Measurement Infraestructure (ETOMIC): A Testbed for

Universal Active and Passive Measurements,ž in First International Conference

on Testbeds and Research Infrastructures for the DEvelopment of NeTworks

and COMmunities, IEEE, 2005, pp. 283ś289, isbn: 0-7695-2219-X. doi:

10.1109/TRIDNT.2005.34. [Online]. Available: http://dx.doi.org/10.

1109/TRIDNT.2005.34 (cit. on pp. 48, 178).

[180] I. Csabai, A. Fekete, P. Hága, B. Hullár, G. Kurucz, S. Laki, P. Mátray,

J. Stéger, G. Vattay, F. Espina, S. Garcia-Jimenez, M. Izal, E. Magaña, D.

Morató, J. Aracil, F. Gómez, I. Gonzalez, S. López-Buedo, V. Moreno, and J.

Ramos, łETOMIC Advanced Network Monitoring System for Future Internet

Experimentation,ž in 6th International Conference on Testbeds and Research

Infrastructures. Development of Networks and Communities (Tridentcom2010),

Springer Berlin Heidelberg, 2011, pp. 243ś254. doi: 10.1007/978-3-642-

17851-1_20. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-

17851-1_20 (cit. on pp. 48, 178).

[181] D. Havlik, S. Schade, W. van Wijk, T. Usländer, and J. Hierro, łLeveraging the

Future Internet for the Environmental Usage Area,ž in Innovations in Sharing

Environmental Observations and Information, Shaker Verlag Aachen, 2011,

isbn: 978-3-8440-0451-9. [Online]. Available: http://publications.jrc.ec.

europa.eu/repository/handle/JRC66152 (cit. on pp. 2, 178).

[182] J. Crowcroft, P. Demeester, J. Magen, P. Tran-gia, and J. Wilander, łTowards

a collaboration and high-level federation structure for the FIRE Facility,ž

Working Group on modular federation of FIRE Facilities, 2009. [Online]. Avail-

able: http://initiative.future- internet.eu/uploads/media/Wise-

men_final.pdf (cit. on pp. 35, 178).

[183] A. Willner, D. Nehls, and T. Magedanz, łFITeagle: Semantic Testbed Man-

agement Framework,ž in 10th International Conference on Testbeds and Re-

search Infrastructures for the Development of Networks & Communities (TRI-

DENTCOM 2015)0th Int. Conf. on Testbeds and Research Infrastr. for the

Dev. of Netw. & Comm, 2015, pp. 1ś4. doi: 10.4108/icst.tridentcom.

209

http://dx.doi.org/10.1109/TRIDENTCOM.2009.4976238
http://dx.doi.org/10.1109/TRIDENTCOM.2009.4976238
http://dx.doi.org/10.1145/1096536.1096546
http://dx.doi.org/10.1145/1096536.1096546
http://dx.doi.org/10.1109/TRIDNT.2005.34
http://dx.doi.org/10.1109/TRIDNT.2005.34
http://dx.doi.org/10.1109/TRIDNT.2005.34
http://dx.doi.org/10.1007/978-3-642-17851-1_20
http://dx.doi.org/10.1007/978-3-642-17851-1_20
http://dx.doi.org/10.1007/978-3-642-17851-1_20
http://dx.doi.org/10.1007/978-3-642-17851-1_20
http://publications.jrc.ec.europa.eu/repository/handle/JRC66152
http://publications.jrc.ec.europa.eu/repository/handle/JRC66152
http://initiative.future-internet.eu/uploads/media/Wise-men_final.pdf
http://initiative.future-internet.eu/uploads/media/Wise-men_final.pdf
http://dx.doi.org/10.4108/icst.tridentcom.2015.259748
http://dx.doi.org/10.4108/icst.tridentcom.2015.259748

Bibliography

2015.259748. [Online]. Available: http://eudl.eu/doi/10.4108/icst.

tridentcom.2015.259748 (cit. on pp. 42, 178).

[184] A. Glikson, łFI-WARE: Core Platform for Future Internet Applications,ž in 4th

Annual International Conference on Systems and Storage, Haifa, 2011 (cit. on

pp. 3, 178).

[185] C. Thuemmler, J. Mueller, S. Covaci, T. Magedanz, S. de Panőlis, T. Jell, and

A. Gavras, łApplying the Software-to-Data Paradigm in Next Generation E-

Health Hybrid Clouds,ž in 2013 10th International Conference on Information

Technology: New Generations, IEEE, Apr. 2013, pp. 459ś463, isbn: 978-

0-7695-4967-5. doi: 10.1109/ITNG.2013.77. [Online]. Available: http:

//dx.doi.org/10.1109/ITNG.2013.77 (cit. on pp. 33, 178).

[186] T. Rakotoarivelo, G. Jourjon, and M. Ott, łDesigning and orchestrating repro-

ducible experiments on federated networking testbeds,ž Computer Networks, vol.

63, pp. 173ś187, Apr. 2014, issn: 13891286. doi: 10.1016/j.bjp.2013.12.

033. [Online]. Available: http://dx.doi.org/10.1016/j.bjp.2013.12.033

(cit. on pp. 42, 179).

[187] D. Schwerdel, B. Reuther, T. Zinner, P. Müller, and P. Tran-Gia, łFuture Inter-

net research and experimentation: The G-Lab approach,ž Computer Networks,

vol. 61, pp. 102ś117, Mar. 2014, issn: 13891286. doi: 10.1016/j.bjp.2013.

12.023. [Online]. Available: http://dx.doi.org/10.1016/j.bjp.2013.12.

023 (cit. on pp. 2, 179).

[188] J. Duerig, R. Ricci, L. Stoller, and M. Strum, łGetting started with geni: a

user tutorial,ž ACM SIGCOMM Computer Communication Review, vol. 42,

no. 1, pp. 72ś77, 2012. doi: 10.1145/2096149.2096161. [Online]. Available:

http://dx.doi.org/10.1145/2096149.2096161 (cit. on pp. 2, 179).

[189] A. M. Alberti and D. Singh, łInternet of Things: Perspectives, Challenges and

Opportunities,ž in Int. Workshop on Telecommunications (IWT), 2013 (cit. on

pp. 2, 179).

[190] G. Karagiannis, A. Jamakovic, A. Edmonds, C. Parada, T. Metsch, D. Pichon,

M. Corici, S. Ruino, A. Gomes, P. S. Crosta, and T. M. Bohnert, łMobile Cloud

Networking: Virtualisation of cellular networks,ž in 2014 21st International

Conference on Telecommunications (ICT), IEEE, May 2014, pp. 410ś415, isbn:

978-1-4799-5141-3. doi: 10.1109/ICT.2014.6845149. [Online]. Available:

http://dx.doi.org/10.1109/ICT.2014.6845149 (cit. on pp. 174, 180).

[191] C. Brandauer and T. Fichtel, łMINER - A measurement infrastructure for

network research,ž in 2009 5th International Conference on Testbeds and

Research Infrastructures for the Development of Networks & Communities and

Workshops, IEEE, 2009, pp. 1ś9, isbn: 978-1-4244-2846-5. doi: 10.1109/

210

http://dx.doi.org/10.4108/icst.tridentcom.2015.259748
http://dx.doi.org/10.4108/icst.tridentcom.2015.259748
http://eudl.eu/doi/10.4108/icst.tridentcom.2015.259748
http://eudl.eu/doi/10.4108/icst.tridentcom.2015.259748
http://dx.doi.org/10.1109/ITNG.2013.77
http://dx.doi.org/10.1109/ITNG.2013.77
http://dx.doi.org/10.1109/ITNG.2013.77
http://dx.doi.org/10.1016/j.bjp.2013.12.033
http://dx.doi.org/10.1016/j.bjp.2013.12.033
http://dx.doi.org/10.1016/j.bjp.2013.12.033
http://dx.doi.org/10.1016/j.bjp.2013.12.023
http://dx.doi.org/10.1016/j.bjp.2013.12.023
http://dx.doi.org/10.1016/j.bjp.2013.12.023
http://dx.doi.org/10.1016/j.bjp.2013.12.023
http://dx.doi.org/10.1145/2096149.2096161
http://dx.doi.org/10.1145/2096149.2096161
http://dx.doi.org/10.1109/ICT.2014.6845149
http://dx.doi.org/10.1109/ICT.2014.6845149
http://dx.doi.org/10.1109/TRIDENTCOM.2009.4976235
http://dx.doi.org/10.1109/TRIDENTCOM.2009.4976235

Bibliography

TRIDENTCOM.2009.4976235. [Online]. Available: http://dx.doi.org/10.

1109/TRIDENTCOM.2009.4976235 (cit. on pp. 53, 180).

[192] A. Quereilhac, M. Lacage, C. Freire, T. Turletti, and W. Dabbous, łNEPI: An

integration framework for Network Experimentation,ž SoftCOM 2011, 19th

International Conference on Software, Telecommunications and Computer

Networks, pp. 1ś5, 2011. [Online]. Available: http://citeseerx.ist.psu.

edu/viewdoc/summary?doi=10.1.1.227.6433 (cit. on pp. 42, 180).

[193] ETSI-NFV, łEuropean Telecommunications Standards Institute (ETSI) In-

dustry Speciőcation Group Network Functions Virtualisation (NFV), white

paper,ž 2013, [Online]. Available: http://www.etsi.org/technologies-

clusters/technologies/689-network-functions-virtualizaation (cit.

on pp. 2, 180).

[194] M. Bauer, E. Kovacs, A. Schulke, N. Ito, C. Criminisi, L.-W. Goix, and M.

Valla, łThe Context API in the OMA Next Generation Service Interface,ž

in 2010 14th International Conference on Intelligence in Next Generation

Networks, IEEE, IEEE, Oct. 2010, pp. 1ś5, isbn: 978-1-4244-7443-1. doi:

10.1109/ICIN.2010.5640931. [Online]. Available: http://dx.doi.org/10.

1109/ICIN.2010.5640931 (cit. on pp. 144, 181).

[195] J. van der Ham, F. Dijkstra, R. Lapacz, and J. Zurawski, GFD.206: Network

markup language base schema version 1, 2013. [Online]. Available: http://

www.ogf.org/documents/GFD.206.pdf (cit. on pp. 59, 181).

[196] P. Mátray, I. Csabai, P. Hága, J. Stéger, L. Dobos, and G. Vattay, łBuilding a

prototype for network measurement virtual observatory,ž Proceedings of the

3rd annual ACM workshop on Mining network data - MineNet ’07, p. 23, 2007.

doi: 10.1145/1269880.1269887. [Online]. Available: http://dx.doi.org/

10.1145/1269880.1269887 (cit. on pp. 48, 181).

[197] T. Metsch and A. Edmonds, łOpen Cloud Computing InterfaceśInfrastructure,ž

in Standards Track, no. GFD-R in The Open Grid Forum Document Series,

Open Cloud Computing Interface (OCCI) Working Group, Muncie (IN), Open

Grid Forum (OGF), 2010. [Online]. Available: http://occi-wg.org/about/

specification/ (cit. on pp. 26, 181).

[198] T. Rakotoarivelo, M. Ott, G. Jourjon, and I. Seskar, łOMF: a control and

management framework for networking testbeds,ž ACM SIGOPS Operating

Systems Review, vol. 43, no. 4, p. 54, Jan. 2010, issn: 01635980. doi: 10.

1145/1713254.1713267. [Online]. Available: http://dx.doi.org/10.1145/

1713254.1713267 (cit. on pp. 42, 181).

211

http://dx.doi.org/10.1109/TRIDENTCOM.2009.4976235
http://dx.doi.org/10.1109/TRIDENTCOM.2009.4976235
http://dx.doi.org/10.1109/TRIDENTCOM.2009.4976235
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.227.6433
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.227.6433
http://www.etsi.org/technologies-clusters/technologies/689-network-functions-virtualizaation
http://www.etsi.org/technologies-clusters/technologies/689-network-functions-virtualizaation
http://dx.doi.org/10.1109/ICIN.2010.5640931
http://dx.doi.org/10.1109/ICIN.2010.5640931
http://dx.doi.org/10.1109/ICIN.2010.5640931
http://www.ogf.org/documents/GFD.206.pdf
http://www.ogf.org/documents/GFD.206.pdf
http://dx.doi.org/10.1145/1269880.1269887
http://dx.doi.org/10.1145/1269880.1269887
http://dx.doi.org/10.1145/1269880.1269887
http://occi-wg.org/about/specification/
http://occi-wg.org/about/specification/
http://dx.doi.org/10.1145/1713254.1713267
http://dx.doi.org/10.1145/1713254.1713267
http://dx.doi.org/10.1145/1713254.1713267
http://dx.doi.org/10.1145/1713254.1713267

Bibliography

[199] M. Singh, M. Ott, I. Seskar, and P. Kamat, łORBIT Measurements frame-

work and library (OML): motivations, implementation and features,ž in IEEE

Tridentcom: First Int. Conf. on Testbeds and Research Infrastructures for

the Development of Networks and Communities, 2005, pp. 146ś152. doi:

10.1109/TRIDNT.2005.25. [Online]. Available: http://dx.doi.org/10.

1109/TRIDNT.2005.25 (cit. on pp. 42, 181).

[200] S. Fdida, T. Friedman, and T. Parmentelat, łOneLab: An Open Federated

Facility for Experimentally Driven Future Internet Research,ž in New Network

Architectures, vol. 297, 2010, pp. 141ś152. doi: 10.1007/978-3-642-13247-

6_7. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-13247-

6_7 (cit. on pp. 30, 181).

[201] S. Shalunov, B. Teitelbaum, A. Karp, J. Boote, and M. Zekauskas, A one-

way active measurement protocol (OWAMP), 2006. [Online]. Available: https:

//tools.ietf.org/html/rfc4656 (cit. on pp. 49, 181).

