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Kurzfassung

Wir zeigen, dass jede Eigenschaft von Graphen aus einer nowhere dense
Klasse von Graphen, die in der Pradikatenlogik formuliert werden kann,
in fast linearer Zeit O(n'*¢) entschieden werden kann. Dieses Ergebnis ist
optimal fiir Klassen von Graphen, die unter Subgraphen abgeschlossen sind
(unter einer Standardannahme aus der Komplexitidtstheorie).

Um den obigen Satz zu beweisen, fithren wir zwei neue Charakterisie-
rungen von nowhere dense Klassen von Graphen ein. Zunéchst charakter-
isieren wir solche Klassen durch ein Spiel, das die lokalen Eigenschaften
von Graphen beschreibt. Weiter zeigen wir, dass eine Klasse, die unter
Subgraphen abgeschlossen ist, genau dann nowhere dense ist, wenn alle
lokalen Nachbarschaften von Graphen der Klasse diinn tiberdeckt wer-
den konnen. Weiterhin beweisen wir eine erweiterte Version von Gaifman’s
Lokalititssatz fiir die Pradikatenlogik, der eine Ubersetzung von Formeln in
lokale Formeln des gleichen Ranges erlaubt. In Kombination erlauben diese
neuen Charakterisierungen einen effizienten, rekursiven Losungsansatz
fiir das Model-Checking Problem der Priadikatenlogik.

Die Charakterisierung der nowhere dense Graphklassen durch die oben
beschriebenen Uberdeckungen basiert auf einer bekannten Charakteri-
sierung durch verallgemeinerte Farbungszahlen. Unser Studium dieser
Zahlen fithrt zu neuen, verbesserten Schranken fiir die verallgemeinerten
Farbungszahlen von nowhere dense Klassen von Graphen, insbesondere fiir
einige wichtige Subklassen, z. B. fiir Klassen mit ausgeschlossenen Minoren
und fiir planare Graphen.

Zuletzt untersuchen wir, welche Auswirkungen eine Erweiterung der
Logik durch Ordnungs- bzw. Nachfolgerrelationen auf die Komplexitit des
Model-Checking Problems hat. Wir zeigen, dass das Problem auf fast allen
interessanten Klassen nicht effizient gelost werden kann, wenn eine be-
liebige Ordnungs- oder Nachfolgerrelation zum Graphen hinzugefiigt wird.
Andererseits zeigen wir, dass das Problem fiir ordnungsinvariante mona-
dische Logik zweiter Stufe auf allen Klassen, fiir die bekannt ist, dass es fiir
monadische Logik zweiter Stufe effizient gelost werden kann, auch effizient
gelost werden kann. Wir zeigen, dass das Problem fiir nachfolgerinvariante
Pradikatenlogik auf planaren Graphen effizient gelést werden kann.






Abstract

We show that every first-order property of graphs can be decided in almost
linear time O(n1*¢) on every nowhere dense class of graphs. For graph
classes closed under taking subgraphs, our result is optimal (under a stan-
dard complexity theoretic assumption): it was known before that for all
classes ¥ of graphs closed under taking subgraphs, if deciding first-order
properties of graphs in € is fixed-parameter tractable, parameterized by
the length of the input formula, then 6 must be nowhere dense.

Nowhere dense graph classes form a large variety of classes of sparse
graphs including the class of planar graphs, actually all classes with ex-
cluded minors, and also bounded degree graphs and graph classes of bound-
ed expansion. For our proof, we provide two new characterisations of no-
where dense classes of graphs. The first characterisation is in terms of a
game, which explains the local structure of graphs from nowhere dense
classes. The second characterisation is by the existence of sparse neigh-
bourhood covers. On the logical side, we prove a rank-preserving version of
Gaifman’s locality theorem.

The characterisation by neighbourhood covers is based on a characterisa-
tion of nowhere dense classes by generalised colouring numbers. We show
several new bounds for the generalised colouring numbers on restricted
graph classes, such as for proper minor closed classes and for planar graphs.

Finally, we study the parameterized complexity of the first-order model-
checking problem on structures where an ordering is available to be used
in formulas. We show that first-order logic on ordered structures as well
as on structures with a successor relation is essentially intractable on
nearly all interesting classes. On the other hand, we show that the model-
checking problem of order-invariant monadic second-order logic is tractable
essentially on the same classes as plain monadic second-order logic and
that the model-checking problem for successor-invariant first-order logic is
tractable on planar graphs.
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Introduction

A graph consists of vertices and edges connecting the vertices. The con-
cept of modelling relations between objects as a graph is one of the most
important and fundamental concepts in mathematics with many applica-
tions in other disciplines. Its most important applications are probably in
computer science, where graphs are used to represent networks of commu-
nication or transportation, computational devices, flows of computation and
many more. Once a graph theoretical formulation of a real world situation
has been established, it is a challenging task to efficiently solve various
optimization problems on the resulting graph instances. For instance, a
telecommunication network may be modelled by a graph in which terminals
are represented by vertices and transmission links between the terminals
by edges of the graph. An example of an optimization problem in a commu-
nication network is to place a minimum number of communication antennas
to cover all important locations with wireless network. In its graph theoretic
formulation the problem corresponds to the problem of finding a small set
of vertices in the network graph which dominate all other vertices, that is,
which are connected to all other vertices by an edge.

It has long been realized that a large class of important algorithmic
problems seems to evade all attempts of solving them efficiently in general.
The meaning of efficiency and tractability varies, for example, it may be
polynomial time solvability, fixed-parameter tractability, or polynomial time
approximability to some ratio. For example, the dominating set problem
on the class of all graphs is NP-hard, W[2]-hard and Log-APX-hard, hence
considered intractable with respect to all of the above notions of efficiency.
However, on restricted graph classes, the complexity of a problem may
be quite different from the general worst-case complexity. In particular,
instances of graphs arising in applications often have more structure than
general graphs. For instance, road or railway maps correspond to nearly
planar graphs and telecommunication networks are modelled by sparse
graphs, that is, by graphs with a moderate number of edges.
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Researchers have studied many structural properties of graphs which can
be used to design efficient algorithms for otherwise hard problems. Among
the most important ones are properties of planar graphs or, much more
generally, properties of graph classes that exclude a fixed minor. Robertson
and Seymour [119] developed a celebrated structure theory of graphs with
excluded minors which had an immense influence on the design of efficient
algorithms [32, 33]. In particular the concept of tree-width, which they
introduced as part of their graph minors project, proved extremely valuable
in the algorithmic context [14].

The classification of (infinite) classes of finite graphs into nowhere dense
and somewhere dense classes was introduced by Nesettil and Ossona de
Mendez in [104, 105]. Many familiar sparse graph classes, like proper mi-
nor closed classes, classes of bounded degree and, most generally, classes
of locally bounded expansion are nowhere dense. Nowhere density turns
out to be a very robust concept with several seemingly unrelated natu-
ral characterisations. This fact has very nice algorithmic consequences,
as each characterisation yields different algorithmic techniques. For in-
stance, Dawar and Kreutzer [31] showed that problems such as network
centres and dominating sets can be solved by fixed-parameter algorithms on
nowhere dense classes of graphs using uniformly quasi-wideness. Using low
tree-depth colourings, Nesetril and Ossona de Mendez [104] showed that
the subgraph isomorphism or homomorphism problem is fixed-parameter
tractable on nowhere dense classes. Using the same characterisation, Ga-
jarsky et al. [55] extended the meta-kernelisation framework of Bodlaender
et al. [15] to nowhere dense classes of graphs providing polynomial kernels
for a large number of algorithmic problems. On the important subclass of
bounded expansion graphs, even more algorithmic applications are known,
for instance in database query answering and enumeration [73], which
relies on the concept of augmentations, or in approximating dominating
sets [41], which is based on generalised colouring numbers.

Algorithmic meta theorems attempt to explain and unify algorithmic re-
sults by proving tractability not only for individual problems, but for whole
classes of problems and are therefore some of the most sought-after theo-
rems in algorithmic research. The prototypical example of an algorithmic
meta theorem is Courcelle’s Theorem [22], stating that all properties of
graphs of bounded tree-width that are definable in monadic second-order
logic are decidable in linear time. Another well-known example is Papa-
dimitriou and Yannakakis’s [113] result that all optimisation problems in
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the class MAXSNP, which is defined in terms of a fragment of existential
second-order logic, admit constant-ratio polynomial time approximation
algorithms or the result of Dawar et al. [29] that every first-order definable
optimisation problem admits a PTAS on any proper minor closed class of
graphs. By now, there is a rich literature on algorithmic meta theorems
(see for example [15, 24, 25, 28, 29, 42, 53, 83, 84, 125] and the surveys
[61, 63, 62, 82]). In general, the main goals of this whole line of research,
sometimes referred to as algorithmic graph structure theory, are to under-
stand for natural and important classes of graphs what kind of problems can
be solved efficiently on these graphs and develop the corresponding graph
structural and algorithmic techniques. In particular, for natural classes of
problems we want to understand their general tractability frontier, i.e. the
most general classes of graphs on which these problems are tractable.

The quest of finding the largest classes of graphs where problems de-
finable in first-order logic are tractable has been pursued intensively in
research on algorithmic meta-theorems. First-order definable problems
define a natural class of problems including dominating sets, vertex cov-
ers, network centres and many others. Deciding first-order properties of
graphs in general is known to be complete for the parameterized com-
plexity class AW[*] and thus widely believed to be not fixed-parameter
tractable [38].

There is a long list of meta theorems for first-order logic. The starting
point is Seese’s [125] result that first-order properties of bounded degree
graphs can be decided in linear time. Frick and Grohe [53] gave linear
time algorithms for planar graphs and all apex-minor-free graph classes
and O(n1*¢) algorithms for graphs of bounded local tree-width. Flum and
Grohe [50] proved that deciding first-order properties is fixed-parameter
tractable on graph classes with excluded minors, and Dawar, Grohe and
Kreutzer [28] extended this to classes of graphs locally excluding a minor.
Finally, Dvorak, Kral and Thomas [42] proved that first-order properties
can be decided in linear time on graph classes of bounded expansion and in
time O(n1*¢) on classes of locally bounded expansion.

The main contribution of this thesis is the presentation of a new meta
theorem for first-order logic on nowhere dense classes of graphs. We proved
in [65] that every first-order property can be decided in time O(n'*¢) on
every nowhere dense class of graphs.

What makes our theorem particularly interesting is not primarily that it
is yet another extension of the previous results, but that it is optimal for
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classes ¥ closed under taking subgraphs: under the standard complexity
theoretic assumption FPT # W[1], Kreutzer [82] and Dvorak et al. [42]
proved that if a class 4 closed under taking subgraphs is somewhere dense,
then deciding first-order properties of graphs in ¥ is not fixed-parameter
tractable (parameterized by the length of the input formula). Note that all
classes considered in the previous results are closed under taking subgraphs.
Hence our result supports the intuition that nowhere dense classes are the
natural limit for many algorithmic techniques for sparse graph classes.

For the proof of our main theorem we extend the theory of nowhere dense
graphs in several ways. Our starting point is Gaifman’s Theorem [54]
which states that every first-order sentence ¢ is equivalent to a Boolean
combination of basic local sentences. Such a sentence states the existence of
a fixed number (depending on the sentence ¢) of wide-spread elements of a
certain type which depends only on their local neighbourhood. Gaifman’s
Theorem gives rise to a model-checking method which was first employed by
Frick and Grohe in [53]. We can first compute the local type of each element
and then solve the generalised independent set problems described in the
basic local sentences. Hence, to use this approach, it is a key requirement
to understand the structure of local neighbourhoods in a graph (and to be
able to exploit this structure algorithmically).

We provide a new characterisation of nowhere dense classes of graphs
which describes the local neighbourhoods of their elements in terms of a
game, called the splitter game. From this game we can derive a structural
decomposition of local neighbourhoods which, on nowhere dense classes,
leads to computations of bounded recursive depth.

However, we cannot simply start the recursion for the local neighbourhood
of every element, as this yields a running time of O(n’) if the neighbour-
hoods overlap in many elements, where ¢ is the recursion depth. Instead,
we group close-by elements into clusters and compute the local type of
all elements of the cluster in one recursive call. Such families of clusters
are known as r-neighbourhood covers, where r is the radius of the neigh-
bourhoods that should be covered in some cluster. We show that every
nowhere dense class admits r-neighbourhood covers with clusters of radius
at most 2r such that every vertex appears in n°? clusters. We show that
nowhere dense classes, which are closed under subgraphs, can in fact be
characterised by the existence of such covers. The combination of the two
new characterisations yields a powerful algorithmic technique on nowhere
dense classes of graphs.
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Our construction of sparse neighbourhood covers is based on the concept
of generalised colouring numbers introduced by Kierstead and Yang [77].
Based on a result of Zhu [134], Nesettil and Ossona de Mendez [105] proved
that nowhere dense classes can be characterised by the generalised colouring
numbers. We greatly improve on previous bounds for the generalised colour-
ing numbers for nowhere dense classes, especially for several restricted
classes such as proper minor closed classes and classes of bounded genus.
We provide tight bounds for classes of bounded tree width. For classes
that exclude a fixed minor, these results yield r-neighbourhood covers of
radius 2r and degree c(r) for some constant depending only on r and the
class under consideration. In the literature [4, 18] one finds constructions
for these classes which have much larger radius, but their degree depends
on the class only.

Finally, we prove a strengthened version of Gaifman’s locality theorem.
We introduce a new, discounted rank measure for first-order formulas, which
allows a translation into local formulas such that the rank is preserved.
This makes a recursive evaluation of formulas by the method described
above possible.

In the last part of the thesis we study the complexity of first-order model-
checking on structures where an ordering is available to be used in formulas.
The methods based on Gaifman’s locality theorem do not readily extend to
ordered structures. We do so in two different settings. The first is that the
input structures are equipped with a fixed order or successor relation. We
show that first-order logic on ordered structures as well as on structures
with a successor relation is essentially intractable on nearly all interesting
classes.

The other case we consider is order-invariant monadic second-order logic
and successor-invariant first-order logic. In order-invariant logics, we are
allowed to use an order relation in the formulas but whether a formula
is true in a given structure must not depend on the particular choice of
order. Order-invariant logics have been studied in database theory and
finite model theory in the past.

We show that model-checking for order-invariant MSO on graphclasses of
bounded clique-width is fixed-parameter tractable. Furthermore, combining
the result of Courcelle [22] and a result in [21, 95] we find that model-
checking for order-invariant MSOg on graphs of bounded tree-width is
fixed-parameter tractable. For successor-invariant FO we are able to show
that the model-checking problem is fixed-parameter tractable on planar
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graphs. Using the result of Seese [125] we get the same result for FO on any
class of graphs of bounded degree equipped with an arbitrary fixed number
of successor relations.

This thesis is structured as follows.

¢ In Part I, we provide background from logic, graph theory, computa-
bility and complexity theory. We will provide more specific background
about the respective topic at the beginning of each chapter.

In the following parts we present our own contributions.

¢ In Part II, we develop the theory of nowhere dense graphs required
for our model-checking algorithm.

— We introduce the generalised colouring numbers in Section 4.1
of Chapter 4. We prove a tight bound on classes of bounded
tree-width in Section 4.2 and improve on previous bounds for
the generalised colouring numbers for nowhere dense classes in
Section 4.3. We further investigate the generalised colouring
numbers of proper minor closed classes in Section 4.4 and classes
of bounded genus in Section 4.5.

— In Chapter 5, we introduce neighbourhood covers, show that
sparse neighbourhood covers exist for nowhere dense classes
and show that in fact nowhere dense classes closed under tak-
ing subgraphs can be characterised by the existence of sparse
neighbourhood covers.

— We provide the game characterisation of nowhere dense classes

in Chapter 6.
¢ In Part III, we develop the logical theory required for our model-
checking algorithm and present the model-checking algorithm itself.

— In Chapter 7 we strengthen Gaifman’s locality theorem for first-
order logic such that ranks are preserved. The key innovation is
a new discounted rank measure for first-order formulas.

— Our model-checking algorithm is presented in Chapter 8.
— Finally, in Chapter 9, we consider the model-checking problem
of order-invariant first-order formulas.

* We conclude in Chapter 10.
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Background






1. General Background

1.1. Numbers, sets and functions

Throughout this work, we use lower case letters a,...,¢ to name integers,
lower case Greek symbols a, f,... to name reals and capital letters A,B,... to
name sets. Logarithms written as ‘log’ are at base 2, the natural logarithm
will be denoted by ‘In’. For a non-negative real number x, we denote by |x]
the greatest integer < x and by [x] the least integer = x. The cardinality of
a set A is written as |A| and its power set is denoted Z2(A). We will often
call a set of sets a family.

For a positive integer s > 0 and a non-empty set A non-empty, a partition
of A into s sets is a family {A1,..., A} of non-empty subsets of A such that
AinAj=¢forl<i<j<sandUj<ij<sA; =A. For sets Ay,..., Ay,

Alx...xAk ::{(al,...,ak):aiEAi,]_SiSk}

denotes the Cartesian product of Aq,...,Ap. For a non-negative integer k,
we write A% for A x---x A and A* for Up>0A*. We often abbreviate a k-tuple
(ai,...,ax) as a and we write a € a instead of a € {a1,...,a;}. We write aa
for the tuple (ay,...,az,a).

A k-ary relation R over Ajq,...,A} is a subset of Ay x---xAp. A k-ary
relation on a set A is a subset of A*. The set A? contains only the empty
tuple (), and hence there are exactly two 0-ary, or Boolean relations on A,
namely ¢ and {()}. 1-ary relations are unary relations and 2-ary relations
are binary relations.

For sets A,B, a binary relation f < A x B is functional if (a,b) € f and
(a,c)€ f implies b =c for all a € A and b,c € B. If f is functional, we use the
standard notation f(a) = b for (a,b) € f. We also call f a partial function.
Then the domain of f is the set

dom(f)={a € A: there exists b € B with f(a) = b}

11



1. General Background

and the range of f is the set
ran(f) =1{b € B : there exists a € A with f(a) = b}.

A functional relation f is a function from A to B, denoted f : A — B, if
dom(f) = A and ran(f) < B. The set of all functions from A to B is de-
noted BA. In the following, let f be a function.

If dom(f) = A% then f is a k-ary function on A. If f is a function on A
and A’ € A, then the image of A’ by f is

f(A")={beB: there exists a € A’ with f(a) = b}.

If ran(f) = B, then f is called surjective or a function onto B. If f(a) = f(b)
implies a = b for all a,b € dom(f), then f is called injective or one-to-one.
If f is surjective and injective, then it is called bijective. In this case, the

inverse of f is
Fl={b,a)eBxA:(a,b)ef).

The restriction of f to A’ is the function
fIA ={(a,b)ef:acA’}).

A function g is an extension of f if f < g, that is, dom(f) < dom(g) and
g(a) = f(a) for all a € dom(f). We write f[a — b] for the function {(a,b)} U
{(c,f(c)) : c edom(f),c #a}. If a =(ay,...,ar) and b= (by,...,by) are such
that b; =b; ifa; =a; for 1<i,j <k, then we write @ — b for the function
{(a1,b1),...,(ap,bp)}. If f is a unary function, we write f(a) for the tuple
(f(ay),...,f(ap)) and for a k-ary relation R, we write f(R) for the relation
{f(@):a € R}. We sometimes call a function a mapping.

1.2. Computability and complexity

A finite alphabet X is any finite and non-empty set whose elements are
called symbols. We call an element of £* a word or string over X. A decision
problem over X* is a subset L € 2*. In the following, let £ and T be finite
alphabets.

When studying questions of computability or decidability we assume
the standard multi-tape Turing machine model as in [69, 127]. A decision
problem L € X* is recursively enumerable if there is a Turing machine which

12



1.2. Computability and complexity

accepts every word w € L. L is decidable if there is a Turing machine
which accepts every word w € L and rejects every word w ¢ L. A function
f: X" —>T" is computable if there is a deterministic Turing machine which
on input w € £* computes the output f(w). We always assume that abstract
objects, such as numbers, graphs or formulas are encoded in an appropriate
way as words over X. We may then write e.g. f : N — N, even though
f:Z* — Z*, but we interprete the input and output of the function according
to the fixed encoding of natural numbers.

For the analysis of running times of specific algorithms we assume the
random access machine (RAM) model. However, we will never provide an
algorithm as a Turing machine or as a RAM program, but always provide
a high level description only. For more background on complexity theory
we refer to [112]. We use the usual Landau notation to describe the limit
behaviour of a function. For a function f :N— N,

O(f):{g:l\l—»l\l:limsupf(—n; < oo}

n—oo g(n

and

o(f):{g:l\l—»l\l:limsup@ =0}
n—oo & (n)
We write g € O(f) if asymptotically the bounds are sharp, i.e. if f € O(g) and
g€0(f), and g € Q(f) if f € O(g).

We write PTIME for the class of all problems that can be decided in
polynomial time by a deterministic Turing machine, NP for the class of all
problems that can be decided in polynomial time by a non-deterministic
Turing machine and PSPACE for the class of all languages that can be
decided with polynomial space by a deterministic Turing machine. It is
conjectured and widely believed that

PTimME C NP C PSPACE.

An oracle machine with oracle 2 € X* is a machine with a distinguished
oracle tape. The machine can write a word w € X* to the oracle tape and
then query in unit time whether w € 2.

A polynomial time (many-one) reduction from a problem L < X* to a
problem M € I'* is a mapping R : Z* — I'* such that for all w € £* we
have w e L < R(w) € M and R(w) is computable in polynomial time by a
deterministic Turing machine.
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1. General Background

A polynomial time Turing reduction from a problem L € X* to a problem
M €T™ is a deterministic oracle machine that decides L with oracle M in
polynomial time.

We write L <P M if there is a polynomial time many-one reduction from
L to M and L <T M if there is a polynomial time Turing reduction from L
to @. Often it is easier (and more intuitive) to establish that L <? @, which
implies L < M.

A problem L is hard for a complexity class C, or C-hard, if M <T L for
every M € C. L is complete for C, or C-complete, if L € C and L is hard for C.
In order to show that a problem L is hard for C it suffices to show M <T L
for some problem M which is hard for C.

In classical complexity theory one says that a problem can be solved
efficiently if the problem lies in PTIME. In order to show that a problem can
in general not be solved efficiently (under the assumption that PTIME # NP),
one shows that the problem is NP-hard.

The first-order model-checking problem is complete for PSPACE [133],
even on structures with only two elements. Therefore, classical complexity
theory renders the problem intractable.

While it is interesting to know whether a problem is NP-hard, we often want
to apply a finer analysis, that is, we do not want to measure the complexity
only in terms of the size of the input, but rather measure it with respect
to one or more parameters. This is the subject of parameterized complexity
theory [37, 51].

A parameterized problem is a pair (L,x), where L € ¥* is a problem and
x : 2* — N is a polynomial time computable function. We call x(w) the
parameter of the instance w.

A parameterized problem is (uniformly) fixed-parameter tractable (fpt)
if there exists an algorithm (called a fixed-parameter algorithm), a (com-
putable) function f :N — N, and a constant ¢ such that, given w € 2*, the
algorithm decides whether w € L in time bounded by f(x(w))-|w|¢. The com-
plexity class containing all fixed-parameter tractable problems is called FPT.

Let (L,x) and (Q,y) be parameterized problems over the alphabets X
and T, respectively. An fpt-reduction from (L,x) to (@,«x) is a mapping R
from X* to I'* such that there are computable functions f,g and a constant ¢
such that for all w € £* we have w € L < R(w) € M, R(w) is computable in
time f(x(w))-|lw|¢ and y(R(w)) < g(x(w)).
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1.3. Structures and isomorphisms

We write (L,«) <Pt (M ,7) if there exists a fixed-parameter reduction from
(L,x) to (M,y). If (L,«x) is fixed-parameter tractable and (M,y) <Pt (L x),
then also (M,y) is fixed-parameter tractable. A parameterized problem
(L,x) is hard for a class C of parameterized problems if every parameterized
problem in C is fpt-reducible to (L,«) and it is complete for C if it is hard for
C and lies in C. For a parameterized problem (L,«) let

[(L, 1Pt = (M, y): (M, y) <P* (L, x)}.

1.3. Structures and isomorphisms

A (finite and purely relational) vocabulary or signature 1 is a finite set of
relation symbols R1,...,R; for some non-negative integer s =0, each with
an associated arity. In the following, let 7 be a finite and purely relational
vocabulary.

A 1-structure 2 consists of a non-empty set V(20), called the universe of 2,
and for each non-negative integer k£ = 0 an interpretation

e R(A) < V(A)F of each k-ary relation symbol R from .

A 1-structure 2 is called finite if its universe V(2l) is finite. We write n(2() for
[V (2], m(R(2)) for the number of tuples in R(2) and m(2) for Y g, m(R(A)).
If t ={Ry,...,Rs}, we write A = (V(R0),R1(X),...,RsRD)).

In the following, let 2( and B be 7-structures. 2l is a substructure of 3,
written A < B, if

e V)< V(B), and

¢ for each non-negative integer k£ = 0 and each k-ary symbol R from 7
we have R(2) S R(B)n V().

2 is an induced substructure of B, if A =B and

¢ for each non-negative integer £ = 0 and each k-ary symbol R from t
we have R(2) = R(B)n V().

If A € V(®B) is non-empty, the substructure of B induced or spanned by A
is the 7-structure B[A] with universe A and R(B[A]) = R(B)nA* for each
k-ary relation symbol R from 7, £ = 0. Note that in model theory one usually
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1. General Background

writes 2l < ‘B to indicate that 2l is an induced substructure of 5 whereas we
use it as in graph theory for substructures.

Let o < 7 be a vocabulary. The o-reduct of 2 is the o-structure 2 [ o with
universe V(2() in which all relation symbols in o are interpreted as in 2. If
2 is a o-reduct of *B, then B is a T-expansion of 2.

A homomorphism from 2 to B is a mapping 7 : V() — V(25) such that

¢ if a € R(A), then n(a) € R(°B) for all non-negative integers k£ = 0, all
k-ary relation symbols R from 7 and all @ € V()%.

An injective homomorphism is called an embedding. A homomorphism 7 is
strong if it satisfies the stronger condition

* a € R(2) if and only if n(a) € R(*B) for all non-negative integers & =0,
all k-ary relation symbols R from 7 and all @ € V(20)%.

A bijective, strong homomorphism is an isomorphism. We call 2l and B
isomorphic and write 2 = ‘B, if there exists an isomorphism from 2 to B.
For a non-negative integer & = 0 and @ € V(2)* and b € V(B)*, we write
&A,a) = (‘B,g) if there exists an isomorphism 7 between 2 and B with

n(a) =b. The isomorphism type of (2, a) is the set
tp(,@) :={(B,b): (B,b) = (A, a)).

If tp(A,a) =y, we say that a realises the type y in 2.

A partial isomorphism of 2 and 98 is an isomorphism from 2[A'] to B[B']
for non-empty and finite subsets A’ € V(2),B’ € V(B). For convenience,
we also call the empty mapping @ a partial isomorphism (recall that we
demand that structures have a non-empty universe).

For a non-negative integer m = 0, an m-ary query on t-structures is a
mapping @ that associates with each 7-structure 2l an m-ary relation on
V(2) which is closed under isomorphism, i.e. if % = ‘B via isomorphism
7: V() — V(B), then Q(B) = n(Q()).

An important special case is that of m = 0. As there are exactly two
Boolean relations on V (), a 0-ary query, also called Boolean query, is a
mapping from 7-structures to a set with two elements, which we name
true and false. We can hence associate a Boolean query with a set € of
T-structures closed under isomorphism:

2 € 6 if and only if Q) = true.
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2. First-order and monadic
second order logic

2.1. Syntax and Semantics

Let V be a countably infinite set of variables and let 7 be a finite relational
vocabulary. The set FO[1] of first-order t-formulas is defined inductively as
follows.

e T and L are (atomic) formulas.
e If x1,x0 € V, then x1 = x2 is an (atomic) formula.

® Ifxy,...,x, €V and R is a k-ary relation symbol from 7, £ = 0, then
R(x1,...,x) is an (atomic) formula.

e If ¢,y are t-formulas, then o Ay, ¢V x,0 — ¥, — ¥ and —¢ are
t-formulas.

¢ If ¢ is a 7-formula and x € V, then 3x¢ and Vx¢ are t-formulas.

The class of first-order formulas FO is the union of FO[7] for all vocabular-
ies 7. In the following, let ¢, v, y be first-order r-formulas.
Variables can occur free or bound in a formula.

e The variables of atomic formulas are free.

¢ The free variables of a formula @ oy for o € {A,v,—, <} are the free
variables of ¢ and y and the free variables of a formula —¢ are the
free variables of ¢.

¢ The free variables of a formula Jx¢ and Vx¢ are the free variables of
@ except x.

17



2. First-order and monadic second order logic

Variables that are not free are bound. A formula without free variables is a
sentence. For a non-negative integer m = 0, we write ¢@(x1,...,X,,) to indicate
that the free variables of ¢ are among x1,...,%;,.

If & is a set of formulas, then any formula constructed from formulas
in & using only the Boolean connectives v,A and - is called a Boolean
combination of formulas from .

The quantifier rank qr(e) of ¢ is its depth of quantifier nesting, i.e.

¢ if ¢ is atomic, then qr(¢) =0,

* if ¢ = oy, then qr(y) = max{qr(y),qr(y)} for o€ {v,A,—, <},
* if ¢ = ~y, then qr(p) = qr(y) and

¢ if ¢ =3xy or ¢ = Vxy, then qr(p) = qr(y) + 1.

A formula of quantifier rank 0 is also called quantifier free. Let Xy and Il
denote the class of all quantifier free first-order formulas. For a non-negative
integer ¢ =0, let Z;,1 be the class of all first-order formulas

Jx1...3x1 @,

where ¢ € I1; and % = 0 is a non-negative integer and let [1;.1 be the class of
all first-order formulas
Vx1...Vxp @,

where ¢ € Z; and % = 0 is a non-negative integer.

A t-interpretation is a tuple J = (2, B), consisting of a 7-structure 2l and a
mapping f:V — V(). We write J[x — a] for (2, flx — al). A t-interpreta-
tion J evaluates a variable x to a value in V(2(), namely J(x) = f(x). We
define the satisfaction relation, J |= ¢, between 7-interpretations and formu-
las from FOI[r] as follows.

e J=ETand J £ L,
* Jl=x1 =xg if and only if J(x1) = I(xg),

¢ for a non-negative integer k = 0, a k-ary relation symbol R € 7 and
X1,...,%, €V, J = R(x1,...,x) if and only if (J(x1),...,T(xz)) € R(2),

* JEwifand onlyif J £ vy,
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2.1. Syntax and Semantics

e Jeyvyifandonlyif J=Eyw or J=y,

e JeyAyifandonlyif J=y and J =y,

* J=y—yifandonlyif Ty if J =),

* JE=y «— yif and only if (J |= y if and only if J |= ),

¢ J|=3xy if and only if there exists a € V() such that J[x — a] =¥ and

* J=Vxy if and only if for all a € V() we have J[x — al = y.

Monadic second-order logic is the following extension of first-order logic.
Let W be a fixed countably infinite set of unary predicates which are called
second-order set variables and let Wy be a fixed countably infinite set of
binary predicates which are called guarded second-order variables.

The set of monadic second-order t-formulas, denoted MSO[ 7], is defined
by extending the rules for first-order logic with the following additional
rules.

e If X is a second-order set variable and ¢ € MSO[7t U X], then 3IX¢p €
MSOI[r] and YX ¢ € MSO[7].