[202] M. Corici, F. Gouveia, T. Magedanz, and D. Vingarzan, łOpenEPC: A Technical

Infrastructure for Early Prototyping of NGMN Testbeds,ž in, 2011, pp. 166ś

175. doi: 10.1007/978- 3- 642- 17851- 1_13. [Online]. Available: http:

//dx.doi.org/10.1007/978-3-642-17851-1_13 (cit. on pp. 142, 181).

[203] T. Friedman and A. Gavras, łFIRE OpenLab IP Testbed and Tool Demo,ž in

ServiceWave 2011, LNCS, vol. 6994, Springer-Verlag Berlin Heidelberg, 2011,

pp. 323ś324. doi: 10.1007/978-3-642-24755-2_36. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-24755-2_36 (cit. on pp. 30, 181).

[204] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo,

R. Siracusa, H. Liu, and M. Singh, łOverview of the ORBIT radio grid testbed

for evaluation of next-generation wireless network protocols,ž in IEEE Wire-

less Communications and Networking Conference, 2005, vol. 3, IEEE, 2005,

pp. 1664ś1669, isbn: 0-7803-8966-2. doi: 10.1109/WCNC.2005.1424763.

[Online]. Available: http://dx.doi.org/10.1109/WCNC.2005.1424763

(cit. on pp. 29, 182).

[205] J. Chase, L. Grit, and D. Irwin, łBeyond virtual data centers: Toward an open

resource control architecture,ž in Selected Papers from the Int. Conf. on the

Virtual Computing Initiative (ACM Digital Library), 2007. [Online]. Available:

http://www.cs.duke.edu/nicl/pub/papers/vci07.pdf (cit. on pp. 29,

182).

[206] Dmtf, łOpen Virtualization Format Speciőcation,ž DMTF Virtualization Man-

agement VMAN Initiative, pp. 1ś42, 2010. [Online]. Available: http://www.

dmtf.org/standards/ovf (cit. on pp. 27, 182).

212

http://dx.doi.org/10.1109/TRIDNT.2005.25
http://dx.doi.org/10.1109/TRIDNT.2005.25
http://dx.doi.org/10.1109/TRIDNT.2005.25
http://dx.doi.org/10.1007/978-3-642-13247-6_7
http://dx.doi.org/10.1007/978-3-642-13247-6_7
http://dx.doi.org/10.1007/978-3-642-13247-6_7
http://dx.doi.org/10.1007/978-3-642-13247-6_7
https://tools.ietf.org/html/rfc4656
https://tools.ietf.org/html/rfc4656
http://dx.doi.org/10.1007/978-3-642-17851-1_13
http://dx.doi.org/10.1007/978-3-642-17851-1_13
http://dx.doi.org/10.1007/978-3-642-17851-1_13
http://dx.doi.org/10.1007/978-3-642-24755-2_36
http://dx.doi.org/10.1007/978-3-642-24755-2_36
http://dx.doi.org/10.1109/WCNC.2005.1424763
http://dx.doi.org/10.1109/WCNC.2005.1424763
http://www.cs.duke.edu/nicl/pub/papers/vci07.pdf
http://www.dmtf.org/standards/ovf
http://www.dmtf.org/standards/ovf

Bibliography

[207] S. Wahle, T. Magedanz, S. Fox, and E. Power, łHeterogeous resource de-

scription and management in generic resource federation frameworks,ž in

12th IFIP/IEEE International Symposium on Integrated Network Manage-

ment (IM 2011) and Workshops, IEEE, May 2011, pp. 1196ś1199, isbn:

978-1-4244-9219-0. doi: 10.1109/INM.2011.5990582. [Online]. Available:

http://dx.doi.org/10.1109/INM.2011.5990582 (cit. on pp. 35, 182).

[208] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir, łExperiences Building

PlanetLab,ž Symposium A Quarterly Journal In Modern Foreign Literatures,

vol. 19, no. 1, pp. 351ś366, 2006. [Online]. Available: http://portal.acm.

org/citation.cfm?id=1298455.1298489 (cit. on pp. 2, 182).

[209] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M.

Bowman, łPlanetLab,ž ACM SIGCOMM Computer Communication Review,

vol. 33, no. 3, p. 3, Jul. 2003, issn: 01464833. doi: 10.1145/956993.956995.

[Online]. Available: http://portal.acm.org/citation.cfm?doid=956993.

956995 (cit. on pp. 2, 182).

[210] The GENI Project Oice, łProtoGENI Control Framework Overview,ž 2009,

[Online]. Available: http://groups.geni.net/geni/wiki/GeniControl

(cit. on pp. 29, 182).

[211] T. Santos, C. Henke, C. Schmoll, and T. Zseby, łMulti-hop packet tracking for

experimental facilities,ž in ACM SIGCOMM 2010 conference, 2010, pp. 447ś

448. doi: 10.1145/1851275.1851256. [Online]. Available: http://dx.doi.

org/10.1145/1851275.1851256 (cit. on pp. 48, 182).

[212] D. Brickley and R. V. Guha, łResource Description Framework (RDF) Schema

1.1. W3C Recommendation,ž World Wide Web Consortium, 2014. [Online].

Available: http://www.w3.org/TR/rdf-schema/ (cit. on pp. 58, 182).

[213] G. Klyne, J. J. Carroll, and B. McBride, łResource description framework

(RDF): Concepts and abstract syntax,ž W3C, W3C Recommendation, 2004.

[Online]. Available: http://www.w3.org/TR/rdf-concepts/ (cit. on pp. 58,

182).

[214] J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell, łSAWSDL: Semantic An-

notations for WSDL and XML Schema,ž Internet Computing, IEEE, vol. 11,

no. 6, pp. 60ś67, 2007. [Online]. Available: http://www.w3.org/TR/sawsdl/

(cit. on pp. 59, 182).

[215] Open Networking Foundation (ONF), łSDN Architecture,ž Tech. Rep., 2014.

[Online]. Available: https://www.opennetworking.org/images/stories/

downloads/sdn-resources/technical-reports/TR_SDN-ARCH-Overview-

1.1-11112014.02.pdf (cit. on pp. 2, 182).

213

http://dx.doi.org/10.1109/INM.2011.5990582
http://dx.doi.org/10.1109/INM.2011.5990582
http://portal.acm.org/citation.cfm?id=1298455.1298489
http://portal.acm.org/citation.cfm?id=1298455.1298489
http://dx.doi.org/10.1145/956993.956995
http://portal.acm.org/citation.cfm?doid=956993.956995
http://portal.acm.org/citation.cfm?doid=956993.956995
http://groups.geni.net/geni/wiki/GeniControl
http://dx.doi.org/10.1145/1851275.1851256
http://dx.doi.org/10.1145/1851275.1851256
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/sawsdl/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN-ARCH-Overview-1.1-11112014.02.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN-ARCH-Overview-1.1-11112014.02.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN-ARCH-Overview-1.1-11112014.02.pdf

Bibliography

[216] T. Berners-Lee, J. Hendler, and O. Lassila, łThe Semantic Web,ž Scientific

American, vol. 284, no. 5, pp. 34ś43, May 2001, issn: 0036-8733. doi: 10.

1038/scientificamerican0501- 34. [Online]. Available: http://dx.doi.

org/10.1038/scientificamerican0501-34 (cit. on pp. 56, 183).

[217] L. Peterson, S. Sevinc, J. Lepreau, and R. Ricci, łSlice-based Federation

architecture,ž GENI, Tech. Rep., 2009. [Online]. Available: http://groups.

geni.net/geni/wiki/SliceFedArch (cit. on pp. 42, 183).

[218] D. Harrington, R. Presuhn, and B. Wijnen, łAn architecture for describing

SNMP management frameworks,ž Rfc 2571, p. 62, 1999. [Online]. Available:

https://www.ietf.org/rfc/rfc2571.txt (cit. on pp. 48, 183).

[219] B. Hullár, S. Laki, J. Stéger, I. Csabai, and G. Vattay, łSONoMA: A service ori-

ented network measurement architecture,ž in Lecture Notes of the Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering,

vol. 90 LNICST, 2012, pp. 27ś42, isbn: 9783642292729. doi: 10.1007/978-

3-642-29273-6_3. [Online]. Available: http://dx.doi.org/10.1007/978-3-

642-29273-6_3 (cit. on pp. 48, 183).

[220] E. Prud’Hommeaux, A. Seaborne, and E. Al., łSPARQL Query Language for

RDF,ž W3C recommendation, 2008. [Online]. Available: http://www.w3.org/

TR/rdf-sparql-query/ (cit. on pp. 124, 183).

[221] S. Wahle, C. Tranoris, S. Denazis, A. Gavras, K. Koutsopoulos, T. Magedanz,

and S. Tompros, łEmerging testing trends and the Panlab enabling infrastruc-

ture,ž IEEE Communications Magazine, vol. 49, no. 3, pp. 167ś175, Mar. 2011,

issn: 0163-6804. doi: 10.1109/MCOM.2011.5723816. [Online]. Available:

http://dx.doi.org/10.1109/MCOM.2011.5723816 (cit. on pp. 42, 129, 183).

[222] D. Palma and T. Spatzier, Topology and Orchestration Specification for Cloud

Applications (TOSCA) Version 1, Nov. 2013. [Online]. Available: http://docs.

oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html (cit. on

pp. 27, 183).

214

http://dx.doi.org/10.1038/scientificamerican0501-34
http://dx.doi.org/10.1038/scientificamerican0501-34
http://dx.doi.org/10.1038/scientificamerican0501-34
http://dx.doi.org/10.1038/scientificamerican0501-34
http://groups.geni.net/geni/wiki/SliceFedArch
http://groups.geni.net/geni/wiki/SliceFedArch
https://www.ietf.org/rfc/rfc2571.txt
http://dx.doi.org/10.1007/978-3-642-29273-6_3
http://dx.doi.org/10.1007/978-3-642-29273-6_3
http://dx.doi.org/10.1007/978-3-642-29273-6_3
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://dx.doi.org/10.1109/MCOM.2011.5723816
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

A
Author’s Peer-Reviewed Publications

[1] M. Morsey, Y. Al-Hazmi, M. Giatili, C. Papagianni, P. Grosso, I. Baldin, and

A. Willner, łOpen-Multinet: Supporting Resource Management in Federated

Infrastructures with Semantic Web Ontologiesž, in 13th European Semantic Web

Conference (ESWC 2016), Springer LNCS, 2016, pp. 1-15. (under submission).

[2] Y. Al-Hazmi and T. Magedanz, łMOFI: Monitoring Ontology for Federated

Infrastructuresž, in The 3rd IEEE International Workshop on Measurements &

Networking (M&N) 2015, Coimbra, Portugal: IEEE, 2015, pp. 140-145. [Online].

Available: http://dx.doi.org/10.1109/IWMN.2015.7322988

[3] Y. Al-Hazmi and T. Magedanz, łTowards Semantic Monitoring Data Collec-

tion and Representation in Federated Infrastructuresž, in 3rd International

Conference on Future Internet of Things and Cloud (FiCloud2015), IEEE,

2015, pp. 17-24. DOI: 10.1109/FiCloud.2015.40 [Online]. Available: http:

//dx.doi.org/10.1109/FiCloud.2015.40.

[4] Y. Al-Hazmi, A. Willner, B. Pickering, A. Alloush, T. Magedanz, and S. Cretti,

łCreating a Sustainable Federation of Cloud-Based Infrastructures for the Fu-

ture Internet śThe FIWARE Approachž, in 10th International Conference on

Testbeds and Research Infrastructures for the Development of Networks & Com-

munities (TRIDENTCOM 2015), Vancouver, Canada: ACM, 2015, pp. [Online].

Available: http://dx.doi.org/10.4108/icst.tridentcom.2015.259747

[5] A. Willner, C. Papagianni, M. Giatili, P. Grosso, M. Morsey, Y. Al-Hazmi,

and I. Baldin, łOpen-Multinet Upper Ontology śTowards the Semantic-based

Management of Federated Infrastructuresž, in 10th International Conference

TRIDENTCOM 2015, Vancouver, Canada: ACM, 2015, pp. 1-10. [Online].

Available: http://dx.doi.org/10.4108/icst.tridentcom.2015.259750

I

http://dx.doi.org/10.1109/IWMN.2015.7322988
http://dx.doi.org/10.1109/FiCloud.2015.40
http://dx.doi.org/10.1109/FiCloud.2015.40
http://dx.doi.org/10.4108/icst.tridentcom.2015.259750

A. Author’s Peer-Reviewed Publications

[6] J. Mwangama, N. Ventura, A. Willner, Y. Al-Hazmi, G. Carella, and T.

Magedanz, łTowards Mobile Federated Network Operatorsž, in Proceedings

of the 2015 1st IEEE Conference on Network Softwarization (NetSoft), IEEE,

Apr. 2015, pp. 1-6, ISBN: 978-1-4799-7899-1. [Online]. Available: http:

//dx.doi.org/10.1109/NETSOFT.2015.7116187

[7] T. Zahariadis, A. Papadakis, F. Alvarez, J. Gonzalez, F. Lopez, F. Facca,

and Y. Al-Hazmi, łFIWARE Lab: Managing Resources and Services in a

Cloud Federation Supporting Future Internet Applicationsž, in 7th International

Conference on Utility and Cloud Computing, London, UK: IEEE/ACM, 2014.

[Online]. Available: http://dx.doi.org/10.1109/UCC.2014.129

[8] Y. Al-Hazmi, J. Gonzalez, P. Rodriguez-Archilla, F. Alvarez, T. Orphanoudakis,

P. Karkazis, and T. Magedanz, łUniőed Representation of Monitoring Infor-

mation Across Federated Cloud Infrastructuresž, in 2014 26th International

Teletraffic Congress (ITC), IEEE, IEEE, Sep. 2014, pp. 1-6, ISBN: 978-0-

9883045-0-5. [Online]. Available: http://dx.doi.org/10.1109/ITC.2014.

6932978

[9] Y. Al-Hazmi, A. Willner, O. O. Ozpehlivan, D. Nehls, S. Covaci, and T.

Magedanz, łAn Automated Health Monitoring Solution for Future Internet

Infrastructure Marketplacesž, in 2014 26th International Teletraffic Congress

(ITC), IEEE, Sep. 2014, pp. 1-6, ISBN: 978-0-9883045-0-5. [Online]. Avail-

able: http://dx.doi.org/10.1109/ITC.2014.6932979

[10] J. Mueller, D. Palma, G. Landi, J. Soares, B. Parreira, T. Metsch, P. Gray, A.

Georgiev, Y. Al-Hazmi, T. Magedanz, and P. Simoes, łMonitoring as a Service

for Cloud Environmentsž, in 2014 IEEE Fifth International Conference on

Communications and Electronics (ICCE), IEEE, Jul. 2014, pp. 174-179, ISBN:

978-1-4799-5051-5. [Online]. Available: http://dx.doi.org/10.1109/CCE.

2014.6916699

[11] Y. Al-Hazmi and T. Magedanz, łMonitoring and Measurement Architecture

for Federated Future Internet Experimentation Facilitiesž, in 2014 European

Conference on Networks and Communications (EuCNC), IEEE, Jun. 2014, pp.

1-6, ISBN: 978-1-4799-5280-9. [Online]. Available: http://dx.doi.org/10.

1109/EuCNC.2014.6882663

[12] T. Wauters, B. Vermeulen, W. Vandenberghe, P. Demeester, S. Taylor, L.

Baron, M. Smirnov, Y. Al-Hazmi, A. Willner, M. Sawyer, D. Margery, T.

Rakotoarivelo, F. L. Vilela, D. Stavropoulos, C. Papagianni, F. Francois, C.

Bermudo, A. Gavras, D. Davies, J. Lanza, and S.-Y. Park, łFederation of

Internet Experimentation Facilities: Architecture and Implementation ž, in

II

http://dx.doi.org/10.1109/NETSOFT.2015.7116187
http://dx.doi.org/10.1109/NETSOFT.2015.7116187
http://dx.doi.org/10.1109/UCC.2014.129
http://dx.doi.org/10.1109/ITC.2014.6932978
http://dx.doi.org/10.1109/ITC.2014.6932978
http://dx.doi.org/10.1109/ITC.2014.6932979
http://dx.doi.org/10.1109/CCE.2014.6916699
http://dx.doi.org/10.1109/CCE.2014.6916699
http://dx.doi.org/10.1109/EuCNC.2014.6882663
http://dx.doi.org/10.1109/EuCNC.2014.6882663

European Conference on Networks and Communications, IEEE, Jun. 2014, pp.

1-5. [Online]. Available: http://hdl.handle.net/1854/LU-5732987

[13] J. A. L. del Castillo, K. Mallichan, and Y. Al-Hazmi, łOpenStack Federation

in Experimentation Multi-cloud Testbedsž, in 2013 IEEE 5th International

Conference on Cloud Computing Technology and Science, vol. 2, IEEE, Dec.

2013, pp. 51-56, ISBN: 978-0-7695-5095-4. [Online]. Available: http://dx.

doi.org/10.1109/CloudCom.2013.103

[14] W. Vandenberghe, B. Vermeulen, P. Demeester, A. Willner, S. Papavassiliou, A.

Gavras, A. Quereilhac, Y. Al-Hazmi, F. Lobillo, C. Velayos, A. Vicooton, and G.

Androulidakis, łArchitecture for the Heterogeneous Federation of Future Internet

Experimentation Facilitiesž, in Future Network and Mobile Summit (FNMS),

Lisboa, Portugal: IEEE, 2013, pp. 1-11, ISBN: 978-1-905824-37-3. [Online].

Available: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=

6633558

[15] D. García-Pérez, J. Á. L. del Castillo, Y. Al-Hazmi, J. Martrat, K. Avoussanakis,

A. C. Hume, C. Velayos López, G. Landi, T. Wauters, M. Gienger, and D.

Margery, łCloud and Network Facilities Federation in BonFIREž, in Federative

and interoperable cloud infrastructures, Aug 2013, Aachen, Germany. Euro-

Par 2013: Parallel Processing Workshops, 8374, Lecture Notes in Computer

Science, Springer Berlin Heidelberg, 2013, pp. 126-135. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-54420-0_13

[16] Y. Al-Hazmi and T. Magedanz, łA Flexible Monitoring System for Federated Fu-

ture Internet Testbedsž, in 2012 Third International Conference on The Network

of the Future (NOF), IEEE, Nov. 2012, pp. 1-6, ISBN: 978-1-4673-5265-9.

[Online]. Available: http://dx.doi.org/10.1109/NOF.2012.6463985

[17] Y. Al-Hazmi, K. Campowsky, and T. Magedanz, łA Monitoring System for Fed-

erated Cloudsž, in 2012 IEEE 1st International Conference on Cloud Networking

(CLOUDNET), IEEE, Nov. 2012, pp. 68-74, ISBN: 978-1-4673-2798-5. [On-

line]. Available: http://dx.doi.org/10.1109/CloudNet.2012.6483657

[18] J. Mueller, Y. Al-Hazmi, M. F. Sadikin, D. Vingarzan, and T. Magedanz, łSecure

and Eicient Validation of Data Traic Flows in Fixed and Mobile Networksž,

in PM2HW2N’12 - Proceedings of the 7th ACM Workshop on Performance

Monitoring and Measurement of Heterogeneous Wireless and Wired Networks,

2012, pp. 159-165, ISBN: 978-1-4503-1626-2. [Online]. Available: http:

//dx.doi.org/10.1145/2387191.2387213

[19] Y. Al-Hazmi, J. Mueller, H. Coskun, and T. Magedanz, łNetwork Path and

Quality Validation in the Evolved Packet Corež, in 12th Würzburg Work-

III

http://hdl.handle.net/1854/LU-5732987
http://dx.doi.org/10.1109/CloudCom.2013.103
http://dx.doi.org/10.1109/CloudCom.2013.103
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6633558
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6633558
http://dx.doi.org/10.1007/978-3-642-54420-0_13
http://dx.doi.org/10.1109/NOF.2012.6463985
http://dx.doi.org/10.1109/CloudNet.2012.6483657
http://dx.doi.org/10.1145/2387191.2387213
http://dx.doi.org/10.1145/2387191.2387213

A. Author’s Peer-Reviewed Publications

shop on IP: ITG Workshop "Visions of Future Generation Networks" (Eu-

roView2012), Würzburg, Germany, 2012, pp. 1-2. [Online]. Available: http://

www.euroview2012.org/fileadmin/content/euroview2012/abstracts/03_07_

abstract_alhazmi.pdf

[20] A. C. Hume, Y. Al-Hazmi, B. Belter, K. Campowsky, L. M. Carril, G. Carrozzo,

V. Engen, D. García-Pérez, J. Jofre Ponsatí, R. Kubert, Y. Liang, C. Rohr,

and G. Van Seghbroeck, łBonFIRE: A Multi-cloud test Facility for Internet of

Services Experimentationž, in 8th International ICST Conference, TridentCom

2012, vol. 44 LNICST, 2012, pp. 81-96. [Online]. Available: http://dx.doi.

org/10.1007/978-3-642-35576-9_11

[21] S. Sargento, R. Matos, K. A. Hummel, A. Hess, S. Toumpis, Y. Tselekounis, G.

D. Stamoulis, Y. Al-Hazmi, M. Ali, and H. de Meer, łMulti-Access Communica-

tions in Wireless Mesh Networks by Virtualizationž, in Wireless Multi-Access

Environments and Quality of Service Provisioning, IGI Global, 2011, pp. 97-138,

ISBN: 9781466600171. [Online]. Available: http://dx.doi.org/10.4018/

978-1-4666-0017-1.ch005.

[22] Y. Al-Hazmi, H. de Meer, K. A. Hummel, H. Meyer, M. Meo, and D. Remondo,

łEnergy-Eicient Wireless Mesh Infrastructuresž, IEEE Network, vol. 25, no.

2, pp. 32-38, Mar. 2011, issn: 0890-8044. [Online]. Available: http:

//dx.doi.org/10.1109/MNET.2011.5730526

[23] Y. Al-Hazmi and H. de Meer, łVirtualization of 802.11 Interfaces for Wireless

Mesh Networksž, in 2011 Eighth International Conference on Wireless On-

Demand Network Systems and Services, IEEE, Jan. 2011, pp. 44-51, ISBN:

978-1-61284-189-2. [Online]. Available: http://dx.doi.org/10.1109/WONS.

2011.5720199

[24] A. Galis, S. Clayman, A. Fischer, A. Paler, Y. Al-Hazmi, H. De Meer, A.

Cheniour, O. Mornard, J. P. Gelas, L. Lefevre, J. R. Loyola, A. Astorga, J.

Serrat, and S. Davy, łFuture Internet Management Platforms for Network

Virtualisation and Service Cloudsž, in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), vol. 6481 LNCS, 2010, pp. 235-237. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-17694-4_39

[25] H. Coskun, I. Schieferdecker and Y. Al-Hazmi, łVirtual WLAN: Going beyond

Virtual Access Pointsž, Electronic Communications of the EASST, vol. 25, no.

2, pp. 32-38, 2009, issn: 1863-2122. [Online]. Available: http://journal.

ub.tu-berlin.de/eceasst/article/view/226

IV

http://www.euroview2012.org/fileadmin/content/euroview2012/abstracts/03_07_abstract_alhazmi.pdf
http://www.euroview2012.org/fileadmin/content/euroview2012/abstracts/03_07_abstract_alhazmi.pdf
http://www.euroview2012.org/fileadmin/content/euroview2012/abstracts/03_07_abstract_alhazmi.pdf
http://dx.doi.org/10.1007/978-3-642-35576-9_11
http://dx.doi.org/10.1007/978-3-642-35576-9_11
http://dx.doi.org/10.4018/978-1-4666-0017-1.ch005
http://dx.doi.org/10.4018/978-1-4666-0017-1.ch005
http://dx.doi.org/10.1109/MNET.2011.5730526
http://dx.doi.org/10.1109/MNET.2011.5730526
http://dx.doi.org/10.1109/WONS.2011.5720199
http://dx.doi.org/10.1109/WONS.2011.5720199
http://journal.ub.tu-berlin.de/eceasst/article/view/226
http://journal.ub.tu-berlin.de/eceasst/article/view/226

B
Monitoring Ontologies

This section presents some of the concepts and relations modelled in the MOFI ontolo-

gies written in Turtle. Note that only parts of the ontologies (one őfth of their classes

and properties) are presented, just to give an idea of these ontologies. Furthermore,

the Uniform Resource Name (URN) used below in the ontology preőxes is the MOFI

namespace, however, the OMN namespace has been used in the implementation.

Finally, the MOFI Unit ontology is not included as the NOVI Unit ontology has been

adopted as is.

Listing B.1 includes only some classes and properties of the MOFI upper ontology.

Listing B.1: Part of the MOFI Upper ontology

1 @prefix : <urn:mofi#> .

2 @prefix dc: <http://purl.org/dc/elements/1.1/> .

3 @prefix owl: <http://www.w3.org/2002/07/owl#> .

4 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

5 @prefix xml: <http://www.w3.org/XML/1998/namespace#> .

6 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

7 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

8 @prefix vann: <http://purl.org/vocab/vann/> .

9 @prefix omn: <http://open-multinet.info/ontology/omn#> .

10 @prefix omn-service: <http://open-multinet.info/ontology/omn-service#> .

11 @prefix omn-resource: <http://open-multinet.info/ontology/omn-resource#> .

12 @prefix omn-component: <http://open-multinet.info/ontology/omn-component#> .

13 @prefix omn-lifecycle: <http://open-multinet.info/ontology/omn-lifecycle#> .

14 @prefix omn-federation: <http://open-multinet.info/ontology/omn-federation#> .

15 @base <urn:mofi> .

16

17 <urn:mofi> rdf:type owl:Ontology ;

18

19 rdfs:label "mofi"@en ;

20 dc:title "MOFI␣Upper␣Ontology"^^xsd:string ;

21 dc:description "This␣ontology␣includes␣the␣main␣monitoring␣concepts␣and␣

relations."^^xsd:string ;

22 vann:preferredNamespacePrefix "mofi" ;

23 dc:date "2015-05-30" ;

V

B. Monitoring Ontologies

24 dc:creator <https://www.linkedin.com/in/yahyaalhazmi> ;

25 dc:author <https://www.linkedin.com/in/yahyaalhazmi> .

26

27 ###

28 # Object Properties

29 ###

30

31 ### urn:mofi#isMeasurementMetricOf

32 :isMeasurementMetricOf rdf:type owl:ObjectProperty ;

33

34 rdfs:comment "Is␣a␣measurement␣metric␣of␣any␣observed␣object,␣e.g.␣

resource,␣component␣or␣service"^^xsd:string ;

35

36 owl:inverseOf :hasMeasurementMetric ;

37

38 rdfs:domain :Metric ;

39

40 rdfs:range [rdf:type owl:Class ;

41 owl:unionOf (omn:Component

42 omn:Resource

43 omn:Service

44)

45] .

46

47 ### urn:mofi-metric#hasMeasurementMetric

48 :hasMeasurementMetric rdf:type owl:ObjectProperty ;

49

50 owl:inverseOf :isMeasurementMetricOf ;

51

52 rdfs:range :Metric ;

53

54 rdfs:domain [rdf:type owl:Class ;

55 owl:unionOf (omn:Component

56 omn:Resource

57 omn:Service

58)

59] .