Finally, the set of MSOg[7]-formulas, is defined by extending the rules for
MSOIr] with the following additional rules.

¢ IfY is a guarded second-order set variable and ¢ € MSOg[t UY ], then
also 3Y ¢ e MSO2[7] and VY ¢ € MSOql[7].

We define free and bound variables and the quantifier-rank of a monadic
second-order formula as for first-order formulas. A t-interpretation for a
monadic second-order formula is a tuple J = (2, a, B), for a 7-structure 2,
amapping a:V — V(&) and g: W — 2V (). We write J[X — A] for the
interpretation (2, a, [ X — A]). We extend the satisfaction relation J |= ¢
for MSO[ r]-formulas by the following rules. For a set variable X, we have

* J=3Xwv if and only if there exists A € V() such that J[X — Al =y
and

* J=VXvy if and only if for all A < V() we have J[X — Al = .
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2. First-order and monadic second order logic

We define the semantics for MSOq[7] only for restricted vocabularies 7 =
{E,C1q,...,Ct}, where E is a binary relation symbol and the C; are unary
relation symbols.

A t-interpretation for a MSOg[7]-formula is a tuple J = (2, a, 8,y), where
(A, a,p) is a T-interpretation as above and y : Wo — Z(E(2)). We write
JIY — A] for the interpretation (2, a, 8,y[Y — Al]). We extend the satisfac-
tion relation for guarded variables Y as follows.

¢ J|=3Y vy if and only if there exists A € E(X) such that J[X — Al =y
and

* J=VYw if and only if for all A € E(2() we have J[Y — Al|=y.

If 3 = ¢, we call J a model of ¢ or say that the interpretation J satisfies ¢.
A formula is satisfiable if it has a model. Without loss of generality we
may assume that the free variables of ¢ are named x1,...,x,, for some
non-negative integer m = 0. Then, if f(x1) = ay,...,B0ln) = an, we write
QLai,...,an) =Epor A l=plal,...,a,) instead of (2, B) = ¢.

For a set ® of 7-formulas, J = ® means that J = ¢ for all p € ®. A 7-
formula v is a consequence of ®, written @ |= v, if J |= ® implies J |= ¢ for
all 7-interpretations J. A 7-formula v is valid if @ =y, i.e. if ¥ is true in all
T-interpretations. Formulas ¢ and v are equivalent if ¢ — v is valid.

A class € of t-structures is first-order definable if there is an FO[r]-
formula ¢ such that for all r-structures

Ae€ = 2A= 0.

2.2. Satisfiability and model-checking

A formal proof system consists of a decidable set of axioms and a decidable
set of inference rules. A formal proof (in the proof system) for the validity of
a formula is a finite sequence of first-order formulas. The formulas which
may occur in a proof are either axioms or they must be the product of
applying an inference rule on previous formulas in the proof sequence.

Let @ be a set of formulas and let v be a formula. We write ® F
if ¥ can be derived from @ in a formal proof system. A proof system is
sound if ® - ¥ implies ® = ¥ and it is complete if ® |= v implies ® - v.
Godel’s Completeness Theorem states that there exists a sound and complete
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2.2. Satisfiability and model-checking

proof system for first-order logic. As a consequence, the set of valid FO-
sentences is recursively enumerable. By the famous result of Church and
(independently) Turing, the set of valid first-order sentences is not decidable
(and hence not co-recursively enumerable). Consequently, equivalence of
two formulas is recursively enumerable but not decidable. As v is not
valid if and only if —y is satisfiable, the set of satisfiable sentences is not
recursively enumerable.

On the other hand, the set of sentences which have a finite model is
recursively enumerable. By Trakhtenbrot’s Theorem, the set of first-order
sentences valid in all finite structures is not recursively enumerable and
hence finite satisfiability is not decidable. Proofs of the above mentioned
results can be found for example in [11].

Our main concern is the study of the parameterized complexity of the
model-checking problem for a logic £ € {FO,MSO,MSO;} on a class € of
finite structures.

MC(ZL,%€)
Input: A€, pe
Parameter: ||
Problem: Decide whether 2 |= ¢

Throughout this thesis we will use the above way of presenting parame-
terized problems. Formally, we fix an alphabet £ with a designated sep-
arating symbol #, an encoding (-) which maps 7-structures 2l to words
(2) € £* and formulas ¢ € £[7] to words (¢) € Z* and a parametrization
x((2Ay#(p)) — lpl. Then

MC(Z,6) = () #{p) : A €,p € L[], A ¢},x).

The W-hierarchy is a collection of parameterized complexity classes. Our
definition follows [51] which is much more natural in the model-checking
context than the original definition (see e.g. [38]) in terms of the weft of a
circuit. Let T be a finite relational vocabulary and for some positive integer
s> 0, let R be an s-ary relation symbol which does not occur in 7. Let ® be
a set of FO[1 U R]-formulas. We define the weighted satisfiability problem
for © as the problem
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2. First-order and monadic second order logic

WS-o
Input: Finite 1-structure 2, p e ®, k eN
Parameter: ||
Problem: Decide whether there exists R < V(2()* with
|R| =k such that (,R) |= ¢

For every t =1, we let
Wit] := [WS-I1,]7!

and
AW[x]:= [MC(FO))?*.

For example, the parameterized independent set problem (parameterized by
the size of the independent set) is in W[1]. To see this, take a unary relation
symbol R and state with first-order logic that every two elements from R
are not connected by an edge, which is a I1;-formula. It was shown that the
parameterized independent set problem is complete for W[1] [36].

The parameterized dominating set problem (parameterized by the size of
the dominating set) is in W[2]. To see this, take a unary relation symbol R
and state with first-order logic that for every element v it either holds that
v € R or that there exists u € R such that {u,v} is an edge of the input graph.
This is a IIg-formula. In fact, the parameterized dominating set problem is
complete for W[2] [35].

It is conjectured an widely believed that

FPT C W11 C WI2]1C --- C AW[*]

By our definition, the first-order model-checking problem (parameterized by
the length of the formula or by its number of quantifiers) is complete for the
parameterized class AW[x] and hence it is widely believed that no efficient
first-order model-checking algorithm on the class of all finite structures
exists.

2.3. First-Order Types

Let 2 and *B be 7-structures and let £ = 0 be a non-negative integer. 2
and B are k-equivalent, written 2 =}, B, if they agree on all 7-sentences of
quantifier rank at most £, i.e. if for all ¢ € FO[r] with qr(¢) <% we have

2 |= ¢ if and only if B |= ¢.
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2.8. First-Order Types

We say that 2 and B have the same rank-k type. More generally, for an
integer m =0, tuples a = (a1,...,a,) € V)™ and b =(b1,...,b,,) € V(B)™
and x = (x1,...,X;). The rank-k m-type of @ over 2 is

tpp (2, @) :={p(x) e FO[7]: qr(p) < k,2 = p(a)}.

A rank-k m-type is any set of formulas of the form tp,(2(,a) for a 7-structure
2 and @ € V(R)™. When m is clear from the context, we simply speak
of rank-k types. Note that a rank-k type T is maximally consistent, i.e.
satisfiable and for each formula ¢(x) of quantifier rank at most %, either
@€ T or ~peT. We write (A,@) =, (B,b) if tp, (A, @) = tp,(B,b).

Types as defined above are infinite. However, we may assume that for-
mulas ¢(x1,...,%,) of quantifier rank % use only the variables x1,...,Xz+m,
that all Boolean combinations are in disjunctive normal form and that there
are no duplicate entries in disjunctions and conjunctions. We call a formula
with these properties normalised and we write ®(t,k,m) for the set of all
normalised 7-formulas ¢(x1,...,x,) of quantifier rank at most k. It is not
hard to see that ®(r,%,m) is finite and computable from 7,k and m. By sys-
tematically renaming bound variables, bringing Boolean combinations into
disjunctive normal form and deleting duplicate entries from the disjunctions
and conjunctions, we can effectively normalise any 7-formula ¢.

Hence each rank-% type is uniquely defined by a subset © < ®(z,k,m).
We will often not distinguish between a type and the formula which is the
conjunction of the type. Every r-formula ¢ of quantifier rank % is either
unsatisfiable or equivalent to a disjunction of rank-% types, namely of those
types which contain ¢.

This implies that it is not decidable whether a set I' € ®(7,k,m) is a
type (otherwise we could simply test whether a 7-formula ¢ of quantifier
rank 2 with m free variables occurs in one of the finitely many types with
parameters 7,2 and m and thereby decide whether ¢ is satisfiable). We
can transform any formula ¢ into a disjunction V;c; AT'; though, where
I'; < ®(1,k,m) is a set with the property that for all v € ®(z,k,m) either v
or the normalised version of =y is contained in I';. Each such T'; is a either
equivalent to a type or unsatisfiable. Let I'1,...,I's be an enumeration of
the finitely many subsets of ®(z7,k,m) with the above property. We know
that for some I < {1,...,s} the formula ¢ is equivalent to v := ;e AT; and
hence the formula ¢ — 7 is valid. We can test this for all I in parallel and
eventually find the desired disjunction. We can generalise this principle as
follows.
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2. First-order and monadic second order logic

Theorem 2.3.1 Let ® be a finite set of first-order t-formulas, let € be a
first-order definable class of t-structures and let k,m = 0 be non-negative
integers. If for all t-structures A, B from € and alla e V)™, b e V(B)™,

(Aa)Eyo(B,b)=yforall ye®) implies (A,a)=y (B,b),

then every first-order formula @(x1,...,Xm) of quantifier-rank at most k can
effectively be translated to a Boolean combination of formulas from ® which
is equivalent to @ on all structures from 6.

PROOF. The ®-type of a tuple @ in a 7-structure 2 is defined as
o, a):={yed®:Qa)Fylu{~v:ved,(a)l= vyl

As @ is finite, ®(2, a) for any 7-structure 2 and tuple a € V()™ is also finite.
Let ¢(x1,...,%,) be any first-order 7-formula of quantifier-rank at most k.
We claim that for all 8 € € and b € V(*8)™ it holds that

(B,b)¢ ifandonlyif (B,0) \/  AO&,a),
AeB,acV )™
QA @
where we remove duplicate entries from the big disjunctions. For readability,
we Wﬂl simply write V(Ql,E)IZ(p fOI‘ VQ(E%’,EGV(QK)’”,(Q[,E)\:(;),

Let B € € and b € V(B)™. If (B,b) |= ¢, then (B,b) = V(o a)p NP, @),
since B |= (B, b).

Conversely, assume that (%,5) EVaLaee AP, a). Then for some model
Q@) of ¢, (B, b) = D(A,@). By definition of ®(A,a), (A,@) and (B, b) satisfy
the same formulas of ® and satisfy, by assumption, (,a) =, (%,5). Hence
(B,b) = ¢.

It remains to show that the transformation is effective. Let ¢ be a formula
such that A € € if and only if A |= . Let I',...,I's be an enumeration of the
finitely many sets I' with the property that for each y € @, either y €T or
-y €I'. As shown above, for some I < {1,...,s} the formula ¢ is equivalent to
¥r1:=Vier AT'; on structures from € and hence the formula v — (¢ < y7) is
valid. We can test this for all I in parallel and eventually find the desired
Boolean combination. O

Note that again we cannot decide whether a set I'; is a ®-type and that the
above method does not provide a way to decide whether ¢ is satisfiable.
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2.8. First-Order Types

The equivalence relation = can be characterised in an algebraic way which
greatly helps to understand the expressive power of first-order logic.

(2, @) and (B, b) are k-isomorphic, written (2,a@) =, (B,b), if there is a
sequence (I )o< < With the following properties.

* For every non-negative integer j, 0 < j <k, I; is a non-empty set of
partial isomorphisms from 2 to B and a— b € I}.

* (Forth property) For every non-negative integer j,0<j<k, g€l 1
and a € V(2() there is p € I; such that p extends g and a € dom(p).

* (Back property) For every non-negative integer j, 0<j <k, g€l
and b € V(25) there is p € I; such that p extends g and b € ran(p).

Hence a partial isomorphism from I; can be extended for j times while
preserving the back and forth property (the back-and-forth property is not
required to hold for Ip). The sequence (I ;)<< is called a back-and-forth
system.

Back-and-forth systems can be understood in a very intuitive, game
theoretic way. The Ehrenfeucht-Fraissé game G, (2,7, B,b) is played by
two players, called Spoiler and Duplicator. Each play of the game has &
rounds, where in the i-th round Spoiler selects one of the structures 2
or B and an element of the chosen structure. If he chooses a,,; in 2,
then Duplicator answers with an element b,,.; in 8 and if he chooses
bm+i in B, then Duplicators answers with a,,+; in 2. Duplicator wins the
play after 2 rounds if {(a;,b;): 1 <i < m +k} is a partial isomorphism of
20 and B. Otherwise, Spoiler wins. Equivalently, Spoiler wins the play
if after some ¢ <k, {(@¢;,b;): 1 =i <m+ ¢} is not a partial isomorphism.
We say that a player has a winning strategy for G, (2,a,3,b), or shortly
that he wins G;(2,@,B,b), if he can win each play of the game whatever
choices are made by the opponent. We omit a formal definition of games
and winning strategies because we will work with back-and-forth systems
and simply note that Duplicator wins G (2, a, %,5) if and only if there is a
back-and-forth system (I ;)o<j<z for 2l and B with a — b € I,.

For a non-negative integer n = 0, a 7-structure 2 and a, € V(Q)", let x,, :=
(x1,...,x,) and let (Dgla be the set of atomic or negated atomic formulas
¢(x,) such that 2 = p(a,). Let

Pz @)= NPy 5 -
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2. First-order and monadic second order logic

<I)g1 5 S @(7,0,n) is finite, and hence the above conjunction is a well defined
formula. For an integer i > 0, assume that

(D;Hll {(p;‘_éml(inﬂ) 12 T-structure, a, .1 € vyt c d(r,i—1,n+1)
has been defined and is finite. Then

) _ i1 —
(plQl,En(x”) = /\ 3xn+1¢lg[’ana(xnaxn+l) AVxp41 V (le an a(xnaxn+1)
acV(2) acV(2A)

where we remove duplicate entries from the conjunctions and disjunctions
is a well defined formula. We call (pgf (xy,) the rank-k Hintikka type of

a, € V™. Note that (pgl _(x) for x = (x1,...,x,) uses only the variables
X1,...,X%+m and that all Boolean combinations are in disjunctive normal
form (the outermost disjunction contains exactly one disjunct), hence it is a
normalised formula.

The following theorem which links rank-% types, rank-£2 Hintikka types
and back-and-forth systems, is known as the Theorem of Ehrenfeucht and
Fraissé [44, 52].

Theorem 2.3.2 Let Ql,? be t-structures, let k,m = 0 be non-negative inte-
gers and let a e V)™, b € V(B)™. The following are equivalent.

1. tp,(2,@) = tp;(B,b).
— ok (7
2. B= ‘pm,a(b)'
3. There is a back-and-forth system (I j)o<j<p, for 2l and B and a — bel,.

As rank-k Hintikka types are normalised formulas from ®(zr,%k,m) and by
Theorem 2.3.2 each rank-£ type is uniquely determined by some rank-%
Hintikka type, namely by the rank-£ Hintikka type it contains, we can
replace rank-£ types by rank-% Hintikka types. Hence, every formula of
quantifier rank % is either unsatisfiable or equivalent to a disjunction of
rank-%£ Hintikka types.
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2.4. Definable Interpretations

2.4. Definable Interpretations

Interpretations concern the logical definition of one structure within another.
Let 2 be a t-structure and let m, ¢ = 0 be non-negative integers. A formula
@(x1,..,%Xm,¥1,---,¥¢) € FO[T] naturally defines the query

PIA,b]:={@e V)™ : A= ¢(@,b)}

on 2 with parameters b € V(). Alternatively, ¢ may be seen as defining a
structure of vocabulary {R}, where R is an m-ary relation symbol, namely
the structure (V(Ql),(p[%l,g]).

This concept is generalised by the notion of first-order definable interpre-
tations. Let o be a vocabulary and let £ > 0,¢ = 0 be integers. A first-order
definable k-ary (o,1)-interpretation with ¢ parameters ¥ = [(pu,((pR)REU)
consists of

* aformula ¢,(x1,...,%,¥1,...,¥¢) € FO[7] defining the universe of the
interpreted structure (which is a subset of V(2)*), and

* formulas ¢g,(¥,y1,...,y¢) € FOl7] for R; € 0 of arity m;, where
E = (x(1,1)7 .. ’x(l,k)7 .. ’x(mi,1)7 .. 7x(mi,k))’
defining the relation R; of the interpreted structure.

If (pu[Ql,E] # @, then the o-structure defined by .# over 2 and b is
FQ,B) = (2,5, (R, 12,51 N (@ul2,BD™))p )

Every (o,7)-interpretation also induces a translation from o-formulas to
7-formulas.

Lemma 2.4.1 (Interpretation Lemma) Let & > 0,7 = 0 be integers. Let
& be a k-ary (0,1)-interpretation with ¢ parameters and let o(x1,...,%m)
be a o-formula. There is a formula @ = #(¢) € FO[1] with free variables
X(L,1)s- s XLk - o> X(m, 1)+« -2 X (k) V15 - - -, Ve Such that for all T-structures 2
and all b € V!, if 9, [A, b1 # @, then for all

C=((ca,1)--»CA ), (Clm,1)s- - Com k) € (pu[2A, ]

we have

FQU,b) = ¢(e) = AEy(c,b).
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2. First-order and monadic second order logic

Here we interprete ¢ on the left side of the equivalence as an m-tuple over
V(Q)F and on the right side of the equivalence as a km-tuple over V(). The
quantifier rank of v depends only on #.

PROOF. Assume that for some integer s, ¢ uses only the variables x1,...,x5.
Then (x(; 1),...,% k)) in ¥ will take the role of x; in ¢ for all 1<i<s. An
easy induction shows that the following interpretation of formulas satisfies
the claimed properties.

e #(T)=Tand #(L)=1,
i J(xi = xj) = (x(i71) = xu,l)) AN...N (x(i7k) = x(j}k)),

¢ IRy, %)) = PRO(i1,1)5 -3 X (i1 k)5 3K (i, 105w+ K0 ) Yoo V)
for each t-ary relation symbol R € o,

* I(x1ox2)=F(x1)o I (x2) for o€ {A,v,—,—} and F(7y) = 2(F(})),
o F@x;x) =3 1) 306 0 (@uXG 1), - %G R V1,1, ¥e) AF()) and
o F(Vx;ix)=Vxi1). .- VX6 o) @uXG 1), XG0 k), Y15+ -5 Y0) = F (X)) O

Similarly, we can define MSO-definable interpretations. However, we must
restrict ourselves to one-dimensional interpretations, as MSO can quantify
only over sets and not over k-ary relations.

Lemma 2.4.1 gives rise to an algorithmic method which allows to transfer
complexity results from one class of structures to other classes of structures.
Let 2 be a class of o-structures and let € be a class of 7-structures such
that the first-order (monadic second-order) model-checking problem can
be solved efficiently on €. If there is a (o, 7)-interpretation .# such that
for each B € 9 we can efficiently compute a structure 2 € € such that
F(2) =B, then we can also efficiently solve the model-checking problem
on 2. On input B and ¢ € FO[o], in order to decide whether B |= ¢, we
compute 2 € € such that £() =B and then decide whether 2 |= #(¢p).

2.4.1. Defining distances — the Gaifman graph of a
structure

For a t-structure 2, we define a binary relation ~ on V(2), where two
elements a,b € V() stand in relation if a # b € V() and a and b occur
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2.4. Definable Interpretations

together in some tuple of a relation of A. We call G(2) := (V(2),~) the
Gaifman graph of 2. It is common in model theory to consider the Gaifman
graph of a structure in order to transfer concepts, such as distances or
structural measures for graphs, from graph theory to model theory.

The distance between a and b in 2l is the minimum number r such that
there are ag,...,a,_1 such that a ~a9,a9 ~as,...,a,_1 ~ b or co if no such r
exists and is denoted by distg(a,b), or simply by dist(a, b), if there is no
danger of confusion. For an integer r = 0, the r-neighbourhood N,m(a), or
simply N,(a), of a is the set of elements at distance at most r from a in 2,

N2a@)={be V() :dist(a,b) < r}.
For an integer & >0 and a tuple @ = (a1,...,ax) € V)%, we let

N @:= J N.@).
1<i<k

We can find the r-neighbourhood of a tuple a € V()™ in 2 via a one-
dimensional (7, 7)-interpretation with m parameters.

Lemma 2.4.2 For every integer r = 0 there is a T-formula 6 <,(x,y) such that
for all t-structures A and a,b € V(2),

Al=6<r(a,b) < disty(a,b)<r.

PROOF. Assume that 1 ={R1,...,Rs}, where R; is of arity m; for 1 <i <s.
Then
O<olx,y):=(x=1y)

and for r >0

Bers1(®,9)i=8p(0, )V (6@, A\ Fur...3um,

1<iss

(Ri(ul,...,umi)/\ V (ujzz/\ugzy))).D

1<j,0<m;

We write §, for 7d<,. For a tuple x = (x1,...,x,) let

O<r(x,y):= v O<r(x,y).

l<ism

Now we can define the r-neighbourhood of @ by by .%, = (¢, ((pR)rer), where
@y (x,y) =06<,(y,x) and pgr(x,y) = Rx for all R € 7. For a formula v, we write
" for .Z,.(y).
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2. First-order and monadic second order logic

Corollary 2.4.3 Let 2 be a t-structure, let m > 0,r =0 be integers and let
aeVE)™. Then

AN, @)] = v@) < A= vV @)

The quantifier rank of w'\"depends on the quantifier rank of v and on T,r
and s only.

A formula ¢ (x) is called r-local around x € V™ if for all 2 and @ in V(20)™,

AN, @] = y(@) = A= y@).

2.5. Locality of first-order logic

A fundamental property of first-order logic is its locality. In this section
we are going to review the main ingredients of Gaifman’s Theorem [54],
which states that the truth of a formula ¢(a) depends only on the local
neighbourhood of @ and on whether there exist scattered sets of elements
with a certain local type. The proof of our extended locality theorem in
Section 7.2 parallels the proof of Gaifman’s theorem.

Let 2 and B be 7-structures and let m = 0 be a non-negative integer. Let
@ e V@)™ and b € V(B)™. We are looking for a combinatorial condition that
guarantees the existence of a back-and-forth system (I)o<;< between 2
and B such that @ — b € I,. Let us assumec—d € I ; and consider the forth-
property: For any ¢ € V(2) there must be d € V(8) such that cc — dd € I j-1-
If ¢ is chosen close to an element of ¢, then the existence of d will follow
from a local property of 2 around ¢, i.e. a property of A[N,(;)(c)] for some
function r(j) to be defined. If on the other hand c is chosen far from all
elements of ¢, then some global property of the structure must guarantee
the existence of d. The global property in Gaifman’s Theorem is based on
the following combinatorial idea.

Let r > 0 be a positive integer. A set S € V() is r-scattered, if N,.(a)n
N, (b)=¢ foralla,beS.

Recall that ") (x) relativises a formula v to the r-neighbourhood of x.
For a formula y(x), the following lemma provides a necessary and sufficient
condition for the existence of an element a which satisfies " at distance
greater than 2r + 1 from a.
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2.5. Locality of first-order logic

Lemma 2.5.1 Let 2 be a t-structure, let m > 0,r = 0 be integers, a € V()™
and let y(x) € FOIt]. There is an element a € V() with A = v(a) at
distance greater than 2r + 1 from a if and only if one of the following holds:

® there is an element a € V() with A |= w(r)(a) with

2r +1 < dist(a,a) <6r+3,

* there exists a (2r + 1)-scattered set of elements which all satisfy v of
size s <m+1in 2 but no such set of size s in the (2r +1)-neighbourhood
of a.

PROOF. Observe that the 2r + 1-neighbourhood of each element a; € a does
not contain two elements of mutual distance greater than 4r + 2, hence
No,1(a;) for each a; € a can contain at most one element of a 2r+1-scattered
set. Hence, every element which satisfies 1" lies either at distance at most
6r + 3 to a or can be added to any 2r + 1-scattered set (of size at most m) in
N2r+1(6)- ]

Our motivation to find an element at distance greater than 2r + 1 from a
comes from the following observation.

Let us write AUB for the disjoint union of 2l and B, where V(AUDB) =
VERDUV(B) and R(AUB) = R(AUR(B) for all R € 7. For a € V()™ and
a e V), if dist(a,a) > 2r+1, then N,(a)nN,(a) = ¢ and no relation involves
a tuple with elements from both N,(a) and N,(a). Hence [N, (a) u N, (a)]
can be seen as the disjoint union of A[N,(a)] and A[N,(a)]. This allows
to obtain the rank-%£ type of A[N,(a) U N,(a)] from the rank-%k types of
A[N(a)] and A[N,(a)], as proposed in the following lemma. The lemma,
which goes back to Feferman and Vaught, can easily be proved by using
the characterisation of k-equivalence by the existence of back-and-forth
systems (see e.g. [94] for a proof of how to effectively compute the type of
the combined structure from the type of the isolated structures).

Lemma 2.5.2 Let k =0,m1,mg >0 be integers and let Qll,%z,%l,%g be
T-structures. If a1 € V(1)™1, ag € V(R2)"2, b1 € V(B1)™! and bg € V((Bg)™2
satisfy

tpp(1,a@1) = tpy(B1,b1) and  tpy(A2,a2) = tpy(Ba, ba),

then L
tp, (A1 URAs,a1a2) = tp,, (B1UB2,b1b2).
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2. First-order and monadic second order logic

By Corollary 2.4.3, the conditions in Lemma 2.5.1 are first-order definable
and the quantifier rank of the respective formulas depend on the quantifier
rank of ¢ and 7,m and r only.

A sentence is basic local with parameters r and s if it has the form

Fxr.3xs( N\ Oser(r,xp)A N\ w(r)(xi)),

l<i<js<s l<iss

where y(x) is a first-order formula. It states that there is an r-scattered
set R of size s such that all elements a € R satisfy A[N,(a)] = y(a).

Theorem 2.5.3 (Gaifman [54]) Every FO[r]-formula ¢(x) can effectively
be translated into an equivalent formula W which is a Boolean combination
of r-local formulas around x and basic local sentences with parameters r
and s. If qr(p) =k and x = (x1,...,%m), then s<k+mand r < 7.

For the proof one shows that there is a function f(7,m, ) such that for all
T-structures 2, B and @ € V)™, b € V(B)™, if (A, @) = y  (B,b) = y) for
all r(k)-local formulas of quantifier rank f(7,m,k) and (A= y © B |= y) for
all basic local sentences with parameters r(k) and s(k) of quantifier rank
f(r,m,k)), then _

Rla) =g, (48,b).

Then the claim follows from Theorem 2.3.1. The function f is defined
inductively in the course of the proof.

For more background on first-order logic (and especially first-order logic
in the finite) we refer to [43, 59, 89].
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3.1. Graphs

A graph G is a pair consisting of a finite and non-empty vertex set V(G) and
an edge set E(G) € [V(G)1?, the set of all 2-element subsets of V(G). We
always assume V(G)NE(G) = @. In the following, let G and H be graphs,
let u,v,w be vertices of G and let e be an edge of G. Let £ be a non-negative
integer. For convenience, we usually write uv € E(G) (or vu € E(G)) instead
of {u,v} € E(G). The number of vertices of G is its order, denoted by n(G),
and its number of edges is its size, denoted by m(G). If uv € E(G) then
u and v are adjacent or neighbours and u and v are incident with or the
ends of the edge uv. Two edges e # f are adjacent if they have a vertex in
common.

We denote by Ng(v) := {u : uv € E(G)}, or simply by N(v) if there is no
danger of confusion, the set of neighbours of v in G. Their number is called
the degree of v, denoted by dg(v), or simply by d(v). We have

Y dw)=2-m(G).
veV(G)
An important measure is the ratio
m(G)
n(G)
which is called the edge density of G. It is closely related to the average
degree of G

e(G):=

d(G):=

d)=2-¢@).
n(G)ve;((;) () =2-¢@)

The number
6(G) :=min{d(v):v € V(G)}

is the minimum degree of G and the number

A(G) :=max{d():ve V(G)}

33



3. Graphs

is its maximum degree. If all vertices of G have the same degree &, then G
is k-regular, or simply regular. Clearly,

0(G)=d(G) = AG)

and for every integer & > 0, at most (d(G)/k)-n(G) vertices of G can have
degree at least k.

A set of vertices is independent (or stable) if no two of its elements are
adjacent. Conversely, a graph is complete if all of its vertices are adjacent.
The complete graph of order n is denoted K,,.

A set D € V(G) dominates G if every vertex of G either lies in D or is
adjacent to a vertex of D.

If V(H) < V(G) and E(H) < E(G), then H is a subgraph of G, written
as H < G. If ¥ is a class of graphs which is closed under subgraphs, i.e.
H < G for some graph G € ¥ implies H € ¢, then ¥ is called monotone.
If H< G and H # G, then H is a proper subgraph of G. If H € G and
E(H) = E(G)n[V(H)]?, then H is an induced subgraph of G. If € is a
class of graphs which is closed under induced subgraphs, then ¥ is called
hereditary. For a subset U € V(G) we write G[U] for the induced subgraph
of G with vertex set U and say that U induces or spans GIU]in G. If H< G
we abbreviate G[V(H)] to G[H]. If H € G with V(H) =V (@), we call H a
spanning subgraph of G. We write G —U for G[V(G)\U]. For a subset
F c[V(@)]? we write G — F for the graph (V(G),E(G)\F) and G + F for the
graph (V(G),E(G)UF).

G is k-degenerate if every subgraph H < G has a vertex of degree at most k.
If G is k-degenerate then m(G) < k - n(G).

G is isomorphic to H, written G = H, if there is a bijection 7 : V(G) — V(H)
with uv € E(G) if and only if n(u)r(v) € E(H) for all u,v € V(G). We do not
distinguish between isomorphic graphs, e.g. when we write G contains H as
a subgraph we mean that G has a subgraph isomorphic to H. A mapping
h :V(G) — V(H) is a homomorphism from G to H if uv € E(H) implies
h(u)h(v)e E(H) for all u,v e V(H).

G is maximal (minimal) with some property if there is no graph H 2 G
(H € G) with the property. G is maximum (minimum) with the property
if there is no graph H D G with n(H) > n(G) (H 2 G with n(H) < n(G))
satisfying the property.

A walk W of length & from vg € V(G) to vy € V(G) in G is a sequence
voU1 ...V With v;v;.1 € E(G) for i < k. The vertex set of W is V(W) =
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3.1. Graphs

{vo,...,vz} and the edge set of W is E(W) = {v;v;+1 :i < k}. W is closed if
vo = vg. It is a path if all its vertices are distinct, a trail if all its edges
are distinct and a cycle if k =3, vo =vg and v; #v; for i < j<k. We
usually identify a path P and a cycle C with the graphs (V(P),E(P)) and
(V(C),E(C)), respectively. We denote the path of length £ by P and the
cycle of length & by C},. A path links or connects its end-vertices vg and vy,.
The vertices v1,...,v;_1 are its inner vertices. A shortest walk between two
vertices is always a path and every walk between two vertices contains a
path between these vertices.

Two or more paths are independent or internally vertex disjoint if none of
them contains an inner vertex of another. They are strongly independent if
they have no vertex in common.