60

61 ### urn:mofi#isMeasurementOf

62 :isMeasurementOf rdf:type owl:ObjectProperty ;

63

64 rdfs:comment "Defines␣the␣relation␣between␣a␣measurement␣and␣a␣metric"^^

xsd:string ;

65

66 rdfs:domain :Measurement ;

67

68 rdfs:range :Metric .

69

70 ### urn:mofi#measuredBy

71 :measuredBy rdf:type owl:ObjectProperty ;

72

73 owl:inverseOf :measuresMetric ;

74

75 rdfs:domain :Metric ;

76

77 rdfs:range :Tool .

78

VI

79 ### urn:mofi#hasUnit

80 :hasUnit rdf:type owl:ObjectProperty ;

81

82 rdfs:domain :Data ;

83

84 rdfs:range :Unit .

85

86 ### urn:mofi#sentFrom

87 :sentFrom rdf:type owl:ObjectProperty ;

88

89 rdfs:domain [rdf:type owl:Class ;

90 owl:unionOf (:Data

91 omn-lifecycle:Request

92)

93] ;

94

95 rdfs:range [rdf:type owl:Class ;

96 owl:unionOf (:Tool

97 omn-federation:Infrastructure

98)

99] .

100

101 ###

102 # Data properties

103 ###

104

105 ### urn:mofi#isRequested

106 :isRequested rdf:type owl:DatatypeProperty ;

107

108 rdfs:comment "Indicate␣if␣a␣service␣is␣requested␣(True)␣or␣not␣(False)."^^

xsd:string ;

109

110 rdfs:domain :MonitoringService ;

111

112 rdfs:range xsd:boolean .

113

114 ###

115 # Classes

116 ###

117

118 ### urn:mofi#MonitoringService

119 :MonitoringService rdf:type owl:Class ;

120

121 rdfs:subClassOf omn:Service ;

122

123 rdfs:comment "Rrepresents␣any␣monitoring␣service␣offered."^^xsd:string .

124

125 ### urn:mofi#InfrastructureHealthMonitoring

126 :InfrastructureHealthMonitoring rdf:type owl:Class ;

127

128 rdfs:subClassOf :MonitoringService ;

129

130 rdfs:comment "Rrepresents␣the␣monitoring␣service␣that␣gives

␣high␣level␣monitoring␣information␣about␣the␣health␣and

␣the␣status␣of␣an␣ICT␣infrastructure."^^xsd:string .

131

VII

B. Monitoring Ontologies

132 ### urn:mofi#InfrastructureResourceMonitoring

133 :InfrastructureResourceMonitoring rdf:type owl:Class ;

134

135 rdfs:subClassOf :MonitoringService ;

136

137 rdfs:comment "Rrepresents␣the␣monitoring␣service␣that␣

gives␣detailed␣monitoring␣information␣about␣the␣used

␣resources␣and␣services␣at␣an␣ICT␣infrastructure."^^

xsd:string .

138

139 ### urn:mofi#SLAMonitoring

140 :SLAMonitoring rdf:type owl:Class ;

141

142 rdfs:subClassOf :MonitoringService ;

143

144 rdfs:comment "Rrepresents␣the␣Service␣Level␣Agreement␣(SLA)␣monitoring␣

service␣that␣gives␣detailed␣monitoring␣information␣about␣pre-defined␣

metrics␣to␣observe␣the␣SLAs␣whether␣they␣are␣met␣or␣violated."^^xsd:

string .

145

146 ### urn:mofi#Data

147 :Data rdf:type owl:Class ;

148

149 rdfs:comment "Data␣represents␣measurement␣data␣as␣well␣as␣other␣monitoring␣related␣

information."^^xsd:string .

150

151 ### urn:mofi#Metric

152 :Metric rdf:type owl:Class ;

153

154 rdfs:comment "Metric␣is␣anything␣that␣can␣be␣measured,␣such␣as␣CPU␣load␣of␣a␣

machine,␣packet␣loss␣in␣a␣channel,␣etc."^^xsd:string .

155

156 ### urn:mofi#Tool

157 :Tool rdf:type owl:Class ;

158

159 rdfs:comment "Tool␣represents␣tools␣used␣for␣performing␣measurements␣and␣monitoring

␣such␣as␣measurement␣probes,␣data␣collectors,␣visualizer,␣etc."^^xsd:string ;

160

161 rdfs:subClassOf omn:Resource .

162 [rdf:type owl:Restriction ;

163 owl:onProperty omn:hasService ;

164 owl:onClass omn:Service ;

165 owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger

166] .

167

168 ### urn:mofi#Unit

169 :Unit rdf:type owl:Class ;

170

171 rdfs:comment "Unit␣represents␣the␣unit␣of␣the␣measurement␣and␣monitoring␣data␣such␣

as␣Bytes,␣Bitspersecond,␣etc."^^xsd:string .

172

173 ### urn:mofi#Lifetime

174 :Lifetime rdf:type owl:Class ;

175

176 rdfs:comment "Represents␣lifetime␣of␣any␣process␣(e.g.␣monitoring␣service␣or␣

measurement)."^^xsd:string .

VIII

Listing B.2 shows only a very limited number of classes and properties from the

MOFI Metric ontology. This listing has been shortened by removing some preőxes of

external imported ontologies and metadata information, in contrast to Listing B.1

(preőxes in lines 2 to 15 and the metadata in lines 20 to 29). However, this ontology

imports all these preőxes in addition to those of the other MOFI ontologies.

Listing B.2: Part of the MOFI Metric ontology

1 @prefix : <urn:mofi-metric#> .

2 ...

3 @prefix mofi: <urn:mofi#> .

4 @prefix mofi-metric: <urn:mofi-data#> .

5 @prefix mofi-unit: <urn:mofi-unit#> .

6 @prefix mofi-tool: <urn:mofi-tool#> .

7 @prefix mofi-genericconcepts: <urn:mofi-genericconcepts#> .

8 @base <urn:mofi-metric> .

9

10 <urn:mofi-metric> rdf:type owl:Ontology ;

11

12 rdfs:label "mofi-metric"@en .

13

14 ###

15 # Object Properties

16 ###

17

18 ### urn:mofi-metric#canBeCalculatedFrom

19 :canBeCalculatedFrom rdf:type owl:ObjectProperty ;

20

21 rdfs:domain mofi:Metric ;

22

23 rdfs:range mofi:Metric .

24

25 ###

26 # Data properties

27 ###

28

29 ### urn:mofi-metric#hasFrequency

30 :hasFrequency rdf:type owl:DatatypeProperty ;

31

32 rdfs:comment "Presents␣the␣updating␣rate␣of␣the␣measurements,␣e.g.␣if␣the␣

frequency␣is␣set␣to␣30␣second,␣i.e.␣a␣new␣measure␣is␣provided␣every␣30␣

second."^^xsd:string ;

33

34 rdfs:domain mofi:Metric ;

35

36 rdfs:range xsd:integer .

37

38 ###

39 # Classes

40 ###

41

42 ### urn:mofi-metric#Availability

43 :Availability rdf:type owl:Class ;

44

45 rdfs:subClassOf mofi:Metric ;

46

IX

B. Monitoring Ontologies

47 rdfs:comment "Represents␣resource␣availability␣status,␣1=available,␣0=not,␣

2=anything␣else␣(in␣Maintenance)."^^xsd:string .

48

49 ### urn:mofi-metric#BandwidthUtilization

50 :BandwidthUtilization rdf:type owl:Class ;

51

52 rdfs:subClassOf mofi:Metric .

53

54 ### urn:mofi-metric#CPULoad

55 :CPULoad rdf:type owl:Class ;

56

57 rdfs:subClassOf :CPUUtilization .

58

59 ### urn:mofi-metric#CPUUtilization

60 :CPUUtilization rdf:type owl:Class ;

61

62 rdfs:subClassOf mofi:Metric .

63

64 ### urn:mofi-metric#Delay

65 :Delay rdf:type owl:Class ;

66

67 rdfs:subClassOf mofi:Metric .

68

69 ### urn:mofi-metric#InterferenceLevel

70 :InterferenceLevel rdf:type owl:Class ;

71

72 rdfs:subClassOf :RadioSignalQuality .

73

74 ### urn:mofi-metric#OneWayDelay

75 :OneWayDelay rdf:type owl:Class ;

76

77 rdfs:subClassOf :Delay .

78

79 ### urn:mofi-metric#RadioSignalQuality

80 :RadioSignalQuality rdf:type owl:Class ;

81

82 rdfs:subClassOf mofi:Metric ;

83

84 rdfs:comment "Represents␣radio␣signal␣quality␣of␣any␣interface␣or␣␣

channel."^^xsd:string .

85

86 ### urn:mofi-metric#UsedBandwidth

87 :UsedBandwidth rdf:type owl:Class ;

88

89 rdfs:subClassOf :BandwidthUtilization .

90

91 ### urn:mofi-metric#UsedMemory

92 :UsedMemory rdf:type owl:Class ;

93

94 rdfs:subClassOf :MemoryUtilization ;

95

96 rdfs:comment "Represents␣the␣available␣momory␣that␣is␣unused␣by␣the␣system␣(

programs)."^^xsd:string .

Listing B.3 shows some classes and properties included in the MOFI Data ontology.

The ontology includes even more concepts and relations, which are not represented

X

in this listing. Similarly, Listing B.4 and Listing B.5 represent the MOFI Tool and

Generic Concepts ontologies respectively.

Listing B.3: Part of the MOFI Data ontology

1 @prefix : <urn:mofi-data#> .

2 ...

3 @base <urn:mofi-data> .

4

5 <urn:mofi-data> rdf:type owl:Ontology ;

6

7 rdfs:label "mofi-data"@en .

8

9 ###

10 # Object Properties

11 ###

12

13 ### urn:mofi-data#hasMeasurementData

14 :hasMeasurementData rdf:type owl:ObjectProperty ;

15

16 rdfs:comment "Different␣data␣which␣can␣be␣obtained␣from␣the␣

measurement.␣Those␣Values␣determine␣the␣metrics␣measured␣and␣

stated␣in␣:measuresMetric␣property"^^xsd:string ;

17

18 rdfs:domain mofi:Metric ;

19

20 rdfs:range :MeasurementData .

21

22 ### urn:mofi-data#isMeasuredIn

23

24 :isMeasuredIn rdf:type owl:ObjectProperty ;

25

26 rdfs:comment "Represents␣the␣unit␣of␣the␣measurement␣data"^^xsd:string ;

27

28 rdfs:domain :MeasurementData ;

29

30 rdfs:range mofi:Unit .

31

32 ### urn:mofi-data#isMeasurementDataOf

33

34 :isMeasurementDataOf rdf:type owl:ObjectProperty ;

35

36 rdfs:comment "Reprenets␣a␣measurement␣data␣of␣a␣particular␣metric"^^

xsd:string ;

37

38 owl:inverseOf :hasMeasurementData ;

39

40 rdfs:domain :MeasurementData ;

41

42 rdfs:range mofi:Metric .

43

44 ###

45 # Data properties

46 ###

47

48 ### urn:mofi-data#hasMeasurementDataValue

49 :hasMeasurementDataValue rdf:type owl:DatatypeProperty ;

XI

B. Monitoring Ontologies

50

51 rdfs:comment "The␣value␣related␣to␣a␣measurement.␣Should␣be␣the␣

property␣of␣a␣MeasurementData␣(or␣one␣of␣its␣subclasses)␣

instance␣and␣other␣details␣as␣unit␣and␣datatype␣should␣be␣

present"^^xsd:string ;

52

53 rdfs:domain [rdf:type owl:Class ;

54 owl:unionOf (mofi:Metric

55 :MeasurementData

56)

57] .

58

59 ### urn:mofi-data#hasTimestamp

60 :hasTimestamp rdf:type owl:DatatypeProperty ;

61

62 rdfs:domain :MeasurementData .

63

64 ### urn:mofi-data#hasMeasurementID

65 :hasMeasurementID rdf:type owl:DatatypeProperty ;

66

67 rdfs:comment "Unique␣identifier␣given␣for␣each␣measurement."@en ;

68

69 rdfs:subPropertyOf omn-lifecycle:hasID ;

70

71 rdfs:domain mofi:Measurement ;

72

73 rdfs:range xsd:int .

74

75 ###

76 # Classes

77 ###

78

79 ### urn:mofi-data#MeasurementData

80 :MeasurementData rdf:type owl:Class ;

81

82 rdfs:subClassOf mofi:Data ;

83

84 rdfs:comment "Represents␣individual␣results␣of␣a␣measured␣metric."^^xsd:

string .

85

86 ### urn:mofi-data#ConfigurationParameter

87 :ConfigurationParameter rdf:type owl:Class ;

88

89 rdfs:subClassOf mofi:Data ;

90

91 rdfs:comment "Represents␣configuration␣parameters␣used␣to␣to␣setup␣

the␣monitoring␣service,␣e.g.␣duration."^^xsd:string .

92

93 ### urn:mofi-data#SimpleMeasurement

94 :SimpleMeasurement rdf:type owl:Class ;

95

96 rdfs:subClassOf :MeasurementData ;

97

98 rdfs:comment "Represents␣data␣obtained␣from␣one␣simple␣measurement."^^

xsd:string .

99

100 ### urn:mofi-data#StatisticalMeasurement

XII

101 :StatisticalMeasurement rdf:type owl:Class ;

102

103 rdfs:subClassOf :MeasurementData ;

104

105 rdfs:comment "Represents␣statistical␣measurements␣that␣can␣be␣

obtained␣from␣the␣simple␣measurement␣values."^^xsd:string .

106

107 ### urn:mofi-data#DataFormat

108 :DataFormat rdf:type owl:Class ;

109

110 rdfs:comment "Represents␣the␣format␣of␣the␣transfered␣data."^^xsd:string .

111

112 ### urn:mofi-data#JSONFormat

113 :JSONFormat rdf:type owl:Class ;

114

115 rdfs:subClassOf :FormattedFile ;

116

117 rdfs:comment "Represents␣the␣JSON␣format␣of␣the␣transfered␣data."^^xsd:string

.

118

119 ###

120 # Individuals

121 ###

122

123 ### urn:mofi-data#OMLStream

124 :OMLStream rdf:type mofi:Data ,

125 :FormattedFile ,

126 owl:NamedIndividual ;

127

128 rdfs:comment "OML␣streams␣exported␣by␣injection␣points␣(OML␣clients)␣and␣

collected␣by␣the␣OML␣server."^^xsd:string .

Listing B.4: Part of the MOFI Tool ontology

1 @prefix : <urn:mofi-tool#> .

2 ...

3 @base <urn:mofi-tool> .

4

5 <urn:mofi-tool> rdf:type owl:Ontology ;

6

7 rdfs:label "mofi-tool"@en .

8

9 ###

10 # Object Properties

11 ###

12

13 ### urn:mofi-tool#communicationParadigm

14 :communicationParadigm rdf:type owl:ObjectProperty ;

15

16 rdfs:comment "The␣communication␣paradigm␣the␣monitoring␣tool␣is␣

using."^^xsd:string ;

17

18 rdfs:domain :MonitoringTool ;

19

20 rdfs:range :CommunicationParadigm .

21

22 ###

XIII

B. Monitoring Ontologies

23 # Classes

24 ###

25

26 ### urn:mofi-tool#MonitoringTool

27 :MonitoringTool rdf:type owl:Class ;

28

29 rdfs:subClassOf mofi:Tool ;

30

31 rdfs:comment "Represents␣any␣tool␣used␣for␣performing␣monitoring␣service."

^^xsd:string .

32

33 ### urn:mofi-tool#CaptureTool

34 :CaptureTool rdf:type owl:Class ;

35

36 rdfs:subClassOf :MonitoringTool ;

37

38 rdfs:comment "Represents␣any␣tool␣used␣for␣capturing␣monitoring␣and␣

measurement␣data."^^xsd:string .

39

40 ### urn:mofi-tool#Collector

41 :Collector rdf:type owl:Class ;

42

43 rdfs:subClassOf :MonitoringTool ;

44

45 rdfs:comment "Represents␣any␣tool␣used␣for␣collecting␣monitoring␣and␣

measurement␣data."^^xsd:string .

46

47 ### urn:mofi-tool#Converter

48 :Adapter rdf:type owl:Class ;

49

50 rdfs:subClassOf :MonitoringTool ;

51

52 rdfs:comment "Represents␣any␣tool␣used␣to␣adapt␣and␣convert␣the␣collected␣data␣

from␣one␣format␣to␣anohter."^^xsd:string .

53

54 ## urn:mofi-tool#MeasurementTool

55 :MeasurementTool rdf:type owl:Class ;

56

57 rdfs:subClassOf mofi:Tool ;

58

59 rdfs:comment "Represents␣any␣tool␣used␣to␣execute␣the␣measurments."^^xsd:

string .

60

61 ## urn:mofi-tool#ActiveMeasurementTool

62 :ActiveMeasurementTool rdf:type owl:Class ;

63

64 rdfs:subClassOf :MeasurementTool ;

65

66 rdfs:comment "Represents␣any␣tool␣used␣to␣execute␣active␣measurments."

^^xsd:string .

67

68 ## urn:mofi-tool#CommunicationParadigm

69 :CommunicationParadigm rdf:type owl:Class ;

70

71 rdfs:comment "Describes␣the␣communication␣paradigm␣used␣in␣the␣tool

␣to␣perform␣the␣measurements␣and␣monitoring␣services."^^xsd:

string .

XIV

72

73 ## urn:mofi-tool#ClientServer

74 :ClientServer rdf:type owl:Class ;

75

76 rdfs:subClassOf :Distributed .

77

78 ## urn:mofi-tool#GUI

79 :GUI rdf:type owl:Class ;

80

81 rdfs:subClassOf :DataAccess ;

82

83 rdfs:comment "Represents␣the␣Graphical␣User␣Interface␣used␣to␣get/access␣the␣data."

^^xsd:string .

84

85 ## urn:mofi-tool#API

86 :API rdf:type owl:Class ;

87

88 rdfs:subClassOf :DataAccess ;

89

90 rdfs:comment "␣Represents␣the␣Appication␣Programming␣Interface␣used␣to␣get/access␣

the␣data."^^xsd:string .

91

92 ## urn:mofi-tool#CollectionEndpoint

93 :CollectionEndpoint rdf:type owl:Class ;

94

95 rdfs:subClassOf omn:Service ;

96

97 rdfs:comment "␣Represents␣the␣endpoint␣of␣a␣monitoring␣data␣collection

␣service."^^xsd:string .

98

99 ### urn:mofi-tool#Database

100 :Database rdf:type owl:Class ;

101

102 rdfs:subClassOf omn:Service ;

103

104 rdfs:comment "Represents␣any␣database␣management␣system."^^xsd:string .

105

106 ### urn:mofi-tool#SQL

107 :SQL rdf:type owl:Class ;

108

109 rdfs:subClassOf :Database ;

110

111 rdfs:comment "SQL␣(Structured␣Query␣Language)␣is␣a␣special-purpose␣programming␣

language␣designed␣for␣managing␣data␣held␣in␣a␣relational␣database␣management␣

system␣(RDBMS),␣or␣for␣stream␣processing␣in␣a␣relational␣data␣stream␣management

␣system␣(RDSMS)."^^xsd:string .

112

113 ###

114 # Individuals

115 ###

116

117 ### urn:mofi-tool#Ping

118 :Ping rdf:type :CaptureTool ,

119 :MonitoringTool ,

120 :ActiveMeasurementTool ,

121 owl:NamedIndividual ;

122

XV

B. Monitoring Ontologies

123 rdfs:comment "Ping␣is␣a␣program␣that␣can␣be␣considered␣as␣a␣tool␣used␣for␣capturing

␣data,␣monitoring␣or␣for␣executing␣active␣measurements.␣The␣ping␣program␣is␣

can␣be␣used␣to␣test␣wether␣a␣particular␣host␣is␣reachable␣across␣an␣IP␣network.

␣It␣measures␣the␣round␣trip␣time,␣packet␣loss,␣and␣some␣statistical␣

information␣about␣round␣trip␣time␣(minimum,␣maximum,␣average␣and␣mean␣

deviation)."^^xsd:string .

124

125 ### urn:mofi-tool#Zabbix

126 :Zabbix rdf:type :AnalysisTool ,

127 :MonitoringTool ,

128 :GraphicalVisualizationTool ,

129 owl:NamedIndividual ;

130

131 :communicationParadigm :ClientServer ;

132

133 rdfs:comment "Zabbix␣is␣a␣monitoring␣solution␣used␣to␣monitor␣computer␣and␣

network␣devices.␣For␣more␣information␣visit␣its␣website:␣http://www.zabbix.

com."^^xsd:string .

134

135 ### urn:mofi-tool#OMLWrapper

136 :OMLWrapper rdf:type :Adapter ,

137 owl:NamedIndividual ;

138

139 rdfs:comment "Orbit␣Measurement␣Library␣(OML)␣Wrapper␣(https://oml.mytestbed.

net/projects/oml/wiki/)␣is␣a␣software␣that␣acts␣as␣an␣adapter␣retrieving␣

measurement␣and␣monitoring␣data␣from␣any␣monitoring␣tool␣and␣converts␣

this␣data␣into␣OML␣streams␣that␣are␣then␣sent␣through␣the␣OML␣Measurement

␣Stream␣Protocol␣(OMSP)␣to␣an␣OML␣server."^^xsd:string .

140

141 ### urn:mofi-tool#OMLServer

142 :OMLServer rdf:type omn:Service ,

143 owl:NamedIndividual ;

144

145 rdfs:comment "OML␣Measurement␣Library␣(OML)␣server␣receives␣measurement␣data␣

sent␣by␣OML␣clients␣as␣OML␣streams␣through␣the␣OML␣protocol␣(OMSP)␣and␣

stores␣this␣data␣into␣a␣database␣(natively␣support␣SQlite␣and␣PostgreSQL).

␣Website:␣https://oml.mytestbed.net/projects/oml/wiki/."^^xsd:string .

146

147 ### urn:mofi-tool#PostgreSQL

148 :PostgreSQL rdf:type :Collector ,

149 :SQL ,

150 owl:NamedIndividual ;

151

152 rdfs:comment "Is␣an␣object-relational␣database␣management␣system.␣Website:␣

http://www.postgresql.org."^^xsd:string .

153

154 ### urn:mofi-tool#JenaFuseki

155 :JenaFuseki rdf:type :Collector ,

156 owl:NamedIndividual ;

157

158 rdfs:comment "Is␣a␣SPARQL␣server␣with␣a␣native␣triple␣store␣database␣(TDB)␣

that␣serves␣storing␣and␣querying␣data␣as␣RDF␣triples␣over␣HTTP.␣Website:␣

http://jena.apache.org/documentation/serving_data/."^^xsd:string ;

159

160 omn:hasService :SPARQLEndpoint ,

161 :Database .

162

XVI

163 ### urn:mofi-tool#OMSPEndpoint

164 :OMSPEndpoint rdf:type :CollectionEndpoint ,

165 owl:NamedIndividual ;

166

167 rdfs:comment "The␣end␣point␣of␣the␣collectin␣service␣that␣offers␣an␣OMSP␣

interface␣to␣receive␣and␣store␣OML␣measurement␣streams␣transfered␣

through␣the␣use␣of␣the␣OML␣Measurement␣Stream␣Protocol␣(OMSP)."^^xsd:

string .

168

169 ### urn:mofi-tool#SPARQLEndpoint

170 :SPARQLEndpoint rdf:type :CollectionEndpoint ,

171 owl:NamedIndividual ;

172

173 rdfs:comment "The␣end␣point␣of␣the␣collectin␣service␣that␣offers␣a␣SPARQL␣

query␣interface␣allowing␣its␣user␣to␣update␣or␣query␣data␣from␣triple

␣stores␣over␣HTTP␣protocol."^^xsd:string .

Listing B.5: Part of the MOFI Generic Concepts ontology

1 @prefix : <mofi-genericconcepts#> .

2 ...

3 @base <mofi-genericconcepts> .

4

5 <urn:mofi-genericconcepts> rdf:type owl:Ontology ;

6

7 rdfs:label "mofi-genericconcepts"@en .

8

9 ###

10 # Object Properties

11 ###

12

13 ### mofi-genericconcepts#locatedAt

14 :locatedAt rdf:type owl:ObjectProperty ;

15

16 rdfs:range :Location ;

17

18 rdfs:domain [rdf:type owl:Class ;

19 owl:unionOf (omn:Service

20 mofi:Tool

21 mofi:Measurement

22 :MonitoringDomain

23)

24] .

25

26 ### mofi-genericconcepts#usesProtocol

27 :usesProtocol rdf:type owl:ObjectProperty ;

28

29 rdfs:range :Protocol ;

30

31 rdfs:domain [rdf:type owl:Class ;

32 owl:unionOf (omn:Service

33 :Protocol

34)

35] .

36

37 ### mofi-genericconcepts#query

38 :query rdf:type owl:ObjectProperty ;

XVII

B. Monitoring Ontologies

39

40 rdfs:domain mofi:Tool ;

41

42 rdfs:range [rdf:type owl:Class ;

43 owl:unionOf (omn:Service

44 mofi:Tool

45)

46] .

47

48 ###

49 #

50 # Data properties

51 #

52 ###

53

54 ### mofi-genericconcepts#latitude

55 :latitude rdf:type owl:DatatypeProperty ;

56

57 rdfs:comment "Determines␣the␣latitude␣coordinate␣of␣a␣physical␣location."^^xsd:

string ;

58

59 rdfs:domain :PhysicalLocation ;

60

61 rdfs:range xsd:float .

62

63 ### mofi-genericconcepts#longitude

64 :longitude rdf:type owl:DatatypeProperty ;

65

66 rdfs:comment "Determines␣the␣longitude␣coordinate␣of␣a␣physical␣location."^^

xsd:string ;

67

68 rdfs:domain :PhysicalLocation ;

69

70 rdfs:range xsd:float .

71

72 ###

73 # Classes

74 ###

75

76 ### mofi-genericconcepts#Protocol

77 :Protocol rdf:type owl:Class ;

78

79 rdfs:comment "Represents␣protocols␣used␣for␣measurement␣data␣exchange␣and␣

reporting."^^xsd:string .

80

81 ### mofi-genericconcepts#Event

82 :Event rdf:type owl:Class ;

83

84 rdfs:comment "Represents␣any␣event␣or␣notification␣within␣a␣system␣during␣

processing␣phase,␣e.g␣CPU␣load␣is␣over␣a␣defined␣threshold,␣a␣resource␣is␣

created␣or␣deleted,␣etc.."^^xsd:string .

85

86 ### mofi-genericconcepts#Location

87 :Location rdf:type owl:Class ;

88

XVIII

89 rdfs:comment "Represents␣location␣of␣monitoring␣and␣measurement␣related␣

concepts,␣such␣as␣location␣measurements␣(i.e.␣measured␣metric),␣data␣

collectors,␣etc."^^xsd:string .

90

91 ### mofi-genericconcepts#MonitoringDomain

92 :MonitoringDomain rdf:type owl:Class ;

93

94 rdfs:subClassOf omn-federation:Infrastructure ;

95

96 rdfs:comment "Represents␣the␣domain␣or␣the␣area␣that␣is␣being␣monitored.