G is connected if any two of its vertices are connected by a path. If
U < V(G) and G[U] is connected, we also call U itself connected (in G). A
maximal connected subgraph of G is a component of G. G is k-connected if
it has more than k& vertices and remains connected whenever fewer than &
vertices are removed.

The distance between u and v in G is the minimum length of a path
linking © and v (or oo if no such path exists) and is denoted by distg(u,v),
or simply by dist(u,v). The d-neighbourhood Ng(u), or simply Ngy(u), of u
is the set of vertices at distance at most d from u in G,

N§(w)={veV(G):dist(u,v) < d}.

The greatest distance between any two vertices in G is the diameter of G,
denoted by diam(G). A vertex u is central in G if

max d(u,w)= min max d(v,w)
weV(G) veV(G)weV (@)

and the number

rad(G) = min max d(v,w)
veV(@)weV(G)

is the radius of G. We have
rad(G) < diam(G) < 2-rad(G).

If G does not contain a cycle, it is called an acyclic graph or a forest. A
connected forest is called a tree, hence a forest if a graph whose components
are trees. The vertices of degree 1 in a tree are its leaves. It is often

35
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convenient to consider one vertex of a tree as a special vertex, called the
root of the tree. We call a tree T with a fixed root r € V(T') a rooted tree. The
standard tree-order associated with T and r is the partial order < on V(T)
with u <v for u,v € V(T) if u lies on the unique path in T between v and r.

G is k-partite with vertex classes V1,...Vy if V(G) is the disjoint union of
the V; and adjacent vertices come from different vertex classes. Instead
of 2-partite we say bipartite. For ni,...,n; = 1, we denote by K, ,, the
complete k-partite graph whose ith class contains exactly n; vertices. Its
number of edges is

nin;.
1<i<j<k

A k-colouring of a set A is a mapping ¢: A — {c1,...,cr} tocolours cy,...cp. A
proper colouring of the vertices or edges of G is a colouring of V(G) or E(G),
respectively, such that adjacent elements are assigned different colours. If
G has a proper k-colouring of its vertices then it is called k-colourable. The
chromatic number of G is

1(G) =min{k : G is k-colourable}.

If y(G) = k we say that G is k-chromatic. In the following, when we speak
of a colouring, unless explicitly stated differently, we mean a proper vertex
colouring.

It is easy to see that if G is minimal k-chromatic, then 6(G) =k — 1. For if
there is v € V(G) with d(v) <k -2, then a (k — 1)-colouring of G — v can be
extended to a (k — 1)-colouring of G. In particular, if y(G) = k, then G has
a subgraph H with 6(H) =k — 1. Conversely, if G is k-degenerate then it is
k + 1-colourable and if G is k-colourable then it contains an independent set
of size at least n(G)/k.

If G has large average degree, then it has a subgraph of large minimum
degree. This is made precise in the following lemma.

Lemma 3.1.1 Let G be a graph. If m(G) >0, then G has a subgraph H with
6(H) > e(H) = e(G).

The following lemma helps to gain more control over the size of the subgraph
H.

Lemma 3.1.2 Let G be a graph and let 1 be a real with 0<u<1. Then G
has a subgraph H with

H)=z(1-pw-e(@) and m(H) = p-m(G).
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In the previous lemmas, we eliminated vertices of small degree. As shown
by Erdés and Simonovits [47], for sufficiently dense graphs, we can also
eliminate high degrees. G is d-almost-regular if A(G) <d -6(G).

Theorem 3.1.3 (A-almost-regularisation [47]) Let G be a graph, let ¢
be a real with 0 < e < 1and let d = 20-2¢". If G is large and m(G) > n(G)*¢,
then G has a d-almost-regular subgraph H with

2 —€
m(H)>gn(H)1+€ and n(H)>n(G)\T.

Note that G is k-colourable if and only if it is 2-partite. This is why a vertex
class in a k-partite graph is often referred to as a colour class. The difference
between k-partite graphs and k-colourable graphs is that when we speak of
k-partite graphs we usually fix the vertex classes but the colour classes of a
k-colourable graph are almost never supposed to be given a priori.

We can make any graph k-partite with partitions of balanced size by
dropping only few edges.

Lemma 3.1.4 Let G be a graph. If m(G) >0, then G contains a k-partite
subgraph H S Ky, . p, with Yi<i<pn; =n(G), In;—njl<1for1<i,j<k
and m(H) > (1-3)-m(G).

A directed graph D is a pair consisting of a finite and non-empty vertex set
V(D) and an arc set A(D) € V(D)2. We always assume V(D)nA(D) = @. An
orientation of a graph G is a directed graph D with V(D) =V (G) and which
contains for each edge uv € E(G) exactly one of the arcs (u,v) or (v,u). We
let

Nj@):={weV(D):(v,w) € AD)}

be the out-neighbours of a vertex v and call
dB(v) = INZS(U)I

the out-degree of v. Similarly, N, (v) := {u € V(D) : (u,v) € A(D)} are the
in-neighbours of v and dl_)(v) ==|Np ()l is its in-degree. The maximum out-
and in-degree of D are defined as

A*(D):= max dj,(v) and A™(D):= max dp ().
veV(D) veV(D)

The following observation is crucial for the running times of our algorithms.
If G is k-degenerate then it has an acyclic orientation D with A™(D) < k.
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Our representation of graphs as input for an algorithm is based on this
observation.

Remark 3.1.5 We assume that vertices the vertices of G are labelled as
{1,...,n(G)} and are represented by these numbers in binary. For a k-
degenerate graph G we store an (acyclic) orientation D of G such that
IN*(v)| <k for all v € V(D). Even though it would suffice to store N*(v)
for each vertex, we store both N*(v) and N~ (v) (in some ordered way).
This allows us to check adjacency for two vertices u,v € V(G) in time O(k -
logn(@)), by simply checking whether u € N*(v) or v € N*(u). It is easy
to see that if G is given as a list of adjacency lists, we can compute %
such that G is k-degenerate and the above representation in time O(n(G) +
m(G)-logn(@)). On the other hand, by storing both N*(v) and N~ (v) for
all vertices v, if H = GIN,.(w)] is k-degenerate for some vertex w, then we
can perform the first r levels of a breadth-first search starting at w in time
O(k-n(H)-logn(@)). Along with the search we can compute a spanning
breadth-first search tree of H and new vertex identifiers, such that the size
the representation of a vertex is logn(H) in the subgraph H. Also note that
nlogn < n'*€ for all ¢ > 0 and n sufficiently large.

A directed graph can be understood as a relational structure G over sig-
nature 7 = {E}, where E is a binary relation symbol. The structure G is
an undirected graph if E(G) is irreflexive, i.e. (v,v) ¢ E(G) for all v € V(G)
and symmetric, i.e. if (u,v) € E(G) implies (v,u) € E(G) for all u,v € V(G).
More generally, a coloured graph is a relational structure G over signature
{C1,...,Cr,E1,...,E,}, where the C; are unary relation symbols and the E;
are binary relation symbols, 1 <i <k,1<j</. The C; are called the vertex
colours and the E; are the edge colours. The structure G is an undirected
coloured graphs if each E is irreflexive and symmetric.

3.2. Tree width and forbidden minors

Tree width (see e.g. [13, 34]) is a fundamental structural measure with
many applications in graph structure theory and graph algorithms.
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3.2. Tree width and forbidden minors

A tree decomposition of a graph G is a pair (T,X), where T is a tree and
X ={X;:teV(T)} is a family of subsets of V(G) (called bags) such that

* Uevin Xt =V(G),
¢ for every edge {u,v} of G there exists t € V(T') with u,v € X; and

e ifr,s,t € V(T) and s is on the path of T between r and ¢, then X, nX; <
X;.

A graph G has tree width at most k if it admits a tree decomposition (7', X)
such that | X;| < k+1 for each ¢t € V(T') and we write tw(G) for the tree width
of G.

We may assume that every tree decomposition (7, X) has the property
that for every {s,t} € E(T) we have | X\ X;| < 1. We call such decompositions
smooth.

A graph of small tree width has small separators, as described in the
following lemma.

Lemma 3.2.1 Let G be a graph and let (T, X) be a tree decomposition of G.
If r,s,t e V(T), ue X, and v € Xy and s lies on the path of T between r and t,
then every path from u to v in G uses a vertex contained in X;.

Many problems which are intractable in general can be solved efficiently
on graphs of bounded tree width. Most general is Courcelle’s theorem [22]
which states that every property of graphs of bounded tree width that are
definable in monadic second-order logic can be decided in linear time.

An equivalent definition of tree width is in terms of elimination orders. We
represent an order of V(G) as an injective mapping L : V(G) — N. Let G be a
graph and let L be a linear order on V(G). Without loss of generality we have
V(G)=11,...,n} and L(i) =i. With L we associate a sequence Gy,...,G,-1
of graphs as follows. Let Go :=G and for 0 <i <n,let V(G;) :=V(G;-1) \{i}
and

E(G):=(B@i-D\{li,j):j = n}) U 6,7 16,01, 00, ) e B},

i.e. we eliminate vertex i and make a clique out of the neighbours of i in
G;_1. We call the maximum size of a clique over all G; the elimination
width of the order. The elimination width of G is the minimum width over
all possible widths of elimination orders of G. It is well known that the tree
width of G is equal to its elimination width, see e.g. [13].
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3. Graphs

Another definition of tree width which is easily seen to be equivalent is the
following. A graph G has tree width at most % if and only if its vertices can
be ordered such that each vertex v is separated from all smaller vertices by
at most k& smaller vertices, that is, for every v € V(G) there are wy,...,w;,
with L(w1) <... < L(wy) < L(v) such that every path between v and w with
L(w) < L(v) contains one of w1,...,wy.

A graph H with vertex set {v1,...,v,} is a minor of a graph G, denoted
H < @G, if there are pairwise vertex disjoint connected subgraphs G1,...,G,
of G such that for every edge v;v; of H there is at least one edge e;; € E(G)
joining G; and G in G.

Robertson and Seymour, in a series of 23 papers [119], developed a deep
theory of graph minors. One of the best known results from their theory
is their proof of Wagner’s conjecture, stating that graphs are well-quasi
ordered with respect to the graph minor relation.

Theorem 3.2.2 ([122]) Let G1,Gq,... be an infinite sequence of graphs.
Then there are two integers i < j such that G; < G;.

A class % of graphs is minor closed if for each G € €, every minor H X G
belongs to € as well. A minor closed class € is proper if it is not the class
of all graphs. Each minor closed class € is characterised by a set & of
forbidden minors, that is, the set of graphs that do not belong to € but all
their subgraphs do. The result of Robertson and Seymour implies that every
minor closed class is characterised by a finite set of forbidden minors.

The concept of tree width is central in Robertson and Seymour’s analysis.
Maybe the most important part of their theory is a decomposition theorem
describing the structure of all graphs that exclude a fixed minor. At a high
level, every graph which excludes a fixed minor can be decomposed into a
collection of graphs, each of which can be “almost” embedded into a surface
of bounded genus, and which are combined in a tree-like structure.

The local tree width of a graph G is the function 1tw? : N — N which
associates with every r = 0 the number

1tw% () := max{tw(GILN,(0)]) : v € V(G)}.

A class € of graphs is said to have bounded local tree width if there is a
function f :N — N such that for all G € ¢ and all integers r = 0 we have
1wl (r) < F(r).
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Based on Robertson and Seymour’s results, Grohe [60] obtained another
decomposition of graphs that exclude a fixed minor. Informally, every such
graph can be decomposed into a tree of graphs that, after removing a
bounded number of vertices, have bounded local tree-width. This decompo-
sition can be used to find a PTAS for many optimization problems [60] and
is also the basis for the first-order model-checking algorithm on classes that
exclude a fixed minor [50].

By Gaifman’s Theorem, first-order formulas can express only local proper-
ties of graphs. It was shown that for efficient first-order model-checking it
suffices in many cases that a class has locally nice properties, e.g. classes
of bounded local tree width [53], classes locally excluding a minor [28] and
classes of locally bounded expansion [42], which will be defined later.

However, it turns out that there is a much more general way to guar-
antee that a class has good local properties. Instead of locally excluding
a minor, we may exclude bounded-depth minors. This leads to the defi-
nition of nowhere dense classes as introduced by Nesettil and Ossona de
Mendez [107], which will be introduced in the next section. Surprisingly,
the notion of generalised colouring numbers as introduced by Kierstead and
Yang [77], which can be understood as a local variant of tree width, also
provide a characterisation of nowhere dense graphs.

3.3. Nowhere dense classes of graphs

For a non-negative integer r = 0, a graph H with vertex set {vy,...,v,}is a
depth-r minor of a graph G, denoted H <, G, if there are pairwise vertex
disjoint connected subgraphs G1,...,G, of G, each of radius at most r, such
that for every edge v;v; of H there is at least one edge e;; € E(G) joining G;
and G; in G. The set of all depth-r minors of G is denoted by G V r.

Let ¢ = 3 be an integer. It is a classical result of Mader that graphs with
K; £ G are sparse. In [91], Mader showed that every graph of average
degree at least c(t) = 272 contains K; as a minor, before showing that
c(¢) € O(tlogt) [92]. Kostochka [81] and Thomason [128] independently
found the correct order, showing c(¢) € ©(t/logt). Thomason [129] then
showed that c(#) = (a+0(1))t+y/logt for a very small constant a. It was shown
by Fiorini et al. [48] that for every € > 0, if G has average degree at least
2¢=1 4 ¢ then there is a constant C(e, #) such G contains a K; minor which
uses only C(e, t)-logn(G) vertices. Shapira and Sudakov [126] showed that
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average degree c(t)+¢ suffices to find a K; minor which uses C(e, t)(log n(G))?
vertices and finally, Montgomery [97] showed that this degree suffices to
find the K; minor on C(e,t)logn(G) vertices. Hence, a linear edge density
forces a low depth minor model of K;.

Surprisingly, the question of what edge density forces a constant depth
minor model of K; was studied only much later. But let us first turn to
subdivisions or topological minors of a graph.

A graph H is a subdivision of a graph G if H is obtained from G by
replacing each edge by a path. H is a topological subgraph or topological
minor of G, denoted H <! G, if a subdivision of H is isomorphic to a subgraph
of G. For an integer r = 0, a graph H is an r-subdivision of G if H can be
obtained from G by replacing each edge by a path of length at most r + 1.
Observe that if H is an r-subdivision of G then H <[;/9] G, hence we define
the topological depth-r minor relation as follows. A graph H is a topological
depth-r minor of G, written H <! G, if a 2r-subdivision of H is isomorphic
to a subgraph of G. We write G V r for the set of topological depth-r minors
of G.

Again it was Mader [91, 93] who showed first that graphs which exclude a
fixed graph as a topological minor are sparse, i.e. that there is a constant s(¢)
such that every graph G with average degree at least s(¢) satisfies K; <! G.
Bollobas and Thomason [16] and independently Komlés and Szemerédi
[79] found the correct order, showing that s(t) € ©(¢2). The best known
bound at this point of time is by Kithn and Osthus [86], showing that
s(t) < (1+0(1))10¢2/23. The question of how many vertices must be used
by a topological minor was considered by Kostochka and Pyber [80], who
showed that if G has edge density 4 n(G)° then K, <! G and the model
which witnesses this uses at most 7¢21log #/c many vertices. Fiorini et al. [48]
remark that with the same methods one can show that for every integer
t =2 and € > 0 there is a constant C(¢,¢) such that every graph with average
degree at least 4% + ¢ contains K; as a subdivision which uses C(¢,¢)logn
vertices.

Dvorak [40] was the first to show that for every real number ¢ > 0 there
is a constant ¢ depending only on € and not on ¢, such that all sufficiently
large graphs G (only the order of G depends on ¢ and ¢) of edge density at
least n(G) contain a c-subdivision of K;. Jiang [70] independently found
this result and provides the best bound for the constant c(¢) known today,
c(e) = |10/e]. Note that this bound is almost best possible. Any c¢-subdivision
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3.3. Nowhere dense classes of graphs

of K;, where ¢ = 3, must contain a cycle of length at most 3¢, that is, the
girth of G can be at most 3c. For every g, there are well known classes of
graphs of girth at least g and Q((n'*V#) edges. Hence there are n-vertex
graphs with edge density Q(nY3¢*1) and no c-subdivision of Kj.

These results imply the following theorem by Neset#il and Ossona de
Mendez [105].

Theorem 3.3.1 (Nesetril and Ossona de Mendez [105]) If €6 is an infi-
nite class of graphs, then either for all integers r =0

{ logm(H)

li —_—
im sup Togn(H)

n—oo

H <! G with n(H)zn,Ge%”}sl 3.1

or there exists an integer r = 0 with

lim su {—logm(H)
ntro0” P Togn(H)

'HsiG with n(H)zn,GE%} =2. (3.2)

Here we take lﬁggrs((g)) tobe 0if m(H)=0,

Nesettil and Ossona de Mendez in fact showed that the limits defined there
form a trichotomy, i.e. that for all classes ¥ of graphs the limsup can only
take the values {0,1,2}. They called those classes for which the limit is <1
nowhere dense. With algorithmic applications in mind, we rephrase the
definition in the following way.

Corollary 3.3.2 An infinite class 6 of graphs is nowhere dense if, and only
if, for all integers r = 0 and all reals € > 0 there is an integer no(r,e) such that
all n-vertex graphs H <, G € € with n = ng vertices satisfy m(H) < n'*¢.

Nowhere dense classes of graphs can also be characterised by excluded
bounded-depth minors.

Theorem 3.3.3 (Nesetril and Ossona de Mendez [105]) A graphclass €
is nowhere dense if and only if there is a function f such that for all integers

r=0we have K¢ty &r G for all G € 6.

The density of (topological) depth-r minors is central to Neset#il and Ossona
de Mendez’s theory of nowhere dense graphs. The greatest reduced average
density (shortly grad) with rank r of G [100] is

|E(H)I }

V.(G) ::max{m ‘H <, G
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and we write V(G) for V,)(G). The topological greatest reduced average
density (shortly top-grad) with rank r of G is

LU

V,-(G):Z max{m . <r

and we write V(G) for V,)(G).
The original interest of Neset#il and Ossona de Mendez when studying

sparse graph classes was the following subclass of nowhere dense classes
[100, 101, 102].

Definition 3.3.4 A class ¥ of graphs has bounded expansion if for every
integer r = 0 there exists c¢(r) such that all graphs H <, G € € satisfy
m(H) < c(r)-n(H). O

Not surprisingly, densities of bounded depth minors and bounded depth topo-
logical subgraphs are strongly related and we can give the above definitions
with respect to either notation.

Theorem 3.3.5 (Dvorak [40]1) For every graph G and every integer r =0,
VH(G) < V,(G) < 44V,(G) "V

Let us conclude this section with a short remark on the methods used
to prove Dvorak’s and Jiang’s results on the edge density of graphs that
exclude K; as a depth-r minor.

First of all, using Lemma 3.1.4 and Theorem 3.1.3, when we want to find
a subgraph in a graph G with n(G)*¢ many edges, we may assume that G
is bipartite and that the minimum and maximum degree of G differ only by
a constant factor. These assumptions simplify many arguments.

The second tool which is used in almost all proofs for finding minors or
topological minors, in one or the other way, is graph expansion. Classically,
a graph is said to be a 1-expander for some constant A, if for every vertex
set A € V(G) of small size, the neighbourhood of A has size at least 1-|A|.
In the situation when we have n1*¢ many edges, the definition is slightly
changed. The key idea is then to show that every sufficiently dense graph
contains an expander subgraph of almost the same degree as G. The
expansion properties then allow us to blow up the degree of bounded depth
subdivisions or minors. Dvorak applies this concept iteratively, until a too
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3.4. Everything is a (coloured) graph

dense subdivision is obtained, Jiang applies an even finer analysis to obtain
the subdivision without iterations.

To get a feeling how expansion properties may help to find dense minors,
consider the following theorem of Thomassen [130] (our proof follows [34]).
We state a slight modification such that the theorem is about depth-r minors.

Theorem 3.3.6 Let d =3,r =0 be integers and let G be a graph of minimum
degree at least d and girth at least 8r + 3. Then G has a depth 2r-minor H
of minimum degree at least d(d —1)".

PROOF. Let X < V(G) be maximal with dist(u,v) > 2r for all u,v € X with
u #v. For each u € X, choose a set M, such that U,cx M, =V(G), M,NnM, =
@ for u # v and such that G[M,] has radius at most 2r. Such choice is
possible as each element has distance at most 2r to some u € X (we associate
each element w not in N,.(«) for all u to some M,, such that the distance to u
is minimum among all such possibilities). We obtain a depth-2r minor H
of G by contracting all sets M,,. To conclude that H has minimum degree
at least d(d —1)", observe that M, induces a tree for all u € X with at least
d(d —1)""! leaves which each send out at least d — 1 edges and that M,
and M, for distinct u,v € X are connected by at most one edge (the girth is
high). O

In fact, the class of all graphs G with A(G) < girth(G) serves as a good
example for a nowhere dense class with well understood properties.

3.4. Everything is a (coloured) graph

Tree decompositions can also be defined for general relational structures.
Just as for graphs we want each tuple in a relation to be covered by a bag of
the decomposition. Let 7 be a relational signature.

A tree decomposition of a T-structure 2 is a pair (T',X), where T is a tree
and X = {X;:¢£€ V(T)} is a family of subsets of V(2() such that

* Uevin Xt =V (D,

e for every m-ary relation symbol R € 7 and every tuple (a1,...,a,;) €
R(2) there exists t € V(T') with a1,...,a,, € X; and

e if r,s,t € V(T) and s lies on the path of T between r and ¢, then
X,nX;cX,.
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It is easy to see that the tree decompositions of 2 coincide with the tree
decompositions of its Gaifman graph G(2). Similarly, we can define a
class € of T-structures to be nowhere dense if the class 2 = {G(2) : 2 € €} of
its Gaifman graphs is nowhere dense. Note however, that the class 2 does
not necessarily carry all information required to recover the class . We can
instead construct for every relational structure 2{ a the coloured incidence
graph H(2() such that in H(2() we find 2 via a first-order interpretation. The
class # ={H() : 2 € €} will have bounded tree width if 2 has bounded
tree width and it will be nowhere dense if 2 is nowhere dense. Hence, with
the interpretation method at hand, for our purpose it suffices to solve the
model-checking problem for (coloured) graphs.

Let 1 ={R1,...,Rs} and let £ be maximal such that r contains a k-ary rela-
tion symbol. We let 7’ :={C1,...,Cs,E1,...,E}}, where the C; are unary and
the E; are binary relation symbols, 1<i<s,1=<j<k. For a 7-structure 2,
let H(2) be the 1'-structure whose universe contains V(%) and an ele-
ment vy for each tuple a € R;(20), for R; € 7. We add the element vy to C;
and ifa = (ay,...,a,), then we connect a; with vz via an edge of E;. It is
easy to recover 2 from H(2l) via a one-dimensional (7, 7’)-interpretation.

Let us show that /# has bounded tree width if 2 has bounded tree width
and that # is nowhere dense if 2 is nowhere dense.

Lemma 3.4.1 Let 2 be a t-structure. If the Gaifman graph G() of 2 has
tree width k, then H(2l) has tree width at most k + 1.

PROOF. Let (T',X) be a tree decomposition of G(2) of width 2. We define
a tree decomposition (T7,X’) of Hy of width & + 1. We let 7' be such that
T < T' and for each ¢t € V(T), we let X; = X;. For every m-ary relation
symbol R € 7 and every tuple a = (a1,...,a,) € R(2) there exists t € V(T)
with a1,...,a, € X;. Fix one such ¢ and attach a leaf ¢ to ¢ in 7" with bag
Xy = X; U{vg). Clearly, (T',X’) is a tree decomposition of H(2l) of width
k+1. O

Lemma 3.4.2 Let 2 be a t-structure and let k be the maximal arity of a
relation symbol in 1. For all integers r and t > k, if the Gaifman graph G(2()
of U does not contain an r-subdivision of a complete graph K;, then Hg does
not contain a 2r-subdivision of K;.

PROOF. If H(2) contains a 2r-subdivision of K;, then all principal vertices
of the model must be elements of V(2(), as degrees cannot increase in
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3.4. Everything is a (coloured) graph

topological minors. Furthermore, every path in H(2() of length 2s induces a
unique path of length s in G(2) and two paths in H(2l) are vertex disjoint if
and only if the paths induced in G(2) are vertex disjoint in G(2l). U

Corollary 3.4.3 Let € be a nowhere dense class of t-structures. Then
the class A = {HQ) : A € €} is nowhere dense. Furthermore, for all 1-
structures 2l we have n(H(2)) + m(H (X)) € O(n(A) + m(2)).
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playing games






4. Generalised colouring
numbers

The colouring number col(G) of a graph G is the minimum integer & such
that there exists a linear ordering L of the vertices of G such that each
vertex v has back-degree at most %, i.e. v has at most 2 neighbours u with
L(u) < L(v). It is easily seen that the colouring number of G is equal to
its degeneracy. Recall that a graph G is k-degenerate if every subgraph
of G has a vertex of degree at most 2. Hence the colouring number is a
structural measure that measures the edge density of subgraphs of G. The
colouring number gets its name from the fact that it bounds the chromatic
number — we can simply colour the vertices in the order L such that every
uncoloured vertex gets a colour not used by its at most col(G) smaller
neighbours. This bound is very useful, as computing the chromatic number
of G is NP-complete (even for planar graphs of degree at most 4 [26]),
whereas the colouring number can be computed by a greedy algorithm in
time O (n(G) + m(G)).

At the other extreme there are orderings which measure some global
structural property of graphs. As described in the previous chapter, a
graph G has tree width at most k if its vertices can be ordered such that
each vertex v can be separated from all smaller vertices by at most &
smaller vertices, that is, for every v € V(G) there are wi,...,w; € V(G)
with L(wy),...,L(wy) < L(v) such that every path between v and w with
L(w) < L(v) contains one of w1,...,wg.

In this section we consider orderings with properties which lie between
these extremes. Early examples of such properties are arrangeability [20],
admissibility [76], and rank [75] of a graph. Each of these orderings can
be used to attack different optimisation problems. For example the ar-
rangeability was introduced by Chen and Schelp [20] in their study of the
Burr-Erdés conjecture [17]. NeSettil and Ossona de Mendez [103] showed
that the arrangeability of G is bounded in terms of V1(G). In their study of
colouring games and marking games on graphs, Kierstead and Yang [77]
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4. Generalised colouring numbers

introduced three families of generalised colouring numbers called r-ad-
missibility, adm,(G), r-colouring number, col,(G) and weak r-colouring
number, wcol,.(G), for r = 1. All of these measures are more restrictive
than degeneracy and we have col(G)+ 1 = col1(G) < ... < col,(G) = tw(G)
and col(G) + 1 =wecol1(G) <... <wecol,,(G) = td(G), where td(G) denotes the
tree depth of G. Kierstead and Yang showed that col,(G) is bounded by
a function of the average degree of topological subgraphs of G. Zhu [134]
observed that the bound in [77] can actually be made in terms of V,.(G).
From this, NesSetril and Ossona de Mendez derived characterisations of
bounded expansion and nowhere dense classes in terms of the generalised
colouring numbers [105], which makes them an extremely valuable tool in
the study of these classes.

This chapter is organised as follows.

¢ We first introduce the generalised colouring numbers and prove some
of their basic properties in Section 4.1.

* In Section 4.2 we prove a tight bound for the weak r-colouring number
for classes of bounded tree width.

* In Section 4.3 we present a new proof of the relation between gen-
eralised colouring numbers and the edge density of bounded depth
minors. This greatly improves the bounds obtained by Zhu [134].

* We consider the generalised colouring number of proper minor closed
classes in Section 4.4. The special cases of bounded genus graphs
is considered in Section 4.5. Formerly, no specific analysis for these
restricted classes was done and the bounds we obtain are much better
than those obtained from the general bounds in terms of V,.

4.1. Definition and basic properties

Let G be a graph. We write I1(G) for the set of linear orders on V(G). Let
u,v € V(G) and let r = 0 be a non-negative integer. Vertex u is weakly
r-reachable from v with respect to an order L € [1(G), if there exists a
path P of length 0 < ¢ <r between u and v such that L(x) is minimum in
{L(w):w € V(P)}. Let WReach,.[G,L,v] be the set of vertices that are weakly
r-reachable from v with respect to L.
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Vertex u is strongly r-reachable from v with respect to an order L € I1(G),
if there is a path P of length 0 < ¢ < r connecting u and v such that
L(u) < L(v) and such that all inner vertices w of P satisfy L(w) > L(v).
Let SReach,[G,L,v] be the set of vertices that are strongly r-reachable
from v with respect to L.

The r-admissibility adm,[G,L,v] of v with respect to L, is the maximum
size k of a family {P1,...,P;} of paths of length at most r in G that start in v,
end at a vertex with L(w) < L(v) and satisfy V(P;)nV(P;)={v} for 1=i #
J <k. As we can always let the paths end in the first vertex smaller than v
(for r > 0), we can assume that the internal vertices of the paths are larger
than v. Note that adm,[G,L,v] is an integer, whereas WReach,[G,L,v] and
SReach,[G,L,v] are sets of vertices.

The weak r-colouring number weol,.(G) of G is defined as

wcol(G)= min max |WReach,[G,L,v]|,
LeTl(G)veV(G)

the r-colouring numaber col,.(G) of G is defined as

col,(G)= min max |SReach,[G,L,v]|
Lell(G)veV(GQ)

and the r-admissibility adm,(G) of G is

adm,(G)= min max adm,[G,L,v].
Lell(G)veV(Q)

For all integers r = 0 it holds that adm,(G) < col,.(G) < wcol,.(G). We have
increasing sequences, that is, for an n-vertex graph G we have col(G)+ 1 =
adm1(G) < admg(G) < ... < adm,(G), col(G)+1 = col1(G) < cola(G) < ... <
col,(G) and col(G) + 1 = weol1 (G) < weola(G) <. < weol, (G).

It was shown that the generalised colouring numbers are strongly related
([41, 77]). To get a better intuition for the generalised colouring numbers,
let us prove these relations.

Let TIG,L,v] be a tree which results from a breadth-first search of G
starting at v which stops in every search-branch after a vertex with L(w) <
L(v) is reached. Let T'.[G,L,v] be the maximal subtree of T[G, L,v] of depth
r such that all leaves w of T'.[G,L,v] satisfy L(w) < L(v). Then

SReach,[G,L,v] ={v}U{u:u is a leaf of T.[G,L,v]}.
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Observation 4.1.1 Let G be a graph and let c¢,r > 0 be positive integers. If
adm,(G) < ¢, then A(T,[G,L,v])<c—-1 forall veV(Q), where T\ [G,L,v] is
defined as above.

PROOF. Let v € V(@) and let w be an inner vertex of T,[G,L,v] of degree
d = 1 (possibly w = v). Then in T,.[G,L,v] there are d paths of length
1 < ¢ <r which start in w and end either in a leaf of T'.[G,L,v] or in v (in
any case they end in a vertex smaller than w) and which have only w in
common. Then the initial segments of the paths from w to the first vertex
which is smaller than w together with the path of length 0 consisting of w
itself show that adm,.[G,L,w]l=d +1. O

Corollary 4.1.2 Let G be a graph and let r > 0 be a positive integer. Then
col. (@) = (adm,(G)-1)- (adm,(G) - 2)" "1 + 1.

A similar relation between wcol,.(G) and adm,(G) can be established.

Theorem 4.1.3 Let G be a graph and let r > 0 be a positive integer. Then
wcol - (G) < adm,(G)".

PROOF. Let L € II(G) be such that adm[G,L,v] < ¢ for all v € V(G). We show
by induction on r that |WReach,[G,L,v]| < Z;:O(C — 1) for all v € V(R). We
have wcolp(G) = admy(G) = 1 and adm(G) = col(G) + 1 = weol1(G). For r =2
we have .7 (c— i< o cl—c=( 1 =1lc-1)-c=<c".

Hence let r = 2 and assume that the claim holds for r — 1. Fix some
v € V(G). For u € WReach,[G,L,v], let P,, be a shortest v —u-path such
that every vertex w € V(P) satisfies L(u) < L(w). We may assume that the
path P,, uses as its first edge an edge of T,.[G,L,v] to reach a vertex w
for which u € WReach,_1[G,L,w] holds. By Observation 4.1.1, there are at
most ¢ — 1 choices for this first edge. We conclude that

IWReach,[G,L,v]| <1+(c—-1) max |WReach,_1[G,L,w]|
weV(GR)

r=1
<l+(c-1)) (c-1)
i=0
r .
=) (c-1) |
i=0
As adm,(G) < col,(G) we have the following corollary.

Corollary 4.1.4 Let G be a graph and let r > 0 be a positive integer. Then
wecol - (G) < col . (G).
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4.2. A tight bound on bounded tree width
graphs

Surprisingly, it was long unnoticed that for an n-vertex graph G, col,(G)
is equal to the tree width plus one. We remarked this in [64]. To see this,
consider an elimination order L such that the elimination width of L is
minimum. Let Gy,...,G,—1 be the sequence of graphs associated with L
and let L' be the reverse to L. An easy induction shows that the neighbours
of a vertex i in G;_1 are exactly the vertices of SReach,[G,L’,i]\{i}.

Corollary 4.2.1 For an n-vertex graph G we have col,(G) =tw(G) + 1.

On the other hand it was well known that wcol,,(G) = td(G),where td(G) is
the tree depth of G, see e.g. [106].

It is hence immediate that wcol,-(G) < tw(G)". The following tight bounds
for classes of bounded tree width were shown by Konstantinos Stavropoulos.
The presented proof is based on Konstantinos Stavropoulos original ideas
and is only included in this thesis for completeness on the subject. Roman
Rabinovich and the author of this thesis provided only technical details to
the proof.

Theorem 4.2.2 ([64]) Let G be a graph and let r,k > 0 be positive integers.
If tw(G) < k, then weol(G) < ("3F).

PROOF. Let G be of tree width £ and let r be a positive integer. Recall that
a tree decomposition of a graph G is a pair (T,X), where T is a tree and
X ={X;:te V(T)} is a family of subsets of V(G) (called bags) such that

* Uevin Xt =V(G),
¢ for every edge {u,v} of G there exists ¢ € V(T') with u,v € X; and

e if r,s,t € V(T) and s lies on the path of T" between r and ¢, then
X, nX;cX;.

The width of the decomposition is max;ey(r)|X:|+ 1. We also fix a tree
decomposition (7', X) of G of width at most £. Since the weak colouring
number can only increase when we add edges to G, we may assume that
G is edge maximal of tree width %, i.e. that each bag induces a clique
in G. Furthermore, we may assume that a tree decomposition (7',X) is
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4. Generalised colouring numbers

smooth, that is, that it has the property that for every {s,t} € E(T) it holds
that | X \ X¢| < 1. Finally, we may assume that there is one bag X which
contains only a single vertex. In the following, we consider (7', s) as a rooted
tree, where s is the root of T'.

The vertices of every rooted tree (T, s) are partially ordered by the follow-
ing tree order LT** of V(T). The root s is the minimal vertex of the order and
we define ¢ € V(T) to be smaller than u € V(T') with respect to LT if ¢ lies
on the unique path from s to v in 7. As we assume the tree decomposition
(T,X) to be smooth, we can establish a bijection from V(G) to V(T') such
that v € V(@) is mapped to the unique node ¢, of T such that ¢, is minimal
with respect to LT such that v e X t,- Let L be any linear extension of LTs.
Using the above bijection, we also interprete L as a linear order on V(G).

Now fix some v € V(@) and let w € WReach,[G,L,v]. By Lemma 3.2.1 and
the definition of L, it is immediate that ¢,, lies on the path from ¢, to s
in T. Let u € X;, be such that L(u) < L(u') for all v’ € X;,. If ¢, = s, then
|[WReach,[G,L,v]| =1 and we are done. Otherwise, as the decomposition is
smooth, L'(¢,) < L'(t,).

We define two subgraphs G; and G2 of G as follows. The graph G;
is induced by the vertices from the bags between s and ¢,, i.e. by the
set UlX; € V(T) : LT5(t) < LT#(t,)}. The graph Gy is induced by {X; €
V(T) | LT(t,) < LT5(t) < LT5(t,)} \ V(G1). Note that V(G1)nV(G2) = @.
Let L; be the restriction of L to V(G;), for i = 1,2, respectively. Using
the assumption that any two vertices of a bag are connected by an edge
and Lemma 3.2.1, it is easy to see that for w € WReach,[G,L,v], we have
w € WReach,_1[G1,L1,u]l]uWReach,[Gg,Lo,v].

Hence |WReach,[G,L,v]| < |WReach,_1[G1,L1,ul| + [WReach,.[Gg,Ls,v]|.
Note that the restrictions of (7,X) to G; and G2 (in the obvious way),
respectively, proves that the tree width of G is at most £ and the tree width
of G is at most £ —1, as we removed u from every bag. We can now conclude
by induction.

For the induction base, recall that wcol;(G) equals the degeneracy of G
plus one and that every graph of tree width < % is k-degenerate. Fur-
thermore, wcol, of a tree (with tree width 1) is at most r + 1 (using any
linearisation of the standard tree order).

We recursively define the following numbers w(k,r) such that w(k,1) =
k+1fork=1, w(l,r)=r+1for r=1and w(k,r)=w(k,r-1)+w(k—1,r) for
k,r>1.

56



4.2. A tight bound on bounded tree width graphs

By our above argumentation, |WReach,[G,L,v]| < w(k,r). We observe that
this is the recursive definition of the binomial coefficients and conclude that
[WReach,[G,L,v]l < ("}F). 0

The proof of Theorem 4.2.2 gives rise to a construction of a class of graphs
that matches the upper bound. We construct a graph of tree width &
and weak r-colouring number (k}:r) whose tree decomposition has a highly
branching host tree. This enforces a path in the tree from the root to a leaf

that realises the recursion from the proof of Theorem 4.2.2.

Theorem 4.2.3 ([64]) Let k,r > 0 be positive integers. There is a family of
graphs G¥ with tw(G¥) = k, such that weol(GF) = ("17).

PROOF. Fixr,k>0andletc= (rzk). We define graphs G(&',r') for all ¥’ < r,
k' <k and corresponding tree decompositions I (k',r’) = (T(&’,r"), X (k',r"))
of G(E',r") of width &’ with a distinguished root s(T'(%’,7')) by induction on %’
and r’. We guarantee several invariants for all values of 2’ and r’ which
will give us control over a sufficiently large part of any order that witnesses

weol, (GG, 7)) = (7).

1. There is a bijective function f : V(T'(k',r")) — V(G(%',r")) such that
f(s(T(k',r"))) is the unique vertex contained in Xy ) and if ¢ is a
child of ¢’ in T'(%',7’), then f(¢) is the unique vertex of X; \ X. Hence
any order defined on V(T directly translates to an order of V(G) and
vice versa.

2. In any order L of V(G(k',r")) which satisfies wcol(G(R’,r')) < ¢, there
is some root-leaf path P = ¢4,...,t,, such that L(f(¢1)) <... < L(f(t;,)).

3. Every bag of T(k',r’) contains at most &’ + 1 vertices.

It will be convenient to define the tree decompositions first and to define the
corresponding graphs as the unique graphs induced by the decomposition
in the following sense. For a tree T and a family of finite and non-empty
sets (X¢)sev (1) such that if z,s,¢ € V(T') and s is on the path of T between z
and ¢, then X, N X; € X, we define the graph induced by (T,(X)ev () as
the graph G with V(G) = Usev (1) X and {u,v} € E(G) if and only if u,v € X;
for some ¢ € V(T'). Then (T,(X¢)iev (1)) s a tree decomposition of G.

For 2’ =1andr’' =1,let T(k',r") := T be a tree of depth 2’ +1 and branching
degree ¢ with root s. Let LT be the natural partial tree order. Let f :
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4. Generalised colouring numbers

V(T)— V be a bijection to some new set V. We define X, := {f(): LT*(#) <
LT5(t)}. Let G(k',r") be the graph induced by the decomposition. The first
and the third invariants clearly hold. For the second invariant, consider
a simple pigeon-hole argument. For every non-leaf node ¢, the vertex f(¢)
has ¢ neighbours f(¢') in the child bags X, of t. Hence some f(¢') must be
larger in the order. This guarantees the existence of a path as required.

For &' =1,r" =1, let T(k',r') =: T be a tree depth ' + 1 and branching
degree ¢ with root s and let f be as before. Let X; := {f(s)} and for each
t' € V(T) with parent t € V(T') let X, :={f(t), f(¢')}. Let G(k',r’) be the graph
induced by the decomposition. All invariants hold by the same arguments
as above. Note that Gi is the same graph in both constructions and is hence
well defined.

Now assume that G(k',r' — 1) and G(k' —1,7') and their respective tree
decompositions have been defined. Let T'(%',7’) be the tree which is obtained
by attaching ¢ copies of T'(k' —1,7') as children to each leaf of T'(k',r' —1).
We define the bags that belong to the copy of T(k',r’' — 1), exactly as those
of T'(k',r' —1). To every bag of a copy of T'(k' — 1,r') which is attached to a
leaf z, we add f'(z) (where f' is the bijection from T'(k',r' —1)). Let G(&’,r')
be the graph induced by the decomposition.

It is easy to see how to obtain the new bijection f on the whole graph
such that it satisfies the invariant. It is also not hard to see that each bag
contains at most &’ + 1 vertices. For the second invariant, let Py =#1,...,¢m
be some root-leaf path in T'(k’,r' — 1) which is ordered such that L(f(¢1)) <
... <L(f(t;,)). Let v = f(t,,) be the unique vertex in the leaf bag in which P;
ends. By the same argument as above, this vertex has many neighbours s’
such that £71(s') is a root of a copy of T'(' —1,7'). One of them must be
larger than v. In appropriate copy we find a path Py with the above property
by assumption. We attach the paths to find the path P =¢;...¢, in T'(k', 7).

We finally show that WReach,[G(k,r),L, f(t¢)] = c. This is again shown
by an easy induction. For the graph G(k',r’), using the notation of the proof
of Theorem 4.2.2, we observe that the graph G is isomorphic to G(k',r' — 1)
and Gy is isomorphic to the graph G(k’' —1,r’). Furthermore we observe that
the number of vertices reached in these graphs are exactly w(k’,r' — 1) and
w(k'—1,r"), so that the upper bound is matched. The theorem follows by
letting G* := G(%, 7). O
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4.3. Bounding the numbers in terms of low
depth minors

Kierstead and Yang [77] and Zhu [134] showed that the generalised colour-
ing numbers and the edge density of bounded depth minors are strongly
related. From this, Nesettil and Ossona de Mendez [105, 106] concluded
that bounded expansion and nowhere dense classes can be characterised
by the generalised colouring numbers. We significantly simplify the proofs
of [77, 134] and improve the bounds from their papers. Zhu [134] defines
q1:=2V,(G)andfori=1,q;+1:= qlq?i2 and shows that col,.(G)<1+q,. We
are going to prove the following theorem. The results of this section were
published in [64].

Theorem 4.3.1 Let G be a graph and let r > 0 be a positive integer. Then
adm,(G) < 12rV,_1(G)3.

For the proof of Theorem 4.3.1 we need a lemma which is a variation of
a result of Dvorak [41]. For a set S<V(G) and v € S, let 5,(S,v) be the
maximum number % of paths Pi,...,Pp of length at most r from v to S with
internal vertices in V(G)\ S and with V(P;)nV(P;)={vlfor 1<i#j<k.

Lemma 4.3.2 ([41]) For all graphs G and integers r =0, there exists a set
S cV(G) such that b,(S,v)=adm,(G) forall veS.

PROOF. Assume that all S € V(G) contain a vertex v such that b,(S,v) <
adm,(G). We order the vertices L(vi) < L(vg) < ... < L(v,) of V(G) as
follows. If v;;1,...,v, have already been ordered, choose v; such that if
S; ={v1,...,v;}, then b,(S;,v;) is minimal. Clearly, the r-admissibility of the
resulting order is one of the values b,(S;,v;) occurring in its construction.
This implies adm,(G) < adm,.(G), a contradiction. O

PROOF. (OF THEOREM 4.3.1) Let G be a graph with V,_1(G) < ¢, and let
¢ :=12rc3. Suppose towards a contradiction that adm,(G) > ¢. According
to Lemma 4.3.2, there exists a set S such that ,.(S,v)> ¢ for allve S. For
veS, let &, a set of paths from v to S witnessing this, and let s :=|S|.
Without loss of generality we assume that s = 2.

Choose a maximal set &2 of pairwise internally vertex-disjoint paths of
length at most 2r — 1 connecting pairs of vertices from S whose internal
vertices belong to V(G)\ S such that each pair of vertices is connected by
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at most one path. Let H be the graph with vertex set S and edges between
all vertices v,w € S connected by a path in 2. Then H -\<£71 G and hence
|2?| = |E(H)| < s-c. Let M be the set of all internal vertices of the paths
in %, and let m:=|M|. Then m <s-c-(2r—2).

Note that we not only have H <! | G, but also H' 5! _, G for all H' < H.
Thus every subgraph H' of H has edge density at most ¢ and in particular,
a vertex of degree at most 2c. Then H contains an independent set R of size
[s/(2¢c +1)]. We can iteratively build the set as follows. Choose a vertex v of
minimum degree and add it to R. Delete v and all its neighbours from V (H)
and continue inductively. Clearly the resulting set R is independent in H.
As all subgraphs of H have a vertex of degree at most 2¢, we delete at most
2¢ + 1 vertices from S in each step. Hence R has size at least [s/(2¢c +1)].

For every v € S, we let 2, be the set of initial segments of paths in &,

from v to a vertex in (M US)\ {v} with all internal vertices in V(G)\ (M U S).
Observe that for distinct u,v € R the paths in 2, and 2, are internally
disjoint, because if @ € 2, and Q' € 2, had an internal vertex in common,
then @ UQ’ would contain a path of length at most 27 — 2 that is internally
disjoint from all paths in &2, contradicting the maximality of 22.
Let G’ be the union of all paths in 22 and all paths in 2, for v € R, and let
H' be obtained from G’ by contracting all paths in U,cg 2, to single edges.
Then H' <! | G.

We have |[V(H')| <s-c-2r and |[E(H)| = |s/(2¢+1)] - € =(s—1)-¢/(2¢c + 1).

Thus
(s—1) l l l l

. = —- = > c.
s 2rc(2c+1) 2 6re2  12rc?

A contradiction. O

e(H') =

Conversely, if G has a topological depth-r minor H of edge density c, then
admg,(G) = ¢. To see this, let H' < H be of minimum degree c. Such H’
exists by Lemma 3.1.1. Consider an arbitrary ordering of V(G) and consider
the largest vertex v which is a principal vertex of H. Then there are at
least ¢ internally vertex disjoint paths of length at most 2r leading to the ¢
neighbours of v in H.

Combining Corollary 3.3.2, Theorem 4.3.1, Theorem 4.1.3 and the above
observation, we obtain NesSet#il and Ossona de Mendez’s result that the
generalised colouring numbers characterise nowhere dense graph classes.
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Theorem 4.3.3 ([105]) A monotone class € of graphs is nowhere dense if
and only if for all integers r = 0 and reals € > 0 there is a positive integer n
such that for all n-vertex graphs G € € with n > ng, weol.(G) < n€.

4.4. A bound on proper minor closed classes

Every class that excludes a topological minor has constant expansion. More
precisely, there is a small constant ¢ € R such that for all integers ¢ > 0, if G
has average degree at least ct2, then G contains K as a topological minor
[16, 79] (currently, the best bound on ¢ is 10/23 [86]). Hence V(@) < ct? for
all positive integers r if G excludes K; as a topological minor. We obtain the
following corollary of Theorem 4.3.1.

Corollary 4.4.1 Let G be a graph and let k,r > 0 be integers. If K; X' G,
then adm,(G) < 3¢°-r and weol (G) = (3¢5)" -1

In this section we will show that for classes that exclude a fixed graph as
a minor we can do significantly better. The results of this section were
published in [109].

Let G be a graph. We call a path P in G a shortest path if there is no
shorter path between its endpoints. A shortest paths decomposition of G is a
sequence Py,...,P, of paths such that Uf:o V(P;) = V(G), defined inductively
as follows. Let Py be an arbitrary shortest path in G and let G := Py. For
i>0,let P; =vyg,...,v, be a shortest path in G—E(G;-1) such that V(G;_1)n
V(P;) = {vg,v,} and let G; := G;_1 + P; (the graph induced by V(G;_1) UP;).
Let %; be the set of components of G —G;. The separating number of a
component C € 6; is the minimum number s of paths @1,...,Q; € {Py,...,P/}
such that U;<;<; V(@) separates C from G — G;. The width of Py,...,P, is
the maximum separating number over all i and all C € €.

This definition is inspired by work of Abraham and Gavoille [2] and
Abraham et al. [3]. The authors of [2] define the notion of k-path-separa-
bility, where k corresponds to the width of our shortest paths decompositions.
They furthermore require that the components that are created by the
separators are of balanced size. This allows a recursive applications of
their separator theorem which terminates after a logarithmic number of
steps. Based on Robertson and Seymour’s structure theorem [120, 121]
they show that graphs which exclude a fixed minor are k-path separable.
In [3], the condition on balanced component sizes was dropped which lead
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to a much simpler proof that shortest paths decompositions of small width
exist for graphs which exclude a fixed minor. The proof is based on results
about cops and robber games [5, 7, 118] and shortest paths decompositions
are therefore called cop-decompositions in [3]. We therefore attribute the
following results to Abraham et al. as well as to the authors of [5, 7, 118].

Theorem 4.4.2 Let G be a graph and let g = 0 be an integer. If G has
genus g, then G has a shortest paths decomposition of width 2g + 2.

Theorem 4.4.3 Let G be a graph and let t = 3 be an integer. If G excludes
K, as a minor, then G has a shortest paths decomposition of width (t;) -1

From a shortest paths decomposition Py,...,P,, we define a linear order L
on V(@) as follows. For v,w € V(G), set L(v) < L(w) if v e V(P;) = vo,...,Up,
weVPH\V(P;)and i< j,ori=j,v=vy, w=0v, and x <y. We write
P(v) for the path P,, with minimum index m such that v € V(P,,). In the
following, let v € V(@) and let m be such that P(v) = P,,. The following
observations are easy consequences of the above definitions.

Lemma 4.4.4 Let P be a shortest path in a graph G and let r = 0 be an
integer. Then [N,.(v)NV(P)|<2r+1 for all ve V(G).

PROOF. Assume P =vy,...,v, and [N.(v)NV(P)| >2r + 1. Let i be minimal
such that v; € N,.(v) and let j be maximal such that v; € N.(v). P is not
only a shortest path between its endpoints but also the path v;,...,v;is a
shortest path in G between v; and v;. As [N,(v)NV(P)| > 2r+1, the distance
between v; and v; is greater than 2r in G (a path with 2r + 2 vertices has
length 2r +1). As v;,vj € N,(v), there are paths P;,P; of length at most r
between v; and v and between v; and v, respectively. Concatenating these
paths gives us a walk of length at most 2r between v; and v;, which contains
a path of length at most 2. Then the distance between v; and v; is at most
2r, a contradiction. O

The paths P; for i > 1 of a shortest paths decomposition are not necessarily
shortest paths in G, only in G’ = G —Ui<j<; V(P;). We argue that for the
reachability properties we consider for the generalised colouring numbers,
we may consider the graph G’ instead of G when arguing about the path P;.

Lemma 4.4.5 Let G be a graph and let k,r =0 be integers. Let P1,...,Ps be
a shortest paths decomposition of G of width k and let L be an order induced
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by the decomposition. Let let i > 1 be an integer and let G' := G—U1<j<; V(P;).
Then )
SReach,[G,L,v1nP; < N% ()N P;

and ,
WReach,[G,L,vlnP; <N% (v)nP;.

PROOF. If a path P with one endpoint v visits a vertex that is smaller than
a vertex of P;, then the path cannot be continued to weakly or strongly visit
a vertex of P;. O

Now it is easy to prove a good bound on col,(G) in terms of the width of a
shortest paths decomposition.

Theorem 4.4.6 Let G be a graph and let k,r = 0 be integers. If G has a
shortest paths decomposition of width k, then col.(G)<(k+1)-(2r+1).

PRrROOF. Let Py,...,P, be a shortest paths decomposition of G of width &
and let L be an order induced by the decomposition. Let v € V(G) be an
arbitrary vertex and let ¢ be minimum such that v € V(P,). If ¢ =0, then
[SReach,[G,L,v]| <2r+1 by Lemma 4.4.4. Hence assume q > 0. Let C be
the component of G —U1<p<q—1 V(Pp) which contains v and let Q1,...,Qmn,
1=m <k, be the paths among P;,...,P,_1 which separate the component
C from G —G4-1. By definition of L the vertices of SReach,[G,L,v] can
only lie on Q1,...,&;, and on P;. For 1< j < q, assume that @; = P; and
let G’ := G —U1<p<; V(Pp). Then by Lemma 4.4.5, SReach,[G,L,vInQ; =
N @) NQ;. As P; is a shortest path in G’, by Lemma 4.4.4 applied to G,
ISReach,[G,L,vInQ;| <2r+1. O

Similarly, we can bound wcol,.(G).

Theorem 4.4.7 Let G be a graph and let k,r = 0 be integers. If G has a
shortest paths decomposition of width k, then wcol,.(G) < ((3k)" +1)(2r + 1).

PROOF. Let Pi,...,P; be a shortest paths decomposition of G of width &
and let L be an order induced by the decomposition and let v € V(G). As in
the proof of Theorem 4.4.6, we first count the number of paths that contain
weakly reachable vertices. Observe that

WReach,[G,L,v] < {viu U WReach,_1[G,L,w]. (4.1)
weSReach,[G,L,v]
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Observe that for every pair of inner vertices u,w of a path P;, the component
C of G —Ui1<p<i-1V(P)p) is the same and so are the paths Q1,...,@, that
separate C from G — G;_1. The endpoints of P; however are anchored at
paths Pg, P; with smaller indices (unless i = 0 and possibly s = #). We may
assume that P; is anchored at inner vertices of P; and P; (unless s =0 or
t = 0), because if P; anchors at an end-vertex of P, then this vertex of P,
lies on a smaller path P, (unless s = 0) and no vertex of P is weakly or
strongly reachable that does not lie already on P,. When counting paths,
we will hence count the paths P;,Ps; and P; and continue inductively for all
their inner vertices with one inductive call.

Let ¢ be minimum such that v € V(Py). If ¢ = 0, then |[SReach,[G,L,v]| <
2r +1 by Lemma 4.4.4. Hence assume q > 0. Let C be the component of
G —U1<p<q-1V(Pp) which contains v and let @1,...,Q, 1 <m <k, be the
paths among P1,...,P,_1 which separate C from G-G,_1. We conclude that
SReach,.[G,L,v] contains an inner vertex of at most 3% paths. As argued
above we can treat all inner vertices of a paths as one vertex. By induction,
we there are at most (3%)" paths that contain weakly r-reachable vertices
of v. Just as in the proof of Theorem 4.4.6, we conclude with Lemma 4.4.5
and Lemma 4.4.4. ([l

Combining the above theorems, we obtain the following corollary.

Corollary 4.4.8 Let G be a graph and let r > 0,t = 3. If G excludes K; as a
minor, then

1. col (@ = (1) @r+1), and

2. weol (@) = (3('3")" +1)-@r + D).

4.5. A bound in terms of genus

We first consider the planar case and then generalise it to bounded genus
graphs. A graph is planar if it can be drawn in the plane such that no edges
intersect, except at a common end-vertex. We refrain from providing the
topological background required for the study of planar graphs because our
construction is based on very simple topological arguments which follow
directly from the Jordan Curve Theorem. For background on graphs on sur-
faces we refer the reader to [96]. The results of this section were published
in [109]. We state the Jordan Curve Theorem for the sake of completeness.
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Theorem 4.5.1 A simple closed curve C in the plane divides the plane into
exactly two arc-wise connected components. Both of these regions have C as
the boundary.

We need the following properties of planar graphs.

Theorem 4.5.2 Let G be a graph that is maximally planar (and satisfies
n(G)=4). Then G is 3-connected.

For the rest of this section, we fix a planar graph G of order at least 4 and,
as adding edges to a graph can only increase its weak r-colouring number,
we may assume without loss of generality that G is maximally planar and
hence 3-connected. As wcol;(G) is equal to the degeneracy of G plus one, we
always assume that r = 2.

We inductively define a shortest paths decomposition of G. Along with
the construction we guarantee that for all i, if C is a component of G — G,
then there are at most two paths P; and P, with j </ <i such that C
is separated from V(G;) in G by V(P;)uV(P,). We write S1(C) = P; and
S9(C) = Py for the least possible j and ¢ with that property and call S1, So
the separating paths of the component C. Note that if S; alone separates C,
then S; = S3. As G is 3-connected, C has at least three neighbours in
V(S1)uV(S2). Hence some P € {S1,So} has at least two C-neighbours, i.e.
vertices which are adjacent to a vertex of C.

Our construction. The path Py is an arbitrary shortest path in G. Now
let i > 0 and assume Py,...,P;_1 have been defined such that for each
component C of G —V(G;_1) there are at most two separating paths S1(C)
and S2(C). Let C be a component of G-V (G;-1). Then some P = wy,...,ws €
{S1,S32} has two C-neighbours. Let wpin (Wmax) be the C-neighbours of P
with the least (greatest) index. We define P; as a shortest path between
Wmin and wmax in G — E(G;_1) with internal vertices from C (note that P;
has an internal vertex as P is a shortest path in G —G;_1). We say that P;
is anchored at P. The procedure stops when no v € V(G)\ V(G;-1) can be
found, hence when V(G;) = V(G), i.e. when a shortest paths decomposition
of G was found.

The next lemma follows easily by the Jordan Curve Theorem and our
choice of anchoring new paths at minimal and maximal C-neighbours.

65



4. Generalised colouring numbers

Lemma 4.5.3 For i >0, if C is a component of G —G;, then there are two
paths P; and P, with j < ¢ <i such that C is separated from V(G;) in G by
V(PUV(Py).

Lemma 4.5.4 Let C be a component of G —G;. Then P € {S1(C),S2(C)} (for
P # Py) has an inner vertex which is a C-neighbour.

PROOF. S; and Sy are paths with minimal indexes with the separator
property. Their endpoints lie on paths with smaller indices. (Il

Let P be a path from the shortest paths decomposition. The chain y(P) of P
is the sequence Qo,...,®, of paths from the shortest paths decomposition
where Qo =P,Q, =P andfor0< j<n,Q; =P'ifand only @;_1 is anchored
at P’. For w € V(Q), y(w) is defined as y(P(w)). Note that any two chains
x1=Ui,...,Up and y2 = Uj,..., U}, coincide from some path on. The meeting
path of y1 and yg is the path P; such that P; =U; = UJ’. for the least i (and j).

Lemma 4.5.5 In the subgraph induced by the vertices of y(v), there are at
most r® weakly r-reachable paths from v.

PROOF. Let0<i <r and let Pj(;) be the path of the chain with the minimum
index such that Pj(;) is weakly reachable from v in i steps. Let y; be the
chain that contains only the paths with index at least as large as j(i) (in the
chain order). We show by induction on i that there are at most i - r pairs of
endpoints of paths from y; which are weakly r-reachable from v. Clearly,
we reach only P(v) in 0 steps. Let i > 0 and assume that the claim holds for
all / <i. We can reach only an inner vertex on Pj;_1) in i — 1 steps (if we
could reach an endpoint, then j(i — 1) would not be the minimal index).

We count the tuples of endpoints of paths which lie in y; and which are
weakly reachable in r—i steps from some inner vertex v’ of Pj(i—1). As Pji_1)
separates ;-1 —Pji—1) from P;(;), the path P is reached in one step from
Pj;_1) and gives us one additional endpoint tuple (or Pj;_1) = Pj;) and we
are done in this step).

Now one endpoint, say x, of P;;_1) is an endpoint of Pj(;). Otherwise let P
be the path at which Pj;_1) is anchored. Then P separates Pj;_1) from Pj)
and Pj(;) is not reachable from Pj(;_1) in one step.

All paths P from y that are weakly reachable from Pj;_1) in y; have x
as an endpoint, otherwise P separates Pj;_1) from Pj(;). Thus we reach at
most r —i additional paths with a different second endpoint in r — i steps
from Pj(i—l)'
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To conclude the proof, note that y, contains all weakly r-reachable paths.
For every pair (x, y) of endpoints, there are at most » weakly reachable paths
with those endpoints (x, y). This is because every such path P separates the
chain and x and y are smaller than every inner vertex of P with respect
toC.

Hence in y; there are at most i - 72 weakly r-reachable paths. (]

Lemma 4.5.6 There are at most 2r* weakly reachable paths.

PROOF. For a chain y =@Q1,...,@mn, let ~x be the chain Qq,...,Q,,. For i >0
and a path P; from the decomposition let C(P;) be the component of G—-G;_1
which contains an inner vertex of P; (this is well defined). For j =1,2, let
i (P;) = x(§;(C)), i.e. the chains of the separating paths.

Then for every S € {S1(C),S2(C)}, x1(S) € {~x1(P;),~x2(P;)} or xa(S) €
{~x1(P;), ~x2(P;)}. As one needs at least one step to change a chain, we can
reach at most 2r chains in r steps. The result follows by Lemma 4.5.5. [

Theorem 4.5.7 If G is planar and r = 2, then wcol(G) < 2r*-(2r +1) < 5r°.

A cycle C in G is non separating if G — C is connected. It is well known (see
e.g. [96], Lemma 4.2.4, or [118]) that for a graph of genus g > 0, there exists
a non-separating cycle C which consists of two shortest paths such that
G —C has genus g — 1. We can iteratively eliminate those cycles first (that
is, define the vertices of the cycles to be the smallest ones of the order) and
end up in the planar case after g iterations.

Theorem 4.5.8 Let G be a graph and let g =0,r = 2 be integers. If G is of
genus g, then weol,(G) < (2g +2r*)(2r + 1).

4.6. Computing the numbers

In this section we consider the complexity of computing wcol,.(G) for a given
input graph G. It is conjectured in [41] that this problem is NP-complete
for r = 2. We were able to show that it is indeed NP-complete for r = 3 [64].
The case r =2 remains an open question.

Clearly, the problem is in NP, hence it remains to show NP-hardness. Our
proof is a straightforward modification of a proof of Pothen [116], showing
that computing a minimum elimination tree height problem is NP-complete.
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4. Generalised colouring numbers

It is based on a reduction from the NP-complete problem BALANCED COM-
PLETE BIPARTITE SUBGRAPH (BCBS, problem GT24 of [58]): given a bipar-
tite graph G and a positive integer %, decide whether there are two disjoint
subsets W1, Wy € V(G) such that [W1| = |[Ws| = & and such that u € W1,v € Wy
implies {u,v} € E(G). For a graph G, let G be its complement graph.