"^^xsd:string .

97

98 ###

99 # Individuals

100 ###

101

102 ### mofi-genericconcepts#OMSP

103 :OMSP rdf:type :ApplicationProtocol ,

104 owl:NamedIndividual ;

105

106 rdfs:comment "The␣OML␣Measurement␣Stream␣Protocol␣(OMSP)␣is␣used␣by␣the␣Orbit␣

Measurement␣Library␣(OML)␣to␣describe␣and␣transport␣measurement␣tuples␣between

␣injection␣points␣(OML␣clients)␣and␣processing/collection␣points␣(OML␣servers).

"^^xsd:string .

107

108 ## mofi-genericconcepts#SNMP

109 :SNMP rdf:type :ApplicationProtocol ,

110 owl:NamedIndividual ;

111

112 rdfs:comment "The␣Simple␣Network␣Management␣Protocol␣(SNMP)␣that␣is␣used␣within␣the

␣OML␣framework␣for␣transfering␣the␣data␣between␣the␣OML␣clients␣and␣server."^^

xsd:string .

XIX

C
Monitoring Resource Adapters

Listing C.1 is an example of an OML wrapper written in Python, which requires

the oml4py.py and zabbix_api.py libraries. This wrapper is one of the MAFIA

components that is conőgured to push monitoring information about PMs hosting

users’ VMs. It is written to work in threads to support providing data to multiple users

at the same time, i.e. it pushes data to diferent users’ collection endpoints (indicated

through collection_uri) simultaneously. It runs on a regular basis with a frequency

of 10 seconds and each time it checks the PMs (referred to with host_name), about

which monitoring data is required. Such information is stored in an SQLite database

(an example from the experiment discussed in Sec. 7.2 is shown in Listing C.2) that is

updated by the FITeagle monitoring service module, which is implemented as part of

MAFIA. Further conőguration information is provided in Listing C.3. The wrapper

instantiates communication with the target server (collection_uri); see line 77 of

Listing C.1. Lines 79 to 81 include the schema that is generated by Scafold, as

discussed in Sec. 6.2.1.4. The wrapper retrieves monitoring data (in this example only

three metrics are considered: used memory, used bandwidth and CPU load) from the

Zabbix monitoring tool about the PMs using their host names; see lines 110 to 133.

The data is then exported as OML streams to the target server as shown in lines 138

to 140.

Listing C.1: Example of an OML wrapper written in Python

1 from zabbix_api import ZabbixAPI import oml4py

2 import threading import sqlite3 import sys import logging

3 import logging.handlers import subprocess import pytz

4 import math from datetime import datetime import ast

5 import exceptions import cStringIO import os import re

6 import tempfile import time from time import sleep

7

8 class omlclient (threading.Thread):

9 def __init__(self, threadID, name, targeturi):

10 threading.Thread.__init__(self)

XXI

C. Monitoring Resource Adapters

11 self.threadID = threadID

12 self.name = name

13 self.target = targeturi

14 def run(self):

15 print "Starting␣" + self.name

16 startOML(self.name, self.target)

17 print self.name + "␣is␣terminated."

18

19 def init_logger(settings,name):

20 logger=logging.getLogger(name)

21 logfilename=settings[’logger_filename’]

22 if(settings[’logger_loglevel’]=="DEBUG"):

23 loglevel=logging.DEBUG

24 elif settings[’logger_loglevel’]=="INFO":

25 loglevel=logging.INFO

26 elif settings[’logger_loglevel’]=="WARNING":

27 loglevel=logging.WARNING

28 else:

29 loglevel=logging.ERROR

30

31 logformatter=logging.Formatter(settings[’logger_formatter’])

32 logger.setLevel(loglevel)

33 if(settings[’logger_toconsole’]=="1"):

34 ch1 = logging.StreamHandler()

35 ch1.setLevel(loglevel)

36 ch1.setFormatter(logformatter)

37 logger.addHandler(ch1)

38 ch2 = logging.handlers.RotatingFileHandler(logfilename, maxBytes=int(settings[’

logger_maxBytes’]), backupCount=int(settings[’logger_backupCount’]))

39 ch2.setLevel(loglevel)

40 ch2.setFormatter(logformatter)

41 logger.addHandler(ch2)

42 return logger

43

44 def read_config(filename):

45 try:

46 f = open(filename, "r")

47 except:

48 logger.error("can␣not␣read␣file␣%s,␣script␣terminated" % (filename))

49 sys.exit()

50 try:

51 dictionsry = {}

52 for line in f:

53 splitchar = ’=’

54 kv = line.split(splitchar)

55 if (len(kv)==2):

56 dictionsry[kv[0]] = str(kv[1])[1:-2]

57 return dictionsry

58 except:

59 logger.error("can␣not␣read␣file␣%s␣to␣a␣dictionary,␣format␣must␣be␣KEY=VALUE" % (

filename))

60 sys.exit()

61

62 def checkURL(url):

63 if "http://" not in url :

64 return url

65 else :

XXII

66 return url.replace("http://","")

67

68 def connect_sqlite() :

69 try :

70 con = sqlite3.connect(monitoring_settings[’sqliteDB’])

71 except Exception :

72 logger.error("Cannot␣connect␣to␣SQLite3.")

73 return con

74

75 def startOML(threadName, target):

76 #-------------------- schemas as created by Scaffold --------------------#

77 omlInst = oml4py.OMLBase(monitoring_settings["appname"],monitoring_settings["domain"

],monitoring_settings["sender"], target)

78

79 omlInst.addmp("used_memory", "used_memory:double:{omn-monitoring-data:

SimpleMeasurement|omn-monitoring-data:isMeasurementDataOf|omn-monitoring-metric:

UsedMemory}{omn-monitoring-metric:UsedMemory|omn-monitoring:

isMeasurementMetricOf|omn-domain-pc:PC}{omn-monitoring-data:SimpleMeasurement|

omn-monitoring-data:hasMeasurementDataValue|%value%}{omn-monitoring-data:

SimpleMeasurement|omn-monitoring:hasUnit|omn-monitoring-unit:Byte}{omn-

monitoring-unit:Byte|omn-monitoring-unit:hasPrefix|omn-monitoring-unit:giga}␣

timestamp:datetime:{omn-monitoring-data:SimpleMeasurement|omn-monitoring-data:

hasTimestamp|%value%}␣physicalresource:string:{omn-domain-pc:PC|omn:hasURI|%

value%}␣virtualresource:string:{omn-domain-pc:VM|omn:hasURI|%value%}{omn-domain-

pc:VM|omn-lifecycle:childOf|omn-domain-pc:PC}␣")

80 omlInst.addmp("used_bandwidth", "used_bandwidth:double:{omn-monitoring-data:

SimpleMeasurement|omn-monitoring-data:isMeasurementDataOf|omn-monitoring-metric:

UsedBandwidth}{omn-monitoring-metric:UsedBandwidth|omn-monitoring:

isMeasurementMetricOf|omn-domain-pc:PC}{omn-monitoring-data:SimpleMeasurement|

omn-monitoring-data:hasMeasurementDataValue|%value%}{omn-monitoring-data:

SimpleMeasurement|omn-monitoring:hasUnit|omn-monitoring-unit:bitpersecond}{omn-

monitoring-unit:bitpersecond|omn-monitoring-unit:hasPrefix|omn-monitoring-unit:

mega}␣timestamp:datetime:{omn-monitoring-data:SimpleMeasurement|omn-monitoring-

data:hasTimestamp|%value%}␣physicalresource:string:{omn-domain-pc:PC|omn:hasURI

|%value%}␣virtualresource:string:{omn-domain-pc:VM|omn:hasURI|%value%}{omn-

domain-pc:VM|omn-lifecycle:childOf|omn-domain-pc:PC}␣")

81 omlInst.addmp("cpu_load", "cpu_load:double:{omn-monitoring-data:SimpleMeasurement|omn

-monitoring-data:isMeasurementDataOf|omn-monitoring-metric:CPULoad}{omn-

monitoring-metric:CPULoad|omn-monitoring:isMeasurementMetricOf|omn-domain-pc:PC

}{omn-monitoring-data:SimpleMeasurement|omn-monitoring-data:

hasMeasurementDataValue|%value%}␣timestamp:datetime:{omn-monitoring-data:

SimpleMeasurement|omn-monitoring-data:hasTimestamp|%value%}␣physicalresource:

string:{omn-domain-pc:PC|omn:hasURI|%value%}␣virtualresource:string:{omn-domain-

pc:VM|omn:hasURI|%value%}{omn-domain-pc:VM|omn-lifecycle:childOf|omn-domain-pc:

PC}␣")

82 #---#

83 omlInst.start()

84

85 while True :

86 con = connect_sqlite()

87 logger.debug("%s:␣Connecting␣to␣SQLite..." % threadName)

88

89 with con :

90 try :

91 cur = con.cursor()

XXIII

C. Monitoring Resource Adapters

92 cur.execute("select␣distinct(host_name),␣collector_uri,␣vm_uri␣from␣

virtual_physical_map␣where␣collector_uri␣like␣\’%" + target + "%\’

")

93 rows = cur.fetchall()

94 logger.debug("Fetching␣all␣host␣names␣from␣database...")

95

96 except:

97 logger.error("Error␣fetching␣data␣from␣SQLite.␣Try␣again␣in␣10␣secs...

")

98

99 if not rows :

100 logger.error("No␣host␣name␣found.␣Exiting␣%s..." % threadName)

101 global listOfCollectorURIs

102 for element in listOfCollectorURIs :

103 if target in element :

104 listOfCollectorURIs.remove(element)

105 break

106 break

107

108 else :

109 try:

110 zabbix_server_uri = monitoring_settings[’zabbixuri’]

111 zapi = ZabbixAPI(server=zabbix_server_uri, log_level=int(

monitoring_settings[’log_level’]))

112 zabbix_username = monitoring_settings[’username’]

113 zabbix_password = monitoring_settings[’password’]

114 zapi.login(zabbix_username,zabbix_password)

115

116 except Exception as e:

117 logger.error("can␣not␣open␣zabbix.␣Try␣again␣in␣10␣secs...")

118

119 for row in rows :

120 try:

121 hostid = zapi.host.get({"filter":{"name":row[0]},"output":"extend"}).

pop()[’hostid’]

122

123 item = zapi.item.get({"output": "extend","hostids":hostid,"search":{"

name":"Used␣memory"}}).pop()

124 usedmemory = float(item[’lastvalue’]) / (1024)**3

125 usedmemory_ts = datetime.fromtimestamp(int(item[’lastclock’]),pytz.

timezone("Europe/Berlin"))

126

127 item = zapi.item.get({"output": "extend","hostids":hostid,"search":{"

key_":"net.if.in[eth2]"}}).pop()

128 usedbandwidth = float(item[’lastvalue’]) / (1024)**2

129 usedbandwidth_ts = datetime.fromtimestamp(int(item[’lastclock’]),pytz.

timezone("Europe/Berlin"))

130

131 item = zapi.item.get({"output": "extend","hostids":hostid,"search":{"

key_":"system.cpu.load[percpu,avg5]"}}).pop()

132 cpuload = float(item[’lastvalue’])

133 cpuload_ts = datetime.fromtimestamp(int(item[’lastclock’]),pytz.

timezone("Europe/Berlin"))

134

135 except Exception as e:

136 logger.error("cannot␣fetch␣data␣from␣Zabbix.␣Try␣again␣in␣10␣secs...")

137

XXIV

138 omlInst.inject("used_memory", [usedmemory, usedmemory_ts, row[0], row[2]])

139 omlInst.inject("used_bandwidth", [usedbandwidth, usedbandwidth_ts, row[0],

row[2]])

140 omlInst.inject("cpu_load", [cpuload, cpuload_ts, row[0], row[2]])

141

142 sleep(10)

143

144 omlInst.close()

145

146 ############################### SCRIPT START ###############################

147 monitoring_settings=read_config(’monitoring.cfg’)

148 logger=init_logger(monitoring_settings,’monitoring-oml-wrapper.py’)

149 logger.debug("monitoring-oml-wrapper.py’␣has␣been␣started")

150 listOfCollectorURIs = []

151 threadCounter = 1

152

153 while True :

154 con = connect_sqlite()

155 logger.debug("MAIN␣THREAD:␣Connecting␣to␣SQLite...")

156 with con :

157 try :

158 cur = con.cursor()

159 cur.execute("select␣distinct(collector_uri)␣from␣virtual_physical_map")

160 rows = cur.fetchall()

161 logger.debug("Fetching␣collector␣URIs␣from␣database...")

162 for row in rows :

163 print row[0]

164 except:

165 logger.error("Error␣fetching␣data␣from␣SQLite.␣Try␣again␣in␣10␣secs...")

166

167 if not rows :

168 logger.error("No␣collector␣URI␣found.␣Try␣again␣in␣10␣secs...")

169

170 else :

171 for row in rows :

172 if row[0] not in listOfCollectorURIs :

173 uri = checkURL(row[0])

174 thread_name = "Thread-" + str(threadCounter)

175 omlclient(threadCounter,thread_name,uri).start()

176 listOfCollectorURIs.append(row[0])

177 threadCounter += 1

178 logger.debug("MAIN␣THREAD:␣waiting␣10␣secs␣before␣connecting␣to␣SQLite␣

again...")

179

180 sleep(10)

Listing C.2: Conőguration information stored in SQLite database and required by an

OML wrapper for performing its tasks

1 sqlite> select * from virtual_physical_map;

2 1041af2d-a25b-48b9-88d0-0cb7f19b1eaf|openstack.av.tu-berlin.de|http

://130.149.22.139:3003|http://monitoring.service.tu-berlin.de/resource/Openstack-1/

c277660a-f5c7-4c29-9fdb-590e6e57ecc2

XXV

C. Monitoring Resource Adapters

Listing C.3: Conőguration information required by an OML wrapper for performing

its tasks

1 logger_filename="./monitoring.log"

2 logger_loglevel="DEBUG"

3 logger_maxBytes="10485760"

4 logger_backupCount="2"

5 logger_toconsole="1"

6 logger_formatter="%(asctime)s␣-␣%(name)s␣-␣%(levelname)s␣-␣%(message)s"

7

8 #SQLite database path + name

9 sqliteDB="monitoring_sqliteDB.db"

10

11 #oml app name

12 appname="infrastructure_monitoring"

13 #oml domain name

14 domain="experiment_demo"

15 #oml sender

16 sender="http://monitoring.service.tu-berlin.de"

17

18 #zabbix uri

19 zabbixuri="http://<server_IP>/zabbix"

20 #zabbix username

21 username="<username>"

22 #zabbix password

23 password="<password>"

24 #zabbix API log level

25 log_level="0"

Listing C.4 is another example of an OML wrapper written in Ruby. It requires

the oml4rb and zabbixapi libraries. This wrapper represents a simple case where

monitoring data about the used memory, used bandwidth and CPU load of a PM

(identiőed in line 94) hosting a user VM (identiőed in line 95) is provided regularly

every 30 seconds. It gets data from Zabbix and provides it as OML streams to the

target server whose URI is read from a conőguration őle (see line 78) along with

further conőguration information like that identiőed in Listing C.3.

Listing C.4: An example of OML wrapper written in Ruby

1 require "oml4r"

2 require "zabbixapi"

3 require ’date’

4 require ’time’

5

6 #----------------------- Schemas as screated by Scaffold -----------------------#

7

8 class USED_MEMORY_MP < OML4R::MPBase

9 name :used_memory

10 param :used_memory, {:type => :double, :relation => "{omn-monitoring-data:

SimpleMeasurement|omn-monitoring-data:isMeasurementDataOf|omn-monitoring-metric:

UsedMemory}{omn-monitoring-metric:UsedMemory|omn-monitoring:isMeasurementMetricOf|

omn-domain-pc:PC}{omn-monitoring-data:SimpleMeasurement|omn-monitoring-data:

hasMeasurementDataValue|%value%}{omn-monitoring-data:SimpleMeasurement|omn-

monitoring:hasUnit|omn-monitoring-unit:Byte}{omn-monitoring-unit:Byte|omn-

monitoring-unit:hasPrefix|omn-monitoring-unit:giga}"}

XXVI

11 param :timestamp, {:type => :datetime, :relation => "{omn-monitoring-data:

SimpleMeasurement|omn-monitoring-data:hasTimestamp|%value%}"}

12 param :physicalresource, {:type => :string, :relation => "{omn-domain-pc:PC|omn:hasURI

|%value%}"}

13 param :virtualresource, {:type => :string, :relation => "{omn-domain-pc:VM|omn:hasURI|%

value%}{omn-domain-pc:VM|omn-lifecycle:childOf|omn-domain-pc:PC}"}

14 end

15

16 class USED_BANDWIDTH_MP < OML4R::MPBase

17 name :used_bandwidth

18 param :used_bandwidth, {:type => :double, :relation => "{omn-monitoring-data:

SimpleMeasurement|omn-monitoring-data:isMeasurementDataOf|omn-monitoring-metric:

UsedBandwidth}{omn-monitoring-metric:UsedBandwidth|omn-monitoring:

isMeasurementMetricOf|omn-domain-pc:PC}{omn-monitoring-data:SimpleMeasurement|omn-

monitoring-data:hasMeasurementDataValue|%value%}{omn-monitoring-data:

SimpleMeasurement|omn-monitoring:hasUnit|omn-monitoring-unit:bitpersecond}{omn-

monitoring-unit:bitpersecond|omn-monitoring-unit:hasPrefix|omn-monitoring-unit:mega

}"}

19 param :timestamp, {:type => :datetime, :relation => "{omn-monitoring-data:

SimpleMeasurement|omn-monitoring-data:hasTimestamp|%value%}"}

20 param :physicalresource, {:type => :string, :relation => "{omn-domain-pc:PC|omn:hasURI

|%value%}"}

21 param :virtualresource, {:type => :string, :relation => "{omn-domain-pc:VM|omn:hasURI|%

value%}{omn-domain-pc:VM|omn-lifecycle:childOf|omn-domain-pc:PC}"}

22 end

23

24 class CPU_LOAD_MP < OML4R::MPBase

25 name :cpu_load

26 param :cpu_load, {:type => :double, :relation => "{omn-monitoring-data:

SimpleMeasurement|omn-monitoring-data:isMeasurementDataOf|omn-monitoring-metric:

CPULoad}{omn-monitoring-metric:CPULoad|omn-monitoring:isMeasurementMetricOf|omn-

domain-pc:PC}{omn-monitoring-data:SimpleMeasurement|omn-monitoring-data:

hasMeasurementDataValue|%value%}"}

27 param :timestamp, {:type => :datetime, :relation => "{omn-monitoring-data:

SimpleMeasurement|omn-monitoring-data:hasTimestamp|%value%}"}

28 param :physicalresource, {:type => :string, :relation => "{omn-domain-pc:PC|omn:hasURI

|%value%}"}

29 param :virtualresource, {:type => :string, :relation => "{omn-domain-pc:VM|omn:hasURI|%

value%}{omn-domain-pc:VM|omn-lifecycle:childOf|omn-domain-pc:PC}"}

30 end

31

32 #---#

33

34 #write code here

35 def get_vars(conf_file)

36 #Here a couple of things are defined

37 #First is the regular expression that is used to

38 #get rid of whitespace and the array characters.

39 line_sub = Regexp.new(/\s+|\\|"|\[|\]/)

40

41 ␣␣␣␣temp␣=␣Array.new

42 ␣␣␣␣vars=Hash.new

43

44 ␣␣␣␣#Check␣and␣make␣sure␣that␣the␣file␣exists

45 ␣␣␣␣unless␣File.exists?(conf_file)␣then

46 ␣␣␣␣␣␣raise␣"The specified configuration file doesn’t␣exist!"␣

47 ␣␣␣␣end

XXVII

C. Monitoring Resource Adapters

48 ␣␣␣␣IO.foreach(conf_file)␣do␣|line|

49 ␣␣␣␣␣␣#discard␣comment␣lines

50 ␣␣␣␣␣␣if␣line.match(/^#/)

51 ␣␣␣␣␣␣␣␣next

52 ␣␣␣␣␣␣elsif

53 ␣␣␣␣␣␣␣␣#discard␣a␣blank␣line

54 ␣␣␣␣␣␣␣␣line.match(/^$/)

55 ␣␣␣␣␣␣␣␣next

56 ␣␣␣␣␣␣else

57 ␣␣␣␣␣␣␣␣#Snag␣variable␣and␣throw␣it␣into␣the␣varhash

58 ␣␣␣␣␣␣␣␣temp[0],temp[1]␣=␣line.to_s.scan(/^.*$/).to_s.split(’=’)

59

60 ␣␣␣␣␣␣␣␣#Match␣our␣regular␣expression␣and␣substitute

61 ␣␣␣␣␣␣␣␣temp.collect!␣do␣|val|

62 ␣␣␣␣␣␣␣␣␣␣val.gsub(line_sub,␣"")

63 ␣␣␣␣␣␣␣␣end

64 ␣␣␣␣␣␣␣␣#Add␣the␣variables␣to␣our␣hash

65 ␣␣␣␣␣␣␣␣vars[temp[0]]␣=␣temp[1]

66 ␣␣␣␣␣␣end

67 ␣␣␣␣end

68 ␣␣␣␣#And␣return␣them

69 ␣␣␣␣return␣vars

70 ␣␣end

71

72 conf␣=␣get_vars("../monitoring.cfg")

73

74 oml_opts␣=␣{

75 ␣␣:appName␣=>␣conf[’appname’],

76 ␣␣:domain␣=>␣conf[’domain’],

77 ␣␣:nodeID␣=>␣conf[’sender’],

78 ␣␣:collect␣=>␣conf[’target’]

79 }

80

81 zabbix_opts␣=␣{

82 ␣␣:url␣=>␣conf[’zabbixuri’]␣+␣’/api_jsonrpc.php’,

83 ␣␣:user␣=>␣conf[’username’],

84 ␣␣:password␣=>␣conf[’password’]

85 }

86

87 OML4R::init(ARGV,␣oml_opts)

88

89 while␣true

90

91 ␣␣zbx␣=␣ZabbixApi.connect(zabbix_opts)

92

93 ␣␣begin

94 ␣␣␣␣␣␣hostname␣=␣"<hostname>"

95 ␣␣␣␣␣␣vm␣=␣"<vm>"

96

97 ␣␣␣␣host␣=␣zbx.query(

98 ␣␣␣␣␣␣:method␣=>␣"host.get",

99 ␣␣␣␣␣␣:params␣=>␣{

100 ␣␣␣␣␣␣␣␣:output␣=>␣"extend",

101 ␣␣␣␣␣␣␣␣:search␣=>␣{

102 ␣␣␣␣␣␣␣␣␣␣:name␣=>␣hostname

103 ␣␣␣␣␣␣␣␣}

104 ␣␣␣␣␣␣}

XXVIII

105 ␣␣␣␣)

106 ␣␣␣␣unless␣host.empty?

107 ␣␣␣␣␣␣hostid␣=␣host[0]["hostid"]

108 ␣␣␣␣end

109

110 ␣␣␣␣used_memory␣=␣zbx.query(

111 ␣␣␣␣␣␣:method␣=>␣"item.get",

112 ␣␣␣␣␣␣:params␣=>␣{

113 ␣␣␣␣␣␣␣␣:output␣=>␣"extend",

114 ␣␣␣␣␣␣␣␣:hostids␣=>␣hostid,

115 ␣␣␣␣␣␣␣␣:search␣=>␣{

116 ␣␣␣␣␣␣␣␣␣␣:name␣=>␣"Used␣memory"

117 ␣␣␣␣␣␣␣␣}

118 ␣␣␣␣␣␣}

119 ␣␣␣␣)

120 ␣␣␣␣unless␣used_memory.empty?

121 ␣␣␣␣␣␣used_memory_ts␣=␣used_memory[0]["lastclock"].to_i

122 ␣␣␣␣␣␣used_memory␣=␣used_memory[0]["lastvalue"].to_f␣/␣(1024)**3

123 ␣␣␣␣␣␣USED_MEMORY_MP.inject(used_memory,␣Time.at(used_memory_ts).localtime.strftime("%Y

-%m-%dT%H:%M:%S"),␣hostname,␣vm)

124 ␣␣␣␣end

125

126 ␣␣␣␣used_bandwidth␣=␣zbx.query(

127 ␣␣␣␣␣␣:method␣=>␣"item.get",

128 ␣␣␣␣␣␣:params␣=>␣{

129 ␣␣␣␣␣␣␣␣:output␣=>␣"extend",

130 ␣␣␣␣␣␣␣␣:hostids␣=>␣hostid,

131 ␣␣␣␣␣␣␣␣:search␣=>␣{

132 ␣␣␣␣␣␣␣␣␣␣:key_␣=>␣"net.if.in[eth2]"

133 ␣␣␣␣␣␣␣␣}

134 ␣␣␣␣␣␣}

135 ␣␣␣␣)

136 ␣␣␣␣unless␣used_bandwidth.empty?

137 ␣␣␣␣␣␣used_bandwidth_ts␣=␣used_bandwidth[0]["lastclock"].to_i

138 ␣␣␣␣␣␣used_bandwidth␣=␣used_bandwidth[0]["lastvalue"].to_f␣/␣(1024)**2

139 ␣␣␣␣␣␣USED_BANDWIDTH_MP.inject(used_bandwidth,␣Time.at(used_bandwidth_ts).localtime.

strftime("%Y-%m-%dT%H:%M:%S"),␣hostname,␣vm)

140 ␣␣␣␣end

141 ␣␣

142 ␣␣end

143 ␣␣sleep␣30

144 end

145

146 OML4R::close()

XXIX

D
Evaluation Appendix

This section gives further details on the experiments conducted in the evaluations

discussed in Chapter 7.

The SPARQL queries performed in the experiment discussed in Sec. 7.2 are listed

in Listing D.1, Listing D.2 and Listing D.3.

Listing D.1: SPARQL query to get delay of a link

1 SELECT ?timevalue ?value ?prefix ?unit{{

2 ?measure omn-monitoring-data:isMeasurementDataOf ?metric .

3 ?metric rdf:type omn-monitoring-metric:Delay .

4 ?metric omn-monitoring:isMeasurementMetricOf ?resource .

5 ?measure omn-monitoring-data:hasMeasurementDataValue ?value .

6 ?measure omn-monitoring:hasUnit ?unit_value .

7 ?unit_value rdf:type ?unit .

8 ?unit_value omn-monitoring-unit:hasPrefix ?prefix_value .

9 ?prefix_value rdf:type ?prefix .

10 ?measure omn-monitoring-data:hasTimestamp ?timevalue .

11 ?resource omn:hasURI ?uri .

12 filter(regex(?uri,"http://localhost/Link_1"))

13 }}

Listing D.2: SPARQL query to get bandwidth of a particular PM resource

1 SELECT ?timevalue ?value ?prefix ?unit{{

2 ?measure omn-monitoring-data:isMeasurementDataOf ?metric .

3 ?metric rdf:type omn-monitoring-metric:UsedBandwidth .

4 ?metric omn-monitoring:isMeasurementMetricOf ?resource .

5 ?measure omn-monitoring-data:hasMeasurementDataValue ?value .

6 ?measure omn-monitoring:hasUnit ?unit_value .

7 ?unit_value rdf:type ?unit .