Lemma 4.6.1 Let G =(V1UVy, E) be a bipartite n-vertex graph and let k = 0.
Then G has a balanced comp%ete bipartii;‘e subgraph with partitions Wy, Wy
of size k if and only if weol,.(G) = wceolg(G)<n—k for all r = 3.

PROOF. G is the complement of a bipartite graph, i.e. Vi and Vs, induce
complete subgraphs in G and there are possibly further edges between
vertices of V1 and V. Thus, for any two vertices u,v which are connected in
G by a path P, there is a subpath of P between u and v of length at most 3.
Hence wcol,(G) = weolg(G) for any r = 3 and it suffices to show that G has a
balanced complete bipartite subgraph with partitions Wi, Ws of size % if and
only weolz(G)=n—k.

First assume that there are sets Wy < V1, Wo € Vo with |[W1| = |Wy| =k and
such that for all u € W1,v € Wy there is an edge {u,v} € E(G). Let L be some
order which satisfies L(u) < L(v) if u € V(G) \ (W1 UWs) and v € W; U Wy and
L(v) < L(w) if v € W1 and w € Wy. Then any vertex from V(G) \ (W u Ws)
weakly reaches at most n — 2k vertices and any vertex from W; for 1<i <2
weakly reaches at most n — k& vertices.

Now let L be an order with WReachs[G,L,v] < n —k for all v € V(G).
Assume without loss of generality that V(G) = {v1,vg,...,v,} with L(v;) <
L(v;41) for all i < n. Denote by G; the subgraph Gl{v;,...,v,}] and let
Vi:=V(G;)nV; and V] := V(G;)nVs. Let ¢ = 1 be minimal such that
there is no edge between Vf and V2[ in G. It exists because one of \ %4
or V' is empty. Clearly, Vf and sz induce a complete bipartite graph
in G. Let j; := IVfI and jo := |V2[|. We show that ji,jo = k. It is easy
to see that WReachs[G,L,w1] < ¢ + j; for the maximal element w; € Vf
and WReachs[G,L,ws] < ¢ + jo for the maximal element ws € VZZ . We have
J1+Jj2 =n—/¢ and, without loss of generality, £+ j1 < ¢+ jo <n—k. Hence
Ji<je<n—¥¢—-Fk=j1+ jo—k, which implies both j; =% and jy = k. O

The above reduction is polynomial time computable, so we obtain the follow-
ing theorem.
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4.6. Computing the numbers

Theorem 4.6.2 Given a graph G and k,r e N,r = 3, it is NP-complete to
decide whether wcol,-(G) = k.

For our purpose, we need an efficient algorithm to compute the weak r-
colouring numbers. For every nowhere dense class ¢, Dvorak [41] provides
an approximation algorithm for computing for each sufficiently large n-
vertex graph G € € an ordering which witnesses that wcol.(G) < nf, but its
running time is O(r - n?) which is too expensive for our purpose. In [65] we
therefore used another approximation algorithm which is based on Nesetril
and Ossona de Mendez’s augmentation technique [100].

Let G be an orientation of G. A 1-transitive fraternal augmentation of G
is a directed graph H with V(H) = V@), including all arcs of G and such
that for all u,v,w € V(G)

* if (u,v) € E(G) and (v,w) € E(G) then (u,w) € E(H) (transitivity) and

o if(u,v) € E(G) and (w,v) € E(G) then exactly one of (u,w) or (w,u) is
in E(H) (fraternity).

A transitive fraternal augmentation of Gisa sequence G1<Gyc... with
G1 =G and such that for all i =1, G;1 is a 1-transitive fraternal augmen-
tation of G;.

Theorem 4.6.3 ([100]) For every positive integer r > 0 there is a polynomzal

pr(x,y) such that for every graph G and every orientation G of G wzth
maximum in-degree A~ (G) there is a transitive fraternal augmentation H of
G such that the underlying undirected graph H of H satisfies

V. (H) = p,(A7(G),Var11(@).

Note that this implies that every class of bounded expansion is stable under
transitive fraternal augmentations, however, this does not hold for nowhere
dense classes. Indeed, if a vertex of G has in-degree n(G)¢ then H contains
a complete subgraph of this size.

By greedily orienting G and then iteratively inserting transitive fraternal
edges and greedily reorienting the newly inserted fraternal edges, one
obtains an efficient way to compute transitive fraternal orientations. This is
stated for classes of bounded expansion in [101], however, the result clearly
generalises to nowhere dense classes.
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4. Generalised colouring numbers

Theorem 4.6.4 ([101]) For every integer r > 0 there is a polynomial q,(x)
such that for every graph G one can compute in time qr(V2r+1(G)) an orien-

tation G of G and a transitive fraternal augmentation G1 c...c G with
G1 = G such that A (G,) < qr(Vor+1(G)).

The following property of transitive fraternal augmentations is noted as
Theorem 5.1 1in [99]. Note that the theorem does not appear in the conference
version of the paper.

Lemma 4.6.5 ([99]) Let G be a graph and let r > 0 be a positive integer. Let
G 1€...¢€ G be a transitive fraternal augmentation of an orientation G1 of G.
Let vy...vp be a path of length at most r in G. Then either (v1,vp) €E(G ) or
(vg,v1) €E(G ) or there is some v;, 1 <1i <k such that (v;,v1),(v;, V) EE(G ).

Theorem 4.6.6 Let G be a graph and let d,r > 0 be positive integers._ Let
Gi1<...€G; be a transitive fraternal augmentation of an orientation G1 of
G such that A~(G,) <d. Then wecol (G) < 4(d + 1)2.

PROOF. As A~(G,) =d, the underlying undirected graph G, of G, is 2d-
degenerate and we can order the vertices of G, such that each vertex has
at most 2d smaller neighbours. Denote the order which witnesses this
by L. We claim that [WReach,[G,L,v]| < 4(d + 1)? for all v € V(G). Let
w € WReach,[G,L,v]. Then there is a path of length at most r from v to w
such that w is the smallest vertex of the path. By Lemma 4.6.5, we either
have an edge (w,v) or an edge (v,w) or there is u on the path and we have
edges (u,v),(u,w) in E(ér).

Let us count how many choices we have for w. There are at most 2d
edges (w,v), as v has small in-degree in ér. There are at most 2d edges
(v,w) such that L(w) < L(v) by construction of the order. Furthermore, we
have at most 2d edges (u,v), as v has small in-degree and each u has at
most 2d edges (u,w) such that L(w) < L(u) by construction of the order.
These are exactly the pairs of edges we have to consider, as no vertex on
the path from v to w may be smaller than w. Hence in total we have
|WReach,[G,L,v]| <4d +4d? + 1 < 4(d + 1). O

Corollary 4.6.7 Let € be a nowhere dense class of graphs. Let r =1 be an
integer and € >0 a real. There are constants ¢ = c¢(r,€) and ng = no(r,€) such
that for every G € € with n(G) > ng we can construct an order L of V(G)
such that [WReach,(G,L,v)| < n(G) for all v € V(G) in time c-n(G)'*€.
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4.6. Computing the numbers

PROOF. Choose ng and 6 < 1 such that n¢ > 4(qr(n5)+ 1)2 for n > no,
where ¢, is the polynomial from Theorem 4.6.4. We now combine The-
orem 4.6.4 and Theorem 4.6.6 and choose ¢ = ¢(r,€) appropriately (where we
also ensure that all graphs G € € with n(G) < ng can be handled in constant
time c). O

71






5. Neighbourhood covers

Let r > 0 be a positive integer. An r-neighbourhood cover & of a graph G
is a set of connected subgraphs of G called clusters, such that for every
vertex v € V(G) there is some H € & with N, (v) € V(H). The radius rad(&’)
of a cover 2 is the maximum radius of any of its clusters. The degree d* (v)
of v in & is the number of clusters that contain v and the degree of & is
maxvev(g)d‘%(v).

Neighbourhood covers play a key role in the design of many data struc-
tures for distributed systems. In the design of these data structures, the
radius of the cover often translates to some notion of latency and the de-
gree of a vertex to some notion of load imposed on the vertex by the data
structure. It is hence desirable to have a sparse cover whose degree is small
and whose radius is small compared to r. We refer to the textbook [114] for
an extensive survey of properties and applications of sparse neighbourhood
covers.

We say that a class € of graphs admits sparse neighbourhood covers if for
every integer r > 0, there exists an integer ¢ > 0 such that for all reals € > 0,
there is an integer ng = 1 such that for all G € € of order n = ng, there exists
an r-neighbourhood cover of radius at most ¢ -r and degree at most n¢.

Awerbuch and Peleg [9] present an algorithm for constructing for all
integers k,r > 0 an r-neighbourhood cover of radius (2k —1)-r and degree
at most 2k -n'%. It was shown in [132] that asymptotically, these bounds
cannot be improved simultaneously, i.e. the class of all graphs does not
admit sparse neighbourhood covers.

Theorem 5.1.1 (Theorem 16.2.4 of [114], [132]) Let k = 3,r > 0 be inte-
gers. There exist infinitely many graphs G for which every r-neighbourhood
cover of radius at most k has degree Q(n(G)V®).

In this chapter we show that every nowhere dense class admits sparse
neighbourhood covers and in fact that monotone nowhere dense classes
can be characterised by the existence of sparse neighbourhood covers. The
results of this chapter were published in [65] and [64].
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5. Neighbourhood covers

Theorem 5.1.2 Let r > 0 be a positive integer. Every graph G admits an
r-neighbourhood cover of radius 2r and degree at most wcolg,(G).

PROOF. Let L be a linear order of V(G) with |WReachy, [G,L,v]| < s :=
weolg,-(G) for all v € V(G). For every x € V(G), let

X, :={w € V(G) : x € WReachy,[G,L,w]}.

We claim that & :={X, :x € V(GQ)} is an r-neighbourhood cover of radius 2r
and degree at most s.

Clearly the radius of each cluster is at most 2r, because if x is weakly
2r-reachable from w, then w € Ng,(x).

Furthermore, the r-neighbourhood of every v € V(G) lies in some cluster.
To see this, let x be minimal in N,(v) with respect to L. Then x is weakly
2r-reachable from every w € N,(v) as there is a path from w to x which
uses only vertices of N,(v) and has length at most 2r and x is the minimal
element of N,.(v). Thus N,(v) € X,.

Finally observe that for every v € V(G),

d* ()= llxe V(G):v e X,
= {x € V(G) : x € WReachy,[G,L,v]}|
= |WReachy,[G,L,v]| <s. O

Corollary 5.1.3 If € is nowhere dense, then € admits sparse neighbour-
hood covers.

Using our results of Chapter 4, we find neighbourhood covers of radius 2r
and degree bounded by some function f(r) for classes that exclude K; as
a (topological) minor. Busch et al. [18] present r-neighbourhood covers of
radius 24r — 8 and degree at most 18 for planar graphs and Abraham et
al. [4] present r-neighbourhood covers of radius O(¢? - r) and degree at most
20®41 for graphs that exclude K, as a minor. Hence by allowing a larger
radius one finds a cover with degree independent of r (depending only on
the excluded minor). It is an interesting open question how large the radius
must be chosen such that this is possible. It is easily seen that in general
for bounded degree graphs (and hence for classes that exclude a topological
minor) such covers cannot exist.
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We now show that monotone nowhere dense classes are characterised by the
existence of sparse neighbourhood covers. We first observe that the lower
bounds in Theorem 5.1.1 come from a well known somewhere dense class.

Lemma 5.1.4 Let d = 1,k =2 be integers and let G be a graph of girth at
least k + 1 and edge density at least d. Then every 1-neighbourhood cover of
radius at most k has degree at least d.

PROOF. Let & be a 1-neighbourhood cover of G of radius at most 2. We may
assume that & contains at most n(G) clusters. As & is a neighbourhood
cover, every edge lies in some cluster. Because G has girth greater than %,
GI[X] is isomorphic to a tree Tx for every cluster X € &'. Assume that every
vertex lies in at most ¢ clusters. Then

m@G)< Y m@GIXD< Y nGIX)<c n@G).
Xex Xex

Hence ¢ = m(G)/n(G) =d. O

Lemma 5.1.5 ([87, 88]) Let r =5 be an integer. There are infinitely many
graphs G of girth at least 4r with edge density at least co-n(G)YCT=D) for
some constant cg > 0.

Furthermore, subdivisions of a graph H can be covered almost like H itself
by simply taking the subdivided vertices into the clusters.

Lemma 5.1.6 Let r,r’ >0,s =0 be integers. If an s-subdivision of H admits
an r-s-neighbourhood cover of radius r' and degree d, then H admits an
r-neighbourhood cover of radius r' and degree d.

PROOF. Let G be an s-subdivision of H and let & be an r - s-neighbourhood
cover of G. Let % be the projected cover which for every X € & has a cluster
Y(X):=GIXnV(H)].

Then % is an r-neighbourhood cover of radius r’ and degree d: clearly,
every Y (X) is connected and has radius at most r’. Let v € V(G). There
is a cluster X € & such that N%(v) € X. Then N2 (v) = NS(w)nV(H) c
X NV(H)=Y(X). Finally, the degree of % is at most d, as every vertex v of
H is exactly in those clusters Y (X) with v € X. This proves the lemma. -

Theorem 5.1.7 If € is somewhere dense and monotone, then € does not
admit sparse neighbourhood covers.
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PROOF. Let r =5 be an integer and assume towards a contradiction that
% admits a sparse r-neighbourhood cover. Then for every real € > 0, every
integer s = 0, every sufficiently large G € ¥ admits an r - s-neighbourhood
cover of radius c-s-r (for some constant ¢) which has degree at most n(G)¢.

As € is somewhere dense, for some integer s, every graph H is a topologi-
cal depth-s minor of some graph G € 6.

Let H be a graph of girth greater than c-r-s with edge density d =
co - n(H)Y™) for some constant co. Such H exists by Lemma 5.1.5 and H
does not admit an r-s-neighbourhood cover of radius c-r-s and degree d
by Lemma 5.1.4. As ¥ is monotone, an s-subdivision of H is a graph G € €
with 7(G) < n(H) +s - m(H) < 2cosn(H)+ers),

By assumption, G admits an r - s-neighbourhood cover of radius at most
c-r-s and degree at most n(G) for € = 1/(2¢rs) if G is large enough. It
follows from Lemma 5.1.6 that H has a cover of radius c¢-r-s and degree at
most

n(G) = (2cosn(H)* VD) = (2¢q8) - n(H) T

< C()n(H)Ze — COn(H)l/(crs)
for sufficiently large n(H). A contradiction. O

Based on a result of Kithn and Osthus [85], Nesettil and Ossona de Mendez
in [98] showed that a monotone class of graphs with unbounded expansion
does not admit r-neighbourhood covers of radius 2r and degree at most
¢(r) for any fixed function ¢ and a somewhere dense class does not admit
r-neighbourhood covers of radius 2r and degree at most n® for all its n-
vertex graphs. In combination with our Theorem 5.1.2, this yields a similar
characterisation of monotone classes of bounded expansion and of monotone
nowhere dense classes.
Let us show how to efficiently compute sparse neighbourhood covers.

Theorem 5.1.8 Let 6 be a nowhere dense class of graphs. Let r =0 be an
integer and € > 0 a real. Then there are integers ng >0 and ¢ > 0 such that
for every G € € with n = n(G) = ng an r-neighbourhood cover of G of radius
2r and maximum degree n can be computed in time c-nl*¢.

PROOF. Choose & > 0 such that 2n1*2% < n¢ for large n. Let G € € be suffi-
ciently large such that we can order the vertices of G as in Corollary 4.6.7

76



such that [WReacho,[G,L,v]| < n(G)° for all v € V(G) in time ¢’ - n(G)**?,
where ¢’ is the constant from the corollary. We want to construct the clusters

X, :={w € V(G) : x € WReachy,[G,L,w]}.

for all x € V(G@), as described in the proof of Theorem 5.1.2. For x € V(G) let
G be the subgraph of G induced by all vertices y with L(y) = L(x). Observe
that by definition of WReachy, we have

X = GoINS* ()],

r

We can hence compute in ascending order for each x € V(G) the graph
G, and the set X, as the 2r-neighbourhood of x in G,. From G,, we can
compute G, where y is the successor of x with respect to L, by simply
deleting x from G,. In order to delete x from G,, when performing the
breadth-first search to find V. zer (x), we delete x from the adjacency lists of
its neighbours. By our representation of G (see Remark 3.1.5), for each
neighbour w, the adjacency list of w which contains x has size at most n’
and x can hence be deleted in this time from the list. As G, is a subgraph
of G, if G, is sufficiently large, it also has at most n(G,)'*° edges and the
extended breadth-first search described above can be performed in time
O(n(G)'*%). For convenience we drop all constants from the following
estimation and multiply by a sufficiently large constant factor ¢ in the end.
We hence get a running time of

Y (nGo™+ Y nG)s ¥ aGon+ Y Y
xeV(G) yeNGx(x) xeV(G) x€V(G) ye NGx (x)

<2n® Y nGys 2n1+20 < plve,
xeV (@)
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6. The splitter game

There are several structural graph measures which can equivalently be
defined in terms of games, the most prominent examples are the cops-
and-robber games for tree width. Also the existence of shortest paths
decompositions of small width for graphs that exclude a fixed minor, as
defined in Chapter 4, were originally proved in game theoretic terms and
the generalised colouring numbers were introduced in the context of graph
colouring games. Often one can derive a structural decomposition from
the winning strategy of one of the players and the game provides a good
intuition about this decomposition. In this chapter we are going to provide
a game characterisation of nowhere dense classes. The game describes the
local structure of a graph and the corresponding decomposition has a nice
algorithmic application. The splitter game was invented by Martin Grohe
and Stephan Kreutzer, Section 6.1 is based on ideas that are not originated
by the author of this thesis. The results of this chapter were published
in [65].

¢ We will define the game and show that nowhere dense classes can be
characterised by it in Section 6.1.

¢ As an application of the splitter game we will show how to efficiently
solve the distance-r independent set problem in Section 6.2.

6.1. The splitter game

Let G be a graph and let ¢,m,r = 1 be integers. The (r,¢,m)-splitter game
on G is played by two players, Connector and Splitter, as follows. We
let Gy :=G. In round i + 1 of the game, Connector chooses a vertex v;;1 €
V(G;). Then Splitter picks a subset W;,1 < Nf;i(vi+1) of size at most m.
We let Gi41:= Gi[NrGi(vi+1)\ W;.1]l. Splitter wins if G;;1 = @. Otherwise
the game continues at G;.1. If Splitter has not won after ¢ rounds, then
Connector wins.
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A strategy for Splitter is a function f that associates to every partial play
(v1,W1,..., vs,Ws) with associated sequence Gy,...,G; of graphs and the
next move vgy1 € V(Gs) by Connector a set Ws1 € N,"°(vs4+1) of size at
most m. A strategy f is a winning strategy for Splitter in the (r,¢,m)-
splitter game on G if Splitter wins every play in which he follows the
strategy . We say that Splitter wins the (r,¢,m)-splitter game on G if he
has a winning strategy.

In the rest of this section we are going to prove that nowhere dense classes
can be characterised by the splitter game. To be precise: a class € of graphs
is nowhere dense if and only if there are functions ¢ and m such that for
every r = 1, splitter wins the (r, £(r), m(r))-splitter game on every graph
Geé.

The proof is based on yet another characterisation of nowhere dense
classes which describes the wideness of the class. The notions of almost-
wideness and quasi-wideness were introduced in model theory when study-
ing preservation theorems for first-order logic [8, 27].

A class ¥ of graphs is called uniformly almost-wide if there is a function
N :NxN — N and a number s € N such that for all r,m € N, G € ¥ and
W < V(Q) of size at least N(r,m) there is a set S of size smaller than s such
that there is a set A € W of size at least m which is r-scattered in G - S.

A class € of graphs is called uniformly quasi-wide if there is a function
N :NxN— N and a function s :N — N such that for all r,m eN, G € € and
W < V(G) of size at least N(r,m) there is a set S of size smaller than s(r)
such that there is a set A € W of size at least m which is r-scattered in
G-S.

Atserias et al. [8] have shown that every proper minor closed class is
uniformly almost-wide. Nesetfil and Ossona de Mendez [104] have shown
that a hereditary class of graphs is uniformly almost-wide if and only if
there is an integer s > 0 and a function ¢ : N — N such that for all integers
r >0, the bipartite graphK ;) is not a depth-r minor of any graph G € 6.
Nesettil and Ossona de Mendez also showed that every class that excludes a
topological minor is almost-wide. They observed that uniformly almost-wide
classes need not be topologically closed and need not even have (locally)
bounded expansion. In fact, the class of graphs G with A(G) < girth(G) is
nowhere dense but has unbounded expansion (even unbounded average
degree) and is obviously uniformly almost-wide. Adding to every graph a
vertex which is connected to every other vertex yields a class which does not
have locally bounded expansion which is still uniformly almost-wide. Most
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useful for our purpose is the following characterisation of nowhere dense
classes.

Theorem 6.1.1 ([104]) A hereditary class of graphs is uniformly quasi-
wide if and only if it is nowhere dense.

We are now ready to prove the forward direction of our characterisation
theorem.

Theorem 6.1.2 ([65]) Let € be a nowhere dense class of graphs. Then for
every integer r > 0 there are integers ¢,m > 0, such that for every G € €6,
Splitter wins the (r,¢,m)-splitter game on G.

PROOF. We may assume that € is a monotone (and hence hereditary) class.
As € is nowhere dense, by Theorem 6.1.1, it is also uniformly quasi-wide.
Let N:NxN — N and s :N — N be such that for all rm e N, G € € and
W < V(G) of size at least N(r,m) there is a set S of size smaller than s(r)
such that there is a set A € W of size at least m which is r-scattered in
G-S.Letr=1andlet ¢:=N(r,2s(r)) and m := ¢-(r +1). Note that both ¢
and m only depend on ¥ and r. We claim that for any G € ¢, Splitter wins
the (r, ¢, m)-splitter game on G.

Let G € € be a graph. In the (r,¢,m)-splitter game on G, Splitter uses
the following strategy. In the first round, if Connector chooses v; € V(Gy),
where G := G, then Splitter chooses W; :={v1}. Now let i > 1 and suppose
that vy,...,v;,G1,...,G;,W1,...,W; have already been defined. Suppose Con-
nector chooses v;;1 € V(G;). We define W, as follows. For each integer j,
1=<j=<i, choose a path P;;,; in Gj,l[N,G’;l(vj)] of length at most r con-
necting v; and v;,1. Such a path exists as v;,+1 € V(G;) € V(G)) ngjfl(vj).
We let W1 := Uisj<i V(Pj,i+1)ﬂN§i(vi+1). Note that |[W; 1| <i-(r+1) (the
paths have length at most r and hence consist of  + 1 vertices). It remains
to be shown that the length of any such play is bounded by ¢.

Assume towards a contradiction that Connector can play on G for ¢' =
¢ +1 rounds. Let (v, Wy,...,vy,,Wy) be the play with associated sequence
Go,...,Gp of graphs. As ¢' > N(r,2s(r)), there is a set S € V(G) with |S| <
s(r), such that W contains an r-scattered set I of size ¢ := 2s(r) in G\ S.
Assume I ={uy,...,us}, where u; = Vi forindices 1<ii<ig<...<i;</'.

We now consider the pairs (ugj_1,ugj) for 1 < j < s(r). By construc-

tion, P; := Pigj_l,i2j is a path of length at most r from ugj_1 to ug; in Gi2j_1—1
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and V(P;)nV(Gi,, ,+1) = @, that is, the path P; is completely deleted by
Splitter in round ig;-1 +1 of the game. Because Pj,; starts at a vertex
chosen at least 2 rounds later, we conclude that for i # j, V(P;,)nV(P;) = @,
hence there are s vertex disjoint paths of length at most r between vertices
from 1.

However, any path P; must necessarily contain a vertex s; € S, as other-
wise the path would exist in G\ S, contradicting the fact that I is r-scattered
in G\ S. But this is not possible as there are strictly less than s(r) vertices
in S. A contradiction. g

In order to efficiently compute Splitter’s winning strategy, for every (partial)
play (vi,Ws, ...,v;,W;) with associated sequence Gy,...,G;, we store the
sequence Go,...,G; together with a sequence T4,...,T;_1, where T; for
1=j<iis a breadth-first search tree of depth r in G ;_; with root v;.

Then, given G;, T1,...,T; and Connector’s move v;1 in round (i + 1) of
the game, we can compute Splitter’s answer W, as follows. For 1<j <1,
we compute the paths P; ;.1 as the shortest path from v;,1 to vj in T;. We
can compute this path for each j in time O(r) and thus all paths in time
O(ri). We let W =;V(P;;+1) and compute G;41 = G[NrGi(le) \ W] and
the spanning tree T'; by a breadth-first search which leaves out any vertex
of W in time O(ri - n(G;) + m(G;)).

We call the (r, ¢, 1)-splitter game on a graph the simple (r, ¢)-splitter game
on G. It is straight forward to verify that for all ¢,m,r = 0, if Splitter has
a winning strategy in the (r, ¢, m)-splitter game on G then Splitter has a
winning strategy in the simple (r, ¢ - m)-splitter game.

We close the section by observing the converse of Theorem 6.1.2 and hence
show that the splitter game provides another characterisation of nowhere
dense classes of graphs.

Theorem 6.1.3 Let € be a class of graphs. If for every positive integer r >0
there are integers ¢,m > 0 such that for every graph G € €, Splitter wins
the (r,¢,m)-splitter game, then € is nowhere dense.

PROOF. We show that if € is somewhere dense, i.e., ¢ contains all graphs
as depth-r minors at some depth r, then for all integers ¢,m > 0 there is a
graph G € € such that Connector wins the (4r +1,¢,m)-splitter game on G.

Let ¢,m > 0 be integers. We choose G € ¥ such that G contains the
complete graph K := Ky, +1 as a depth-r minor. Connector uses the following
strategy to win the (4r+1,¢,m)-splitter game. Connector chooses any vertex
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from the branch set of a vertex of K. The 4r + 1-neighbourhood of this
vertex contains the branch sets of all vertices of K. Splitter removes any m
vertices. We actually allow him to remove the complete branch sets of all m
vertices he chose. In round 2 we may thus assume to find the complete
graph K(/_1)m+1 as a depth-r minor and continue to play in this way until
in round ¢ at least the branch set of a single vertex remains. [l

6.2. Solving the independent set problem

In this section we use the splitter game to show that the DISTANCE INDE-
PENDENT SET problem, which is W[1]-hard in general, is fixed-parameter
tractable on nowhere dense classes of graphs. This will be used later in
the proof of our main theorem but may be of independent interest. Recall
that an r-independent set W < V(G) is a set such that dist(u,v) > r for all
u,veWw.

Theorem 6.2.1 Let € be a nowhere dense class of graphs. There is a func-
tion f such that for every real € > 0, every G € € and all integers r,k =0 we
can decide in time f(e,r,k)-n(G)*€ whether G contains and r-independent
set of size k.

In fact we will solve a more general problem, called the DISTANCE IN-
DEPENDENT RAINBOW SET problem. A coloured graph (G,C1,...,C;)is a
graph G together with relations Cq,...C; € V(G), called colours, such that
CinCj=¢gforalli#j. Avertexv¢gUi<i<C; is called uncoloured. A set
X € V(G) is a rainbow set if all of its elements have distinct colours (and no
vertex is uncoloured).

The DISTANCE INDEPENDENT RAINBOW SET problem is the problem
to decide for a given coloured graph (G,Cy,...,C;) and r,k = 0 whether
(G,Cy,...,C;) contains an r-independent rainbow set of size 2. We show that
the DISTANCE INDEPENDENT SET problem on a nowhere dense class € of
graphs reduces to the DISTANCE INDEPENDENT RAINBOW SET problem on
a nowhere dense class 9 of coloured graphs via a fixed-parameter reduction.

The lexicographic product G®H of two graphs G and H is defined by
V(GeH)=V(@) xV(H) and E(G*H) = {{(x,y),(x',y)} : {x,x'} e E(G) or (x =
x' and {y,y'} € E(H ))} The graph G®H has a natural coloured version
GoH: we associate a colour with every vertex of H and colour every vertex
of G * H by its projection on H. That is, the colour of (x, y) is y (or the colour
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associated with y). It is easy to see that a graph G has an r-independent
set of size k if and only if GoK} has a rainbow r-independent of size k.
This gives us the reduction from distance independent sets to their rainbow
variant. Furthermore, observe that if Splitter wins the (I, m,r)-splitter game
on a graph G, for some r,l,m =0, then he also wins the (/,% - m,r)-splitter
game on G * K}, for all k. As a consequence, together with Theorem 6.1.2
and Theorem 6.1.3 this implies a different and very simple proof of the
following result by Nesetril and Ossona de Mendez (Theorem 13.1 of [106])
that nowhere dense classes of graphs are preserved by taking lexicographic
products in the following sense.

Corollary 6.2.2 If € is a nowhere dense class of graphs then for every
integer k >0, {G* K}, : G € €} is also nowhere dense.

We are now ready to use this reduction to complete the proof of Theo-
rem 6.2.1. Let ¢ >0 and let ¢,m be chosen according to Theorem 6.1.2 such
that Splitter has a winning strategy for the (4k2r, ¢, m)-splitter game on
every graph in 6. Choose ng = no(k,r,€e) according to Theorem 3.3.2 such
that every graph G € € of order n > ng has at most n1*¢ many edges.

Suppose we are given an instance G,k,r,W of DISTANCE INDEPENDENT
SET, where G € ¥. We first compute the coloured graph G' := GoK},. Let
C1,...,Cs, where t := k, be the colours of G'. As explained above, Splitter
wins the (4k2r,¢,mk)-splitter game on G’ and his winning strategy can
easily be computed from any winning strategy for the (4k2e, ¢, m)-splitter
game on G. Also his winning strategy for the simple (4%k2r, ¢km)-splitter
game can be computed from his original strategy.

We need to decide if (G',C1,...,C;) has a rainbow r-independent set of
size k. If n(G) < ng, we test whether this set exists by brute force. In this
case the running time is bounded by a function of r,k and €. So let us
assume n(G) = ny.

Let G1 := G'. We compute an inclusion-wise maximal rainbow r-indepen-
dent set I = {x%,...,xi’l} of size k1 < k by a greedy algorithm. If k1 =k,
we are done and return the independent set. Otherwise, we may assume
without loss of generality that x{ has colour j. Let X1 := N,.(I1). Then all
elements with colours k1 +1,...,¢ are contained in X;. Let Y7 := N,(X7).
Then all paths of length at most r between elements of colour k21 +1,...,%
lie inside Y7. Let Go :=G1 \Y7.

We continue by computing an inclusion-wise maximal rainbow r-indepen-
dent set in Go. Denote this set by I3 = {x%, ... ,xlzez}. Note that all occurring
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colours are among 1,...,%; and in particular we have k9 < k1 because no
other colours occur in G; \ Y;. Again we may assume without loss of gener-
ality that xé has colour i. Let X9 := N,.(I3). Then we find all elements with
colours ko +1,...,¢in X7 UXs. We let Yo := N, (X3). Let Gg :=Ga\Yo.

We repeat this construction until ks = kg1 or until Gs;1 = @. Note that
s <k, because k1 < k. In the first case we have constructed s + 1 sets
I, = {xl.l,...,xfi}, X; and Y; such that x{ hascolour jforl<i<s+1,1<j<k;.
Furthermore, the colours k5 +1,...,¢ occur only in X; U...UX; and all paths
of length at most r between vertices of these colours lie in Y; U...UY,. By
construction, no vertex of colour k5 + 1,...,¢ has distance at most r to any
vertex of I5.1. Hence we may assume that any rainbow r-independent set
includes the vertices xi NI ,xffrl of colour 1,...,k;. It remains to solve the
rainbow r-independent set problem with parameter k' := &k — ks and colours
ks+1,...,tonG":=G[Y1U...UY,l

In the other case (G441 = @) we also let G := G[Y1U...Y;]. The only
difference is that we have to solve the original problem with parameter
k' =k.

If G” is not connected, let Us,...,U. € G" be the components of G”. For
all possible partitions of the set C1,...,C; of colours into parts Vi,...,V,
we proceed as follows. For all 1 <i < ¢ we delete all colours from U; not
in V;, i.e. work in the coloured graph (U;,V;). We then solve the problem
separately for all components (U;,V;) and for each component determine the
maximal value £” < %’ so that (U;,V;) contains a rainbow r-independent set.
We then simply check whether for some partition (Vi,...,V,) of the colours
the maximal values for the individual components sum up to at least &'.

Hence, we may assume that G” is connected. Then G” has diameter at
most 4k2 - r (there are at most Zf - k2 many vertices in the independent
sets surrounded by their 2r-neighbourhoods of diameter at most 4r). Hence
the radius (and even the diameter) of G” is at most 42 - r.

Let v be a centre vertex of G”’. We let v be Connector’s choice in the
simple (4k2r, ¢km)-splitter game and let w be Splitter’s answer. We let
G" := G" —w and continue recursively with several colourings of G" as
follows. In the first case, (which we consider only if w has a colour), we test
whether w can be added to the rainbow set, that is, we remove the colour
of w completely from the graph and remove the colour of all vertices from
N¢ "(w) and call the algorithm with parameter k" = &' — 1.

In the second case we test whether we can avoid adding w to the rainbow
set by changing the colours of of G" as follows. For every colour C;, with
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1<i<t, and every number d €{1,...,r,00}, we add a new colour C; 4 and
set C; 4 to be the set of all vertices x € C; such that distg/(x,w) =d, for all
1 <i <t, where we define distg/(x,w) = co if the distance is bigger then r.
Note that the number of colours added in this way is only ¢-(r + 1) and hence
only depends on the number of original colours and r. We call a subset
Ciydy>-->Ci,nd,n of the colours a valid sub-colouring if the colours satisfy
the following constraints:

1. If Cj; 4, # @ for a colour which states that the distance to w is r'<r,
then C ipdy =9 for all colours which state that the distance to w is at
most r—r’.

2. If C,-J.,dj and Cij,,dj, are colours with i; =iy and d; # d; then Ci,-,dj =
gorCi,a,=9.

We now test for all possible sub-colourings Ci1,di1 so+sCind,y of G"" whether
they are valid and for each valid sub-colouring we recursively call the
algorithm on G"" with colouring Ciyd;,>---»Cid, and parameter k" =k
The number of valid sub-colourings only depends on the original number of
colours and on r.

We claim that this procedure correctly decides whether G” contains an
r-independent rainbow set of size &'.

If there exists such a set Z, assume first that w € Z. Then w has a colour
and no vertex from Z \ {w} may have this colour hence we may remove the
colours completely from the graph. Furthermore, Z N N, (w) = w, hence we
may remove the colours from N,.(w). Now assume that there is u € Z with
distgr(u,w)=r"<r. Then v ¢ Z for all v with distg:(v,m)<r—r'. Hence we
will find Z in the graph where all colours which state that the distance to m
is at most r — r’ are removed.

Conversely assume that the algorithm has computed an r-independent
rainbow set I in G" of size k". If k" = k' — 1, then clearly we can add v to
obtain an r-independent rainbow set in G'. If ” = k' and the rainbow set
uses colours from some valid sub-colouring then by Condition (1) of valid
sub-colourings, I is also an r-independent set in G”. By Condition (2) of
valid sub-colourings, I is also rainbow in G”.

We now analyse the running time of the algorithm. First observe that in
a recursive call the parameter r is left unchanged and % can only decrease.
Moreover it follows from the definition of G"”’ that Splitter has a winning
strategy for the simple (4%2r), ¢km — 1-splitter game on G"”. Thus in each

86



6.2. Solving the independent set problem

recursive call we can reduce the first parameter. Once we have reached
¢ =0, the graph G"’ will be empty and the algorithm terminates. Hence the
complete recursion tree has depth at most £km and branching degree at
most 2k +D" (in each level the number of colours increases by a factor of
(r +1) and there are only so many subsets of £(r + 1)’*™ colours,). Let us
describe the running time of the algorithm on level j of the recursion. The
time for computing maximal r-independent sets of size at most 2 and their
2r-neighbourhoods can be bounded by time cq - n'*¢. The factor n1*¢ stems
from the breadth-first searches we have to perform in order to find the sets
Y (i) and Splitter’s strategy and c¢ is a constant depending only on r, k,¢
and €. This completes the proof of Theorem 6.2.1.
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Introduction

Part III of this work deals with the complexity of the model-checking prob-
lem for first-order logic, successor-invariant first-order logic and order-in-
variant monadic second-order logic on restricted classes of structures.

We show that every first-order property can be decided in time O(n
on a nowhere dense class of graphs.

Our starting point is the locality based technique introduced in [53]. In
a nutshell, this technique works as follows. Using Gaifman’s theorem, the
problem to decide whether a general first-order formula ¢ is true in a graph
can be reduced to testing whether a formula is true in r-neighbourhoods in
the graph, where the radius r only depends on ¢, and solving a variant of
the (distance d) independent set problem. Hence, if ¥ is a class of graphs
where r-neighbourhoods have a simple structure, such as the class of planar
graphs or classes of bounded local tree-width, this method gives an easy
way for deciding properties definable in first-order logic.

As shown in the first part of this work, nowhere dense classes have
nice local properties. We are going to use the splitter game introduced in
Chapter 6 to recursively decompose the graph into smaller parts. After each
round of the game we will apply the locality based approach to compute
local information which can finally be combined to obtain the answer to the
original query.

A key requirement for this approach to work is that ranks are preserved
during the recursion (the parameter for the splitter game must not change
during the game). This however cannot be guaranteed when using Gaif-
man’s original locality theorem. Our solution to solve this problem is to
extend first-order logic by distance atoms and to define an appropriate rank
measure for this extended logic FO(dist). We then use a combinatorial
argument similar to that in Gaifman’s original proof to show that every
FO(dist)-formula can effectively be translated to a local FO(dist)-formula of
the same rank.

The final step is to give the extended logic FO(dist) access to neighbour-
hood covers as introduced in Chapter 5. By this we can ensure that the
constructed recursion tree remains small and hence obtain efficient running
times.

1+€)

A very important way to make first-order logic more expressive is to include
additional relations on the universe, most prominently, an order relation
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and arithmetic predicates. In most practical applications of first-order logic,
the given structures are (at least implicitely) ordered. We are going to
show that the model-checking problem for first-order logic is hard for the
parameterized class AW[*x] when an arbitrary order is added. We will
show however, that the model-checking problem for order-invariant MSO
on structures of bounded clique- or tree-width ist fixed-parameter tractable.
Finally, we will show that the model-checking problem for sucessor-in-
variant first-order logic on planar graphs is fixed-parameter tractable.

¢ Chapter 7 is devoted to the proof of our rank-preserving locality
theorem. We will introduce the logic FO(dist) in Section 7.1 and
in Section 7.2 we are going to prove the extended locality theorem for
this logic.

¢ In Chapter 8 we are going to present our model-checking algorithm.

* We are going to present our results about order- and successor-in-
variant logics in Chapter 9.

The results of Chapter 7 and Chapter 8 were published in [65]. The results
of Chapter 9 were published in [46].
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7. A rank preserving locality
theorem

7.1. First-Order Logic with Distance Atoms

In Corollary 2.4.3, we invested many quantifiers to relativise a formula
to the r-neighbourhood around a tuple a. This relativisation is a very
clear algorithmic instruction for which we want to avoid introducing new
quantifiers. The aim of this section is to extend first-order logic to first-order
logic with distance atoms.

We define an extension FO(dist) of FO by adding for all variables x,y and
all non-negative integers d = 0 an atomic formula dist(x,y) < d. We call
these formulas distance atoms. The meaning of an atom dist(x,y) <d is
that of d-4(x,y). Hence, every FO(dist)-formula ¢ is equivalent to an FO-
formula ¥ obtained from ¢ by replacing each distance atom dist(x, y) < d by
the FO-formula 6 -4(x,y). Thus FO(dist) is only a syntactic extension of FO.
However, the quantifier rank of d4(x,y) € FO as we defined it is ¢(1)-d
where c¢(7) is a constant depending on 7, whereas the quantifier rank of the
atomic FO(dist)-formula dist(x,y) < d is 0. With this definition as one of
the base steps, we define the quantifier rank qr(¢) for FO(dist)-formulas ¢
recursively as for FO-formulas.

We define a refined rank measure for FO(dist) formulas as follows. For
a distance function dst : N — N and a non-negative integer k = 0, we say
that a formula ¢ has dst-distance rank k if ¢ has quantifier rank at most %
and if each distance atom dist(x,y) < d in the scope of i < k& quantifiers
satisfies d < dst(k —i). We write drkgs (@), or simply drk(¢) if there is no
danger of confusion, for the ds¢-distance rank of ¢. We will only consider
monotonically increasing distance functions which will make it cheaper to
define distances than in FO-formulas. On the other hand, just as for plain
FO, defining distances becomes more expensive in the scope of quantifiers.
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For our extended locality theorem we will use the following distance function.
Let g € N and define dst,(i) := (49)7*t. We call the distance rank of a formula
¢ for this distance function the g-rank of ¢. For example, for g = 3, the
sentence

EixEIy(dist(x,y) <12°A Jz(dist(x,2) < 126
Vuw(~dist(z,w) < 12* v dist(w, y) < 124)))

has 3-rank 6, because its quantifier rank is 4 < 6 and for the distance
atom dist(x,z) < 12° in the scope of 3 quantifiers we have 126 = (4.3)3+6-3),

It is the aim of this section to extend the theory of types and back-and-
forth systems for FO(dist). In the following, let dst be a fixed (computable)
distance function. Let 2 be a 7-structure and let @ = (a1,...,a,) € V)™
and x = (x1,...,%m,). The distance rank-k m-type of a over 2 is

dtp, (A, @) := {p(x) e FO(dist) : drk(p) < &, = @)}

Again, up to logical equivalence, for all integers k,m = 0, there are only
finitely many formulas ¢(x1,...,x,) € FO(dist) of distance rank at most %
and we can effectively normalise formulas of distance rank %, i.e. rename
variables such that only the variables x1,...,%,+% occur in ¢, such that all
Boolean combinations are in disjunctive normal form and such that the
Boolean combinations contain no duplicate entries. We write ®(z,dst,k,m)
for the set of normalised FO(dist)-formulas ¢(x1,...,x,) over vocabulary t
of dst-distance rank at most k.

A partial d-isomorphism between 2 and a t-structure 5 is an isomor-
phism p from 2A[A’] to B[B’] for non-empty and finite subsets A’ < V(2()
and B’ € V(B) which preserves distances up to d, that is, for all elements
a,a’ € dom(p) either distances are equal,dist(a,a’) = dist(p(a), p(a’)), or
large, dist(a,a’) > d and dist(p(a), p(a’)) > d. For convenience, we also call
the empty mapping @ a partial d-isomorphism. _

Let B be a 7-structure and let b = (b1,...,b,,) € V(B)™. (A, a) and (5, b)
are k-isomorphic with respect to dst, written (A, a) E‘ZSt (%B,b), if there is a
sequence (I j)o<;<z With the following properties.

* For every integer j, 0 < j <k, I; is a non-empty set of partial dst(j)-
isomorphisms from A to B anda— b e ;.

* (Forth property) For every 0 < j <k, g € Ij;1 and a € V() there is
p €1; such that p extends g and a € dom(p).
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* (Back property) For every 0 < j <k, q € Ij;1 and b € V(B) there is
p €1; such that p extends g and b € ran(p).

The sequence (I j)o<j<t, is called a distance preserving back-and-forth system.
For a,b € V(2), we write dist(a,b) =; d € {0,...,i} U{oo} if dist(a,b)=d < i
or dist(e,b) > and d = co. For a € V()™ we can write down a quantifier
free FO(dist)-formula ﬂial,a of distance rank i that describes the mutual
distances between elements of a up to dist(z). Let x := (x1,...,2x,).

Oy a®= A dist(x;,x))=d A N\ dist(x;,x;) > dst(i).
aj,a;€a a;,a;€a
dist(a;,a j)=d<dst(i) dist(a;,a;)>dst(i)

For an integer n =0, a 7-structure 2 and a, € V()" let x,, := (x1,...,%,) and
let \Pgl,ﬁn be the set of formulas ¢(x,) € FO(dist) with drk(¢) = 0 such that
A= pay). Let

Yo a@n)i= A\ ¥y g -

‘~I’OQ[a < ®d(7,dst,0,n) is finite, and hence the above conjunction is a well

defined formula. Note that ﬁgla , which fixes distances up to dst(0), is

a sub-formula of u/gla . For i > 0, assume that ‘Pﬁ;}l = {U/igfé +1(a_anrl) : A

T-structure, @,+1 € VQ)*1} € ®(1,dst,i — 1,n + 1) has been defined and is
finite. Then

. _ . _ L
ngl,a(xn).z ﬁlglﬁ(xn)/\ /\ 3xn+1‘[//lgl7ana(xn’xn+l)/\
aeV(20)

i_1 _
Vxn+1 v wlgl)ana(xn>xn+l)’
acV(Rl)

where we remove duplicate entries from the conjunctions and disjunctions
is a well defined formula. We call wgﬁn the dst-distance rank-k Hintikka
type of @, € V()" in 2. Note that the distance rank-£ Hintikka type of an
n-tuple is a normalised formula from ®(z,dst,%,n) of distance rank & (the

outermost disjunction contains exactly one disjunct). The following is the
analogue of Theorem 2.3.2.
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7. A rank preserving locality theorem

Theorem 7.1.1 Let A, B be t-structures, let m,k = 0 be integers and let
aeVER)™, beV(B)™. The following are equivalent.

1) dtp,(A,@) = dtp,(B,d).
2) BEyk (0).

3) There is a distance preserving back-and-forth system (I ;)o<j<p for 2
and B with a— b eI}

PROOF. As already noted, the distance rank-%2 Hintikka type of a is a
formula of distance rank k. Hence 1) implies 2). _
We show that 2) implies 3) by induction on k. For £ =0, 8 |= 1//}5[ z(b)if and

only if @ and b satisfy the same FO(dist)-formulas of distance rank 0. This
is the case if and only if the mapping @ — b is a partial dst(k)-isomorphism.
Hence we can define I}, as {a — b}.

For 2>0,B |= 1//}5"5(5) if and only if

e @ and b satisfy the same distance formulas up to dist(k),
* for all a € V() there exists b € V(%) such that B = & (5,b) and
e for all b € V(*B) there exists a € V(2() such that B |= ‘ng,ala(g’ b)

by definition of W%,E(E)- By induction hypothesis this is equivalent to

* @ and b satisfy the same distance formulas up to dst(k),

¢ for all a € V() there exists b € V(B) and a distance preserving back-
and-forth system (J;.‘)OS j<k-1 for 2 and B with aa — bbeJ;_; and

* for all b € V(°5) there exists a € V(2) and a distance preserving back-
and-forth system (L?-)Osjsk—l for 2 and 25 with aa — bb € Lz_l.

We let Iy, := {@— b} and I, := Ugevan) J? uubev(%)Lg for 0 < j <k. Then

* for g€l and a € V() there is p € J; | <1 such that p extends ¢
and a € dom(p) and

e forqel;, and b€ V(B) thereis p € LZ_I c I;,_1 such that p extends g
and b € ran(p).
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7.2. Rank-preserving locality

For j <k the distance preserving back-and-forth property of I; is inherited
from that of the (J;?)()Sjsk_l and (L?)OSjsk_l. As a and b satisfy the same

distance formulas up to dst(k), it remains to show that @ — b is a partial
isomorphism (it then is a partial dst(k)-isomorphism). But if aa — bb for
any a € V(2),b € V(®B) is a partial dst(k — 1)-isomorphism (as witnessed by
p €I,_1), then also @ — b is a partial isomorphism.

We show that 3) implies 1) again by induction on k2. The case £ =0 is
handled exactly as above. Let k£ >0 and suppose that there is a distance
preserving back-and-forth system (I;)i<j<; for 2 and B with @ — b € I;.
Clearly, the set of formulas ¢(x1,...,x,) that satisfy

AEgplas,...,am) = B E@b1,...,bn)

is closed under the Boolean connectives. Hence it suffices to consider for-
mulas of the form ¢(x) = Iyw(x, y) with drk(yw) < £ — 1. Assume, for instance,
A = ¢(a). Then there is a € V() such that 2 = w(a,a). By assumption,
there is b € V(*8) such that @a — bb € I,_;. Hence (Ij)1<j<k-1 is a dis-
tance preserving back-and-forth system with aa — bbel, ;. By induction
hypothesis, dtp,_;(2l,a,a) = dtp,_;(*8,0,b) and hence B |- y(b,b). Then
B |= ¢(b). |

7.2. Rank-preserving locality

In this section we are going to prove the rank-preserving locality theorem.

The following observation allows us to avoid introducing many quantifiers
in the neighbourhood of tuples. Let 2 be a t-structure and let a € V()™ be
2r-scattered. Then there exists an r-scattered set of elements which satisfy
w(x) of size s in the r-neighbourhood of @ if and only if there is a sub-tuple
of @ of size s such that the r-neighbourhood of each element of the sub-tuple
contains (exactly) one element which satisfies . We can express this as a
disjunction over the sub-tuples of @ without investing additional quantifiers
for the scattered set formula.

Furthermore, observe that any model-checking algorithm which directly
implements Lemma 2.5.1 has to solve scattered set problems in the (2r + 1)-
neighbourhoods of many tuples a. We want to avoid this and rather deal
with many elements at once. For this purpose, we incorporate neighbour-
hood covers, as introduced in Chapter 5, into the logic FO(dist). Note that
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7. A rank preserving locality theorem

this is not necessary to obtain a rank-preserving locality theorem and we
will present a version of the theorem which does not refer to neighbourhood
covers.

Let A be a 7-structure. For an integer r = 1, an r-neighbourhood cover &
of is an r-neighbourhood cover of the Gaifman graph of 2. For every a € V/(20),
we fix some cluster Z'(a) € Z such that N,(a) € Z(a). We write & (a) for
Uqeg Z (a). We obtain the following analogue of Lemma 2.5.1.

Lemma 7.2.1 Let 2 be a t-structure, let m,r =1 be integers, let a € V(21)™,
let w(x) be a first-order formula and let X be a (4m + 2) - r-neighbourhood
cover of Q. There is an element a at distance greater than r from a which
satisfies v if and only if one of the following holds:

* there exists an element a € Z (@) which satisfies v with r < dist(a,a),
or

* there is an r-scattered set of size m + 1 of elements that satisfy v, or
e foralld=2r,D=d+4rwithD-r<(dm+1)-rand 0<?¢<m, if

— there are exactly ¢ elements of mutual distance larger than d that
satisfy v and

— there are exactly ¢ elements of mutual distance larger than D
that satisfy v,

then no set of ¢ elements {a1,...,ar} S a, such that each a; contains an
element which satisfies v in its r-neighbourhood, is (D/2 —r)-scattered.

PROOF. First assume that there is an element a at distance greater than r
from a which satisfies w. If @ does not lie in Z'(a) and if there is no r-
scattered set of size m + 1 of elements that satisfy v, fix any d and D with
d=2r,d+4r <D <(4m+2)-r and let £ be maximal such that there are
both exactly ¢ elements of mutual distance larger than d and exactly ¢
elements of mutual distance larger than D that satisfy w. Note that in
this case we have 1 < ¢ < m (otherwise we are in case two). Let p be
maximal such that there are a1,...,a, € @ with mutual distance greater
than D —2r and such that the r-neighbourhood of each a; contains an
element b; satisfying w. Then dist(b;,b;) >D —4r=d for1<i<j<p. As
a ¢ X(a), dist(a,b;) >D —r >d for all 1 <i < p. This implies p < ¢, as
otherwise the set {a,b1,...,b,} contains more than ¢ elements of mutual
distance greater than d, all satisfying .
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7.2. Rank-preserving locality

Conversely, assume that there is no element a which satisfy ¥ and lies
outside the r-neighbourhood of a. Clearly, the first two items do not hold. If
there is no element a at all which satisfies 1, then also the third item does
not hold (the empty set is r-scattered). Assume that there is an element a
which satisfies ¥ but all such elements lie inside the r-neighbourhood of a.
Let us show that there are integers d,D,¢ such that d = 2r, D = d + 4r,
D <(4m+2)-r and ¢ < m such that there are exactly ¢ elements of mutual
distance larger than d and exactly ¢ elements of mutual distance larger
than D satisfying v, and there are ¢ elements a1,...,ay € a of mutual
distance at least D —2r such that each element a; contains an element
satisfying v in its r-neighbourhood, 1 <i < ¢.

Let do :=2r and let ¢y be maximal such that there are a(l), ... ,aé‘) which
satisfy v with dist(af),a{)) >dg foralli#je(l,...,0p}. As dog>2r, no two of
the ajo can belong to the same r-neighbourhood of an element of . Hence
lo<m.

If dj,,¢; are defined for some A = 0, let dj,1 := dp +4r, and let £5,,1

be maximal such that there are a}l +1,...,ai}f11 which all satisfy ¢ with
dist(azﬂ,aiﬂ) >dpq forall i #j€{1,...,0,.1}. Then £5,1 < ;. If we

have ¢j,,1 = ¢}, for the first time, we stop the construction. Then A <m and
thusdp 1 =dh+2)r<(dm+2)r. Letd:=dp,D :=dp,1 and € := 0} = 1.

By assumption, for each i € {1,...,¢} there is j(i) € {1,...,m} such that the
J(i) are mutually distinct and such that dist(aﬁl,a j@) = r.As dist(a;'l,ai) >
D, we have dist(a ;),aj)) > D —2r for i # j, as desired. (]

We define yet another extension of first-order logic, FO(dist + &), in order to
make neighbourhood covers accessible to the logic and directly implement
Lemma 7.2.1. For variables x,y, we define as a new atom the formula y €
Z (x) with the obvious semantics. We write (2, %) |= ¢ for an FO(dist + &)
formula ¢ to indicate that ¢ refers to the neighbourhood cover . Let us
prove the analogue of Theorem 2.3.1 for FO(dist + &) formulas.

Theorem 7.2.2 Let ® be a finite set of FO(dist+X) formulas and let m,r = 0
be integers. If for all t-structures A,B, a € V)™, b € V(B)™ and all r-
neighbourhood covers & of A and % of *B,

(A, 2,7) =y © (B,¥,b) |= x for all y € ®) implies dtp,(2,a) = dtp,(B,d),
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7. A rank preserving locality theorem

then every FO(dist) formula ¢(x1,...,%m) of distance-rank at most k can
effectively be translated to a Boolean combination of formulas from ® which
is equivalent to .

PROOF. The proof which shows the existence of the equivalent Boolean
combination is analogous to that of Theorem 2.3.1. Let us show that the
transformation is effective.

We make the r-neighbourhood covers part of the structures and show that
we obtain a first-order definable class of structures.

Let R be a fresh binary relation symbol and 7 := 7 U {R}. For every 1-
structure 2 and every r-neighbourhood cover & of 2, we let 2 be the 75-
expansion of 2l with

Ry)=1{(a,b):beX(a)

We define the distance function on a 7g-structure with respect to the Gaif-
man graph of 2 (we do not let the new relation mess with distances). Clearly,
the class {2 g : 2 T-structure, & r-neighbourhood cover of 2} is first-order
definable. We let

v :=VaVy(dist(x,y) <r — R(x,y)).

Then & is an r-neighbourhood cover of 2l if, and only if, Ao |=y. We already
noted that FO(dist) is only a syntactic extension of FO. Hence, as r is fixed,
any finite set ® of FO(dist+ %) formulas corresponds to a finite set ®' of FO
formulas about a first-order definable class of tg-structures. We conclude
with Theorem 2.3.1. O

For n =0, a t-structure % and a, € V)" let x,, :=(x1,...,x,). Recall that
\Ijgla is the set of formulas @(x,) € FO(dist) with drk(¢) = 0 such that

2= p(@,). We let A2 = ‘1’31 —. Let

Ql X, a(‘xm) - /\ A
For i > 0, assume that Aiﬁll : {/1‘2[ }%a (xn+1) : 2 r-structure, & neigh-
bourhood cover of X, a,4+1 € V(Ql)’”l} has been defined and is finite. Recall
that

Oy 5(*) = N dist(x;,x;)=d A N dist(x;,x;) > dist(i)
a;,a;€a aj,a;€a
dist(a;,a;)=d <dist(i) dist(a; a,)>dist(i)
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7.2. Rank-preserving locality

describes distances relative to the dist-function.

Let a1 € V) and @41 := anan+1. We define the dist(i)-connectivity
graph H;_1(a,+1) of a,+1 as the graph with vertex set {1,...,n + 1} and
an edge uv if and only if dist(a,,a,) < dist(i —1). We write J(j), for the
connected component of H; 1(a,+1) which contains vertex j and we let x5(;)
denote the sub-tuple of x,, ;1 with entries x, for u € V(J(j)), and a ;) denote
the corresponding sub-tuples of @,,+1. Then

A 7, @n) =y 7 @) A

A | A A1 001 € X (x))
1<j<n an+1€X(a;)
dist(@y,an+1)<dist(i—1)
A distEn, tn+1) < distli = DA Ay gy o Fr()
/\ EIxn+1(9€n+1 € X (x;)
an+1€X(a;)

dist(@y,an+1)>dist(i—1)

Adist(En, n11) > distli — DALY, Gonin)))

A V-’Cn+1( v Xn+1 € %(xj)/\

1<j<n
\V ((dist(®n, xn+1) < dist(i — 1) A A;;,;m Fxs())V
an+1€%(aj)
dist(@y ,a,+1)=dist(i—1)
\V (dist(En, n41) > dist(i = DALY, (),
an+1€Z(aj)

dist(a,,a,+1)>dist(i—1)

where we remove duplicate entries from the conjunctions and disjunctions
is a well defined formula. It is easy to see that A% is finite for all n,% € N.
We call )Lgl >z the dist(k)-cluster type of a@ € V(1) in 2 with respect to a
neighbour}’m(;d cover .

Note that in the sub-formula dist(@,,a,+1) < dist(G —1)AALL | the
Ql,%,a,](])

cluster type fixes distances of a,+1 to every element of @, up to distance

dist(i — 1) exactly (in the sub-formula Ai-1 (xg(j)) the first conjunct is
Ql,g?f,aJ(J)

i1 (=
the sub-formula ﬁl&lﬁm) (xg(j)))-
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An (s, k)-independence sentence is a sentence of the form

Elxl...EIxsr( N\ dist@e;,x)>2-08 N Ag’%’a(xi))

1<i<j<s' 1<i<s’

for any s’ <s,¢ < dist(k) and a dist(k)-cluster type /1’5( o (%)

We now fix the distance function dist, (i) = (4¢)?*" which was introduced
in the example of the last section as the q-rank of a formula. For read-
ability, we drop the index ¢ and always when we are dealing with a for-
mula ¢(x1,...,%,) of quantifier rank %k, we let ¢ := £+ m. Note that if
O1,. .3 Xm) = Fxm+1W(x1,. .., Xm+1) is of g-rank k&, then v is of g-rank £ — 1,
i.e. the g-rank is compatible with sub-formulas.

Theorem 7.2.3 Let k,m,r = 0 be non-negative integers and let ¢ = k +m.
Let ¢(x1,...,%y,) € FO(dist) be of q-rank k. Then ¢ is equivalent to an
FO(dist+ &X)-formula @p(x1,...,%m), which is a Boolean combination of (q,k)-
independence sentences and dist(k)-cluster types Ag‘,%ﬁ(i), such that for
every t-structure 2, every dist(q)-neighbourhood cover & of U and every
aeVER)™,

A= @) = AUX) = pla).

Furthermore, p is computable from ¢.

As there are only finitely many non-equivalent (q,%)-independence sen-
tences and finitely many non-equivalent dist(k)-cluster types and as the
radius of the neighbourhood covers is fixed, by Theorem 7.2.2, it suffices to
prove the following lemma.

Lemma 7.2.4 Let k,m = 0 be integers and let q : k+m. Let 2,5 be 1-
structures and ¥, % dist(q)-neighbourhood covers of 2U,*B, respectively.
Letae V)™,b € V(B)™ such that A and B satisfy the same (q,k)-indepen-
dence sentences and such that @ and b have the same dist(k)-cluster type
in A with respect to & and B with respect to %, respectively. Then

dtp, (A, @) = dtp, (B, b).

PROOF. Throughout the proof, for 0 < j <k we let a; := (a1,...,an+z—j),
Ej =(b1,...,bmr—j) and x; 1= (x1,...,%Xm+%—j). We define the dist(j)-connec-
tivity graph H ;(a;) of a; as the graph with vertex set {1,...,m+%—j} and an
edge uv if and only if dist(a,,a,) < dist(j). We write J = H; to denote that /
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is a connected component of H; and we let x; denote the sub-tuple of x;
with entries x, for u € V(J), and @.,bs denote the corresponding sub-tuples
of aj,b;. Throughout the proof, we write 2(; and B, respectively, for the
structures 2A[% (@)] and B[X (b,)] for J € H;.

For 0 < j <k, let I be the set of partial dist(;)-isomorphisms a; — b j such
that H;(a;) = HJ(EJ-) =:H; and for every component J £ H; we have

m%a (aJ)—/V%@b ().
We show that (I j)o<;<z, is a distance preserving back-and-forth system.
Note that the statement of the lemma is trivially true if £ = 0. We hence
assume k > 0. The proof is by (backward) induction on j < k.
For the base step j = k, first observe that H;(a;) = H;(b,), as a, =a and
b, = b and @ and b have the same dist(k)-cluster type, and in particular,
satisfy the same atomic dist(k)-formulas. Hence let H; := H;(a;) and let

J EH;. Then AJ _ (aJ) = /IZ/B - (b) because @ a; and b have the same

cluster type in 2 and B with respect to & and %, respectively.
NowletO0O<j<kandletaj;i— 5j+1 €1;,1. By symmetry, it suffices to
consider the forth-property. Let a € V(2(). Note that the cluster type of @ for
any tuple also determines the cluster type of @’ for any sub-tuple of @.
If dist(aj+1,a) < dist(j), say dist(a;,a) < dist(j), let J = H;,1 be the con-

//"‘]+1

nected component of i. Then a € V(2l;) and by definition of AT,

Ay |= Fx(x € X(x;) Adist(x;,x) < dist(j) A /12[ 2, L &J%)).
. Jj+1 — N _ q2J+1 7
As by assumption, Am’%’ﬁJ(aJ) = A%’@/)EJ(Z)J), also
By E Ix(x € X' (x;) Adist(x;, x) < dist(j) A /191 2 (xe)).