8 ?unit_value omn-monitoring-unit:hasPrefix ?prefix_value .

9 ?prefix_value rdf:type ?prefix .

10 ?measure omn-monitoring-data:hasTimestamp ?timevalue .

11 ?resource omn:hasURI ?uri .

12 filter(regex(?uri,"openstack.av.tu-berlin.de"))

13 }}

XXXI

D. Evaluation Appendix

Listing D.3: SPARQL query to get bandwidth of a particular VM resource

1 SELECT ?timevalue ?value ?prefix ?unit{{

2 ?measure omn-monitoring-data:isMeasurementDataOf ?metric .

3 ?metric rdf:type omn-monitoring-metric:UsedBandwidth .

4 ?metric omn-monitoring:isMeasurementMetricOf ?resource .

5 ?measure omn-monitoring-data:hasMeasurementDataValue ?value .

6 ?measure omn-monitoring:hasUnit ?unit_value .

7 ?unit_value rdf:type ?unit .

8 ?unit_value omn-monitoring-unit:hasPrefix ?prefix_value .

9 ?prefix_value rdf:type ?prefix .

10 ?measure omn-monitoring-data:hasTimestamp ?timevalue .

11 ?resource omn:hasURI ?uri .

12 filter(regex(?uri,"http://monitoring.service.tu-berlin.de/resource/Openstack-1/c277660a-

f5c7-4c29-9fdb-590e6e57ecc2"))

13 }}

Figure D.2 shows an extended an RDF-based graph, which represents information

related to the experiment conducted and discussed in Sec. 7.2. It is an extended graph

of the graph shown in Figure 7.10

Figure D.1 shows an example of how the queueing delay in an OML server increases

the Tdelay, deőned and discussed in Sec. 7.3.3. This őgure illustrates a sequence

diagram indicating how the Tdelay is increased due to the queuing delays at the server

in the case of a batch of őve successive OML streams (representing őve measurement

metrics).

Injected Processed Inserted
Received

(Queue)

Tdelay

Sleep 10 Seconds and then export the next push of 5 streams

1st push

2nd push

Fig. D.1.: A sequence diagram indicating processing at an OML server of a batch of

5 successive OML streams

XXXII

Fig. D.2.: RDF graph representation in Lodlive

X
X

X
III

E
Glossary

This section explains the relevant technical terms and deőnitions used most frequently

throughout this thesis.

Cloud Computing ś It is deőned by NIST as follows: "Cloud computing is a

model for enabling ubiquitous, convenient, on-demand network access to a

shared pool of conőgurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with

minimal management efort or service provider interaction. This cloud model

is composed of őve essential characteristics, three service models, and four

deployment models."

Cloud Infrastructure ś It is deőned by NIST as follows: "A cloud infrastructure is

the collection of hardware and software that enables the őve essential character-

istics of cloud computing. The cloud infrastructure can be viewed as containing

both a physical layer and an abstraction layer. The physical layer consists of

the hardware resources that are necessary to support the cloud services being

provided, and typically includes server, storage and network components. The

abstraction layer consists of the software deployed across the physical layer,

which manifests the essential cloud characteristics. Conceptually the abstraction

layer sits above the physical layer."

Cross-domain monitoring ś Monitoring various components, systems, network

and software metrics that are distributed across multiple domains.

Cross-layer Monitoring ś Monitoring all functional layers expanding from low-

level resources (e.g. CPU, memory) through the network up to the services and

applications layers.

XXXV

E. Glossary

Data Model ś As deőned by NOVI, a data model "describes protocols and imple-

mentation details, based on the representation of concepts and their relations

provided by the information model".

Experimenters ś Experimenter are researchers from academia and industry, or

developers who implement and test novel applications, technologies or protocols.

Federation ś "A model for the establishment of a large scale and diverse infrastruc-

ture for the communication technologies, services, and applications and can

generally be seen as an interconnection of two or more independent adminis-

trative domains for the creation of a richer environment and for the increased

multilateral beneőts of the users of the individual domains".[9]

Federation Services ś Those services deployed by the federation operators or ad-

ministrators to ensure both the health of the individual infrastructures partici-

pating in the federation, and the performance and the quality of their oferings.

The main federation services relevant to the federation use cases addressed in

this thesis are SLA management, trustworthy reputation, reservation, brokerage,

and FLS monitoring dashboard.

Future Internet ś The growing success and the increasing conődence in the Internet

in our daily lives have led to major debate among experts on the ability of

the current architecture to be repaired. If not, it may collapse under the

increasing demand of future applications [5], [65]. David D. Clark, MIT, in an

article in MIT Technology Review in 2005 said "The Internet is broken". As

a matter of fact, several global activities propose FI architectures (following

either clean-slate or evolutionary Internet design approaches) to solve the

limitations [4], [5], [66] of the current Internet. The Future Internet has multiple

pillars, among these are: i) Cloud Computing, ii) Network of the Future (NoF)

focusing on OpenFlow/SDN, network virtualization by decoupling networks

from infrastructures and providing isolated VNs with diferent properties or

even individual VNFs, iii) IoT, iv) IoS, and v) Internet of Content (IoC).

Information Model ś It is a conceptual model for designers to describe entities

and their relationships within a system at a conceptual level.

Measurement ś As deőned by Weiner [87] measurement is: "A systematic, replicable

process by which objects or events are quantiőed and/or classiőed with respect to

a particular dimension. This is usually achieved by the assignment of numerical

values."

Monitoring ś The process of constantly observing and recording information about

resources (virtual and physical devices, systems, processes, applications, net-

works, traic ŕow, etc.) to determine their state, usage, performance, and

XXXVI

behavior. This information is used by various users and systems that are respon-

sible for controlling and managing these resources, as well as further services

such as capacity planning, SLA management, trustworthy reputation, security

and privacy assurance, data analytics, etc.

Monitoring Information ś It refers to any piece of data that carries state infor-

mation of a monitored entity.

Monitoring Ontology ś It is a formal representation of resources, resource-speciőc

metrics and their measured data as a set of concepts, and the relationships

between those concepts.

Ontology ś As deőned in [155], "An Ontology is a formal, explicit speciőcation

of a shared conceptualization". An ontology deőnes a set of formal, explicit

vocabularies and deőnitions of concepts and their relationships within a given

domain.

Testbed ś "An environment containing the hardware, instrumentation, simulators,

software tools, and other support elements needed to conduct a test".[7]

Users ś The term ’user’ is used in this thesis to refer to a service provider or

application developer in a commercial cloud or any similar federated ICT

infrastructure, or to an experimenter in a cloud-based or FI testbed. Traditional

end-users who are using the Internet and telecom services and applications are

excluded.

User-Customized Resource Environment (UCRE) ś It is a collection of re-

sources (compute, network, storage, software, etc.) that are created on-demand,

conőgured and used by a user or even a group of users with the correct permis-

sions. When referring to a UCRE in this thesis, it is referred to a cloud service

(e.g. PaaS or IaaS) in cloud infrastructures or to an experiment in cloud-based

or FI testbeds.

XXXVII

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Context and Motivation
	1.2 Problem Statement and Formulation
	1.3 Objectives and Research Questions
	1.4 Scope of the Thesis and Major Contribution
	1.5 Methodology
	1.6 Thesis Outline and Structure

	2 State of the Art
	2.1 Service-Oriented Interaction
	2.2 Cloud Computing
	2.2.1 Cloud Characteristics
	2.2.2 Cloud Service Models
	2.2.3 Cloud Deployment Models
	2.2.4 Virtualization and Multi-Tenancy
	2.2.5 Cloud Management Tools and Standards

	2.3 Future Internet Experimentation
	2.3.1 Global Environment for Network Innovations (GENI)
	2.3.2 Future Internet Research and Experimentation (FIRE)
	2.3.3 Future Internet Public Private Partnership (FI-PPP)
	2.3.4 German-Lab (G-Lab)

	2.4 Federation Models and Approaches
	2.4.1 Federation Models
	2.4.1.1 Models for Federation Operation and Stakeholders' Interaction
	2.4.1.2 Models for Federation Architecture and Management Software

	2.4.2 Federation Approaches
	2.4.2.1 Cloud Federation
	2.4.2.2 Federation of Future Internet Testbeds

	2.5 Monitoring Concepts and Solutions
	2.5.1 Monitoring Concepts
	2.5.1.1 Monitoring Process Stages
	2.5.1.2 Cross-Layer Monitoring
	2.5.1.3 Cross-Domain Monitoring

	2.5.2 State-of-the-Art Monitoring Solutions
	2.5.2.1 Review of Monitoring Solutions in Cloud Computing
	2.5.2.2 Review of Monitoring Solutions in Future Internet Testbeds
	2.5.2.3 ORBIT Measurement Library Framework (OML)
	2.5.2.4 Zabbix Monitoring System

	2.6 Data Modeling
	2.6.1 Integration of Heterogeneous Databases
	2.6.2 Information and Data Models
	2.6.3 Data Transport Protocols
	2.6.3.1 Simple Network Management Protocol (SNMP)
	2.6.3.2 Internet Protocol Flow Information Export (IPFIX)
	2.6.3.3 OML Measurement Stream Protocol (OMSP)
	2.6.3.4 Summary

	2.6.4 Ontology-Based Modeling
	2.6.5 Applied Ontologies

	2.7 Summary

	3 Requirements Analysis
	3.1 Sources of Requirements
	3.1.1 Emerging ICT Technologies and Paradigms
	3.1.2 Testbed Management and Operation
	3.1.3 Federation Operation
	3.1.3.1 Monitoring Support for Federation Services
	3.1.3.2 Monitoring Challenges Across the Federation

	3.1.4 User Communities

	3.2 Requirements Analysis
	3.2.1 General Requirements
	3.2.2 Federation Requirements
	3.2.3 User Requirements

	3.3 Discussion and Gap Analysis
	3.4 Summary

	4 Architecture Design and Specification
	4.1 Conceptual Phase of Design
	4.1.1 Initial Phase of Design
	4.1.1.1 Architectural Design Principles
	4.1.1.2 Cross-Layer Monitoring Services
	4.1.1.3 Initial Architecture
	4.1.1.4 Architectural Limitations Based on Experience

	4.1.2 Design Decisions and Goals for Final Design

	4.2 Generic, Flexible and Extensible Architectural Design
	4.2.1 Architectural Design Principles
	4.2.2 Reference Federation Model

	4.3 MAFIA: Monitoring Architecture for Federated Heterogeneous Infrastructures
	4.3.1 Types of Monitoring and Measurements Services
	4.3.1.1 Infrastructure Health and Status Monitoring
	4.3.1.2 Infrastructure Resources Monitoring
	4.3.1.3 User Customized Resource Environment Monitoring
	4.3.1.4 Services and Applications Monitoring

	4.3.2 Architecture Components and Interactions
	4.3.2.1 Monitoring Services for Users
	4.3.2.2 Infrastructure Health and Status Monitoring for Federation Administrators and FLS Monitoring Dashboard
	4.3.2.3 Infrastructure Resources Monitoring for Federation Services

	4.4 Summary

	5 Ontology-Based Information Model
	5.1 Main Concept of Ontology-Based Modeling
	5.2 MOFI: Monitoring Ontology for Federated Infrastructures
	5.2.1 Design Decisions
	5.2.2 MOFI Upper Ontology
	5.2.3 MOFI Metric Ontology
	5.2.4 MOFI Data Ontology
	5.2.5 MOFI Unit Ontology
	5.2.6 MOFI Tool Ontology
	5.2.7 MOFI Generic Concepts Ontology
	5.2.8 Interaction with External Ontologies
	5.2.9 Data Modeling and Serialization

	5.3 Summary

	6 Implementation of the Architectural Functional Elements
	6.1 Overview of the Implementation of the Initial Architecture
	6.1.1 Main Monitoring Components
	6.1.1.1 Monitoring Collector Image
	6.1.1.2 Compute Resource Image
	6.1.1.3 Contextualization Service

	6.1.2 Cross-Layer Monitoring Support
	6.1.3 Solution Applicability

	6.2 Reference Implementation of the Final Architecture
	6.2.1 Implementation of the Main Functional Elements
	6.2.1.1 Local Monitoring Tools
	6.2.1.2 Common Monitoring API
	6.2.1.3 Monitoring Adapters
	6.2.1.4 Semantic Data Collection and Representation
	6.2.1.5 Data Access and Visualization

	6.2.2 Implementation of Monitoring Services for Various Consumers
	6.2.2.1 MAFIA Services for Users
	6.2.2.2 MAFIA Services for Federation Administrators and FLS Monitoring Dashboard
	6.2.2.3 MAFIA Services for Federation Services

	6.3 Summary

	7 Validation and Evaluation
	7.1 Observational Evaluation
	7.1.1 The FP7 ICT BonFIRE Project
	7.1.2 The FP7 ICT FI-STAR Project
	7.1.3 The FP7 ICT OpenLab Project
	7.1.4 The FP7 ICT XIFI Project
	7.1.5 The FP7 ICT Fed4FIRE Project
	7.1.6 The FP7 ICT Infinity Project
	7.1.7 Fraunhofer FUSECO Playground

	7.2 Experimental Evaluation
	7.3 Analytical Evaluation
	7.3.1 Quality and Correctness Evaluation
	7.3.2 Effectiveness Evaluation
	7.3.3 Performance Evaluation
	7.3.4 Impact Evaluation

	7.4 Requirements Validation
	7.5 Comparison with other Solutions
	7.6 Summary

	8 Conclusion
	8.1 Summary
	8.2 Dissemination and Impact
	8.3 Outlook

	Acronyms
	Bibliography
	A Author's Peer-Reviewed Publications
	B Monitoring Ontologies
	C Monitoring Resource Adapters
	D Evaluation Appendix
	E Glossary