Let b € Z(b;) be a witness for this. Let a;:=aj;1a and 3]- = 3j+1b. Let
J' € Hj(@;). Then there is I © Hj,1 such that V(J')n{1,....m+k—j} = V().
To see this, note that if u(m +k - j) € E(H(a;)) and (m +k - j)v € E(H j(a;))
then uv € E(H 1), because dist(j + 1) > 2-dist(j). Thus, whenever there is
a path between two vertices u,v €{l1,...,m +k + j} in H;(a;) there also is a
path in Hj 1. The same holds for Hj(gj) and in particular, H;(a;) = Hj(gj).
If J' is a subcomponent of an old component, the condition on cluster types
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7. A rank preserving locality theorem

is inherited from the old component. If J’ is a new component which
contains a, then the condition holds as shown above. As distances up to
dist(j) are preserved, a; — Zj is a partial dist(;)-isomorphism in I;.

If dist(aj+1,a) > dist(j), let  := dist(;). By Lemma 7.2.1,

* there is an element ¢ € X (a;+1) with r < dist(a;41,c¢) which satisfies

2

AX a(x)’ or

* there is a r-scattered sets of elements that satisfy ’%l o o (%) of size
m+k—j(=m+k—-(j+1)—1), or

e foralld =2r,D=d+4r withD-r<@(m+k—-(+1)+1)rand ¢ <
m+k—(j+1),if
- there are exactly ¢ elements of mutual distance larger than d
that satisfy /VQ[ o (%) and

- there are exactly ¢ elements of mutual distance larger than D
that satisfy /1{2( a0 (X)s

then no set of £ elements {a1,...,a,} Sa such that each a; contains an
element which satisfies AJQ[ o (%) in its r-neighbourhood is is (D/2—r)-
scattered. |

Note that D < 4qr, and hence the g-rank is defined exactly to match our
needs.

If a € Z(a;) for some i let ¢ :=a, and if a ¢ X' (aj+1) but there is c € X'(a;)
for some i with dist(a+1,c) > r which satisfies )Lél,%,a(x), fix this ¢. Let J =
H 1 be the connected component of i. Then ¢ € V(2{;) and by definition of

JQlJr;L’ ag’

A = Fx € X () A dist(xy,2) > dist(7) A Ay -, ().

. Jj+1 — N _ qJ+1 N
As by assumption, Am’%ﬁJ(aJ) = A%,@,EJ(bJ), also
By = x(x € X (xg) Adist(xg,x) > dist(j) A AL (x)).

AX ,a

Let b € £ (by) be a witness for this. Let a;:=a;;1a and Ej ::Eﬁlb.
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If there is no element ¢ € ¥(a;,1) with dist(a;;1,¢) > r which satisfies
JLJQL %a (x), then the same holds for 28, as a; and EJ have the same dist(j)-
cluster type for each component J = H j+1- Then the second or third condi-
tion of the lemma holds in 2.

If the second condition holds in 2 then, as 2 and B satisfy the same
(g,k)-independence sentences, the second condition also holds in 8.

If the third condition holds in 2 then if for all d = 2r,D = d + 4r with

D-r<@m+k-(G+1)+randf<m+k—-(j+1)and

* there are exactly ¢ elements of mutual distance larger than d that
satisfy /1JQL o (%) and

* there are exactly ¢ elements of mutual distance larger than D that
satisfy /19I Za (x),

the same holds in B, as 2l and B satisfy the same (q,%)-independence
sentences. We consider each component J = H ;.1 and the corresponding

Jj+1 Jj+1 : i
cluster types Am’ 2y and /1%,5{,5,, which are equal by assumption. In 2, no

set of £ elements {ay,...,a¢} Saj1 such that each a; contains an element
which satisfies )LJQL Za (x) in its r-neighbourhood is is (D/2 — r)-scattered. By
definition of the connectivity graph, vertices from different components
are at distance at least dist(j + 1) and hence we can combine the scattered
subsets of each component to one big scattered set. Hence, also in B no ¢
elements with the above property exist.

Using the other direction of Lemma 7.2.1, there exists b which satisfies

Ql o o(0) with dist(b,b) > r. Let @; :=a,+1a and b, := b;.1b.

In any case, if J' © Hj(a;), then either V(J') = {m + k —j}, or there is
J © H ;.1 such that V(J') = V(J). Again, it is easy to see that H;(a;) = Hj(gj)
and the cluster types of each component are equal (either by inheritance
from the old component or because the component consists of the single
element a or b, respectively, and a and b have the same cluster type as
shown above). As the distance of a to all elements of @, is larger than
dist(j) and the same holds for 4 and 5141, aj — Ej is a partial dist(j)-
isomorphism in I;. U

Our model-checking algorithm will deal with formulas with one free variable
only. We will iteratively compute the cluster types of single elements and
make them available as colours. Thereby, sub-formulas y € Z'(x) will only
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implicitly occur in our formulas. In other words, in the model-checking
algorithm, we can restrict ourselves to the logic FO(dist) if we expand the
signature appropriately.

Let 7 % £ be the vocabulary obtained from 7 by adding a fresh unary
relation symbol P, for each ¢ = ¢(x) € ®(7,dst,k,1). For a t-structure 2,
let 2 %o k be the 7 *x k-expansion of % in which P,, is interpreted by the set
of all @ € V(2) such that A[Z(@)] = p(a). Welet Tx°k:=7 and A+ & :=12.
For i =0, welet o x'*1k:=(t x' k) x k and Ax k= (AxL, k) %o k.

Recall that wg[ (x) denotes the distance rank k Hintikka type of a in .
Also recall, that the rank-% Hintikka types are normalised formulas from
®O(1,dst,k,1). The following is proved by an easy induction on k.

Lemma 7.2.5 Leti=0,r >0 be integers. Let 2 be an r-neighbourhood cover
of AU, let a € V() and let y': wm[%(a)]*l (x), i.e. the rank i Hintikka type

of a in the coloured cluster of a. Then
A=Ay o (@) == Axly k= Pyila).

An atomic (s,k)-independence sentence is a sentence of the form

Elxl...flxsl( /\ dist(x;,x;) >2-£ A /\ Pw(xi))

l<i<j<s’ 1<i<s'

for any s’ <s,¢ < dist(k) and v € ®(1,dst,k,1).
The following theorem is proved along the lines of proof of the previous
theorem with the help of Lemma 7.2.5.

Theorem 7.2.6 Let k =0 be an integer and let q = k + 1. For every FO(dist)-
formula @(x) of q-rank k there is an FO(dist)-formula §(x) over signature
7 %% k, which is a Boolean combination of atomic (k + 1,k) independence sen-
tences and atomic formulas, such that for every t-structure 2, every dist(k+1)-
neighbourhood cover X of A, and every a € V(2),

Al=pla) = A *’;{ k= @(a).
Furthermore, p is computable from ¢.

As already mentioned in the introduction, we do not need neighbourhood
covers to obtain a rank-preserving locality theorem. We state, as a corollary,
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7.2. Rank-preserving locality

a version that does not refer to any neighbourhood cover. It is obtained
by applying the theorem to the generic r-neighbourhood cover & = {N,(v) |
v € V(G)}). We omit the index & in the *-notation when we refer to this
neighbourhood cover.

Corollary 7.2.7 Let k =0 be an integer and let ¢ = k +1. For every FO(dist)-
formula ¢(x) of q-rank k there is an FO(dist)-formula §(x) over signature
7 %% k, which is a Boolean combination of atomic (k + 1,k) independence
sentences and atomic formulas, such that for every t-structure 2l and ev-
erya eV,

Ak pla) = Ax" k= §).

Furthermore, § is computable from .

As a final step, we observe that if we restrict ourselves to coloured graphs
then the rank of a formula is stable under deletions of elements if we expand
the signature.

Lemma 7.2.8 Let 7 be a coloured graph vocabulary, let ¢,q =0 be integers
with 0 < ¢ < q and let p(x) € FO(dist) of q-rank €. Then there are

1. a coloured graph vocabulary v’ 21,

2. for every 1-coloured graph G and every a € V(G) a 1'-expansion G'
of G —a, and

3. for every t-coloured graph G and every a € V(G) an FO(dist)-formula
G o(x) and an FO(dist)-sentence yg 4 over signature ' of g-rank at
most ¢

such that for all b € V(G)\ {a}
GEp®) <= G Epgq.b) and GEg¢la) <= G'EFyga.

Furthermore, g4 and W o are computable from ¢, G and a, and G’ is
computable from G and a in time f(¢,q)-(n(G) + m(Q)).

PROOF. For 1 <i <dist(¥), let @; be a fresh relation symbol and let 7’ be
the union of 7 with all these @;. For every 7-coloured graph G and a € V(G),
let G’ be the 7'-expansion of G —a with Q%' := {b € V(G) : dist(a,b) = i},
that is, we delete a from V(G) and colour all elements that were at distance i
in G with the colour ;.

107



7. A rank preserving locality theorem

We show how to obtain the formula ¢g 4, the case yg , is similar. As a first
step, we expand the signature 7 to 7,, := TU{w}, where w is a constant symbol.
We recursively (starting with ¢(x)) transform all sub-formulas ¥(x) of ¢ to
formulas y*(x) as follows. If ¢(x) is a Boolean combination, we translate
each formula y(x) of the combination to y*(x) and form the same combination
from the y*. If w(xy,...,x%) = Ixcp1x(x1,. .., x841), we let w*(xq1,...,x) 1=
Axpr1x*(x1,..,Xp+1) V X *(x1,...,x5,w). We may assume that ¢ contains
no universal quantifiers. Now from ¢*(x), we compute ¢y , by replacing
each atom E(u,w) by @1(u), each atom dist(u,w) < d by @4(u) and each
atom dist(x, y) < d for variables x, y by dist(x,y) =d v V1 j<q(Qi(x) AQ ;(y)).
Observe that ¢g , is over signature 7. An easy induction shows that ¢g(,
has the claimed properties. (Il

Note that even though the distance-rank is preserved by the transformation
of Theorem 7.2.6, the length of the translated formula may be huge in
comparison to the input formula. It was shown in [30] that there is no
elementary bound on the length of the local sentences occurring in Gaifman’s
theorem in terms of the original sentence. The proof in [30] can easily be
modified to show that the same holds for our extended locality theorem.
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8. First-order model-checking

We are now ready to combine all results and prove one of the main theorem
of this part. We fix the ¢-rank as our distance function dst.

Theorem 8.1.1 For every nowhere dense class € of t-structures, every real
number € > 0 and every formula @(x) € FO(dist)[t], there is an algorithm that,
given a tT-structure A € € with n elements, computes the set of all a € V()
such that A = p(a) in time O(n1*°).

By Lemma 2.4.1 and Corollary 3.4.3, it suffices to prove the following
theorem.

Theorem 8.1.2 Let T be a coloured graph vocabulary. For every nowhere
dense class € of T-coloured graphs, every real € > 0, and every formula ¢(x) €
FO(dist) of vocabulary t, there is an algorithm that, given a t-coloured
graph G from € with n vertices, computes the set of all v € V(G) such
that G = (v) in time O(n1*€).

PROOF. Let ¥ be a nowhere dense class of 7-coloured graphs and let ¢ > 0.
Without loss of generality we may assume that e < 1/2, which implies €2 < ¢/2,
and that € is closed under taking subgraphs.

Assume that ¢ is of g-rank %k, (k+1 < q) and let r = dist(k + 1). By
Theorem 7.2.6, we can find an FO(dist)-formula @(x) over vocabulary t ey
which is a Boolean combination of (& + 1, %)-independence sentences and
atomic formulas, such that for all 7-coloured graphs G, all r-neighbourhood
covers & of G, and all v € V(G) we have

G ov) = G*5 k= p).

We choose ¢ according to Theorem 6.1.2 such that Splitter has a winning
strategy for the simple (¢,2r)-splitter game on every graph in 4. Note
that q,r, ¢ and @ only depend on ¢ and the class €, but not on € or the input
graph G.
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8. First-order model-checking

Let 6 = €/(2¢). Choose ng = no(d,r) according to Theorem 5.1.8 such that
every graph G € € of order n = ng has an r-neighbourhood cover of radius at
most 2r and maximum degree at most n’. Choose n = ng such that n‘i/ 2>9
and that every graph G € € of order n = nq has at most n!*° edges. The
existence of such n; follows from Corollary 3.3.2.

Now fix the 7-coloured input graph G. If n := n(G) < n1, we compute
the set of all v € V(@) such that G |= ¢(v) by brute force; in this case the
running time can be bounded in terms of ¢,e¢, and €. So let us assume
that n = n;. We compute an r-neighbourhood cover & of G of radius 2r
and maximum degree n°. The main task of our algorithm will be to com-

pute G *g;l q. Before we describe how to do this, let us assume that we

have computed G *gl q and describe how the algorithm proceeds from

there. The next step is to evaluate all (k£ + 1, k)-independence sentences in
the Boolean combination @(x) in G *;f{ k. Consider such a sentence

p=3w. 3w A distto,x)>20 A A Py(x)

1<i<j<k’ 1<i<k’

for some k' <k +1,r < dist(k + 1) = r. Remember that y(x;) is a formula
from ®(7,dst, k,1) and Py (G) contains all elements of G which satisfy . We
can easily compute the set U of all v € V(G) such that G *g;l q = Py(v). We
use the algorithm of Theorem 6.2.1 to decide whether U has k' elements of
pairwise distance greater than 2r'. This is the case if and only if G *’;K kl=yx.
It remains to evaluate the atomic formulas in @(x) and combine the results
to evaluate the Boolean combination. Both tasks can be solved in linear
time.

Let us now turn to computing G *g‘, k. We inductively compute G *f% k
for 0 <i < k. The base step i = 0 is trivial, because G *gg k =@G. As each
G *gi% k is a 7’ coloured graph for some 7’ (to be precise, T/ = 7 *! k), it
suffices to show how to compute G %o & from G. To do this, for each formula
w(x) € O(7,dst,k,1) we need to compute the set Py (G xo k) of all v € V(G)
such that G[2 (v)] = w(v). Let us fix a formula y(x) € ®(z,dst, k, 1).

For every X € &, let vx € X be a centre of G[X], that is, a vertex with X <
Ny, (vx). Such vy exists because the radius of G[X] is at most 2r. Let wx €
Ngr (vx) be Splitter’s response if Connector chooses vy in the first round of
the simple (¢,2r)-splitter game on G. We apply Lemma 7.2.8 to G[X] and
w, that is, we delete wx from G[X] and translate y appropriately. Let 7/
be the vocabulary obtained by Lemma 7.2.8 (1), and let Gx be the graph
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obtained from G[X] and wx by Lemma 7.2.8 (2). (Neither 7’ nor Gx depend
on the formula.) Let y/(x) and ¥" be the formulas obtained from vy by
Lemma 7.2.8 (3). We recursively evaluate the formulas ¥’ and v" in Gx.
This gives us the set Ex of all v € V(G) such that G[X| = y(v). Doing this
for all X € &, we can compute the set

Py(Gxg k) = {veV(@IGIXWIEyb)}

U Eenlve V@) | Z©)=X)}).
Xex

Observe that in a recursive call with input Gx,v’ and Gx,y" the param-
eters g and r can be left unchanged. Moreover, it follows from the defini-
tion of Gx that Splitter has a winning strategy for the (¢ — 1,2r)-splitter
game on Gx. Thus we can reduce the parameter ¢ by 1. Once we have
reached ¢ = 0, the graph Gx will be empty and the algorithm terminates.
This completes the description of the algorithm.

Let us analyse the running time. The crucial parameters are the order n
of the input graph and the level j of the recursion. As argued above, we
have j < ¢. We write the running time as a function T of j and n. We
first observe that the time used by the algorithm without the recursive
calls can be bounded by ¢1n!*? for a suitable constant ¢; depending on
the input sentence ¢, the parameter €, and the class ¢, but not on n or j.
Furthermore, for n < n; the running time can be bounded by a constant cg
that again only depends on ¢,¢, and €, and for j = 0 the running time can
be bounded by c3. Furthermore, for each X € & only two recursive calls are
made to the graph Gx. Let nx =n(V(Gx)) <|X| and ¢ = max{ci,cqo,c3}. We
obtain the following recurrence for 7'

TO,n)<c,

T(,n)<c foralln<nq,

T(,n)< Z cT(j—l,nX)+cn1+‘5 forall j=1,n=n,
XeX

We claim that for all n =1 and 0 < j < ¢ we have T'(j,n) < ¢/n1*%% < ¢fpl+e,

As ¢ and ¢ are bounded in terms of ¢,€,%, this proves the theorem.

T(j,n) < ¢/’n1*2/% can be proved by a straightforward induction. The
crucial observation is
Y nx= Y XeZlveXl<snn®=n. 8.1
Xex veV(Q)
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8. First-order model-checking

The base steps j =0 and n < n; are trivial. In the inductive step, we have

T(j,n)
< Y TG -1,nx)+cn'*

XeX
< Z cc! _ln?% DO cplto (Induction Hypothesis)

XeX

) 1+2(j-1)8
Scj( Z nX) +entto
Xex

. . S
SC](nl+(21 1)o+2(j-1)6 +n1+6)

14256 , ., 1+(3/2)8 2
(n +n €
J|\z = . 2 _ 5
<c ( 2072 ) (as 2(j—1)o" = 57 <6/2)
<c/n?0 (because n®? > 2). U

Let us conclude with a remark on the uniformity of this result.

The way Theorem 8.1.2 is stated asserts that deciding first-order proper-
ties of nowhere dense graphs is non-uniformly fixed-parameter tractable.
That is, for every real ¢ > 0 and every sentence ¢ of first-order logic there
is an algorithm deciding the property defined by ¢ in time O(n'*¢). This
allows for the algorithms for different sentences to be unrelated. As our
proof shows, there is an algorithm which handles all inputs in a uniform
way, however, we cannot provide a uniform time bound for all inputs.

We call a class € effectively nowhere dense if there is a computable func-
tion f such that K¢ £, G for all G € 6. All natural nowhere dense classes
are effectively nowhere dense, but it is possible to construct artificial classes
that are nowhere dense, but not effectively so. For effectively nowhere
dense classes ¥, we obtain uniform fixed-parameter tractability, that is,
a single algorithm that, given a graph G € €, € > 0 and a sentence ¢ of
first-order logic, decides whether ¢ holds in G in time f(|¢l,e)-n*¢, for
some computable function f.
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9. Order-invariant
model-checking

In this last part of the thesis we study the complexity of first-order model-
checking on structures where an ordering is available to be used in formulas.
The methods based on locality theorems for first-order logic such as Gaif-
man’s locality theorem do not readily extend to ordered structures. We
do so in two different settings. The first is that the input structures are
equipped with a fixed order or successor relation. We show that first-order
logic on ordered structures as well as on structures with a successor relation
is essentially intractable on nearly all interesting classes.

The other case we consider is order- or successor-invariant first-order
or monadic second-order logic. In order-invariant first-order logic, we are
allowed to use an order relation in the formulas but whether the formula
is true in a given structure must not depend on the particular choice of
order. Order-invariant logics have been studied in database- and finite
model-theory in the past.

It is easily seen that the expressive power of order-invariant MSO is
greater than that of plain MSO, as with an order we can formalise in MSO
that a structure has an even number of elements, a property not definable
without an order. In fact, the expressive power of order-invariant MSO
is even greater than the expressive power of the extension of MSO with
counting quantifiers CMSO [57]. Over restricted classes of structures, order-
invariant MSO and CMSO have the same expressive power (see e.g. [23]).
This holds true for successor-invariant MSO as well, as an order is definable
from a successor relation via MSO. An unpublished result of Gurevich
(which then appeared as an exercise in [1] states that the expressive power
of order-invariant FO is stronger than that of plain FO. For a proof see
e.g. [89, 124] and for more examples showing that the expressive power of
order-invariant FO is stronger than that of plain FO see e.g. [110, 117]. It is
known that order-invariant FO collapses to FO on trees [12, 108], and that
order-invariant FO is a subset of MSO on graphs of bounded degree and
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on graphs of bounded tree-width [12]. It is also known that order-invariant
FO can express only local queries [66], however, the proof does translate
formulas into local formulas which could be evaluated algorithmically.

Weaker than order-invariance is successor-invariance, where the formulas
are allowed to use a successor relation but must be invariant under the
particular choice of successor relation. It was shown by Rossman [123]
that successor-invariant FO is more expressive than FO without access to a
successor relation.

As already the model-checking problem for plain FO is not tractable on
the class of all graphs, order-invariant FO is not tractable on the class of
all graphs either. We therefore follow the approach taken in the study of
algorithmic meta-theorems and analyse the complexity of order- or successor-
invariant FO and MSO on specific classes of structures or graphs. The
outline for this chapter is as follows.

* We formally define the setting of our work in Section 9.1.

* In Section 9.2 we study the case of ordered structures, i.e. structures
equipped with a fixed order or successor relation.

¢ In Section 9.3, we show that order-invariant MSO is tractable on
essentially the same classes of graphs as plain MSO, i.e. we can
increase the expressive power without restricting the tractable cases.
To be precise, we show that the model-checking problem for order-
invariant MSO on graphs of bounded clique-width is fixed-parameter
tractable. Furthermore, combining the result of Courcelle [22] and
a result in [21, 95] we find that model-checking for order-invariant
MSO2 on graphs of bounded tree-width is fixed-parameter tractable.

* For successor-invariant FO we show that the model-checking problem
is fixed-parameter tractable on planar graphs. Using the result of
Seese [125] we get the same result for FO on any class of graphs of
bounded degree equipped with an arbitrary fixed number of successor
relations. This result is presented in Section 9.4.

9.1. Successor- and Order-Invariance

Let 7 be a vocabulary and let < be a binary relation symbol which does not
occur in 7. Let € be a class of 7-structures. We call a formula ¢(x) over
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vocabulary 1 U {<} order-invariant on ¥ if for every t-structure 2 € €, all
tuples @ € V()™ and all linear orders <1,<g of V(2) we have

(R, <1) F 9(@) & (A, <2) = ¢(a).

A successor relation S on V(2() is a binary relation such that (V(2(),S) is a
directed path of length n(2() — 1. Let S be a binary relation symbol which
does not occur in 7. As above, we call a formula ¢(x) over vocabulary 7 U {S}
successor-invariant on 6 if for every t-structure 2 € €, all tuples a € V()™
and all successor relations S1,S9 on V(2() we have

A,81) F ¢la) & (A, S2) F ¢la).

We write FO[<-inv] and MSO[<-inv] for the set of all order-invariant FO and
MSO formulas, respectively, and FO[+1-inv] and MSO[+1-inv] for the set of
all successor invariant FO and MSO formulas, respectively. We write FO[<]
and MSOI[<] for the set of all FO and MSO formulas, respectively, over a
signature which contains at least the binary relation symbol < and similarly
for FO[+1] and MSOI[+1]. Note that it is not decidable whether a formula
over vocabulary Tu{<} or TU{S} is order- or successor-invariant, respectively,
see e.g. [89]. Hence we do not speak of order- or successor-invariant logics,
as it is a requirement of a logic to have a decidable syntax [67].

Also note that we will always consider formulas which are order- or
successor-invariant on restricted classes of structures. Craig’s interpolation
theorem (see e.g. [19]) implies that a formula which is order- or successor-
invariant on the class of all structures is equivalent to a plain FO formula.

9.2. Model-Checking on Ordered Structures

9.2.1. Successor Structures

In this section we analyse the complexity of first-order logic on graphs
with an additional successor relation. We show that model-checking be-
comes intractable even on very restricted classes of graphs. More precisely,
we show that on the class of forests with a successor relation first-order
model-checking becomes as hard as the general first-order model-checking
problem. The results of Section 9.2.1 and Section 9.2.2 were found by
Stephan Kreutzer and the author of this thesis.
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We write MC(Z[<],%¥) for the problem to decide for a given graph G € €,
< a linear order on V(G) and ¢ € L({E, <}) whether (G, <) = ¢. We write
MC(Z[+1],%6) for the problem to decide for a given graph G € €, < a
successor relation on V(G) and ¢ € L({E,S}) whether (G,S) = ¢. The
parameter in both cases is |¢p].

Theorem 9.2.1 Let F be the class of finite forests. Then MC(FO[+1],.%) is
hard for the parameterized class AW[x].

PROOF. We show how to construct for every graph G a forest G’ equipped
with a successor relation S such that n(G') + m(G') < p(n(@)) for some
polynomial p and for every sentence ¢ € FO({E}) a sentence ¢’ € FO({E,S})
with |¢'| € q(|¢]) for some polynomial g such that G |= ¢ © G’ |= ¢'. Both
transformations will be polynomial time computable with makes the above
reduction a fixed-parameter reduction, and hence the claim follows from the
fact that the model-checking problem for FO on graphs is complete.

Let G = (V,E), where V = {vy,...,v,}. We will construct a forest G' =
(V',E',S) equipped with a successor relation as follows. G’ will consist
of n trees T'1,...,T,,. The root of tree T; will represent the vertex v; of G.
Denote the root of tree T; by v;. To ensure that the roots are uniquely
definable via first-order logic, we will guarantee that each root has at least
three children and no other vertices of degree three exist. We define the
successor relation on the v} in the natural way, i.e. S(v},v}, ;) holds true for
all i <n. We will then add a child l; to a root v; if there is an edge {v;,v;}

in E(G). Thus, for each edge {v;,v;} we have two vertices l; and l{, l;. being
the child of vg and l{ being the child of v}. To associate those vertices with

an edge, we define l;. as a direct predecessor of l{ if i < j. As the linear
order is not definable from the successor relation with first-order logic, we
have to add more information to ensure that exactly the described pairs
of direct successors are interpreted as edges in the original graph. As an
intermediate step we color I% blue if i < j. We complete the definition of the
successor relation in an arbitrary way. Observe that the successor of every
blue vertex is already defined and thus by completing the successor relation
we only define successors of colorless vertices. In particular, vertex v; is
connected to v; in G if v} has a child ¢; and v’, has a child ¢; such that ¢; and
c; are direct successors and the smaller one with respect to the successor
relation is blue. As the final step, we remove the color of every blue vertex
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and attach a vertex instead. Then the vertices which were originally blue
are the only ones of degree two and are thus uniquely definable. Again, we
may complete the successor relation in an arbitrary way. We now give the
formal details. Let

R:={v},...,v}},

D, :=1{d},d},d),

L;:= {l;‘.:{v,-,vj}eE(G)} and

B;:={b’:{v;,v,) € E(@),i < j}
for each 1 <i <n. Let

V,IZRU U DiU U LiU U Bi.

l<i<n 1<i<n 1<i<n

Define
E':={{v},d}:1<i<n,dieDJuilv),l}}: 1<i<n,l’ e LU

Define S(v},v}, ) to hold if i <n and S(l;,l{) for all i,j with i < j. Complete
the definition of the successor relation in an arbitrary way. By construction,
for every edge {v;,v;} € E(G) there are exactly two vertices c¢; and c; with
{v!,c;} € E(G') and {v},cj-} € E(G') such that ¢; and c; are direct neighbours
in the successor relation and the smaller one of ¢; and c; has degree two
and the larger one has degree one. Obviously, n(G') + m(G') < p(n(GQ)) for
some polynomial p.

We now rewrite any sentence ¢ € FO({E}) to a sentence ¢’ € FO({E,S}).
Let ¢ €e FO({E}). Replace quantifiers by quantifiers restricted to vertices of
degree at least three. Further, replace an atom Exy by a formula y(x,y)
which states that either x is connected to a vertex x’ of degree two and y is
connected to a vertex y’ of degree one and S(x',y’) holds true or vice versa.
Then |¢'| < q(|¢|) for some polynomial g and G £ ¢ < G’ £ ¢’ as required.[]

As a corollary of the previous lemma we get that MC(FO[+1],%) is AW[*]-
hard for the class ¥ of planar graphs and the class of graphs of tree-width
one. However, for the proof to work it is essential that the trees are allowed
to have unbounded degree. And indeed, on graph classes of bounded degree,
successor-invariant FO model-checking is tractable.
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Lemma 9.2.2 For every integer d =0 let 6 be the class of graphs of maxi-
mum degree at most d. Then for all d = 0, MC(FO[+1],%6,) is fixed-parameter
tractable. In fact, we can allow any (fixed) number of successor relations on
top of 64 and still have tractable first-order model-checking.

PROOF. By a result of Seese [125] the model-checking problem for FO on
graphs of bounded degree and also on all structures with Gaifman-graph of
bounded degree is fixed-parameter tractable. Adding a successor relation
increases the degree of the Gaifman-graph of a structure by at most two.[]

9.2.2. Order Relation

In the previous section we have shown that first-order logic with successor
becomes intractable on very simple classes of graphs but is still tractable on
classes of bounded degree. As the following lemma implies, first-order logic
plus order is intractable even on degree two graphs.

Theorem 9.2.3 Let € be the class of finite linear orders with one additional
unary predicate. Then MC(FO[+1],%) is AW[x]-hard. Consequently, if .
is the class of finite successor structures with one unary predicate, then

MC(FOI<], %) is AW[x]-hard.

PROOF. Let 7 = {<,S,P}, where S is a binary and P is a unary relation
symbol. We show how to construct for every graph G a t-structure 2 of
m(2l) < p(n(G)) for some polynomial p and for every sentence ¢ € FO[{E}]
a sentence ¢’ € FO[7] with |¢’| < q(|¢|) for some polynomial g such that
G |= ¢ © A = ¢'. Both transformations will be polynomial time computable
which makes the above reduction a fixed-parameter reduction, and hence
the claim follows from the fact that the model-checking problem for FO on
graphs is complete.

Let G =(V,E) be a graph, where V ={vq,...,v,}. We mimic the construc-
tion of Theorem 9.2.1. We construct a structure 2 of signature {<,S,P} as
follows. For each v; € V we will have an element v;. In the construction
of Theorem 9.2.1 the elements vg were uniquely definable as the roots of
trees. Here we make the vg uniquely definable by assigning them the pred-
icate P. We order the v} in their natural order, i.e. we let v} < v} ifi <j.

In the construction of Theorem 9.2.1 we had elements [ ; and l{ for each

edge {v;,v;}, where l; was the child of v} and l{ was the child of v}. We
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have those elements again and if lj. was a child of U; in the construction of

Theorem 9.2.1 we define / ; to lie between v} and v!_; (or simply after v} if

/

v;,, does not exist). We furthermore order the lj. such that [ ; <l 2 if j<k.

Again, we encode an edge by defining /% as the direct predecessor of l{ if
there is an edge {v;,v;} € E(G) and i < j. We do not have to mark the smaller
vertex by a color in this case because we can directly query whether v; < v}.
We complete the definition of the successor relation such that no successors
are added from any l;. to an l;"' if l;. < lf". This is done as follows. At this
point of time, all lj. with i < j have a successor and all l{ with i < j have a
predecessor. We define S(l{ ,ZZ) to hold true if i < j for the smallest & > j
such that [ fe exists or S(l{ s v; +1) to hold true if no such l;; exists. After this
step, all [ ; have a successor and for each i only the smallest [ ; with i < j

does not have a predecessor. All v; do not have a successor yet and vg does
not have a predecessor if and only if i =1 or i > 1 and between v;_l and v;
there is no element with a successor larger than vg. We can thus complete
the definition of the successor relation by defining S (v;,l j.) to hold true if j
is minimal with i < j such that lj. exists and S(v},v}, ;) to hold true if no
such / ; exists.

Then there is an edge {v;,v;} € E for i < j if and only if there are elements
a,bwithv, <a<v!,  ifi<nandv’<band b<v’ ,if j<n that are direct
successors with respect to S. We now give the formal details. Let

R:={v},...,vp},
L;:={l}:{vi,v}€E(G)} and
A:=RuU U Li.

l<i<n

Let P := R. We define v} < U} ifi <jand v} < l; < l;e for all i and for all
j < k. We define lj <vl,, if i <n and we define S(v;,lé) to hold true for
the smallest possible j such that l; with i < j exists and S(v},v’, ;) to hold

true if no such l;. exists. Finally, we define S (l;., l{ ) to hold true if i < j and

S(l{,l};) to hold true if i < j for the smallest £ > j such that l;'e exists or

S(l{ , vg +1) if nosuch/ 2 exists. This completes the definition of 2. Obviously,

n(strA)+m) < p(n(G@)) for some polynomial p.
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9. Order-invariant model-checking

We now rewrite any sentence ¢ € FO[{E}] to a sentence ¢’ € FO[7] with the
required properties. Let ¢ € FO[{E}]l. Replace quantifiers by quantifiers
restricted to elements of P. Further, replace an atom Exy by a formula
w(x,y) which states that either x < y and there are ¢ and b such that
x <a <x' for the unique x' > x with Px’ and y < b <y’ for the unique y' >y
with Py’ or no such ' exists and such that b is a direct successor of a, or
vice versa. Then |¢'| < q(|¢|) for some polynomial ¢ and G = ¢ < 2= ¢’ as
required. (Il

9.3. Model-checking for order-invariant
MSO-formulas

In this section we consider the model-checking problem for order-invariant
MSO-formulas. The results of this section were found by Stephan Kreutzer.

It was shown by Courcelle [22], that the model-checking problem for
MSOq is fixed-parameter tractable on every class of graphs of bounded
tree-width. Later, Courcelle et al. [24] showed that the model-checking
problem for MSO is fixed-parameter tractable on every class of graphs of
bounded clique-width, a concept more general than bounded tree-width. In
this section, we show that for both logics we can allow order-invariance
without increase in complexity.

Instead of designing new model-checking algorithms, we reduce the ver-
ification of order-invariant MSO on classes of small tree- or clique-width
to the standard model-checking algorithms for MSO on classes of (slightly
larger) tree- and clique-width, respectively. The advantage of this approach
is that we can reuse existing results on MSO on such classes of graphs.
For instance, in [78] the authors report on a practical implementation of
Courcelle’s theorem, i.e. on the implementation of a model-checker for MSOq
on graph classes of bounded tree-width, and obtain astonishing performance
results in practical tests. Our technique allows us to reuse this implementa-
tion so that with minimal effort it is possible to implement our algorithm on
top of the work in [78].

Furthermore, in [49] it is shown that on graph classes %6 of bounded
tree-width, the set of all satisfying assignments of a given MSO formula
@(X) with free variables in a graph G € € can be computed in time linear
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9.3. Model-checking for order-invariant MSO-formulas

in the size of the output and the size of G. Again we can use the same
algorithm to obtain the same result for order-invariant MSO.

We first consider the case of MSOs. As stated in [95] (see also the exposi-
tion in [21]), for every graph G of tree-width % there is a successor relation
S on V(G) such that the graph obtained from G by adding the edges in S
has tree-width at most 2 + 5. From the proof one can derive an algorithm
running in time f(k)- p(G), where f is an exponential function and p a fixed
polynomial, which, given a graph G of tree-width % as input, computes this
successor relation. In combination with Courcelle’s theorem, this implies
the following result.

Theorem 9.3.1 ([46]) MC(MSOI[<-inv],€) is fixed-parameter tractable on
any class € of bounded tree-width.

In fact, MC(MSOI[ <-inv]) is fixed-parameter tractable with parameter |¢| +
tw(G@), where tw(G) is the tree-width of a graph G. We prove next that also
for MSO we can allow order-invariance without loss of tractability.

Theorem 9.3.2 ([46]) MC(MSO[<-inv],€) is fixed-parameter tractable on
every class € of graphs of bounded clique-width.

We quickly review the definition of clique-width. For the rest of this section
we fix a relational signature 7 in which every relation symbol has arity at
most 2.

Let £ = 0 be an integer. A 1-clique-expression of width k is a pair (T, 1),
where T is a directed tree and

A:V(T)— {1,...,k,@,edgeR’iﬁj,renamer :1<i,j<k,Rert},

such that for all t e V(T'): if A(¢) € {1,...,K} then ¢ is a leaf of T', if A(¢) = &
then ¢ has exactly two successors and in all other cases ¢ has exactly one
successor.

Let (T, 1) be a 1-clique-expression of width 2. With every ¢ € V(T') we
associate a 7-structure G(¢) in which vertices are coloured by colours 1,...,k
as follows.

e If ¢ is a leaf, then G(¢) consists of one element coloured by A(¢).

e If A(¢) = @ and ¢ has successors ¢1,t2 then G(¢) is the disjoint union
G(t1)UG(tg).
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9. Order-invariant model-checking

* If A(¥) = edgep ;_.; and ¢1 is the successor of ¢, then G(?) is the struc-
ture obtained from G(¢1) by adding to the relation R(G(#)) all pairs
(u,v) such that u has colour i and v has colour j.

e If A(t) =rename;_.; and ¢1 is the successor of ¢ then G(¢) is the struc-
ture obtained from G(¢1) by changing the colour of all vertices v which
have colour i in G(¢1) to colour j in G(¢).

The t-structure generated by (T, 1) is the structure 2(r), where r is the root
of T, from which we remove all colours {1,...,k}. Finally, the clique-width of
a 7-structure 2l is the minimal width of a clique-expression generating 2.

Combining results from [68] and [111] yields the following well-known
result. In the following, we view graphs as {E}-structures in the obvious
way.

Theorem 9.3.3 There are computable functions f,g :N — N and an algo-
rithm which, given a graph G of clique-width at most k as input, computes a
clique-expression of width at most g(k) in time f(k)-n(G)3.

Here, the function g(%) can be taken as g(k) = 25*1. The following result is
due to Courcelle et al. [24].

Theorem 9.3.4 MC(MSO, %) is fixed-parameter tractable on any class €
of graphs of bounded clique-width.

In fact, the result applies to any 7-structure of bounded clique-width pro-
vided that the clique-expression generating the structure is given. The next
lemma is the main technical ingredient for the theorem above.

Lemma 9.3.5 There is an algorithm which, on input a graph G of clique-
width at most k, computes a linear order < on V(G) and a clique-expression
of width at most 2g(k) generating the structure (G, <), where g is the function
defined in Theorem 9.3.3.

PROOF. Let G and % be given. Using Theorem 9.3.3, we first compute an
{E}-clique-expression (T, 1) of width at most g(k) generating G. Let r be the
root of T'. For every node ¢ € V(T') we fix an ordering of its successors. Let <
be the partial order on V(T') induced by this.

Let t € V(T') be a node and let s # ¢ be the first node on the path P from ¢
to r with A(s) = &, if it exists. Let ¢1,%2 be the successors of s with ¢1 < ¢9.
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9.3. Model-checking for order-invariant MSO-formulas

We call ¢ a left node if t1 € V(P) and a right node otherwise. If there is no
node labelled & strictly above ¢ then we call ¢ a left node as well.

For every ¢t € V(T) let T be the subtree of T with root ¢ and let A7, be the
restriction of A to the subtree T;. We recursively define a transformation
o(Ts, Ai1,) on the sub-trees of T' defined as follows. Intuitively, we will
produce a new clique-expression (7',1’) over the signature {E,<} using
colours {(i,1),(i,r) : 1 =i < k}. Essentially, the new clique-expression will
generate the same graph as (T',1) but so that if ¢ is a node in T and T}
generates the graph Gy, then T’ contains a node ¢’ generating an ordered
version G} := (G, <) of G; so that if v € V(G;) has colour i then, in G}, v has
colour (i,/) if ¢ is a left node and (i,r) if ¢ is a right node. Hence, whenever
in T we take the disjoint union of G; and G4 and ¢ < s then we can define
the ordering on G,UG’, by adding all edges from nodes in G} to G, i.e. all
edges from vertices coloured (i,7) to (j,r) for all pairs i,j. Formally, the
transformation is defined as follows.

e Ifte V(T)is a leaf, then p(¢) := (T',1), where T consists only of ¢ and
A (t) ;= (A1),1) if t is a left node and A/(¢) := (A(#),r) if ¢ is a right node.

e If A(t) =rename;_.; and s is the successor of ¢, then
o(T¢, A, :=(T", A1),

where T is a tree defined as follows. Let (T",1") := p(Ts, A1) and
let " be the root of T”. Then T is obtained from 7" by adding a
new root 7’ with successor r"’. We define A'(r') := rename; ;)—(;,;) and
A (r") :=rename ,—(j,» and A'(w) = A"(u) for all other u € V(T").

* If A(¢) =edgeg ;. ; and s is the successor of ¢, then
p(Ty, Ayr,) = (T", 1),

where T' is a tree defined as follows. Let (T",1") := p(Ts, Ai1,) and let
r" be the root of 7. Then T" is obtained from 7" by adding a path
(v1,v2,v3) of length 2 and making r” a successor of v3. We let 1'(v1) :=
edgeE,(i,l)_,(j’l), /1/(1)2) = edgeEii,r)ﬁ(j,l), A,’(U3) = edgeE,(i,l)ﬁ(j,r) and
A'(r") = edgeg (; )—(j,») and A'(w) = A"(u) for all other u € V(T").

* Finally, suppose A(¢) = @ and let #1,¢2 be the successors of ¢ such that
t1 <tg. Then p(T;, A1) :=(T",A') where T' is a tree defined as follows.
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9. Order-invariant model-checking

For i = 1,2 let (T, A;) = p(Tt;, Air,.) and let r; be the root of T;. T’
consists of the union of T'1, Ty and additional vertices U1,...,Up,VUe,VU0,
edges (v;,v;41) for all 1 =i <k, (vg,ve), (Ve,V,) and (vy,7;), for i =1,2.
For every node s € V(T;) we define A'(s) := 1;(s), i = 1,2. Furthermore,
we define A(v,):= ® and A'(v.) := edge_;_.,. Finally, if ¢ is a left node
then we define A(v;) :=rename; ;) 1), for all i <k, and if ¢ is a right
node then we define A(v;) := rename; ;)—( r).

Now, it is easily seen that (T”,1’) generates an {E, <}-structure (V,E, <)
where (V,E) is the graph generated by (T',1) and < is a linear order on V.
The width of (T7,1') is twice the width of (T',1) and hence at most 2g(k). [

We are now ready to prove Theorem 9.3.2.

PROOF. (PROOF OF THEOREM 9.3.2) Let £ = 0 be an integer and let € be a
class of tree-width at most £. On input G € ¢ and ¢ € MSO({E, <}), we apply
Lemma 9.3.5 to obtain a clique-expression (T, 1) of width 2g(k) generating
an ordered copy (G, <) of G, where g is the function from Theorem 9.3.3.
We can now apply Theorem 9.3.4 to decide whether (G,<) = ¢ in time
f2g(k)) - p(n(@)), where f is a computable function and p a polynomial.
As ¢ is order-invariant, if (G, <) = ¢ then (G, <) = ¢ for any linear order <’
on G. Hence, if (G, <) |= ¢ we accept and otherwise reject the input. This
concludes the proof. O

9.4. Model-checking for successor-invariant
FO-formulas

In this section we study the model-checking problem first-order formulas
that are successor-invariant. Recall that the input to the successor-invariant
model-checking problem is a graph G (from a class ¥) and a successor-
invariant formula ¢ which refers to a successor relation but its truth in G
must be invariant under the exact choice of the successor relation. Hence, to
verify whether ¢ is true in G it suffices to compute one particular successor
relation S and decide whether (G,S) |= ¢. The main result of this section
was published in [46] and is due to Viktor Engelmann, Stephan Kreutzer
and the author of this thesis.
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9.4. Model-checking for successor-invariant FO-formulas

In graph theoretical terms, a successor relation corresponds to a Hamilto-
nian path in a graph G. Hence, if 7 := {E,F} is a signature with two binary
relation symbols and ¥ is a class of graphs such that

1. first-order model-checking is fixed-parameter tractable on the class of
all 7-structures whose Gaifman-graphs are in ¢, and

2. all graphs in G € € are Hamiltonian and, furthermore, a Hamiltonian
path in G can be computed in polynomial time,

then we can conclude that MC(FO[+1-inv],¥) is fixed-parameter tractable
as follows: on input G € € we first compute a Hamiltonian path P and colour
its edges by the colour F to obtain a 7-structure with Gaifman-graph G.
We can then use the model-checking algorithm on ¥ to decide whether
(G,F)E .

One example of this is the class of 4-connected planar graphs. Tutte
and later Thomassen (see [131] and references therein) showed that any 4-
connected planar graph contains a Hamiltonian path which can be computed
in polynomial time. Together with the result in [53] that the model-checking
problem for first-order logic on planar graphs is fixed-parameter tractable,
we immediately get the following result.

Theorem 9.4.1 Denote by €6 the class of 4-connected planar graphs. Then
MC(FO[+1-inv],¥) is fixed-parameter tractable.

There are some other classes of graphs with similar properties, but not
every planar graph is Hamiltonian and it is not always possible to obtain a
Hamiltonian planar graph from an arbitrary planar graph by adding edges
or vertices in a way that would be useful for our purposes. See e.g. [71]
and references therein. Therefore, to show that successor-invariant FO is
fixed-parameter tractable on planar graphs, the main result of this section,
we have to use different techniques.

Theorem 9.4.2 MC(FO[+1-inv], PLANAR) is fixed-parameter tractable.

The approach we take to prove the theorem is based on the interpretation
method presented in Section 2.4. We state our exact requirements as a
lemma.

Lemma 9.4.3 Let € be a class of graphs, T a signature and 2 a class of
T-structures with the following properties.

125



9. Order-invariant model-checking

1. There is a polynomial-time algorithm which, on input G € €, computes
a 1-structure H € 9 and 1-formulas ¢y (x), pg(x,y),ps(x,y) such that
G' = (pv(H),pg(H)) is isomorphic to G and @g(H) defines the edge
set of a successor relation on V(G').

2. MC(FO,9) is fixed-parameter tractable.
Then MC(FO[+1-inv],€6) is fixed-parameter tractable.

PROOF. Given G € ¢ and a successor-invariant sentence ¢ € FO(E,S), we
can decide G |= ¢ as follows. We apply our algorithm to obtain the struc-
ture H and the formulas ¢v,¢g,ps as above. Using Lemma 2.4.1, we
transform the formula ¢ into a formula ¢’ € FO[7] such that H |= ¢’ if and
only if for some, and hence every, successor relation S of G, (G,S) = ¢.
Essentially, we relativise all quantifiers in ¢ to v, replace atoms E(x, y) by
@Eg(x,y) and atoms S(x, y) by ¢g(x,y). We can then apply the model-checking
algorithm for first-order logic on 2 to decide whether H |= ¢'. (Il

In the rest of this section we show how this lemma can be used to prove
Theorem 9.4.2. For simplicity, we will aim for a class 2 which is nowhere
dense. In [46] we showed that the class even has bounded local tree-width.
Essentially, we will add to a planar graph G some copies of G with slight
modifications, called circular extensions below, and show how to define
Hamiltonian paths in these copies. This path will then be projected to G by
first-order formulas.

Recall that GeH denotes the lexicographic product of G and H. Also
recall that by Corollary 6.2.2, if € is nowhere dense and ¢ =0, then ¥ ¢ K; =
{GeK;:G € ¥} is nowhere dense.

For the following exposition we fix a planar graph G and a plane embed-
ding I of G. For a vertex v € V(G), a cyclic ordering of v respecting T is an
ordering (bijection) p : {0,...,l — 1} — N(v), where [/ := |[N(v)|, of the neigh-
bours of v obtained by listing N(v) in clockwise order starting with some
vo € N(v). For each v € V(G) we fix a cyclic ordering p, of v respecting I'.
We now define a graph €(G) obtained from G by the following operations.
We first subdivide every edge twice. We then connect the new neighbours of
a vertex v in the order specified by p, to form a cycle around v respecting
the plane embedding of G.

Formally, the circular extension €(G) of G is the graph with vertex set

V(G)U{uye:e=1{v,0'} € EG)}
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Figure 9.1.: A planar graph G and its circular extension €(G). The original
vertices are black and the circular vertices are white.

and edge set
{fv,upel e =1, e E@G}U{up,e,uy ot :e={v,0'} e E(@G} UE'
where E' is defined as follows. Let v € V(G) with [ := [N(v)| > and let
eq={v,pu(0)},...,e;_1={v, pp,({ - 1)}

be the edges of G incident to v. Let E’ contain all edges {Woe; s Uv,e;1 moarl
We call the vertices of the set V(G) original vertices and the vertices of the
set {uy e re ={v,v'} € E(G)} circular vertices.

The concept of circular extensions is illustrated in Figure 9.1. The figure
shows a (part of a) planar graph and its circular extension, where the
original vertices are black and the circular vertices are white. It is easily
seen that if G is planar, then so is €(G). In particular, the class 4 := {€(G) : G
is a planar graph} is nowhere dense.

Let G be a connected planar graph and let T be a spanning tree of G with
root ¢ and consider the graph ¢(T)*Ks. Recall that €(T)® Ky consists of
two copies of €(T) and some edges between them. We will refer to these
copies as €(T) and ¢(T) respectively and call €(T') the principle copy of
&(T)eKs. For a vertex v € V(€(T)) we denote by v’ the corresponding vertex
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9. Order-invariant model-checking

of &(T). We show that €(T)eKs contains a Hamiltonian path H such
that the original vertices of the principal copy €(7") have short distance
along H. This will allow us to define a successor relation on G in first-order
logic. To find such a Hamiltonian path, we follow a depth-first, left-to-
right traversal of T, walking alternatingly on vertices of €(T") and &(T)'.
Instead of using a vertex v in T' multiple times, we use the circular edges
between the successors of v, which exist in €(T") (this is why we use a left-to-
right traversal of 7' — the additional edges exist only between neighbouring
successors).

Lemma 9.4.4 Let T be a tree with root t. Then &€(T')* K9 contains a Hamilto-
nian path H :=(t = h1,hs,...,h, =t') such that every subpath of H of length
at least 7 contains an original vertex of the principle copy €(T). Furthermore,
such a path can be computed in polynomial time.

PROOF. We show the following property by induction on the height A of T
&(T)* Ky contains a Hamiltonian path H :=(h1,hs,...,h,) with b1 =¢ and
h, =t such that {A; : max{1,n — 3} < i < n} contains an original vertex of the
principle copy €(T") and every subpath of H of length at least 7 contains an
original vertex of the principle copy (7).

For A =0, T contains only an isolated vertex ¢ and H = (¢,¢') is a Hamilto-
nian path in €(T)* Ky = ({t,#'},{{¢,t'}}) with the above properties.

For h > 0, let ¢1,...,t; be the successors of ¢ and let T'1,...,T4 be the
sub-trees of T rooted at ¢1,...,t4. Each T; has height <A and by induction
hypothesis, €(T;)*K> has a Hamiltonian path H; = (¢; = h;,...,h;, = t.)
with the desired properties. For a path P write P"¢" for the path P in reverse
direction. Then

H =t w0y, Weyey,0) s His Uy oy, 0 W)
ut,{t,t2}’(utz,{t2,t}),’H2’ utz,{tz,t)’(ut,(t,tz}),: ey

UeitaghsWeg ity ) s Hay Uiy (.0 We e ))s
t)rev

is a Hamiltonian path in €(7T")® Ky with the desired properties. It is clear
that H can be computed in polynomial time. O

We are now ready to show that for any planar graph G we can construct a
T-structure H which satisfies the requirements of lemma 9.4.3.
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Let G be a connected graph. Let o :={E,F,R,B}, where E,F are binary and
R,B are unary relation symbols. The Hamiltonian extension #(G) of G is
a 7-structure H := #(G) defined as follows. Let 7' be a spanning tree of G.
Then H consists of the disjoint union of G and 7" := €(T')® K5. Furthermore,
if C is the principle copy of €(T) in T’, then we add an edge between every
v € V(G) and its copy in C. All edges defined so far together define the
relation E(H). Let P be the Hamiltonian path in 7" defined in the proof of
Lemma 9.4.4. We define F'(H) as the directed edges of an orientation P so
that F is a directed Hamiltonian path. Finally, we colour the components of
H by defining R(H) :=V(G) and B(H) :=V(C).

Note that #(G) depends on T. However, our results below do not depend
on the particular choice of T' and we therefore write #(G) for any choice
of T.

We now show how to find the successor of a vertex v € V(G). Let v’ € V(C)
be the copy of v in C. Let 1’ be the next vertex on the directed Hamiltonian
path F(#(G)) in V(C) such that u' is connected to a vertex u in V(G), i.e. u’
corresponds to an original vertex of G. We then define u € V(G) as the
successor of v. As F' is a Hamiltonian path of 7", this construction defines
indeed a successor relation, on V(G). By construction, u’ has distance at
most 7 from v’ in F' and thus it is easily seen that S is first-order definable
by a formula ¢g(x,y) € FO(1), as the colors R,B can be used to distinguish
between the copies of V(G).

Lemma 9.4.5 The class {#(G): G is a planar connected graph} is nowhere
dense.

PROOF. As observed above, the class {€(G)* K3 : G is a planar connected
graph} is nowhere dense and hence there is a function ¢ such that for
every integer r = 0, splitter wins the simple (r, #(r))-splitter game on any
¢(G)* K3 for G planar and connected. We define ¢'(r) := 3¢(3r). Let us
transform splitter’s strategy from the (3r, £(3r))-game to a strategy for the
(r,¢'(r))-game.

Note that in the first copy of #(G), edges are not subdivided, hence in
order to preserve neighbourhoods, we consider the 3r game on ¢(G)*K3.

We only have to take care of one complication concerning circular edges
of €(T') which are not present in the respective copy €(G) of €(G)*K3. Let
v € V(G) be a vertex and let N, := (vo, ...,v;) € NT(v) be the set of neighbours
of v in T listed in the order given by the cyclic ordering p, fixed in the
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Figure 9.2.: A spanning tree T of the graph G of Figure 9.1 and its circular
extension &(T'). Vertices b and ¢ are not connected to T via a
and thus ¢(T') contains edges that are not edges of €(G).

construction of €(G). If for some i </, v; and v;+1mod (1+1) are not also
neighbours in the ordering p,, then in €(G) there is a path between any
v; and v;1+1 mod I+1 consisting of vertices used to subdivide original edges
and their connecting new edges. This is illustrated in Figure 9.2. The
figure shows a spanning tree of the graph displayed in Figure 9.1 and
the corresponding circular extension. Note that the vertices b and ¢ are
neighbours of a in the graph G but they are no longer neighbours of @ in
the spanning tree T'. The edge in the circular extension marked by a thick
line in Figure 9.2 therefore corresponds to a path between neighbours v;
and v;41 mod ;+1 Of @ in the circular extension of the graph G.

If both v; and v; ;1 modi+1 lie in the r-neighbourhood of some vertex u in
A(G) then every vertex on the path between v; and v;;1moq7+1 lies in
the 3r + 2-neighbourhood of u in €(G)*K3. This follows from the fact that
every circular edge of €(T') can be replaced by a path length 2 in €(G). We
simply adapt splitter’s strategy such that whenever he deletes v or any of
its subdivided neighbours in €(G)® K3, we use the two following rounds to
delete also v; and v;41 mod 7+1-

Now it is easy to see that for all i, the graph G; reached in round i in the
(r,?") game on #(G) is a subgraph of the graph Hjs; reached in round 3i in
the (3r,4(3r)) game on €(G)* K3. Hence we reach the empty graph after at
most 3¢(3r) = ¢'(r) rounds. This concludes the proof. (Il
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Clearly, Lemma 9.4.5 does not only hold for connected planar graphs but for
planar graphs in general.

Lemma 9.4.6 Let 7:={E,F,R,B}, where E,F are binary and R and B are
unary relation symbols. There is a polynomial time algorithm which, given
a planar graph G as input, computes a t-structure #(G) and a formula
ps(x,y) € FOIT] such that the class {#(G) : G a planar graph} is nowhere
dense and pg(F(G)) defines a successor relation on G.

PROOF. Construct the Hamiltonian extension #(C) for every component
C of G and connect the resulting Hamiltonian paths in some order. After
connector’s first choice v in the (r, £) game on the resulting graph, at most r
components lie in the r-neighbourhood of v. Splitter invests 2r additional
moves to disconnect the components again by deleting the connection points
of the introduced Hamilton-edges. The following game is played as the
original game on some component.

The formula defining the successor relation is modified accordingly. [l

Combining Lemma 9.4.6 and Theorem 8.1.2 we can now apply the method
established in Lemma 9.4.3 to obtain the main theorem of the section,
Theorem 9.4.2.

Eickmeyer et al. [45] have extended these results to show that the model-
checking problem for successor-invariant first-order formulas on any class
of graphs that excludes a fixed minor is fixed-parameter tractable. Their
result is also based on the interpretation method, however, their way of
adding definable successor relations is much more straight forward.

For k =1, a k-walk P of length ¢ through a graph G is a surjective
mapping w : {1,...,¢} — V(G) such that w(@)w(@ +1) € E(G) forall 1<i<?¢
and such that |{i :w(i) =v,1 <1< ¢} <k for all v e V(G). The authors
of [45] showed that if G excludes K; as a minor, then there is £ such that
one can find a k-walk in a super-graph H of G which excludes K} as a
minor. Furthermore, H and the k-walk can be found in polynomial time.
They further showed that for every graph with a k-walk, one can expand
the signature appropriately such that from the %2-walk one can define a
successor relation by first-order logic and then apply the interpretation
method. It is an interesting open question to which classes of graphs this
method may be extended.
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10. Conclusion and open
problems

We have shown that any first-order definable property of graphs can be
decided in almost linear time O(n1*€) on any nowhere dense class of graphs.
First-order definable problems define a natural and very important class
of problems including dominating sets, vertex covers, network centres and
many others. Our result allows to quickly tell whether a problem is fixed-
parameter tractable on a nowhere dense class of graphs, simply by formu-
lating the problem in first-order logic. A problem specific analysis, such as
the analysis of the r-independent set problem in Section 6.2, may then lead
to faster algorithms.

For the proof of our theorem we have extended the theory of nowhere
dense graphs in several ways. We have provided a new characterisation of
nowhere dense classes of graphs which describes the local neighbourhoods
of their elements in terms of the splitter game. From the winning strategy
of splitter on nowhere dense classes one can derive a very simple structural
decomposition of local neighbourhoods which allows to solve many local
problems recursively with a recursion tree of bounded depth.

We have shown that every nowhere dense class of graphs admits sparse
neighbourhood covers and that in fact every nowhere dense class which is
closed under subgraphs can be characterised by the existence of such cov-
ers. This characterisation is based on a known characterisation of nowhere
dense classes in terms of generalised colouring numbers. We have improved
previously known bounds for the generalised colouring numbers on nowhere
dense classes, proper minor closed classes, classes of bounded genus and
classes of bounded tree-width. These improved bounds lead to neighbour-
hood covers of radius 2r and degree bounded by some function f(r) for
classes that exclude K; as a (topological) minor. Busch et al. [18] present
r-neighbourhood covers of radius 24r — 8 and degree at most 18 for planar
graphs and Abraham et al. [4] present r-neighbourhood covers of radius
O(t2-r) and degree at most 2°®¢! for graphs that exclude K; as a minor.
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10. Conclusion and open problems

Hence by allowing a larger radius one finds a cover with degree indepen-
dent of r (depending only on the excluded minor). It is an interesting open
question how large the radius must be chosen such that this is possible.

We have shown that in general, computing the exact value of wcol3(G) of
an input graph G is NP-complete. The graphs occurring in the reduction
are very dense. It remains an open question whether computing wcola(G) is
NP-complete in general and whether computing wcol,.(G) is NP-complete
for sparse classes of graphs. The same questions are open for the strong
colouring numbers col,.

The combination of the two new characterisations has led to a powerful
algorithmic technique on nowhere dense classes of graphs. Our algorithmic
techniques are quite elementary and very easy to implement. The algorith-
mic construction of sparse neighbourhood covers is based on a simple greedy
algorithm which is based on Nesetril and Ossona de Mendez’s augmentation
technique and also the structural decomposition for local neighbourhoods
resulting from the splitter game is easily computable. This is in sharp
contrast to most algorithms for proper minor closed classes which are based
on Robertson and Seymour’s structure theorem for such classes.

On the logical side, we have proved a strengthened version of Gaifman’s
locality theorem. We introduced a new, discounted rank measure for first-
order formulas which allows a translation into local formulas such that the
rank is preserved. This makes a recursive evaluation of formulas possible.
However, in general, a non-elementary growth of formula length cannot be
avoided when translating formulas into their equivalent local form. This is
likely to be a serious problem in a practical implementation of our algorithm
for general formulas. Again, for many natural problems a careful analysis
of the problem may enable us to avoid this problem.

The first-order model-checking problem is hard for AW[x] on any some-
where dense class € which is closed under subgraphs and hence by our
result we capture all classes of graphs which are closed under subgraphs on
which the first-order model-checking problem is fixed-parameter tractable
(under the assumption FPT # AW[x]).

Much less is known about the problem for classes which are not closed
under subgraphs. Clearly, the theorem extends to all classes which can be
found via first-order interpretations in a nowhere dense class. However,
there are not many known useful interpretations. By Courcelle et al. [24],
the problem is fixed-parameter tractable even for MSO on classes of bounded
clique width. Already in 2007, Martin Grohe [61] raised the question, for
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which algebraic structures such as groups, rings, fields, et cetera the model-
checking problem is tractable. A first result in this direction was recently
obtained by Gajarsky et al. [56], who showed that the problem is fixed-
parameter tractable on partially ordered sets of bounded width. However,
there remain a lot of interesting classes for which the problem is open.

Another generalisation of the problem asks for the enumeration of tu-
ples @ € V()™ such that 2 |= ¢(a) for some formula ¢(x). Kazana and
Segoufin [73] have shown that after a linear time preprocessing, one can
enumerate all answers to the query ¢(x) with constant delay, on any class of
bounded expansion. Earlier results showed that this is possible on classes
of bounded degree [39, 72] and for MSO on classes of bounded tree-width
[74, 10]. It is an interesting question whether Kazana and Segoufin’s result
can be extended to nowhere dense classes.

Finally, we have shown that first-order logic on ordered structures as
well as on structures with a successor relation is intractable on nearly all
interesting classes of graphs. However, we have shown that the model-
checking problem for order-invariant MSO on graphs of bounded clique-
width and on graphs of bounded tree-width is fixed-parameter tractable.

For successor-invariant FO we were able to show that the model-check-
ing problem is fixed-parameter tractable on planar graphs. These results
were extended by Eickmeyer et al. [45] to all proper minor closed classes.
It is an interesting open question whether the result extends further to
classes of bounded expansion or nowhere dense classes. In fact, not much is
known about the expressive power of successor-invariant first-order logic on
sparse structures. All structures which are used to show that such formulas
can express more than plain first-order formulas are very dense. It is an
intriguing task to find a successor-invariant sentence on a nowhere dense
class which cannot be expressed by a plain first-order sentence.
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